WorldWideScience

Sample records for enzymatic nitrogen fixation

  1. Update: Biological Nitrogen Fixation.

    Science.gov (United States)

    Wiseman, Alan; And Others

    1985-01-01

    Updates knowledge on nitrogen fixation, indicating that investigation of free-living nitrogen-fixing organisms is proving useful in understanding bacterial partners and is expected to lead to development of more effective symbioses. Specific areas considered include biochemistry/genetics, synthesis control, proteins and enzymes, symbiotic systems,…

  2. Eighth international congress on nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  3. Understanding Nitrogen Fixation

    Energy Technology Data Exchange (ETDEWEB)

    Paul J. Chirik

    2012-05-25

    synthesis of ammonia, NH{sub 3}, from its elements, H{sub 2} and N{sub 2}, via the venerable Haber-Bosch process is one of the most significant technological achievements of the past century. Our research program seeks to discover new transition metal reagents and catalysts to disrupt the strong N {triple_bond} N bond in N{sub 2} and create new, fundamental chemical linkages for the construction of molecules with application as fuels, fertilizers and fine chemicals. With DOE support, our group has discovered a mild method for ammonia synthesis in solution as well as new methods for the construction of nitrogen-carbon bonds directly from N{sub 2}. Ideally these achievements will evolve into more efficient nitrogen fixation schemes that circumvent the high energy demands of industrial ammonia synthesis. Industrially, atmospheric nitrogen enters the synthetic cycle by the well-established Haber-Bosch process whereby N{sub 2} is hydrogenated to ammonia at high temperature and pressure. The commercialization of this reaction represents one of the greatest technological achievements of the 20th century as Haber-Bosch ammonia is responsible for supporting approximately 50% of the world's population and serves as the source of half of the nitrogen in the human body. The extreme reaction conditions required for an economical process have significant energy consequences, consuming 1% of the world's energy supply mostly in the form of pollution-intensive coal. Moreover, industrial H{sub 2} synthesis via the water gas shift reaction and the steam reforming of methane is fossil fuel intensive and produces CO{sub 2} as a byproduct. New synthetic methods that promote this thermodynamically favored transformation ({Delta}G{sup o} = -4.1 kcal/mol) under milder conditions or completely obviate it are therefore desirable. Most nitrogen-containing organic molecules are derived from ammonia (and hence rely on the Haber-Bosch and H{sub 2} synthesis processes) and direct synthesis from

  4. Eighth international congress on nitrogen fixation. Final program

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  5. Nitrogen fixation in trees - 1

    Energy Technology Data Exchange (ETDEWEB)

    Dobereiner, J.; Gauthier, D.L.; Diem, H.G.; Dommergues, Y.R.; Bonetti, R.; Oliveira, L.A.; Magalhaes, F.M.M.; Faria, S.M. de; Franco, A.A.; Menandro, M.S.

    1984-01-01

    Six papers are presented from the symposium. Dobereiner, J.; Nodulation and nitrogen fixation in leguminous trees, 83-90, (15 ref.), reviews studies on Brazilian species. Gauthier, D.L., Diem, H.G., Dommergues, Y.R., Tropical and subtropical actinorhizal plants, 119-136, (Refs. 50), reports on studies on Casuarinaceae. Bonetti, R., Oliveira, L.A., Magalhaes, F.M.M.; Rhizobium populations and occurrence of VA mycorrhizae in plantations of forest trees, 137-142, (Refs. 15), studies Amazonia stands of Cedrelinga catenaeformis, Calophyllum brasiliense, Dipteryx odorata, D. potiphylla, Carapa guianensis, Goupia glabra, Tabebuia serratifolia, Clarisia racemosa, Pithecellobium racemosum, Vouacapoua pallidior, Eperua bijuga, and Diplotropis species. Nodulation was observed in Cedrelinga catenaeformis and V. pallidior. Faria, S.M. de, Franco, A.A., Menandro, M.S., Jesus, R.M. de, Baitello, J.B.; Aguiar, O.T. de, Doebereiner, J; survey of nodulation in leguminous tree species native to southeastern Brazil, 143-153, (Refs. 7), reports on 119 species, with first reports of nodulation in the genera Bowdichia, Poecilanthe, Melanoxylon, Moldenhaurea (Moldenhawera), and Pseudosamanea. Gaiad, S., Carpanezzi, A.A.; Occurrence of Rhizobium in Leguminosae of silvicultural interest for south Brazil, 155-158, (Refs. 2). Nodulation is reported in Mimosa scabrella, Acacia mearnsii, A. longifolia various trinervis, Enterolobium contortisiliquum, and Erythrina falcata. Magalhaes, L.M.S., Blum, W.E.H., Nodulation and growth of Cedrelinga catanaeformis in experimental stands in the Manaus region - Amazonas, 159-164, (Refs. 5). Results indicate that C. catenaeformis can be used in degraded areas of very low soil fertility.

  6. Nitrogen fixation in Red Sea seagrass meadows

    KAUST Repository

    Abdallah, Malak

    2017-05-01

    Seagrasses are key coastal ecosystems, providing many ecosystem services. Seagrasses increase biodiversity as they provide habitat for a large set of organisms. In addition, their structure provides hiding places to avoid predation. Seagrasses can grow in shallow marine coastal areas, but several factors regulate their growth and distribution. Seagrasses can uptake different kinds of organic and inorganic nutrients through their leaves and roots. Nitrogen and phosphorous are the most important nutrients for seagrass growth. Biological nitrogen fixation is the conversion of atmospheric nitrogen into ammonia by diazotrophic bacteria. This process provides a significant source of nitrogen for seagrass growth. The nitrogen fixation is controlled by the nif genes which are found in diazotrophs. The main goal of the project is to measure nitrogen fixation rates on seagrass sediments, in order to compare among various seagrass species from the Red Sea. Moreover, we will compare the fixing rates of the Vegetated areas with the bare sediments. This project will help to ascertain the role of nitrogen fixing bacteria in the development of seagrass meadows.

  7. biological nitrogen fixation by inoculated soya beans

    African Journals Online (AJOL)

    Biological Nitrogen Fixation (BNF) by soya beans (Glycine max) was estimated using the acetylene reduction assay (ARA) for varieties Davis, Kudu, Impala, Hardee, Geduld, and an unidentified variety, grown in pure and mixed cultures with maize (Zea mays) over two seasons. All varieties had higher levels of BNF when ...

  8. Nitrogen fixation in the phyllosphere of Gramineae

    NARCIS (Netherlands)

    Bessems, E.P.M.

    1973-01-01

    The investigation was carried out with Zea mays , grown under temperate conditions, and with Tripsacum laxum Nash, grown in the tropics. The conditions for nitrogen fixation were found to be unfavourable in the leachate, obtained by spray irrigation of the aerial plant

  9. Biological nitrogen fixation, forms and regulating factors

    NARCIS (Netherlands)

    Giller, K.E.; Mapfumo, P.

    2002-01-01

    Nitrogen fixation is the basis of the global N cycle. Therefore it is not surprising that the ability to fix atmospheric N2 evolved in the "primeval soup" and is deeply rooted in the evolutionary tree of life. Despite this, nitrogenase remains an enzyme exclusive to prokaryotes; no eukaryote has

  10. Biological Nitrogen Fixation on Legume

    Directory of Open Access Journals (Sweden)

    Armiadi

    2009-03-01

    Full Text Available Nitrogen (N is one of the major limiting factors for crop growth and is required in adequate amount, due to its function as protein and enzyme components. In general, plants need sufficient nitrogen supply at all levels of growth, especially at the beginning of growth phase. Therefore, the availability of less expensive N resources would reduce the production cost. The increasing use of chemical fertilizer would probably disturb soil microorganisms, reduce the physical and chemical characteristics of soil because not all of N based fertilizer applied can be absorbed by the plants. Approximately only 50% can be used by crops, while the rest will be altered by microorganism into unavailable N for crops or else dissappear in the form of gas. Leguminous crops have the capacity to immobilize N2 and convert into the available N if innoculated with Rhizobium. The amount of N2 fixed varies depending on legume species and their environment.

  11. Variable Nitrogen Fixation in Wild Populus.

    Directory of Open Access Journals (Sweden)

    Sharon L Doty

    Full Text Available The microbiome of plants is diverse, and like that of animals, is important for overall health and nutrient acquisition. In legumes and actinorhizal plants, a portion of essential nitrogen (N is obtained through symbiosis with nodule-inhabiting, N2-fixing microorganisms. However, a variety of non-nodulating plant species can also thrive in natural, low-N settings. Some of these species may rely on endophytes, microorganisms that live within plants, to fix N2 gas into usable forms. Here we report the first direct evidence of N2 fixation in the early successional wild tree, Populus trichocarpa, a non-leguminous tree, from its native riparian habitat. In order to measure N2 fixation, surface-sterilized cuttings of wild poplar were assayed using both 15N2 incorporation and the commonly used acetylene reduction assay. The 15N label was incorporated at high levels in a subset of cuttings, suggesting a high level of N-fixation. Similarly, acetylene was reduced to ethylene in some samples. The microbiota of the cuttings was highly variable, both in numbers of cultured bacteria and in genetic diversity. Our results indicated that associative N2-fixation occurred within wild poplar and that a non-uniformity in the distribution of endophytic bacteria may explain the variability in N-fixation activity. These results point to the need for molecular studies to decipher the required microbial consortia and conditions for effective endophytic N2-fixation in trees.

  12. Biological Nitrogen Fixation: Perspective and Limitation

    Directory of Open Access Journals (Sweden)

    N D Purwantari

    2008-03-01

    Full Text Available The demand of chemical fertilizer, N in particular will be increasing until 2020. In Indonesia, the demand of fertilizer from 1999 – 2002 increased 37.5 and 12.4% for urea and ammonium sulphate, respectively. At the same time, the price of this fertilizer is also increasing and it can not be afforded by the farmer. Other problem in using chemical fertilizer is damaging to the soil and environment. One of the problem solvings for this condition is to maximize biological nitrogen fixation (BNF. BNF is the fixation of N atmosphere by association between soil bacteria rhizobia and leguminous plant. BNF is sustainable and environmentally friendly in providing nitrogen fertilizer. Therefore, it would reduce the requirement of chemical nitrogen fertilizer for the plant. Gliricidia sepium fixes 170 kg N/ha/12 months, equivalent with 377 kg urea, Sesbania sesban 179 kg N/ha/10 months, equivalent 397 kg with urea, soybean 26 – 57 kg/2 months equivalent with 57 – 126 kg urea. The amount of N2- fixed varies, affected by species, environmental and biological factors. There are some limitations in applying this technology. The effect of N contribution is very slow at the beginning but in the long term, it would be beneficial for plant production and at the same time, maintain condition of physical and chemical of soil, soil microbes and therefore soil fertility.

  13. Cultivar effects on nitrogen fixation in peas and lentils

    Science.gov (United States)

    Increasing nitrogen fixation in legume crops could increase cropping productivity and reduce nitrogen fertilizer use. Studies have found that crop genotype, rhizobial strain, and occasionally genotype-specific interactions affect N fixation, but this knowledge has not yet been used to evaluate or br...

  14. Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria

    Science.gov (United States)

    Bothe, Hermann; Schmitz, Oliver; Yates, M. Geoffrey; Newton, William E.

    2010-01-01

    Summary: This review summarizes recent aspects of (di)nitrogen fixation and (di)hydrogen metabolism, with emphasis on cyanobacteria. These organisms possess several types of the enzyme complexes catalyzing N2 fixation and/or H2 formation or oxidation, namely, two Mo nitrogenases, a V nitrogenase, and two hydrogenases. The two cyanobacterial Ni hydrogenases are differentiated as either uptake or bidirectional hydrogenases. The different forms of both the nitrogenases and hydrogenases are encoded by different sets of genes, and their organization on the chromosome can vary from one cyanobacterium to another. Factors regulating the expression of these genes are emerging from recent studies. New ideas on the potential physiological and ecological roles of nitrogenases and hydrogenases are presented. There is a renewed interest in exploiting cyanobacteria in solar energy conversion programs to generate H2 as a source of combustible energy. To enhance the rates of H2 production, the emphasis perhaps needs not to be on more efficient hydrogenases and nitrogenases or on the transfer of foreign enzymes into cyanobacteria. A likely better strategy is to exploit the use of radiant solar energy by the photosynthetic electron transport system to enhance the rates of H2 formation and so improve the chances of utilizing cyanobacteria as a source for the generation of clean energy. PMID:21119016

  15. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils

    Science.gov (United States)

    Barron, Alexander R.; Wurzburger, Nina; Bellenger, Jean Phillipe; Wright, S. Joseph; Kraepiel, Anne M. L.; Hedin, Lars O.

    2009-01-01

    Nitrogen fixation, the biological conversion of di-nitrogen to plant-available ammonium, is the primary natural input of nitrogen to ecosystems, and influences plant growth and carbon exchange at local to global scales. The role of this process in tropical forests is of particular concern, as these ecosystems harbour abundant nitrogen-fixing organisms and represent one third of terrestrial primary production. Here we show that the micronutrient molybdenum, a cofactor in the nitrogen-fixing enzyme nitrogenase, limits nitrogen fixation by free-living heterotrophic bacteria in soils of lowland Panamanian forests. We measured the fixation response to long-term nutrient manipulations in intact forests, and to short-term manipulations in soil microcosms. Nitrogen fixation increased sharply in treatments of molybdenum alone, in micronutrient treatments that included molybdenum by design and in treatments with commercial phosphorus fertilizer, in which molybdenum was a `hidden' contaminant. Fixation did not respond to additions of phosphorus that were not contaminated by molybdenum. Our findings show that molybdenum alone can limit asymbiotic nitrogen fixation in tropical forests and raise new questions about the role of molybdenum and phosphorus in the tropical nitrogen cycle. We suggest that molybdenum limitation may be common in highly weathered acidic soils, and may constrain the ability of some forests to acquire new nitrogen in response to CO2 fertilization.

  16. Symbiotic nitrogen fixation is the most efficient, enviromently and ...

    African Journals Online (AJOL)

    biyabani

    2012-01-27

    Jan 27, 2012 ... Symbiotic nitrogen fixation is an environmentally benign and inexpensive means of providing plants with nitrogen, but is currently not possible in non-legume grain crops. This study examines nitrogen fixing paranodules that developed on wheat (Triticum aestivum) roots after treatment with 2,4-.

  17. Plant densities and modulation of symbiotic nitrogen fixation in soybean

    Directory of Open Access Journals (Sweden)

    Marcos Javier de Luca

    2014-06-01

    Full Text Available Soybean nitrogen (N demands can be supplied to a large extent via biological nitrogen fixation, but the mechanisms of source/sink regulating photosynthesis/nitrogen fixation in high yielding cultivars and current crop management arrangements need to be investigated. We investigated the modulation of symbiotic nitrogen fixation in soybean [Glycine max (L. Merrill] at different plant densities. A field trial was performed in southern Brazil with six treatments, including non-inoculated controls without and with N-fertilizer, both at a density of 320,000 plants ha−1, and plants inoculated with Bradyrhizobium elkanii at four densities, ranging from 40,000 to 320,000 plants ha−1. Differences in nodulation, biomass production, N accumulation and partition were observed at stage R5, but not at stage V4, indicating that quantitative and qualitative factors (such as sunlight infrared/red ratio assume increasing importance during the later stages of plant growth. Decreases in density in the inoculated treatments stimulated photosynthesis and nitrogen fixation per plant. Similar yields were obtained at the different plant densities, with decreases only at the very low density level of 40,000 plants ha−1, which was also the only treatment to show differences in seed protein and oil contents. Results confirm a fine tuning of the mechanisms of source/sink, photosynthesis/nitrogen fixation under lower plant densities. Higher photosynthesis and nitrogen fixation rates are capable of sustaining increased plant growth.

  18. Biological Nitrogen Fixation In Tropical Dry Forests Of Costa Rica

    Science.gov (United States)

    Gei, M. G.; Powers, J. S.

    2012-12-01

    Evidence suggests that tropical dry forests (TDF) are not nitrogen (N) deficient. This evidence includes: high losses of gaseous nitrogen during the rainy season, high ecosystem soil N stocks and high N concentrations in leaves and litterfall. Its been commonly hypothesized that biological nitrogen fixation is responsible for the high availability of N in tropical soils. However, the magnitude of this flux has rarely if ever been measured in tropical dry forests. Because of the high cost of fixing N and the ubiquity of N fixing legume trees in the TDF, at the individual tree level symbiotic fixation should be a strategy down-regulated by the plant. Our main goal was to determine the rates of and controls over symbiotic N fixation. We hypothesized that legume tree species employ a facultative strategy of nitrogen fixation and that this process responds to changes in light availability, soil moisture and nutrient supply. We tested this hypothesis both on naturally established trees in a forest and under controlled conditions in a shade house by estimating the quantities of N fixed annually using the 15N natural abundance method, counting nodules, and quantifying (field) or manipulating (shade house) the variation in important environmental variables (soil nutrients, soil moisture, and light). We found that in both in our shade house experiment and in the forest, nodulation varied among different legume species. For both settings, the 15N natural abundance approach successfully detected differences in nitrogen fixation among species. The legume species that we studied were able to regulate fixation depending on the environmental conditions. They showed to have different strategies of nitrogen fixation that follow a gradient of facultative to obligate fixation. Our data suggest that there exists a continuum of nitrogen fixation strategies among species. Any efforts to define tropical legume trees as a functional group need to incorporate this variation.

  19. Effect of Phosphorus Fertilizer on Nitrogen Fixation by Some Grain ...

    African Journals Online (AJOL)

    acer

    5698. Effect of Phosphorus Fertilizer on Nitrogen Fixation by Some Grain Legume Varieties in Sudano – Sahelian Zone of North Eastern Nigeria. *H. Yakubu, J. D. Kwari and M.K. Sandabe. Department of Soil Science,. University of Maiduguri.

  20. Nitrogen fixation of Acacia mangium Willd. from two seed sources ...

    African Journals Online (AJOL)

    Phosphorus (P) is required to facilitate the fixation of atmospheric nitrogen (N) by leguminous species such as Acacia mangium. We studied the N fixation of A. mangium trees grown from two seed sources. These consisted of bulk seedlots collected from seed orchards in Sumatra, one based on natural provenances from ...

  1. Nitrogen fixation rates in the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Ahmed, A.; Gauns, M.; Kurian, S.; Bardhan, P.; Pratihary, A.K.; Naik, H.; Shenoy, D.M.; Naqvi, S.W.A.

    fixation rates were low (0.9�1.5 ?mol N m-3 d-1). Due to episodic events of diazotroph bloom, contribution of N2 fixation to the total nitrogen pool may vary in space and time....

  2. Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions.

    Directory of Open Access Journals (Sweden)

    Lorena Setten

    Full Text Available Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops.

  3. Nutrient feedbacks to soil heterotrophic nitrogen fixation in forests

    Science.gov (United States)

    Perakis, Steven; Pett-Ridge, Julie C.; Catricala, Christina E.

    2017-01-01

    Multiple nutrient cycles regulate biological nitrogen (N) fixation in forests, yet long-term feedbacks between N-fixation and coupled element cycles remain largely unexplored. We examined soil nutrients and heterotrophic N-fixation across a gradient of 24 temperate conifer forests shaped by legacies of symbiotic N-fixing trees. We observed positive relationships among mineral soil pools of N, carbon (C), organic molybdenum (Mo), and organic phosphorus (P) across sites, evidence that legacies of symbiotic N-fixing trees can increase the abundance of multiple elements important to heterotrophic N-fixation. Soil N accumulation lowered rates of heterotrophic N-fixation in organic horizons due to both N inhibition of nitrogenase enzymes and declines in soil organic matter quality. Experimental fertilization of organic horizon soil revealed widespread Mo limitation of heterotrophic N-fixation, especially at sites where soil Mo was scarce relative to C. Fertilization also revealed widespread absence of P limitation, consistent with high soil P:Mo ratios. Responses of heterotrophic N-fixation to added Mo (positive) and N (negative) were correlated across sites, evidence that multiple nutrient controls of heterotrophic N-fixation were more common than single-nutrient effects. We propose a conceptual model where symbiotic N-fixation promotes coupled N, C, P, and Mo accumulation in soil, leading to positive feedback that relaxes nutrient limitation of overall N-fixation, though heterotrophic N-fixation is primarily suppressed by strong negative feedback from long-term soil N accumulation.

  4. Actual and potential nitrogen fixation in pea and field bean as affected by combined nitrogen

    NARCIS (Netherlands)

    Mil, van M.

    1981-01-01

    Actual nitrogen fixation of pea and field-bean plants, grown in soil in the open air, was determined as the acetylene reduction of nodulated roots. During the major part of the vegetative growth of these plants, actual nitrogen fixation was equal to the potential maximum nitrogenase activity of the

  5. Eco-physiological responses and symbiotic nitrogen fixation ...

    African Journals Online (AJOL)

    Nitrogen nutrition of Hedysarum carnosum, a pastoral legume common in Tunisian central and southern rangelands, largely depends on atmospheric nitrogen fixation. Yet, this process is greatly affected by environmental factors such as salinity. This study aimed to characterize the tolerance limits and the physiological ...

  6. The importance of regulation of nitrogen fixation

    Science.gov (United States)

    Menge, D. N.

    2012-12-01

    I am not a proponent of including more detail in models simply because it makes them more realistic. More complexity increases the difficulty of model interpretation, so it only makes sense to include complexity if its benefit exceeds its costs. Biological nitrogen (N) fixation (BNF) is one process for which I feel the benefits of including greater complexity far outweigh the costs. I don't think that just because I work on BNF; I work on BNF because I think that. BNF, a microbial process carried out by free-living and symbiotic microbes, is the dominant N input to many ecosystems, the primary mechanism by which N deficiency can feed back to N inputs, and a main mechanism by which N surplus can develop. The dynamics of BNF, therefore, have huge implications for the rate of carbon uptake and the extent of CO2 fertilization, as well as N export to waterways and N2O emissions to the atmosphere. Unfortunately, there are serious deficiencies in our understanding of BNF. One main deficiency in our understanding is the extent to which various symbiotic N fixing organisms respond to imbalanced nutrition. Theory suggests that these responses, which I will call "strategies," have fundamental consequences for N fixer niches and ecosystem-level N and C cycling. Organisms that fix N regardless of whether they need it, a strategy that I will call "obligate," occupy post-disturbance niches and rapidly lead to N surplus. On the contrary, organisms that only fix as much N as they need, a "facultative" strategy, can occupy a wider range of successional niches, do not produce surplus N, and respond more rapidly to increased atmospheric CO2. In this talk I will show new results showing that consideration of these strategies could on its own explain the latitudinal distribution of symbiotic N fixing trees in North America. Specifically, the transition in N-fixing tree abundance from ~10% of basal area south of 35° latitude to ~1% of basal area north of 35° latitude that we observe

  7. Nutrient limitation of terrestrial free-living nitrogen fixation.

    Science.gov (United States)

    Dynarski, Katherine A; Houlton, Benjamin Z

    2018-02-01

    Nitrogen (N) fixation by free-living bacteria is a primary N input pathway in many ecosystems and sustains global plant productivity. Uncertainty exists over the importance of N, phosphorus (P) and molybdenum (Mo) availability in controlling free-living N fixation rates. Here, we investigate the geographic occurrence and variability of nutrient constraints to free-living N fixation in the terrestrial biosphere. We compiled data from studies measuring free-living N fixation in response to N, P and Mo fertilizers. We used meta-analysis to quantitatively determine the extent to which N, P and Mo stimulate or suppress N fixation, and if environmental variables influence the degree of nutrient limitation of N fixation. Across our compiled dataset, free-living N fixation is suppressed by N fertilization and stimulated by Mo fertilization. Additionally, free-living N fixation is stimulated by P additions in tropical forests. These findings suggest that nutrient limitation is an intrinsic property of the biochemical demands of N fixation, constraining free-living N fixation in the terrestrial biosphere. These findings have implications for understanding the causes and consequences of N limitation in coupled nutrient cycles, as well as modeling and forecasting nutrient controls over carbon-climate feedbacks. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Buckminsterfullerenes: a non-metal system for nitrogen fixation.

    Science.gov (United States)

    Nishibayashi, Yoshiaki; Saito, Makoto; Uemura, Sakae; Takekuma, Shin-Ichi; Takekuma, Hideko; Yoshida, Zen-Ichi

    2004-03-18

    In all nitrogen-fixation processes known so far--including the industrial Haber-Bosch process, biological fixation by nitrogenase enzymes and previously described homogeneous synthetic systems--the direct transformation of the stable, inert dinitrogen molecule (N2) into ammonia (NH3) relies on the powerful redox properties of metals. Here we show that nitrogen fixation can also be achieved by using a non-metallic buckminsterfullerene (C60) molecule, in the form of a water-soluble C60:gamma-cyclodextrin (1:2) complex, and light under nitrogen at atmospheric pressure. This metal-free system efficiently fixes nitrogen under mild conditions by making use of the redox properties of the fullerene derivative.

  9. Biological nitrogen fixation in non-legume plants

    OpenAIRE

    Santi, Carole; Bogusz, Didier; Franche, Claudine

    2013-01-01

    Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tigh...

  10. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle.

    Science.gov (United States)

    Sheffer, Efrat; Batterman, Sarah A; Levin, Simon A; Hedin, Lars O

    2015-11-23

    Dinitrogen fixation by plants (in symbiosis with root bacteria) is a major source of new nitrogen for land ecosystems(1). A long-standing puzzle(2) is that trees capable of nitrogen fixation are abundant in nitrogen-rich tropical forests, but absent or restricted to early successional stages in nitrogen-poor extra-tropical forests. This biome-scale pattern presents an evolutionary paradox(3), given that the physiological cost(4) of nitrogen fixation predicts the opposite pattern: fixers should be out-competed by non-fixers in nitrogen-rich conditions, but competitively superior in nitrogen-poor soils. Here we evaluate whether this paradox can be explained by the existence of different fixation strategies in tropical versus extra-tropical trees: facultative fixers (capable of downregulating fixation(5,6) by sanctioning mutualistic bacteria(7)) are common in the tropics, whereas obligate fixers (less able to downregulate fixation) dominate at higher latitudes. Using a game-theoretic approach, we assess the ecological and evolutionary conditions under which these fixation strategies emerge, and examine their dependence on climate-driven differences in the nitrogen cycle. We show that in the tropics, transient soil nitrogen deficits following disturbance and rapid tree growth favour a facultative strategy and the coexistence of fixers and non-fixers. In contrast, sustained nitrogen deficits following disturbance in extra-tropical forests favour an obligate fixation strategy, and cause fixers to be excluded in late successional stages. We conclude that biome-scale differences in the abundance of nitrogen fixers can be explained by the interaction between individual plant strategies and climatic constraints on the nitrogen cycle over evolutionary time.

  11. Nitrogen fixation, denitrification, and ecosystem nitrogen pools in relation to vegetation development in the Subarctic

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Jonasson, Sven Evert; Michelsen, Anders

    2006-01-01

    Nitrogen (N) fixation, denitrification, and ecosystem pools of nitrogen were measured in three subarctic ecosystem types differing in soil frost-heaving activity and vegetation cover. N2-fixation was measured by the acetylene reduction assay and converted to absolute N ecosystem input by estimates...... measurements of temperature, light, and soil moisture. Nitrogen fixation rate was high with seasonal input estimated at 1.1 g N m2 on frostheaved sorted circles, which was higher than the total plant N content and exceeded estimated annual plant N uptake several-fold but was lower than the microbial N content...... of conversion factors between acetylene reduction and 15N incorporation. One aim was to relate nitrogen fluxes and nitrogen pools to the mosaic of ecosystem types of different stability common in areas of soil frost movements. A second aim was to identify abiotic controls on N2-fixation by simultaneous...

  12. Nitrogen fixation associated with sago (Metroxylon sagu) and some implications.

    Science.gov (United States)

    Shipton, W A; Baker, A; Blaney, B J; Horwood, P F; Warner, J M; Pelowa, D; Greenhill, A R

    2011-01-01

    To determine the presence and contribution of diazotrophic bacteria to nitrogen concentrations in edible starch derived from the sago palm (Metroxylon sagu). Isolation of diazotrophic bacteria and analysis of nitrogen fixation were conducted on pith, root and sago starch samples. Acetylene reduction showed that five of ten starch samples were fixing nitrogen. Two presumptive nitrogen-fixing bacteria from starch fixed nitrogen in pure culture and five isolates were positive for the nif H gene. Nitrogen concentrations in 51 starch samples were low (37 samples sago starch, which undoubtedly plays a role in fermentation ecology. Nitrogen levels are considered too low to be of nutritional benefit and to protect against nutritional-associated illnesses. Sago starch does not add significantly to the protein calorie intake and may be associated with susceptibility to nutritional-associated illness. © 2010 The Authors. Letters in Applied Microbiology © 2010 The Society for Applied Microbiology.

  13. Nitrogen Fixation by Members of the Tribe Klebsielleae

    Science.gov (United States)

    Mahl, M. C.; Wilson, P. W.; Fife, M. A.; Ewing, W. H.

    1965-01-01

    Mahl, M. C. (University of Wisconsin, Madison), P. W. Wilson, M. A. Fife, and W. H. Ewing. Nitrogen fixation by members of the tribe Klebsielleae. J. Bacteriol. 89:1482–1487. 1965.—Strains of species of the tribe Klebsielleae were tested for nitrogen fixation by inoculating actively growing cultures into side-arm flasks containing a medium with a growth-limiting quantity of combined nitrogen (25 μg of nitrogen per ml as ammonium sulfate). The flasks were evacuated, filled with pure N2, sealed, and placed on a shaker at 30 C. Growth was followed by optical-density measurements; maximal growth was obtained in 9 to 10 hr. Yeast extract was then added as a source of amino acids to shorten the induction time for the nitrogen-fixing enzymes. Fixation was determined either by estimating total nitrogen with a semimicro Kjeldahl technique or by exposing 20- to 22-hr-old samples to an atmosphere of N215 and helium for 5 hr and then analyzing the digested sample for N15 in a mass spectrometer. None of the 22 strains of the two Enterobacter (formerly Aerobacter) species fixed nitrogen; neither did any of eight strains of Serratia species that were tested. Of 31 strains of Klebsiella pneumoniae, 13 incorporated atmospheric nitrogen. Net nitrogen fixed ranged from 17 to 65 μg/ml. It is concluded that these facultative anaerobic, gram-negative, nitrogen-fixing rods should be placed in the genus Klebsiella pneumoniae. The nitrogen-fixing organism tentatively classified as Achromobacter N-4 should also be changed to K. pneumoniae strain N-4, because it has been found to be an anaerogenic strain of K. pneumoniae. PMID:14291584

  14. Biological nitrogen fixation in Crotalaria species estimated using the ...

    African Journals Online (AJOL)

    A greenhouse experiment was conducted to measure nitrogen fixation in three Crotalaria species : C. ochroleuca, C. perrottetii and C. retusa growing in Senegal by using 15N direct isotope dilution technique. Two non-fixing plants, Senna obtusifolia and Senna occidentalis served as reference plants. The amount of ...

  15. Effect of Phosphorus Fertilizer on Nitrogen Fixation by Some Grain ...

    African Journals Online (AJOL)

    acer

    ABSTRACT: Nitrogen fixation by grain legumes contributes N to tropical soils. But in Sudano –. Sahelian region of North-eastern Nigeria, low phosphorus content of the soil may restrict rhizobia population and legumes root development, which in turn, can affect their N2 fixing potential. A two- years field experiment was ...

  16. Effect of Phosphorus Fertilizer on Nitrogen Fixation by Some Grain ...

    African Journals Online (AJOL)

    Effect of Phosphorus Fertilizer on Nitrogen Fixation by Some Grain Legume Varieties in Sudano – Sahelian Zone of North Eastern Nigeria. ... crops and a sorghum variety (Paul Biya) were applied 0, 20 and 40 Kg Pha-1 and grown for 50 days, after which they were harvested and the amount of N fixed was determined. P ...

  17. Estimates of biological nitrogen fixation by Pterocarpus lucens in a ...

    African Journals Online (AJOL)

    Nitrogen (N2) fixation by Pterocarpus lucens in a natural semi arid ecosystem, in Ferlo, Senegal was estimated using 15N natural abundance (15N) procedure. Other non-fixing trees accompanying P. lucens in the same area were also investigated as control. Results showed an important variation of 15N in leaves between ...

  18. Nitrogen fixation and nodulation of soybean as affected by rhizobial ...

    African Journals Online (AJOL)

    The study evaluated the efficacy of different adhesives added to rhizobial seed inoculum on soybean nodulation and biological nitrogen fixation in a screen house and under field conditions. The experiment was a 6×3 factorial arranged in Completely Randomized Design and Randomized Complete Block Design for the pot ...

  19. Biological nitrogen fixation and habitat of running buffalo clover

    Science.gov (United States)

    D.R. Morris; V.S. Baligar; T.M. Schuler; P.J. Harmon

    2002-01-01

    Running buffalo clover (RBC) [Trifolium stoloniferum (Muhl. ex Eat.)] is an endangered species whose survival is uncertain. An experiment was conducted on extant RBC sites to investigate biological nitrogen (N2) fixation, associated plant species, and soil conditions under natural mountain settings. Isotope (15...

  20. Cyanobacteria Occurrence and Nitrogen Fixation Rates in the ...

    African Journals Online (AJOL)

    The occurrence and biological nitrogen fixation rates of epiphytic and benthic diazotrophs were studied in seagrass meadows at sites with seaweed farms and at a control site without seaweed farms from two locations, Chwaka Bay and Jambiani, along the east coast of. Zanzibar. Ten species of cyanobacteria were ...

  1. Biological nitrogen fixation in non-legume plants.

    Science.gov (United States)

    Santi, Carole; Bogusz, Didier; Franche, Claudine

    2013-05-01

    Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. Understanding the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops.

  2. Nitrogen Fixation (Acetylene Reduction) Associated with Duckweed (Lemnaceae) Mats

    Science.gov (United States)

    Zuberer, D. A.

    1982-01-01

    Duckweed (Lemnaceae) mats in Texas and Florida were investigated, using the acetylene reduction assay, to determine whether nitrogen fixation occurred in these floating aquatic macrophyte communities. N2-fixing microorganisms were enumerated by plating or most-probable-number techniques, using appropriate N-free media. Results of the investigations indicated that substantial N2-fixation (C2H2) was associated with duckweed mats in Texas and Florida. Acetylene reduction values ranged from 1 to 18 μmol of C2H4 g (dry weight)−1 day−1 for samples incubated aerobically in light. Dark N2 fixation was always two- to fivefold lower. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea (7 to 10 μM) reduced acetylene reduction to levels intermediate between light and dark incubation. Acetylene reduction was generally greatest for samples incubated anaerobically in the light. It was estimated that 15 to 20% of the N requirement of the duckweed could be supplied through biological nitrogen fixation. N2-fixing heterotrophic bacteria (105 cells g [wet weight]−1 and cyanobacteria (105 propagules g [wet weight]−1 were associated with the duckweed mats. Azotobacter sp. was not detected in these investigations. One diazotrophic isolate was classified as Klebsiella. PMID:16345992

  3. QTL analysis of symbiotic nitrogen fixation in a black bean RIL population

    Science.gov (United States)

    Dry bean (Phaseolus vulgaris L) acquires nitrogen (N) from the atmosphere through symbiotic nitrogen fixation (SNF) but it has a low efficiency to fix nitrogen. The objective of this study is to map the genes controlling nitrogen fixation in common bean. A mapping population consisting of 122 recomb...

  4. Enhanced symbiotic nitrogen fixation with P. syringae pv tabaci

    Energy Technology Data Exchange (ETDEWEB)

    Langston-Unkefer, P.J.; Knight, T.J. (Los Alamos National Lab., NM (USA) New Mexico State Univ., Las Cruces (USA)); Sengupta-Gopalan, C. (New Mexico State Univ., Las Cruces (USA))

    1989-04-01

    Infestation of legumes such as alfalfa and soybeans with the plant pathogen Pseudomonas syringae pv. tabaci is accompanied by increased plant growth, nodulation, overall nitrogen fixation, and total assimilated nitrogen. These effects are observed only in plants infested with Tox{sup +} pathogen; the toxin is tabtoxinine-{beta}-lactam, an active site-directed irreversible inhibitor of glutamine synthetase. The key to the legumes survival of this treatment is the insensitivity of the nodule-specific form of glutamine synthetase to the toxin. As expected, significant changes are observed in ammonia assimilation in these plants. The biochemical and molecular biological consequences of this treatment are being investigated.

  5. Nitrogen fixation in eukaryotes – New models for symbiosis

    Directory of Open Access Journals (Sweden)

    Lockhart Peter

    2007-04-01

    Full Text Available Abstract Background Nitrogen, a component of many bio-molecules, is essential for growth and development of all organisms. Most nitrogen exists in the atmosphere, and utilisation of this source is important as a means of avoiding nitrogen starvation. However, the ability to fix atmospheric nitrogen via the nitrogenase enzyme complex is restricted to some bacteria. Eukaryotic organisms are only able to obtain fixed nitrogen through their symbiotic interactions with nitrogen-fixing prokaryotes. These symbioses involve a variety of host organisms, including animals, plants, fungi and protists. Results We have compared the morphological, physiological and molecular characteristics of nitrogen fixing symbiotic associations of bacteria and their diverse hosts. Special features of the interaction, e.g. vertical transmission of symbionts, grade of dependency of partners and physiological modifications have been considered in terms of extent of co-evolution and adaptation. Our findings are that, despite many adaptations enabling a beneficial partnership, most symbioses for molecular nitrogen fixation involve facultative interactions. However, some interactions, among them endosymbioses between cyanobacteria and diatoms, show characteristics that reveal a more obligate status of co-evolution. Conclusion Our review emphasises that molecular nitrogen fixation, a driving force for interactions and co-evolution of different species, is a widespread phenomenon involving many different organisms and ecosystems. The diverse grades of symbioses, ranging from loose associations to highly specific intracellular interactions, might themselves reflect the range of potential evolutionary fates for symbiotic partnerships. These include the extreme evolutionary modifications and adaptations that have accompanied the formation of organelles in eukaryotic cells: plastids and mitochondria. However, age and extensive adaptation of plastids and mitochondria complicate the

  6. Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides.

    Science.gov (United States)

    Li, Jie; Li, Hao; Zhan, Guangming; Zhang, Lizhi

    2017-01-17

    Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO2, SrTiO3, (Ga1-xZnx)(N1-xOx), CdS, and g-C3N4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N2. This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling

  7. Nitrogen fixation by white lupin under phosphorus deficiency.

    Science.gov (United States)

    Schulze, Joachim; Temple, Glena; Temple, Stephen J; Beschow, Heidrun; Vance, Carroll P

    2006-10-01

    White lupin is highly adapted to growth in a low-P environment. The objective of the present study was to evaluate whether white lupin grown under P-stress has adaptations in nodulation and N2 fixation that facilitate continued functioning. Nodulated plants were grown in silica sand supplied with N-free nutrient solution containing 0 to 0.5 mm P. At 21 and 37 d after inoculation (DAI) growth, nodulation, P and N concentration, N2 fixation (15N2 uptake and H2 evolution), root/nodule net CO2 evolution and CO2 fixation (14CO2 uptake) were measured. Furthermore, at 21 DAI in-vitro activities and transcript abundance of key enzymes of the C and N metabolism in nodules were determined. Moreover, nodulation in cluster root zones was evaluated. Treatment without P led to a lower P concentration in shoots, roots, and nodules. In both treatments, with or without P, the P concentration in nodules was greater than that in the other organs. At 21 DAI nitrogen fixation rates did not differ between treatments and the plants displayed no symptoms of P or N deficiency on their shoots. Although nodule number at 21 DAI increased in response to P-deficiency, total nodule mass remained constant. Increased nodule number in P-deficient plants was associated with cluster root formation. A higher root/nodule CO2 fixation in the treatment without P led to a lower net CO2 release per unit fixed N, although the total CO2 released per unit fixed N was higher in the treatment without P. The higher CO2 fixation was correlated with increased transcript abundance and enzyme activities of phosphoenolpyruvate carboxylase and malate dehydrogenase in nodules. Between 21 and 37 DAI, shoots of plants grown without P developed symptoms of N- and P-deficiency. By 37 DAI the P concentration had decreased in all organs of the plants treated with no P. At 37 DAI, nitrogen fixation in the treatment without P had almost ceased. Enhanced nodulation in cluster root zones and increased potential for organic acid

  8. Nitrogen fixation in the mucus of Red Sea corals.

    Science.gov (United States)

    Grover, Renaud; Ferrier-Pagès, Christine; Maguer, Jean-François; Ezzat, Leila; Fine, Maoz

    2014-11-15

    Scleractinian corals are essential constituents of tropical reef ecological diversity. They live in close association with diazotrophs [dinitrogen (N2)-fixing microbes], which can fix high rates of N2. Whether corals benefit from this extrinsic nitrogen source is still under debate. Until now, N2 fixation rates have been indirectly estimated using the acetylene reduction assay, which does not permit assessment of the amount of nitrogen incorporated into the different compartments of the coral holobiont. In the present study, the (15)N2 technique was applied for the first time on three Red Sea coral species. Significant (15)N enrichment was measured in particles released by corals to the surrounding seawater. N2 fixation rates were species specific and as high as 1.6-2 ng N day(-1) l(-1). However, no significant enrichment was measured in the symbiotic dinoflagellates or the coral host tissues, suggesting that corals do not benefit from diazotrophic N2 fixation. © 2014. Published by The Company of Biologists Ltd.

  9. Biological nitrogen fixation in the context of global change.

    Science.gov (United States)

    Olivares, José; Bedmar, Eulogio J; Sanjuán, Juan

    2013-05-01

    The intensive application of fertilizers during agricultural practices has led to an unprecedented perturbation of the nitrogen cycle, illustrated by the growing accumulation of nitrates in soils and waters and of nitrogen oxides in the atmosphere. Besides increasing use efficiency of current N fertilizers, priority should be given to value the process of biological nitrogen fixation (BNF) through more sustainable technologies that reduce the undesired effects of chemical N fertilization of agricultural crops. Wider legume adoption, supported by coordinated legume breeding and inoculation programs are approaches at hand. Also available are biofertilizers based on microbes that help to reduce the needs of N fertilization in important crops like cereals. Engineering the capacity to fix nitrogen in cereals, either by themselves or in symbiosis with nitrogen-fixing microbes, are attractive future options that, nevertheless, require more intensive and internationally coordinated research efforts. Although nitrogen-fixing plants may be less productive, at some point, agriculture must significantly reduce the use of warming (chemically synthesized) N and give priority to BNF if it is to sustain both food production and environmental health for a continuously growing human population.

  10. Marine oscillatoria (Trichodesmium): explanation for aerobic nitrogen fixation without heterocysts.

    Science.gov (United States)

    Carpenter, E J; Price, C C

    1976-03-26

    Nitrogen fixation in marine Oscillatoria appears to be associated with differentiated cells located in the center of the colony. These central cells exhibit reduced pigmentation relative to peripherally located cells and do not incorporate 14CO2 in photosynthesis. Central cells apparently do not produce O2 which would deactivate nitrogenase. When central cells are exposed to O2 via disruption of the colonies, N2 fixation (acetylene reduction) decreases sharply even though individual trichomes remain intact. Disruption of colonies in the absence of O2 does not cause reduced nitrogenase activity. In the sea, turbulence from wave action apparently separates trichomes allowing O2 to enter thus decreasing nitrogenase activity. These observations explain how Oscillatoria is able to fix N2 without heterocysts in an aerobic environment and why it blooms virtually always occur in calm seas.

  11. The cyanobacterial nitrogen fixation paradox in natural waters [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Hans Paerl

    2017-03-01

    Full Text Available Nitrogen fixation, the enzymatic conversion of atmospheric N (N2 to ammonia (NH3, is a microbially mediated process by which “new” N is supplied to N-deficient water bodies. Certain bloom-forming cyanobacterial species are capable of conducting N2 fixation; hence, they are able to circumvent N limitation in these waters. However, this anaerobic process is highly sensitive to oxygen, and since cyanobacteria produce oxygen in photosynthesis, they are faced with a paradoxical situation, where one critically important (for supporting growth biochemical process is inhibited by another. N2-fixing cyanobacterial taxa have developed an array of biochemical, morphological, and ecological adaptations to minimize the “oxygen problem”; however, none of these allows N2 fixation to function at a high enough efficiency so that it can supply N needs at the ecosystem scale, where N losses via denitrification, burial, and advection often exceed the inputs of “new” N by N2 fixation. As a result, most marine and freshwater ecosystems exhibit chronic N limitation of primary production. Under conditions of perpetual N limitation, external inputs of N from human sources (agricultural, urban, and industrial play a central role in determining ecosystem fertility and, in the case of N overenrichment, excessive primary production or eutrophication. This points to the importance of controlling external N inputs (in addition to traditional phosphorus controls as a means of ensuring acceptable water quality and safe water supplies. Nitrogen fixation, the enzymatic conversion of atmospheric N2 to ammonia (NH3 is a  microbially-mediated process by which “new” nitrogen is supplied to N-deficient water bodies.  Certain bloom-forming cyanobacterial species are capable of conducting N2 fixation; hence they are able to circumvent nitrogen limitation in these waters. However, this anaerobic process is highly sensitive to oxygen, and since cyanobacteria produce

  12. Nitrogen fixation on early Mars and other terrestrial planets: experimental demonstration of abiotic fixation reactions to nitrite and nitrate.

    Science.gov (United States)

    Summers, David P; Khare, Bishun

    2007-04-01

    Understanding the abiotic fixation of nitrogen is critical to understanding planetary evolution and the potential origin of life on terrestrial planets. Nitrogen, an essential biochemical element, is certainly necessary for life as we know it to arise. The loss of atmospheric nitrogen can result in an incapacity to sustain liquid water and impact planetary habitability and hydrological processes that shape the surface. However, our current understanding of how such fixation may occur is almost entirely theoretical. This work experimentally examines the chemistry, in both gas and aqueous phases, that would occur from the formation of NO and CO by the shock heating of a model carbon dioxide/nitrogen atmosphere such as is currently thought to exist on early terrestrial planets. The results show that two pathways exist for the abiotic fixation of nitrogen from the atmosphere into the crust: one via HNO and another via NO(2). Fixation via HNO, which requires liquid water, could represent fixation on a planet with liquid water (and hence would also be a source of nitrogen for the origin of life). The pathway via NO(2) does not require liquid water and shows that fixation could occur even when liquid water has been lost from a planet's surface (for example, continuing to remove nitrogen through NO(2) reaction with ice, adsorbed water, etc.).

  13. Nitrogen cycling in summer active perennial grass systems in South Australia: Non-symbiotic nitrogen fixation

    NARCIS (Netherlands)

    Gupta, V.V.S.R.; Kroker, S.J.; Hicks, M.; Davoren, W.; Descheemaeker, K.K.E.; Llewellyn, R.

    2014-01-01

    Non-symbiotic nitrogen (N2) fixation by diazotrophic bacteria is a potential source for biological N inputs in non-leguminous crops and pastures. Perennial grasses generally add larger quantities of above- and belowground plant residues to soil, and so can support higher levels of soil biological

  14. Nitrogen Fixation Aligns with nifH Abundance and Expression in Two Coral Trophic Functional Groups

    OpenAIRE

    Pogoreutz, Claudia; Rädecker, Nils; Cárdenas, Anny; Gärdes, Astrid; Wild, Christian; Voolstra, Christian R.

    2017-01-01

    Microbial nitrogen fixation (diazotrophy) is a functional trait widely associated with tropical reef-building (scleractinian) corals. While the integral role of nitrogen fixation in coral nutrient dynamics is recognized, its ecological significance across different coral functional groups remains yet to be evaluated. Here we set out to compare molecular and physiological patterns of diazotrophy (i.e., nifH gene abundance and expression as well as nitrogen fixation rates) in two coral families...

  15. [Nonsymbiotic nitrogen fixation in the podzolic soils of the Kola Peninsula].

    Science.gov (United States)

    Egorov, V I; Kalininskaia, T A; Miller, Iu M

    1978-01-01

    Non-symbiotic nitrogen fixation was studied in virgin and cultivated podzol soils of the Kola Peninsula by the acetylene and isotope techniques. The activity of nitrogen fixation varied sharply in cultivated soils due to degradation of plant residues and the action of plant root secretion. No significant changes were observed in the activity of nitrogen fixation within the vegetative period in virgin soils. Less than 1 kg of nitrogen per hectare was accumulated in soils as a result of its non-symbiotic fixation during the vegetative periods of 1976--1977.

  16. Regulation of Development and Nitrogen Fixation in Anabaena

    Energy Technology Data Exchange (ETDEWEB)

    James W Golden

    2004-08-05

    because all cells differentiate a few days after nitrogen step-down. Our continued analysis of these genes will provide a better understanding of how a simple prokaryotic organism can perform both photosynthetic carbon fixation and nitrogen fixation simultaneously by separating these processes in different cell types.

  17. Deepwater Nitrogen Fixation: Who's Doing it, Where, and Why?

    Science.gov (United States)

    Montoya, J. P.; Weber, S.; Vogts, A.; Voss, M.; Saxton, M.; Joye, S. B.

    2016-02-01

    Nitrogen availability frequently limits marine primary production and N2-fixation plays an important role in supporting biological production in surface waters of many oligotrophic regions. Although subsurface waters typically contain high concentrations of nitrate and other nutrients, measurements from a variety of oceanic settings show measurable, and at times high rates of N2-fixation in deep, dark waters below the mixed layer. We have explored the distribution of N2-fixation throughout the water column of the Gulf of Mexico (GoM) during a series of cruises beginning shortly after the Deepwater Horizon (DWH) spill in 2010 and continuing at roughly annual intervals. These cruises allowed us to sample oligotrophic waters across a range of depths, and to explore the connections between the C and N cycles mediated by release of oil and gas (petrocarbon) from natural seeps as well as anthropogenic sources (e.g., the DWH). We used stable isotope abundances (15N and 13C) in particles and zooplankton in combination with experimental measurements of N2-fixation and CH4 assimilation to assess the contribution of oil- and gas-derived C to the pelagic food web, and the impact of CH4 releases on the pelagic C and N cycles. Our isotopic measurements document the movement of petrocarbon into the pelagic food web, and our experiments revealed that high rates of N2-fixation were widespread in deep water immediately after the DWH incident, and restricted to the vicinity of natural seeps in subsequent years. Unfortunately, these approaches provided no insight into the organisms actually responsible for N2-fixation and CH4-assimilation. We used nano-scale Secondary Ion Mass Spectrometry (nanoSIMS) to image the organisms responsible for these processes, and molecular approaches to explore the diversity of methanotrophs and diazotrophs present in the system. The ability to resolve isotopic distributions on the scale of individual cells is a critical part of bridging the gap between

  18. New insights into the evolutionary history of biological nitrogen fixation

    Directory of Open Access Journals (Sweden)

    Eric eBoyd

    2013-08-01

    Full Text Available Nitrogenase, which catalyzes the ATP-dependent reduction of dinitrogen (N2 to ammonia (NH3, accounts for roughly half of the bioavailable nitrogen supporting extant life. The fundamental requirement for fixed forms of nitrogen for life on Earth, both at present and in the past, has led to broad and significant interest in the origin and evolution of this fundamental biological process. One key question is whether the limited availability of fixed nitrogen was a factor in life’s origin or whether there were ample sources of fixed nitrogen produced by abiotic processes or delivered through the weathering of bolide impact materials to support this early life. If the latter, the key questions become what were the characteristics of the environment that precipitated the evolution of this oxygen sensitive process, when did this occur, and how was its subsequent evolutionary history impacted by the advent of oxygenic photosynthesis and the rise of oxygen in the Earth’s biosphere. Since the availability of fixed sources of nitrogen capable of supporting early life is difficult to glean from the geologic record, there are limited means to get direct insights into these questions. Indirect insights, however, can be gained by deep phylogenetic studies of nitrogenase structural gene products and additional gene products involved in the biosynthesis of the complex metal-containing prosthetic groups associated with this enzyme complex. Insights gained from such studies, as reviewed herein, challenge traditional models for the evolution of biological nitrogen fixation and provide the basis for the development of new conceptual models that explain the stepwise evolution of this highly complex and life sustaining process.

  19. Temporal Variability in Nitrogen Fixation and Particulate Nitrogen Export at Station ALOHA

    Science.gov (United States)

    Dore, J. E.; Böttjer, D.; Karl, D. M.; Letelier, R. M.; Mahaffey, C.; Wilson, S. T.; Zehr, J. P.; Church, M. J.

    2016-02-01

    In order to constrain biological N2 fixation rates in the North Pacific Subtropical Gyre we present 9 years (2005-2013) of near-monthly rates of upper-ocean N2 fixation (0 - 125 m), coupled with the isotopic composition of particulate nitrogen (PN) export (150 m) at Station ALOHA (22˚ 45'N, 158˚ 00'W). Between June 2005 and June 2012, N2 fixation rates were derived based on adding the 15N2 tracer as a gas bubble. Beginning in August 2012, 15N2 was first dissolved into filtered seawater and the 15N2-enriched water was subsequently added to N2 fixation incubations. Direct comparisons between both methodologies revealed a robust relationship, with the addition of 15N2-enriched seawater resulting in 2-fold greater rates of N2 fixation than those derived from adding a 15N2 gas bubble. The correction of the initial period of measurements (2005 - 2012) based on this relationship resulted in rates of N2 fixation that averaged 236 ± 107 µmol N m-2 d-1 for the full period of study. Furthermore, the analysis of the 15N isotopic composition of sinking PN, together with an isotope mass balance model, provided additional constraint on N2 fixation rates. These model derived N2 fixation rates varied from 70 to 128 mmol N m-2 d-1, representing 26 - 47% of the PN export. The resulting total N export derived from this analysis ranged between 506 and 921 µmol N m-2 d-1, equivalent to a net community production rate that ranged between 1.4 and 2.5 mol C m-2 yr-1, consistent with previous independent estimates at this site.

  20. The contribution of nitrogen fixation by cyanobacteria to particulate organic nitrogen in a constructed wetland

    Science.gov (United States)

    Zhang, X.; PAN, X.; MA, M.; Li, W.; Cui, L.

    2016-12-01

    N-fixing cyanobacteria can create extra nitrogen for aquatic ecosystems. Previous studies reported inconsistence patterns of the contribution of biological nitrogen fixation to the nitrogen pools in aquatic ecosystems. However, there were few studies concerning the effect of fixed nitrogen by cyanobacteria on the nitrogen removal efficiency in constructed wetlands. This study was performed at the Beijing Wildlife Rescue and Rehabilitation Centre, where a constructed lake for the habitation of waterfowls and a constructed wetland for purifying sewage from the lake are located. The composition of phytoplankton communities, the concentrations of particulate organic nitrogen (PON) and nitrogen fixation rates (Rn) in the constructed lake and the constructed wetland were compared throughout a growing season. We counted the densities of genus Anabaena and Microcystis cells, and explored their relationships with PON and Rn in water. The proportions of PON from various sources, including the ambient N2, waterfowl faeces, wetland sediments and the nitrates, were calculated by the natural abundance of 15N with the IsoSource software. The result revealed that the constructed lake was alternately dominated by Anabaena and Microcystis throughout the growing season, and the Rn was positively correlated with PON and the cell density of Anabaena (P < 0.05). This implied that the fixed nitrogen by N-fixing Anabaena might be utilized by non-N-fixing Microcystis, maintaining the fixed nitrogen with PON form. The ambient N2 composed 0.5 82% and 50.0 84.7% to the PON in the constructed lake and wetland respectively during the growing season. The proportions of PON from N2 increased to more than 80% when the Rn reached the highest in September. The result demonstrated that the nitrogen fixed by Anabaena might be utilized by non-N-fixing Microcystis which formed water blooms in summer. Therefore, the decline of the removal efficiency of PON in the constructed wetland in summer might

  1. Regulation of Development and Nitrogen Fixation in Anabaena

    Energy Technology Data Exchange (ETDEWEB)

    James W. Golden

    2008-10-17

    The regulation of development and cellular differentiation is important for all multicellular organisms. The nitrogen-fixing filamentous cyanobacterium Anabaena (also Nostoc) sp. PCC 7120 (hereafter Anabaena) provides a model of multicellular microbial development and pattern formation. Anabaena reduces N2 to ammonia in specialized terminally differentiated cells called heterocysts. A one-dimensional developmental pattern of single heterocysts regularly spaced along filaments of photosynthetic vegetative cells is established to form a multicellular organism composed of these two interdependent cell types. This multicellular growth pattern, the distinct phylogeny of cyanobacteria, and the suspected antiquity of heterocyst development make this an important model system. Our long-term goal is to understand the regulatory network required for heterocyst development and nitrogen fixation. This project is focused on two key aspects of heterocyst regulation: one, the mechanism by which HetR controls the initiation of differentiation, and two, the cis and trans acting factors required for expression of the nitrogen-fixation (nif) genes. HetR is thought to be a central regulator of heterocyst development but the partners and mechanisms involved in this regulation are unknown. Our recent results indicate that PatS and other signals that regulate heterocyst pattern cannot interact, directly or indirectly, with a R223W mutant of HetR. We plan to use biochemical and genetic approaches to identify proteins that interact with the HetR protein, which will help reveal the mechanisms underlying its regulation of development. Our second goal is to determine how the nif genes are expressed. It is important to understand the mechanisms controlling nif genes since they represent the culmination of the differentiation process and the essence of heterocyst function. The Anabaena genome lacks the genes required for expression of nif genes present in other organisms such as rpoN (sigma 54

  2. Role of boron nutrient in nodules growth and nitrogen fixation rates in soybean genotypes under water stress conditions

    Science.gov (United States)

    Although boron has a stimulatory effect on nodule growth and nitrogen fixation, mechanisms of how boron affects nodules growth and nitrogen fixation, especially under water stress, are still unknown. The stimulatory effect of boron (B) on nodules and nitrogen fixation (NF) is influenced by biotic (s...

  3. The importance of nodule CO2 fixation for the efficiency of symbiotic nitrogen fixation in pea at vegetative growth and during pod formation

    OpenAIRE

    Fischinger, Stephanie Anastasia; Schulze, Joachim

    2010-01-01

    Nodule CO2 fixation is of pivotal importance for N2 fixation. The process provides malate for bacteroids and oxaloacetate for nitrogen assimilation. The hypothesis of the present paper was that grain legume nodules would adapt to higher plant N demand and more restricted carbon availability at pod formation through increased nodule CO2 fixation and a more efficient N2 fixation. Growth, N2 fixation, and nodule composition during vegetative growth and at pod formation were studied in pea plants...

  4. Nitrogen Fixation Aligns with nifH Abundance and Expression in Two Coral Trophic Functional Groups

    Science.gov (United States)

    Pogoreutz, Claudia; Rädecker, Nils; Cárdenas, Anny; Gärdes, Astrid; Wild, Christian; Voolstra, Christian R.

    2017-01-01

    Microbial nitrogen fixation (diazotrophy) is a functional trait widely associated with tropical reef-building (scleractinian) corals. While the integral role of nitrogen fixation in coral nutrient dynamics is recognized, its ecological significance across different coral functional groups remains yet to be evaluated. Here we set out to compare molecular and physiological patterns of diazotrophy (i.e., nifH gene abundance and expression as well as nitrogen fixation rates) in two coral families with contrasting trophic strategies: highly heterotrophic, free-living members of the family Fungiidae (Pleuractis granulosa, Ctenactis echinata), and mostly autotrophic coral holobionts with low heterotrophic capacity (Pocilloporidae: Pocillopora verrucosa, Stylophora pistillata). The Fungiidae exhibited low diazotroph abundance (based on nifH gene copy numbers) and activity (based on nifH gene expression and the absence of detectable nitrogen fixation rates). In contrast, the mostly autotrophic Pocilloporidae exhibited nifH gene copy numbers and gene expression two orders of magnitude higher than in the Fungiidae, which coincided with detectable nitrogen fixation activity. Based on these data, we suggest that nitrogen fixation compensates for the low heterotrophic nitrogen uptake in autotrophic corals. Consequently, the ecological importance of diazotrophy in coral holobionts may be determined by the trophic functional group of the host. PMID:28702013

  5. Nitrogen Fixation Aligns with nifH Abundance and Expression in Two Coral Trophic Functional Groups

    KAUST Repository

    Pogoreutz, Claudia

    2017-06-28

    Microbial nitrogen fixation (diazotrophy) is a functional trait widely associated with tropical reef-building (scleractinian) corals. While the integral role of nitrogen fixation in coral nutrient dynamics is recognized, its ecological significance across different coral functional groups remains yet to be evaluated. Here we set out to compare molecular and physiological patterns of diazotrophy (i.e., nifH gene abundance and expression as well as nitrogen fixation rates) in two coral families with contrasting trophic strategies: highly heterotrophic, free-living members of the family Fungiidae (Pleuractis granulosa, Ctenactis echinata), and mostly autotrophic coral holobionts with low heterotrophic capacity (Pocilloporidae: Pocillopora verrucosa, Stylophora pistillata). The Fungiidae exhibited low diazotroph abundance (based on nifH gene copy numbers) and activity (based on nifH gene expression and the absence of detectable nitrogen fixation rates). In contrast, the mostly autotrophic Pocilloporidae exhibited nifH gene copy numbers and gene expression two orders of magnitude higher than in the Fungiidae, which coincided with detectable nitrogen fixation activity. Based on these data, we suggest that nitrogen fixation compensates for the low heterotrophic nitrogen uptake in autotrophic corals. Consequently, the ecological importance of diazotrophy in coral holobionts may be determined by the trophic functional group of the host.

  6. Impact of Crab Bioturbation on Nitrogen-Fixation Rates in Red Sea Mangrove Sediment

    KAUST Repository

    Qashqari, Maryam S.

    2017-05-01

    Mangrove plants are a productive ecosystem that provide several benefits for marine organisms and industry. They are considered to be a food source and habitat for many organisms. However, mangrove growth is limited by nutrient availability. According to some recent studies, the dwarfism of the mangrove plants is due to the limitation of nitrogen in the environment. Biological nitrogen fixation is the process by which atmospheric nitrogen is fixed into ammonium. Then, this fixed nitrogen can be uptaken by plants. Hence, biological nitrogen fixation increases the input of nitrogen in the mangrove ecosystem. In this project, we focus on measuring the rates of nitrogen fixation on Red Sea mangrove (Avicennia marina) located at Thuwal, Saudi Arabia. The nitrogen fixation rates are calculated by the acetylene reduction assay. The experimental setup will allow us to analyze the effect of crab bioturbation on nitrogen fixing rates. This study will help to better understand the nitrogen dynamics in mangrove ecosystems in Saudi Arabia. Furthermore, this study points out the importance of the sediment microbial community in mangrove trees development. Finally, the role of nitrogen fixing bacteria should be taken in account for future restoration activities.

  7. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching

    KAUST Repository

    Pogoreutz, Claudia

    2017-04-21

    The disruption of the coral-algae symbiosis (coral bleaching) due to rising sea surface temperatures has become an unprecedented global threat to coral reefs. Despite decades of research, our ability to manage mass bleaching events remains hampered by an incomplete mechanistic understanding of the processes involved. In this study, we induced a coral bleaching phenotype in the absence of heat and light stress by adding sugars. The sugar addition resulted in coral symbiotic breakdown accompanied by a fourfold increase of coral-associated microbial nitrogen fixation. Concomitantly, increased N:P ratios by the coral host and algal symbionts suggest excess availability of nitrogen and a disruption of the nitrogen limitation within the coral holobiont. As nitrogen fixation is similarly stimulated in ocean warming scenarios, here we propose a refined coral bleaching model integrating the cascading effects of stimulated microbial nitrogen fixation. This model highlights the putative role of nitrogen-fixing microbes in coral holobiont functioning and breakdown.

  8. Nitrogen fixation and molecular oxygen: comparative genomic reconstruction of transcription regulation in Alphaproteobacteria

    Directory of Open Access Journals (Sweden)

    Olga V Tsoy

    2016-08-01

    Full Text Available Biological nitrogen fixation plays a crucial role in the nitrogen cycle. An ability to fix atmospheric nitrogen, reducing it to ammonium, was described for multiple species of Bacteria and Archaea. Being a complex and sensitive process, nitrogen fixation requires a complicated regulatory system, also, on the level of transcription. The transcriptional regulatory network for nitrogen fixation was extensively studied in several representatives of the class Alphaproteobacteria. This regulatory network includes the activator of nitrogen fixation NifA, working in tandem with the alternative sigma-factor RpoN as well as oxygen-responsive regulatory systems, one-component regulators FnrN/FixK and two-component system FixLJ. Here we used a comparative genomics analysis for in silico study of the transcriptional regulatory network in 50 genomes of Alphaproteobacteria. We extended the known regulons and proposed the scenario for the evolution of the nitrogen fixation transcriptional network. The reconstructed network substantially expands the existing knowledge of transcriptional regulation in nitrogen-fixing microorganisms and can be used for genetic experiments, metabolic reconstruction, and evolutionary analysis.

  9. Respiration , nitrogen fixation, and mineralizable nitrogen spatial and temporal patterns within two Oregon Douglas-fir stands.

    Science.gov (United States)

    Sharon M. Hope; Ching-Yan. Li

    1997-01-01

    Substrate respiration, mineralizable nitrogen, and nitrogen fixation rates, substrate moisture,content, and temperature were measured in trenched and undisturbed plots within two western Oregon Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands. The stands represent two different environments and ages. Woods Creek, the site of the lower...

  10. Molybdenum and phosphorus interact to constrain asymbiotic nitrogen fixation in tropical forests.

    Directory of Open Access Journals (Sweden)

    Nina Wurzburger

    Full Text Available Biological di-nitrogen fixation (N(2 is the dominant natural source of new nitrogen to land ecosystems. Phosphorus (P is thought to limit N(2 fixation in many tropical soils, yet both molybdenum (Mo and P are crucial for the nitrogenase reaction (which catalyzes N(2 conversion to ammonia and cell growth. We have limited understanding of how and when fixation is constrained by these nutrients in nature. Here we show in tropical forests of lowland Panama that the limiting element on asymbiotic N(2 fixation shifts along a broad landscape gradient in soil P, where Mo limits fixation in P-rich soils while Mo and P co-limit in P-poor soils. In no circumstance did P alone limit fixation. We provide and experimentally test a mechanism that explains how Mo and P can interact to constrain asymbiotic N(2 fixation. Fixation is uniformly favored in surface organic soil horizons--a niche characterized by exceedingly low levels of available Mo relative to P. We show that soil organic matter acts to reduce molybdate over phosphate bioavailability, which, in turn, promotes Mo limitation in sites where P is sufficient. Our findings show that asymbiotic N(2 fixation is constrained by the relative availability and dynamics of Mo and P in soils. This conceptual framework can explain shifts in limitation status across broad landscape gradients in soil fertility and implies that fixation depends on Mo and P in ways that are more complex than previously thought.

  11. Molybdenum and Phosphorus Interact to Constrain Asymbiotic Nitrogen Fixation in Tropical Forests

    Science.gov (United States)

    Wurzburger, Nina; Bellenger, Jean Philippe; Kraepiel, Anne M. L.; Hedin, Lars O.

    2012-01-01

    Biological di-nitrogen fixation (N2) is the dominant natural source of new nitrogen to land ecosystems. Phosphorus (P) is thought to limit N2 fixation in many tropical soils, yet both molybdenum (Mo) and P are crucial for the nitrogenase reaction (which catalyzes N2 conversion to ammonia) and cell growth. We have limited understanding of how and when fixation is constrained by these nutrients in nature. Here we show in tropical forests of lowland Panama that the limiting element on asymbiotic N2 fixation shifts along a broad landscape gradient in soil P, where Mo limits fixation in P-rich soils while Mo and P co-limit in P-poor soils. In no circumstance did P alone limit fixation. We provide and experimentally test a mechanism that explains how Mo and P can interact to constrain asymbiotic N2 fixation. Fixation is uniformly favored in surface organic soil horizons - a niche characterized by exceedingly low levels of available Mo relative to P. We show that soil organic matter acts to reduce molybdate over phosphate bioavailability, which, in turn, promotes Mo limitation in sites where P is sufficient. Our findings show that asymbiotic N2 fixation is constrained by the relative availability and dynamics of Mo and P in soils. This conceptual framework can explain shifts in limitation status across broad landscape gradients in soil fertility and implies that fixation depends on Mo and P in ways that are more complex than previously thought. PMID:22470462

  12. EFFECT OF NITROGEN AND METAL ADDITIONS ON NITROGEN FIXATION ACTIVITY IN BIOLOGICAL SOIL CRUSTS

    Science.gov (United States)

    Alexander, K.; Lui, D.; Anbar, A. D.; Garcia-Pichel, F.; Hartnett, H. E.

    2009-12-01

    Biological soil crusts (BSCs) are diverse consortia of microorganisms that live in intimate association with soils in arid environments. Also called cryptogamic or microbiotic crusts, these communities can include cyanobacteria, algae, heterotrophic bacteria, fungi, lichens, and mosses. Together, these organisms provide many services to their surrounding ecosystems, including reduction of water runoff, promotion of water infiltration, and prevention of soil erosion. The cyanobacteria and algae also provide fixed carbon (C) to the soil through photosynthesis, and because atmospheric deposition of nitrogen (N) in arid environments is low, the major input of biologically available N comes from cyanobacteria capable of converting nitrogen gas (N2) to ammonium (NH4+). Biological soil crusts are easily destroyed by livestock grazing, motor vehicle travel, and many forms of recreational and agricultural land use. Loss of BSC cover can leave the soil vulnerable to intense erosion that can remove the nutrients necessary to sustain plant and animal life, thus accelerating the process of desertification. In order to preserve existing crusts and encourage the development of new crusts, it is crucial to understand the nutrient requirements of metabolism and growth in these microbial communities. This study investigated the affect of nitrogen and metal additions on N2-fixation activity in cyanobacterially-dominated crusts from the Colorado Plateau near Moab, Utah. Although N2-fixation has been studied in this system before, the affect of nutrient additions on N2-fixation activity has not been documented. The goal of this work was to understand how N and metal supplementation affects crust N metabolism. Three experiments were conducted to observe how N2-fixation activity changed with the addition of N, molybdenum (Mo), and vanadium (V). Molybdenum and vanadium were chosen because they are most commonly found at the active site of the enzyme nitrogenase, the molecule responsible

  13. Effect of nitrogen oxide pretreatments on enzymatic hydrolysis of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Borrevik, R.K.; Wilke, C.R.; Brink, D.L.

    1978-09-01

    This work considers the effect of nitrogen oxide pretreatments on the subsequent enzymatic hydrolysis by Trichoderma viride cellulase of the cellulose occurring in wheat straw; Triticum Aestivum-L, em. Thell. In the pretreatment scheme the straw is first reacted with nitric oxide and air, and then extracted in aqueous solution. In this way, overall sugar yields increased from 17% for the case of no pretreatment to 70%. The glucose yield increased from 20 to 60%. The yield of glucose during enzymatic hydrolysis is dependent on the reaction time of the gas phase reaction. For a 24 hour reaction the yield is 60%, but drops to 45% for a reaction time of 2 hours. Xylose, a potentially valuable side product of the pretreatment, is obtained by dilute acid hydrolysis during the extraction stage in yields of 90 to 96%. In acidic media, the kinetics of both the rate of formation and destruction of xylose were found to follow the first-order rate laws reported in the literature. These were determined to be 4.5 (liter/gmole)(hr./sup -1/) and 0.03 hr./sup -1/, respectively. However, the rate of formation is much greater (20.4 (liter/gmole) (hr./sup -1/)) when the extraction liquor is recycled. The most likely explanation for this is that the increased total acidity of the recycled liquor compensates for diffusional limitations. A preliminary design and cost analysis of the pretreatment-hydrolysis scheme indicates that glucose can be produced at 10.86 cents per pound, exclusive of straw cost. The corresponding cost per pound of total sugars produced is 5.0 cents. Sensitivity analyses indicate that 42% of the pretreatment cost (excluding hydrolysis) can be attributed to nitric oxide production, and the high yield of sugar obtained is advantageous when considering the cost of straw.

  14. Stimulation of nitrogen fixation in soddy-podzolic soils with fungi

    Science.gov (United States)

    Kurakov, A. V.; Prokhorov, I. S.; Kostina, N. V.; Makhova, E. G.; Sadykova, V. S.

    2006-09-01

    Stimulation of nitrogen fixation in soddy-podzolic soils is related to the hydrolytic activity of fungi decomposing plant polymers. It was found that the rate of nitrogen fixation upon the simultaneous inoculation of the strains of nitrogen-fixing bacteria Bacillus cereus var. mycoides and the cellulolytic fungus Trichoderma asperellum into a sterile soil enriched with cellulose or Jerusalem artichoke residues is two to four times higher than upon the inoculation of the strains of Bacillus cereus var. mycoides L1 only. The increase in the nitrogen fixation depended on the resistance of the substrates added into the soil to fungal hydrolysis. The biomass of the fungi decomposing plant polymers increased by two-four times. The nitrogen-fixing activity of the soil decreased when the growth of the fungi was inhibited with cycloheximide, which attested to a close correlation between the intensity of the nitrogen fixation and the decomposition of the plant polymers by fungi. The introduction of an antifungal antibiotic, together with starch or with plant residues, significantly (by 60-90%) decreased the rate of nitrogen fixation in the soll.

  15. Microbial carbon and nitrogen fixation on the surface of glaciers and ice sheets

    Science.gov (United States)

    Telling, J.; Anesio, A. M.; Stibal, M.; Hawkings, J.; Bellas, C. M.; Tranter, M.; Wadham, J. L.; Cook, J.; Hodson, A. J.; Yallop, M.; Barker, G.; Butler, C. E.; Fountain, A. G.; Nylen, T.; Irvine-Fynn, T. D.; Sole, A. J.; Nienow, P. W.

    2012-12-01

    Studying the microbial sequestration of atmospheric carbon dioxide (via net autochthonous production) and nitrogen (via nitrogen fixation) into organic matter on the surface of glaciers and ice sheets is important for three main reasons. First, they can provide essential nutrients for supporting microbial ecosystems in these cold, typically nutrient-poor environments. Second, nutrients formed in the supraglacial environment may be important for sustaining hydrologically connected subglacial and downstream (e.g. fjords, near-shore marine) ecosystems. Third, organic matter produced or transformed by microbial activity can alter the albedo of ice, either directly by the production of dark pigments, or indirectly through the trapping and agglutination of dark mineral via the production of exopolysaccharides. Here, we present recent results of microbial carbon and nitrogen fixation in surface sediment (cryoconite) on Arctic and Antarctic glaciers and the Greenland Ice Sheet ablation zone. Results suggest that the fixation and recycling of autochthonous carbon in cryoconite on glaciers and ice sheets can support a significant fraction of the total microbial activity in the supraglacial environment during the ablation season. Nitrogen fixation can be important as a nitrogen source for microbial communities on both Arctic and Antarctic glaciers during the main ablation season. Nitrogen fixation could feasibly exceed precipitation as a source of nitrogen to microbial communities in debris rich zones on the margins of the Greenland Ice Sheet, aiding the colonization and subsequent 'greening' of subglacial and moraine derived debris.

  16. Modeled contributions of three types of diazotrophs to nitrogen fixation at Station ALOHA.

    Science.gov (United States)

    Goebel, Nicole L; Edwards, Christopher A; Church, Matthew J; Zehr, Jonathan P

    2007-11-01

    A diagnostic model based on biomass and growth was used to assess the relative contributions of filamentous nonheterocystous Trichodesmium and unicellular cyanobacteria, termed Groups A and B, to nitrogen fixation at the North Pacific Station ALOHA over a 2-year period. Average (and 95% confidence interval, CI) annual rates of modeled monthly values for Trichodesmium, Group B and Group A were 92 (52), 14 (4) and 12 (8) mmol N per m(2) per year, respectively. The fractional contribution to modeled instantaneous nitrogen fixation by each diazotroph fluctuated on interannual, seasonal and shorter time scales. Trichodesmium fixed substantially more nitrogen in year 1 (162) than year 2 (12). Group B fixed almost two times more nitrogen in year 1 (17) than year 2 (9). In contrast, Group A fixed two times more nitrogen in year 2 (16) than year 1 (8). When including uncertainties in our estimates using the bootstrap approach, the range of unicellular nitrogen fixation extended from 10% to 68% of the total annual rate of nitrogen fixation for all three diazotrophs. Furthermore, on a seasonal basis, the model demonstrated that unicellular diazotrophs fixed the majority (51%-97%) of nitrogen during winter and spring, whereas Trichodesmium dominated nitrogen fixation during summer and autumn (60%-96%). Sensitivity of the modeled rates to some parameters suggests that this unique attempt to quantify relative rates of nitrogen fixation by different diazotrophs may need to be reevaluated as additional information on cell size, variability in biomass and C:N, and growth characteristics of the different cyanobacterial diazotrophs become available.

  17. Moss-specific changes in nitrogen fixation following two decades of warming, shading, and fertilizer addition

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Lett, Signe; Michelsen, Anders

    2012-01-01

    . To expand the knowledge on species-specific responses, we measured nitrogen fixation associated with two moss species: Hylocomium splendens and Aulacomnium turgidum. Our expectations of decreased nitrogen fixation rates in the fertilizer and shading treatments were met. However, contrary to our expectation...... of increased nitrogen fixation in the warming treatment, we observed either no change (Hylocomium) or a decrease (Aulacomnium) in fixation in the warmed plots. We hypothesize that this could be due to moss-specific responses or to long-term induced effects of the warming. For example, we observed that the soil...... temperature increase induced by the warming treatment was low and insignificant as vegetation height and total vascular plant cover of the warmed plots increased, and moss cover decreased. Hence, truly long-term studies lasting more than two decades provide insights on changes in key biogeochemical processes...

  18. Transcriptome analysis of two recombinant inbred lines of common bean contrasting for symbiotic nitrogen fixation

    Science.gov (United States)

    Common bean (Phaseolus vulgaris L.) is able to fix atmospheric nitrogen (N2) through symbiotic nitrogen fixation (SNF). Effective utilization of existing variability for SNF in common bean for genetic improvement requires an understanding of underlying genes and molecular mechanisms. The utility of ...

  19. Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus

    DEFF Research Database (Denmark)

    Colebatch, Gillian; Desbrosses, Guilhem; Ott, Thomas

    2004-01-01

    Research on legume nodule metabolism has contributed greatly to our knowledge of primary carbon and nitrogen metabolism in plants in general, and in symbiotic nitrogen fixation in particular. However, most previous studies focused on one or a few genes/enzymes involved in selected metabolic...

  20. Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium Cyanothece

    NARCIS (Netherlands)

    Brauer, Verena S.; Stomp, Maayke; Rosso, Camillo; van Beusekom, Sebastiaan A. M.; Emmerich, Barbara; Stal, Lucas J.; Huisman, Jef

    2013-01-01

    Marine nitrogen-fixing cyanobacteria are largely confined to the tropical and subtropical ocean. It has been argued that their global biogeographical distribution reflects the physiologically feasible temperature range at which they can perform nitrogen fixation. In this study we refine this line of

  1. The Role of Symbiotic Nitrogen Fixation in Sustainable Production of Biofuels

    Directory of Open Access Journals (Sweden)

    Bandana Biswas

    2014-04-01

    Full Text Available With the ever-increasing population of the world (expected to reach 9.6 billion by 2050, and altered life style, comes an increased demand for food, fuel and fiber. However, scarcity of land, water and energy accompanied by climate change means that to produce enough to meet the demands is getting increasingly challenging. Today we must use every avenue from science and technology available to address these challenges. The natural process of symbiotic nitrogen fixation, whereby plants such as legumes fix atmospheric nitrogen gas to ammonia, usable by plants can have a substantial impact as it is found in nature, has low environmental and economic costs and is broadly established. Here we look at the importance of symbiotic nitrogen fixation in the production of biofuel feedstocks; how this process can address major challenges, how improving nitrogen fixation is essential, and what we can do about it.

  2. Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion

    Science.gov (United States)

    Jeon, In-Yup; Choi, Hyun-Jung; Ju, Myung Jong; Choi, In Taek; Lim, Kimin; Ko, Jaejung; Kim, Hwan Kyu; Kim, Jae Cheon; Lee, Jae-Joon; Shin, Dongbin; Jung, Sun-Min; Seo, Jeong-Min; Kim, Min-Jung; Park, Noejung; Dai, Liming; Baek, Jong-Beom

    2013-07-01

    Nitrogen fixation is essential for the synthesis of many important chemicals (e.g., fertilizers, explosives) and basic building blocks for all forms of life (e.g., nucleotides for DNA and RNA, amino acids for proteins). However, direct nitrogen fixation is challenging as nitrogen (N2) does not easily react with other chemicals. By dry ball-milling graphite with N2, we have discovered a simple, but versatile, scalable and eco-friendly, approach to direct fixation of N2 at the edges of graphene nanoplatelets (GnPs). The mechanochemical cracking of graphitic C-C bonds generated active carbon species that react directly with N2 to form five- and six-membered aromatic rings at the broken edges, leading to solution-processable edge-nitrogenated graphene nanoplatelets (NGnPs) with superb catalytic performance in both dye-sensitized solar cells and fuel cells to replace conventional Pt-based catalysts for energy conversion.

  3. The Relationship Between Iron and Nitrogen Fixation in Trichodesmium spp.

    Science.gov (United States)

    2009-06-01

    fixation by the cyanobacterium Trichodesmium sp GBR -TRLI101. Fems Microbiol Ecol 45: 203-209. Fu, F.X., and Bell, P.R.F. (2003b) Growth, N2 fixation and...gradient across the inner bacterial membrane to the outer membrane to allow the transport of large molecules like siderophores into the periplasm of gram...type Fe3+ transporter (Koster, 2001). YP_722814 is homologous to an inner membrane component of a binding protein dependent transport system and is

  4. Nodulation and nitrogen fixation in promiscuous and non ...

    African Journals Online (AJOL)

    Soil nitrogen deficiency is a major factor limiting soybean production. This problem can be alleviated by the use of nitrogen fertilizers which on the other hand adversely affect the environment, are expensive and unaffordable to most peasant farmers. Alternatively, attention is being paid to improving soil nitrogen through the ...

  5. The interactive effects of temperature and moisture on nitrogen fixation in two temperate-arctic mosses

    DEFF Research Database (Denmark)

    Rousk, Kathrin; Pedersen, Pia Agerlund; Dyrnum, Kristine

    2017-01-01

    Nitrogen (N) fixation in moss-cyanobacteria associations is one of the main sources of ‘new’ N in pristine ecosystems like subarctic and arctic tundra. This fundamental ecosystem process is driven by temperature as well as by moisture. Yet, the effects of temperature and moisture stress on N2...... fixation in mosses under controlled conditions have rarely been investigated separately, rendering the interactive effects of the two climatic factors on N2 fixation unknown. Here, we tested the interactive effects of temperature and moisture on N2 fixation in the two most dominant moss species...... in a temperate heath, subarctic tundra and arctic tundra: Pleurozium schreberi and Tomentypnum nitens. Mosses with different moisture levels (25, 50, 100%) were kept at different temperatures (10, 20, 30 °C) and N2 fixation was measured at different times after exposure to these conditions. T. nitens had...

  6. Diel nitrogen fixation pattern of Trichodesmium: the interactive control of light and Ni

    Science.gov (United States)

    Rodriguez, Irene B.; Ho, Tung-Yuan

    2014-03-01

    Trichodesmium, a nonheterocystous cyanobacterium widely abundant in the surface water of the tropical and subtropical ocean, fixes dinitrogen under high light conditions while concurrently undergoing photosynthesis. The new production considerably influences the cycling of nitrogen and carbon in the ocean. Here, we investigated how light intensity and nickel (Ni) availability interplay to control daily rates and diel patterns of N2 fixation in Trichodesmium. We found that increasing Ni concentration increased N2 fixation rates by up to 30-fold in the high light treatment. Cultures subjected to high Ni and light levels fixed nitrogen throughout most of the 24 H light:dark regime with the highest rate coinciding with the end of the 12 H light period. Our study demonstrates the importance of Ni on nitrogen fixation rates for Trichodesmium under high light conditions.

  7. Enhancement of root growth and nitrogen fixation in Trigonella by UV-exclusion from solar radiation.

    Science.gov (United States)

    Sharma, Sonika; Guruprasad, K N

    2012-12-01

    A field experiment was conducted to study the impact of solar UV on root growth and nitrogen fixation in Trigonella foenum-graecum. Plants were grown in iron mesh cages covered with polyester filters that could specifically cut off UV-B (280-315 nm) or UV-A + B (280-400 nm) part of the solar spectrum. The control plants were grown under a polythene filter transmissible to UV. Root biomass, number of nodules and nodule fresh weight were enhanced after exclusion of solar UV. Nitrogenase activity was significantly enhanced by 120% and 80% in the UV-B and UV-A + B excluded plants respectively. Along with nitrogenase there was concomitant increase in leghemoglobin and hemechrome content in the nodules after exclusion of solar UV. These components of sunlight limits nitrogen fixation and their elimination can enhance nitrogen fixation with agricultural advantages like reduction in the use of fertilizers. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Nitrogen fixation in lichens is important for improved rock weathering

    Indian Academy of Sciences (India)

    It is known that cyanobacteria in cyanolichens fix nitrogen for their nutrition. However, specific uses of the fixed nitrogen have not been examined. The present study shows experimentally that a mutualistic interaction between a heterotrophic N2 fixer and lichen fungi in the presence of a carbon source can contribute to ...

  9. Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef.

    Science.gov (United States)

    Lesser, Michael P; Morrow, Kathleen M; Pankey, Sabrina M; Noonan, Sam H C

    2017-12-08

    Diazotrophs, both Bacteria and Archaea, capable of fixing nitrogen (N2), are present in the tissues and mucous, of corals and can supplement the coral holobiont nitrogen budget with fixed nitrogen (N) in the form of ammonia (NH3). Stylophora pistillata from Heron Island on the Great Barrier Reef collected at 5 and 15 m, and experimentally manipulated in the laboratory, showed that the rates of net photosynthesis, steady state quantum yields of photosystem II (PSII) fluorescence (∆Fv/Fm') and calcification varied based on irradiance as expected. Rates of N2 fixation were, however, invariant across treatments while the amount of fixed N contributing to Symbiodinium spp. N demand is irradiance dependent. Additionally, both the Symbiodinium and diazotrophic communities are significantly different based on depth, and novel Cluster V nifH gene phylotypes, which are not known to fix nitrogen, were recovered. A functional analysis using PICRUSt also showed that shallow corals were enriched in genes involved in nitrogen metabolism, and N2 fixation specifically. Corals have evolved a number of strategies to derive nitrogen from organic (e.g., heterotrophic feeding) and inorganic sources (e.g., N2 fixation) to maintain critical pathways such as protein synthesis to succeed ecologically in nitrogen-limited habitats.

  10. Studies of non-symbiotic nitrogen fixation and acetylene-reduction methodology in forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Nohrstedt, H.Oe.

    1984-01-01

    The acetylene reduction method could no be directly applied, especially on acid soils with low rates of fixation, due to influences of the natural metabolism of ethylene. This problem was solved by introducing carbon monoxide, an inhibitor of nitrogen fixation and acetylene reduction, together with acetylene in the control incubations. This method was restricted to incubations shorter than one day at 15 degree C, due to carbon monoxide being consumed by soil microorganisms and the reversible nature of the inhibition. The method was also restricted to unsaturated water conditions in soil. The conversion factor between acetylene reduction and nitrogen (/sup15/N/sub2/) fixation varied form 1.0 to 5.6 for five studied under unsaturated waterconditions. At watersaturation and when glucose was added to enhance nitrogenase activity, a conversion factor of 15.7 was obtained as studied on one soil. The threshold value of activity (C/sub2/Hsub/2/) at watersaturation, above which an unnormally high conversion factor can be expected, was theoretically calculated to 10 mg N m/sup-2/ day/sup-1/. The spatial variation of nitrogen fixation was substantial, with the coefficient of variation often exceeding 100 percent, when taking eight soil cores (6 cm dia) from a plot of 100 m/sup2/. When compared to Norway spruce, beech suppressed and birch stimulated nitrogen fixation in the forests floor. The rate of nitrogen fixation was significantly and positively correlated to the pH of the soil. The amount of N/sub2/ fixed during the growing season was, at the most, 1.5 kg per hectare down to a soil depth of 6 cm.

  11. Nitrogen fixation and chemical composition of wild annual legumes ...

    African Journals Online (AJOL)

    yakoub@AHMED

    Nitrogen řixation by legumes plays an important role in sustaining crop productivity and increasing řertility oř marginal lands and in smallholder systems oř the semiarid tropics. (Serraj et al. 2004). The measurement oř N řixation by legumes is necessary řor gaining an understanding oř their contribution to the nitrogen ...

  12. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching.

    Science.gov (United States)

    Pogoreutz, Claudia; Rädecker, Nils; Cárdenas, Anny; Gärdes, Astrid; Voolstra, Christian R; Wild, Christian

    2017-09-01

    The disruption of the coral-algae symbiosis (coral bleaching) due to rising sea surface temperatures has become an unprecedented global threat to coral reefs. Despite decades of research, our ability to manage mass bleaching events remains hampered by an incomplete mechanistic understanding of the processes involved. In this study, we induced a coral bleaching phenotype in the absence of heat and light stress by adding sugars. The sugar addition resulted in coral symbiotic breakdown accompanied by a fourfold increase of coral-associated microbial nitrogen fixation. Concomitantly, increased N:P ratios by the coral host and algal symbionts suggest excess availability of nitrogen and a disruption of the nitrogen limitation within the coral holobiont. As nitrogen fixation is similarly stimulated in ocean warming scenarios, here we propose a refined coral bleaching model integrating the cascading effects of stimulated microbial nitrogen fixation. This model highlights the putative role of nitrogen-fixing microbes in coral holobiont functioning and breakdown. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  13. Assessment of free-living nitrogen fixing microorganisms for commercial nitrogen fixation. [economic analysis of ammonia production

    Science.gov (United States)

    Stokes, B. O.; Wallace, C. J.

    1978-01-01

    Ammonia production by Klebsiella pneumoniae is not economical with present strains and improving nitrogen fixation to its theoretical limits in this organism is not sufficient to achieve economic viability. Because the value of both the hydrogen produced by this organism and the methane value of the carbon source required greatly exceed the value of the ammonia formed, ammonia (fixed nitrogen) should be considered the by-product. The production of hydrogen by KLEBSIELLA or other anaerobic nitrogen fixers should receive additional study, because the activity of nitrogenase offers a significant improvement in hydrogen production. The production of fixed nitrogen in the form of cell mass by Azotobacter is also uneconomical and the methane value of the carbon substrate exceeds the value of the nitrogen fixed. Parametric studies indicate that as efficiencies approach the theoretical limits the economics may become competitive. The use of nif-derepressed microorganisms, particularly blue-green algae, may have significant potential for in situ fertilization in the environment.

  14. Functional ecology of free-living nitrogen fixation: A contemporary perspective

    Science.gov (United States)

    Reed, Sasha C.; Cleveland, Cory C.; Townsend, Alan R.

    2011-01-01

    Nitrogen (N) availability is thought to frequently limit terrestrial ecosystem processes, and explicit consideration of N biogeochemistry, including biological N2 fixation, is central to understanding ecosystem responses to environmental change. Yet, the importance of free-living N2 fixation—a process that occurs on a wide variety of substrates, is nearly ubiquitous in terrestrial ecosystems, and may often represent the dominant pathway for acquiring newly available N—is often underappreciated. Here, we draw from studies that investigate free-living N2 fixation from functional, physiological, genetic, and ecological perspectives. We show that recent research and analytical advances have generated a wealth of new information that provides novel insight into the ecology of N2 fixation as well as raises new questions and priorities for future work. These priorities include a need to better integrate free-living N2 fixation into conceptual and analytical evaluations of the N cycle's role in a variety of global change scenarios.

  15. Regulation of Azorhizobium caulinodans ORS571 nitrogen fixation (NIF/FIX) genes

    NARCIS (Netherlands)

    Stigter, J.

    1994-01-01

    Biological nitrogen fixation is the microbial process by which atmospheric dinitrogen (N 2 ) is reduced to ammonia. In all microbes studied, dinitrogen reduction is catalyzed by a highly conserved enzyme complex, called nitrogenase.

  16. Genome-wide association analysis of symbiotic nitrogen fixation in common bean

    Science.gov (United States)

    A genome-wide association study (GWAS) was conducted to explore the genetic basis of variation for symbiotic nitrogen fixation (SNF) and related traits in the Andean diversity panel (ADP) comprised of 259 common bean (Phaseolus vulgaris) genotypes. The ADP was evaluated for SNF and related traits in...

  17. Effects of tillage and cropping systems on yield and nitrogen fixation ...

    African Journals Online (AJOL)

    Published information is scanty on the response of crops in mixed cropping systems to the various tillage systems practised by farmers in the northern savanna zone of Ghana. A field experiment assessed the yield and nitrogen (N) fixation of cowpea (Vigna unguiculata (L.) Walp) intercropped with maize (Zea mays L.) on ...

  18. Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability

    NARCIS (Netherlands)

    Mia, S.; van Groeningen, J.W.; Van de Voorde, T.F.J.; Oram, N.J.; Bezemer, T.M.; Mommer, L.; Jeffery, S.

    2014-01-01

    Increased biological nitrogen fixation (BNF) by legumes has been reported following biochar application to soils, but the mechanisms behind this phenomenon remain poorly elucidated. We investigated the effects of different biochar application rates on BNF in red clover (Trifolium pratense L.). Red

  19. Electrochemical impedance of nitrogen fixation mediated by fullerene-cyclodextrin complex

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Lubomír; Hromadová, Magdaléna; Gál, Miroslav; Kocábová, Jana; Sokolová, Romana; Fanelli, N.

    2008-01-01

    Roč. 53, č. 25 (2008), s. 7445-7450 ISSN 0013-4686 R&D Projects: GA AV ČR IAA400400505; GA AV ČR KJB400400603 Institutional research plan: CEZ:AV0Z40400503 Keywords : impedance * nitrogen fixation * fullerene- cyclodextrin complex * ammonia Subject RIV: CG - Electrochemistry Impact factor: 3.078, year: 2008

  20. Pleiotropic effect of his gene mutations on nitrogen fixation in Klebsiella pneumoniae

    DEFF Research Database (Denmark)

    Jensen, Jens Stougaard; Kennedy, C

    1982-01-01

    Several his mutations were found to influence nitrogen fixation in Klebsiella pneumoniae: hisB, hisC, and hisD mutants had 50% of wild-type levels of nitrogenase activity when supplied with 30 mug or less histidine/ml although this concentration did not limit protein synthesis and the mutants...

  1. Pyruvate is synthesized by two pathways in pea bacteroids with different efficiencies for nitrogen fixation.

    Science.gov (United States)

    Mulley, Geraldine; Lopez-Gomez, Miguel; Zhang, Ye; Terpolilli, Jason; Prell, Jurgen; Finan, Turlough; Poole, Philip

    2010-10-01

    Nitrogen fixation in legume bacteroids is energized by the metabolism of dicarboxylic acids, which requires their oxidation to both oxaloacetate and pyruvate. In alfalfa bacteroids, production of pyruvate requires NAD+ malic enzyme (Dme) but not NADP+ malic enzyme (Tme). However, we show that Rhizobium leguminosarum has two pathways for pyruvate formation from dicarboxylates catalyzed by Dme and by the combined activities of phosphoenolpyruvate (PEP) carboxykinase (PckA) and pyruvate kinase (PykA). Both pathways enable N2 fixation, but the PckA/PykA pathway supports N2 fixation at only 60% of that for Dme. Double mutants of dme and pckA/pykA did not fix N2. Furthermore, dme pykA double mutants did not grow on dicarboxylates, showing that they are the only pathways for the production of pyruvate from dicarboxylates normally expressed. PckA is not expressed in alfalfa bacteroids, resulting in an obligate requirement for Dme for pyruvate formation and N2 fixation. When PckA was expressed from a constitutive nptII promoter in alfalfa dme bacteroids, acetylene was reduced at 30% of the wild-type rate, although this level was insufficient to prevent nitrogen starvation. Dme has N-terminal, malic enzyme (Me), and C-terminal phosphotransacetylase (Pta) domains. Deleting the Pta domain increased the peak acetylene reduction rate in 4-week-old pea plants to 140 to 150% of the wild-type rate, and this was accompanied by increased nodule mass. Plants infected with Pta deletion mutants did not have increased dry weight, demonstrating that there is not a sustained change in nitrogen fixation throughout growth. This indicates a complex relationship between pyruvate synthesis in bacteroids, nitrogen fixation, and plant growth.

  2. Abiotic nitrogen fixation on terrestrial planets: reduction of NO to ammonia by FeS.

    Science.gov (United States)

    Summers, David P; Basa, Ranor C B; Khare, Bishun; Rodoni, David

    2012-02-01

    Understanding the abiotic fixation of nitrogen and how such fixation can be a supply of prebiotic nitrogen is critical for understanding both the planetary evolution of, and the potential origin of life on, terrestrial planets. As nitrogen is a biochemically essential element, sources of biochemically accessible nitrogen, especially reduced nitrogen, are critical to prebiotic chemistry and the origin of life. Loss of atmospheric nitrogen can result in loss of the ability to sustain liquid water on a planetary surface, which would impact planetary habitability and hydrological processes that shape the surface. It is known that NO can be photochemically converted through a chain of reactions to form nitrate and nitrite, which can be subsequently reduced to ammonia. Here, we show that NO can also be directly reduced, by FeS, to ammonia. In addition to removing nitrogen from the atmosphere, this reaction is particularly important as a source of reduced nitrogen on an early terrestrial planet. By converting NO directly to ammonia in a single step, ammonia is formed with a higher product yield (~50%) than would be possible through the formation of nitrate/nitrite and subsequent conversion to ammonia. In conjunction with the reduction of NO, there is also a catalytic disproportionation at the mineral surface that converts NO to NO₂ and N₂O. The NO₂ is then converted to ammonia, while the N₂O is released back in the gas phase, which provides an abiotic source of nitrous oxide.

  3. Biological fixation of atmospheric nitrogen in the Mediterranean Sea

    Energy Technology Data Exchange (ETDEWEB)

    Bethoux, J.P.; Copin-Montegut, G.

    1986-11-01

    Nutrient concentration in the Mediterranean Sea is controlled by water exchanges through the Strait of Gibraltar and by atmospheric and terrestrial inputs. Various peculiarities in the nitrogen and phosphorus geochemical cycles are pointed out, namely a low N:P atomic ratio (6.4) in terrestrial discharges, and a budget well balanced for phosphorus (where terrestrial discharges amount to about 80% of the outflow) but apparently very deficient in nitrogen, despite a high N:P atomic ratio (22), in Mediterranean deep waters. This suggests the possibility of a surprisingly high rate of direct atmospheric N uptake by the Mediterranean ecosystem (possibly seagrasses Posidonia oceanica and pelagic bacterioplankton species).

  4. Potential for nitrogen fixation in fungus-growing termite symbiosis

    DEFF Research Database (Denmark)

    Sapountzis, Panagiotis; de Verges, Jane; Rousk, Kathrin

    2016-01-01

    Termites host a gut microbiota of diverse and essential symbionts that enable specialization on dead plant material; an abundant, but nutritionally imbalanced food source. To supplement the severe shortage of dietary nitrogen (N), some termite species make use of diazotrophic bacteria to fix...

  5. Estimates of biological nitrogen fixation by Pterocarpus lucens in a ...

    African Journals Online (AJOL)

    TonukariJ

    2002-11-15

    Nov 15, 2002 ... Table 3: Assessment of leaf nitrogen per plant and contribution of fixed-N2 by P. lucens in a ferruginous soil and in a sandy soil of Ferlo,. Senegal. measured the %Ndfa in leaves to estimate the contribution of P. lucens adult trees in their natural ecosystem. The reference plant is unquestionably the 'Achilles ...

  6. Nitrogen fixation in lichens is important for improved rock weathering

    Indian Academy of Sciences (India)

    MADU

    Jayasinghearachchi H S and Seneviratne G 2004 Can mushrooms fix atmospheric nitrogen?; J. Biosci. 29 293–296. Jayasinghearachchi H S and Seneviratne G 2006 Fungal solubilization of rock phosphate is enhanced by forming fungal- rhizobial biofilms; Soil Biol. Biochem. 38 405–408. Jones D L 1998 Organic acids in ...

  7. Nitrogen Cycling in Seagrass Beds Dominated by Thalassia testudinum and Halodule wrightii: the Role of Nitrogen Fixation and Ammonium Oxidation in Regulating Ammonium Availability

    Science.gov (United States)

    Capps, R.; Caffrey, J. M.; Hester, C.

    2016-02-01

    Seagrass meadows provide key ecosystem services including nursery and foraging grounds, storm and erosion buffers, biodiversity enhancers and global carbon and nutrient cycling. Nitrogen concentrations are often very low in coastal waters and sediments, which may limit primary productivity. Biological nitrogen fixation is a microbial process that converts dinitrogen to ammonium, which is readily taken up by seagrasses. In the oxygenated rhizospheres, diazotrophs provide the plant with ammonium and use root exudates as an energy source. Nitrogen fixation rates and nutrient concentrations differ between seagrass species and substrate types. Thalassia testudinum has a higher biomass and is a climax species than Halodule wrightii, which is a pioneer species. Nitrogen fixation rates are relatively consistent in Thalassia testudinum dominated sediments. However, it is relatively variable in sediments occupied by Halodule wrightii. Nitrogen fixation rates are higher in bare substrate compared to areas with Thalassia testudinum, which may be due to T. testudinum's greater efficiency in nutrient retention because it is a climax species. We hypothesize that seasonal shifts in nitrogen fixation will coincide with seasonal shifts in seagrass biomass due to higher nutrient requirements during peak growth and lower requirements during senescence and dormancy. The ratio of porewater ammonium to phosphate suggests that seagrass growth may be nitrogen limited as does nitrogen demand, estimated from gross primary productivity. Significant rates of ammonium oxidation in both surface and rhizosphere sediments contribute to this imbalance. Thus, nitrogen fixation may be critical in supporting plant growth.

  8. Chasing after Non-cyanobacterial Nitrogen Fixation in Marine Pelagic Environments

    Directory of Open Access Journals (Sweden)

    Pia H. Moisander

    2017-09-01

    Full Text Available Traditionally, cyanobacterial activity in oceanic photic layers was considered responsible for the marine pelagic dinitrogen (N2 fixation. Other potentially N2-fixing bacteria and archaea have also been detected in the pelagic water column, however, the activity and importance of these non-cyanobacterial diazotrophs (NCDs remain poorly constrained. In this perspective we summarize the N2 fixation rates from recently published studies on photic and aphotic layers that have been attributed to NCD activity via parallel molecular measurements, and discuss the status, challenges, and data gaps in estimating non-cyanobacterial N2 fixation NCNF in the ocean. Rates attributed to NCNF have generally been near the detection limit thus far (<1 nmol N L−1 d−1. Yet, if considering the large volume of the dark ocean, even low rates of NCNF could make a significant contribution to the new nitrogen input to the ocean. The synthesis here shows that nifH transcription data for NCDs have been reported in only a few studies where N2 fixation rates were detected in the absence of diazotrophic cyanobacteria. In addition, high apparent diversity and regional variability in the NCDs complicate investigations of these communities. Future studies should focus on further investigating impacts of environmental drivers including oxygen, dissolved organic matter, and dissolved inorganic nitrogen on NCNF. Describing the ecology of NCDs and accurately measuring NCNF rates, are critical for a future evaluation of the contribution of NCNF to the marine nitrogen budget.

  9. The role of nitrogen fixation in cyanobacterial bloom toxicity in a temperate, eutrophic lake.

    Directory of Open Access Journals (Sweden)

    Lucas J Beversdorf

    Full Text Available Toxic cyanobacterial blooms threaten freshwaters worldwide but have proven difficult to predict because the mechanisms of bloom formation and toxin production are unknown, especially on weekly time scales. Water quality management continues to focus on aggregated metrics, such as chlorophyll and total nutrients, which may not be sufficient to explain complex community changes and functions such as toxin production. For example, nitrogen (N speciation and cycling play an important role, on daily time scales, in shaping cyanobacterial communities because declining N has been shown to select for N fixers. In addition, subsequent N pulses from N(2 fixation may stimulate and sustain toxic cyanobacterial growth. Herein, we describe how rapid early summer declines in N followed by bursts of N fixation have shaped cyanobacterial communities in a eutrophic lake (Lake Mendota, Wisconsin, USA, possibly driving toxic Microcystis blooms throughout the growing season. On weekly time scales in 2010 and 2011, we monitored the cyanobacterial community in a eutrophic lake using the phycocyanin intergenic spacer (PC-IGS region to determine population dynamics. In parallel, we measured microcystin concentrations, N(2 fixation rates, and potential environmental drivers that contribute to structuring the community. In both years, cyanobacterial community change was strongly correlated with dissolved inorganic nitrogen (DIN concentrations, and Aphanizomenon and Microcystis alternated dominance throughout the pre-toxic, toxic, and post-toxic phases of the lake. Microcystin concentrations increased a few days after the first significant N(2 fixation rates were observed. Then, following large early summer N(2 fixation events, Microcystis increased and became most abundant. Maximum microcystin concentrations coincided with Microcystis dominance. In both years, DIN concentrations dropped again in late summer, and N(2 fixation rates and Aphanizomenon abundance increased

  10. The role of nitrogen fixation in neotropical dry forests: insights from ecosystem modeling and field data

    Science.gov (United States)

    Trierweiler, A.; Xu, X.; Gei, M. G.; Powers, J. S.; Medvigy, D.

    2016-12-01

    Tropical dry forests (TDFs) have immense functional diversity and face multiple resource constraints (both water and nutrients). Legumes are abundant and exhibit a wide diversity of N2-fixing strategies in TDFs. The abundance and diversity of legumes and their interaction with N2-fixing bacteria may strongly control the coupled carbon-nitrogen cycle in the biome and influence whether TDFs will be particularly vulnerable or uniquely adapted to projected global change. However, the importance of N2-fixation in TDFs and the carbon cost of acquiring N through symbiotic relationships are not fully understood. Here, we use models along with field measurements to examine the role of legumes, nitrogen fixation, and plant-symbiont nutrient exchanges in TDFs. We use a new version of the Ecosystem Demography (ED2) model that has been recently parameterized for TDFs. The new version incorporates plant-mycorrhizae interactions and multiple resource constraints (carbon, nitrogen, phosphorus, and water). We represent legumes and other functional groups found in TDFs with a range of resource acquisition strategies. In the model, plants then can dynamically adjust their carbon allocation and nutrient acquisition strategies (e.g. N2-fixing bacteria and mycorrhizal fungi) according to the nutrient limitation status. We test (i) the model's performance against a nutrient gradient of field sites in Costa Rica and (ii) the model's sensitivity to the carbon cost to acquire N through fixation and mycorrhizal relationships. We also report on simulated tree community responses to ongoing field nutrient fertilization experiments. We found that the inclusion of the N2-fixation legume plant functional traits were critical to reproducing community dynamics of Costa Rican field TDF sites and have a large impact on forest biomass. Simulated ecosystem fixation rates matched the magnitude and temporal patterns of field measured fixation. Our results show that symbiotic nitrogen fixation plays an

  11. Effect of the major components of industrial air pollution on nonsymbiotic nitrogen-fixation activity in soil

    Energy Technology Data Exchange (ETDEWEB)

    Islamov, S.S.; Chunderova, A.I.

    1976-01-01

    Industrial pollution of atmosphere inhibits the activity of non-symbiotic nitrogen fixation in soils. The inhibiting effect of polluted air can be explained by the presence of carbon monoxide and nitrogen dioxide in it. Sulfur dioxide does not depress the nitrogenase complex of aerobic and anaerobic nitrogen fixing microorganisms.

  12. Is there a link between free-living nitrogen fixation rates and nitrogen mineralization rates?

    Science.gov (United States)

    Smercina, D.; Tiemann, L. K.; Friesen, M.; Evans, S. E.; West, W.

    2016-12-01

    Plant accessible nitrogen (N) is controlled by the rates of N fixation (N-fix) and N mineralization (N-min), yet the relationship between these two processes is relatively unexplored. In particular, we know relatively little about the rates of free-living N-fix, thought to be supported mainly by plant root exudates. Furthermore, there is no consensus on the link between N-fix and N-min rates in terrestrial soil systems. To address this knowledge gap, we are using a three-pronged approach, including a meta-analysis, a greenhouse study and field experiments. Following an extensive literature search, we found 12 papers that simultaneously reported N-fix and N-min rates. Surprisingly, these data indicated a positive relationship between N-fix and N-min rates; however, the scarcity of data limits our ability to draw any strong conclusions. We have explored the relationship between N-fix and N-min in a controlled greenhouse experiment using switchgrass (Panicum virgatum) because recent evidence suggests switchgrass may support free-living N-fix when N limited. Indeed, in our study, switchgrass and soils exposed to N limiting conditions experienced no adverse effects, namely no differences in plant growth or tissue chemistry (C:N), or soil enzyme activities compared to non-N limiting conditions. Soils used in this study are from marginal lands, low in soil organic matter and N, so it is likely N deficits are compensated for via N-fix. Analysis of 15N2 -fix and gross N-min rates, determined via 15N pool dilution, will elucidate this source of N. Finally, our field experiment encompasses six marginal land sites across MI and WI, part of the Great Lakes Bioenergy Research Center. In 2016, we measured N-fix and N-min rates in switchgrass monoculture plots at all six sites once, at the peak of growing season, and bi-weekly, from April to September, at two MI field sites. Data collected to date from two MI sites show no difference in N-min rates in N fertilized versus

  13. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen

    Directory of Open Access Journals (Sweden)

    Angela eKnapp

    2012-10-01

    Full Text Available The dominant process adding nitrogen (N to the ocean, di-nitrogen (N2 fixation, is mediated by prokaryotes (diazotrophs sensitive to a variety of environmental factors. In particular, it is often assumed that consequential rates of marine N2 fixation do not occur where concentrations of nitrate (NO3- and/or ammonium (NH4+ exceed 1 µM because of the additional energetic cost associated with assimilating N2 gas relative to NO3- or NH4+. However, an examination of culturing studies and in situ N2 fixation rate measurements from marine euphotic, mesopelagic, and benthic environments indicates that while elevated concentrations of NO3- and/or NH4+ can depress N2 fixation rates, the process can continue at substantial rates in the presence of as much as 30 µM NO3- and/or 200 µM NH4+. These findings challenge expectations of the degree to which inorganic N inhibits this process. The high rates of N2 fixation measured in some benthic environments suggest that certain benthic diazotrophs may be less sensitive to prolonged exposure to NO3- and/or NH4+ than cyanobacterial diazotrophs. Additionally, recent work indicates that cyanobacterial diazotrophs may have mechanisms for mitigating NO3- inhibition of N2 fixation. In particular, it has been recently shown that increasing phosphorus (P availability increases diazotroph abundance, thus compensating for lower per-cell rates of N2 fixation that result from NO3- inhibition. Consequently, low ambient surface ocean N:P ratios such as those generated by the increasing rates of N loss thought to occur during the last glacial to interglacial transition may create conditions favorable for N2 fixation and thus help to stabilize the marine N inventory on relevant time scales. These findings suggest that restricting measurements of marine N2 fixation to oligotrophic surface waters may underestimate global rates of this process and contribute to uncertainties in the marine N budget.

  14. In Situ Denitrification and Biological Nitrogen Fixation Under Enhanced Atmospheric Reactive Nitrogen Deposition in UK Peatlands

    Science.gov (United States)

    Ullah, Sami; Saiz Val, Ernesto; Sgouridis, Fotis; Peichl, Matthias; Nilsson, Mats

    2017-04-01

    Dinitrogen (N2) and nitrous oxide (N2O) losses due to denitrification and biological N2 fixation (BNF) are the most uncertain components of the nitrogen (N) cycle in peatlands under enhanced atmospheric reactive nitrogen (Nr) deposition. This uncertainty hampers our ability to assess the contribution of denitrification to the removal of biologically fixed and/or atmospherically deposited Nr in peatlands. This uncertainty emanates from the difficulty in measuring in situ soil N2 and N2O production and consumption in peatlands. In situ denitrification and its contribution to total N2O flux was measured monthly between April 2013 and October 2014 in peatlands in two UK catchments. An adapted 15N-Gas Flux method1 with low level addition of 15N tracer (0.03 ± 0.005 kg 15N ha-1) was used to measure denitrification and its contribution to net N2O production (DN2O/TN2O). BNF was measured in situ through incubation of selected sphagnum species under 15N2 gas tracer. Denitrification2 varied temporally and averaged 8 kg N-N2 ha-1 y-1. The contribution of denitrification was about 48% to total N2O flux3 of 0.05 kg N ha-1 y-1. Soil moisture, temperature, ecosystem respiration, pH and mineral N content mainly regulated the flux of N2 and N2O. Preliminary results showed suppression of BNF, which was 1.8 to 7 times lower in peatland mosses exposed to ˜15 to 20 kg N ha-1 y-1 Nr deposition in the UK than in peatland mosses in northern Sweden with background Nr deposition. Overall, the contribution of denitrification to Nr removal in the selected peatlands was ˜50% of the annual Nr deposition rates, making these ecosystems vulnerable to chronic N saturation. These results point to a need for a more comprehensive annual BNF measurement to more accurately account for total Nr input into peatlands and its atmospheric loss due to denitrification. References Sgouridis F, Stott A & Ullah S, 2016. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to

  15. High potential of nitrogen fixation in pristine, ombrotrophic bogs in Southern Patagonia

    Science.gov (United States)

    Knorr, Klaus-Holger; Horn, Marcus A.; Bahamonde Aguilar, Nelson A.; Borken, Werner

    2015-04-01

    Nitrogen (N) input in pristine peatlands occurs via natural input of inorganic N through atmospheric deposition or biological dinitrogen (N2) fixation. However, N2 fixation is to date mostly attributed to bacteria and algae associated to Sphagnum and its contribution to plant productivity and peat buildup has been often underestimated in previous studies. Based on net N storage, exceptionally low N deposition, and high abundance of vascular plants at pristine peatlands in Southern Patagonia, we hypothesized that there must be a high potential of non-symbiotic N2 fixation not limited to the occurrence of Sphagnum. To this end, we chose two ombrotrophic bogs with spots that are dominated either by Sphagnum or by vascular, cushion-forming plants and sampled peat from different depths for incubation with 15N2 to determine N2 fixation potentials. Moreover, we analyzed 15N2 fixation by a nodule-forming, endemic conifer inhabiting the peatlands. Results from 15N2 uptake were compared to the conventional approach to study N2 fixation by the acetylene reduction assay (ARA). Using 15N2 as a tracer, high non-symbiotic N2 fixation rates of 0.3-1.4 μmol N g-1 d-1 were found down to 50 cm under micro-oxic conditions (2 vol.%) in samples from both plots either covered by Sphagnum magellanicum or by vascular cushion plants. Peat N concentrations suggested a higher potential of non-symbiotic N2 fixation under cushion plants, likely because of the availability of easily decomposable organic compounds as substrates and oxic conditions in the rhizosphere. In the Sphagnum plots, high N2 fixation below 10 cm depth would rather reflect a potential fixation that may switch on during periods of low water levels when oxygen penetrates deeper into the peat. 15N natural abundance of live Sphagnum from 0-10 cm pointed to N uptake solely from atmospheric deposition and non-symbiotic N2 fixation. 15N signatures of peat from the cushion plant plots indicated additional N supply from N

  16. Origin and Evolution of Nitrogen Fixation Genes on Symbiosis Islands and Plasmid in Bradyrhizobium

    OpenAIRE

    Okubo, Takashi; Piromyou, Pongdet; Tittabutr, Panlada; Teaumroong, Neung; Minamisawa, Kiwamu

    2016-01-01

    The nitrogen fixation (nif) genes of nodule-forming Bradyrhizobium strains are generally located on symbiosis islands or symbiosis plasmids, suggesting that these genes have been transferred laterally. The nif genes of rhizobial and non-rhizobial Bradyrhizobium strains were compared in order to infer the evolutionary histories of nif genes. Based on all codon positions, the phylogenetic tree of concatenated nifD and nifK sequences showed that nifDK on symbiosis islands formed a different clad...

  17. Genetic analysis of nitrogen fixation in a tropical fast-growing Rhizobium

    OpenAIRE

    Elmerich, C; Dreyfus, B L; Reysset, G; Aubert, J.-P.

    1982-01-01

    The Rhizobium strain ORS571, which is associated with the tropical legume Sesbania rostrata, has the property of growing in the free-living state at the expense of ammonia or N2 as sole nitrogen source. Five mutants, isolated as unable to form colonies on plates under conditions of nitrogen fixation, were studied. All of them, which appear as Fix- in planta, are nif mutants. With mutant 5740, nitrogenase activity of the crude extract was restored by addition of pure Mo-Fe protein of Klebsiell...

  18. Fixation of molecular nitrogen by rare-earth metal compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bochkarev, M.N.; Trifonov, A.A.; Razuvaev, G.A.; Ilatovskaya, M.A.; Shur, V.B.

    1987-02-20

    They have shown that cyclopentadientyl complexes of Yb(II), Sm(III), Ce(III), and Eu(III), as well as CeCl/sub 3/ in the presence of excess naphthalenesodium in THF react with N/sub 2/ at approx. 20/sup 0/C and atmospheric pressure. Ammonia is released upon the hydrolysis of the products formed. The best results are obtained with the Cp/sub 2/Yb-C/sub 10/H/sub 8/-Ba/sup +/ which gives a yield of 0.15-0.25 mole ammonia per mole complex. Upon the replacement of Cp/sub 2/Yb by Cp/sub 3/Sm and CeCl/sub 3/, the efficiency of the reduction of N/sub 2/ decreases (the NH/sub 3/ yield is approx. 0.14 and 0.05 mole, respectively). The systems with Cp/sub 3/Ce and Cp/sub 3/Eu x THF are even less active (the NH/sub 3/ yield is approx. 0.014 and 0.015 mole, respectively). If the reaction between the lanthanide compound and naphthalenesodium is carried out in an argon atmosphere instead of nitrogen, then ammonia is not found in the hydrolysis products.

  19. Spatial and seasonal variations of Cyanobacteria and their nitrogen fixation rates in Sanya Bay, South China Sea

    Directory of Open Access Journals (Sweden)

    Junde Dong

    2008-06-01

    Full Text Available The nitrogen fixation rates of planktonic and intertidal benthic cyanobacteria were investigated in Sanya Bay from 2003 to 2005. Trichodesmium thiebautii was the dominant species of planktonic cyanobacteria during our study. Significant seasonal and spatial variations in Trichodesmium spp. abundance were observed (P<0.01. The highest Trichodesmium concentrations occurred during intermonsoon periods and in the outer region of Sanya Bay (Outer Bay stations. At fixed station S03 the abundance of T. thiebautii ranged from 1.14×103 to 2060×103 trichomes m–2, with an annual mean of 273×103 trichomes m–2. The average nitrogen fixation rate per colony of T. thiebautii was 0.27 nmol N h-1 colony-1 and it did not show any obvious seasonal variations. Nitrogen fixation by planktonic cyanobacteria was highest in the Outer Bay stations, where the estimated amount of new nitrogen introduced by Trichodesmium contributed 0.03 to 1.63% of the total primary production and up to 11.64% of the new production. Statistical results showed that significant seasonal and spatial variations of nitrogen fixation rates were found among the intertidal communities. The main benthic nitrogen-fixing cyanobacteria were identified as members of the genera Anabaena, Calothrix, Lyngbya, Nostoc and Oscillatoria. The highest nitrogen fixation rate was found in microbial mats and the lowest in reefs and rocky sediments. All the benthic communities studied presented their highest nitrogen fixation activity in summer, with an average nitrogen fixation rate of 33.31 µmol N h-1 m-2, whereas the lowest nitrogen activity was detected in winter, with an average nitrogen fixation rate of 5.66 µmol N h-1 m-2. A Pearson correlation analysis indicated that the nitrogen fixation rate of three types of intertidal communities was significantly positively correlated to seawater temperature (P<0.05, whereas only the nitrogen fixation rate of the reefs and rock communities was significantly

  20. Nodule and Leaf Nitrate Reductases and Nitrogen Fixation in Medicago sativa L. under Water Stress

    Science.gov (United States)

    Aparicio-Tejo, P.; Sánchez-Díaz, Manuel

    1982-01-01

    The effect of water stress on patterns of nitrate reductase activity in the leaves and nodules and on nitrogen fixation were investigated in Medicago sativa L. plants watered 1 week before drought with or without NO3−. Nitrogen fixation was decreased by water stress and also inhibited strongly by the presence of NO3−. During drought, leaf nitrate reductase activity (NRA) decreased significantly particularly in plants watered with NO3−, while with rewatering, leaf NRA recovery was quite important especially in the NO3−-watered plants. As water stress progressed, the nodular NRA increased both in plants watered with NO3− and in those without NO3− contrary to the behavior of the leaves. Beyond −15.105 pascal, nodular NRA began to decrease in plants watered with NO3−. This phenomenon was not observed in nodules of plants given water only. Upon rewatering, it was observed that in plants watered with NO3− the nodular NRA increased again, while in plants watered but not given NO3−, such activity began to decrease. Nitrogen fixation increased only in plants without NO3−. PMID:16662233

  1. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide.

    Science.gov (United States)

    Hutchins, David A; Walworth, Nathan G; Webb, Eric A; Saito, Mak A; Moran, Dawn; McIlvin, Matthew R; Gale, Jasmine; Fu, Fei-Xue

    2015-09-01

    Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean.

  2. EnviroAtlas - Cultivated biological nitrogen fixation in agricultural lands by 12-digit HUC in the Conterminous United States, 2006

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains data on the mean cultivated biological nitrogen fixation (C-BNF) in cultivated crop and hay/pasture lands per 12-digit Hydrologic...

  3. Growth, nitrogen fixation and mineral acquisition of Alnus sieboldiana after inoculation of Frankia together with Gigaspora margarita and Pseudomonas putida.

    Science.gov (United States)

    Takashi Yamanaka; Akio Akama; Ching-Yan Li; Hiroaki. Okabe

    2005-01-01

    The role of tetrapartite associations among Frankia, Gigaspora margarita (an arbuscular mycorrhizal fungus), Pseudomonas putida (rhizobacterium), and Alnus sieboldiana in growth, nitrogen fixation, and mineral acquisition of A. sieboldiana was investigated....

  4. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development

    DEFF Research Database (Denmark)

    Ott, Thomas; van Dongen, Joost T; Günther, Catrin

    2005-01-01

    fixation (SNF). In legumes, SNF occurs in specialized organs, called nodules, which contain millions of nitrogen-fixing rhizobia, called bacteroids. The induction of nodule-specific plant genes, including those encoding symbiotic leghemoglobins (Lb), accompanies nodule development. Leghemoglobins...

  5. The influence of rate and time of nitrate supply on nitrogen fixation and yield in pea (Pisum sativum L.)

    DEFF Research Database (Denmark)

    Jensen, Erik Steen

    1986-01-01

    rates supplied at sowing reduced the nitrogen fixation considerably. Applying nitrate N at the flat pod growth stage increased the yield of seed dry matter and N about 30% compared to pea receiving no nitrate fertilizer. Symbiotic nitrogen fixation was reduced only about 11%, compared with unfertilized...... pea, by the lowest rate of nitrate at this application time. The pea very efficiently took up and assimilated the nitrate N supplied. The average fertilizer N recovery was 82%. The later the N was supplied the more efficiently it was recovered. When nitrate was supplied at the flat pod growth stage 88......The influence of nitrate N supply on dry matter production, N content and symbiotic nitrogen fixation in soil-grown pea (Pisum sativum L.) was studied in a pot experiment by means of15N fertilizer dilution. In pea receiving no fertilizer N symbiotic nitrogen fixation, soil and seed-borne N...

  6. Interspecies Transfer and Regulation of Pseudomonas stutzeri A1501 Nitrogen Fixation Island in Escherichia coli.

    Science.gov (United States)

    Han, Yunlei; Lu, Na; Chen, Qinghua; Zhan, Yuhua; Liu, Wei; Lu, Wei; Zhu, Baoli; Lin, Min; Yang, Zhirong; Yan, Yongliang

    2015-08-01

    Until now, considerable effort has been made to engineer novel nitrogen-fixing organisms through the transfer of nif genes from various diazotrophs to non-nitrogen fixers; however, regulatory coupling of the heterologous nif genes with the regulatory system of the new host is still not well understood. In this work, a 49 kb nitrogen fixation island from P. stutzeri A1501 was transferred into E. coli using a novel and efficient transformation strategy, and a series of recombinant nitrogen-fixing E. coli strains were obtained. We found that the nitrogenase activity of the recombinant E. coli strain EN-01, similar to the parent strain P. stutzeri A1501, was dependent on external ammonia concentration, oxygen tension, and temperature. We further found that there existed a regulatory coupling between the E. coli general nitrogen regulatory system and the heterologous P. stutzeri nif island in the recombinant E. coli strain. We also provided evidence that the E. coli general nitrogen regulator GlnG protein was involved in the activation of the nif-specific regulator NifA via a direct interaction with the NifA promoter. To the best of our knowledge, this work plays a groundbreaking role in increasing understanding of the regulatory coupling of the heterologous nitrogen fixation system with the regulatory system of the recipient host. Furthermore, it will shed light on the structure and functional integrity of the nif island and will be useful for the construction of novel and more robust nitrogen-fixing organisms through biosynthetic engineering.

  7. Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean

    Directory of Open Access Journals (Sweden)

    T. Moutin

    2008-01-01

    Full Text Available Due to the low atmospheric input of phosphate into the open ocean, it is one of the key nutrients that could ultimately control primary production and carbon export into the deep ocean. The observed trend over the last 20 years has shown a decrease in the dissolved inorganic phosphate (DIP pool in the North Pacific gyre, which has been correlated to the increase in di-nitrogen (N2 fixation rates. Following a NW-SE transect, in the Southeast Pacific during the early austral summer (BIOSOPE cruise, we present data on DIP, dissolved organic phosphate (DOP and particulate phosphate (PP pools along with DIP turnover times (TDIP and N2 fixation rates. We observed a decrease in DIP concentration from the edges to the centre of the gyre. Nevertheless the DIP concentrations remained above 100 nmol L−1 and T DIP was more than 6 months in the centre of the gyre; DIP availability remained largely above the level required for phosphate limitation to occur and the absence of Trichodesmium spp and low nitrogen fixation rates were likely to be controlled by other factors such as temperature or iron availability. This contrasts with recent observations in the North Pacific Ocean at the ALOHA station and in the western Pacific Ocean at the same latitude (DIAPALIS cruises where lower DIP concentrations (<20 nmol L−1 and T DIP <50 h were measured during the summer season in the upper layer. The South Pacific gyre can be considered a High Phosphate Low Chlorophyll (HPLC oligotrophic area, which could potentially support high N2 fixation rates and possibly carbon dioxide sequestration, if the primary ecophysiological controls, temperature and/or iron availability, were alleviated.

  8. Irrigation of Secondary Sewage Effluent: Salinity and Nitrogen Effects on Growth and Nitrogen Fixation of Nodulated and Non-nodulated Soybeans.

    OpenAIRE

    Bhuiyan, Md. Mizanur R.; Yamakawa, Takeo; Kikuchi, Masamichi; Ikeda, Motoki; 山川, 武夫; 菊池, 政道; 池田, 元輝

    1998-01-01

    Salinity and nitrogenous components are the most critical water qualities in secondary sewage effluent (SSE) when used as an alternative resource for agricultural irrigation water. In this study a pot experiment was conducted to investigate the effects of salinity and inorganic nitrogen in the irrigation water on the growth and nitrogen fixation of soybean (Glycine max, (L.) Merrill) isoline T201 and T202. Nitrogen in the irrigation water as the plant nutrient contributed slightly to dry matt...

  9. A quantitative analysis of the direct and indirect costs of nitrogen fixation: a model based on Azotobacter vinelandii.

    Science.gov (United States)

    Inomura, Keisuke; Bragg, Jason; Follows, Michael J

    2017-01-01

    Nitrogen fixation is advantageous in microbial competition when bioavailable nitrogen is scarce, but has substantial costs for growth rate and growth efficiency. To quantify these costs, we have developed a model of a nitrogen-fixing bacterium that constrains mass, electron and energy flow at the scale of the individual. When tested and calibrated with laboratory data for the soil bacterium Azotobacter vinelandii, the model reveals that the direct energetic cost of nitrogen fixation is small relative to the cost of managing intracellular oxygen. It quantifies the costs and benefits of several potential oxygen protection mechanisms present in nature including enhanced respiration (respiratory protection) as well as the production of extracellular polymers as a barrier to O2 diffusion, and increasing cell size. The latter mechanisms lead to higher growth efficiencies relative to respiratory protection alone. This simple, yet mechanistic framework provides a quantitative model of nitrogen fixation, which can be applied in ecological simulations.

  10. Direct Raman Spectroscopic Measurements of Biological Nitrogen Fixation under Natural Conditions: An Analytical Approach for Studying Nitrogenase Activity.

    Science.gov (United States)

    Jochum, Tobias; Fastnacht, Agnes; Trumbore, Susan E; Popp, Jürgen; Frosch, Torsten

    2017-01-17

    Biological N2 fixation is a major input of bioavailable nitrogen, which represents the most frequent factor limiting the agricultural production throughout the world. Especially, the symbiotic association between legumes and Rhizobium bacteria can provide substantial amounts of nitrogen (N) and reduce the need for industrial fertilizers. Despite its importance in the global N cycle, rates of biological nitrogen fixation have proven difficult to quantify. In this work, we propose and demonstrate a simple analytical approach to measure biological N2 fixation rates directly without a proxy or isotopic labeling. We determined a mean N2 fixation rate of 78 ± 5 μmol N2 (g dry weight nodule)-1 h-1 of a Medicago sativa-Rhizobium consortium by continuously analyzing the amount of atmospheric N2 in static environmental chambers with Raman gas spectroscopy. By simultaneously analyzing the CO2 uptake and photosynthetic plant activity, we think that a minimum CO2 mixing ratio might be needed for natural N2 fixation and only used the time interval above this minimum CO2 mixing ratio for N2 fixation rate calculations. The proposed approach relies only on noninvasive measurements of the gas phase and, given its simplicity, indicates the potential to estimate biological nitrogen fixation of legume symbioses not only in laboratory experiments. The same methods can presumably also be used to detect N2 fluxes by denitrification from ecosystems to the atmosphere.

  11. BMAA Inhibits Nitrogen Fixation in the Cyanobacterium Nostoc sp. PCC 7120

    Directory of Open Access Journals (Sweden)

    Birgitta Bergman

    2013-08-01

    Full Text Available Cyanobacteria produce a range of secondary metabolites, one being the neurotoxic non-protein amino acid β-N-methylamino-L-alanine (BMAA, proposed to be a causative agent of human neurodegeneration. As for most cyanotoxins, the function of BMAA in cyanobacteria is unknown. Here, we examined the effects of BMAA on the physiology of the filamentous nitrogen-fixing cyanobacterium Nostoc sp. PCC 7120. Our data show that exogenously applied BMAA rapidly inhibits nitrogenase activity (acetylene reduction assay, even at micromolar concentrations, and that the inhibition was considerably more severe than that induced by combined nitrogen sources and most other amino acids. BMAA also caused growth arrest and massive cellular glycogen accumulation, as observed by electron microscopy. With nitrogen fixation being a process highly sensitive to oxygen species we propose that the BMAA effects found here may be related to the production of reactive oxygen species, as reported for other organisms.

  12. New evidence for nitrogen fixation within the Italian white truffle Tuber magnatum.

    Science.gov (United States)

    Barbieri, Elena; Ceccaroli, Paola; Saltarelli, Roberta; Guidi, Chiara; Potenza, Lucia; Basaglia, Marina; Fontana, Federico; Baldan, Enrico; Casella, Sergio; Ryahi, Ouafae; Zambonelli, Alessandra; Stocchi, Vilberto

    2010-01-01

    Diversity of nitrogen-fixing bacteria and the nitrogen-fixation activity was investigated in Tuber magnatum, the most well-known prized species of Italian white truffle. Degenerate PCR primers were applied to amplify the nitrogenase gene nifH from T. magnatum ascomata at different stages of maturation. Putative amino acid sequences revealed mainly the presence of Alphaproteobacteria belonging to Bradyrhizobium spp. and expression of nifH genes from Bradyrhizobia was detected. The nitrogenase activity evaluated by acetylene reduction assay was 0.5-7.5μmolC(2)H(4)h(-1)g(-1), comparable with early nodules of legumes associated with specific nitrogen-fixing bacteria. This is the first demonstration of nitrogenase expression gene and activity within truffle. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  13. BMAA Inhibits Nitrogen Fixation in the Cyanobacterium Nostoc sp. PCC 7120

    Science.gov (United States)

    Berntzon, Lotta; Erasmie, Sven; Celepli, Narin; Eriksson, Johan; Rasmussen, Ulla; Bergman, Birgitta

    2013-01-01

    Cyanobacteria produce a range of secondary metabolites, one being the neurotoxic non-protein amino acid β-N-methylamino-L-alanine (BMAA), proposed to be a causative agent of human neurodegeneration. As for most cyanotoxins, the function of BMAA in cyanobacteria is unknown. Here, we examined the effects of BMAA on the physiology of the filamentous nitrogen-fixing cyanobacterium Nostoc sp. PCC 7120. Our data show that exogenously applied BMAA rapidly inhibits nitrogenase activity (acetylene reduction assay), even at micromolar concentrations, and that the inhibition was considerably more severe than that induced by combined nitrogen sources and most other amino acids. BMAA also caused growth arrest and massive cellular glycogen accumulation, as observed by electron microscopy. With nitrogen fixation being a process highly sensitive to oxygen species we propose that the BMAA effects found here may be related to the production of reactive oxygen species, as reported for other organisms. PMID:23966039

  14. The importance of nodule CO2 fixation for the efficiency of symbiotic nitrogen fixation in pea at vegetative growth and during pod formation.

    Science.gov (United States)

    Fischinger, Stephanie Anastasia; Schulze, Joachim

    2010-05-01

    Nodule CO2 fixation is of pivotal importance for N2 fixation. The process provides malate for bacteroids and oxaloacetate for nitrogen assimilation. The hypothesis of the present paper was that grain legume nodules would adapt to higher plant N demand and more restricted carbon availability at pod formation through increased nodule CO2 fixation and a more efficient N2 fixation. Growth, N2 fixation, and nodule composition during vegetative growth and at pod formation were studied in pea plants (Pisum sativum L.). In parallel experiments, 15N2 and 13CO2 uptake, as well as nodule hydrogen and CO2 release, was measured. Plants at pod formation showed higher growth rates and N2 fixation per plant when compared with vegetative growth. The specific activity of active nodules was about 25% higher at pod formation. The higher nodule activity was accompanied by higher amino acid concentration in nodules and xylem sap with a higher share of asparagine. Nodule 13CO2 fixation was increased at pod formation, both per plant and per 15N2 fixed unit. However, malate concentration in nodules was only 40% of that during vegetative growth and succinate was no longer detectable. The data indicate that increased N2 fixation at pod formation is connected with strongly increased nodule CO2 fixation. While the sugar concentration in nodules at pod formation was not altered, the concentration of organic acids, namely malate and succinate, was significantly lower. It is concluded that strategies to improve the capability of nodules to fix CO2 and form organic acids might prolong intensive N2 fixation into the later stages of pod formation and pod filling in grain legumes.

  15. Genetic analysis of nitrogen fixation in a tropical fast-growing Rhizobium.

    Science.gov (United States)

    Elmerich, C; Dreyfus, B L; Reysset, G; Aubert, J P

    1982-01-01

    The Rhizobium strain ORS571, which is associated with the tropical legume Sesbania rostrata, has the property of growing in the free-living state at the expense of ammonia or N(2) as sole nitrogen source. Five mutants, isolated as unable to form colonies on plates under conditions of nitrogen fixation, were studied. All of them, which appear as Fixin planta, are nif mutants. With mutant 5740, nitrogenase activity of the crude extract was restored by addition of pure Mo-Fe protein of Klebsiella pneumoniae. A 13-kb BamHI DNA fragment from the wild-type strain, which hybridized with a probe carrying the nifHDK genes of K. pneumoniae, was cloned in vector pRK290 to yield plasmid pRS1. The extent of homology between the probe and the BamHI fragment was estimated at 4 kb and hybridization with K. pneumoniae nifH, nifK, and possibly nifD was detected. The pRS1 plasmid was introduced into the sesbania rhizobium nif mutants. Genetic complementation was observed with strain 5740(pRS1) both in the free-living state and in planta. It thus appears that biochemistry and genetics of nitrogen fixation in this particular Rhizobium strain can be performed with bacteria grown under non-symbiotic conditions.

  16. Influence of Co and B12 on the growth and nitrogen fixation of Trichodesmium

    Science.gov (United States)

    Rodriguez, Irene B.; Ho, Tung-Yuan

    2015-01-01

    We investigated the influence of varying cobalt (Co) and B12 concentrations to growth and nitrogen fixation of Trichodesmium, a major diazotroph in the tropical and subtropical oligotrophic ocean. Here we show that sufficient inorganic Co, 20 pmol L-1, sustains the growth of Trichodesmium either with or without an additional B12 supply. We also found that in these culture conditions, nitrogen levels fixed by Trichodesmium were higher in treatments with insufficient B12 than in treatments with higher B12 availability. Under limited inorganic Co availability, ranging from 0.2 to 2 pmol L-1, Trichodesmium growth was significantly compromised in cultures without B12. In these low Co concentrations, addition of 400 pmol L-1 of B12 supported phytoplankton growth indicating that B12 supply augmented for the low Co concentrations. Our study demonstrates that Trichodesmium has an absolute Co requirement, which is not replaceable with Zn, and that B12 supply alleviates stress in cases where Co is limiting. These results show that the interlocking availabilities of Co and B12 may influence the growth and nitrogen fixation of Trichodesmium in the ocean. PMID:26150813

  17. Nitrogen and Phosphorus Addition Affects Biological N2 Fixation and Sphagnum Moss in an Ombrotrophic Bog

    Science.gov (United States)

    Zivkovic, T.; Ardichvili, A.; Moore, T. R.

    2016-12-01

    Most of the 18 Pg nitrogen (N) accumulated in northern nutrient-poor and Sphagnum-dominated peatlands (bogs and fens) can be attributed to N2 fixation by diazotrophs either associated with the live Sphagnum or non-symbiotically in the deeper peat. Where atmospheric N deposition is low (Sphagnum is a switch from N to phosphorus (P) limitation suggested by the increase in tissue N:P>16. It is unclear how Sphagnum hosted diazotrophic activity may be affected by N deposition and thus changes in N:P ratio. We investigated the effects of long-term addition of different sources of nitrogen (0, 1.6, 3.2 and 6.4 g N m-2 y-1 as NH4Cl and NaNO3), and phosphorus (5 g P m-2 y-1 as KH2PO4) on Sphagnum nutrient status (N, P and N:P), net primary productivity (NPP) and Sphagnum-associated N2 fixation at Mer Bleue, a temperate ombrotrophic bog. Our study shows that N concentration in Sphagnum tissue increased with larger rates of N addition, with a stronger effect on Sphagnum from NH4 than NO3. The addition of P created a 3.5 fold increase in Sphagnum P content compared to controls. Sphagnum NPP decreased linearly with the rise in N:P ratio, while linear growth declined exponentially with increase in Sphagnum N content. N2 fixation significantly decreased in response to even the smallest addition of both N species. In contrast, the addition of P increased N2 fixation by up to 100 times compared to N treatments and up to 5-30 times compared to controls. The change in N2 fixation was best modeled by the N:P ratio, across all experimental treatments. Although elevated N deposition substantially decreases N2 fixation, the N:P ratio in Sphagnum may be a good predictor, likely owing to a strong P-limitation.

  18. Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling.

    Science.gov (United States)

    Wang, Weizong; Patil, Bhaskar; Heijkers, Stjin; Hessel, Volker; Bogaerts, Annemie

    2017-05-22

    The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO2 yields and the corresponding energy efficiency for NOx formation for different N2 /O2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NOx . The results indicate that vibrational excitation of N2 in the gliding arc contributes significantly to activating the N2 molecules, and leads to an energy efficient way of NOx production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NOx formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale Haber-Bosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which low-temperature plasma technology might play an important role. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Using synthetic biology to distinguish and overcome regulatory and functional barriers related to nitrogen fixation.

    Directory of Open Access Journals (Sweden)

    Xia Wang

    Full Text Available Biological nitrogen fixation is a complex process requiring multiple genes working in concert. To date, the Klebsiella pneumoniae nif gene cluster, divided into seven operons, is one of the most studied systems. Its nitrogen fixation capacity is subject to complex cascade regulation and physiological limitations. In this report, the entire K. pneumoniae nif gene cluster was reassembled as operon-based BioBrick parts in Escherichia coli. It provided ~100% activity of native K. pneumoniae system. Based on the expression levels of these BioBrick parts, a T7 RNA polymerase-LacI expression system was used to replace the σ(54-dependent promoters located upstream of nif operons. Expression patterns of nif operons were critical for the maximum activity of the recombinant system. By mimicking these expression levels with variable-strength T7-dependent promoters, ~42% of the nitrogenase activity of the σ(54-dependent nif system was achieved in E. coli. When the newly constructed T7-dependent nif system was challenged with different genetic and physiological conditions, it bypassed the original complex regulatory circuits, with minor physiological limitations. Therefore, we have successfully replaced the nif regulatory elements with a simple expression system that may provide the first step for further research of introducing nif genes into eukaryotic organelles, which has considerable potentials in agro-biotechnology.

  20. Using synthetic biology to distinguish and overcome regulatory and functional barriers related to nitrogen fixation.

    Science.gov (United States)

    Wang, Xia; Yang, Jian-Guo; Chen, Li; Wang, Ji-Long; Cheng, Qi; Dixon, Ray; Wang, Yi-Ping

    2013-01-01

    Biological nitrogen fixation is a complex process requiring multiple genes working in concert. To date, the Klebsiella pneumoniae nif gene cluster, divided into seven operons, is one of the most studied systems. Its nitrogen fixation capacity is subject to complex cascade regulation and physiological limitations. In this report, the entire K. pneumoniae nif gene cluster was reassembled as operon-based BioBrick parts in Escherichia coli. It provided ~100% activity of native K. pneumoniae system. Based on the expression levels of these BioBrick parts, a T7 RNA polymerase-LacI expression system was used to replace the σ(54)-dependent promoters located upstream of nif operons. Expression patterns of nif operons were critical for the maximum activity of the recombinant system. By mimicking these expression levels with variable-strength T7-dependent promoters, ~42% of the nitrogenase activity of the σ(54)-dependent nif system was achieved in E. coli. When the newly constructed T7-dependent nif system was challenged with different genetic and physiological conditions, it bypassed the original complex regulatory circuits, with minor physiological limitations. Therefore, we have successfully replaced the nif regulatory elements with a simple expression system that may provide the first step for further research of introducing nif genes into eukaryotic organelles, which has considerable potentials in agro-biotechnology.

  1. Biological nitrogen fixation in acidic high-temperature geothermal springs in Yellowstone National Park, Wyoming.

    Science.gov (United States)

    Hamilton, Trinity L; Lange, Rachel K; Boyd, Eric S; Peters, John W

    2011-08-01

    The near ubiquitous distribution of nifH genes in sediments sampled from 14 high-temperature (48.0-89.0°C) and acidic (pH 1.90-5.02) geothermal springs in Yellowstone National Park suggested a role for the biological reduction of dinitrogen (N(2)) to ammonia (NH(3)) (e.g. nitrogen fixation or diazotrophy) in these environments. nifH genes from these environments formed three unique phylotypes that were distantly related to acidiphilic, mesophilic diazotrophs. Acetylene reduction assays and (15) N(2) tracer studies in microcosms containing sediments sampled from acidic and high-temperature environments where nifH genes were detected confirmed the potential for biological N(2) reduction in these environments. Rates of acetylene reduction by sediment-associated populations were positively correlated with the concentration of NH(4)(+), suggesting a potential relationship between NH(4)(+) consumption and N(2) fixation activity. Amendment of microcosms with NH(4)(+) resulted in increased lag times in acetylene reduction assays. Manipulation of incubation temperature and pH in acetylene reduction assays indicated that diazotrophic populations are specifically adapted to local conditions. Incubation of sediments in the presence of a N(2) headspace yielded a highly enriched culture containing a single nifH phylotype. This phylotype was detected in all 14 geothermal spring sediments examined and its abundance ranged from ≈ 780 to ≈ 6800 copies (g dry weight sediment)(-1), suggesting that this organism may contribute N to the ecosystems. Collectively, these results for the first time demonstrate thermoacidiphilic N(2) fixation in the natural environment and extend the upper temperature for biological N(2) fixation in terrestrial systems. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Nitrogen fixation in lysimeter-grown grey alder (Alnus incana (L.) Moench.) saplings - influence of nitrogen fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Ericsson, Tom; Rytter, L.

    1998-07-01

    A lysimeter study was started in order to test if nitrogen fixation as well as biomass production in grey alder plantations (Alnus incana (L.) Moench.) can be stimulated by daily addition of small N doses. One-year-old grey alder saplings were planted in undrained lysimeters, each filled with 200 litres of quartz sand. Water and a low-concentrated balanced nutrient solution were distributed daily via a drip irrigation system. In this paper a complete N budget for the first growing season is presented. The results showed that presence of mineral N in the growth substrate had no beneficial effect on growth during the first growing season. The capacity of the plants to make use of the daily N additions was overestimated in this investigation. Almost twice as much N was added with fertilizers as the amount of N accumulating in the tissues. Consequently, the N concentration in the drainage water increased and the annual rate of N{sub 2}-fixation was strongly suppressed, 31 mg N plant{sup -1} (1 kg N ha{sup -1}) versus 1700 mg N plant{sup -1} (32 kg N ha{sup -1}) in the controls. However, no harmful effect of the elevated soil-N concentration on nodule development could be detected.

  3. Global transcriptional analysis of nitrogen fixation and ammonium repression in root-associated Pseudomonas stutzeri A1501

    Directory of Open Access Journals (Sweden)

    Lu Wei

    2010-01-01

    Full Text Available Abstract Background Biological nitrogen fixation is highly controlled at the transcriptional level by regulatory networks that respond to the availability of fixed nitrogen. In many diazotrophs, addition of excess ammonium in the growth medium results in immediate repression of nif gene transcription. Although the regulatory cascades that control the transcription of the nif genes in proteobacteria have been well investigated, there are limited data on the kinetics of ammonium-dependent repression of nitrogen fixation. Results Here we report a global transcriptional profiling analysis of nitrogen fixation and ammonium repression in Pseudomonas stutzeri A1501, a root-associated and nitrogen-fixing bacterium. A total of 166 genes, including those coding for the global nitrogen regulation (Ntr and Nif-specific regulatory proteins, were upregulated under nitrogen fixation conditions but rapidly downregulated as early as 10 min after ammonium shock. Among these nitrogen fixation-inducible genes, 95 have orthologs in each of Azoarcus sp. BH72 and Azotobacter vinelandii AvoP. In particular, a 49-kb expression island containing nif and other associated genes was markedly downregulated by ammonium shock. Further functional characterization of pnfA, a new NifA-σ54-dependent gene chromosomally linked to nifHDK, is reported. This gene encodes a protein product with an amino acid sequence similar to that of five hypothetical proteins found only in diazotrophic strains. No noticeable differences in the transcription of nifHDK were detected between the wild type strain and pnfA mutant. However, the mutant strain exhibited a significant decrease in nitrogenase activity under microaerobic conditions and lost its ability to use nitrate as a terminal electron acceptor for the support of nitrogen fixation under anaerobic conditions. Conclusions Based on our results, we conclude that transcriptional regulation of nif gene expression in A1501 is mediated by the nif

  4. Multivariate analysis and determination of the best indirect selection criteria to genetic improvement the biological nitrogen fixation ability in common bean genotypes (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Golparvar Reza Ahmad

    2012-01-01

    Full Text Available In order to determine the best indirect selection criteria for genetic improvement of biological nitrogen fixation, sixty four common bean genotypes were cultivated in two randomized complete block design. Genotypes were inoculated with bacteria Rhizobium legominosarum biovar Phaseoli isolate L-109 only in one of the experiments. The second experiment was considered as check for the first. Correlation analysis showed positive and highly significant correlation of majority of the traits with percent of nitrogen fixation. Step-wise regression designated that traits percent of total nitrogen of shoot, number of nodule per plant and biological yield accounted for 92.3 percent of variation exist in percent of nitrogen fixation. Path analysis indicated that these traits have direct and positive effect on percent of nitrogen fixation. Hence, these traits are promising indirect selection criteria for genetic improvement of nitrogen fixation capability in common bean genotypes especially in early generations.

  5. Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates

    Directory of Open Access Journals (Sweden)

    Y.-W. Luo

    2012-08-01

    Full Text Available Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2 to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (52–73 Tg N yr−1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 2.1 (1.4–3.1 Tg C from cell counts and to 89 (43–150 Tg C from nifH-based abundances. Reporting the arithmetic mean and one standard error instead, these three global estimates are 140 ± 9.2 Tg N yr−1, 18 ± 1.8 Tg C and 590 ± 70 Tg C, respectively. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. It was recently established that the most commonly applied method used to measure N2

  6. CARBON CYCLES, NITROGEN FIXATION AND THE LEGUME-RHIZOBIA SYMBIOSIS AS SOIL CONTAMINANT BIOTEST SYSTEM

    Directory of Open Access Journals (Sweden)

    Dietrich Werner

    2008-06-01

    Full Text Available The major pools and turnover  rates of the global carbon (C cycles are presented and compared to the human production of CO2  from the burning of fossil fuels (e.g. coal and oil and geothermal  fuels (natural  gases, both categorized as non-renewable energy resources which  in amount  reaches around  6.5 Gigatons C per year. These pools that serve as C-holding stallions  are in the atmosphere,  the land plant biomass, the organic soils carbon, the ocean carbon and the lithosphere. In another related case, the present focus in the area of nitrogen  fixation  is discussed with  data on world  production of grain  legumes  compared  to cereals production and nitrogen  fertilizer use. The focus to understand  the molecular  biology of the legume-rhizobia symbiosis as a major contributor to nitrogen  fixation  is in the areas of signal exchange between  host plants and rhizobia  in the rhizophere including  the nod factor signalling, the infection  and nodule compartmentation and the soils stress factors affecting the symbiosis. The use of the Legume-Rhizobia symbiosis as a biotest system for soil contaminants includes data for cadmium,  arsenate, atrazine,  lindane,  fluoranthene, phenantrene and acenaphthene and also results  on the mechanism,  why the symbiotic system is more sensitive  than test systems with plant growth  parameters.

  7. Direct and indirect costs of dinitrogen fixation in Crocosphaera watsonii WH8501 and possible implications for the nitrogen cycle

    Directory of Open Access Journals (Sweden)

    Tobias eGroßkopf

    2012-07-01

    Full Text Available The recent detection of heterotrophic nitrogen (N2 fixation in deep waters of the southern Californian and Peruvian OMZ questions our current understanding of marine N2 fixation as a process confined to oligotrophic surface waters of the oceans. In experiments with Crocosphaera watsonii WH8501, a marine unicellular diazotrophic (N2-fixing cyanobacterium, we demonstrated that the presence of high nitrate concentrations (up to 800 µM had no inhibitory effect on growth and N2 fixation over a period of two weeks. In contrast, the environmental oxygen concentration significantly influenced rates of N2 fixation and respiration, as well as carbon and nitrogen cellular content of C. watsonii over a 24 hour period. Cells grown under lowered oxygen atmosphere (5% had a higher nitrogenase activity and respired less carbon during the dark cycle than under normal oxygen atmosphere (20%. Respiratory oxygen drawdown during the dark period could be fully explained (104% by energetic needs due to basal metabolism and N2 fixation at low oxygen, while at normal oxygen these two processes could only account for 40% of the measured respiration rate. Our results revealed that under normal oxygen concentration most of the energetic costs during N2 fixation (~60% are not derived from the process of N2 fixation per se but rather from the indirect costs incurred for the removal of intracellular oxygen or by the reversal of oxidative damage (e.g. nitrogenase de novo synthesis. Theoretical calculations suggest a slight energetic advantage of N2 fixation relative to assimilatory nitrate uptake for heterotrophic and phototrophic growth, when oxygen supply is in balance with the oxygen requirement for cellular respiration (i.e. energy generation for basal metabolism and N2 fixation. Taken together our results imply the existence of a niche for diazotrophic organisms inside oxygen minimum zones, which are predicted to further expand in the future ocean.

  8. Transcriptome analysis of two recombinant inbred lines of common bean contrasting for symbiotic nitrogen fixation.

    Directory of Open Access Journals (Sweden)

    Kelvin Kamfwa

    Full Text Available Common bean (Phaseolus vulgaris L. fixes atmospheric nitrogen (N2 through symbiotic nitrogen fixation (SNF at levels lower than other grain legume crops. An understanding of the genes and molecular mechanisms underlying SNF will enable more effective strategies for the genetic improvement of SNF traits in common bean. In this study, transcriptome profiling was used to identify genes and molecular mechanisms underlying SNF differences between two common bean recombinant inbred lines that differed in their N-fixing abilities. Differential gene expression and functional enrichment analyses were performed on leaves, nodules and roots of the two lines when grown under N-fixing and non-fixing conditions. Receptor kinases, transmembrane transporters, and transcription factors were among the differentially expressed genes identified under N-fixing conditions, but not under non-fixing conditions. Genes up-regulated in the stronger nitrogen fixer, SA36, included those involved in molecular functions such as purine nucleoside binding, oxidoreductase and transmembrane receptor activities in nodules, and transport activity in roots. Transcription factors identified in this study are candidates for future work aimed at understanding the functional role of these genes in SNF. Information generated in this study will support the development of gene-based markers to accelerate genetic improvement of SNF in common bean.

  9. Ocean acidification impacts on nitrogen fixation in the coastal western Mediterranean Sea

    Science.gov (United States)

    Rees, Andrew P.; Turk-Kubo, Kendra A.; Al-Moosawi, Lisa; Alliouane, Samir; Gazeau, Frédéric; Hogan, Mary E.; Zehr, Jonathan P.

    2017-02-01

    The effects of ocean acidification on nitrogen (N2) fixation rates and on the community composition of N2-fixing microbes (diazotrophs) were examined in coastal waters of the North-Western Mediterranean Sea. Nine experimental mesocosm enclosures of ∼50 m3 each were deployed for 20 days during June-July 2012 in the Bay of Calvi, Corsica, France. Three control mesocosms were maintained under ambient conditions of carbonate chemistry. The remainder were manipulated with CO2 saturated seawater to attain target amendments of pCO2 of 550, 650, 750, 850, 1000 and 1250 μatm. Rates of N2 fixation were elevated up to 10 times relative to control rates (2.00 ± 1.21 nmol L-1d-1) when pCO2 concentrations were >1000 μatm and pHT (total scale) waters, including the Mediterranean, were not present at the onset of the experiment and therefore, the diazotroph community composition was characterised by amplifying partial nifH genes from the mesocosms. The diazotroph community was comprised primarily of cluster III nifH sequences (which include possible anaerobes), and proteobacterial (α and γ) sequences, in addition to small numbers of filamentous (or pseudo-filamentous) cyanobacterial phylotypes. The implication from this study is that there is some potential for elevated N2 fixation rates in the coastal western Mediterranean before the end of this century as a result of increasing ocean acidification. Observations made of variability in the diazotroph community composition could not be correlated with changes in carbon chemistry, which highlights the complexity of the relationship between ocean acidification and these keystone organisms.

  10. Seasonally dependent iron limitation of nitrogen fixation in tropical forests of karst landscapes

    Science.gov (United States)

    Winbourne, J. B.; Brewer, S.; Houlton, B. Z.

    2015-12-01

    Limestone tropical forests in karst topography are one of the most poorly studied ecosystems on Earth, and has been substantially cleared by human activities throughout much of Central America. This ecosystem is noted for its high level of plant productivity, biomass, endemism and biological diversity compared to nearby neighboring tropical forests on volcanic rock substrates (Brewer et al. 2002). A question remains as to how limestone tropical forests are able to maintain the high nutrient demands of plant photosynthesis and tree biomass growth. Here, we demonstrate that rates of nitrogen (N) fixation are higher in limestone versus volcanic soil substrates, with direct evidence for the emergence of seasonally dependent iron limitation of N fixation in limestone tropical forest. N fixation rates showed a three-fold increase in response to iron additions, especially during the wet season when N demands of the forest trees are highest. In contrast, adjacent forests growing on the more classical acidic volcanic soils showed no response to iron or other nutrient additions. Biologically available pools of iron were exceedingly low in the limestone forest site, consistent with the complexation of iron under high pH conditions. Biological acquisition of iron, as measured by the concentration of iron chelating compounds (i.e. siderophores), provided additional evidence for iron limitation of microbial processes in limestone tropical forests, where concentrations were six times higher than those at the volcanic site. Our results suggest that the functioning of limestone tropical forest is strongly regulated by interactions between iron, soil pH, and N cycling.

  11. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems

    Science.gov (United States)

    Vitousek, Peter M.; Menge, Duncan N.L.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    New techniques have identified a wide range of organisms with the capacity to carry out biological nitrogen fixation (BNF)—greatly expanding our appreciation of the diversity and ubiquity of N fixers—but our understanding of the rates and controls of BNF at ecosystem and global scales has not advanced at the same pace. Nevertheless, determining rates and controls of BNF is crucial to placing anthropogenic changes to the N cycle in context, and to understanding, predicting and managing many aspects of global environmental change. Here, we estimate terrestrial BNF for a pre-industrial world by combining information on N fluxes with 15N relative abundance data for terrestrial ecosystems. Our estimate is that pre-industrial N fixation was 58 (range of 40–100) Tg N fixed yr−1; adding conservative assumptions for geological N reduces our best estimate to 44 Tg N yr−1. This approach yields substantially lower estimates than most recent calculations; it suggests that the magnitude of human alternation of the N cycle is substantially larger than has been assumed.

  12. Mixed, short rotation culture of red alder and black cottonwood: growth, coppicing, nitrogen fixation, and allelopathy

    Energy Technology Data Exchange (ETDEWEB)

    Heilman, P.; Stettler, R.F.

    1985-01-01

    Alnus rubra seedlings were grown in a 1:1 mixture at a spacing of 1.2 x 1.2 m with 28 Populus clones (25 clones pf P. trichocarpa, 2 of P. deltoides x P. trichocarpa, and one P. deltoides x P. nigra) in a study established in W. Washington in March 1979. Trees were harvested at 4 yr old. At harvest, average heights were: pure Populus, 10.2 m; Populus in the mixed stand 11.0 m; and alder 8.4 m. Most Populus sprouted satisfactorily after harvest (6.6 shoots/plant when pure, 7.6 shoots/plant in the mixture), but alder sprouted poorly (3.6 shoots/plant). Above-ground biomass at harvest was 15.9 t/ha p.a. for the mixture and 16.7 t/ha p.a. for pure Populus, although the mixture had been more productive at 2 yr. Nitrogenase activity (nitrogen fixation as measured by acetylene reduction) of alder declines in the 4th season; competition was the most important factor influencing this decline. Soil N content had no effect on fixation. A pot study showed that ground Populus leaf and litter material inhibited the growth of red alder seedlings, although soil collected from Populus plots had no effect. Results indicated that allelopathy is probably a minor factor under field conditions, at most, and that growing mixed stands may, on balance, be beneficial. 20 references.

  13. Comparison of Two Cellulomonas Strains and Their Interaction with Azospirillum brasilense in Degradation of Wheat Straw and Associated Nitrogen Fixation

    Science.gov (United States)

    Halsall, Dorothy M.; Gibson, Alan H.

    1986-01-01

    A mutant strain of Cellulomonas sp. CS1-17 was compared with Cellulomonas gelida 2480 as the cellulolytic component of a mixed culture which was responsible for the breakdown of wheat straw to support asymbiotic nitrogen fixation by Azospirillum brasilense Sp7 (ATCC 29145). Cellulomonas sp. strain CSI-17 was more efficient than was C. gelida in cellulose breakdown at lower oxygen concentrations and, in mixed culture with A. brasilense, it supported higher nitrogenase activity (C2H2 reduction) and nitrogen fixation with straw as the carbon source. Based on gravimetric determinations of straw breakdown and total N determinations, the efficiency of nitrogen fixation was 72 and 63 mg of N per g of straw utilized for the mixtures containing Cellulomonas sp. and C. gelida, respectively. Both Cellulomonas spp. and Azospirillum spp. exhibited a wide range of pH tolerance. When introduced into sterilized soil, the Cellulomonas sp.-Azospirillum brasilense association was more effective in nitrogen fixation at a pH of 7.0 than at the native soil pH (5.6). This was also true of the indigenous diazotrophic microflora of this soil. The potential implications of this work to the field situation are discussed. PMID:16347043

  14. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Liying Wang

    Full Text Available Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ(70 (σ(A-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes.

  15. A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation.

    Science.gov (United States)

    Pislariu, Catalina I; Murray, Jeremy D; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; Benedito, Vagner A; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S; Chen, Rujin; Udvardi, Michael K

    2012-08-01

    A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod-), 51 mutants with totally ineffective nodules (Nod+ Fix-), 17 mutants with partially ineffective nodules (Nod+ Fix+/-), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/- Fix-), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/- Fix+), and 11 supernodulating mutants (Nod++Fix+/-). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN'T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod- lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.

  16. Azide resistance in Rhizobium ciceri linked with superior symbiotic nitrogen fixation.

    Science.gov (United States)

    Bhaskar, V Vijay

    2004-12-01

    Isolated azide resistant (AzR) native R. ciceri strain 18-7 was resistant to sodium azide at 10 microg/ml. To find if nif-reiteration is responsible for azide resistance and linked to superior symbiotic nitrogen fixation, transposon (Tn5) induced azide sensitive mutants were generated. Using 4 kb nif-reiterated Sinorhizobium meliloti DNA, a clone C4 that complemented azide sensitivity was isolated by DNA hybridization from genomic library of chickpea Rhizobium strain Rcd301. EcoRI restriction mapping revealed the presence of 7 recognition sites with a total insert size of 19.17 kb. Restriction analysis of C4 clone and nif-reiterated DNA (pRK 290.7) with EcoRI and XhoI revealed similar banding pattern. Wild type strain 18-7, mutant M126 and complemented mutant M126(C4) were characterized for symbiotic properties (viz., acetylene reduction assay, total nitrogen content, nodule number and fresh and dry weight of the infected plants) and explanta nitrogenase activity. Our results suggested that azide resistance, nif-reiteration, and superior symbiotic effectiveness were interlinked with no correlation between ex-planta nitrogenase activity and azide resistance in R. ciceri.

  17. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development.

    Science.gov (United States)

    Ott, Thomas; van Dongen, Joost T; Günther, Catrin; Krusell, Lene; Desbrosses, Guilhem; Vigeolas, Helene; Bock, Vivien; Czechowski, Tomasz; Geigenberger, Peter; Udvardi, Michael K

    2005-03-29

    Hemoglobins are ubiquitous in nature and among the best-characterized proteins. Genetics has revealed crucial roles for human hemoglobins, but similar data are lacking for plants. Plants contain symbiotic and nonsymbiotic hemoglobins; the former are thought to be important for symbiotic nitrogen fixation (SNF). In legumes, SNF occurs in specialized organs, called nodules, which contain millions of nitrogen-fixing rhizobia, called bacteroids. The induction of nodule-specific plant genes, including those encoding symbiotic leghemoglobins (Lb), accompanies nodule development. Leghemoglobins accumulate to millimolar concentrations in the cytoplasm of infected plant cells prior to nitrogen fixation and are thought to buffer free oxygen in the nanomolar range, avoiding inactivation of oxygen-labile nitrogenase while maintaining high oxygen flux for respiration. Although widely accepted, this hypothesis has never been tested in planta. Using RNAi, we abolished symbiotic leghemoglobin synthesis in nodules of the model legume Lotus japonicus. This caused an increase in nodule free oxygen, a decrease in the ATP/ADP ratio, loss of bacterial nitrogenase protein, and absence of SNF. However, LbRNAi plants grew normally when fertilized with mineral nitrogen. These data indicate roles for leghemoglobins in oxygen transport and buffering and prove for the first time that plant hemoglobins are crucial for symbiotic nitrogen fixation.

  18. [Nitrogen fixation potential of biological soil crusts in Heidaigou open coal mine, Inner Mongolia, China].

    Science.gov (United States)

    Zhang, Peng; Huang, Lei; Hu, Yi-gang; Zhao, Yang; Wu, Yong-chen

    2016-02-01

    Nitrogen limitation is common in terrestrial ecosystems, and it is particularly severe in damaged ecosystems in arid regions. Biological soil crusts (BSCs) , as a crucial component of recovered vegetation, play a vital role in nitrogen fixation during the ecological restoration processes of damaged ecosystems in arid and semi-arid regions. In this study, two dominant types of BSCs (i.e., cyanobacterial-algal crusts and moss crusts) that are widely distributed in the re-vegetated area of Heidaigou open pit coal mine were investigated. Samples were collected in the field and their nitrogenase activities (NA) were measured in the laboratory. The responses of NA to different hydro-thermal factors and the relationships between NA and herbs in addition to crust coverage were analyzed. The results indicated that BSCs under reconstructed vegetation at different succession stages, abandoned land and natural vegetation showed values of NA ranging from 9 to 150 µmol C2H4 . m-2 . h-1, and the NA value of algae crust (77 µmol C2H4 . m-2 . h-1) was markedly higher than that of moss crust (17 µmol C2H4 . m-2 . h-1). In the re-vegetated area, cyanobacterial-algal crust and moss crust under shrub-herb had higher NA values than those of crusts under arbor-shrnb and arbor-shrub-herb. The relationship between NA of the two BSCs and soil relative water content (10% - 100%) as well as culture temperature (5-45 °C) were of quadratic function. With elevated water content and cultural temperature, the NA values increased at the initial stage and then decreased, and reached the maximum value at 25 °C of cultural temperature and 60% or 80% of relative water content. The NA of cyanobacterial-algal crust had a significant quadratic function with herb coverage, as NA declined when herb coverage was higher than 20%. A significant negative correlation was observed between the NA of moss crusts and herb coverage. The NA values of the two types of BSCs had a significant positive correlation

  19. Data-based assessment of environmental controls on global marine nitrogen fixation

    Science.gov (United States)

    Luo, Y.-W.; Lima, I. D.; Karl, D. M.; Doney, S. C.

    2013-04-01

    There are a number of hypotheses for the environmental controls on marine nitrogen fixation (NF). Most of these hypotheses have not been assessed against direct measurements on the global scale. In this study, we use ~ 500 depth-integrated field measurements of NF covering the Pacific and Atlantic Oceans to test whether the spatial variance of these measurements can be explained by the commonly hypothesized environmental controls, including measurement-based surface solar radiation, mixed layer depth, sea surface temperature, surface nitrate and phosphate concentrations, surface excess phosphate (P*), atmospheric dust deposition and surface wind speed, as well as minimum dissolved oxygen in upper 500 m to identify possible subsurface denitrification zones. By conducting simple linear regression and stepwise multiple linear regression (MLR) analyses, solar radiation and/or sea surface temperature as well as subsurface dissolved oxygen are identified as the predictors explaining the most spatial variance in the observed NF data, while dust deposition and wind speed do not appear to influence the spatial patterns of NF on global scale. Our study suggests that marine NF is coupled to regional loss of fixed nitrogen induced by subsurface low oxygen concentration, with its magnitude constrained by solar radiation or temperature. By applying the MLR-derived equation, we estimate the global-integrated NF at 71 (error range 49-104) Tg N yr-1 in the open ocean, acknowledging that it could be substantially higher as the 15N2-assimilation method used by most of the field samples underestimates NF. Our conclusion suggests that marine NF will increase in the future if subsurface nitrogen-losses increase as a consequence of developing deoxygenation with the global warming, a projection that will be modulated by other factors such as warming, elevated carbon dioxide, and changes in macro- and micro-nutrient distributions. More field NF samples in the Pacific and Indian Oceans

  20. The prospect function of terrestrial nitrogen-fixing blue-green algae on the fixation of desert

    Science.gov (United States)

    Yang, Yusuo; Lei, Jiaqiang

    2003-07-01

    The Terrestrial Nitrogen-fixing Blue-green Algae, which are possessed of both photosynthesis and nitrogen fixation, are the leading organisms in the adverse circumstances. With their typical cell structures and physiological abilities, they are strongly resistant to drought, infertility etc. The growth of Terrestrial Nitrogen-fixing Blue-green Algae can rich the soils in nitrogen and organic compounds, which are benefit to other microbes and plants. Terrestrial Nitrogen-fixing Blue-green Algae are widely distributed in Gurbantunggut Desert. It was estimated that about 40% of the surface of the desert are covered by the "Black Crust". "Black Crust" is mainly occupied by Terrestrial Nitrogen-fixing Blue-green Algae. It is Terrestrial Nitrogen-fixing Blue-green Algae that construct the mechanical crust with a little other algae and fungi through biological, chemical and physical actions. So Terrestrial Nitrogen-fixing Blue-green Algae play an important part in desert fixation. It was analyzed that there are three species of the blue-greens in the "Black Crust": Microcoleus vaginatus(Vauch)Gom.,Scytonema ocellatum Lynbye and Schizothrix mella Gardner. We had isolated Microcoleus vaginatus(Vauch)Gom. and Scytonema ocellatum Lynbye. Some tests had been made to prove the feasibility of the desert fixation of the Blue-greens. Under experiment conditions, the blue-greens grown on the surface of sand, covered the sand quickly after the inoculation, and formed a mechanical fixed surface layer (7 days for Microcoleus vaginatus, 15-21 days for Scytonema ocellatum).

  1. Biological Nitrogen Fixation by Legumes and N Uptake by Coffee Plants

    Directory of Open Access Journals (Sweden)

    Eduardo de Sá Mendonça

    Full Text Available ABSTRACT Green manures are an alternative for substituting or supplementing mineral nitrogen fertilizers. The aim of this study was to quantify biological N fixation (BNF and the N contribution derived from BNF (N-BNF to N levels in leaves of coffee intercropped with legumes grown on four family farms located in the mountainous region of the Atlantic Forest Biome in the state of Minas Gerais, Brazil. The following green manures were evaluated: pinto peanuts (Arachis pintoi, calopo (Calopogonium mucunoides, crotalaria (Crotalaria spectabilis, Brazilian stylo (Stylosanthes guianensis, pigeon pea (Cajanus cajan, lablab beans (Dolichos lablab, and velvet beans (Stizolobium deeringianum, and spontaneous plants. The experimental design was randomized blocks with a 4 × 8 factorial arrangement (four agricultural properties and eight green manures, and four replications. One hundred grams of fresh matter of each green manure plant were dried in an oven to obtain the dry matter. We then performed chemical and biochemical characterizations and determined the levels of 15N and 14N, which were used to quantify BNF through the 15N (δ15N natural abundance technique. The legumes C. mucunoides, S. guianensis, C. cajan, and D. lablab had the highest rates of BNF, at 46.1, 45.9, 44.4, and 42.9 %, respectively. C. cajan was the legume that contributed the largest amount of N (44.42 kg ha-1 via BNF.C. cajan, C. spectabilis, and C. mucunoides transferred 55.8, 48.8, and 48.1 %, respectively, of the N from biological fixation to the coffee plants. The use of legumes intercropped with coffee plants is important in supplying N, as well as in transferring N derived from BNF to nutrition of the coffee plants.

  2. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene.

    Science.gov (United States)

    Jiang, Ding; Liu, Qian; Wang, Kun; Qian, Jing; Dong, Xiaoya; Yang, Zhenting; Du, Xiaojiao; Qiu, Baijing

    2014-04-15

    Copper nanoparticles (NPs) decorated nitrogen-doped graphene (Cu-N-G) was prepared by a facile thermal treatment, and further employed as a novel sensing material for fabricating the sensitive non-enzymatic glucose sensor. Compared with pure Cu NPs, the Cu-N-G showed enhanced electrocatalytic activity to glucose oxidation due to the integration of N-G, which exhibited the oxidation peak current of glucose ca. 23-fold higher than that of pure Cu NPs. The presented sensor showed excellent performances for glucose detection including wide linear range of 0.004-4.5 mM, low detection limit (1.3 μM, S/N=3), high sensitivity (48.13 μA mM(-1)), fast response time (graphene as enhanced materials in fabricating sensors for chemical and biochemical analysis. © 2013 Published by Elsevier B.V.

  3. Identification and characterization of a new agar-degrading strain with the novel properties of saccharides inhibition and nitrogen fixation.

    Science.gov (United States)

    Wu, Hao; Chen, Guiguang; Bian, Yaxi; Zeng, Wei; Sun, Bihong; Liang, Zhiqun

    2017-06-01

    In this study, a new agar-degrading strain was isolated from soil with agar as a sole carbon source and energy. Based on its morphological, physiological, biochemical characterization and 16S rDNA sequence, the strain was identified as Streptomyces lavendulae UN-8. The extracellular agarase activity reached 0.03 U/ml after fermentation in shake flask (250 ml), which was close to other reported non-marine microorganisms. Furthermore, it is interesting that the growth of UN-8 would be inhibited by glucose (40 g/L) and maltose (40 g/L) with the inhibitory rate of 100% and 70%, respectively. Besides, UN-8 could be grown on the solid medium without any nitrogen sources, then the possible nitrogen fixation gene nifU was cloned from its genomic DNA. The deduced amino acid sequence of nifU has high similarity (98%) with nitrogen fixation protein NifU from Streptomyces sp. NRRL S-104 (KJY22454.1) and Streptomyces sp. NRRL F-4428 (KJK52526.1) based on NCBI blast. It is suggested that the nifU gene of UN-8 also encoded nitrogen fixation protein NifU. These results provided some new information for the further understanding of agar-degrading strain.

  4. Potential for nitrogen fixation and nitrification in the granite-hosted subsurface at Henderson Mine, CO

    Directory of Open Access Journals (Sweden)

    Elizabeth eSwanner

    2011-12-01

    Full Text Available The existence of life in the deep terrestrial subsurface is established, yet few studies have investigated the origin of nitrogen that supports deep life. Previously, 16S rRNA gene surveys catalogued a diverse microbial community in subsurface fluids draining from boreholes 3000 feet deep at Henderson Mine, CO (Sahl et al., 2008. The prior characterization of the fluid chemistry and microbial community forms the basis for the further investigation here of the source of NH4+. The reported fluids chemistry included N2, NH4+ (5-112 μM, NO2- (27-48 μM and NO3- (17-72 μM. In this study, the correlation between low NH4+ concentrations in dominantly meteoric fluids and higher NH4+ in rock-reacted fluids is used to hypothesize that NH4+ is sourced from NH4+-bearing biotite. However, biotite samples from the host rocks and ore-body minerals were analyzed by Fourier Transform Infrared (FTIR microscopy and none contained NH4+. However, the nitrogenase-encoding gene nifH was successfully amplified from DNA of the fluid sample with high NH4+, suggesting that subsurface microbes have the capability to fix N2. If so, unregulated nitrogen fixation may account for the relatively high NH4+ concentrations in the fluids. Additionally, the amoA and nxrB genes for archeaeal ammonium monooxygenase and nitrite oxidoreductase, respectively, were amplified from the high-NH4+ fluid DNA, while bacterial amoA genes were not. Putative nitrifying organisms are closely related to ammonium-oxidizing Crenarchaeota and nitrite-oxidizing Nitrospira detected in other subsurface sites based upon 16S rRNA sequence analysis. Thermodynamic calculations underscore the importance of NH4+ as an energy source in a subsurface nitrification pathway. These results suggest that the subsurface microbial community at Henderson is adapted to the low nutrient and energy environment by their capability of fixing nitrogen, and that fixed nitrogen may support subsurface biomass via nitrification.

  5. Comparative sequence analysis of nitrogen fixation-related genes in six legumes

    Directory of Open Access Journals (Sweden)

    Dong Hyun eKim

    2013-08-01

    Full Text Available Legumes play an important role as food and forage crops in international agriculture especially in developing countries. Legumes have a unique biological process called nitrogen fixation (NF by which they convert atmospheric nitrogen to ammonia. Although legume genomes have undergone polyploidization, duplication and divergence, NF-related genes, because of their essential functional role for legumes, might have remained conserved. To understand the relationship of divergence and evolutionary processes in legumes, this study analyzes orthologs and paralogs for selected 20 NF-related genes by using comparative genomic approaches in six legumes i.e. Medicago truncatula (Mt, Cicer arietinum, Lotus japonicus, Cajanus cajan (Cc, Phaseolus vulgaris (Pv and Glycine max (Gm. Subsequently, sequence distances, numbers of synonymous substitutions per synonymous site (Ks and nonsynonymous substitutions per nonsynonymous site (Ka between orthologs and paralogs were calculated and compared across legumes. These analyses suggest the closest relationship between Gm and Cc and the farthest distance between Mt and Pv in 6 legumes. Ks proportional plots clearly showed ancient genome duplication in all legumes, whole genome duplication event in Gm and also speciation pattern in different legumes. This study also reported some interesting observations e.g. no peak at Ks 0.4 in Gm-Gm, location of two independent genes next to each other in Mt and low Ks values for outparalogs for three genes as compared to other 12 genes. In summary, this study underlines the importance of NF-related genes and provides important insights in genome organization and evolutionary aspects of six legume species analyzed.

  6. Production and characterization of cowpea protein hydrolysate with optimum nitrogen solubility by enzymatic hydrolysis using pepsin.

    Science.gov (United States)

    Mune Mune, Martin Alain; Minka, Samuel René

    2017-06-01

    Cowpea is a source of low-cost and good nutritional quality protein for utilization in food formulations in replacement of animal proteins. Therefore it is necessary that cowpea protein exhibits good functionality, particularly protein solubility which affects the other functional properties. The objective of this study was to produce cowpea protein hydrolysate exhibiting optimum solubility by the adequate combination of hydrolysis parameters, namely time, solid/liquid ratio (SLR) and enzyme/substrate ratio (ESR), and to determine its functional properties and molecular characteristics. A Box-Behnken experimental design was used for the experiments, and a second-order polynomial to model the effects of hydrolysis time, SLR and ESR on the degree of hydrolysis and nitrogen solubility index. The optimum hydrolysis conditions of time 208.61 min, SLR 1/15 (w/w) and ESR 2.25% (w/w) yielded a nitrogen solubility of 75.71%. Protein breakdown and the peptide profile following enzymatic hydrolysis were evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and size exclusion chromatography. Cowpea protein hydrolysate showed higher oil absorption capacity, emulsifying activity and foaming ability compared with the concentrate. The solubility of cowpea protein hydrolysate was adequately optimized by response surface methodology, and the hydrolysate showed adequate functionality for use in food. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. The efficiency of nitrogen fixation of the model legume Medicago truncatula (Jemalong A17) is low compared to Medicago sativa.

    Science.gov (United States)

    Sulieman, Saad; Schulze, Joachim

    2010-06-15

    Medicago truncatula (Gaertn.) (barrel medic) serves as a model legume in plant biology. Numerous studies have addressed molecular aspects of the biology of M. truncatula, while comparatively little is known about the efficiency of N(2) fixation at the whole plant level. The objective of the present study was to compare the efficiency of N(2) fixation of M. truncatula to the genetically closely related Medicago sativa (L.) (alfalfa). The relative growth of both species relying exclusively on N(2) fixation versus nitrate nutrition, H(2) evolution, nitrogen assimilation, the concentration of amino acids and organic acids in nodules, and (15)N(2) uptake and distribution were studied. M. truncatula showed much lower efficiency of N(2) fixation. Nodule-specific activity was several-fold lower when compared to M. sativa, partially as a result of a lower electron allocation to N(2) versus H(+). M. truncatula or M. sativa plants grown solely on N(2) fixation as a nitrogen source reached about 30% or 80% of growth, respectively, when compared to plants supplied with sufficient nitrate. Moreover, M. truncatula had low %N in shoots and a lower allocation of (15)N to shoots during 1h (15)N(2) labeling period. Amino acid concentration was about 20% higher in M. sativa nodules, largely as a result of more asparagine, while the organic acid concentration was about double in M. sativa, coinciding with a six-fold higher concentration of malate. Total soluble protein in nodules was about three times lower in M. truncatula and the pattern of enzyme activity in that fraction was strongly different. Sucrose cleaving enzymes displayed higher activity in M. truncatula nodules, while the activity of phosphoenolpyruvate carboxylase (PEPC) was much lower. It is concluded that the low efficiency of the M. truncatula symbiotic system is related to a low capacity of organic acid formation and limited nitrogen export from nodules. Copyright 2010 Elsevier GmbH. All rights reserved.

  8. Purification and binding analysis of the nitrogen fixation regulatory NifA protein from Azospirillum brasilense

    Directory of Open Access Journals (Sweden)

    L.M.P. Passaglia

    1998-11-01

    Full Text Available NifA protein activates transcription of nitrogen fixation operons by the alternative sigma54 holoenzyme form of RNA polymerase. This protein binds to a well-defined upstream activator sequence (UAS located at the -200/-100 position of nif promoters with the consensus motif TGT-N10-ACA. NifA of Azospirillum brasilense was purified in the form of a glutathione-S-transferase (GST-NifA fusion protein and proteolytic release of GST yielded inactive and partially soluble NifA. However, the purified NifA was able to induce the production of specific anti-A. brasilense NifA-antiserum that recognized NifA from A. brasilense but not from K. pneumoniae. Both GST-NifA and NifA expressed from the E. coli tac promoter are able to activate transcription from the nifHDK promoter but only in an A. brasilense background. In order to investigate the mechanism that regulates NifA binding capacity we have used E. coli total protein extracts expressing A. brasilense nifA in mobility shift assays. DNA fragments carrying the two overlapping, wild-type or mutated UAS motifs present in the nifH promoter region revealed a retarded band of related size. These data show that the binding activity present in the C-terminal domain of A. brasilense NifA protein is still functional even in the presence of oxygen.

  9. Crystallization of a flavodoxin involved in nitrogen fixation in Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Dorado, Inmaculada [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química-Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Bortolotti, Ana; Cortez, Néstor [Instituto de Biología Molecular y Celular de Rosario (Universidad Nacional de Rosario y CONICET), Suipacha 531, S2002LRK Rosario (Argentina); Hermoso, Juan A., E-mail: xjuan@iqfr.csic.es [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química-Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2008-05-01

    The flavodoxin NifF from R. capsulatus, a candidate for nitrogenase reduction during nitrogen fixation, has been crystallized using the hanging-drop vapour-diffusion method. Preliminary X-ray data processing at 2.17 Å resolution allowed determination of the crystal system and unit-cell parameters. Flavodoxins are small electron-transfer proteins that contain one molecule of noncovalently bound flavin mononucleotide (FMN). The flavodoxin NifF from the photosynthetic bacterium Rhodobacter capsulatus is reduced by one electron from ferredoxin/flavodoxin:NADP(H) reductase and was postulated to be an electron donor to nitrogenase in vivo. NifF was cloned and overexpressed in Escherichia coli, purified and concentrated for crystallization using the hanging-drop vapour-diffusion method at 291 K. Crystals grew from a mixture of PEG 3350 and PEG 400 at pH 5.5 and belong to the tetragonal space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 66.49, c = 121.32 Å. X-ray data sets have been collected to 2.17 Å resolution.

  10. Nitrogen fixation in microbial mat and stromatolite communities from Cuatro Cienegas, Mexico.

    Science.gov (United States)

    Falcón, L I; Cerritos, R; Eguiarte, L E; Souza, V

    2007-08-01

    Nitrogen fixation (nitrogenase activity, NA) of a microbial mat and a living stromatolite from Cuatro Cienegas, Mexico, was examined over spring, summer, and winter of 2004. The goal of the study was to characterize the diazotrophic community through molecular analysis of the nifH gene and using inhibitors of sulfate reduction and oxygenic and anoxygenic photosynthesis. We also evaluated the role of ultraviolet radiation on the diazotrophic activity of the microbial communities. Both microbial communities showed patterns of NA with maximum rates during the day that decreased significantly with 3-3,4-dichlorophenyl-1',1'-dimethylurea, suggesting the potential importance of heterocystous cyanobacteria. There is also evidence of NA by sulfur-reducing bacteria in both microbial communities suggested by the negative effect exerted by the addition of sodium molybdate. Elimination of infrared and ultraviolet radiation had no effect on NA. Both microbial communities had nifH sequences that related to group I, including cyanobacteria and purple sulfur and nonsulfur bacteria, as well as group II nitrogenases, including sulfur reducing and green sulfur bacteria.

  11. Local inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean

    Science.gov (United States)

    Gil-Quintana, Erena; Larrainzar, Estíbaliz; Seminario, Amaia; Díaz-Leal, Juan Luis; Alamillo, Josefa M.; Pineda, Manuel; Arrese-Igor, Cesar; Wienkoop, Stefanie; González, Esther M.

    2013-01-01

    Drought stress is a major factor limiting symbiotic nitrogen fixation (NF) in soybean crop production. However, the regulatory mechanisms involved in this inhibition are still controversial. Soybean plants were symbiotically grown in a split-root system (SRS), which allowed for half of the root system to be irrigated at field capacity while the other half remained water deprived. NF declined in the water-deprived root system while nitrogenase activity was maintained at control values in the well-watered half. Concomitantly, amino acids and ureides accumulated in the water-deprived belowground organs regardless of transpiration rates. Ureide accumulation was found to be related to the decline in their degradation activities rather than increased biosynthesis. Finally, proteomic analysis suggests that plant carbon metabolism, protein synthesis, amino acid metabolism, and cell growth are among the processes most altered in soybean nodules under drought stress. Results presented here support the hypothesis of a local regulation of NF taking place in soybean and downplay the role of ureides in the inhibition of NF. PMID:23580751

  12. Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of berseem clover plants subjected to water stress.

    Directory of Open Access Journals (Sweden)

    Sergio Saia

    Full Text Available Several studies, performed mainly in pots, have shown that arbuscular mycorrhizal symbiosis can mitigate the negative effects of water stress on plant growth. No information is available about the effects of arbuscular mycorrhizal symbiosis on berseem clover growth and nitrogen (N fixation under conditions of water shortage. A field experiment was conducted in a hilly area of inner Sicily, Italy, to determine whether symbiosis with AM fungi can mitigate the detrimental effects of drought stress (which in the Mediterranean often occurs during the late period of the growing season on forage yield and symbiotic N2 fixation of berseem clover. Soil was either left under water stress (i.e., rain-fed conditions or the crop was well-watered. Mycorrhization treatments consisted of inoculation of berseem clover seeds with arbuscular mycorrhizal spores or suppression of arbuscular mycorrhizal symbiosis by means of fungicide treatments. Nitrogen biological fixation was assessed using the 15N-isotope dilution technique. Arbuscular mycorrhizal symbiosis was able to mitigate the negative effect of water stress on berseem clover grown in a typical semiarid Mediterranean environment. In fact, under water stress conditions, arbuscular mycorrhizal symbiosis resulted in increases in total biomass, N content, and N fixation, whereas no effect of crop mycorrhization was observed in the well-watered treatment.

  13. Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of berseem clover plants subjected to water stress.

    Science.gov (United States)

    Saia, Sergio; Amato, Gaetano; Frenda, Alfonso Salvatore; Giambalvo, Dario; Ruisi, Paolo

    2014-01-01

    Several studies, performed mainly in pots, have shown that arbuscular mycorrhizal symbiosis can mitigate the negative effects of water stress on plant growth. No information is available about the effects of arbuscular mycorrhizal symbiosis on berseem clover growth and nitrogen (N) fixation under conditions of water shortage. A field experiment was conducted in a hilly area of inner Sicily, Italy, to determine whether symbiosis with AM fungi can mitigate the detrimental effects of drought stress (which in the Mediterranean often occurs during the late period of the growing season) on forage yield and symbiotic N2 fixation of berseem clover. Soil was either left under water stress (i.e., rain-fed conditions) or the crop was well-watered. Mycorrhization treatments consisted of inoculation of berseem clover seeds with arbuscular mycorrhizal spores or suppression of arbuscular mycorrhizal symbiosis by means of fungicide treatments. Nitrogen biological fixation was assessed using the 15N-isotope dilution technique. Arbuscular mycorrhizal symbiosis was able to mitigate the negative effect of water stress on berseem clover grown in a typical semiarid Mediterranean environment. In fact, under water stress conditions, arbuscular mycorrhizal symbiosis resulted in increases in total biomass, N content, and N fixation, whereas no effect of crop mycorrhization was observed in the well-watered treatment.

  14. A Comparative Nitrogen Balance and Productivity Analysis of Legume and Non-legume Supported Cropping Systems: The Potential Role of Biological Nitrogen Fixation

    OpenAIRE

    Iannetta, Pietro P. M.; Mark Young; Johann Bachinger; Göran Bergkvist; Lopez-Bellido, Rafael J.; Jordi Doltra; Michele Monti; Valentini Pappa; Moritz Reckling; Topp, Cairistiona F. E.; Robin Walker; Rees, Robert M.; Watson, Christine A.; James, Euan K.; Geoffrey R Squire

    2016-01-01

    The potential of biological nitrogen fixation (BNF) to provide sufficient N for production has encouraged re-appraisal of cropping systems that deploy legumes. It has been argued that legume-derived N can maintain productivity as an alternative to the application of mineral fertilizer, although few studies have systematically evaluated the effect of optimizing the balance between legumes and non N-fixing crops to optimize production. In addition, the shortage, or even absence in some regions,...

  15. Comparison of Two Cellulomonas Strains and Their Interaction with Azospirillum brasilense in Degradation of Wheat Straw and Associated Nitrogen Fixation

    OpenAIRE

    Halsall, Dorothy M.; Gibson, Alan H.

    1986-01-01

    A mutant strain of Cellulomonas sp. CS1-17 was compared with Cellulomonas gelida 2480 as the cellulolytic component of a mixed culture which was responsible for the breakdown of wheat straw to support asymbiotic nitrogen fixation by Azospirillum brasilense Sp7 (ATCC 29145). Cellulomonas sp. strain CSI-17 was more efficient than was C. gelida in cellulose breakdown at lower oxygen concentrations and, in mixed culture with A. brasilense, it supported higher nitrogenase activity (C2H2 reduction)...

  16. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert

    Science.gov (United States)

    Housman, D.C.; Powers, H.H.; Collins, A.D.; Belnap, J.

    2006-01-01

    Biological soil crusts (cyanobacteria, mosses and lichens collectively) perform essential ecosystem services, including carbon (C) and nitrogen (N) fixation. Climate and land-use change are converting later successional soil crusts to early successional soil crusts with lower C and N fixation rates. To quantify the effect of such conversions on C and N dynamics in desert ecosystems we seasonally measured diurnal fixation rates in different biological soil crusts. We classified plots on the Colorado Plateau (Canyonlands) and Chihuahuan Desert (Jornada) as early (Microcoleus) or later successional (Nostoc/Scytonema or Placidium/Collema) and measured photosynthesis (Pn), nitrogenase activity (NA), and chlorophyll fluorescence (Fv/Fm) on metabolically active (moist) soil crusts. Later successional crusts typically had greater Pn, averaging 1.2-1.3-fold higher daily C fixation in Canyonlands and 2.4-2.8-fold higher in the Jornada. Later successional crusts also had greater NA, averaging 1.3-7.5-fold higher daily N fixation in Canyonlands and 1.3-25.0-fold higher in the Jornada. Mean daily Fv/Fm was also greater in later successional Canyonlands crusts during winter, and Jornada crusts during all seasons except summer. Together these findings indicate conversion of soil crusts back to early successional stages results in large reductions of C and N inputs into these ecosystems.

  17. Applying reversible mutations of nodulation and nitrogen-fixation genes to study social cheating in Rhizobium etli-legume interaction.

    Science.gov (United States)

    Ling, Jun; Zheng, Huiming; Katzianer, David S; Wang, Hui; Zhong, Zengtao; Zhu, Jun

    2013-01-01

    Mutualisms are common in nature, though these symbioses can be quite permeable to cheaters in situations where one individual parasitizes the other by discontinuing cooperation yet still exploits the benefits of the partnership. In the Rhizobium-legume system, there are two separate contexts, namely nodulation and nitrogen fixation processes, by which resident Rhizobium individuals can benefit by cheating. Here, we constructed reversible and irreversible mutations in key nodulation and nitrogen-fixation pathways of Rhizobium etli and compared their interaction with plant hosts Phaseolus vulgaris to that of wild type. We show that R. etli reversible mutants deficient in nodulation factor production are capable of intra-specific cheating, wherein mutants exploit other Rhizobium individuals capable of producing these factors. Similarly, we show that R. etli mutants are also capable of cheating inter-specifically, colonizing the host legume yet contributing nothing to the partnership in terms of nitrogen fixation. Our findings indicate that cheating is possible in both of these frameworks, seemingly without damaging the stability of the mutualism itself. These results may potentially help explain observations suggesting that legume plants are commonly infected by multiple bacterial lineages during the nodulation process.

  18. Growth-promoting Sphingomonas paucimobilis ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation

    Science.gov (United States)

    Yang, Suijuan; Zhang, Xinghai; Cao, Zhaoyun; Zhao, Kaipeng; Wang, Sai; Chen, Mingxue; Hu, Xiufang

    2014-01-01

    Growth-promoting Sphingomonas paucimobilis ZJSH1, associated with Dendrobium officinale, a traditional Chinese medicinal plant, was characterized. At 90 days post-inoculation, strain ZJSH1 significantly promoted the growth of D. officinale seedlings, with increases of stems by 8.6% and fresh weight by 7.5%. Interestingly, the polysaccharide content extracted from the inoculated seedlings was 0.6% higher than that of the control. Similar growth promotion was observed with the transplants inoculated with strain ZJSH1. The mechanism of growth promotion was attributed to a combination of phytohormones and nitrogen fixation. Strain ZJSH1 was found using the Kjeldahl method to have a nitrogen fixation activity of 1.15 mg l−1, which was confirmed by sequencing of the nifH gene. Using high-performance liquid chromatography-mass spectrometry, strain ZJSH1 was found to produce various phytohormones, including salicylic acid (SA), indole-3-acetic acid (IAA), Zeatin and abscisic acid (ABA). The growth curve showed that strain ZJSH1 grew well in the seedlings, especially in the roots. Accordingly, much higher contents of SA, ABA, IAA and c-ZR were detected in the inoculated seedlings, which may play roles as both phytohormones and ‘Systemic Acquired Resistance’ drivers. Nitrogen fixation and secretion of plant growth regulators (SA, IAA, Zeatin and ABA) endow S. paucimobilis ZJSH1 with growth-promoting properties, which provides a potential for application in the commercial growth of D. officinale. PMID:25142808

  19. Applying reversible mutations of nodulation and nitrogen-fixation genes to study social cheating in Rhizobium etli-legume interaction.

    Directory of Open Access Journals (Sweden)

    Jun Ling

    Full Text Available Mutualisms are common in nature, though these symbioses can be quite permeable to cheaters in situations where one individual parasitizes the other by discontinuing cooperation yet still exploits the benefits of the partnership. In the Rhizobium-legume system, there are two separate contexts, namely nodulation and nitrogen fixation processes, by which resident Rhizobium individuals can benefit by cheating. Here, we constructed reversible and irreversible mutations in key nodulation and nitrogen-fixation pathways of Rhizobium etli and compared their interaction with plant hosts Phaseolus vulgaris to that of wild type. We show that R. etli reversible mutants deficient in nodulation factor production are capable of intra-specific cheating, wherein mutants exploit other Rhizobium individuals capable of producing these factors. Similarly, we show that R. etli mutants are also capable of cheating inter-specifically, colonizing the host legume yet contributing nothing to the partnership in terms of nitrogen fixation. Our findings indicate that cheating is possible in both of these frameworks, seemingly without damaging the stability of the mutualism itself. These results may potentially help explain observations suggesting that legume plants are commonly infected by multiple bacterial lineages during the nodulation process.

  20. EnviroAtlas - Biological nitrogen fixation in natural/semi-natural ecosystems by 12-digit HUC for the Conterminous United States, 2006

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains data on the mean biological nitrogen fixation in natural/semi-natural ecosystems per 12-digit Hydrologic Unit (HUC) in 2006....

  1. A novel endo-hydrogenase activity recycles hydrogen produced by nitrogen fixation.

    Directory of Open Access Journals (Sweden)

    Gordon Ng

    Full Text Available BACKGROUND: Nitrogen (N(2 fixation also yields hydrogen (H(2 at 1:1 stoichiometric amounts. In aerobic diazotrophic (able to grow on N(2 as sole N-source bacteria, orthodox respiratory hupSL-encoded hydrogenase activity, associated with the cell membrane but facing the periplasm (exo-hydrogenase, has nevertheless been presumed responsible for recycling such endogenous hydrogen. METHODS AND FINDINGS: As shown here, for Azorhizobium caulinodans diazotrophic cultures open to the atmosphere, exo-hydrogenase activity is of no consequence to hydrogen recycling. In a bioinformatic analysis, a novel seven-gene A. caulinodans hyq cluster encoding an integral-membrane, group-4, Ni,Fe-hydrogenase with homology to respiratory complex I (NADH: quinone dehydrogenase was identified. By analogy, Hyq hydrogenase is also integral to the cell membrane, but its active site faces the cytoplasm (endo-hydrogenase. An A. caulinodans in-frame hyq operon deletion mutant, constructed by "crossover PCR", showed markedly decreased growth rates in diazotrophic cultures; normal growth was restored with added ammonium--as expected of an H(2-recycling mutant phenotype. Using A. caulinodans hyq merodiploid strains expressing beta-glucuronidase as promoter-reporter, the hyq operon proved strongly and specifically induced in diazotrophic culture; as well, hyq operon induction required the NIFA transcriptional activator. Therefore, the hyq operon is constituent of the nif regulon. CONCLUSIONS: Representative of aerobic N(2-fixing and H(2-recycling alpha-proteobacteria, A. caulinodans possesses two respiratory Ni,Fe-hydrogenases: HupSL exo-hydrogenase activity drives exogenous H(2 respiration, and Hyq endo-hydrogenase activity recycles endogenous H(2, specifically that produced by N(2 fixation. To benefit human civilization, H(2 has generated considerable interest as potential renewable energy source as its makings are ubiquitous and its combustion yields no greenhouse gases. As

  2. Persistence of biological nitrogen fixation in high latitude grass-clover grasslands under different management practices

    Science.gov (United States)

    Tzanakakis, Vasileios; Sturite, Ievina; Dörsch, Peter

    2016-04-01

    Biological nitrogen fixation (BNF) can substantially contribute to N supply in permanent grasslands, improving N yield and forage quality, while reducing inorganic N inputs. Among the factors critical to the performance of BNF in grass-legume mixtures are selected grass and legume species, proportion of legumes, the soil-climatic conditions, in particular winter conditions, and management practices (e.g. fertilization and compaction). In high latitude grasslands, low temperatures can reduce the performance of BNF by hampering the legumés growth and by suppressing N2 fixation. Estimation of BNF in field experiments is not straightforward. Different methods have been developed providing different results. In the present study, we evaluated the performance of BNF, in a newly established field experiment in North Norway over four years. The grassland consisted of white clover (Trifolium repens L.) and red clover (Trifolium pretense L.) sawn in three proportions (0, 15 and 30% in total) together with timothy (Pheum pretense L.) and meadow fescue (Festuca pratensis L.). Three levels of compaction were applied each year (no tractor, light tractor, heavy tractor) together with two different N rates (110 kg N/ha as cattle slurry or 170 kg N/ha as cattle slurry and inorganic N fertilizer). We applied two different methods, the 15N natural abundance and the difference method, to estimate BNF in the first harvest of each year. Overall, the difference method overestimated BNF relative to the 15N natural abundance method. BNF in the first harvest was compared to winter survival of red and white clover plants, which decreased with increasing age of the grassland. However, winter conditions did not seem to affect the grassland's ability to fix N in spring. The fraction of N derived from the atmosphere (NdfA) in white and red clover was close to 100% in each spring, indicating no suppression of BNF. BNF increased the total N yield of the grasslands by up to 75%, mainly due to high

  3. Simultaneous Quantification of Active Carbon- and Nitrogen-Fixing Communities and Estimation of Fixation Rates Using Fluorescence In Situ Hybridization and Flow Cytometry

    OpenAIRE

    Allison S. McInnes; Shepard, Alicia K.; Raes, Eric J.; Waite, Anya M.; Quigg, Antonietta

    2014-01-01

    Understanding the interconnectivity of oceanic carbon and nitrogen cycles, specifically carbon and nitrogen fixation, is essential in elucidating the fate and distribution of carbon in the ocean. Traditional techniques measure either organism abundance or biochemical rates. As such, measurements are performed on separate samples and on different time scales. Here, we developed a method to simultaneously quantify organisms while estimating rates of fixation across time and space for b...

  4. Nitrite fixation by humic substances: Nitrogen-15 nuclear magnetic resonance evidence for potential intermediates in chemodenitrification

    Science.gov (United States)

    Thorn, K.A.; Mikita, M.A.

    2000-01-01

    Studies have suggested that NO2/-, produced during nitrification and denitrification, can become incorporated into soil organic matter and, in one of the processes associated with chemodenitrification, react with organic matter to form trace N gases, including N2O. To gain an understanding of the nitrosation chemistry on a molecular level, soil and aquatic humic substances were reacted with 15N-labeled NaNO2, and analyzed by liquid phase 15N and 13C nuclear magnetic resonance (NMR). The International Humic Substances Society (IHSS) Pahokee peat and peat humic acid were also reacted with Na15NO2 and analyzed by solid-state 15N NMR. In Suwannee River, Armadale, and Laurentian fulvic acids, phenolic rings and activated methylene groups underwent nitrosation to form nitrosophenols (quinone monoximes) and ketoximes, respectively. The oximes underwent Beckmann rearrangements to 2??amides, and Beckmann fragmentations to nitriles. The nitriles in turn underwent hydrolysis to 1??amides. Peaks tentatively identified as imine, indophenol, or azoxybenzene nitrogens were clearly present in spectra of samples nitrosated at pH 6 but diminished at pH 3. The 15N NMR spectrum of the peat humic acid exhibited peaks corresponding with N-nitroso groups in addition to nitrosophenols, ketoximes, and secondary Beckmann reaction products. Formation of N-nitroso groups was more significant in the whole peat compared with the peat humic acid. Carbon-13 NMR analyses also indicated the occurrence of nitrosative demethoxylation in peat and soil humic acids. Reaction of 15N-NH3 fixated fulvic acid with unlabeled NO2/- resulted in nitrosative deamination of aminohydroquinone N, suggesting a previously unrecognized pathway for production of N2 gas in soils fertilized with NH3.Studies have suggested that NO2-, produced during nitrification and denitrification, can become incorporated into soil organic matter and, in one of the processes associated with chemodenitrification, react with organic

  5. Impact of the ahas transgene for herbicides resistance on biological nitrogen fixation and yield of soybean.

    Science.gov (United States)

    Hungria, Mariangela; Nakatani, André Shigueyoshi; Souza, Rosinei Aparecida; Sei, Fernando Bonafé; de Oliveira Chueire, Ligia Maria; Arias, Carlos Arrabal

    2015-02-01

    Studies on the effects of transgenes in soybean [Glycine max (L.) Merr.] and the associated use of specific herbicides on biological nitrogen fixation (BNF) are still few, although it is important to ensure minimal impacts on benefits provided by the root-nodule symbiosis. Cultivance CV127 transgenic soybean is a cultivar containing the ahas gene, which confers resistance to herbicides of the imidazolinone group. The aim of this study was to assess the effects of the ahas transgene and of imidazolinone herbicide on BNF parameters and soybean yield. A large-scale set of field experiments was conducted, for three cropping seasons, at nine sites in Brazil, with a total of 20 trials. The experiment was designed as a completely randomized block with four replicates and the following treatments: (T1) near isogenic transgenic soybean (Cultivance CV127) + herbicide of the imidazolinone group (imazapyr); (T2) near isogenic transgenic soybean + conventional herbicides; and (T3) parental conventional soybean (Conquista) + conventional herbicides; in addition, two commercial cultivars were included, Monsoy 8001 (M-SOY 8001) (T4), and Coodetec 217 (CD 217) (T5). At the R2 growth stage, plants were collected and BNF parameters evaluated. In general, there were no effects on BNF parameters due to the transgenic trait or associated with the specific herbicide. Similarly, at the final harvest, no grain-yield effects were detected related to the ahas gene or to the specific herbicide. However, clear effects on BNF and grain yield were attributed to location and cropping season.

  6. Origin and Evolution of Nitrogen Fixation Genes on Symbiosis Islands and Plasmid in Bradyrhizobium.

    Science.gov (United States)

    Okubo, Takashi; Piromyou, Pongdet; Tittabutr, Panlada; Teaumroong, Neung; Minamisawa, Kiwamu

    2016-09-29

    The nitrogen fixation (nif) genes of nodule-forming Bradyrhizobium strains are generally located on symbiosis islands or symbiosis plasmids, suggesting that these genes have been transferred laterally. The nif genes of rhizobial and non-rhizobial Bradyrhizobium strains were compared in order to infer the evolutionary histories of nif genes. Based on all codon positions, the phylogenetic tree of concatenated nifD and nifK sequences showed that nifDK on symbiosis islands formed a different clade from nifDK on non-symbiotic loci (located outside of symbiosis islands and plasmids) with elongated branches; however, these genes were located in close proximity, when only the 1st and 2nd codon positions were analyzed. The guanine (G) and cytosine (C) content of the 3rd codon position of nifDK on symbiosis islands was lower than that on non-symbiotic loci. These results suggest that nif genes on symbiosis islands were derived from the non-symbiotic loci of Bradyrhizobium or closely related strains and have evolved toward a lower GC content with a higher substitution rate than the ancestral state. Meanwhile, nifDK on symbiosis plasmids clustered with nifDK on non-symbiotic loci in the tree representing all codon positions, and the GC content of symbiotic and non-symbiotic loci were similar. These results suggest that nif genes on symbiosis plasmids were derived from the non-symbiotic loci of Bradyrhizobium and have evolved with a similar evolutionary pattern and rate as the ancestral state.

  7. Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9

    Directory of Open Access Journals (Sweden)

    Longxiang Wang

    2016-08-01

    Full Text Available The targeted genome editing technique, CRISPR/Cas9 system, has been widely used to modify genes of interest in a predictable and precise manner. In this study, we describe the CRISPR/Cas9-mediated efficient editing of representative SNF (symbiotic nitrogen fixation related genes in the model legume Lotus japonicus via Agrobacterium-mediated stable or hairy root transformation. We first predicted nine endogenous U6 genes in Lotus and then demonstrated the efficacy of the LjU6-1 gene promoter in driving expression of single guide RNAs (sgRNAs by using a split yellow fluorescence protein (YFP reporter system to restore the fluorescence in Arabidopsis protoplasts. Next, we chose a customized sgRNA targeting SYMRK (symbiosis receptor kinase loci and achieved ~35% mutagenic efficiency in 20 T0 transgenic plants, two of them containing biallelic homozygous mutations with a 2-bp deletion near the PAM region. We further designed two sgRNAs targeting three homologous leghemoglobin loci (LjLb1, LjLb2, LjLb3 for testing the possibility of generating multi-gene knockouts. 20 out of 70 hairy root transgenic plants exhibited white nodules, with at least two LjLbs disrupted in each plant. Compared with the constitutively active CaMV 35S promoter, the nodule-specific LjLb2 promoter was also effective in gene editing in nodules by hairy root transformation. Triple mutant knockout of LjLbs was also obtained by stable transformation using two sgRNAs. Collectively, these studies demonstrate that the CRISPR/Cas9 system should greatly facilitate functional analyses of SNF related genes in Lotus japonicus.

  8. Nitrogen fixation and nitrogenase (nifH) expression in tropical waters of the eastern north atlantic.

    Energy Technology Data Exchange (ETDEWEB)

    Turk, K. A.; Rees, A. P.; Zehr, J. P.; Pereira, N.; Swift, P.; Shelley, R.; Lohan, M.; Woodward, E. M. S.; Gilbert, J. (CLS-CI); (Department of Ocean Sciences, University of California Santa Cruz); (Plymouth Marine Laboratory, Prospect Place); (NERC Centre for Ecology and Hydrology); (University of Plymouth, Drake Circus); (Department of Ecology and Evolution, University of Chicago)

    2011-01-01

    Expression of nifH in 28 surface water samples collected during fall 2007 from six stations in the vicinity of the Cape Verde Islands (north-east Atlantic) was examined using reverse transcription-polymerase chain reaction (RT-PCR)-based clone libraries and quantitative RT-PCR (RT-qPCR) analysis of seven diazotrophic phylotypes. Biological nitrogen fixation (BNF) rates and nutrient concentrations were determined for these stations, which were selected based on a range in surface chlorophyll concentrations to target a gradient of primary productivity. BNF rates greater than 6 nmolN I{sup -1} h{sup -1} were measured at two of the near-shore stations where high concentrations of Fe and PO{sub 4}{sup 3-} were also measured. Six hundred and five nifH transcripts were amplified by RT-PCR, of which 76% are described by six operational taxonomic units, including Trichodesmium and the uncultivated UCYN-A, and four non-cyanobacterial diazotrophs that clustered with uncultivated Proteobacteria. Although all five cyanobacterial phylotypes quantified in RT-qPCR assays were detected at different stations in this study, UCYN-A contributed most significantly to the pool of nifH transcripts in both coastal and oligotrophic waters. A comparison of results from RT-PCR clone libraries and RT-qPCR indicated that a {gamma}-proteobacterial phylotype was preferentially amplified in clone libraries, which underscores the need to use caution interpreting clone-library-based nifH studies, especially when considering the importance of uncultivated proteobacterial diazotrophs.

  9. The use of nickel to probe the role of hydrogen metabolism in cyanobacterial nitrogen fixation.

    Science.gov (United States)

    Pederson, D M; Daday, A; Smith, G D

    1986-01-01

    The hydrogenase activities of the heterocystous cyanobacteria Anabaena cylindrica and Mastigocladus laminosus are nickel dependent, based on their inability to consume hydrogen with various electron acceptors or produce hydrogen with dithionite-reduced methyl viologen, after growth in nickel-depleted medium. Upon addition of nickel ions to nickel-deficient cultures of A. cylindrica, the hydrogenase activity recovered in a manner which was protein synthesis-dependent, the recovery being inhibited by chloramphenicol. We have used the nickel dependence of the hydrogenase as a probe of the possible roles of H2 consumption in enhancing nitrogen fixation, and particularly for protecting nitrogenase against oxygen inhibition. Although at the usual growth temperatures (25 degrees for A. cylindrica and 40 degrees for M. laminosus), the cells consume H2 vigorously in an oxyhydrogen reaction after growth in the presence of nickel ions, we have not found that the reaction confers any significant additional protection of nitrogenase, either at aerobic pO2 (for both organisms) or at elevated pO2 (for A. cylindrica). However, at elevated temperatures (e.g., 40 degrees for A. cylindrica and 48 degrees for M. laminosus) a definite protective effect was observed. At these temperatures both organisms rapidly lost acetylene reduction activity under aerobic conditions. When hydrogen gas (10%) was present, the cells retained approximately 50% of the nitrogenase activity observed under anaerobic conditions (argon gas phase). No such protection by hydrogen gas was observed with nickel-deficient cells. Studies with cell-free extracts of A. cylindrica showed that the predominant effect of temperature was not due to thermal inactivation of nitrogenase.

  10. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters.

    Science.gov (United States)

    Pellitier, Peter T; Zak, Donald R

    2018-01-01

    Contents Summary 68 I. Introduction 68 II. Have ECM fungi retained genes with lignocellulolytic potential from saprotrophic ancestors? 69 III. Are genes with saprotrophic function expressed by ECM fungi when in symbiosis? 71 IV. Do transcribed enzymes operate to obtain N from SOM? 71 V. Is the organic N derived from SOM transferred to the plant host? 71 VI. Concluding remarks 72 Acknowledgements 72 References 72 SUMMARY: The view that ectomycorrhizal (ECM) fungi commonly participate in the enzymatic liberation of nitrogen (N) from soil organic matter (SOM) has recently been invoked as a key mechanism governing the biogeochemical cycles of forest ecosystems. Here, we provide evidence that not all evolutionary lineages of ECM have retained the genetic potential to produce extracellular enzymes that degrade SOM, calling into question the ubiquity of the proposed mechanism. Further, we discuss several untested conditions that must be empirically validated before it is certain that any lineage of ECM fungi actively expresses extracellular enzymes in order to degrade SOM and transfer N contained therein to its host plant. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Elevated Atmospheric CO2 and Warming Stimulates Growth and Nitrogen Fixation in a Common Forest Floor Cyanobacterium under Axenic Conditions

    Directory of Open Access Journals (Sweden)

    Zoë Lindo

    2017-03-01

    Full Text Available The predominant input of available nitrogen (N in boreal forest ecosystems originates from moss-associated cyanobacteria, which fix unavailable atmospheric N2, contribute to the soil N pool, and thereby support forest productivity. Alongside climate warming, increases in atmospheric CO2 concentrations are expected in Canada’s boreal region over the next century, yet little is known about the combined effects of these factors on N fixation by forest floor cyanobacteria. Here we assess changes in N fixation in a common forest floor, moss-associated cyanobacterium, Nostoc punctiforme Hariot, under elevated CO2 conditions over 30 days and warming combined with elevated CO2 over 90 days. We measured rates of growth and changes in the number of specialized N2 fixing heterocyst cells, as well as the overall N fixing activity of the cultures. Elevated CO2 stimulated growth and N fixation overall, but this result was influenced by the growth stage of the cyanobacteria, which in turn was influenced by our temperature treatments. Taken together, climate change factors of warming and elevated CO2 are expected to stimulate N2 fixation by moss-associated cyanobacteria in boreal forest systems.

  12. The Mekong River plume fuels nitrogen fixation and determines phytoplankton species distribution in the South China Sea during low- and high-discharge season

    DEFF Research Database (Denmark)

    Grosse, Julia; Bombar, Deniz; Doan, Hai Nhu

    2010-01-01

    cruises. High N2 fixation rates were measured during both seasons, with rates of up to 5.05 nmol N L-1 h -1 in surface waters under nitrogen-replete conditions, increasing to 22.77 nmol N L-1 h-1 in nitrogen-limited waters. Asymbiotic diatoms were found only close to the river mouth, and symbiotic diatoms...

  13. Nitrogen fixation is not the only trait that determines the success of tropical legumes during secondary succession

    Science.gov (United States)

    Gei, Maria G.; Powers, Jennifer S.

    2017-04-01

    Legumes trees are well represented throughout the entire precipitation gradient of tropical forests. Many of these species are able to fix atmospheric dinitrogen through symbiosis and offer a mechanism to overcome nitrogen limitation typical of initial stages of secondary forest succession. While it is often assumed the success of legumes is linked to their fixation ability, the variation of other functional traits within this large group has received considerably less attention. Here we assessed legume abundance in secondary forest plots in 42 Neotropical chronosequences (the 2ndFOR network) that span a broad gradient of precipitation regimes and identified those traits that are favored in distinct successional environments. Our main finding is that in young secondary dry forests (5-20 years), legumes that have the potential to fix nitrogen and have small leaflet size become exceptionally abundant (up to 17-99% relative basal area). We suggest that in those species, reduced leaf area could help regulate leaf temperature and minimize water loss, and the cost of reduced total leaf area may be compensated by high photosynthetic rates maximized with nitrogen obtained through fixation. Overall, our study underscores great functional heterogeneity within tropical legumes, which likely translates into diverse biogeochemical cycles. In addition, these results provide a useful framework for active restoration of degraded areas, as it identifies a group of species that accumulate carbon at fast rates under warm and dry environments, conditions that are expected to become more common in the tropics.

  14. Arbuscular Mycorrhiza Stimulates Biological Nitrogen Fixation in Two Medicago spp. through Improved Phosphorus Acquisition

    Science.gov (United States)

    Püschel, David; Janoušková, Martina; Voříšková, Alena; Gryndlerová, Hana; Vosátka, Miroslav; Jansa, Jan

    2017-01-01

    Legumes establish root symbioses with rhizobia that provide plants with nitrogen (N) through biological N fixation (BNF), as well as with arbuscular mycorrhizal (AM) fungi that mediate improved plant phosphorus (P) uptake. Such complex relationships complicate our understanding of nutrient acquisition by legumes and how they reward their symbiotic partners with carbon along gradients of environmental conditions. In order to disentangle the interplay between BNF and AM symbioses in two Medicago species (Medicago truncatula and M. sativa) along a P-fertilization gradient, we conducted a pot experiment where the rhizobia-treated plants were either inoculated or not inoculated with AM fungus Rhizophagus irregularis ‘PH5’ and grown in two nutrient-poor substrates subjected to one of three different P-supply levels. Throughout the experiment, all plants were fertilized with 15N-enriched liquid N-fertilizer to allow for assessment of BNF efficiency in terms of the fraction of N in the plants derived from the BNF (%NBNF). We hypothesized (1) higher %NBNF coinciding with higher P supply, and (2) higher %NBNF in mycorrhizal as compared to non-mycorrhizal plants under P deficiency due to mycorrhiza-mediated improvement in P nutrition. We found a strongly positive correlation between total plant P content and %NBNF, clearly documenting the importance of plant P nutrition for BNF efficiency. The AM symbiosis generally improved P uptake by plants and considerably stimulated the efficiency of BNF under low P availability (below 10 mg kg-1 water extractable P). Under high P availability (above 10 mg kg-1 water extractable P), the AM symbiosis brought no further benefits to the plants with respect to P nutrition even as the effects of P availability on N acquisition via BNF were further modulated by the environmental context (plant and substrate combinations). As a response to elevated P availability in the substrate, the extent of root length colonization by AM fungi was

  15. Growth and Nitrogen Fixation in Silicon and/or Potassium Fed Chickpeas Grown under Drought and Well Watered Conditions

    Directory of Open Access Journals (Sweden)

    Fawaz Kurdali

    2013-08-01

    Full Text Available A pot experiment was conducted to study the effects of silicon (Si and/or potassium (K on plant growth, nitrogen uptake and N2-fixation in water stressed (FC1 and well watered (FC2 chickpea plants using 15N and 13C isotopes. Three fertilizer rates of Si (Si50, Si100 and Si200 and one fertilizer rate of K were used. For most of the growth parameters, it was found that Si either alone or in combination with K was more effective to alleviate water stress than K alone. Increasing soil water level from FC1 to FC2 often had a positive impact on values of almost all studied parameters. The Si100K+ (FC1 and Si50K+ (FC2 treatments gave high enough amounts of N2-fixation, higher dry matter production and greater nitrogen yield. The percent increments of total N2-fixed in the above mentioned treatments were 51 and 47% over their controls, respectively. On the other hand, increasing leave’s dry matter in response to the solely added Si (Si50K- and Si100K- is associated with lower Δ13C under both watering regimes. This may indicate that Si fertilization had a beneficial effect on water use efficiency (WUE. Hence, Δ13C could be an adequate indicator of WUE in response to the exogenous supply of silicon to chickpea plants. Our results highlight that Si is not only involved in amelioration of growth and in maintaining of water status but it can be also considered an important element for the symbiotic performance of chickpea plants. It can be concluded that the synergistic effect of silicon and potassium fertilization with adequate irrigation improves growth and nitrogen fixation in chickpea plants.

  16. Growth-promoting Sphingomonas paucimobilis ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation.

    Science.gov (United States)

    Yang, Suijuan; Zhang, Xinghai; Cao, Zhaoyun; Zhao, Kaipeng; Wang, Sai; Chen, Mingxue; Hu, Xiufang

    2014-11-01

    Growth-promoting Sphingomonas paucimobilis ZJSH1, associated with Dendrobium officinale, a traditional Chinese medicinal plant, was characterized. At 90 days post-inoculation, strain ZJSH1 significantly promoted the growth of D. officinale seedlings, with increases of stems by 8.6% and fresh weight by 7.5%. Interestingly, the polysaccharide content extracted from the inoculated seedlings was 0.6% higher than that of the control. Similar growth promotion was observed with the transplants inoculated with strain ZJSH1. The mechanism of growth promotion was attributed to a combination of phytohormones and nitrogen fixation. Strain ZJSH1 was found using the Kjeldahl method to have a nitrogen fixation activity of 1.15 mg l(-1) , which was confirmed by sequencing of the nifH gene. Using high-performance liquid chromatography-mass spectrometry, strain ZJSH1 was found to produce various phytohormones, including salicylic acid (SA), indole-3-acetic acid (IAA), Zeatin and abscisic acid (ABA). The growth curve showed that strain ZJSH1 grew well in the seedlings, especially in the roots. Accordingly, much higher contents of SA, ABA, IAA and c-ZR were detected in the inoculated seedlings, which may play roles as both phytohormones and 'Systemic Acquired Resistance' drivers. Nitrogen fixation and secretion of plant growth regulators (SA, IAA, Zeatin and ABA) endow S. paucimobilis ZJSH1 with growth-promoting properties, which provides a potential for application in the commercial growth of D. officinale. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  17. A Comparative Nitrogen Balance and Productivity Analysis of Legume and Non-legume Supported Cropping Systems: The Potential Role of Biological Nitrogen Fixation

    DEFF Research Database (Denmark)

    Iannetta, Pietro P M; Young, Mark; Bachinger, Johann

    2016-01-01

    The potential of biological nitrogen fixation (BNF) to provide sufficient N for production has encouraged re-appraisal of cropping systems that deploy legumes. It has been argued that legume-derived N can maintain productivity as an alternative to the application of mineral fertilizer, although few...... studies have systematically evaluated the effect of optimizing the balance between legumes and non N-fixing crops to optimize production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new legume...

  18. Dinitrogen fixation and dissolved organic nitrogen fueled primary production and particulate export during the VAHINE mesocosm experiment (New Caledonia lagoon)

    Science.gov (United States)

    Berthelot, H.; Moutin, T.; L'Helguen, S.; Leblanc, K.; Hélias, S.; Grosso, O.; Leblond, N.; Charrière, B.; Bonnet, S.

    2015-07-01

    In the oligotrophic ocean characterized by nitrate (NO3-) depletion in surface waters, dinitrogen (N2) fixation and dissolved organic nitrogen (DON) can represent significant nitrogen (N) sources for the ecosystem. In this study, we deployed large in situ mesocosms in New Caledonia in order to investigate (1) the contribution of N2 fixation and DON use to primary production (PP) and particle export and (2) the fate of the freshly produced particulate organic N (PON), i.e., whether it is preferentially accumulated and recycled in the water column or exported out of the system. The mesocosms were fertilized with phosphate (PO43-) in order to prevent phosphorus (P) limitation and promote N2 fixation. The diazotrophic community was dominated by diatom-diazotroph associations (DDAs) during the first part of the experiment for 10 days (P1) followed by the unicellular N2-fixing cyanobacteria UCYN-C for the last 9 days (P2) of the experiment. N2 fixation rates averaged 9.8 ± 4.0 and 27.7 ± 8.6 nmol L-1 d-1 during P1 and P2, respectively. NO3- concentrations ( 0.05) during P1 (9.0 ± 3.3 %) and P2 (12.6 ± 6.1 %). However, the e ratio that quantifies the efficiency of a system to export particulate organic carbon (POCexport) compared to PP (e ratio = POCexport/PP) was significantly higher (p sustained by UCYN-C was more efficient at promoting C export than the production sustained by DDAs. During P1, PON was stable and the total amount of N provided by N2 fixation (0.10 ± 0.02 μmol L-1) was not significantly different (p > 0.05) from the total amount of PON exported (0.10 ± 0.04 μmol L-1), suggesting a rapid and probably direct export of the recently fixed N2 by the DDAs. During P2, both PON concentrations and PON export increased in the mesocosms by a factor 1.5-2. Unlike in P1, this PON production was not totally explained by the new N provided by N2 fixation. The use of DON, whose concentrations decreased significantly (p < 0.05) from 5.3 ± 0.5 μmol L-1 to 4.4

  19. Dinitrogen fixation and dissolved organic nitrogen fueled primary production and particulate export during the VAHINE mesocosms experiment (New Caledonia lagoon)

    Science.gov (United States)

    Berthelot, H.; Moutin, T.; L'Helguen, S.; Leblanc, K.; Hélias, S.; Grosso, O.; Leblond, N.; Charrière, B.; Bonnet, S.

    2015-03-01

    In the oligotrophic ocean characterized by nitrate (NO3-) depletion in surface waters, dinitrogen (N2) fixation and dissolved organic nitrogen (DON) can represent significant nitrogen (N) sources for the ecosystem. Here we deployed in New Caledonia large in situ mesocosms in order to investigate (1) the contribution of N2 fixation and DON use to primary production (PP) and particle export and (2) the fate of the freshly produced particulate organic N (PON) i.e. whether it is preferentially accumulated and recycled in the water column or exported out of the system. The mesocosms were fertilized with phosphate (P) in order to prevent P-limitation and promote N2 fixation. The diazotrophic community was dominated by diatoms-diazotrophs associations (DDAs) during the first part of the experiment for 10 days (P1) followed by the unicellular N2-fixing cyanobacteria UCYN-C the 9 last days (P2) of the experiment. N2 fixation rates averaged 9.8 ± 4.0 and 27.7 ± 8.6 nM d-1 during P1 and P2, respectively. NO3- concentrations ( 0.05) during P1 (9.0 ± 3.3%) and P2 (12.6 ± 6.1%). However, the e ratio that quantifies the efficiency of a system to export particulate organic carbon (POCexport) compared to PP (e ratio = POCexport/PP) was significantly higher (p sustained by UCYN-C was more efficient at promoting C export than the production sustained by DDAs. During P1, PON was stable and the total amount of N provided by N2 fixation (0.10 ± 0.02 μM) was not significantly different (p > 0.05) from the total amount of PON exported (0.10 ± 0.04 μM), suggesting a rapid and probably direct export of the recently fixed N2 by the DDAs. During P2, both PON concentrations and PON export increased in the mesocosms by a factor 1.5-2. Unlike in P1, this PON production was not totally explained by the new N provided by N2 fixation. The use of DON, whose concentrations decreased significantly (p < 0.05) from 5.3 ± 0.5 μM to 4.4 ± 0.5 μM, appeared to be the missing N source. The DON

  20. The role of phosphorus in nitrogen fixation by young pea plants (Pisum sativum)

    DEFF Research Database (Denmark)

    Jakobsen, Iver

    1985-01-01

    The influence of P on N2 fixation and dry matter production of young pea (P. sativum L. cv. Bodil) plants grown in a soil-sand mixture was investigated in growth cabinet experiments. Nodule dry weight, specific C2H2 reduction and P concentration in shoots responded to P addition before any growth...... in nodules. Combined N applied to plants when N2 fixation had commenced, increased shoot dry weight only at the highest P levels. The smaller plant growth at the low P levels did not result from N deficiency. The reduced nodulation and N2 fixation in P-deficient plants were apparently caused by impaired...... shoot metabolism and not by a direct effect of P deficiency of the nodules....

  1. Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton.

    Science.gov (United States)

    Cornejo-Castillo, Francisco M; Cabello, Ana M; Salazar, Guillem; Sánchez-Baracaldo, Patricia; Lima-Mendez, Gipsi; Hingamp, Pascal; Alberti, Adriana; Sunagawa, Shinichi; Bork, Peer; de Vargas, Colomban; Raes, Jeroen; Bowler, Chris; Wincker, Patrick; Zehr, Jonathan P; Gasol, Josep M; Massana, Ramon; Acinas, Silvia G

    2016-03-22

    The unicellular cyanobacterium UCYN-A, one of the major contributors to nitrogen fixation in the open ocean, lives in symbiosis with single-celled phytoplankton. UCYN-A includes several closely related lineages whose partner fidelity, genome-wide expression and time of evolutionary divergence remain to be resolved. Here we detect and distinguish UCYN-A1 and UCYN-A2 lineages in symbiosis with two distinct prymnesiophyte partners in the South Atlantic Ocean. Both symbiotic systems are lineage specific and differ in the number of UCYN-A cells involved. Our analyses infer a streamlined genome expression towards nitrogen fixation in both UCYN-A lineages. Comparative genomics reveal a strong purifying selection in UCYN-A1 and UCYN-A2 with a diversification process ∼91 Myr ago, in the late Cretaceous, after the low-nutrient regime period occurred during the Jurassic. These findings suggest that UCYN-A diversified in a co-evolutionary process, wherein their prymnesiophyte partners acted as a barrier driving an allopatric speciation of extant UCYN-A lineages.

  2. Multifaceted Investigation of Metabolites During Nitrogen Fixation in Medicago via High Resolution MALDI-MS Imaging and ESI-MS

    Science.gov (United States)

    Gemperline, Erin; Jayaraman, Dhileepkumar; Maeda, Junko; Ané, Jean-Michel; Li, Lingjun

    2015-01-01

    Legumes have developed the unique ability to establish a symbiotic relationship with soil bacteria known as rhizobia. This interaction results in the formation of root nodules in which rhizobia thrive and reduce atmospheric dinitrogen into plant-usable ammonium through biological nitrogen fixation (BNF). Owing to the availability of genetic information for both of the symbiotic partners, the Medicago truncatula- Sinorhizobium meliloti association is an excellent model for examining the BNF process. Although metabolites are important in this symbiotic association, few studies have investigated the array of metabolites that influence this process. Of these studies, most target only a few specific metabolites, the roles of which are either well known or are part of a well-characterized metabolic pathway. Here, we used a multifaceted mass spectrometric (MS) approach to detect and identify the key metabolites that are present during BNF using the Medicago truncatula- Sinorhizobium meliloti association as the model system. High mass accuracy and high resolution matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) Orbitrap instruments were used in this study and provide complementary results for more in-depth characterization of the nitrogen-fixation process. We used well-characterized plant and bacterial mutants to highlight differences between the metabolites that are present in functional versus nonfunctional nodules. Our study highlights the benefits of using a combination of mass spectrometric techniques to detect differences in metabolite composition and the distributions of these metabolites in plant biology.

  3. Nitrogen isotopes in a global ocean biogeochemical model : constraints on the coupling between denitrification and nitrogen fixation

    OpenAIRE

    Christopher J. Somes

    2009-01-01

    We present a new nitrogen isotope model incorporated into the three-dimensional ocean component of a global Earth System Climate Model designed for millennial timescale simulations. The model includes prognostic tracers for the stable nitrogen isotopes, ¹⁴N and ¹⁵N, in the nitrate (NO₃ˉ), phytoplankton, zooplankton, and detritus variables of the marine ecosystem model. The isotope effects of algal NO₃ˉ assimilation, water column denitrification, and zooplankton excretion are considered as wel...

  4. The daily integral of nitrogen fixation by planktonic cyanobacteria in the Baltic Sea

    NARCIS (Netherlands)

    Stal, L.J.; Walsby, A.E.

    1998-01-01

    Measurements were made of the rates of nitrogenase activity (acetylene reduction) by cyanobacteria collected from the Baltic Sea at 2-h intervals, over a period of 24 h, and incubated under natural light. By relating the chlorophyll- specific rate of N-2 fixation (P-N) to the mean photon irradiance

  5. Long-term warming and litter addition affects nitrogen fixation in a subarctic heath

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Michelsen, Anders

    2011-01-01

    the effects of anticipated global climate change on N fixation rates in a subarctic moist heath, a field experiment was carried out in Northern Sweden. Warming was induced by plastic tents, and in order to simulate the effects of future increased tree cover, birch litter was added each fall for 9 years before...

  6. Incorporation of nitrogen from N2 fixation into amino acids of zooplankton

    DEFF Research Database (Denmark)

    Loick-Wilde, Natalie; Dutz, Jörg; Miltner, Anja

    2012-01-01

    quantified the direct incorporation of 15N tracer from N2-fixing N. spumigena (diazotroph nitrogen) and ammonium-utilizing R. salina into the amino acid nitrogen (AA-N) of zooplankton using complementary gas chromatography– combustion–isotope ratio mass spectrometry, gas chromatography–mass spectrometry...

  7. Appraisal of the nitrogen-15 natural-abundance method for quantifying dinitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Bremer, E.; van Kessel, C. (Univ. of Saskatchewan, Saskatoon (Canada))

    Several investigators have questioned the use of the {sup 15}N natural-abundance method of estimating N{sub 2} fixation because of variability in soil {delta}{sup 15}N and small differences between the {delta}{sup 15}N of soil N and atmospheric N. Investigations were conducted to compare the {sup 15}N natural-abundance and {sup 15}N-isotope-dilution methods for estimating N{sub 2} fixation of field-grown pea (Pisum sativum L.) and lentil (Lens culinaris Medik.). Spatial variability was assessed at three sites by determining the {delta}{sup 15}N of non-N{sub 2}-fixing plants. Seasonal variation in {delta}{sup 15}N for spring and winter wheat (Triticum aestivum L.), flax (Linum usitatissimum L.), barley (Hordeum vulgare L.), rape (Brassica napus L.) and lentil was determined at one site. Comparisons between {delta}{sup 15}N and {sup 15}N-enriched isotope-dilution methods for estimating N{sub 2} fixation by lentil were conducted at several sites over a 3-yr period. Variability in {delta}{sup 15}N of the reference plant was site dependent: the {delta}{sup 15}N ranged from 2.8 to 9.3 at the first site, 3.4 to 8.8 at the second site, and 3.5 to 6.2 at the third site. The average {delta}{sup 15}N of four of the five non-N{sub 2}-fixing plants increased from 5.4 at 42 d after planting to 6.9 at the final harvest. The fifth non-N{sub 2}-fixing plant, rape, accumulated most of its N during the first 42 d after planting, and its {delta}{sup 15}N value declined from 8.1 at 42 d after planting to 7.3 at the final harvest. Estimates of N{sub 2} fixation were not significantly different in 18 out of 21 comparisons; in two comparisons in the {delta}{sup 15}N method and in one comparison the {sup 15}N-enriched method provided higher estimates of N{sub 2} fixation. Overall, both methods appeared to provide equally reliable estimates of N{sub 2} fixation for lentil.

  8. The role of symbiotic nitrogen fixation in nitrogen availability, competition and plant invasion into the sagebrush steppe

    Science.gov (United States)

    Erin M. Goergen

    2009-01-01

    In the semi-arid sagebrush steppe of the Northeastern Sierra Nevada, resources are both spatially and temporally variable, arguably making resource availability a primary factor determining invasion success. N fixing plant species, primarily native legumes, are often relatively abundant in sagebrush steppe and can contribute to ecosystem nitrogen budgets. ...

  9. Yield and nitrogen fixation potential from white lupine grown in rainfed Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Leonardo Sulas

    2016-08-01

    Full Text Available ABSTRACT There is renewed interest in white lupine (Lupinus albus L., which is appreciated for its high protein content, full range of essential amino acids and as N source to rainfed cropping systems. Unfortunately, information on its N2 fixation ability is limited. This study aimed to: (i quantify the N2 fixation ability of white lupine crop at the plot field scale in three different environments of Sardinia (Italy under Mediterranean climate; (ii determine the allocation of the plant-fixed N into different organs; and (iii establish the relationship between fixed N and DM within plant organs. In a 2-year experiment, N2 fixation was estimated using the 15N isotopic dilution method. The productive performances and ability of white lupine to fix N2 widely differed in the three environments; peak values exceeded 300 kg ha−1 of fixed N. There were significant differences in the quantity of fixed N found in each plant organ at physiological maturity with 5, 20, 19 and 57 % of fixed N partitioned to roots, shoots, pod valves and grain, respectively. After grain harvesting, the net N balance ranged from negative values to 160 kg N ha−1. The relationship between fixed N and DM yield indicated 60, 34, 8 and 6 kg of fixed N per t of grain, pod valves, shoots and root, respectively, showing that fixed N preferentially accumulated in seeds at physiological maturity. Due to its high potential for N2 fixation and N benefit, white lupine represents a valuable crop option under rainfed Mediterranean conditions.

  10. Rhizobium-Legume Symbiosis and Nitrogen Fixation under Severe Conditions and in an Arid Climate

    OpenAIRE

    Zahran, Hamdi Hussein

    1999-01-01

    Biological N2 fixation represents the major source of N input in agricultural soils including those in arid regions. The major N2-fixing systems are the symbiotic systems, which can play a significant role in improving the fertility and productivity of low-N soils. The Rhizobium-legume symbioses have received most attention and have been examined extensively. The behavior of some N2-fixing systems under severe environmental conditions such as salt stress, drought stress, acidity, alkalinity, ...

  11. CuO nanoparticles supported on nitrogen and sulfur co-doped graphene nanocomposites for non-enzymatic glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meixia [Hebei University of Engineering, Faculty of Material Science and Engineering (China); Guo, Qingbin, E-mail: guoqingbinhue@163.com [Hebei University of Engineering, Academic Affairs office (China); Xie, Juan; Li, Yongde; Feng, Yapeng [Hebei University of Engineering, Faculty of Material Science and Engineering (China)

    2017-01-15

    Developing highly active catalysts to promote the electrocatalytic glucose oxidation (EGO) is a crucial demand for non-enzymatic glucose sensing. Herein, we reported the use of nitrogen and sulfur co-doped graphene (NSG) as a novel support material for anchoring CuO nanoparticles and obtained CuO/NSG was employed as an efficient EGO catalyst for non-enzymatic glucose sensing. The results showed that the NSG endowed the CuO/NSG with large surface area, increased structural defects, improved conductivity, and strong covalent coupling between NSG and CuO. Owing to the significant contribution of NSG and the synergistic effect of NSG and CuO, the CuO/NSG exhibited a remarkably higher EGO activity than CuO and CuO/reduced graphene oxide. The CuO/NSG-based sensor displayed excellent glucose sensing performances with a considerably low detection limit of 0.07 μM. These findings elucidate that the NSG is a promising support material for non-enzymatic glucose detection.

  12. Discrimination against 15N among recombinant inbred lines of Phaseolus vulgaris L. contrasting in phosphorus use efficiency for nitrogen fixation.

    Science.gov (United States)

    Lazali, Mohamed; Bargaz, Adnane; Carlsson, Georg; Ounane, Sidi Mohamed; Drevon, Jean Jacques

    2014-02-15

    Although isotopic discrimination processes during nitrogen (N) transformations influence the outcome of (15)N based quantification of N2 fixation in legumes, little attention has been given to the effects of genotypic variability and environmental constraints such as phosphorus (P) deficiency, on discrimination against (15)N during N2 fixation. In this study, six Phaseolus vulgaris recombinant inbred lines (RILs), i.e. RILs 115, 104, 34 (P deficiency tolerant) and 147, 83, 70 (P deficiency sensitive), were inoculated with Rhizobium tropici CIAT899, and hydroaeroponically grown with P-sufficient (250 μmol P plant(-1) week(-1)) versus P-deficient (75 μmol P plant(-1) week(-1)) supply. Two harvests were done at 15 (before nodule functioning) and 42 (flowering stage) days after transplanting. Nodulation, plant biomass, P and N contents, and the ratios of (15)N over total N content ((15)N/Nt) for shoots, roots and nodules were determined. The results showed lower (15)N/Nt in shoots than in roots, both being much lower than in nodules. P deficiency caused a larger decrease in (15)N/Nt in shoots (-0.18%) than in nodules (-0.11%) for all of the genotypes, and the decrease in shoots was greatest for RILs 34 (-0.33%) and 104 (-0.25%). Nodule (15)N/Nt was significantly related to both the quantity of N2 fixed (R(2)=0.96***) and the P content of nodules (R(2)=0.66*). We conclude that the discrimination against (15)N in the legume N2-fixing symbiosis of common bean with R. tropici CIAT899 is affected by P nutrition and plant genotype, and that the (15)N/Nt in nodules may be used to screen for genotypic variation in P use efficiency for N2 fixation. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. Studies Regarding the Colonization Capacity of Soils with Permanent Nitrogen Fixating Bacteria, Located on Different Altitudinal Levels

    Directory of Open Access Journals (Sweden)

    Carmen Dragomir

    2012-05-01

    Full Text Available The determination of the colonization capacity with permanent nitrogen fixating bacteria has been achieved indirectly through the method of using soil extracts, taken from the rhizosphere of leguminous species existing in the 4 types of permanent grasslands, located on different altitudinal levels (90m, 330m, 900m, 1800m. Treatments with soil extracts taken have been made at three species of legumes (Lotus corniculatus, Trifolium repens, Trifolium pratense, seeded on a sown perlite layer and grown in the growth chamber. Between the total amount of nodosities formed and the altitude of grasslands there is a negative correlation. At treatments with extracts taken from grasslands situated between 90-330m, there has been observed the highest number of nodosities formed on roots of tested leguminous species.

  14. Biological nitrogen fixation in three long-term organic and conventional arable crop rotation experiments in Denmark

    DEFF Research Database (Denmark)

    Pandey, Arjun; Li, Fucui; Askegaard, Margrethe

    2017-01-01

    Biological nitrogen (N) fixation (BNF) by legumes in organic cropping systems has been perceived as a strategy to substitute N import from conventional sources. However, the N contribution by legumes varies considerably depending on legumes species, as well as local soil and climatic conditions...... of legumes. Therefore, this study aimed to estimate BNF in long-term experiments with a range of organic and conventional arable crop rotations at three sites in Denmark varying in climate and soils (coarse sand, loamy sand and sandy loam) and to identify possible causes of differences in the amount of BNF....... The experiment included 4-year crop rotations with three treatment factors in a factorial design: (i) rotations, i.e. organic with a year of grass-clover (OGC), organic with a year of grain legumes (OGL), and conventional with a year of grain legumes (CGL), (ii) with (+CC) and without (−CC) cover crops, and (iii...

  15. Microgravity Effects on the Early Events of Biological Nitrogen Fixation in Medicago Truncatula: Results from the SyNRGE Experiment

    Science.gov (United States)

    Stutte, Gary W.; Roberts, Michael S.

    2013-02-01

    SyNRGE (Symbiotic Nodulation in a Reduced Gravity Environment) was a sortie mission on STS-135 in the Biological Research in Canisters (BRIC) hardware to study the effect of μg on a plant-microbe symbiosis resulting in biological nitrogen fixation. Medicago truncatula, a model species for the legume family, was inoculated with its bacterial symbiont, Sinorhizobium meliloti, to observe early biomolecular events associated with infection and nodulation in Petri Dish Fixation Units (PDFU’s). Two sets of experiments were conducted in orbit and in 24-hour delayed ground controls. Experiments were designed to determine if S. meliloti would infect M. truncatula and initiate biomolecular changes associated with nodule formation and if the μg environment altered the host plant and/or bacteria to induce nodule formation upon return to 1g. Initial analysis results demonstrate that the legumes and bacteria cultivated in μg have potential to develop a symbiotic interaction, but suggest that μg alters their ability to form nodules upon return to 1g. (Research supported by NASA ESMD/ Advance Capabilities Division grant NNX10AR09A)

  16. EnviroAtlas - Cultivated biological nitrogen fixation in agricultural lands by 12-digit HUC in the Conterminous United States, 2006

    Science.gov (United States)

    This EnviroAtlas dataset contains data on the mean cultivated biological nitrogen fixation (C-BNF) in cultivated crop and hay/pasture lands per 12-digit Hydrologic Unit (HUC) in 2006. Nitrogen (N) inputs from the cultivation of legumes, which possess a symbiotic relationship with N-fixing bacteria, were calculated with a recently developed model relating county-level yields of various leguminous crops with BNF rates. We accessed county-level data on annual crop yields for soybeans (Glycine max L.), alfalfa (Medicago sativa L.), peanuts (Arachis hypogaea L.), various dry beans (Phaseolus, Cicer, and Lens spp.), and dry peas (Pisum spp.) for 2006 from the USDA Census of Agriculture (http://www.agcensus.usda.gov/index.php). We estimated the yield of the non-alfalfa leguminous component of hay as 32% of the yield of total non-alfalfa hay (http://www.agcensus.usda.gov/index.php). Annual rates of C-BNF by crop type were calculated using a model that relates yield to C-BNF. We assume yield data reflect differences in soil properties, water availability, temperature, and other local and regional factors that can influence root nodulation and rate of N fixation. We distributed county-specific, C-BNF rates to cultivated crop and hay/pasture lands delineated in the 2006 National Land Cover Database (30 x 30 m pixels) within the corresponding county. C-BNF data described here represent an average input to a typical agricultural land type within a county, i.e., they are not

  17. Effect of light on N2 fixation and net nitrogen release of Trichodesmium in a field study

    Science.gov (United States)

    Lu, Yangyang; Wen, Zuozhu; Shi, Dalin; Chen, Mingming; Zhang, Yao; Bonnet, Sophie; Li, Yuhang; Tian, Jiwei; Kao, Shuh-Ji

    2018-01-01

    Dinitrogen fixation (NF) by marine cyanobacteria is an important pathway to replenish the oceanic bioavailable nitrogen inventory. Light is the key to modulating NF; however, field studies investigating the light response curve (NF-I curve) of NF rate and the effect of light on diazotroph-derived nitrogen (DDN) net release are relatively sparse in the literature, hampering prediction using models. A dissolution method was applied using uncontaminated 15N2 gas to examine how the light changes may influence the NF intensity and DDN net release in the oligotrophic ocean. Experiments were conducted at stations with diazotrophs dominated by filamentous cyanobacterium Trichodesmium spp. in the western Pacific and the South China Sea. The effect of light on carbon fixation (CF) was measured in parallel using the 13C tracer method specifically for a station characterized by Trichodesmium bloom. Both NF-I and CF-I curves showed a Ik (light saturation coefficient) range of 193 to 315 µE m-2 s-1, with light saturation at around 400 µE m-2 s-1. The proportion of DDN net release ranged from ˜ 6 to ˜ 50 %, suggesting an increasing trend as the light intensity decreased. At the Trichodesmium bloom station, we found that the CF / NF ratio was light-dependent and the ratio started to increase as light was lower than the carbon compensation point of 200 µE m-2 s-1. Under low-light stress, Trichodesmium physiologically preferred to allocate more energy for CF to alleviate the intensive carbon consumption by respiration; thus, there is a metabolism tradeoff between CF and NF pathways. Results showed that short-term ( < 24 h) light change modulates the physiological state, which subsequently determined the C / N metabolism and DDN net release by Trichodesmium. Reallocation of energy associated with the variation in light intensity would be helpful for prediction of the global biogeochemical cycle of N by models involving Trichodesmium blooms.

  18. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions

    Science.gov (United States)

    Kuan, Khing Boon; Othman, Radziah; Abdul Rahim, Khairuddin; Shamsuddin, Zulkifli H.

    2016-01-01

    Plant growth-promoting rhizobacteria (PGPR) may provide a biological alternative to fix atmospheric N2 and delay N remobilisation in maize plant to increase crop yield, based on an understanding that plant-N remobilisation is directly correlated to its plant senescence. Thus, four PGPR strains were selected from a series of bacterial strains isolated from maize roots at two locations in Malaysia. The PGPR strains were screened in vitro for their biochemical plant growth-promoting (PGP) abilities and plant growth promotion assays. These strains were identified as Klebsiella sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1 and Acinetobacter sp. S3r2 and a reference strain used was Bacillus subtilis UPMB10. All the PGPR strains were tested positive for N2 fixation, phosphate solubilisation and auxin production by in vitro tests. In a greenhouse experiment with reduced fertiliser-N input (a third of recommended fertiliser-N rate), the N2 fixation abilities of PGPR in association with maize were determined by 15N isotope dilution technique at two harvests, namely, prior to anthesis (D50) and ear harvest (D65). The results indicated that dry biomass of top, root and ear, total N content and bacterial colonisations in non-rhizosphere, rhizosphere and endosphere of maize roots were influenced by PGPR inoculation. In particular, the plants inoculated with B. pumilus S1r1 generally outperformed those with the other treatments. They produced the highest N2 fixing capacity of 30.5% (262 mg N2 fixed plant−1) and 25.5% (304 mg N2 fixed plant−1) of the total N requirement of maize top at D50 and D65, respectively. N remobilisation and plant senescence in maize were delayed by PGPR inoculation, which is an indicative of greater grain production. This is indicated by significant interactions between PGPR strains and time of harvests for parameters on N uptake and at. % 15Ne of tassel. The phenomenon is also supported by the lower N content in tassels of maize treated

  19. Metabolic adaptation, a specialized leaf organ structure and vascular responses to diurnal N2 fixation by nostoc azollae sustain the astonishing productivity of azolla ferns without nitrogen fertilizer

    NARCIS (Netherlands)

    Brouwer, Paul; Bräutigam, Andrea; Buijs, Valerie A.; Tazelaar, Anne O.E.; van der Werf, Adrie; Schlüter, Urte; Reichart, Gert-Jan; Bolger, Anthony; Usadel, Björn; Weber, Andreas P.M.; Schluepmann, Henriette

    2017-01-01

    Sustainable agriculture demands reduced input of man-made nitrogen (N) fertilizer, yet N2 fixation limits the productivity of crops with heterotrophic diazotrophic bacterial symbionts. We investigated floating ferns from the genus Azolla that host phototrophic diazotrophic Nostoc azollae in leaf

  20. Co-inoculation of a Pea Core-Collection with Diverse Rhizobial Strains Shows Competitiveness for Nodulation and Efficiency of Nitrogen Fixation Are Distinct traits in the Interaction

    Directory of Open Access Journals (Sweden)

    Virginie Bourion

    2018-01-01

    Full Text Available Pea forms symbiotic nodules with Rhizobium leguminosarum sv. viciae (Rlv. In the field, pea roots can be exposed to multiple compatible Rlv strains. Little is known about the mechanisms underlying the competitiveness for nodulation of Rlv strains and the ability of pea to choose between diverse compatible Rlv strains. The variability of pea-Rlv partner choice was investigated by co-inoculation with a mixture of five diverse Rlv strains of a 104-pea collection representative of the variability encountered in the genus Pisum. The nitrogen fixation efficiency conferred by each strain was determined in additional mono-inoculation experiments on a subset of 18 pea lines displaying contrasted Rlv choice. Differences in Rlv choice were observed within the pea collection according to their genetic or geographical diversities. The competitiveness for nodulation of a given pea-Rlv association evaluated in the multi-inoculated experiment was poorly correlated with its nitrogen fixation efficiency determined in mono-inoculation. Both plant and bacterial genetic determinants contribute to pea-Rlv partner choice. No evidence was found for co-selection of competitiveness for nodulation and nitrogen fixation efficiency. Plant and inoculant for an improved symbiotic association in the field must be selected not only on nitrogen fixation efficiency but also for competitiveness for nodulation.

  1. Growth and nitrogen fixation of legumes at increased salinity under field conditions: implications for the use of green manures in saline environments

    NARCIS (Netherlands)

    Bruning, B.; van Logtestijn, R.S.P; Broekman, R.A.; de Vos, A.C.; Parra González, A.; Rozema, J.

    2015-01-01

    The use of legumes as green manure can potentially increase crop productivity in saline environments and thus contribute to the sustainability of agricultural systems. Here, we present results from a field experiment conducted in the Netherlands that addressed the efficiency of nitrogen (N) fixation

  2. Growth and nitrogen fixation of legumes at increased salinity under field conditions: implications for the use of green manures in saline environments

    NARCIS (Netherlands)

    Bruning, B.; van Logtestijn, R.; Broekman, R.; de Vos, A.; Parra Gonzàlez, A.; Rozema, J.

    2015-01-01

    The use of legumes as green manure can potentially increase crop productivity in saline environmentsand thus contribute to the sustainability of agricultural systems. Here, we present results from a field experimentconducted in the Netherlands that addressed the efficiency of nitrogen (N) fixation

  3. A Medicago truncatula Tobacco Retrotransposon Insertion Mutant Collection with Defects in Nodule Development and Symbiotic Nitrogen Fixation1[W][OA

    Science.gov (United States)

    Pislariu, Catalina I.; D. Murray, Jeremy; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; A. Benedito, Vagner; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E.; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S.; Chen, Rujin; Udvardi, Michael K.

    2012-01-01

    A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod−), 51 mutants with totally ineffective nodules (Nod+ Fix−), 17 mutants with partially ineffective nodules (Nod+ Fix+/−), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/− Fix−), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/− Fix+), and 11 supernodulating mutants (Nod++Fix+/−). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN’T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod− lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging. PMID:22679222

  4. Physiological and isotopic characteristics of nitrogen fixation by hyperthermophilic methanogens: Key insights into nitrogen anabolism of the microbial communities in Archean hydrothermal systems

    Science.gov (United States)

    Nishizawa, Manabu; Miyazaki, Junichi; Makabe, Akiko; Koba, Keisuke; Takai, Ken

    2014-08-01

    Hyperthermophilic hydrogenotrophic methanogens are considered to be one of the most predominant primary producers in hydrogen (H2)-abundant hydrothermal environments in the present-day ocean and throughout the history of the Earth. However, the nitrogen sources supporting the development of microbial communities in hydrothermal environments remain poorly understood. We have investigated, for the first time, methanogenic archaea commonly found in deep-sea hydrothermal environments to understand their physiological properties (growth kinetics, energetics, and metal requirements) and isotopic characteristics during the fixation of dinitrogen (N2), which is an abundant but less-bioavailable compound in hydrothermal fluids. Culture experiments showed that Methanocaldococcus strain (Mc 1-85N) (Topt = 85 °C) and Methanothermococcus strain (Mt 5-55N) (Topt = 55 °C) assimilated N2 and ammonium, but not nitrate. Previous phylogenetic studies have predicted that the Methanocaldococcus and Methanothermococcus lineages have nitrogenases, key enzymes for N2 fixation, with biochemically uncharacterised active site metal cofactors. We showed that Mt 5-55N required molybdenum for the nitrogenase to function, implying a molybdenum-bearing cofactor in the strain. Molybdenum also stimulated diazotrophic (i.e., N2-fixing) growth of Mc 1-85N, though further experiments are required to test whether the strain contains a molybdenum-dependent nitrogenase. Importantly, Mc 1-85N exhibited an apparently lower requirement of and higher tolerance to molybdenum and iron than Mt 5-55N. Furthermore, both strains produced more 15N-depleted biomass (-4‰ relative to N2) than that previously reported for diazotrophic photosynthetic prokaryotes. These results demonstrate that diazotrophic hyperthermophilic methanogens can be broadly distributed in seafloor and subseafloor hydrothermal environments, where the availability of transition metals is variable and where organic carbon, organic nitrogen

  5. Biological nitrogen fixation by lucerne (Medicago sativa L.) in acid soils

    NARCIS (Netherlands)

    Pijnenborg, J.

    1990-01-01

    Growth of lucerne( Medicago sativa L.) is poor in soils with values of pH-H2O below 6. This is often due to nitrogen deficiency, resulting from a hampered performance of the symbiosis withRhizobium

  6. Modeling the dynamic regulation of nitrogen fixation in the cyanobacterium Trichodesmium sp.

    NARCIS (Netherlands)

    Rabouille, S.A.M.; Staal, M.J.; Stal, L.J.; Soetaert, K.E.R.

    2006-01-01

    A physiological, unbalanced model is presented that explicitly describes growth of the marine cyanobacterium Trichodesmium sp. at the expense of N2 (diazotrophy). The model involves the dynamics of intracellular reserves of carbon and nitrogen and allows the uncoupling of the metabolism of these

  7. Occurrence, structure, and nitrogen-fixation of root nodules of actinorhizal Arizona alder

    Science.gov (United States)

    J. O. Dawson; Gerald J. Gottfried; D. Hahn

    2005-01-01

    Actinorhizal plants are nodulated by the symbiotic, nitrogen-fixing actinomycete Frankia. The genus Alnus in the family Betulaceae is one of the 24 genera in 8 families of angiospermous plants that are actinorhizal. Arizona alder (Alnus oblongifolia Torr.) occurs in isolated populations associated with the watersheds of Madrean Sky Islands in the...

  8. The Effects of Salinity and Sodicity upon Nodulation and Nitrogen Fixation in Chickpea

    NARCIS (Netherlands)

    Rao, D.L.N.; Giller, K.E.; Yeo, A.R.; Flowers, T.J.

    2002-01-01

    Production of grain legumes is severely reduced in salt-affected soils because their ability to form and maintain nitrogen-fixing nodules is impaired by both salinity and sodicity (alkalinity). Genotypes of chickpea, Cicer arietinum, with high nodulation capacity under stress were identified by

  9. The effect of soil carbon on symbiotic nitrogen fixation and symbiotic ...

    African Journals Online (AJOL)

    Soil organic carbon (SOC) is the main attribute of high-quality soil. The amount of nitrogen fixed by Rhizobium symbiotically with Trifolium repens (white clover) is ultimately determined by the quality of the soil environment. The effect of SOC on the total number of symbiotic and saprophytic rhizobia was determined.

  10. Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle

    Science.gov (United States)

    Sullivan, Benjamin W.; Smith, William K.; Townsend, Alan R.; Nasto, Megan K.; Reed, Sasha C.; Chazdon, Robin L.; Cleveland, Cory C.

    2014-01-01

    Biological nitrogen fixation (BNF) is the largest natural source of exogenous nitrogen (N) to unmanaged ecosystems and also the primary baseline against which anthropogenic changes to the N cycle are measured. Rates of BNF in tropical rainforest are thought to be among the highest on Earth, but they are notoriously difficult to quantify and are based on little empirical data. We adapted a sampling strategy from community ecology to generate spatial estimates of symbiotic and free-living BNF in secondary and primary forest sites that span a typical range of tropical forest legume abundance. Although total BNF was higher in secondary than primary forest, overall rates were roughly five times lower than previous estimates for the tropical forest biome. We found strong correlations between symbiotic BNF and legume abundance, but we also show that spatially free-living BNF often exceeds symbiotic inputs. Our results suggest that BNF in tropical forest has been overestimated, and our data are consistent with a recent top-down estimate of global BNF that implied but did not measure low tropical BNF rates. Finally, comparing tropical BNF within the historical area of tropical rainforest with current anthropogenic N inputs indicates that humans have already at least doubled reactive N inputs to the tropical forest biome, a far greater change than previously thought. Because N inputs are increasing faster in the tropics than anywhere on Earth, both the proportion and the effects of human N enrichment are likely to grow in the future.

  11. Possible roles of nitrogen fixation and mineral uptake induced by rhizobacterial inoculation on salt tolerance of maize.

    Science.gov (United States)

    El-Komy, Hesham M A; Abdel-Samad, Hamdia M; Hetta, Ahmed M A; Barakat, Nasser A

    2004-01-01

    Pot experiments were conducted to evaluate the possible roles of nitrogen fixation and/or enhanced mineral uptake by Azospirillum lipoferum and Bacillus polymexa inoculation in improving salt tolerance of maize plants. Plants were inoculated and grown under salt stress (osmotic potential: -0.3, -0.6, -0.9 and -1.2 Mpa). Both microorganisms were able to fix nitrogen up to -0.9 Mpa salinity level accompanied with increased total N-yield compared with the control plants. In order to investigate the role of bacterial inoculation on enhanced mineral uptake, the growth and some physiological parameters of inoculated plants were compared with plants fertilized by K and P foliar application. Plant inoculation with the N2-fixers or plant spraying with KH2PO4 resulted in an increase in fresh and dry matter as well as water content of plants. Treated plants exhibited changed plant mineral content which was associated with increased Mg/K and decreased P/K, Ca/K and Na/K ratios. This was accompanied by accumulation of soluble sugars, amino acids in shoots and roots of plants resulting in a concomitant increase in the osmotic potential of the cell sap as a possible mechanism of adaptation to salinity.

  12. Effect of Rhizobium sp. BARIRGm901 inoculation on nodulation, nitrogen fixation and yield of soybean (Glycine max) genotypes in gray terrace soil.

    Science.gov (United States)

    Alam, Faridul; Bhuiyan, M A H; Alam, Sadia Sabrina; Waghmode, Tatoba R; Kim, Pil Joo; Lee, Yong Bok

    2015-01-01

    Soybean plants require high amounts of nitrogen, which are mainly obtained from biological nitrogen fixation. A field experiment was conducted by soybean (Glycine max) genotypes, growing two varieties (Shohag and BARI Soybean6) and two advanced lines (MTD10 and BGM02026) of soybean with or without Rhizobium sp. BARIRGm901 inoculation. Soybean plants of all genotypes inoculated with Rhizobium sp. BARIRGm901 produced greater nodule numbers, nodule weight, shoot and root biomass, and plant height than non-inoculated plants. Similarly, inoculated plants showed enhanced activity of nitrogenase (NA) enzyme, contributing to higher nitrogen fixation and assimilation, compared to non-inoculated soybean plants in both years. Plants inoculated with Rhizobium sp. BARIRGm901 also showed higher pod, stover, and seed yield than non-inoculated plants. Therefore, Rhizobium sp. BARIRGm901 established an effective symbiotic relationship with a range of soybean genotypes and thus increased the nodulation, growth, and yield of soybean grown in gray terrace soils in Bangladesh.

  13. Facultative anoxygenic photosynthesis in cyanobacteria driven by arsenite and sulfide with evidence for the support of nitrogen fixation

    Science.gov (United States)

    Wolfe-Simon, F.; Hoeft, S. E.; Baesman, S. M.; Oremland, R. S.

    2010-12-01

    The rise in atmospheric oxygen (O2) over geologic time is attributed to the evolution and widespread proliferation of oxygenic photosynthesis in cyanobacteria. However, cyanobacteria maintain a metabolic flexibility that may not always result in O2 release. In the environment, cyanobacteria may use a variety of alternative electron donors rather than water that are known to be used by other anoxygenic phototrophs (eg. purple sulfur bacteria) including reduced forms of sulfur, iron, nitrogen, and arsenic. Recent evidence suggests cyanobacteria actively take advantage of at least a few of these alternatives. We used a classical Winogradsky approach to enrich for cyanobacteria from the high salinity, elevated pH and arsenic-enriched waters of Mono Lake (CA). Experiments, optimized for cyanobacteria, revealed light-dependent, anaerobic arsenite-oxidation in sub-cultured sediment-free enrichments dominated by a filamentous cyanobacteria. We isolated and identified the dominant member of this enrichment to be a member of the Oscillatoriales by 16S rDNA. Addition of 1 mM arsenite induced facultative anoxygenic photosynthesis under continuous and circadian light. This isolate also oxidized sulfide under the same light-based conditions. Aerobic conditions elicited no arsenite oxidation in the light or dark and the isolate grew as a typical cyanobacterium using oxygenic photosynthesis. Under near-infrared light (700 nm) there was a direct correlation of enhanced growth with an increase in the rate arsenite or sulfide oxidation suggesting the use of photosystem I. Additionally, to test the wide-spread nature of this metabolism in the Oscillatoriales, we followed similar arsenite- and sulfide-driven facultative anoxygenic photosynthesis as well as nitrogen fixation (C2H2 reduction) in the axenic isolate Oscillatoria sp. CCMP 1731. Future characterization includes axenic isolation of the Mono Lake Oscillatoria sp. as well as the arsenite oxidase responsible for electron

  14. Arbuscular Mycorrhiza Stimulates Biological Nitrogen Fixation in Two Medicago spp. through Improved Phosphorus Acquisition

    Czech Academy of Sciences Publication Activity Database

    Püschel, David; Janoušková, M.; Voříšková, A.; Gryndlerová, Hana; Vosátka, M.; Jansa, Jan

    2017-01-01

    Roč. 8, MAR 27 (2017), s. 1-12, č. článku 390. ISSN 1664-462X R&D Projects: GA ČR GA15-05466S; GA MŠk(CZ) LK11224 Institutional support: RVO:61388971 Keywords : arbuscular mycorrhiza * nitrogen acquisition * phosphorus uptake Subject RIV: EE - Microbiology, Virology Impact factor: 4.298, year: 2016

  15. Interactions between Nitrogen Fixation and Methane Cycling in Northern Minnesota Peat Bogs

    Science.gov (United States)

    Warren, M. J.; Gaby, J. C.; Lin, X.; Morton, P. L.; Kostka, J. E.; Glass, J. B.

    2014-12-01

    Peatlands cover only 3% of the Earth's surface, yet store a third of soil carbon. Increasing global temperatures have the potential to change peatlands from a net sink to a net source of atmospheric carbon. N is a limiting nutrient in oligotrophic Sphagnum-dominated peatlands and biological N2 fixation likely supplies a significant but unknown fraction of N inputs. Moreover, environmental controls on diazotrophic community composition in N-limited peatlands are poorly constrained. Thus, improved understanding of feedbacks between the CH4 and N cycles is critical for predicting future changes to CH4 flux from peat bogs. We coupled measurements of N2 fixation activity measured by the acetylene (C2H2) reduction assay (ARA) with molecular analyses of expression and diversity of nifH genes encoding the molybdenum (Mo)-containing nitrogenase from two peat bogs in the Marcell Experimental Forest, Minnesota, USA. The top 10 cm of peat was sampled from the high CH4 flux S1 bog and the low CH4 flux Zim bog in April and June 2014. Despite similar N concentrations in the top 10 cm of both bogs (0.5-1.0 μM NO2-+NO3- and 2-3 μM NH4+), the S1 bog displayed variable ARA activity (1-100 nmol C2H4 h-1 g-1) whereas the Zim bog had consistently low ARA activity (hollows with higher moisture content incubated without O2 in the light (20-100 nmol C2H4 h-1 g-1). Dissolved Fe (1-25 μM) was higher in hollow vs. hummock samples, and at S1 vs. Zim bog, while dissolved V (4-14 nM) was consistently higher than Mo (1-4 nM), suggesting that alternative V or Fe-containing nitrogenases might be present in these bogs. In contrast, Cu, an essential micronutrient for aerobic methanotrophs, was higher in hummocks (25-48 nM) than hollows (6-17 nM). The facultative methanotroph Methylocella was the dominant diazotroph in the S1 bog based on high throughput next generation sequencing of nifH cDNA amplicons. Given previous reports of C2H2 inhibition of methanotrophy, we measured CH4 consumption in the

  16. Rhizobial Plasmids That Cause Impaired Symbiotic Nitrogen Fixation and Enhanced Host Invasion

    Science.gov (United States)

    Crook, Matthew B.; Lindsay, Daniel P.; Biggs, Matthew B.; Bentley, Joshua S.; Price, Jared C.; Clement, Spencer C.; Clement, Mark J.; Long, Sharon R.; Griffitts, Joel S.

    2015-01-01

    The genetic rules that dictate legume-rhizobium compatibility have been investigated for decades, but the causes of incompatibility occurring at late stages of the nodulation process are not well understood. An evaluation of naturally diverse legume (genus Medicago) and rhizobium (genus Sinorhizobium) isolates has revealed numerous instances in which Sinorhizobium strains induce and occupy nodules that are only minimally beneficial to certain Medicago hosts. Using these ineffective strain-host pairs, we identified gain-of-compatibility (GOC) rhizobial variants. We show that GOC variants arise by loss of specific large accessory plasmids, which we call HR plasmids due to their effect on symbiotic host range. Transfer of HR plasmids to a symbiotically effective rhizobium strain can convert it to incompatibility, indicating that HR plasmids can act autonomously in diverse strain backgrounds. We provide evidence that HR plasmids may encode machinery for their horizontal transfer. On hosts in which HR plasmids impair N fixation, the plasmids also enhance competitiveness for nodule occupancy, showing that naturally occurring, transferrable accessory genes can convert beneficial rhizobia to a more exploitative lifestyle. This observation raises important questions about agricultural management, the ecological stability of mutualisms, and the genetic factors that distinguish beneficial symbionts from parasites. PMID:22746823

  17. Rhizobial plasmids that cause impaired symbiotic nitrogen fixation and enhanced host invasion.

    Science.gov (United States)

    Crook, Matthew B; Lindsay, Daniel P; Biggs, Matthew B; Bentley, Joshua S; Price, Jared C; Clement, Spencer C; Clement, Mark J; Long, Sharon R; Griffitts, Joel S

    2012-08-01

    The genetic rules that dictate legume-rhizobium compatibility have been investigated for decades, but the causes of incompatibility occurring at late stages of the nodulation process are not well understood. An evaluation of naturally diverse legume (genus Medicago) and rhizobium (genus Sinorhizobium) isolates has revealed numerous instances in which Sinorhizobium strains induce and occupy nodules that are only minimally beneficial to certain Medicago hosts. Using these ineffective strain-host pairs, we identified gain-of-compatibility (GOC) rhizobial variants. We show that GOC variants arise by loss of specific large accessory plasmids, which we call HR plasmids due to their effect on symbiotic host range. Transfer of HR plasmids to a symbiotically effective rhizobium strain can convert it to incompatibility, indicating that HR plasmids can act autonomously in diverse strain backgrounds. We provide evidence that HR plasmids may encode machinery for their horizontal transfer. On hosts in which HR plasmids impair N fixation, the plasmids also enhance competitiveness for nodule occupancy, showing that naturally occurring, transferrable accessory genes can convert beneficial rhizobia to a more exploitative lifestyle. This observation raises important questions about agricultural management, the ecological stability of mutualisms, and the genetic factors that distinguish beneficial symbionts from parasites.

  18. The role of nitrogen fixation in intensive forestry in Canada. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, J.A.; Chatarpaul, L.; Carlisle, A.

    1983-01-01

    A program of work was funded to provide the scientific and technological basis for future use of nitrogen-fixing plants to maintain soil fertility and increase yield in intensive forestry systems. This work also examined some of the of propagation, planting, and pests and diseases encountered during establishment. Field experiments consisting of Alnus and other tree species on a variety of sites and at different spacings were established for future use. Preliminary results indicated that alders greatly increased the yield of hybrid poplar. Alder also contributed litter to the soil and improved leaf size and nitrogen status of associated Albies balsmea. Nitrofication occurred in the acid alder humus. Methods were developed to: isolate and culture Frankia symbionts, test their effectiveness, store the symbionts in a gene bank, and inoculate them on a large operational scale. Sporulating and non-sporulating strains of Frankia were differentiated and the ability to sporulate, as well as the spectrum of sugars, has been suggested as a basis for Frankia taxonomy. Operational use of inoculated alders indicates that a good supply of phosphorus is vital to the success of the alder. Populus balsamifera leaf and bud leachates were found to contain phenolic acids and had allelopathic effects on alder. It was found that both Alnus crispa and Alnus ruqosa formed ectomycorrhiza with epidermal Hartig nets in conjunction with several fungal partners. The form of these ectomycorrhizae differed from those on the Pinaceae with cortical nets. Some of the ectomycorrhizal fungi on older form symbioses with other trees and shrubs. The possibility that the network of hyphae in forest soils act as a pathway for fixed nitrogen was tested. Appendices contain biomass and nutrient regression equations. 60 refs., 101 tabs.

  19. Effect of organic fertiliser residues from rice production on nitrogen fixation of soya (Glycine max L. Merrill, Chiang Mai 60 variety

    Directory of Open Access Journals (Sweden)

    Nattida Luangmaka

    2013-09-01

    Full Text Available A field study was undertaken on the residual effect of organic fertilisers applied to the preceding rice cropping on nitrogen fixation of soya in a rice-soya cropping system. The experiment was conducted on a farmer’s lowland paddy in Mae Rim district, Chiang Mai province, Thailand. Organic fertiliser treatments assigned were: 1 control (no fertiliser, 2 animal manure of cattle (AM, 3 compost (CP, 4 azolla (AZ, 5 AM + CP, 6 AM + AZ, 7 CP + AZ and 8 AM + CP + AZ. Soya seeds were planted without rhizobial inoculation in December 2011, four months after the application of organic fertilisers. Nodule weight, total shoot nitrogen accumulation and relative ureide index at various growth stages were recorded as the indices of nitrogen fixation. Results of the study demonstrate that the residues from the application the organic fertilisers of narrow C/N ratios during the land preparation for rice cropping four months before soya cultivation promoted nitrogen fixation by native rhizobia.

  20. Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhiza fungi

    DEFF Research Database (Denmark)

    Cruz, C.; Egsgaard, Helge; Trujillo, C.

    2007-01-01

    Key enzymes of the urea cycle and N-15-labeling patterns of arginine (Arg) were measured to elucidate the involvement of Arg in nitrogen translocation by arbuscular mycorrhizal (AM) fungi. Mycorrhiza was established between transformed carrot (Daucus carota) roots and Glomus intraradices in two- ...

  1. Nitrogen-Dependent Carbon Fixation by Picoplankton In Culture and in the Mississippi River

    Energy Technology Data Exchange (ETDEWEB)

    Aubrey Smith; Marguerite W. Coomes; Thomas E. Smith

    2005-04-30

    The pepc gene, which encodes phosphoenolpyruvate carboxylase (PEPC), of the marine cyanobacterium Synechococcus PCC 7002, was isolated and sequenced. PEPC is an anaplerotic enzyme, but it may also contribute to overall CO2 fixation through β-carboxylation reactions. A consensus sequence generated by aligning the pepc genes of Anabaena variabilis, Anacystis nidulans and Synechocystis PCC 6803 was used to design two sets of primers that were used to amplify segments of Synechococcus PCC 7002 pepc. In order to isolate the gene, the sequence of the PCR product was used to search for the pepc nucleotide sequence from the publicly available genome of Synechococcus PCC 7002. At the time, the genome for this organism had not been completed although sequences of a significant number of its fragments are available in public databases. Thus, the major challenge was to find the pepc gene among those fragments and to complete gaps as necessary. Even though the search did not yield the complete gene, PCR primers were designed to amplify a DNA fragment using a high fidelity thermostable DNA polymerase. An open reading frame (ORF) consisting of 2988 base pairs coding for 995 amino acids was found in the 3066 bp PCR product. The pepc gene had a GC content of 52% and the deduced protein had a calculated molecular mass of 114,049 Da. The amino acid sequence was closely related to that of PEPC from other cyanobacteria, exhibiting 59-61% identity. The sequence differed significantly from plant and E. coli PEPC with only 30% homology. However, comparing the Synechococcus PCC 7002 sequence to the recently resolved E. coli PEPC revealed that most of the essential domains and amino acids involved in PEPC activity were shared by both proteins. The recombinant Synechococcus PCC 7002 PEPC was expressed in E. coli.

  2. Ecosystem nitrogen fixation throughout the snow-free period in subarctic tundra: effects of willow and birch litter addition and warming.

    Science.gov (United States)

    Rousk, Kathrin; Michelsen, Anders

    2017-04-01

    Nitrogen (N) fixation in moss-associated cyanobacteria is one of the main sources of available N for N-limited ecosystems such as subarctic tundra. Yet, N2 fixation in mosses is strongly influenced by soil moisture and temperature. Thus, temporal scaling up of low-frequency in situ measurements to several weeks, months or even the entire growing season without taking into account changes in abiotic conditions cannot capture the variation in moss-associated N2 fixation. We therefore aimed to estimate moss-associated N2 fixation throughout the snow-free period in subarctic tundra in field experiments simulating climate change: willow (Salix myrsinifolia) and birch (Betula pubescens spp. tortuosa) litter addition, and warming. To achieve this, we established relationships between measured in situ N2 fixation rates and soil moisture and soil temperature and used high-resolution measurements of soil moisture and soil temperature (hourly from May to October) to model N2 fixation. The modelled N2 fixation rates were highest in the warmed (2.8 ± 0.3 kg N ha-1 ) and birch litter addition plots (2.8 ± 0.2 kg N ha-1 ), and lowest in the plots receiving willow litter (1.6 ± 0.2 kg N ha-1 ). The control plots had intermediate rates (2.2 ± 0.2 kg N ha-1 ). Further, N2 fixation was highest during the summer in the warmed plots, but was lowest in the litter addition plots during the same period. The temperature and moisture dependence of N2 fixation was different between the climate change treatments, indicating a shift in the N2 fixer community. Our findings, using a combined empirical and modelling approach, suggest that a longer snow-free period and increased temperatures in a future climate will likely lead to higher N2 fixation rates in mosses. Yet, the consequences of increased litter fall on moss-associated N2 fixation due to shrub expansion in the Arctic will depend on the shrub species' litter traits. © 2016 John Wiley & Sons Ltd.

  3. Radiation application for upgrading of bioresources - Development of antifungal and-or nitrogen fixative microbes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sung; Kim, Soo Ki; Lee, Sung Ho; Lee, Jung Suk [Paichai University, Taejon (Korea)

    1999-04-01

    (1) In this study, the antifungal bacterial eight strains were isolated from various environment located in Chung-cheong area, Korea. These isolates were identified the genera Bacillus sp, Pseudomonas sp. through morphological, physiological and biochemical analysis. Especially, strain KL2143, 2367 were identified as Bacillus subtilis (KL2143/KL2367) and strain KL2326, KL2314 identified as Pseudomonas aurantiaca have never been reported internationally. Considering antifungal(AF) spectrum of strain KL2143 show the broad range of AF activity on a number of pathogenic fungi. Therefore, strain KL2143 was selected with the strong candidate of antifungal bacteria on every purpose and usage related with our research goal. (2) Optimal conditions for the production of antifungal material were analyzed under various environmental conditions (carbon source, nitrogen source, phosphate concentration, pH, temperature, amino acids, vitamins). Growth rates were different according to carbon and nitrogen source, antifungal material production yield were not different, however. Product of antifungal material according to phosphate is proportional to concentration; the higher in high concentration and the low in lower concentration. And productivity of antifungal material is was generally high in the range 30 - 37 deg C at pH7 and in case of adding vitamin B12, lysine and aginine to medium it was enhanced. (3) Moreover, bio-degradability upon agricultural substance and organic substances by AF bacteria was strikingly effective. (4) AF stains were screened and selected from this research can be used in the microbial biocides as well as multifunctional bio-controllers in order to remove plant pathogenic fungi and to clarify the polluted environment. Due to their excellent degradation capability for agricultural and/or organic substances, they also can be used to improve soil quality, to ferment compost and to clean up the environment. (5) Establishment of a new technology for the

  4. Nitrogen Fixation Associated with Suillus tomentosus Tuberculate Ectomycorrhizae on Pinus contorta var. latifolia

    Science.gov (United States)

    Paul, L. R.; Chapman, B. K.; Chanway, C. P.

    2007-01-01

    Background and Aims Tuberculate ectomycorrhizae are a unique form of ectomycorrhiza where densely packed clusters of mycorrhizal root tips are enveloped by a thick hyphal sheath to form a tubercle. The functional significance of such a unique structure has not previously been established. The purpose of the present study was to investigate and measure the potential nitrogenase activity associated with Suillus tomentosus/Pinus contorta tuberculate ectomycorrhizae in two stand ages, young and old, and across a range of nitrogen-poor soil conditions. Methods Short roots were compared with other mycorrhizae and non-mycorrhizal secondary roots using tuberculate ectomycorrhizae. Assessment of nitrogenase activity was determined and quantitative measurements were taken on tuberculate ectomycorrhizae in situ in a variety of different circumstances, by using an adaptation of the acetylene reduction assay. Key Results Significant nitrogenase activity was measured associated with S. tomentosus/P. contorta tuberculate ectomycorrhizae whereas no nitrogenase activity was measured with non-tuberculate mycorrhizae or secondary roots without mycorrhizae. Average nitrogenase activity ranged from undetectable to 5696·7 nmol C2H4 g−1 tubercle 24 h−1. Maximum nitrogenase activity was 25 098·8 nmol C2H4 g−1 tubercle 24 h−1. Nitrogenase activity was significantly higher in young stands than in old stands of P. contorta. Season or some covariate also seemed to affect nitrogenase activity and there was suggestion of a site effect. Conclusions Suillus tomentosus/P. contorta tuberculate ectomycorrhizae are sites of significant nitrogenase activity. The nitrogenase activity measured could be an important contribution to the nitrogen budget of P. contorta stands. Season and stand age affect levels of nitrogenase activity. PMID:17468111

  5. Cellulose Decomposition and Associated Nitrogen Fixation by Mixed Cultures of Cellulomonas gelida and Azospirillum Species or Bacillus macerans

    Science.gov (United States)

    Halsall, Dorothy M.; Gibson, Alan H.

    1985-01-01

    Mixed cultures of Cellulomonas gelida plus Azospirillum lipoferum or Azospirillum brasilense and C. gelida plus Bacillus macerans were shown to degrade cellulose and straw and to utilize the energy-yielding products to fix atmospheric nitrogen. This cooperative process was followed over 30 days in sand-based cultures in which the breakdown of 20% of the cellulose and 28 to 30% of the straw resulted in the fixation of 12 to 14.6 mg of N per g of cellulose and 17 to 19 mg of N per g of g straw consumed. Cellulomonas species have certain advantages over aerobic cellulose-degrading fungi in being able to degrade cellulose at oxygen concentrations as low as 1% O2 (vol/vol) which would allow a close association between cellulose-degrading and microaerobic diazotrophic microorganisms. Cultures inoculated with initially different proportions of A. brasilense and C. gelida all reached a stable ratio of approximately 1 Azospirillum/3 Cellulomonas cells. PMID:16346898

  6. Comparative Shotgun Proteomic Analysis of Wastewater-Cultured Microalgae: Nitrogen Sensing and Carbon Fixation for Growth and Nutrient Removal in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Patel, Anil K; Huang, Eric L; Low-Décarie, Etienne; Lefsrud, Mark G

    2015-08-07

    Chlamydomonas reinhardtii was batch-cultured for 12 days under continuous illumination to investigate nitrogen uptake and metabolic responses to wastewater processing. Our approach compared two conditions: (1) artificial wastewater containing nitrate and ammonia and (2) nutrient-sufficient control containing nitrate as sole form of nitrogen. Treatments did not differ in final biomass; however, comparison of group proteomes revealed significant differences. Label-free shotgun proteomic analysis identified 2358 proteins, of which 92 were significantly differentially abundant. Wastewater cells showed higher relative abundances of photosynthetic antenna proteins, enzymes related to carbon fixation, and biosynthesis of amino acids and secondary metabolites. Control cells showed higher abundances of enzymes and proteins related to nitrogen metabolism and assimilation, synthesis and utilization of starch, amino acid recycling, evidence of oxidative stress, and little lipid biosynthesis. This study of the eukaryotic microalgal proteome response to nitrogen source, availability, and switching highlights tightly controlled pathways essential to the maintenance of culture health and productivity in concert with light absorption and carbon assimilation. Enriched pathways in artificial wastewater, notably, photosynthetic carbon fixation and biosynthesis of plant hormones, and those in nitrate only control, most notably, nitrogen, amino acid, and starch metabolism, represent potential targets for genetic improvement requiring targeted elucidation.

  7. Interactions between nitrogen fixation and osmoregulation in the methanogenic archaeon Methanosarcina barkeri 227

    Energy Technology Data Exchange (ETDEWEB)

    Brabban, A.D.; Orcutt, E.N.; Zinder, S.H. [Cornell Univ., Ithaca, NY (United States). Section of Microbiology

    1999-03-01

    The nitrogenase enzyme complex of Methanosarcina barkeri 227 was found to be more sensitive to NaCl than previously studied molybdenum nitrogenases are, with total inhibition of activity occurring at 190 mM NaCl, compared with >600 mM NaCl for Azotobacter vinelandii and Clostridium pasteurianum nitrogenases. Na{sup +} and K{sup +} had equivalent effects, whereas Mg{sup 2+} was more inhibitory than either monovalent cation, even on a per-charge basis. The anion Cl{sup {minus}} was more inhibitory than acetate was. Because M. barkeri 227 is a facultative halophile, the authors examined the effects of external salt on growth and diazotrophy and found that inhibition of growth was not greater with N{sub 2} than with NH{sub 4}{sup +}. Cells grown with N{sub 2} and cells grown with NH{sub 4}{sup +} produced equal concentrations of {alpha}-glutamate at low salt concentrations and equal concentrations of N{sup {var_epsilon}}-acetyl-{beta}-lysine at NaCl concentrations greater than 500 mM. Despite the high energetic cost of fixing nitrogen for these osmolytes, the authors obtained no evidence that there is a shift towards nonnitrogenous osmolytes during diazotrophic growth. In vitro nitrogenase enzyme assays showed that at a low concentration potassium glutamate enhanced activity but at higher concentrations this compound inhibited activity; 50% inhibition occurred at a potassium glutamate concentration of approximately 400 mM.

  8. Diversity and nitrogen fixation efficiency of rhizobia isolated from nodules of Centrolobium paraense

    Directory of Open Access Journals (Sweden)

    Alexandre Cardoso Baraúna

    2014-04-01

    Full Text Available The objective of this work was to isolate and characterize rhizobia from nodules of Centrolobium paraense and to evaluate their symbiotic efficiency. Soil samples collected from four sites of the Roraima Cerrado, Brazil, were used to cultivate C. paraense in order to obtain nodules. Isolates (178 were obtained from 334 nodules after cultivation on medium 79. Twenty-five isolates belonging to six morphological groups were authenticated using Vigna unguiculata and they were characterized by 16S rRNA. Isolates identified as Bradyrhizobium were further characterized using rpoB gene sequencing. A greenhouse experiment was carried out with C. paraense to test the 18 authenticated isolates. Approximately 90% of the isolates grew slowly in medium 79. The 16S rRNA analysis showed that 14 authenticated isolates belong to the genus Bradyrhizobium, and rpoB indicated they constitute different groups compared to previously described species. Only four of the 11 fast-growing isolates nodulated V. unguiculata, two of which belong to Rhizobium, and two to Pleomorphomonas, which was not previously reported as a nodulating genus. The Bradyrhizobium isolates ERR 326, ERR 399, and ERR 435 had the highest symbiotic efficiency on C. paraense and showed a contribution similar to the nitrogen treatment. Centrolobium paraense is able to nodulate with different rhizobium species, some of which have not yet been described.

  9. Novel European free-living, non-diazotrophic Bradyrhizobium isolates from contrasting soils that lack nodulation and nitrogen fixation genes – a genome comparison

    Science.gov (United States)

    Jones, Frances Patricia; Clark, Ian M.; King, Robert; Shaw, Liz J.; Woodward, Martin J.; Hirsch, Penny R.

    2016-01-01

    The slow-growing genus Bradyrhizobium is biologically important in soils, with different representatives found to perform a range of biochemical functions including photosynthesis, induction of root nodules and symbiotic nitrogen fixation and denitrification. Consequently, the role of the genus in soil ecology and biogeochemical transformations is of agricultural and environmental significance. Some isolates of Bradyrhizobium have been shown to be non-symbiotic and do not possess the ability to form nodules. Here we present the genome and gene annotations of two such free-living Bradyrhizobium isolates, named G22 and BF49, from soils with differing long-term management regimes (grassland and bare fallow respectively) in addition to carbon metabolism analysis. These Bradyrhizobium isolates are the first to be isolated and sequenced from European soil and are the first free-living Bradyrhizobium isolates, lacking both nodulation and nitrogen fixation genes, to have their genomes sequenced and assembled from cultured samples. The G22 and BF49 genomes are distinctly different with respect to size and number of genes; the grassland isolate also contains a plasmid. There are also a number of functional differences between these isolates and other published genomes, suggesting that this ubiquitous genus is extremely heterogeneous and has roles within the community not including symbiotic nitrogen fixation. PMID:27162150

  10. Novel European free-living, non-diazotrophic Bradyrhizobium isolates from contrasting soils that lack nodulation and nitrogen fixation genes - a genome comparison

    Science.gov (United States)

    Jones, Frances Patricia; Clark, Ian M.; King, Robert; Shaw, Liz J.; Woodward, Martin J.; Hirsch, Penny R.

    2016-05-01

    The slow-growing genus Bradyrhizobium is biologically important in soils, with different representatives found to perform a range of biochemical functions including photosynthesis, induction of root nodules and symbiotic nitrogen fixation and denitrification. Consequently, the role of the genus in soil ecology and biogeochemical transformations is of agricultural and environmental significance. Some isolates of Bradyrhizobium have been shown to be non-symbiotic and do not possess the ability to form nodules. Here we present the genome and gene annotations of two such free-living Bradyrhizobium isolates, named G22 and BF49, from soils with differing long-term management regimes (grassland and bare fallow respectively) in addition to carbon metabolism analysis. These Bradyrhizobium isolates are the first to be isolated and sequenced from European soil and are the first free-living Bradyrhizobium isolates, lacking both nodulation and nitrogen fixation genes, to have their genomes sequenced and assembled from cultured samples. The G22 and BF49 genomes are distinctly different with respect to size and number of genes; the grassland isolate also contains a plasmid. There are also a number of functional differences between these isolates and other published genomes, suggesting that this ubiquitous genus is extremely heterogeneous and has roles within the community not including symbiotic nitrogen fixation.

  11. Nitrogen Fixation Associated with Development and Localization of Mixed Populations of Cellulomonas sp. and Azospirillum brasilense Grown on Cellulose or Wheat Straw

    Science.gov (United States)

    Halsall, Dorothy M.; Goodchild, David J.

    1986-01-01

    Mixed cultures of Cellulomonas sp. and Azospirillum brasilense were grown with straw or cellulose as the carbon source under conditions favoring the fixation of atmospheric nitrogen. Rapid increases in cell numbers, up to 109 cells per g of substrate, were evident after 4 and 5 days of incubation at 30°C for cellulose and straw, respectively. Nitrogen fixation (detected by acetylene reduction measured on parallel cultures) commenced after 2 and 4 days of incubation for straw and cellulose, respectively, and continued for the duration of the experiment. Pure cultures of Cellulomonas sp. showed an increase in cell numbers, but CO2 production was low, and acetylene reduction was not detected on either cellulose or straw. Pure cultures of A. brasilense on cellulose showed an initial increase in cell numbers (107 cells per g of substrate) over 4 days, followed by a decline presumably caused by the exhaustion of available carbon substrate. On straw, A. brasilense increased to 109 cells per g of substrate over 5 days and then declined slowly; this growth was accompanied by acetylene reduction. Scanning electron micrographs of straw incubated with a mixed culture under the above conditions for 8 days showed cells of both species in close proximity to each other. Evidence was furnished that the close spatial relationship of cells from the two species facilitated the mutually beneficial association between them and thus increased the efficiency with which the products of straw breakdown were used for nitrogen fixation. Images PMID:16347042

  12. Erratum: Effects of Water Table Control by Farm-Oriented Enhancing Aquatic System on Photosynthesis, Nodule Nitrogen Fixation, and Yield of Soybeans [ Plant Production Science Vol.15(2012) No.2 P132-143

    National Research Council Canada - National Science Library

    Shimada, Shinji; Hamaguchi, Hideo; Kim, Yeonghoo; Matsuura, Kazuya; Kato, Masayasu; Kokuryu, Takuo; Tazawa, Junko; Fujimori, Shinsaku

    2014-01-01

    Regarding the article Vol. 15(2): 132-143, 2012. Shimada et al. “Effects of Water Table Control by Farm-oriented Enhancing Aquatic System on Photosynthesis, Nodule Nitrogen Fixation, and Yield of Soybean...

  13. Radiation application for upgrading of bioresources - Development of antifungal and/or nitrogen fixative microbes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sung; Ko, Dong Kyu; Han, Gab Jin [Paichai University, Taejon (Korea)

    2000-04-01

    (1) In this study, the antifungal bacteria six strains were isolated from various environment located in Chung-cheong area, Korea. These isolates were identified the genera Bacillus sp, Pseudomonas sp. through morphological, physiological and biochemical analysis. Strains KL3362 and KL3397 were identified as Pseudomonas aurantiaca and Alcaligenes faecalis, respectively. Considering antifungal(AF) spectrum, strain KL3303, 3334, and 3341 show the broad range, KL3362 and KL3397 the narrow range of AF activity on a number of pathogenic fungi. Therefore, strains KL3341 and KL3362 were selected as the strong candidate of antifungal bacteria on every purpose and usage related with our research goal. (2) KL3341 producing-antifungal substances were consisted of five different kinds of low molecular weight polypeptides (3) Optimal conditions for the production of antifungal substances were analyzed under various environmental conditions. Growth rates were different according to carbon and nitrogen source, antifungal substance production yields were not different, however. Product of antifungal substances according t phosphate is proportional to the concentration. And productivity of antifungal substances was generally high in the range 30 {approx} 37 deg. C at pH 7. In case of adding vitamin B1 or lysine to medium, the antifungal activity was enhanced. (4) Mutants with enhanced antifungal activities were constructed by radiation of {gamma}-ray. (5) AF strains were screened and selected from this research can be used in the microbial biocides as well as multifunctional bio-controllers in order to remove plant pathogenic fungi and to clarify the polluted environment. Due to their excellent degradation capability for agricultural and/or organic substances, they also can be used to improve soil quality, to ferment compost and to clean up the environment. 35 refs., 17 figs., 15 tabs. (Author)

  14. Elevated CO2 Increases Nitrogen Fixation at the Reproductive Phase Contributing to Various Yield Responses of Soybean Cultivars

    Directory of Open Access Journals (Sweden)

    Yansheng Li

    2017-09-01

    Full Text Available Nitrogen deficiency limits crop performance under elevated CO2 (eCO2, depending on the ability of plant N uptake. However, the dynamics and redistribution of N2 fixation, and fertilizer and soil N use in legumes under eCO2 have been little studied. Such an investigation is essential to improve the adaptability of legumes to climate change. We took advantage of genotype-specific responses of soybean to increased CO2 to test which N-uptake phenotypes are most strongly related to enhanced yield. Eight soybean cultivars were grown in open-top chambers with either 390 ppm (aCO2 or 550 ppm CO2 (eCO2. The plants were supplied with 100 mg N kg−1 soil as 15N-labeled calcium nitrate, and harvested at the initial seed-filling (R5 and full-mature (R8 stages. Increased yield in response to eCO2 correlated highly (r = 0.95 with an increase in symbiotically fixed N during the R5 to R8 stage. In contrast, eCO2 only led to small increases in the uptake of fertilizer-derived and soil-derived N during R5 to R8, and these increases did not correlate with enhanced yield. Elevated CO2 also decreased the proportion of seed N redistributed from shoot to seeds, and this decrease strongly correlated with increased yield. Moreover, the total N uptake was associated with increases in fixed-N per nodule in response to eCO2, but not with changes in nodule biomass, nodule density, or root length.

  15. Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition.

    Science.gov (United States)

    Palma, F; López-Gómez, M; Tejera, N A; Lluch, C

    2013-07-01

    In this work we have investigated the contribution of pretreatment with 0.1 and 0.5mM salicylic acid (SA) to the protection against salt stress in root nodules of Medicago sativa in symbiosis with Sinorhizobium meliloti. SA alleviated the inhibition induced by salinity in the plant growth and photosynthetic capacity of M. sativa-S. meliloti symbiosis. In addition, SA prevented the inhibition of the nitrogen fixation capacity under salt stress since nodule biomass was not affected by salinity in SA pretreated plants. Antioxidant enzymes peroxidase (POX), superoxide dismutase (SOD), ascorbate peroxidase (APX), dehidroascorbate reductase (DHAR) and glutathione reductase (GR), key in the main pathway that scavenges H2O2 in plants, were induced by SA pretreatments which suggest that SA may participate in the redox balance in root nodules under salt stress. Catalase activity (CAT) was inhibited around 40% by SA which could be behind the increase of H2O2 detected in nodules of plants pretreated with SA. The accumulation of polyamines (PAs) synthesized in response to salinity was prevented by SA which together with the induction of 1-aminocyclopropane-l-carboxylic acid (ACC) content suggest the prevalence of the ethylene signaling pathway induced by SA in detriment of the synthesis of PAs. In conclusion, SA alleviated the negative effect of salt stress in the M. sativa-S. meliloti symbiosis through the increased level of nodule biomass and the induction of the nodular antioxidant metabolism under salt stress. The H2O2 accumulation and the PAs inhibition induced by SA in nodules of M. sativa suggest that SA activates a hypersensitive response dependent on ethylene. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Dinitrogen fixation and dissolved organic nitrogen fueled primary production and particulate export during the VAHINE mesocosm experiment (New Caledonia lagoon

    Directory of Open Access Journals (Sweden)

    H. Berthelot

    2015-07-01

    suggest that while DDAs mainly rely on N2 fixation for their N requirements, both N2 fixation and DON can be significant N sources for primary production and particulate export following UCYN-C blooms in the New Caledonia lagoon and by extension in the N-limited oceans where similar events are likely to occur.

  17. Assessing the effects of iron enrichment across holobiont compartments reveals reduced microbial nitrogen fixation in the Red Sea coral Pocillopora verrucosa

    KAUST Repository

    Radecker, Nils

    2017-07-31

    The productivity of coral reefs in oligotrophic tropical waters is sustained by an efficient uptake and recycling of nutrients. In reef-building corals, the engineers of these ecosystems, this nutrient recycling is facilitated by a constant exchange of nutrients between the animal host and endosymbiotic photosynthetic dinoflagellates (zooxanthellae), bacteria, and other microbes. Due to the complex interactions in this so-called coral holobiont, it has proven difficult to understand the environmental limitations of productivity in corals. Among others, the micronutrient iron has been proposed to limit primary productivity due to its essential role in photosynthesis and bacterial processes. Here, we tested the effect of iron enrichment on the physiology of the coral Pocillopora verrucosa from the central Red Sea during a 12-day experiment. Contrary to previous reports, we did not see an increase in zooxanthellae population density or gross photosynthesis. Conversely, respiration rates were significantly increased, and microbial nitrogen fixation was significantly decreased. Taken together, our data suggest that iron is not a limiting factor of primary productivity in Red Sea corals. Rather, increased metabolic demands in response to iron enrichment, as evidenced by increased respiration rates, may reduce carbon (i.e., energy) availability in the coral holobiont, resulting in reduced microbial nitrogen fixation. This decrease in nitrogen supply in turn may exacerbate the limitation of other nutrients, creating a negative feedback loop. Thereby, our results highlight that the effects of iron enrichment appear to be strongly dependent on local environmental conditions and ultimately may depend on the availability of other nutrients.

  18. A Comparative Nitrogen Balance and Productivity Analysis of Legume and Non-legume Supported Cropping Systems: The Potential Role of Biological Nitrogen Fixation.

    Science.gov (United States)

    Iannetta, Pietro P M; Young, Mark; Bachinger, Johann; Bergkvist, Göran; Doltra, Jordi; Lopez-Bellido, Rafael J; Monti, Michele; Pappa, Valentini A; Reckling, Moritz; Topp, Cairistiona F E; Walker, Robin L; Rees, Robert M; Watson, Christine A; James, Euan K; Squire, Geoffrey R; Begg, Graham S

    2016-01-01

    The potential of biological nitrogen fixation (BNF) to provide sufficient N for production has encouraged re-appraisal of cropping systems that deploy legumes. It has been argued that legume-derived N can maintain productivity as an alternative to the application of mineral fertilizer, although few studies have systematically evaluated the effect of optimizing the balance between legumes and non N-fixing crops to optimize production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new legume-based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g., grains, forages and intercrops) across pedoclimatic regions of Europe. Mean BNF for different legume types ranged from 32 to 115 kg ha(-1) annually. Output in terms of total biomass (grain, forage, etc.) was 30% greater in non-legumes, which used N to produce dry matter more efficiently than legumes, whereas output of N was greater from legumes. When examined over the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years). BNF was lower when the legume fraction increased to 0.6-0.8, not because of any feature of the legume, but because the cropping systems in this range were dominated by mixtures of legume and non-legume forages to which inorganic N as fertilizer was normally applied. Forage (e.g., grass and clover), as opposed to grain crops in this range maintained high outputs of biomass and N. In conclusion, BNF through grain and forage legumes has the potential to generate major benefit in terms of reducing or dispensing with the need for mineral N without loss of total output.

  19. A comparative nitrogen balance and productivity analysis of legume and non-legume supported cropping systems: the potential role of biological nitrogen fixation

    Directory of Open Access Journals (Sweden)

    Pietro P M Iannetta

    2016-11-01

    Full Text Available The potential of biological nitrogen fixation (BNF to provide sufficient N for production have encouraged re-appraisal of cropping systems that deploy legumes. It has been argued that legume-derived N can maintain productivity as an alternative to the application of mineral fertiliser, although few studies have systematically evaluated the effect of optimising the balance between legumes and non N-fixing crops to optimise production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new, legume–based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g. grains, forages and intercrops across pedoclimatic regions of Europe. Mean BNF for different legume types ranged from 32-115 kg ha-1 annually. Output in terms of total biomass (grain, forage, etc. was 30% greater in non-legumes, which used N to produce dry matter more efficiently than legumes, whereas output of N was greater from legumes. When examined over the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years. BNF was lower when the legume fraction increased to 0.6-0.8, not because of any feature of the legume, but because the cropping systems in this range were dominated by mixtures of legume and non-legume forages to which inorganic N as fertiliser was normally applied. Forage (e.g. grass and clover, as opposed to grain crops in this range maintained high outputs of biomass and N. In conclusion, BNF through grain and forage legumes have the potential to generate major benefit in terms of reducing or dispensing with the need for mineral N without loss of total output.

  20. Approaches for enhancement of N2 fixation efficiency of chickpea (Cicer arietinum L.) under limiting nitrogen conditions

    National Research Council Canada - National Science Library

    Nasr Esfahani, Maryam; Sulieman, Saad; Schulze, Joachim; Yamaguchi‐Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam‐Son

    2014-01-01

    ...‐15 strain manifested the most efficient N 2 fixation in comparison with Ch‐191 or CP ‐36. This finding was supported by higher plant productivity and expression levels of the nif HDK genes in C...

  1. Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect

    Directory of Open Access Journals (Sweden)

    Anjali Chauhan

    Full Text Available Abstract Aneurinibacillus aneurinilyticus strain CKMV1 was isolated from rhizosphere of Valeriana jatamansi and possessed multiple plant growth promoting traits like production of phosphate solubilization (260 mg/L, nitrogen fixation (202.91 nmol ethylene mL-1 h-1, indole-3-acetic acid (IAA (8.1 µg/mL, siderophores (61.60%, HCN (hydrogen cyanide production and antifungal activity. We investigated the ability of isolate CKMV1 to solubilize insoluble P via mechanism of organic acid production. High-performance liquid chromatography (HPLC study showed that isolate CKMV1 produced mainly gluconic (1.34% and oxalic acids. However, genetic evidences for nitrogen fixation and phosphate solubilization by organic acid production have been reported first time for A. aneurinilyticus strain CKMV1. A unique combination of glucose dehydrogenase (gdh gene and pyrroloquinoline quinone synthase (pqq gene, a cofactor of gdh involved in phosphate solubilization has been elucidated. Nitrogenase (nif H gene for nitrogen fixation was reported from A. aneurinilyticus. It was notable that isolate CKMV1 exhibited highest antifungal against Sclerotium rolfsii (93.58% followed by Fusarium oxysporum (64.3%, Dematophora necatrix (52.71%, Rhizoctonia solani (91.58%, Alternaria sp. (71.08% and Phytophthora sp. (71.37%. Remarkable increase was observed in seed germination (27.07%, shoot length (42.33%, root length (52.6%, shoot dry weight (62.01% and root dry weight (45.7% along with NPK (0.74, 0.36, 1.82% content of tomato under net house condition. Isolate CKMV1 possessed traits related to plant growth promotion, therefore, could be a potential candidate for the development of biofertiliser or biocontrol agent and this is the first study to include the Aneurinibacillus as PGPR.

  2. Transcriptional profiling of nitrogen fixation and the role of NifA in the diazotrophic endophyte Azoarcus sp. strain BH72.

    Directory of Open Access Journals (Sweden)

    Abhijit Sarkar

    Full Text Available BACKGROUND: The model endophyte Azoarcus sp. strain BH72 is known to contribute fixed nitrogen to its host Kallar grass and also expresses nitrogenase genes endophytically in rice seedlings. Availability of nitrogen is a signal regulating the transcription of nitrogenase genes. Therefore, we analysed global transcription in response to differences in the nitrogen source. METHODOLOGY/PRINCIPAL FINDINGS: A DNA microarray, comprising 70-mer oligonucleotides representing 3989 open reading frames of the genome of strain BH72, was used for transcriptome studies. Transcription profiles of cells grown microaerobically on N2 versus ammonium were compared. Expression of 7.2% of the genes was significantly up-regulated, and 5.8% down-regulated upon N2 fixation, respectively. A parallel genome-wide prediction of σ(54-type promoter elements mapped to the upstream region of 38 sequences of which 36 were modulated under the N2 response. In addition to modulation of genes related to N2 fixation, the expressions of gene clusters that might be related to plant-microbe interaction and of several transcription factors were significantly enhanced. While comparing under N2-fixation conditions the transcriptome of wild type with a nifLA(- insertion mutant, NifA being the essential transcriptional activator for nif genes, 24.5% of the genome was found to be affected in expression. A genome-wide prediction of 29 NifA binding sequences matched to 25 of the target genes whose expression was differential during microarray analysis, some of which were putatively negatively regulated by NifA. For selected genes, differential expression was corroborated by real time RT-PCR studies. CONCLUSION/SIGNIFICANCE: Our data suggest that life under conditions of nitrogen fixation is an important part of the lifestyle of strain BH72 in roots, as a wide range of genes far beyond the nif regulon is modulated. Moreover, the NifA regulon in strain BH72 appears to encompass a wider range of

  3. Symbiotic nitrogen fixation by a nifA deletion mutant of Rhizobium meliloti: the role of an unusual ntrC allele.

    OpenAIRE

    Labes, M; V Rastogi; Watson, R.; Finan, T M

    1993-01-01

    In the N2-fixing alfalfa symbiont Rhizobium meliloti, the three sigma 54 (NTRA)-dependent positively acting regulatory proteins NIFA, NTRC, and DCTD are required for activation of promoters involved in N2 fixation (pnifHDKE and pfixABCX), nitrogen assimilation (pglnII), and C4-dicarboxylate transport (pdctA), respectively. Here, we describe an allele of ntrC which results in the constitutive activation of the above NTRC-, NIFA-, and DCTD-regulated promoters. The expression and activation of w...

  4. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements.

    Directory of Open Access Journals (Sweden)

    Richard Dabundo

    Full Text Available We report on the contamination of commercial 15-nitrogen (15N N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, <0.01 nmoles N L(-1 d(-1, to 530 nmoles N L(-1 d(-1, contingent on experimental conditions. These rates are comparable to, or greater than, N2 fixation rates commonly detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of

  5. Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant.

    Science.gov (United States)

    Horváth, Beatrix; Domonkos, Ágota; Kereszt, Attila; Szűcs, Attila; Ábrahám, Edit; Ayaydin, Ferhan; Bóka, Károly; Chen, Yuhui; Chen, Rujin; Murray, Jeremy D; Udvardi, Michael K; Kondorosi, Éva; Kaló, Péter

    2015-12-08

    Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula.

  6. Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes.

    Directory of Open Access Journals (Sweden)

    Jian-Bo Xie

    2014-03-01

    Full Text Available We provide here a comparative genome analysis of 31 strains within the genus Paenibacillus including 11 new genomic sequences of N2-fixing strains. The heterogeneity of the 31 genomes (15 N2-fixing and 16 non-N2-fixing Paenibacillus strains was reflected in the large size of the shell genome, which makes up approximately 65.2% of the genes in pan genome. Large numbers of transposable elements might be related to the heterogeneity. We discovered that a minimal and compact nif cluster comprising nine genes nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV encoding Mo-nitrogenase is conserved in the 15 N2-fixing strains. The nif cluster is under control of a σ(70-depedent promoter and possesses a GlnR/TnrA-binding site in the promoter. Suf system encoding [Fe-S] cluster is highly conserved in N2-fixing and non-N2-fixing strains. Furthermore, we demonstrate that the nif cluster enabled Escherichia coli JM109 to fix nitrogen. Phylogeny of the concatenated NifHDK sequences indicates that Paenibacillus and Frankia are sister groups. Phylogeny of the concatenated 275 single-copy core genes suggests that the ancestral Paenibacillus did not fix nitrogen. The N2-fixing Paenibacillus strains were generated by acquiring the nif cluster via horizontal gene transfer (HGT from a source related to Frankia. During the history of evolution, the nif cluster was lost, producing some non-N2-fixing strains, and vnf encoding V-nitrogenase or anf encoding Fe-nitrogenase was acquired, causing further diversification of some strains. In addition, some N2-fixing strains have additional nif and nif-like genes which may result from gene duplications. The evolution of nitrogen fixation in Paenibacillus involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes. This study not only reveals the organization and distribution of nitrogen fixation genes in Paenibacillus, but also provides insight into the complex evolutionary history of nitrogen fixation.

  7. Growth and nitrogen fixation of legumes at increased salinity under field conditions: implications for the use of green manures in saline environments.

    Science.gov (United States)

    Bruning, Bas; van Logtestijn, Richard; Broekman, Rob; de Vos, Arjen; González, Andrés Parra; Rozema, Jelte

    2015-02-06

    The use of legumes as green manure can potentially increase crop productivity in saline environments and thus contribute to the sustainability of agricultural systems. Here, we present results from a field experiment conducted in the Netherlands that addressed the efficiency of nitrogen (N) fixation by a legume at varying salinities. We grew Melilotus officinalis in an agricultural field using drip irrigation with water salinity varying in electrical conductivity between 1.7 and 20 dS m(-1). In the experiment, nearly 100 % of total plant N in M. officinalis was derived from symbiotic fixation at all but the highest salinity level (20 dS m(-1)). Our results indicated that this species derived substantial amounts of N via symbiotic fixation, the N becoming available in the soil (and thus available to crops) when cultivated legumes senesce and decompose. Based on the growth performance of M. officinalis and its ability to fix N at moderate soil salinity in our field experiments, we identified this species as a promising source for green manure in saline agriculture in temperate regions. Published by Oxford University Press on behalf of the Annals of Botany Company.

  8. Enzyme Production and Nitrogen Fixation by Free, Immobilized and Coimmobilized Inoculants of Trichoderma harzianum and Azospirillum brasilense and Their Possible Role in Growth Promotion of Tomato

    Directory of Open Access Journals (Sweden)

    Momein H. El-Katatny

    2010-01-01

    Full Text Available A plant growth-promoting rhizobacterium (Azospirillum brasilense strain Az and a biocontrol fungus (Trichoderma harzianum strain T24 have been evaluated for their individual and combined production of hydrolytic enzymes, nitrogen fixation and their possible role in growth promotion of tomato seedlings. The studied organisms were inoculated as free or calcium alginate-encapsulated cells. All freshly prepared macrobeads showed high encapsulation capacity (EC/% of inocula compared with dry macrobeads. Results of enzyme production did not exhibit consistent pattern of the effect of encapsulation process on enzyme production. Beads entrapping bacterial and/or fungal cells were used successfully in 3 repeated cycles in the presence of fresh sterile culture medium in each growth cycle. Enzyme production by immobilized bacterial and/or fungal cells increased as the growth cycles were repeated. Co-culturing of A. brasilense with T. harzianum (free or immobilized in semisolid nitrogen deficient medium (N-free medium enabled A. brasilense to fix nitrogen on pectin, chitin and carboxymethyl cellulose. The activity of nitrogen fixation by A. brasilense in the case of single and combined cultures with Trichoderma (using dry encapsulated beads into the sterile soil increased with the addition of carbon source. Most of inoculations with free or alginate macrobead formulations of T. harzianum and/or A. brasilense showed significant increase in the growth parameters of tomato seedlings. The root system grew more profusely in the case of all seeds treated with A. brasilense. The growth parameters of Az/T24-treated seeds using dry coimmobilized macrobeads were higher than those of the untreated control. Moreover, the effect was improved significantly in soil enriched with different C sources. Enhanced tomato seedling growth after the co-inoculation could be due to the synergistic effect of both Trichoderma and Azospirillum. Finally, co-inoculation with Azospirillum

  9. Effect of Microgravity on Early Events of Biological Nitrogen Fixation in Medicago Truncatula: Initial Results from the SyNRGE Experiment

    Science.gov (United States)

    Stutte, Gary W.; Roberts, Michael S.

    2011-01-01

    SyNRGE (Symbiotic Nodulation in a Reduced Gravity Environment) was a sortie mission on STS-135 in the Biological Research in Canisters (BRIC) hardware to study the effect of microgravity on a plant-microbe symbiosis resulting in biological nitrogen fixation. Medicago truncatula, a model species of the legume family, was inoculated with its bacterial symbiont, Sinorhizobium meliloti, to observe early events associated with infection and nodulation in Petri Dish Fixation Units (PDFUs). Two sets of experiments were conducted in orbit and in 24-hour delayed ground controls. Experiment one was designed to determine if S. meliloti infect M. truncatula and initiate physiological changes associated with nodule formation. Roots of five-day-old M. truncatula cultivar Jemalong A17 (Enodll::gus) were inoculated 24 hr before launch with either S. meliloti strain 1021 or strain ABS7 and integrated into BRIC-PDFU hardware placed in a 4 C Cold Bag for launch on Atlantis. Inoculated plants and uninoculated controls were maintained in the dark at ambient temperature in the middeck of STS-135 for 11 days before fixation in RNAlater(tM) by crew activation of the PDFU. Experiment two was designed to determine if microgravity altered the process of bacterial infection and host plant nodule formation. Seeds of two M. truncatula cultivar Jemalong A17 lines, the Enodll::gus used in experiment 1, and SUNN, a super-nodulating mutant of A17, were germinated on orbit for 11 days in the middeck cabin and returned to Earth alive inside of BRIC-PDFU's at 4 C. S. meliloti strains 1021 and ABS7 were cultivated separately in broth culture on orbit and also returned to Earth alive. After landing, flight- and groundgrown plants and bacteria were transferred from BRIC-PDFU's into Nunc(tm) 4-well plates for reciprocity crosses. Rates of plant growth and nodule development on Buffered Nodulation Medium (lacking nitrogen) were measured for 14 days. Preliminary analysis' of Experiment 1 confirms that

  10. Electrodeposition of flower-like platinum on electrophoretically grown nitrogen-doped graphene as a highly sensitive electrochemical non-enzymatic biosensor for hydrogen peroxide detection

    Energy Technology Data Exchange (ETDEWEB)

    Tajabadi, M.T. [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Sookhakian, M., E-mail: m.sokhakian@gmail.com [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Zalnezhad, E., E-mail: erfan@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Yoon, G.H. [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Hamouda, A.M.S. [Mechanical and Industrial Engineering Department, College of Engineering, Qatar University, 2713, Doha (Qatar); Azarang, Majid [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Basirun, W.J. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Institute of Nanotechnology & Catalysis Research, Institute of Postgraduate Studies, University Malaya, 50603 Kuala Lumpur (Malaysia); Alias, Y., E-mail: yatimah70@um.edu.my [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2016-11-15

    Highlights: • Nitrogen doped graphene with different thickness by electrophoretic deposition. • The conductivity of N-graphene layer depends on the tickness. • Support of platinum shows efficient electrocatalytic performance for biosensor. • CV curves and amperometric responses improved and optimized in the presence of N-graphene. - Abstract: An efficient non-enzymatic biosensor electrode consisting of nitrogen-doped graphene (N-graphene) and platinum nanoflower (Pt NF) with different N-graphene loadings were fabricated on indium tin oxide (ITO) glass using a simple layer-by-layer electrophoretic and electrochemical sequential deposition approach. N-graphene was synthesized by annealing graphene oxide with urea at 900 °C. The structure and morphology of the as-fabricated non-enzymatic biosensor electrodes were determined using X-ray diffraction, field emission electron microscopy, transmission electron microscopy, Raman and X-ray photoelectron spectra. The as-fabricated Pt NF-N-graphene-modified ITO electrodes with different N-graphene loadings were utilized as a non-enzymatic biosensor electrode for the detection of hydrogen peroxide (H{sub 2}O{sub 2}). The behaviors of the hybrid electrodes towards H{sub 2}O{sub 2} reduction were assessed using chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy analysis. The Pt NF-N-graphene-modified ITO electrode with a 0.05 mg ml{sup −1} N-graphene loading exhibited the lowest detection limit, fastest amperometric sensing, a wide linear response range, excellent stability and reproducibility for the non-enzymatic H{sub 2}O{sub 2} detection, due to the synergistic effect between the electrocatalytic activity of the Pt NF and the high conductivity and large surface area of N-graphene.

  11. Preferential remineralization of dissolved organic phosphorus and non-Redfield DOM dynamics in the global ocean: Impacts on marine productivity, nitrogen fixation, and carbon export

    Science.gov (United States)

    Letscher, Robert T.; Moore, J. Keith

    2015-03-01

    Selective removal of nitrogen (N) and phosphorus (P) from the marine dissolved organic matter (DOM) pool has been reported in several regional studies. Because DOM is an important advective/mixing pathway of carbon (C) export from the ocean surface layer and its non-Redfieldian stoichiometry would affect estimates of marine export production per unit N and P, we investigated the stoichiometry of marine DOM and its remineralization globally using a compiled DOM data set. Marine DOM is enriched in C and N compared to Redfield stoichiometry, averaging 317:39:1 and 810:48:1 for C:N:P within the degradable and total bulk pools, respectively. Dissolved organic phosphorus (DOP) is found to be preferentially remineralized about twice as rapidly with respect to the enriched C:N stoichiometry of marine DOM. Biogeochemical simulations with the Biogeochemical Elemental Cycling model using Redfield and variable DOM stoichiometry corroborate the need for non-Redfield dynamics to match the observed DOM stoichiometry. From our model simulations, preferential DOP remineralization is found to increase the strength of the biological pump by ~9% versus the case of Redfield DOM cycling. Global net primary productivity increases ~10% including an increase in marine nitrogen fixation of ~26% when preferential DOP remineralization and direct utilization of DOP by phytoplankton are included. The largest increases in marine nitrogen fixation, net primary productivity, and carbon export are observed within the western subtropical gyres, suggesting the lateral transfer of P in the form of DOP from the productive eastern and poleward gyre margins may be important for sustaining these processes downstream in the subtropical gyres.

  12. Potential of Native Rhizobia in Enhancing Nitrogen Fixation and Yields of Climbing Beans (Phaseolus vulgaris L.) in Contrasting Environments of Eastern Kenya.

    Science.gov (United States)

    Koskey, Gilbert; Mburu, Simon W; Njeru, Ezekiel M; Kimiti, Jacinta M; Ombori, Omwoyo; Maingi, John M

    2017-01-01

    Climbing bean (Phaseolus vulgaris L.) production in Kenya is greatly undermined by low soil fertility, especially in agriculturally prolific areas. The use of effective native rhizobia inoculants to promote nitrogen fixation could be beneficial in climbing bean production. In this study, we carried out greenhouse and field experiments to evaluate symbiotic efficiency, compare the effect of native rhizobia and commercial inoculant on nodulation, growth and yield parameters of mid-altitude climbing bean (MAC 13 and MAC 64) varieties. The greenhouse experiment included nine native rhizobia isolates, a consortium of native isolates, commercial inoculant Biofix, a mixture of native isolates + Biofix, nitrogen treated control and a non-inoculated control. In the field experiments, the treatments included the best effective native rhizobia isolate ELM3, a consortium of native isolates, a commercial inoculant Biofix, a mixture of native isolates + Biofix, and a non-inoculated control. Remarkably, four native rhizobia isolates ELM3, ELM4, ELM5, and ELM8 showed higher symbiotic efficiencies compared to the Biofix. Interestingly, there was no significant difference in symbiotic efficiency between the two climbing bean varieties. Field results demonstrated a significant improvement in nodule dry weight and seed yields of MAC 13 and MAC 64 climbing bean varieties upon rhizobia inoculation when compared to the non-inoculated controls. Inoculation with ELM3 isolate resulted to the highest seed yield of 4,397.75 kg ha-1, indicating 89% increase over non-inoculated control (2,334.81 kg ha-1) and 30% increase over Biofix (3,698.79 kg ha-1). Farm site significantly influenced nodule dry weight and seed yields. This study, therefore, revealed the potential of native rhizobia isolates to enhance delivery of agroecosystem services including nitrogen fixation and bean production. Further characterization and mapping of the native isolates will be imperative in development of effective

  13. RbohB, a Phaseolus vulgaris NADPH oxidase gene, enhances symbiosome number, bacteroid size, and nitrogen fixation in nodules and impairs mycorrhizal colonization.

    Science.gov (United States)

    Arthikala, Manoj-Kumar; Sánchez-López, Rosana; Nava, Noreide; Santana, Olivia; Cárdenas, Luis; Quinto, Carmen

    2014-05-01

    The reactive oxygen species (ROS) generated by respiratory burst oxidative homologs (Rbohs) are involved in numerous plant cell signaling processes, and have critical roles in the symbiosis between legumes and nitrogen-fixing bacteria. Previously, down-regulation of RbohB in Phaseolus vulgaris was shown to suppress ROS production and abolish Rhizobium infection thread (IT) progression, but also to enhance arbuscular mycorrhizal fungal (AMF) colonization. Thus, Rbohs function both as positive and negative regulators. Here, we assessed the effect of enhancing ROS concentrations, by overexpressing PvRbohB, on the P. vulgaris--rhizobia and P. vulgaris--AMF symbioses. We estimated superoxide concentrations in hairy roots overexpressing PvRbohB, determined the status of early and late events of both Rhizobium and AMF interactions in symbiont-inoculated roots, and analyzed the nodule ultrastructure of transgenic plants overexpressing PvRbohB. Overexpression of PvRbohB significantly enhanced ROS production, the formation of ITs, nodule biomass, and nitrogen-fixing activity, and increased the density of symbiosomes in nodules, and the density and size of bacteroides in symbiosomes. Furthermore, PvCAT, early nodulin, PvSS1, and PvGOGAT transcript abundances were elevated in these nodules. By contrast, mycorrhizal colonization was reduced in roots that overexpressed RbohB. Overexpression of PvRbohB augmented nodule efficiency by enhancing nitrogen fixation and delaying nodule senescence, but impaired AMF colonization. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  14. Nitrogen fixation in forested soils by non-leguminous nitrogen-fixing plants and by non-symbiotic soil organisms. Progress report, June 1, 1979-May 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Lane, C.L.

    1980-05-01

    Field plantings of several species of nitrogen-fixing plants mixed with loblolly pine were measured after two growing seasons on three sites. Survival of loblolly pine was 86%; thorny eleagnus 97%; black alder 58%; and wax myrtle 88%. There was no evidence of an increase in the growth of the loblolly pine caused by the nitrogen-fixing species. Considerable deer browse damage was evident on the thorny eleagnus planted on a deep sand.

  15. A comparative study on phyllosphere nitrogen fixation by newly isolated Corynebacterium sp. & Flavobacterium sp. and their potentialities as biofertilizer.

    Science.gov (United States)

    Giri, S; Pati, B R

    2004-01-01

    A number of nitrogen fixing bacteria has been isolated from forest phyllosphere on the basis of nitrogenase activity. Among them two best isolates are selected and identified as Corynebacterium sp. AN1 & Flavobacterium sp. TK2 able to reduce 88 and 132 n mol of acetylene (10(8)cells(-1)h(-1)) respectively. They were grown in large amount and sprayed on the phyllosphere of maize plants as a substitute for nitrogenous fertilizer. Marked improvements in growth and total nitrogen content of the plant have been observed by the application of these nitrogen-fixing bacteria. An average 30-37% increase in yield was obtained, which is nearer to chemical fertilizer treatment. Comparatively better effect was obtained by application of Flavobacterium sp.

  16. High Rate of N2 Fixation by East Siberian Cryophilic Soil Bacteria as Determined by Measuring Acetylene Reduction in Nitrogen-Poor Medium Solidified with Gellan Gum▿ †

    Science.gov (United States)

    Hara, Shintaro; Hashidoko, Yasuyuki; Desyatkin, Roman V.; Hatano, Ryusuke; Tahara, Satoshi

    2009-01-01

    For evaluating N2 fixation of diazotrophic bacteria, nitrogen-poor liquid media supplemented with at least 0.5% sugar and 0.2% agar are widely used for acetylene reduction assays. In such a soft gel medium, however, many N2-fixing soil bacteria generally show only trace acetylene reduction activity. Here, we report that use of a N2 fixation medium solidified with gellan gum instead of agar promoted growth of some gellan-preferring soil bacteria. In a soft gel medium solidified with 0.3% gellan gum under appropriate culture conditions, bacterial microbiota from boreal forest bed soils and some free-living N2-fixing soil bacteria isolated from the microbiota exhibited 10- to 200-fold-higher acetylene reduction than those cultured in 0.2% agar medium. To determine the N2 fixation-activating mechanism of gellan gum medium, qualitative differences in the colony-forming bacterial components from tested soil microbiota were investigated in plate cultures solidified with either agar or gellan gum for use with modified Winogradsky's medium. On 1.5% agar plates, apparently cryophilic bacterial microbiota showed strictly distinguishable microbiota according to the depth of soil in samples from an eastern Siberian Taiga forest bed. Some pure cultures of proteobacteria, such as Pseudomonas fluorescens and Burkholderia xenovorans, showed remarkable acetylene reduction. On plates solidified with 1.0% gellan gum, some soil bacteria, including Luteibacter sp., Janthinobacterium sp., Paenibacillus sp., and Arthrobacter sp., uniquely grew that had not grown in the presence of the same inoculants on agar plates. In contrast, Pseudomonas spp. and Burkholderia spp. were apparent only as minor colonies on the gellan gum plates. Moreover, only gellan gum plates allowed some bacteria, particularly those isolated from the shallow organic soil layer, to actively swarm. In consequence, gellan gum is a useful gel matrix to bring out growth potential capabilities of many soil diazotrophs and

  17. High rate of N2 fixation by East Siberian cryophilic soil bacteria as determined by measuring acetylene reduction in nitrogen-poor medium solidified with gellan gum.

    Science.gov (United States)

    Hara, Shintaro; Hashidoko, Yasuyuki; Desyatkin, Roman V; Hatano, Ryusuke; Tahara, Satoshi

    2009-05-01

    For evaluating N(2) fixation of diazotrophic bacteria, nitrogen-poor liquid media supplemented with at least 0.5% sugar and 0.2% agar are widely used for acetylene reduction assays. In such a soft gel medium, however, many N(2)-fixing soil bacteria generally show only trace acetylene reduction activity. Here, we report that use of a N(2) fixation medium solidified with gellan gum instead of agar promoted growth of some gellan-preferring soil bacteria. In a soft gel medium solidified with 0.3% gellan gum under appropriate culture conditions, bacterial microbiota from boreal forest bed soils and some free-living N(2)-fixing soil bacteria isolated from the microbiota exhibited 10- to 200-fold-higher acetylene reduction than those cultured in 0.2% agar medium. To determine the N(2) fixation-activating mechanism of gellan gum medium, qualitative differences in the colony-forming bacterial components from tested soil microbiota were investigated in plate cultures solidified with either agar or gellan gum for use with modified Winogradsky's medium. On 1.5% agar plates, apparently cryophilic bacterial microbiota showed strictly distinguishable microbiota according to the depth of soil in samples from an eastern Siberian Taiga forest bed. Some pure cultures of proteobacteria, such as Pseudomonas fluorescens and Burkholderia xenovorans, showed remarkable acetylene reduction. On plates solidified with 1.0% gellan gum, some soil bacteria, including Luteibacter sp., Janthinobacterium sp., Paenibacillus sp., and Arthrobacter sp., uniquely grew that had not grown in the presence of the same inoculants on agar plates. In contrast, Pseudomonas spp. and Burkholderia spp. were apparent only as minor colonies on the gellan gum plates. Moreover, only gellan gum plates allowed some bacteria, particularly those isolated from the shallow organic soil layer, to actively swarm. In consequence, gellan gum is a useful gel matrix to bring out growth potential capabilities of many soil

  18. Formation and maintenance of high-nitrate, low pH layers in the eastern Indian Ocean and the role of nitrogen fixation

    Directory of Open Access Journals (Sweden)

    A. M. Waite

    2013-08-01

    Full Text Available We investigated the biogeochemistry of low dissolved oxygen high-nitrate (LDOHN layers forming against the backdrop of several interleaving regional water masses in the eastern Indian Ocean, off northwest Australia adjacent to Ningaloo Reef. These water masses, including the forming Leeuwin Current, have been shown directly to impact the ecological function of Ningaloo Reef and other iconic coastal habitats downstream. Our results indicate that LDOHN layers are formed from multiple subduction events of the Eastern Gyral Current beneath the Leeuwin Current (LC; the LC originates from both the Indonesian Throughflow and tropical Indian Ocean. Density differences of up to 0.025 kg m−3 between the Eastern Gyral Current and the Leeuwin Current produce sharp gradients that can trap high concentrations of particles (measured as low transmission along the density interfaces. The oxidation of the trapped particulate matter results in local depletion of dissolved oxygen and regeneration of dissolved nitrate (nitrification. We document an associated increase in total dissolved carbon dioxide, which lowers the seawater pH by 0.04 units. Based on isotopic measurements (δ15N and δ18O of dissolved nitrate, we determine that ~ 40–100% of the nitrate found in LDOHN layers is likely to originate from nitrogen fixation, and that, regionally, the importance of N-fixation in contributing to LDOHN layers is likely to be highest at the surface and offshore.

  19. Evaluation of the tepary bean (Phaseolus acutifolius) diversity panel for response to the NL 3 strain of Bean Common Mosaic Necrosis Virus (BCMNV) and for biological nitrogen fixation with Bradyrhizobium strains

    Science.gov (United States)

    Aphid-transmitted Bean Common Mosaic Necrosis Virus (BCMNV) and Bean Common Mosaic Virus (BCMV) are potyviruses that are seed transmitted in tepary bean. Developing resistance to these viruses will be critical for expanding production in areas where they are endemic. Biological nitrogen fixation (BN...

  20. A new Open Top Chamber designed to test in situ effects of climatic and atmospheric changes on nitrogen fixation in boreal forest floor mosses

    Science.gov (United States)

    Bringuier, Charline; Bradley, Robert; Bellenger, Jean-Philippe; Morin, Hubert; Lindo, Zoë

    2014-05-01

    Biological nitrogen fixation (BNF) by cyanobacteria dwelling in forest floor moss layers is an important determinant of boreal black spruce forest productivity. Recent studies have suggested that these BNF rates may increase with increasing atmospheric CO2 and increasing temperature, as predicted by current weather models. This potential increase in BNF may be offset, however, by increasing atmospheric deposition of nitrogen, or by increasing demands for phosphorus (i.e. driving nodular ATP content) and for micronutrients such as Mo, Va and Fe (i.e. co-factors of nitrogenase enzyme). In order to study the relative and interactive effects of these factors controlling in situ BNF rates in boreal forest floor moss layers, a new Open Top Chamber (OTC) was developed in summer of 2013. The chambers measure 1.60 cm dia. × 60 cm height, and are equipped with an automated CO2 delivery system designed to maintain atmospheric daytime CO2 concentrations at 800 ppm, as well as buried heating coils that increase soil temperature by 4 ° C for 3 weeks in springtime. These 2 experimental factors are crossed in a full factorial (2 × 2) design that is replicated in 4 complete blocks. Each of the 16 OTCs is divided into 4 compartments, each of which are assigned 1 of 4 sub-plot factors. These include chronic additions of either atmospheric nitrogen, phosphorus, micronutrients or a non-amended control. Staring in summer 2014, a series of measurements will be made to assess the effects of treatments on BNF rates, cyanobacterial colonization and soil nitrogen cycling. Our poster will describe in detail the design and operation of the OTCs, as well as their construction and maintenance costs.

  1. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mouser, P.J.; N' Guessan, A.L.; Elifantz, H.; Holmes, D.E.; Williams, K.H.; Wilkins, M.J.; Long, P.E.; Lovley, D.R.

    2009-04-01

    The impact of ammonium availability on microbial community structure and the physiological status and activity of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by as much as two orders of magnitude (<4 to 400 {micro}M) across the study site. Analysis of 16S rRNA gene sequences suggested that ammonium influenced the composition of the microbial community prior to acetate addition with Rhodoferax species predominating over Geobacter species at the site with the highest ammonium, and Dechloromonas species dominating at sites with lowest ammonium. However, once acetate was added, and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to the concentration of acetate that was delivered to each location rather than the amount of ammonium available in the groundwater. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium importer gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during in situ uranium reduction, and that the abundance of amtB transcripts was inversely correlated to ammonium levels across all sites examined. These results suggest that nifD and amtB expression by subsurface Geobacter species are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB expression appears to be a useful approach for monitoring the nitrogen-related physiological status of Geobacter species in subsurface environments during bioremediation. This study also emphasizes the need for more detailed analysis of geochemical/physiological interactions at the field scale, in order to adequately model subsurface microbial processes.

  2. Nitrogen fixation in forested soils by non-leguminous nitrogen-fixing plants and by non-symbiotic soil organisms. Final report, October 1, 1977-September 30, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Lane, C.L.

    1982-01-01

    Studies using mixtures of nitrogen-fixing plants mixed with loblolly pine showed no growth increase on a good site but a growth increase on a poor site. Soil nutrient studies showed that soils beneath alder, eleagnus, wax myrtle and red cedar had a higher nutrient concentration than soils not influenced by the crown. Monthly nutrient concentrations were quite variable.

  3. Chapters in the industrial history of plasma arcs: The precursors (1800-1900); fixation of atmospheric nitrogen (1898-1920)

    Science.gov (United States)

    Bailleux, C.

    1981-12-01

    Early experiments involving plasma arc discharges are recalled, including Humphry Davy's electric egg, and Birkeland's disastrous attempt to build an electric cannon. The development of arc furnaces is traced, and the search for new sources of nitrogen at the turn of the century is described.

  4. Symbiotic nitrogen fixation and yield of Pachyrhizus Erosus (L) urban cultivars and Pachyrhizus Ahipa (WEDD) parodi landraces as affected by flower pruning

    DEFF Research Database (Denmark)

    Castellanos, J.Z.; Zapata, F.; Badillo, V.

    1997-01-01

    biomass without N fertiliser application. In some climatic regions P. erosus is reproductively pruned in order to obtain economic yields, but little is known about how the pruning influences the capacity of these tuber legumes to fix nitrogen. Two experiments were carried out to investigate the effect...... as reference crops. In the second experiment N-15 isotopic dilution methodology was used to determine N-2 fixation in the same cultivars as in Experiment 1, using the same reference crops, but tuber legumes were only grown with pruning of flowers. In the first experiment the amounts of nitrogen fixed ranged...... to 151 kg N ha(-1) and their N concentration ranged from 32 to 35 g kg(-1). In the second experiment the % N derived from the atmosphere (Ndfa) was estimated to range from 55 to 69% for P. ahipa and from 68 to 77% for P. erosus, while the amount of N fixed ranged from 74 to 95 kg N ha(-1) and from 172...

  5. Effects of Boron Nutrition and Water Stress on Nitrogen Fixation, Seed δ 15N and δ 13C Dynamics, and Seed Composition in Soybean Cultivars Differing in Maturities

    Science.gov (United States)

    Bellaloui, Nacer; Mengistu, Alemu

    2015-01-01

    Therefore, the objective of the current research was to investigate the effects of foliar B nutrition on seed protein, oil, fatty acids, and sugars under water stress conditions. A repeated greenhouse experiment was conducted using different maturity group (MG) cultivars. Plants were well-watered with no foliar B (W − B), well-watered with foliar B (W + B), water-stressed with no foliar B (WS − B), and water-stressed with foliar B (WS + B). Foliar B was applied at rate of 0.45 kg·ha−1 and was applied twice at flowering and at seed-fill stages. The results showed that seed protein, sucrose, fructose, and glucose were higher in W + B treatment than in W − B, WS + B, and WS − B. The increase in protein in W + B resulted in lower seed oil, and the increase of oleic in WS − B or WS + B resulted in lower linolenic acid. Foliar B resulted in higher nitrogen fixation and water stress resulted in seed δ 15N and δ 13C alteration. Increased stachyose indicated possible physiological and metabolic changes in carbon and nitrogen pathways and their sources under water stress. This research is beneficial to growers for fertilizer management and seed quality and to breeders to use 15N/14N and 13C/12C ratios and stachyose to select for drought tolerance soybean. PMID:25667936

  6. Structural characterization of the protein cce_0567 from Cyanothece 51142, a metalloprotein associated with nitrogen fixation in the DUF683 family

    Energy Technology Data Exchange (ETDEWEB)

    Buchko, Garry W.; Robinson, Howard; Addlagatta, Anthony

    2009-03-11

    The genome of many cyanobacacteria contain the sequence for a small protein (<100 amino acids) with a commom "domain of unknown function" grouped into the DUF683 protein family. While the biological function of DUF683 is still not known, their genomic location within nitrogen fixation clusters suggests that DUF683 proteins may play a role in the process. The diurnal cyanobacterium Cyanothece sp. PCC 51142 contains a gene for a protein that fall into the DUF683 family, cce_0567 (78 aa, 9.0 kDa). In an effort to elucidate the biochemical role DUF683 proteins may play in nitrogen fixation, we have determined the first crystal structure for a protein in this family, cce_0567, to 1.84 Å resolution. Cce_0567 crystallized in space group P21 with two protein molecules and one Ni2+ cation per asymmetric unit. The protein is composed of two α-helices from residues P11 to G41 (α1) and L49-E74 (α2) with the second α-helix containing a short 310-helix (Y46 - N48). A four-residue linker (L42 - D45) between the helices allows them to form an anti-parallel bundle that cross over each other towards their termini. In solution it is likely that two molecules of cce_0567 form a rod-like dimer by the stacking interactions of ~1/2 of the protein. Histidine-36 is highly conserved in all known DUF683 proteins and the N2 nitrogen of the H36 side chain of each molecule in the dimer coordinate with Ni2+ in the crystal structure. The divalent cation Ni2+ was titrated into 15N-labelled cce_0567 and chemical shift perturbations were observed only in the 1H-15N HSQC spectra for residues at, or near, the site of Ni2+ binding observed in the crystal structure. There was no evidence for an increase in the size of cce_0567 upon binding Ni2+, even in large molar excess of Ni2+, indicating that a metal was not required for dimer formation. Circular dichroism spectroscopy indicated that cce_0567 was extremely robust, with a melting temperature of ~62ºC that was reversible.

  7. Symbiotic legume nodules employ both rhizobial exo- and endo-hydrogenases to recycle hydrogen produced by nitrogen fixation.

    Directory of Open Access Journals (Sweden)

    Christopher O Ciccolella

    Full Text Available BACKGROUND: In symbiotic legume nodules, endosymbiotic rhizobia (bacteroids fix atmospheric N(2, an ATP-dependent catalytic process yielding stoichiometric ammonium and hydrogen gas (H(2. While in most legume nodules this H(2 is quantitatively evolved, which loss drains metabolic energy, certain bacteroid strains employ uptake hydrogenase activity and thus evolve little or no H(2. Rather, endogenous H(2 is efficiently respired at the expense of O(2, driving oxidative phosphorylation, recouping ATP used for H(2 production, and increasing the efficiency of symbiotic nodule N(2 fixation. In many ensuing investigations since its discovery as a physiological process, bacteroid uptake hydrogenase activity has been presumed a single entity. METHODOLOGY/PRINCIPAL FINDINGS: Azorhizobium caulinodans, the nodule endosymbiont of Sesbania rostrata stems and roots, possesses both orthodox respiratory (exo-hydrogenase and novel (endo-hydrogenase activities. These two respiratory hydrogenases are structurally quite distinct and encoded by disparate, unlinked gene-sets. As shown here, in S. rostrata symbiotic nodules, haploid A. caulinodans bacteroids carrying single knockout alleles in either exo- or-endo-hydrogenase structural genes, like the wild-type parent, evolve no detectable H(2 and thus are fully competent for endogenous H(2 recycling. Whereas, nodules formed with A. caulinodans exo-, endo-hydrogenase double-mutants evolve endogenous H(2 quantitatively and thus suffer complete loss of H(2 recycling capability. More generally, from bioinformatic analyses, diazotrophic microaerophiles, including rhizobia, which respire H(2 may carry both exo- and endo-hydrogenase gene-sets. CONCLUSIONS/SIGNIFICANCE: In symbiotic S. rostrata nodules, A. caulinodans bacteroids can use either respiratory hydrogenase to recycle endogenous H(2 produced by N(2 fixation. Thus, H(2 recycling by symbiotic legume nodules may involve multiple respiratory hydrogenases.

  8. Non-Enzymatic-Browning-Reaction: A Versatile Route for Production of Nitrogen-Doped Carbon Dots with Tunable Multicolor Luminescent Display

    Science.gov (United States)

    Wei, Weili; Xu, Can; Wu, Li; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2014-01-01

    The non-enzymatic browning, namely Maillard reaction is commonly invoked to account for abiotic chemical transformations of organic matter. Here we report a new reaction pathway via the Maillard reaction to systematically synthesize a series of nitrogen-doped carbon dots (C-dots) with superhigh quantum yield (QY) and tunable multicolor luminescent displayment. The starting materials are glucose and the serial amino acid analogues which allow systemically controlling luminescent and physicochemical properties of C-dots at will. Unexpectedly, the as-prepared C-dots possess bright photoluminescence with QY up to 69.1% which is almost the highest ever reported, favorable biocompatibility, excellent aqueous and nonaqueous dispersibility, ultrahigh photostability, and readily functionalization. We have demonstrated that they are particularly suitable for multicolor luminescent display and long-term and real-time cellular imaging. Furthermore, the methodology is readily scalable to large yield, and can provide sufficient amount of C-dots for practical demands.

  9. Non-Enzymatic-Browning-Reaction: A Versatile Route for Production of Nitrogen-Doped Carbon Dots with Tunable Multicolor Luminescent Display

    Science.gov (United States)

    Wei, Weili; Xu, Can; Wu, Li; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2014-01-01

    The non-enzymatic browning, namely Maillard reaction is commonly invoked to account for abiotic chemical transformations of organic matter. Here we report a new reaction pathway via the Maillard reaction to systematically synthesize a series of nitrogen-doped carbon dots (C-dots) with superhigh quantum yield (QY) and tunable multicolor luminescent displayment. The starting materials are glucose and the serial amino acid analogues which allow systemically controlling luminescent and physicochemical properties of C-dots at will. Unexpectedly, the as-prepared C-dots possess bright photoluminescence with QY up to 69.1% which is almost the highest ever reported, favorable biocompatibility, excellent aqueous and nonaqueous dispersibility, ultrahigh photostability, and readily functionalization. We have demonstrated that they are particularly suitable for multicolor luminescent display and long-term and real-time cellular imaging. Furthermore, the methodology is readily scalable to large yield, and can provide sufficient amount of C-dots for practical demands. PMID:24389590

  10. Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed {001} Facets.

    Science.gov (United States)

    Li, Hao; Shang, Jian; Ai, Zhihui; Zhang, Lizhi

    2015-05-20

    Even though the well-established Haber-Bosch process has been the major artificial way to "fertilize" the earth, its energy-intensive nature has been motivating people to learn from nitrogenase, which can fix atmospheric N2 to NH3 in vivo under mild conditions with its precisely arranged proteins. Here we demonstrate that efficient fixation of N2 to NH3 can proceed under room temperature and atmospheric pressure in water using visible light illuminated BiOBr nanosheets of oxygen vacancies in the absence of any organic scavengers and precious-metal cocatalysts. The designed catalytic oxygen vacancies of BiOBr nanosheets on the exposed {001} facets, with the availability of localized electrons for π-back-donation, have the ability to activate the adsorbed N2, which can thus be efficiently reduced to NH3 by the interfacial electrons transferred from the excited BiOBr nanosheets. This study might open up a new vista to fix atmospheric N2 to NH3 through the less energy-demanding photochemical process.

  11. A Biosensor-Based Leaf Punch Assay for Glutamine Correlates to Symbiotic Nitrogen Fixation Measurements in Legumes to Permit Rapid Screening of Rhizobia Inoculants under Controlled Conditions

    Directory of Open Access Journals (Sweden)

    Malinda S. Thilakarathna

    2017-10-01

    Full Text Available Legumes are protein sources for billions of humans and livestock. These traits are enabled by symbiotic nitrogen fixation (SNF, whereby root nodule-inhabiting rhizobia bacteria convert atmospheric nitrogen (N into usable N. Unfortunately, SNF rates in legume crops suffer from undiagnosed incompatible/suboptimal interactions between crop varieties and rhizobia strains. There are opportunities to test much large numbers of rhizobia strains if cost/labor-effective diagnostic tests become available which may especially benefit researchers in developing countries. Inside root nodules, fixed N from rhizobia is assimilated into amino acids including glutamine (Gln for export to shoots as the major fraction (amide-exporting legumes or as the minor fraction (ureide-exporting legumes. Here, we have developed a new leaf punch based technique to screen rhizobia inoculants for SNF activity following inoculation of both amide exporting and ureide exporting legumes. The assay is based on measuring Gln output using the GlnLux biosensor, which consists of Escherichia coli cells auxotrophic for Gln and expressing a constitutive lux operon. Subsistence farmer varieties of an amide exporter (lentil and two ureide exporters (cowpea and soybean were inoculated with different strains of rhizobia under controlled conditions, then extracts of single leaf punches were incubated with GlnLux cells, and light-output was measured using a 96-well luminometer. In the absence of external N and under controlled conditions, the results from the leaf punch assay correlated with 15N-based measurements, shoot N percentage, and shoot total fixed N in all three crops. The technology is rapid, inexpensive, high-throughput, requires minimum technical expertise and very little tissue, and hence is relatively non-destructive. We compared and contrasted the benefits and limitations of this novel diagnostic assay to methods.

  12. The nitrogen-fixation island insertion site is conserved in diazotrophic Pseudomonas stutzeri and Pseudomonas sp. isolated from distal and close geographical regions.

    Directory of Open Access Journals (Sweden)

    Anastasia Venieraki

    Full Text Available The presence of nitrogen fixers within the genus Pseudomonas has been established and so far most isolated strains are phylogenetically affiliated to Pseudomonas stutzeri. A gene ortholog neighborhood analysis of the nitrogen fixation island (NFI in four diazotrophic P. stutzeri strains and Pseudomonas azotifigens revealed that all are flanked by genes coding for cobalamin synthase (cobS and glutathione peroxidise (gshP. The putative NFIs lack all the features characterizing a mobilizable genomic island. Nevertheless, bioinformatic analysis P. stutzeri DSM 4166 NFI demonstrated the presence of short inverted and/or direct repeats within both flanking regions. The other P. stutzeri strains carry only one set of repeats. The genetic diversity of eleven diazotrophic Pseudomonas isolates was also investigated. Multilocus sequence typing grouped nine isolates along with P. stutzeri and two isolates are grouped in a separate clade. A Rep-PCR fingerprinting analysis grouped the eleven isolates into four distinct genotypes. We also provided evidence that the putative NFI in our diazotrophic Pseudomonas isolates is flanked by cobS and gshP genes. Furthermore, we demonstrated that the putative NFI of Pseudomonas sp. Gr65 is flanked by inverted repeats identical to those found in P. stutzeri DSM 4166 and while the other P. stutzeri isolates harbor the repeats located in the intergenic region between cobS and glutaredoxin genes as in the case of P. stutzeri A1501. Taken together these data suggest that all putative NFIs of diazotrophic Pseudomonas isolates are anchored in an intergenic region between cobS and gshP genes and their flanking regions are designated by distinct repeats patterns. Moreover, the presence of almost identical NFIs in diazotrophic Pseudomonas strains isolated from distal geographical locations around the world suggested that this horizontal gene transfer event may have taken place early in the evolution.

  13. Omission and Resupply of Nitrogen Affect Physiological and Enzymatic Activities and the Gene Expression of Eucalypt Clones

    Directory of Open Access Journals (Sweden)

    Loane Vaz Fernandes

    Full Text Available ABSTRACT: The mineral nutrient uptake of plants in the field occurs in pulses, due to variations in the substance concentrations at the root surface. The fluctuations in nutrient supply probably induce changes in the plant, which are to date unknown for Eucalyptus. This study evaluated these changes in plant growth, nutritional status, photosynthesis, and gene expression, which can serve as biomarkers of the nitrogen status, of four eucalypt clones exposed to N omission and resupply. A greenhouse experiment with four Eucalyptus clones was installed, and after initial growth exposed to N omission for 21 d, followed by N resupply in nutrient solution for 14 d. Nitrogen omission decreased the total N and photosynthetic pigments, net photosynthesis and photochemical dissipation, and increased enzyme activity especially in leaves and the gene expression in leaves and roots. Nitrogen resupply decreased these variations, indicating recovery. The total N concentration was highly and significantly correlated with net photosynthesis, enzyme activity, expression of genes GS2;1 and Gln1;3 in the leaves and AMT1;2 in the roots, contents of chlorophyll a and b, and photochemical energy dissipation. The enzymes GS and NR in the leaves and the genes AMT1;2, GS2;1 and Gln1;3 proved to be sensitive N indicators.

  14. The involvement of the nif-associated ferredoxin-like genes fdxA and fdxN of Herbaspirillum seropedicae in nitrogen fixation.

    Science.gov (United States)

    Souza, André L F; Invitti, Adriana L; Rego, Fabiane G M; Monteiro, Rose A; Klassen, Giseli; Souza, Emanuel M; Chubatsu, Leda S; Pedrosa, Fábio O; Rigo, Liu U

    2010-02-01

    The pathway of electron transport to nitrogenase in the endophytic beta-Proteobacterium Herbaspirillum seropedicae has not been characterized. We have generated mutants in two nif-associated genes encoding putative ferredoxins, fdxA and fdxN. The fdxA gene is part of the operon nifHDKENXorf1orf2fdxAnifQmodABC and is transcribed from the nifH promoter, as revealed by lacZ gene fusion. The fdxN gene is probably cotranscribed with the nifB gene. Mutational analysis suggests that the FdxA protein is essential for maximum nitrogenase activity, since the nitrogenase activity of the fdxA mutant strain was reduced to about 30% of that of the wild-type strain. In addition, the fdxA mutation had no effect on the nitrogenase switch-off in response to ammonium. Nitrogenase activity of a mutant strain lacking the fdxN gene was completely abolished. This phenotype was reverted by complementation with fdxN expressed under lacZ promoter control. The results suggest that the products of both the fdxA and fdxN genes are probably involved in electron transfer during nitrogen fixation.

  15. Potential nitrogen fixation activity of different aged biological soil crusts from rehabilitated grasslands of the hilly Loess Plateau, China

    Science.gov (United States)

    Zhao, Y.; Xu, M.; Belnap, J.

    2010-01-01

    Biological soil crusts (biocrusts) cover up to 60–70% of the soil surface in grasslands rehabilitated during the "Grain for Green" project implemented in the hilly Loess Plateau region in 1999. As biocrusts fix nitrogen (N), they are an important part of restoring soil fertility. We measured nitrogenase activity (NA) in biocrusts from sites rehabilitated at six different time periods to estimate 1) the effects of moisture content and temperature on NA in biocrusts of different ages and 2) the potential N contribution from biocrusts to soils and plants in this region. Results show that NA in the biocrusts was mostly controlled by the species composition, as the activity of biocrusts dominated by free-living soil cyanobacteria was significantly higher than that of moss-dominated biocrusts. Nitrogenase activity was also influenced by soil moisture content and ambient temperature, with a significant decline in activity when moisture levels were decreased to 20% field water-holding capacity. The optimal temperature for NA was 35–40 °C and 30–40 °C for cyanobacteria- and moss-dominated biocrusts, respectively. Biocrust fixed N is likely an important source of N in this ecosystem, as we estimated annual potential N inputs per hectare in these grasslands to be up to 13 kg N ha-1 and 4 kg N ha-1 for cyanobacteria- and moss-dominated biocrusts, respectively.

  16. External nitrogen input affects pre- and post-harvest cell wall composition but not the enzymatic saccharification of wheat straw

    DEFF Research Database (Denmark)

    Baldwin, Laetitia Andrée; Glazowska, Sylwia Emilia; Mravec, Jozef

    2017-01-01

    Wheat is one of the most important crops for food and feed and its straw is a potential feedstock for biorefinery purposes. Nitrogen (N) is an essential input factor in wheat agriculture but no information is available on how it affects straw composition during maturation and at harvest. To inves......Wheat is one of the most important crops for food and feed and its straw is a potential feedstock for biorefinery purposes. Nitrogen (N) is an essential input factor in wheat agriculture but no information is available on how it affects straw composition during maturation and at harvest....... To investigate this, we conducted a large scale field experiment in which wheat plants were cultivated at three levels of externally applied N. The plants were harvested at different stages of maturation, spanning green straw at heading (ear emergence) to fully yellow straw at final maturity. Defined parts...... of the straw were analyzed for cell wall characteristics relevant for further biomass processing. The straw N concentration corroborated with the level of N input, but the yield of straw biomass was not largely affected. High N treatment modified cell wall composition, namely increased abundance...

  17. Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea

    Directory of Open Access Journals (Sweden)

    M. Blumenberg

    2013-04-01

    Full Text Available The Baltic Sea, one of the world's largest brackish-marine basins, established after deglaciation of Scandinavia about 17 000 to 15 000 yr ago. In the changeable history of the Baltic Sea, the initial freshwater system was connected to the North Sea about 8000 yr ago and the modern brackish-marine setting (Littorina Sea was established. Today, a relatively stable stratification has developed in the water column of the deep basins due to salinity differences. Stratification is only occasionally interrupted by mixing events, and it controls nutrient availability and growth of specifically adapted microorganisms and algae. We studied bacteriohopanepolyols (BHPs, lipids of specific bacterial groups, in a sediment core from the central Baltic Sea (Gotland Deep and found considerable differences between the distinct stages of the Baltic Sea's history. Some individual BHP structures indicate contributions from as yet unknown redoxcline-specific bacteria (bacteriohopanetetrol isomer, methanotrophic bacteria (35-aminobacteriohopanetetrol, cyanobacteria (bacteriohopanetetrol cyclitol ether isomer and from soil bacteria (adenosylhopane through allochthonous input after the Littorina transgression, whereas the origin of other BHPs in the core has still to be identified. Notably high BHP abundances were observed in the deposits of the brackish-marine Littorina phase, particularly in laminated sediment layers. Because these sediments record periods of stable water column stratification, bacteria specifically adapted to these conditions may account for the high portions of BHPs. An additional and/or accompanying source may be nitrogen-fixing (cyanobacteria, which is indicated by a positive correlation of BHP abundances with Corg and δ15N.

  18. Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer.

    Science.gov (United States)

    Menna, Pâmela; Hungria, Mariangela

    2011-12-01

    Bacteria belonging to the genus Bradyrhizobium are capable of establishing symbiotic relationships with a broad range of plants belonging to the three subfamilies of the family Leguminosae (=Fabaceae), with the formation of specialized structures on the roots called nodules, where fixation of atmospheric nitrogen takes place. Symbiosis is under the control of finely tuned expression of common and host-specific nodulation genes and also of genes related to the assembly and activity of the nitrogenase, which, in Bradyrhizobium strains investigated so far, are clustered in a symbiotic island. Information about the diversity of these genes is essential to improve our current poor understanding of their origin, spread and maintenance and, in this study, we provide information on 40 Bradyrhizobium strains, mostly of tropical origin. For the nodulation trait, common (nodA), Bradyrhizobium-specific (nodY/K) and host-specific (nodZ) nodulation genes were studied, whereas for fixation ability, the diversity of nifH was investigated. In general, clustering of strains in all nod and nifH trees was similar and the Bradyrhizobium group could be clearly separated from other rhizobial genera. However, the congruence of nod and nif genes with ribosomal and housekeeping genes was low. nodA and nodY/K were not detected in three strains by amplification or hybridization with probes using Bradyrhizobium japonicum and Bradyrhizobium elkanii type strains, indicating the high diversity of these genes or that strains other than photosynthetic Bradyrhizobium must have alternative mechanisms to initiate the process of nodulation. For a large group of strains, the high diversity of nod genes (with an emphasis on nodZ), the low relationship between nod genes and the host legume, and some evidence of horizontal gene transfer might indicate strategies to increase host range. On the other hand, in a group of five symbionts of Acacia mearnsii, the high congruence between nod and ribosomal

  19. Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea

    Directory of Open Access Journals (Sweden)

    V. J. Bertics

    2013-03-01

    Full Text Available Despite the worldwide occurrence of marine hypoxic regions, benthic nitrogen (N cycling within these areas is poorly understood and it is generally assumed that these areas represent zones of intense fixed N loss from the marine system. Sulfate reduction can be an important process for organic matter degradation in sediments beneath hypoxic waters and many sulfate-reducing bacteria (SRB have the genetic potential to fix molecular N (N2. Therefore, SRB may supply fixed N to these systems, countering some of the N lost via microbial processes, such as denitrification and anaerobic ammonium oxidation. The objective of this study was to evaluate if N2 fixation, possibly by SRB, plays a role in N cycling within the seasonally hypoxic sediments from the Eckernförde Bay, Baltic Sea. Monthly samplings were performed over the course of one year to measure nitrogenase activity (NA and sulfate reduction rates, to determine the seasonal variations in bioturbation (bioirrigation activity and important benthic geochemical profiles, such as sulfur and N compounds, and to monitor changes in water column temperature and oxygen concentrations. Additionally, at several time points, the active N-fixing community was examined via molecular tools. Integrated rates of N2 fixation (approximated from NA and sulfate reduction showed a similar seasonality pattern, with highest rates occurring in August (approx. 22 and 880 nmol cm−3 d−1 of N and SO42−, respectively and October (approx. 22 and 1300 nmol cm−3 d−1 of N and SO42− respectively, and lowest rates occurring in February (approx. 8 and 32 nmol cm−3 d−1 of N and SO42−, respectively. These rate changes were positively correlated with bottom water temperatures and previous reported plankton bloom activities, and negatively correlated with bottom water oxygen concentrations. Other variables that also appeared to play a role in rate determination were bioturbation, bubble irrigation and winter storm

  20. CeO2nanocrystallines ensemble-on-nitrogen-doped graphene nanocomposites: one-pot, rapid synthesis and excellent electrocatalytic activity for enzymatic biosensing.

    Science.gov (United States)

    Du, Xiaojiao; Jiang, Ding; Chen, Saibo; Dai, Liming; Zhou, Lei; Hao, Nan; You, Tianyou; Mao, Hanping; Wang, Kun

    2017-03-15

    Ceria nanomaterials for heterogeneous catalysis have attracted much attention due to their excellent properties and have been extensively applied in recent years. But the poor electron conductivity and the aggregation behavior severely affect their electrocatalytic performances. In this paper, we prepared a novel catalyst based on CeO 2 nanocrystallines (CeO 2 NCs) ensemble-on-nitrogen-doped graphene (CeO 2 -NG) nanocomposites through a one-step heat-treatment without the need of the precursor. The results confirmed that the high dispersion of CeO 2 NCs with the uniform size distribution of about 5nm on the surface of nitrogen-doped graphene (NG) sheets could be easily obtained via the one-step procedure and the resultant CeO 2 -NG nanocomposites were an excellent electrode material possessing outstanding electrochemical features for electron transfer. Luminol, an important electroactive substance, was further chosen to inspect the electrocatalytic properties of the as-prepared CeO 2 -NG nanocomposites. The studies showed that the presence of the NG in CeO 2 -NG nanocomposites could facilitate the electrochemical redox process of luminol. Compared with pristine CeO 2 NCs, the synthesized CeO 2 -NG nanocomposites can enhance the electrochemiluminescence (ECL) intensity by 3.3-fold and decrease the onset ECL potential for about 72mV in the neutral condition. Employing above superiority, selecting cholesterol oxidase (ChOx) as the model oxidase, a facile ECL method for cholesterol detection with the CeO 2 -NG nanocomposites as the matrix to immobilize enzyme ChOx was developed. The results demonstrated CeO 2 -NG nanocomposites exhibited excellent performances in terms of sensitivity and catalytic activities, indicating that NG-based nanomaterials have great promise in electrocatalytic and enzymatic biosensing fields. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The nitrogen cycle

    National Research Council Canada - National Science Library

    Stein, Lisa Y; Klotz, Martin G

    2016-01-01

    .... Although such abiotic reactions are still important, the extant nitrogen cycle is driven by reductive fixation of dinitrogen and an enzyme inventory that facilitates dinitrogen-producing reactions...

  2. Fracture fixation.

    Science.gov (United States)

    Taljanovic, Mihra S; Jones, Marci D; Ruth, John T; Benjamin, James B; Sheppard, Joseph E; Hunter, Tim B

    2003-01-01

    The basic goal of fracture fixation is to stabilize the fractured bone, to enable fast healing of the injured bone, and to return early mobility and full function of the injured extremity. Fractures can be treated conservatively or with external and internal fixation. Conservative fracture treatment consists of closed reduction to restore the bone alignment. Subsequent stabilization is then achieved with traction or external splinting by slings, splints, or casts. Braces are used to limit range of motion of a joint. External fixators provide fracture fixation based on the principle of splinting. There are three basic types of external fixators: standard uniplanar fixator, ring fixator, and hybrid fixator. The numerous devices used for internal fixation are roughly divided into a few major categories: wires, pins and screws, plates, and intramedullary nails or rods. Staples and clamps are also used occasionally for osteotomy or fracture fixation. Autogenous bone grafts, allografts, and bone graft substitutes are frequently used for the treatment of bone defects of various causes. For infected fractures as well as for treatment of bone infections, antibiotic beads are frequently used. Copyright RSNA, 2003

  3. Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil.

    Science.gov (United States)

    Wang, Xiubin; Zhou, Wei; Liang, Guoqing; Song, Dali; Zhang, Xiaoya

    2015-12-15

    In this study, the characteristics of maize biochar produced at different pyrolysis temperatures (300, 450 and 600°C) and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil were investigated. As pyrolysis temperature increased, ash content, pH, electrical conductivity, surface area, pore volume and aromatic carbon content of biochar increased while yield, ratios of oxygen:carbon and hydrogen: carbon and alkyl carbon content decreased. During incubation, SOC, total N, and ammonium-N contents increased in all biochar-amended treatments compared with the urea treatment; however, soil nitrate-N content first increased and then decreased with increasing pyrolysis temperature of the applied biochar. Extracellular enzyme activities associated with carbon transformation first increased and then decreased with biochars pyrolyzed at 450 and 600°C. Protease activity markedly increased with increased pyrolysis temperatures, whereas pyrolysis temperature had limited effect on soil urease activity. The results indicated that the responses of extracellular enzymes to biochar were dependent on the pyrolysis temperature, the enzyme itself and incubation time as well. Copyright © 2015. Published by Elsevier B.V.

  4. Effect of long-term preservation of basidiomycetes on perlite in liquid nitrogen on their growth, morphological, enzymatic and genetic characteristics.

    Science.gov (United States)

    Homolka, Ladislav; Lisá, Ludmila; Eichlerová, Ivana; Valášková, Vendula; Baldrian, Petr

    2010-01-01

    The macro- and micro-morphological features, mycelial extension rate, enzymatic activities and possible genetic changes were studied in 30 selected strains of basidiomycetes after 10-year cryopreservation on perlite in liquid nitrogen (LN). Comparisons with the same strains preserved by serial transfers on nutrient media at 4°C were also conducted. Production of ligninolytic enzymes and hydrogen peroxide was studied by quantitative spectrophotometric methods, whereas semiquantitative API ZYM testing was used to compare the levels of a wide range of hydrolytic enzymes. Our results show that cryopreservation in LN did not cause morphological changes in any isolate. The vitality of all fungi was successfully preserved and none of the physiological features were lost, even though the extension rate and enzyme activity were slightly affected. Moreover, sequence analysis of eight strains did not detect any changes in their genetic features after cryopreservation. These findings suggest that the perlite-based freezing protocol is suitable for long-term preservation of large numbers of basidiomycetes. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  5. Comparative Analysis of the Combined Effects of Different Water and Phosphate Levels on Growth and Biological Nitrogen Fixation of Nine Cowpea Varieties

    Directory of Open Access Journals (Sweden)

    Martin Jemo

    2017-12-01

    Full Text Available Water deficit and phosphate (Pi deficiency adversely affect growth and biological nitrogen fixation (BNF of legume crops. In this study, we examined the impact of interaction between soil water conditions and available soil-Pi levels on growth, nodule development and BNF potential of nine cowpea varieties grown on dry savanna soils. In our experimental design, soils with different available soil-Pi levels, i.e., low, moderate, and high soil-Pi levels, collected from various farming fields were used to grow nine cowpea varieties under well-watered and water-deficit conditions. Significant and severe water deficit-damaging effects on BNF, nodulation, growth, levels of plant-nitrogen (N and -phosphorus (P, as well as shoot relative water content and chlorophyll content of cowpea plants were observed. Under well-watered and high available soil-Pi conditions, cowpea varieties IT07K-304-9 and Dan'Ila exhibited significantly higher BNF potential and dry biomass, as well as plant-N and -P contents compared with other tested ones. Significant genotypic variations among the cowpeas were recorded under low available soil-Pi and water-deficit conditions in terms of the BNF potential. Principal component (PC analysis revealed that varieties IT04K-339-1, IT07K-188-49, IT07K-304-9, and IT04K-405-5 were associated with PC1, which was better explained by performance for nodulation, plant biomass, plant-N, plant-P, and BNF potential under the combined stress of water deficit and Pi deficiency, thereby offering prospects for development of varieties with high growth and BNF traits that are adaptive to such stress conditions in the region. On another hand, variety Dan'Ila was significantly related to PC2 that was highly explained by the plant shoot/root ratio and chlorophyll content, suggesting the existence of physiological and morphological adjustments to cope with water deficit and Pi deficiency for this particular variety. Additionally, increases in soil

  6. Control of the mid-summer net community production and nitrogen fixation in the central Baltic Sea: An approach based on pCO2 measurements on a cargo ship

    Science.gov (United States)

    Schneider, B.; Gustafsson, E.; Sadkowiak, B.

    2014-08-01

    Automated measurements of the surface CO2 partial pressure, pCO2, were performed since 2003 on a cargo ship along a transect between Helsinki in the Gulf of Finland and Lübeck/Gdynia in the southwest of the Baltic Sea. The temporal and spatial resolution of the measurements amounted to 2-4 days and about 2 nautical miles, respectively. Based on temperature and salinity records and on the mean alkalinity, the total CO2 concentrations, CT, were calculated from the mean pCO2 in the northeastern Gotland Sea. The CT data were used to establish a CO2 mass balance for the period from mid-June to the beginning of August in 2005, 2008, 2009 and 2011. Taking into account the air-sea CO2 gas exchange, the mass balance yielded the net organic matter (Corg) production which is fuelled by nitrogen fixation at this time of the year. Several production events were detected with rates up to 8 μmol-C L- 1 d- 1. The production rates were not related to temperature, but showed a distinct correlation with the rate of the temperature increase. This led to the conclusion that the exposure of nitrogen fixing cyanobacteria to irradiance is the dominating control for the Corg production. Therefore, we suggest using the ratio of irradiance to the mixed layer depth as a variable for the parameterization of nitrogen fixation in biogeochemical models. The Corg production and thus the nitrogen fixation rates remained almost constant as long as continuous rising temperatures indicated favorable irradiation conditions. A limitation of the rates by phosphate or any other factor could not be detected. Based on the C/N ratio of particulate organic matter during a cyanobacteria bloom, the Corg production was used to estimate the mid-summer nitrogen fixation. The values varied from 102 mmol m- 2 to 214 mmol m- 2 (mean: 138 mmol m- 2) for the different years and did not show any correlation with the phosphate excess after the spring nitrate depletion.

  7. Design Fixation

    Science.gov (United States)

    Kelley, Todd R.; Sung, Euisuk

    2017-01-01

    The purpose of this article is to provide awareness of the danger of design fixation and promote the uses of brainstorming early in the design process--before fixation limits creative ideas. The authors challenged technology teachers to carefully limit the use of design examples too early in the process and provided suggestions for facilitating…

  8. An intestinal parasitic protist, Entamoeba histolytica, possesses a non-redundant nitrogen fixation-like system for iron-sulfur cluster assembly under anaerobic conditions.

    Science.gov (United States)

    Ali, Vahab; Shigeta, Yasuo; Tokumoto, Umechiyo; Takahashi, Yasuhiro; Nozaki, Tomoyoshi

    2004-04-16

    We have characterized the iron-sulfur (Fe-S) cluster formation in an anaerobic amitochondrial protozoan parasite, Entamoeba histolytica, in which Fe-S proteins play an important role in energy metabolism and electron transfer. A genomewide search showed that E. histolytica apparently possesses a simplified and non-redundant NIF (nitrogen fixation)-like system for the Fe-S cluster formation, composed of only a catalytic component, NifS, and a scaffold component, NifU. Amino acid alignment and phylogenetic analyses revealed that both amebic NifS and NifU (EhNifS and EhNifU, respectively) showed a close kinship to orthologs from epsilon-proteobacteria, suggesting that both of these genes were likely transferred by lateral gene transfer from an ancestor of epsilon-proteobacteria to E. histolytica. The EhNifS protein expressed in E. coli was present as a homodimer, showing cysteine desulfurase activity with a very basic optimum pH compared with NifS from other organisms. Eh-NifU protein existed as a tetramer and contained one stable [2Fe-2S]2+ cluster per monomer, revealed by spectroscopic and iron analyses. Fractionation of the whole parasite lysate by anion exchange chromatography revealed three major cysteine desulfurase activities, one of which corresponded to the EhNifS protein, verified by immunoblot analysis using the specific EhNifS antibody; the other two peaks corresponded to methionine gamma-lyase and cysteine synthase. Finally, ectopic expression of the EhNifS and EhNifU genes successfully complemented, under anaerobic but not aerobic conditions, the growth defect of an Escherichia coli strain, in which both the isc and suf operons were deleted, suggesting that EhNifS and EhNifU are necessary and sufficient for Fe-S clusters of non-nitrogenase Fe-S proteins to form under anaerobic conditions. This is the first demonstration of the presence and biological significance of the NIF-like system in eukaryotes.

  9. Production and characterization of enzymatic cocktail produced by Aspergillus niger using green macroalgae as nitrogen source and its application in the pre-treatment for biogas production from Ulva rigida.

    Science.gov (United States)

    Karray, Raida; Hamza, Manel; Sayadi, Sami

    2016-09-01

    Marine macroalgae are gaining more and more importance as a renewable feedstock for durable bioenergy production, but polysaccharides of this macroalgae are structurally complex in its chemical composition. The use of enzymatic hydrolysis may provide new pathways in the conversion of complex polysaccharides to fermentable sugars. In this study, an enzymatic cocktail with high specificity was first isolated from Aspergillus niger using the green macroalgae Ulva rigida as nitrogen source. The cocktail is rich on β-glucosidase, pectinase and carboxy-methyl-cellulase (CMCase). The highest activity was obtained with β-glucosidase (109IUmL(-1)) and pectinase (76IUmL(-1)), while CMCase present the lowest activity 4.6IUmL(-1). The U. rigida pre-treatment with this enzymatic cocktail showed high rate of reduced sugar release, and could bring promising prospects for enzymatic pre-treatment of the biogas production from U. rigida biomass which reached 1175mLgCODint(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Dynamics of N2 fixation and fate of diazotroph-derived nitrogen in a low-nutrient, low-chlorophyll ecosystem: results from the VAHINE mesocosm experiment (New Caledonia)

    Science.gov (United States)

    Bonnet, Sophie; Berthelot, Hugo; Turk-Kubo, Kendra; Fawcett, Sarah; Rahav, Eyal; L'Helguen, Stéphane; Berman-Frank, Ilana

    2016-05-01

    N2 fixation rates were measured daily in large (˜ 50 m3) mesocosms deployed in the tropical southwest Pacific coastal ocean (New Caledonia) to investigate the temporal variability in N2 fixation rates in relation with environmental parameters and study the fate of diazotroph-derived nitrogen (DDN) in a low-nutrient, low-chlorophyll ecosystem. The mesocosms were fertilized with ˜ 0.8 µM dissolved inorganic phosphorus (DIP) to stimulate diazotrophy. Bulk N2 fixation rates were replicable between the three mesocosms, averaged 18.5 ± 1.1 nmol N L-1 d-1 over the 23 days, and increased by a factor of 2 during the second half of the experiment (days 15 to 23) to reach 27.3 ± 1.0 nmol N L-1 d-1. These later rates measured after the DIP fertilization are higher than the upper range reported for the global ocean. During the 23 days of the experiment, N2 fixation rates were positively correlated with seawater temperature, primary production, bacterial production, standing stocks of particulate organic carbon (POC), nitrogen (PON) and phosphorus (POP), and alkaline phosphatase activity, and negatively correlated with DIP concentrations, DIP turnover time, nitrate, and dissolved organic nitrogen and phosphorus concentrations. The fate of DDN was investigated during a bloom of the unicellular diazotroph UCYN-C that occurred during the second half of the experiment. Quantification of diazotrophs in the sediment traps indicates that ˜ 10 % of UCYN-C from the water column was exported daily to the traps, representing as much as 22.4 ± 5.5 % of the total POC exported at the height of the UCYN-C bloom. This export was mainly due to the aggregation of small (5.7 ± 0.8 µm) UCYN-C cells into large (100-500 µm) aggregates. During the same time period, a DDN transfer experiment based on high-resolution nanometer-scale secondary ion mass spectrometry (nanoSIMS) coupled with 15N2 isotopic labeling revealed that 16 ± 6 % of the DDN was released to the dissolved pool and 21 ± 4

  11. Effects of Sugar-Treated Foods on Preference and Nitrogen Fixation in Reticulitermes flavipes (Kollar) and Reticulitermes virginicus (Banks) (Isoptera: Rhinotermitidae)

    National Research Council Canada - National Science Library

    Deborah A. Waller; Anthony D. Curtis

    2003-01-01

    Abstract Information on feeding by subterranean termites is important because of their status as major pests in urban areas and their roles in forest nutrient cycles, in which they degrade wood litter and fix nitrogen...

  12. Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change.

    Science.gov (United States)

    Cardini, Ulisse; Bednarz, Vanessa N; Foster, Rachel A; Wild, Christian

    2014-05-01

    Tropical coral reefs are among the most productive and diverse ecosystems, despite being surrounded by ocean waters where nutrients are in short supply. Benthic dinitrogen (N2) fixation is a significant internal source of "new" nitrogen (N) in reef ecosystems, but related information appears to be sparse. Here, we review the current state (and gaps) of knowledge on N2 fixation associated with coral reef organisms and their ecosystems. By summarizing the existing literature, we show that benthic N2 fixation is an omnipresent process in tropical reef environments. Highest N2 fixation rates are detected in reef-associated cyanobacterial mats and sea grass meadows, clearly showing the significance of these functional groups, if present, to the input of new N in reef ecosystems. Nonetheless, key benthic organisms such as hard corals also importantly contribute to benthic N2 fixation in the reef. Given the usually high coral coverage of healthy reef systems, these results indicate that benthic symbiotic associations may be more important than previously thought. In fact, mutualisms between carbon (C) and N2 fixers have likely evolved that may enable reef communities to mitigate N limitation. We then explore the potential effects of the increasing human interferences on the process of benthic reef N2 fixation via changes in diazotrophic populations, enzymatic activities, or availability of benthic substrates favorable to these microorganisms. Current knowledge indicates positive effects of ocean acidification, warming, and deoxygenation and negative effects of increased ultraviolet radiation on the amount of N fixed in coral reefs. Eutrophication may either boost or suppress N2 fixation, depending on the nutrient becoming limiting. As N2 fixation appears to play a fundamental role in nutrient-limited reef ecosystems, these assumptions need to be expanded and confirmed by future research efforts addressing the knowledge gaps identified in this review.

  13. Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea

    DEFF Research Database (Denmark)

    Bertics, V. J.; Löscher, C. R.; Salonen, I.

    2013-01-01

    oxidation. The objective of this study was to evaluate if N2 fixation, possibly by SRB, plays a role in N cycling within the seasonally hypoxic sediments from the Eckernförde Bay, Baltic Sea. Monthly samplings were performed over the course of one year to measure nitrogenase activity (NA) and sulfate...... correlated with bottom water oxygen concentrations. Other variables that also appeared to play a role in rate determination were bioturbation, bubble irrigation and winter storm events. Molecular analysis demonstrated the presence of nifH sequences related to two known N2 fixing SRB, namely Desulfovibrio...

  14. Symbiosis revisited : Phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth

    NARCIS (Netherlands)

    Van Den Elzen, Eva; Kox, Martine A R; Harpenslager, Sarah F.; Hensgens, Geert; Fritz, Christian; Jetten, Mike S M; Ettwig, Katharina F.; Lamers, Leon P M

    2017-01-01

    In pristine Sphagnum-dominated peatlands, (di)nitrogen (N2) fixing (diazotrophic) microbial communities associated with Sphagnum mosses contribute substantially to the total nitrogen input, increasing carbon sequestration. The rates of symbiotic nitrogen fixation reported for Sphagnum peatlands,

  15. Simple approach for the preparation of 15-15N2-enriched water for nitrogen fixation assessments: Evaluation, application and recommendations

    Directory of Open Access Journals (Sweden)

    Isabell eKlawonn

    2015-08-01

    Full Text Available Recent findings revealed that the commonly used 15N2 tracer assay for the determination of dinitrogen (N2 fixation can underestimate the activity of aquatic N2-fixing organisms. Therefore, a modification to the method using pre-prepared 15-15N2-enriched water was proposed. Here, we present a rigorous assessment and outline a simple procedure for the preparation of 15-15N2-enriched water. We recommend to fill sterile-filtered water into serum bottles and to add 15-15N2 gas to the water in amounts exceeding the standard N2 solubility, followed by vigorous agitation (vortex mixing ≥5 min. Optionally, water can be degassed at low-pressure (≥950 mbar for ten minutes prior to the 15-15N2 gas addition to indirectly facilitate the 15-15N2 dissolution. This preparation of 15-15N2-enriched water can be done within one hour using standard laboratory equipment. The final 15N-atom% excess was 5% after replacing 2–5% of the incubation volume with 15-15N2-enriched water. Notably, the addition of 15-15N2-enriched water can alter levels of trace elements in the incubation water due to the contact of 15-15N2-enriched water with glass, plastic and rubber ware during its preparation. In our tests, levels of trace elements (Fe, P, Mn, Mo, Cu, Zn increased by up to 0.1 nmol L-1 in the final incubation volume, which may bias rate measurements in regions where N2 fixation is limited by trace elements. For these regions, we tested an alternative way to enrich water with 15-15N2. The 15-15N2 was injected as a bubble directly to the incubation water, followed by gentle shaking. Immediately thereafter, the bubble was replaced with water to stop the 15-15N2 equilibration. This method achieved a 15N-atom excess of 6.6±1.7% when adding 2 mL 15-15N2 per liter of incubation water. The herein presented methodological tests offer guidelines for the 15N2 tracer assay and thus, are crucial to circumvent methodological draw-backs for future N2 fixation assessments.

  16. Quantification of the contribution of biological nitrogen fixation to tropical green manure crops and the residual benefit to a subsequent maize crop using 15N-isotope techniques.

    Science.gov (United States)

    Ramos, M G; Villatoro, M A; Urquiaga, S; Alves, B J; Boddey, R M

    2001-10-04

    In this study the contribution of biological N2 fixation (BNF) to leguminous green manures was quantified in the field at different sites with different 15N methodologies. In the first experiment, conducted on a Terra Roxa soil in Cuba, the BNF contribution to three legumes (Crotalaria juncea, Mucuna aterrima and Canavalia ensiformis) was quantified by applying 15N-labelled ammonium sulphate to the soil. The second experiment was planted in a very low fertility sandy soil near Rio de Janeiro, and the 15N natural abundance technique was applied to quantify BNF in C. juncea, M. niveum and soybean. In both studies the advantages of using several non-N2-fixing reference plants was apparent and despite the much greater accumulation of the C. juncea in the experiment performed on the fertile soil of Cuba, the above ground contributions of BNF at both sites were similar (40-80 kg N x ha(-1)) and greater than for the other legumes. In a further experiment the possible contribution of root-derived N to the soil/plant system of two of the legumes was quantified using a 15N-leaf-labelling technique performed in pots. The results of this study suggested that total below-ground N could constitute as much as 39 to 49% of the total N accumulated by the legume crops.

  17. Enzymatic decontamination

    Directory of Open Access Journals (Sweden)

    Edyta Prusińska-Kurstak

    2014-12-01

    Full Text Available [b]Abstract[/b]. This paper is devoted to the methods of decontamination of weapons of mass destruction (biological and chemical, based on the use of protein catalysts of chemical reactions — enzymes. This paper presents the possibility of using enzymes to neutralize the harmful and destructive to the environment and human chemicals used in weapons of mass destruction. The mechanism of the enzymatic reaction is showed. These are the possibilities of using lysozyme as destructor dangerous bacteria (E. coli, anthrax Bacillus anthracis and their spores. The advantages and disadvantages of chemical and enzymatic methods of decontamination have been compared. It was found that under certain conditions the enzymes can be an alternative to chemical methods of decontamination of weapons of mass destruction.[b]Keywords[/b]: decontamination, weapons of mass destruction, enzymes

  18. Nitrogen Fixation by a Molybdenum Catalyst Mimicking the Function of the Nitrogenase Enzyme:  A Critical Evaluation of DFT and Solvent Effects.

    Science.gov (United States)

    Magistrato, Alessandra; Robertazzi, Arturo; Carloni, Paolo

    2007-09-01

    Compounds mimicking the enzyme nitrogenase represent promising alternative routes to the current Haber-Bosch industrial synthesis of ammonia from molecular hydrogen and nitrogen. In this work, we investigated the full catalytic cycle of one of such compounds, Mo(HIPTN3N) (with HIPT = hexaisopropylterphenyl), by means of DFT calculations. Our results suggest these large ligands to exert mainly a steric influence on the structural properties of the catalyst. In addition, we provided a structural and electronic characterization of the putative reaction intermediates along with a picture of the electronic mechanism of molecular nitrogen N-N bond breaking. A large discrepancy was observed between calculated and experimental reaction free energies, suggesting that in the present case the predictability of DFT reaction energies is limited. Investigation of explicit solvation of specific catalytic intermediates as well as of the protonation and reducing agents reveal the crucial role played by the solvent molecules (benzene and heptane) particularly for protonation steps. Furthermore, the analysis of several DFT functionals indicates that these have to be carefully chosen in order to reproduce the energetic profile of reduction steps. This study shows how DFT calculations may be a powerful tool to describe structural and electronic properties of the intermediates of the catalytic cycle, yet, due to the complexity of the system, reaction energies cannot be easily reproduced without a careful choice of the solvation model and the exchange-correlation functional.

  19. Fixação do nitrogênio do ar pelas bactérias que vivem em simbiose com as raízes da centrosema Fixation of the atmospheric nitrogen by bacteria which live symbiotically on centrosema

    Directory of Open Access Journals (Sweden)

    J. Casado Montojos

    1963-01-01

    Full Text Available Continuando a série de trabalhos sôbre a quantidade de nitrogênio atmosférico fixada por bactérias que vivem em simbiose com raízes de leguminosas, são relatados os resultados encontrados em centrosema (Centrosema pubescens Benth. Foram utilizados vasos de Mitscherlich, com terra-roxa-misturada. A colheita das plantas foi efetuada por ocasião do florescimento. A parte aérea foi pesada para cálculo da quantidade de massa verde produzida, e, em seguida, juntamente com as raízes, sêca a 60°C até pêso constante. Determinaram-se os teores de nitrogênio na parte aérea e subterrânea das plantas, assim como da terra dos vasos. Os resultados mostraram elevada capacidade de fixação simbiótica de nitrogênio pela centrosema correspondente a cêrca de 204 quilogramas de nitrogênio por hectare.Following a series of research work with the purpose of verifying the amount of atmospheric nitrogen fixed by symbiotic bacteria, the authors report in this paper the results on their research with the leguminous plant Centrosema pubescens Benth. This experiment was conducted in Mitscherlich pots containing terra-roxa-misturada obtained from a 20 cm deep layer of soil taken from the Central Experiment Station "Theodureto de Camargo", in Campinas. The plants were cut in the blooming period, as this is the proper season for turning over green manure crops. The aerial portion of the plants was weighed so as to determine the total production of green matter and then it was dried together with the roots at 60°C. Thus, nitrogen of the total plant was determined and the same analysis was done at the end of the experiment for the soil removed from the pots. According to the results of this experiment, it was found that 204 kilograms of nitrogen per hectare were fixed, showing therefore that centrosema has a high capacity of symbiotic nitrogen fixation.

  20. The dependence of the discharge of nitrous oxide by ordinary chernozem steppe of the Central-Chernozem Region of Russia from the content of humus, nitrogen and enzymatic activity

    Science.gov (United States)

    Avksentev, Alexey; Negrobova, Elena; Kramareva, Tatiana; Moiseeva, Evgenya

    2016-04-01

    The dependence of the discharge of nitrous oxide by ordinary chernozem steppe of the Central-Chernozem Region of Russia from the content of humus, nitrogen and enzymatic activity Alexey Avksentev, Elena Negrobova, Tatiana Kramareva, Evgenya Moiseeva 394000 Voronezh, Universitetskaya square, 1 Voronezh State University Nitrous oxide is emitted by soil as a result of microbiological processes, ranks third in the list of aggressive greenhouse gas after carbon dioxide and methane. Nitrous oxide is formed during nitrification and denitrification of ammonia that enters the soil during microbial decomposition of complex organic compounds. Denitrification can be direct and indirect. In the microbiological process of recovery of nitrates involved of the organic substance. In aerobic conditions microorganisms denitrificator behave like normal saprotrophs and oxidize organic matter in the act of breathing oxygen. Thus, they operate at different times two enzyme systems: the electron transport chain with an oxygen acceptor in aerobic and restoration of nitrates under anaerobic conditions. Investigation of the emission of nitrous oxide by ordinary Chernozem steppe of the Central-Chernozem Region showed that it depends on the type of cenosis and the content of available forms of nitrogen. Natural ecosystems emit nitrous oxide more than the soil of arable land. The dependence of the emission of nitrous oxide from the humus content shows positive trend, but the aggregation of data, significant differences are not detected. Research shows that nitrous oxide emissions are seasonal. So the autumn season is characterized by nitrous oxide emissions than spring. Enzymatic processes are an important link in the biological cycle of elements and, consequently, participate in the process of decomposition of organic matter, nitrification and other processes. Analysis of the data on enzyme activity of ordinary Chernozem and the intensity of emission of N20 shows a clear relationship between

  1. In-situ Monitoring of Plant-microbe Communication to Understand the Influence of Soil Properties on Symbiotic Biological Nitrogen Fixation

    Science.gov (United States)

    Webster, T.; Del Valle, I.; Cheng, H. Y.; Silberg, J. J.; Masiello, C. A.; Lehmann, J.

    2016-12-01

    Plant-microbe signaling is important for many symbiotic and pathogenic interactions. While this signaling often occurs in soils, very little research has evaluated the role that the soil mineral and organic matter matrix plays in plant-microbe communication. One hurdle to these studies is the lack of simple tools for evaluating how soil mineral phases and organic matter influence the availability of plant-produced flavonoids that initiate the symbiosis between nitrogen-fixing bacteria and legumes. Because of their range of hydrophobic and electrostatic properties, flavonoids represent an informative class of signaling molecules. In this presentation, we will describe studies examining the bioavailable concentrations of flavonoids in soils using traditional techniques, such as high-pressure liquid chromatography and fluorescent microbial biosensors. Additionally, we will describe our progress developing a Rhizobium leguminosarum reporter that can be deployed into soils to report on flavonoid levels. This new microbial reporter is designed so that Rhizobium only generates a volatile gas signal when it encounters a defined concentration of flavonoids. By monitoring the output of this biosensor using gas chromatography-mass spectrometry during real time during soil incubations, we are working to establish the impact of soil organic matter, pH, and mineral phases on the reception of these signaling molecules. We expect that the findings from these studies will be useful for recommending soil management strategies that can enhance the communication between legumes and nitrogen fixing bacteria. This research highlights the importance of studying the role of soil as a mediator of plant-microbe communication.

  2. A Medicago truncatula Cystathionine-β-Synthase-like Domain-Containing Protein Is Required for Rhizobial Infection and Symbiotic Nitrogen Fixation.

    Science.gov (United States)

    Sinharoy, Senjuti; Liu, Chengwu; Breakspear, Andrew; Guan, Dian; Shailes, Sarah; Nakashima, Jin; Zhang, Shulan; Wen, Jiangqi; Torres-Jerez, Ivone; Oldroyd, Giles; Murray, Jeremy D; Udvardi, Michael K

    2016-04-01

    The symbiosis between leguminous plants and soil rhizobia culminates in the formation of nitrogen-fixing organs called nodules that support plant growth. Two Medicago truncatula Tnt1-insertion mutants were identified that produced small nodules, which were unable to fix nitrogen effectively due to ineffective rhizobial colonization. The gene underlying this phenotype was found to encode a protein containing a putative membrane-localized domain of unknown function (DUF21) and a cystathionine-β-synthase domain. The cbs1 mutants had defective infection threads that were sometimes devoid of rhizobia and formed small nodules with greatly reduced numbers of symbiosomes. We studied the expression of the gene, designated M truncatula Cystathionine-β-Synthase-like1 (MtCBS1), using a promoter-β-glucuronidase gene fusion, which revealed expression in infected root hair cells, developing nodules, and in the invasion zone of mature nodules. An MtCBS1-GFP fusion protein localized itself to the infection thread and symbiosomes. Nodulation factor-induced Ca(2+) responses were observed in the cbs1 mutant, indicating that MtCBS1 acts downstream of nodulation factor signaling. MtCBS1 expression occurred exclusively during Medicago-rhizobium symbiosis. Induction of MtCBS1 expression during symbiosis was found to be dependent on Nodule Inception (NIN), a key transcription factor that controls both rhizobial infection and nodule organogenesis. Interestingly, the closest homolog of MtCBS1, MtCBS2, was specifically induced in mycorrhizal roots, suggesting common infection mechanisms in nodulation and mycorrhization. Related proteins in Arabidopsis have been implicated in cell wall maturation, suggesting a potential role for CBS1 in the formation of the infection thread wall. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. Biological fixation and nitrogen transfer by three legume species in mango and soursop organic orchards;Fixacao biologica e transferencia de nitrogenio por leguminosas em pomar organico de mangueira e gravioleira

    Energy Technology Data Exchange (ETDEWEB)

    Paulino, Gleicia Miranda; Barroso, Deborah Guerra, E-mail: gleiciamiranda@yahoo.com.b, E-mail: deborah@uenf.b [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil). Dept. de Fitotecnia; Alves, Bruno Jose Rodrigues; Urquiaga, Segundo; Espindola, Jose Antonio Azevedo, E-mail: bruno@cnpab.embrapa.b, E-mail: urquiaga@cnpab.embrapa.b, E-mail: jose@cnpab.embrapa.b [EMBRAPA Agrobiologia, Seropedica, RJ (Brazil)

    2009-12-15

    The objective of this work was to evaluate the biological nitrogen fixation (BNF) and the N transfer derived from BNF of the legume species - Gliricidia sepium (gliricidia), Crotalaria juncea (sunnhemp) and Cajanus cajan (pigeon pea) - for an intercropped organic orchard with mango and soursop, through the {sup 15}N natural abundance method. The following inter cropping systems were evaluated: mango and soursop with gliricidia; mango and soursop with sunnhemp; mango and soursop with pigeon pea; and mango and soursop as control. Gliricidia showed the highest BNF potential (80%) , followed by sunnhemp (64.5%) and pigeon pea (45%). After two sunnhemp prunes, 149.5 kg ha{sup -1} of N per year were supplied, with 96.5 kg derived from BNF. After three annual prunes, gliricidia supplied 56.4 and 80.3 kg ha{sup -1} of N per year, with 45 and 64 kg derived from BNF, in two consecutive years. The quantity of N supplied to the system was higher than the mango and soursop requirements. Variations in the natural abundance of {sup 15}N were found only in soursop leaves. Gliricidia and sunnhemp were prominent in N transfer, with approximately 22.5 and 40% respectively. Green manuring using gliricidia permits fractioning of the N supply, which is an advantage in N obtention by the fruit trees (author)

  4. Latarjet Fixation

    Science.gov (United States)

    Alvi, Hasham M.; Monroe, Emily J.; Muriuki, Muturi; Verma, Rajat N.; Marra, Guido; Saltzman, Matthew D.

    2016-01-01

    Background: Attritional bone loss in patients with recurrent anterior instability has successfully been treated with a bone block procedure such as the Latarjet. It has not been previously demonstrated whether cortical or cancellous screws are superior when used for this procedure. Purpose: To assess the strength of stainless steel cortical screws versus stainless steel cannulated cancellous screws in the Latarjet procedure. Study Design: Controlled laboratory study. Methods: Ten fresh-frozen matched-pair shoulder specimens were randomized into 2 separate fixation groups: (1) 3.5-mm stainless steel cortical screws and (2) 4.0-mm stainless steel partially threaded cannulated cancellous screws. Shoulder specimens were dissected free of all soft tissue and a 25% glenoid defect was created. The coracoid process was osteomized, placed at the site of the glenoid defect, and fixed in place with 2 parallel screws. Results: All 10 specimens failed by screw cutout. Nine of 10 specimens failed by progressive displacement with an increased number of cycles. One specimen in the 4.0-mm screw group failed by catastrophic failure on initiation of the testing protocol. The 3.5-mm screws had a mean of 274 cycles (SD, ±171 cycles; range, 10-443 cycles) to failure. The 4.0-mm screws had a mean of 135 cycles (SD, ±141 cycles; range, 0-284 cycles) to failure. There was no statistically significant difference between the 2 types of screws for cycles required to cause failure (P = .144). Conclusion: There was no statistically significant difference in energy or cycles to failure when comparing the stainless steel cortical screws versus partially threaded cannulated cancellous screws. Clinical Relevance: Latarjet may be performed using cortical or cancellous screws without a clear advantage of either option. PMID:27158630

  5. Nitrogenated compounds' biofiltration under alternative bacterium fixation substrates Biofiltración de compuestos nitrogenados bajo medios de fijación bacteriana alternativos

    Directory of Open Access Journals (Sweden)

    Carlos Carroza

    2012-09-01

    Full Text Available This study compares the behavior of nitrification (NH4+, NO2- and NO3-, and performance, in terms of the surface TAN conversion rate (STR, volumetric TAN conversion rate (VTR and removal percentage of TAN (PTR among three fixation media of nitrifying bacteria (two alternatives (S1, S2 and one commercial (Co. The experiment was performed in two tests of 42 days each. Three isolated biofiltration systems were built for the experience, to which were added media colonized by bacteria as a "seed" to start the process of nitrification. Ammonium chloride (NH4Cl was attached as source of ammonium in reconditioned freshwater, also gradually adding inorganic carbon (HCO3- to maintain moderate water hardness. The average results for both tests indicate that the substrates S1 and S2 show a statistically similar behavior to the substrate Co (P > 0.05 during the first 33 days (until steady state. For the second test in terms of performance, STR values were 0.40, 0.39, 0.39 g TAN m-2 d-1 recorded for S2 and Co respectively; in terms of PRN, values were 92(3 9־/ and 93% for S1, S2 and Co, respectively. Regarding VTR, values of 72.31, 114.94, and 39.02 g TAN m-3 d-1 were recorded for S2 and Co respectively. Statistical analysis provided that for STR and PRN, no significant differences, were found. But for VTR, statistically significant differences between means were evaluated, registering for the S2 media the highest value of VTR.Se compara el comportamiento del proceso de nitrificación (NH4+, NO2- y NO3-, y el rendimiento, en términos de la tasa superficial de conversión de NAT, tasa volumétrica de conversión de NAT y porcentaje de remoción de NAT (PRN entre tres medios de fijación de bacterias nitrificantes, dos alternativos (S1, S2 y uno comercial (Co. La experiencia se realizó en dos pruebas de 42 días cada una. Se construyeron tres sistemas aislados para la experiencia, a los cuales se adicionaron medios colonizados por bacterias a modo de

  6. Metabolism and disposition of oral dabrafenib in cancer patients: proposed participation of aryl nitrogen in carbon-carbon bond cleavage via decarboxylation following enzymatic oxidation.

    Science.gov (United States)

    Bershas, David A; Ouellet, Daniele; Mamaril-Fishman, Donna B; Nebot, Noelia; Carson, Stanley W; Blackman, Samuel C; Morrison, Royce A; Adams, Jerry L; Jurusik, Kristen E; Knecht, Dana M; Gorycki, Peter D; Richards-Peterson, Lauren E

    2013-12-01

    A phase I study was conducted to assess the metabolism and excretion of [(14)C]dabrafenib (GSK2118436; N-{3-[5-(2-amino-4-pyrimidinyl)-2-(1,1-dimethylethyl)-1,3-thiazol-4-yl]-2-fluorophenyl}-2,6-difluorobenzene sulfonamide, methanesulfonate salt), a BRAF inhibitor, in four patients with BRAF V600 mutation-positive tumors after a single oral dose of 95 mg (80 µCi). Assessments included the following: 1) plasma concentrations of dabrafenib and metabolites using validated ultra-high-performance liquid chromatography--tandem mass spectrometry methods, 2) plasma and blood radioactivity, 3) urinary and fecal radioactivity, and 4) metabolite profiling. Results showed the mean total recovery of radioactivity was 93.8%, with the majority recovered in feces (71.1% of administered dose). Urinary excretion accounted for 22.7% of the dose, with no detection of parent drug in urine. Dabrafenib is metabolized primarily via oxidation of the t-butyl group to form hydroxy-dabrafenib. Hydroxy-dabrafenib undergoes further oxidation to carboxy-dabrafenib, which subsequently converts to desmethyl-dabrafenib via a pH-dependent decarboxylation. The half-lives for carboxy- and desmethyl-dabrafenib were longer than for parent and hydroxy-dabrafenib (18-20 vs. 5-6 hours). Based on area under the plasma concentration-time curve, dabrafenib, hydroxy-, carboxy-, and desmethyl-dabrafenib accounted for 11%, 8%, 54%, and 3% of the plasma radioactivity, respectively. These results demonstrate that the major route of elimination of dabrafenib is via oxidative metabolism (48% of the dose) and biliary excretion. Based on our understanding of the decarboxylation of carboxy-dabrafenib, a low pH-driven, nonenzymatic mechanism involving participation of the aryl nitrogen is proposed to allow prediction of metabolic oxidation and decarboxylation of drugs containing an aryl nitrogen positioned α to an alkyl (ethyl or t-butyl) side chain.

  7. Bacteria and the Nitrogen Economy.

    Science.gov (United States)

    Ayanaba, A.

    1982-01-01

    Biological nitrogen fixation accounts for almost 70 percent of nitrogen for plant growth. If food is to keep abreast of population growth, even more nitrogen must be fixed. For this international research institutes continue the search for natural variants in the bacterial population while also pursuing novel genetic engineering methods. (Author)

  8. Dinitrogen fixation in aphotic oxygenated marine environments

    Directory of Open Access Journals (Sweden)

    Eyal eRahav

    2013-08-01

    Full Text Available We measured N2 fixation rates from oceanic zones that have traditionally been ignored as sources of biological N2 fixation; the aphotic, fully oxygenated, nitrate (NO3--rich, waters of the oligotrophic Levantine Basin (LB and the Gulf of Aqaba (GA. N2 fixation rates measured from pelagic aphotic waters to depths up to 720 m, during the mixed and stratified periods, ranged from 0.01 nmol N L-1 d-1 to 0.38 nmol N L-1 d-1. N2 fixation rates correlated significantly with bacterial productivity and heterotrophic diazotrophs were identified from aphotic as well as photic depths. Dissolved free amino acid amendments to whole water from the GA enhanced bacterial productivity by 2to 3.5 and N2 fixation rates by ~ 2 fold in samples collected from aphotic depths while in amendments to water from photic depths bacterial productivity increased 2 to 6 fold while N2 fixation rates increased by a factor of 2 to 4 illustrating that both BP an heterotrophic N2 fixation are carbon limited. Experimental manipulations of aphotic waters from the LB demonstrated a significant positive correlation between transparent exopolymeric particles (TEP concentration and N2 fixation rates. This suggests that sinking organic material and high carbon (C: nitrogen (N micro-environments (such as TEP-based aggregates or marine snow could support high heterotrophic N2 fixation rates in oxygenated surface waters and in the aphotic zones. Indeed, our calculations show that aphotic N2 fixation accounted for 37 to 75 % of the total daily integrated N2 fixation rates at both locations in the Mediterranean and Red Seas with rates equal or greater to those measured from the photic layers. Moreover, our results indicate that that while N2 fixation may be limited in the surface waters, aphotic, pelagic N2 fixation may contribute significantly to new N inputs in other oligotrophic basins, yet it is currently not included in regional or global N budgets.

  9. Nitrogen cycling in ombrotrophic peat bogs in the Czech Republic: Is microbial N-fixation occurring at atmospheric depositions of reactive N higher than 10 kg/ha/yr?

    Science.gov (United States)

    Novak, Martin; Jackova, Ivana; Cejkova, Bohuslava; Buzek, Frantisek; Curik, Jan; Stepanova, Marketa; Prechova, Eva; Veselovsky, Frantisek; Komarek, Arnost

    2017-04-01

    Biogeochemical cycling of carbon (C) and nitrogen (N) in peat bogs are coupled. Whereas at low pollution levels, reactive nitrogen (Nr, mainly nitrate- and ammonium-N) inputs may positively affect C storage, high Nr deposition may have a detrimental effect on C storage. We have previously reported N isotope systematics at two ombrotrophic peat bogs in the Czech Republic, receiving medium levels of Nr of about 10 kg/ha/yr via atmospheric deposition. Nitrogen of living Sphagnum was systematically heavier than N of the atmospheric input (p Sphagnum from negative values of atmospheric deposition to the zero value of N2. In 2016, we conducted a laboratory study in which living Sphagnum from sites receiving annually slightly over 10 kg Nr/ha/yr via atmospheric deposition was incubated in an atmosphere enriched in 15N-N2. At the end of the incubation, we detected a 1 to 3 per mil increase in del15N of Sphagnum. Rinsing Sphagnum capitula in deionized water prior to the 15N-N2 incubation has led to a slight further increase in del15N of Sphagnum. Also in 2016, we monitored del15N of atmospheric deposition at three medium Nr-polluted peat bogs. Open-area precipitation had the following mean del 15N values: Uhlirska -6.1 per mil (NH4) and -6.2 per mil (NO3); Brumiste -1.7 per mil (NH4) and -3.4 per mil (NO3); Male Mechove Jezirko -3.3 per mil (NH4) and -3.9 per mil (NO3). At all sites, atmospheric Nr deposition was made up by NO3-N and NH4-N in a roughly 1.1 ratio. We found that N of winter-time deposition became isotopically extremely light (less than -10.0 per mil). During the growing season, del15N of total atmospheric input was higher, closer to 0.0 per mil, but still slightly lower than del15N of living Sphagnum. These data thus confirm a N isotope discrepancy between the N isotope signature of deposition and Sphagnum. In the paper, we will also discuss a mass balance discrepancy in long-term atmospheric N input and N storage at the Czech sites, determined for replicated

  10. Nitrogen on Mars: Insights from Curiosity

    Science.gov (United States)

    Stern, J. C.; Sutter, B.; Jackson, W. A.; Navarro-Gonzalez, Rafael; McKay, Chrisopher P.; Ming, W.; Archer, P. Douglas; Glavin, D. P.; Fairen, A. G.; Mahaffy, Paul R.

    2017-01-01

    Recent detection of nitrate on Mars indicates that nitrogen fixation processes occurred in early martian history. Data collected by the Sample Analysis at Mars (SAM) instrument on the Curiosity Rover can be integrated with Mars analog work in order to better understand the fixation and mobility of nitrogen on Mars, and thus its availability to putative biology. In particular, the relationship between nitrate and other soluble salts may help reveal the timing of nitrogen fixation and post-depositional behavior of nitrate on Mars. In addition, in situ measurements of nitrogen abundance and isotopic composition may be used to model atmospheric conditions on early Mars.

  11. Efficiency of nitrogen fertilizers for rice

    OpenAIRE

    Roger, Pierre-Armand; Grant, I. F.; Reddy, P. M.; Watanabe, I

    1987-01-01

    The photosynthetic biomass that develops in the floodwater of wetland rice fields affects nitrogen dynamics in the ecosystem. This review summarizes available data on the nature, productivity, and composition of the photosynthetic aquatic biomass, and its major activities regarding the nitrogen cycle, i.e., nitrogen fixation by free living blue-green algae and #Azolla$, nitrogen trapping, nitrogen accumulation at the soil surface, its effect on nitrogen losses by ammonia volatilization, nitro...

  12. Bioelectrocatalyzed Nitrogen Fixation under Standard Conditions

    Science.gov (United States)

    2016-11-07

    provision of law , no person shall be subject to any oenalty for failing to comply with a collection of information if it does not display a currently valid...Scientific Progress See Attachment Technology Transfer Contact was made with United Suppliers, a large agronomy company based in Iowa to discuss potential...protonated species and less than 2 electrons (with one exception). This captures all the 11 species and 10 reactions in the latimer diagram in pairs

  13. Aerobic nitrogen fixation in Azotobacter vinelandii

    NARCIS (Netherlands)

    Haaker, H.B.C.M.

    1977-01-01

    I ELECTRON DONATION TO NITROGENASE

    Paper I shows that the hypothesis, that a high ratio of (NADH + NADPH) / (NAD + + NADP + ) is the source of reducing power for nitrogenase in intact A.vinelandii, is invalid. On the

  14. Comparative Nitrogen fixation, native arbuscular mycorrhiza ...

    African Journals Online (AJOL)

    bean produced approximately 5 and 6 t/ha biomass whereas Mucuna and Canavalia yielded about 2 t/ha biomass each. Although cowpea had the least number of arbuscular mycorrhiza fungal (AMF) spores in its rhizosphere, its roots were the ...

  15. Elevated CO2 concentration around alfalfa nodules increases N2 fixation

    Science.gov (United States)

    Fischinger, Stephanie A.; Hristozkova, Marieta; Mainassara, Zaman-Allah; Schulze, Joachim

    2010-01-01

    Nodule CO2 fixation via PEPC provides malate for bacteroids and oxaloacetate for N assimilation. The process is therefore of central importance for efficient nitrogen fixation. Nodule CO2 fixation is known to depend on external CO2 concentration. The hypothesis of the present paper was that nitrogen fixation in alfalfa plants is enhanced when the nodules are exposed to elevated CO2 concentrations. Therefore nodulated plants of alfalfa were grown in a hydroponic system that allowed separate aeration of the root/nodule compartment that avoided any gas leakage to the shoots. The root/nodule compartments were aerated either with a 2500 μl l−1 (+CO2) or zero μl l−1 (–CO2) CO2-containing N2/O2 gas flow (80/20, v/v). Nodule CO2 fixation, nitrogen fixation, and growth were strongly increased in the +CO2 treatment in a 3-week experimental period. More intensive CO2 and nitrogen fixation coincided with higher per plant amounts of amino acids and organic acids in the nodules. Moreover, the concentration of asparagine was increased in both the nodules and the xylem sap. Plants in the +CO2 treatment tended to develop nodules with higher %N concentration and individual activity. In a parallel experiment on plants with inefficient nodules (fix–) the +CO2 treatment remained without effect. Our data support the thesis that nodule CO2 fixation is pivotal for efficient nitrogen fixation. It is concluded that strategies which enhance nodule CO2 fixation will improve nitrogen fixation and nodule formation. Moreover, sufficient CO2 application to roots and nodules is necessary for growth and efficient nitrogen fixation in hydroponic and aeroponic growth systems. PMID:19815686

  16. The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571

    DEFF Research Database (Denmark)

    Lee, KB; De Backer, P; Aono, T

    2008-01-01

    BACKGROUND: Biological nitrogen fixation is a prokaryotic process that plays an essential role in the global nitrogen cycle. Azorhizobium caulinodans ORS571 has the dual capacity to fix nitrogen both as free-living organism and in a symbiotic interaction with Sesbania rostrata. The host is a fast...... organism to explore symbiotic biological nitrogen fixation beyond leguminous plants....

  17. Nitrogenous nutrients and primary production in a tropical oceanic environment

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Wafar, S.; Devassy, V.P.

    carbon fixation at all stations and at all depths This, together with the low ambient concentrations of inorganic nitrogen compounds, demonstrates that the phytoplankton in these waters are nitrogen limited Nitrate flux into the euphotic zone, computed...

  18. The Global Nitrogen Story

    Science.gov (United States)

    Galloway, J. N.

    2001-05-01

    In the absence of human activities, biotic nitrogen fixation is the primary source of reactive N to the environment. Over the last few decades, human activity has surpassed natural terrestrial nitrogen fixation rates by energy production (fossil fuel combustion) and food production (Haber-Bosch based fertilizer production and crop cultivation). An amount equivalent to over half of the anthropogenic N fixed each year is emitted to the atmosphere or discharged to rivers, for dispersion to environmental systems. An unknown amount of this anthropogenic N is accumulating in the environment resulting in a enhanced greenhouse effect, acid deposition, photochemical smog, stratospheric ozone depletion and eutrophication of fresh and marine waters. This paper will assess the state of knowledge on the global N cycle and present a context in which to place the impacts of humans on nitrogen cycling at regional scales.

  19. The nitrogen cycle.

    Science.gov (United States)

    Stein, Lisa Y; Klotz, Martin G

    2016-02-08

    Nitrogen is the fourth most abundant element in cellular biomass, and it comprises the majority of Earth's atmosphere. The interchange between inert dinitrogen gas (N2) in the extant atmosphere and 'reactive nitrogen' (those nitrogen compounds that support, or are products of, cellular metabolism and growth) is entirely controlled by microbial activities. This was not the case, however, in the primordial atmosphere, when abiotic reactions likely played a significant role in the inter-transformation of nitrogen oxides. Although such abiotic reactions are still important, the extant nitrogen cycle is driven by reductive fixation of dinitrogen and an enzyme inventory that facilitates dinitrogen-producing reactions. Prior to the advent of the Haber-Bosch process (the industrial fixation of N2 into ammonia, NH3) in 1909, nearly all of the reactive nitrogen in the biosphere was generated and recycled by microorganisms. Although the Haber-Bosch process more than quadrupled the productivity of agricultural crops, chemical fertilizers and other anthropogenic sources of fixed nitrogen now far exceed natural contributions, leading to unprecedented environmental degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth

    Science.gov (United States)

    van den Elzen, Eva; Kox, Martine A. R.; Harpenslager, Sarah F.; Hensgens, Geert; Fritz, Christian; Jetten, Mike S. M.; Ettwig, Katharina F.; Lamers, Leon P. M.

    2017-03-01

    In pristine Sphagnum-dominated peatlands, (di)nitrogen (N2) fixing (diazotrophic) microbial communities associated with Sphagnum mosses contribute substantially to the total nitrogen input, increasing carbon sequestration. The rates of symbiotic nitrogen fixation reported for Sphagnum peatlands, are, however, highly variable, and experimental work on regulating factors that can mechanistically explain this variation is largely lacking. For two common fen species (Sphagnum palustre and S. squarrosum) from a high nitrogen deposition area (25 kg N ha-1 yr-1), we found that diazotrophic activity (as measured by 15 - 15N2 labeling) was still present at a rate of 40 nmol N gDW-1 h-1. This was surprising, given that nitrogen fixation is a costly process. We tested the effects of phosphorus availability and buffering capacity by bicarbonate-rich water, mimicking a field situation in fens with stronger groundwater or surface water influence, as potential regulators of nitrogen fixation rates and Sphagnum performance. We expected that the addition of phosphorus, being a limiting nutrient, would stimulate both diazotrophic activity and Sphagnum growth. We indeed found that nitrogen fixation rates were doubled. Plant performance, in contrast, did not increase. Raised bicarbonate levels also enhanced nitrogen fixation, but had a strong negative impact on Sphagnum performance. These results explain the higher nitrogen fixation rates reported for minerotrophic and more nutrient-rich peatlands. In addition, nitrogen fixation was found to strongly depend on light, with rates 10 times higher in light conditions suggesting high reliance on phototrophic organisms for carbon. The contrasting effects of phosphorus and bicarbonate on Sphagnum spp. and their diazotrophic communities reveal strong differences in the optimal niche for both partners with respect to conditions and resources. This suggests a trade-off for the symbiosis of nitrogen fixing microorganisms with their Sphagnum

  1. Photographic fixative poisoning

    Science.gov (United States)

    Photographic fixatives are chemicals used to develop photographs. This article discusses poisoning from swallowing such chemicals. This article is for information only. DO NOT use it to treat or manage an ...

  2. Marked and variable inhibition by chemical fixation of cytochrome oxidase and succinate dehydrogenase in single motoneurons

    Science.gov (United States)

    Chalmers, G. R.; Edgerton, V. R.

    1989-01-01

    The effect of tissue fixation on succinate dehydrogenase and cytochrome oxidase activity in single motoneurons of the rat was demonstrated using a computer image processing system. Inhibition of enzyme activity by chemical fixation was variable, with some motoneurons being affected more than others. It was concluded that quantification of enzymatic activity in chemically fixed tissue provides an imprecise estimate of enzyme activities found in fresh-frozen tissues.

  3. Effects of elevated carbon dioxide concentration on growth and N{sub 2} fixation of young Robinia pseudoacacia

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Z; Flessa, H. [University of Gottingen, Institute of soil Science and Forest Nutrition, Gottingen, (Germany); Dyckmans, J. [University College Dublin, Faculty of Agriculture, Environmental Resource Management, Dublin (Ireland)

    2004-03-01

    The effects of elevated carbon dioxide concentration on carbon and nitrogen uptake and nitrogen source partitioning were determined in one year-old locust trees using a dual 13{sup C} and 15{sup N} continuous labelling experiment. Elevated carbon dioxide increased the fraction of new carbon in total carbon, but it did not alter carbon partitioning among plant compartments. Elevated carbon dioxide also increased the fraction of new nitrogen in total nitrogen. This was coupled with a shift in nitrogen source partitioning toward nitrogen fixation. Soil nitrogen uptake was not affected, but nitrogen fixation was markedly increased by elevated carbon dioxide treatment. The increased nitrogen fixation tended to decrease the C/N ratio in the presence of elevated carbon dioxide. Total dry mass of root nodules doubled in response to elevated carbon dioxide, however, this effect was not considered significant because of the great variability in root nodule formation. Overall, it was concluded that the growth of locust trees in an elevated carbon dioxide environment will not primarily be limited by nitrogen availability, giving the R. pseudoacacia species a competitive advantage over non-nitrogen-fixing tree species. It was also suggested that the increase in nitrogen fixation observed in response to elevated carbon dioxide treatment may play a key role in the growth response of forest ecosystems to elevated carbon dioxide by improving nitrogen availability for non-nitrogen-fixing trees. 51 refs., 1 tab., 4 figs.

  4. Nitrogen fixation in seedlings of sabia and leucena grown in the caatinga soils under different vegetation covers; Fixacao de nitrogenio em mudas de sabia e leucena cultivadas em solos da caatinga sob diferentes coberturas vegetais

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Augusto Cesar de Arruda; Nascimento, Luciana Remigio Santos; Silva, Arthur Jorge da; Freitas, Ana Dolores Santiago de, E-mail: augusto.arruda26@yahoo.com.br, E-mail: lucaremigio@yahoo.com.br, E-mail: arthur.floresta.jorge@gmail.com, E-mail: ana.freitas@depa.ufrpe.br [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Departamento de Agronomia

    2013-07-01

    The aim of this study was to evaluate the efficiency differences of populations forming bacteria in legume nodules (BNL) in areas under different vegetation cover in semi-arid Pernambuco state, Brazil, using the methodology of the natural abundance of {sup 15}N to estimate the amount of N fixed symbiotically. The highest levels of nitrogen was found in plants of leucena, and the sabia had levels that did not differ from reference species. The analysis by the technique of 15N showed that in all areas the leucena and the sabia showed signs of 15N different of the average signal of the control plants. The largest nitrogen accumulation was observed for leucena in the Caatinga and Capoeira. The sabia got greater accumulation of N from the Caatinga. The areas of Capoeira and Caatinga has showed the native populations of rhizobia with greater ability to fix nitrogen for the leucena.

  5. N-2 fixation by non-heterocystous cyanobacteria

    NARCIS (Netherlands)

    Bergman, B.; Gallon, J.R.; Rai, A.N.; Stal, L.J.

    1997-01-01

    Many, though not all, non-heterocystous cyanobacteria can fix N-2. However, very few strains can fix N-2 aerobically. Nevertheless, these organisms may make a substantial contribution to the global nitrogen cycle. In this general review, N-2 fixation by laboratory cultures and natural populations of

  6. Chemical fixation to arrest phospholipid signaling for chemical cytometry.

    Science.gov (United States)

    Proctor, Angela; Sims, Christopher E; Allbritton, Nancy L

    2017-11-10

    Chemical cytometry is a powerful tool for measuring biological processes such as enzymatic signaling at the single cell level. Among these technologies, single-cell capillary zone electrophoresis (CZE) has emerged as a powerful tool to assay a wide range of cellular metabolites. However, analysis of dynamic processes within cells remains challenging as signaling pathways are rapidly altered in response to changes in the cellular environment, including cell manipulation and storage. To address these limitations, we describe a method for chemical fixation of cells to stop the cellular reactions to preserve the integrity of key signaling molecules or reporters within the cell and to enable the cell to act as a storage reservoir for the reporter and its metabolites prior to assay by single-cell CZE. Fluorescent phosphatidylinositol 4,5-bisphosphate reporters were loaded into cells and the cells were chemically fixed and stored prior to analysis. The reporter and its metabolites were electrophoretically separated by single-cell CZE. Chemical fixation parameters such as fixative, fixation time, storage solution, storage duration, and extraction solution were optimized. When cells were loaded with a fluorescent C6- or C16-PIP2 followed by glutaraldehyde fixation and immediate analysis, 24±2% and 139±12% of the lipid was recoverable, respectively, when compared to an unfixed control. Storage of the cells for 24h yielded recoverable lipid of 61±3% (C6-PIP2) and 55±5% (C16-PIP2) when compared to cells analyzed immediately after fixation. The metabolites observed with and without fixation were identical. Measurement of phospholipase C activity in single leukemic cells in response to an agonist demonstrated the capability of chemical fixation coupled to single-cell CZE to yield an accurate snapshot of cellular reactions with the probe. This methodology enables cell assay with the reporter to be separated in space and time from reporter metabolite quantification while

  7. Sacroiliac Screw Fixation

    NARCIS (Netherlands)

    E.W. van den Bosch

    2003-01-01

    textabstractThe aim of this thesis is to evaluate three major aspects of the use of sacroiliac screws in patients with unstable pelvic ring fractures: the optimal technique for sacroiliac screw fixation, the reliability of peroperative fluoroscopy and the late results. We focused on the questions

  8. Uptake rate of nitrogen from soil and fertilizer, and N derived from symbiotic fixation in cowpea (Vigna unguiculata (L.) Walp.) and common bean (Phaseolus vulgaris L.) determined using the {sup 15}N isotope; Marcha de absorcao do nitrogenio do solo, do fertilizante e da fixacao simbiotica em feijao-caupi (Vigna unguiculata (L.) Walp.) e feijao-comum (Phaseolus vulgaris L.) determinada com uso de {sup 15}N

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Marciano de Medeiros Pereira; Muraoka, Takashi; Silva, Edson Cabral da [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba SP (Brazil)], e-mail: marcianobrito@hotmail.com, e-mail: muraoka@cena.usp.br, e-mail: ecsilva@cena.usp.br

    2009-07-15

    Common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata (L.) Walp.) are among the main sources of plant protein for a large part of the world population, mainly that of low income, and nitrogen is the main constituent of these proteins. The objectives of this study were to evaluate, through the {sup 15}N-dilution technique and using rice and non-nodulating soybean as control plants, the relative contributions of nitrogen sources (symbiotically fixed N, soil native N and fertilizer N) on the growth of common bean and cowpea and to compare the isotopic technique (ID) with the difference methods (DM) for the evaluation of symbiotic N{sub 2} fixation. The study was carried out in a greenhouse of the Center for Nuclear Energy in Agriculture - CENA/USP, Sao Paulo State, Brazil, using 5 kg pots with a Typic Haplustox (Dystrophic Red-Yellow Latosol). The experiment was arranged in completely randomized blocks, with 16 treatments and three replications, in an 8 x 2 factorial design. The treatments were eight sampling times: 7, 24, 31, 38, 47, 58, 68 and 78 days after sowing (DAS) and two crops: common bean and cowpea. An N rate of 10 mg kg{sup -1} soil was used, as urea, enriched with an excess of 10 % of {sup 15}N atoms. Symbiotic N fixation supplied the bean and cowpea plants with the greatest amount of accumulated N, followed, in decreasing order, by soil and fertilizer. The highest rate of N symbiotic fixation was observed at the pre-flowering growth stage of the bean and cowpea plants. After the initial growth stage, 24 DAS, rice and non nodulating soybean were appropriate control plants to evaluate symbiotic N fixation. There was a good agreement between ID and DM, except in the initial growth stage of the crops. (author)

  9. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Marquis, J.K. (Boston Univ., MA (United States). School of Medicine); Kitchell, J.P. (Holometrix, Inc., Cambridge, MA (United States))

    1988-12-15

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  10. Cycling of grain legume residue nitrogen

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1995-01-01

    Symbiotic nitrogen fixation by legumes is the main input of nitrogen in ecological agriculture. The cycling of N-15-labelled mature pea (Pisum sativum L.) residues was studied during three years in small field plots and lysimeters. The residual organic labelled N declined rapidly during the initial...

  11. Direct measurement of o2-depleted microzones in marine oscillatoria: relation to n2 fixation.

    Science.gov (United States)

    Paerl, H W; Bebout, B M

    1988-07-22

    Among the nitrogen (N(2))-fixing Cyanobacteria, the filamentous, nonheterocystous marine Oscillatoria spp. (Trichodesmium) appears enigmatic; it exhibits N(2) fixation in the presence of oxygenic photosynthesis without structural protection of the N(2-)fixing apparatus (nitrogenase) from potential inhibition by molecular oxygen (O(2)). Characteristically, N(2) fixation is largely confined to aggregates (bundles) of filaments. Previous work has suggested that spatial partitioning of photosynthesis and of N(2) fixation occurs in the bundles as a means of allowing both processes to occur contemporaneously. The probing of freshly sampled bundles with O(2) microelectrodes directly confirmed such partitioning by showing the presence of O(2-)depleted (reduced) microzones in photosynthetically active, N(2-)fixing bundles. Bundle size was directly related to both the development of internal reduced microzones and cellular N(2) fixation rates. By enhancing microzone formation, bundles optimize N(2) fixation as a means of supporting Oscillatoria spp. blooms in surficial, nitrogen-depleted tropical and subtropical waters.

  12. Posterior transodontoid fixation: A new fixation (Kotil technique

    Directory of Open Access Journals (Sweden)

    Kadir Kotil

    2011-01-01

    Full Text Available Anterior odontoid screw fixation or posterior C1-2 fusion techniques are routinely used in the treatment of Type II odontoid fractures, but these techniques may be inadequate in some types of odontoid fractures. In this new technique (Kotil technique, through a posterior bilateral approach, transarticular screw fixation was performed at the non-dominant vertebral artery (VA side and posterior transodontoid fixation technique was performed at the dominant VA side. C1-2 complex fusion was aimed with unilateral transarticular fixation and odontoid fixation with posterior transodontoid screw fixation. Cervical spinal computed tomography (CT of a 40-year-old male patient involved in a motor vehicle accident revealed an anteriorly dislocated Type II oblique dens fracture, not reducible by closed traction. Before the operation, the patient was found to have a dominant right VA with Doppler ultrasound. He was operated through a posterior approach. At first, transarticular screw fixation was performed at the non-dominant (left side, and then fixation of the odontoid fracture was achieved by directing the contralateral screw (supplemental screw medially and toward the apex. Cancellous autograft was scattered for fusion without the need for structural bone graft or wiring. Postoperative cervical spinal CT of the patient revealed that stabilization was maintained with transarticular screw fixation and reduction and fixation of the odontoid process was achieved completely by posterior transodontoid screw fixation. The patient is at the sixth month of follow-up and complete fusion has developed. With this new surgical technique, C1-2 fusion is maintained with transarticular screw fixation and odontoid process is fixed by concomitant contralateral posterior transodontoid screw (supplemental screw fixation; thus, this technique both stabilizes the C1-2 complex and fixes the odontoid process and the corpus in atypical odontoid fractures, appearing as an

  13. Novel posterior fixation keratoprosthesis

    Science.gov (United States)

    Lacombe, Emmanuel

    1992-08-01

    The keratoprosthesis is the last solution for corneally blind patients that cannot benefit from corneal transplants. Keratoprostheses that have been designed to be affixed anteriorly usually necessitate multi-step surgical procedures and are continuously subjected to the extrusion forces generated by the positive intraocular pressure; therefore, clinical results in patients prove inconsistent. We proposed a novel keratoprosthesis concept that utilizes posterior corneal fixation which `a priori' minimizes the risk of aqueous leakage and expulsion. This prosthesis is implanted in a single procedure thereby reducing the number of surgical complications normally associated with anterior fixation devices. In addition, its novel design makes this keratoprosthesis implantable in phakic eyes. With an average follow-up of 13 months (range 3 to 25 months), our results on 21 cases are encouraging. Half of the keratoprostheses were implanted in severe burn cases, with the remainder in cases of pseudo- pemphigus. Good visual results and cosmetic appearance were obtained in 14 of 21 eyes.

  14. Climate change affects key nitrogen-fixing bacterial populations on coral reefs

    NARCIS (Netherlands)

    Santos, Henrique F.; Carmo, Flavia L.; Duarte, Gustavo; Dini-Andreote, Francisco; Castro, Clovis B.; Rosado, Alexandre S.; van Elsas, Jan Dirk; Peixoto, Raquel S.

    2014-01-01

    Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean's biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study

  15. Photoelectrochemical enzymatic biosensors.

    Science.gov (United States)

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-06-15

    Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Plant growth is influenced by glutamine synthetase-catalyzed nitrogen metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Langston-Unkefer, P.J.

    1991-06-11

    Ammonia assimilation has been implicated as participating in regulation of nitrogen fixation in free-living bacteria. In fact, these simple organisms utilize an integrated regulation of carbon and nitrogen metabolism; we except to observe an integration of nitrogen and carbon fixation in plants; how could these complex systems grow efficiently and compete in the ecosystem without coordinating these two crucial activities We have been investigating the role of ammonia assimilation regulating the complex symbiotic nitrogen fixation of legumes. Just as is observed in the simple bacterial systems, perturbation of ammonia assimilation in legumes results in increased overall nitrogen fixation. The perturbed plants have increased growth and total nitrogen fixation capability. Because we have targeted the first enyzme in ammonia assimilation, glutamine synthetase, this provides a marker that could be used to assist selection or screening for increased biomass yield. 45 refs., 4 tabs.

  17. Lipids as paleomarkers to constrain the marine nitrogen cycle

    NARCIS (Netherlands)

    Rush, Darci; Sinninghe Damsté, Jaap S

    Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction-oxidation transformations of bio-available nitrogen. Within marine

  18. Lipids as paleomarkers to constrain the marine nitrogen cycle

    NARCIS (Netherlands)

    Rush, D.; Sinninghe Damsté, J.S.

    2017-01-01

    Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction-oxidation transformations of bio-available nitrogen. Within marine

  19. Microscopic morphology of nitrogen fixing paranodules on wheat roots

    African Journals Online (AJOL)

    Symbiotic nitrogen fixation is an environmentally benign and inexpensive means of providing plants with nitrogen, but is currently not possible in non-legume grain crops. This study examines nitrogen fixing paranodules that developed on wheat (Triticum aestivum) roots after treatment with 2,4-dichlorophenoxyacetic acid (2 ...

  20. Enzymology and ecology of the nitrogen cycle.

    Science.gov (United States)

    Martínez-Espinosa, Rosa María; Cole, Jeffrey A; Richardson, David J; Watmough, Nicholas J

    2011-01-01

    The nitrogen cycle describes the processes through which nitrogen is converted between its various chemical forms. These transformations involve both biological and abiotic redox processes. The principal processes involved in the nitrogen cycle are nitrogen fixation, nitrification, nitrate assimilation, respiratory reduction of nitrate to ammonia, anaerobic ammonia oxidation (anammox) and denitrification. All of these are carried out by micro-organisms, including bacteria, archaea and some specialized fungi. In the present article, we provide a brief introduction to both the biochemical and ecological aspects of these processes and consider how human activity over the last 100 years has changed the historic balance of the global nitrogen cycle.

  1. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    DEFF Research Database (Denmark)

    Batterman, Sarah A.; Hedin, Lars O.; Van Breugel, Michiel

    2013-01-01

    and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000 kg carbon per hectare) in the first 12 years. A key element of ecosystem functional diversity was ensured by the presence of different N 2 -fixing......Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO 2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N 2), but it is unclear whether this functional...... group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO 2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N 2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid...

  2. Effects of water and nitrogen availability on nitrogen contribution by the legume, Lupinus argenteus Pursh

    Science.gov (United States)

    Erin Goergen; Jeanne C. Chambers; Robert Blank

    2009-01-01

    Nitrogen-fixing species contribute to ecosystem nitrogen budgets, but background resource levels influence nodulation, fixation, and plant growth. We conducted a greenhouse experiment to examine the separate and interacting effects of water and N availability on biomass production, tissue N concentration, nodulation, nodule activity, and rhizodeposition of ...

  3. Effects of Water and Nitrogen Availability on Nitrogen Contribution by the Legume, Lupinus argenteus Pursh.

    Science.gov (United States)

    Nitrogen-fixing species contribute to ecosystem nitrogen budgets, but background resource levels influence nodulation, fixation, and plant growth. We conducted a greenhouse experiment to examine the separate and interacting effects of water and N availability on biomass production, tissue N concentr...

  4. Enzymatic Modifications of Polysaccharides

    Science.gov (United States)

    Polysaccharides are often modified chemically in order to improve its properties or to impart specific characteristics. Indeed quite a few commercial products are based on modified polysaccharides. In this talk, I shall describe a new set of modified polysaccharides based on enzymatic reactions. ...

  5. Enzymatic synthesis of vanillin

    NARCIS (Netherlands)

    van den Heuvel, RHH; Fraaije, MW; Laane, C; van Berkel, WJH; Heuvel, Robert H.H. van den; Berkel, Willem J.H. van

    Due to increasing interest in natural vanillin, two enzymatic routes for the synthesis of vanillin were developed. The flavoprotein vanillyl alcohol oxidase (VAO) acts on a wide range of phenolic compounds and converts both creosol and vanillylamine to vanillin with high yield. The VAO-mediated

  6. Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature?

    NARCIS (Netherlands)

    Stal, L.J.

    2009-01-01

    Approximately 50% of the global natural fixation of nitrogen occurs in the oceans supporting a considerable part of the new primary production. Virtually all nitrogen fixation in the ocean occurs in the tropics and subtropics where the surface water temperature is 25°C or higher. It is attributed

  7. Nitrogen-use-efficiency: a biologically meaningful definition?

    NARCIS (Netherlands)

    Berendse, F.; Aerts, R.

    1987-01-01

    A parameter to measure the efficiency of nitrogen use should include 1) the mean residence time of the N in the plant, ie the period during which the absorbed N can be used for C-fixation; and 2) the instantaneous rate of C-fixation per unit of N in the plant. It is essential to distinguish between

  8. Effect of blue-green algae on soil nitrogen

    African Journals Online (AJOL)

    Yagya Prasad Paudel

    2012-07-31

    Jul 31, 2012 ... Algal biofertilizer. In: Biofertilizer Eds Somani et al. Scientific Publishers, Jodhpur, pp. 137-154. Manna AB, Singh PK (1986). Nitrogen fixation of Azolla pinnata in presence of combined N in rice field. In current status of Biological. N2- fixation, HAU, Hissar, India, pp. 209-210. Prasad BN, Prasad RC (2003).

  9. Flexible fixation and fracture healing: do locked plating 'internal fixators' resemble external fixators?

    Science.gov (United States)

    Schmal, Hagen; Strohm, Peter C; Jaeger, Martin; Südkamp, Norbert P

    2011-02-01

    External and internal fixators use bone screws that are locked to a plate or bar to prevent periosteal compression and associated impairment of blood supply. Both osteosynthesis techniques rely on secondary bone healing with callus formation with the exception of compression plating of simple, noncomminuted fractures. External fixation uses external bars for stabilization, whereas internal fixation is realized by subcutaneous placement of locking plates. Both of these "biologic" osteosynthesis methods allow a minimally invasive approach and do not compromise fracture hematoma and periosteal blood supply. Despite these similarities, differences between the two fixation methods prevail. Locked plating "internal fixators" allow a combination of biomechanical principles such as buttressing and dynamic compression. Periarticular locking plates are anatomically contoured to facilitate fixation of articular fractures. They allow for subchondral stabilization using small-diameter angular stable screws as well as buttressing of the joint and the metaphyseal component of a fracture. Biomechanically, they can be far stiffer than external fixators, because subcutaneous plates are located much closer to the bone surface than external fixator bars. External fixators have the advantage of being less expensive, highly flexible, and technically less demanding. They remain an integral part of orthopaedic surgery for emergent stabilization, for pediatric fractures, for definitive osteosynthesis in certain indications such as distal radius fractures, and for callus distraction.

  10. The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change

    NARCIS (Netherlands)

    Voss, M.; Bange, H.W.; Dippner, J.W.; Middelburg, J.J.; Montoya, J.P.; Ward, B.

    2013-01-01

    The ocean’s nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation, assimilation, nitrification, anammox and denitrification. Dinitrogen is the most abundant form of nitrogen in sea water but only accessible by nitrogen-fixing microbes. Denitrification and

  11. Evaluation of the biological nitrogen fixation (N{sub 2}) contribution in several forage legumes and the transfer of N to associated grasses; Avaliacao da contribuicao da fixacao biologica de N{sub 2} em varias leguminosas forrageiras e transferencia de N para uma graminea consorciada

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, M.S.V.

    1991-12-01

    The objective of experiment 1 was to compare two different techniques for labelling the soil mineral nitrogen with {sup 15} N, for studies to quantify the contribution of biological nitrogen fixation (BNF) to forage legumes using the {sup 15} N isotope dilution technique. The two techniques for labelling the soil were: incorporation a {sup 15} N labelled organic compost (slow release treatment), and split applications of {sup 15} N labelled ammonium sulphate. The evaluation of the techniques was through the quantification of BNF in the Itaguai Hybrid of Centrosema using two non-Na- fixing control plants (P. maximum K K-16 and Sorghum bicolor). The objective of experiment 2 was to quantify the contribution of BNF to forage legumes and the transfer of fixed nitrogen to associated grasses in mixed swards again using the {sup 15} N isotope dilution technique. This study was conducted on a red podzolic soil (Typic Hapludult), with 7 forage legumes and 3 grasses in monoculture, and 3 mixed swards of Brachiaria brizantha with the Centrosema hybrid, Galactia striata and Desmodium ovalifolium, respectively, with varying ratios of grass to legume (4:1 to 1:4). In order to quantify the BNF contributions to the legumes and the transfer of fixed N to the B. brizantha, the plots were amended 8 times with doses of 0.01 g {sup 15} N m{sup -2} of {sup 15} N labelled ammonium sulphate (12.5 atom % {sup 15} N) each 14 days, giving a total of 0.08 g {sup 15} N m{sup -2} of {sup 15} N during the 97 days of the experiment. In monoculture the different forage legumes obtained the equivalent of between 43 and 100 kg N ha{sup -1} from BNF. Stylosanthes guianensis showed the greatest contributions from BNF at 100 Kg N ha{sup -1}. In mixed swards with Brachiaria brizantha the proportion of N derived from BNF in the three legumes studied (Centrosema hybrid, G. striata and D. ovalifolium) was significantly greater than when they were grown in monoculture. (author). 197 refs, 9 figs, 19 tabs.

  12. Nitrogen-fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots

    KAUST Repository

    Garcias Bonet, Neus

    2016-03-09

    Biological nitrogen fixation by diazotrophic bacteria in seagrass rhizosphere and leaf epiphytic community is an important source of nitrogen required for plant growth. However, the presence of endophytic diazotrophs remains unclear in seagrass tissues. Here, we assess the presence, diversity and taxonomy of nitrogen-fixing bacteria within surface-sterilized roots of Posidonia oceanica. Moreover, we analyze the nitrogen isotopic signature of seagrass tissues in order to notice atmospheric nitrogen fixation. We detected nitrogen-fixing bacteria by nifH gene amplification in 13 out of the 78 roots sampled, corresponding to 9 locations out of 26 meadows. We detected two different types of bacterial nifH sequences associated with P. oceanica roots, which were closely related to sequences previously isolated from the rhizosphere of a salt marsh cord grass and a putative anaerobe. Nitrogen content of seagrass tissues showed low isotopic signatures in all the sampled meadows, pointing out the atmospheric origin of the assimilated nitrogen by seagrasses. However, this was not related with the presence of endophytic nitrogen fixers, suggesting the nitrogen fixation occurring in rhizosphere and in the epiphytic community could be an important source of nitrogen for P. oceanica. The low diversity of nitrogen-fixing bacteria reported here suggests species-specific relationships between diazotrophs and P. oceanica, revealing possible symbiotic interactions that could play a major role in nitrogen acquisition by seagrasses in oligotrophic environments where they form lush meadows.

  13. Flexible fixation and fracture healing

    DEFF Research Database (Denmark)

    Schmal, Hagen; Strohm, Peter C; Jaeger, Martin

    2011-01-01

    , noncomminuted fractures. External fixation uses external bars for stabilization, whereas internal fixation is realized by subcutaneous placement of locking plates. Both of these "biologic" osteosynthesis methods allow a minimally invasive approach and do not compromise fracture hematoma and periosteal blood...... of articular fractures. They allow for subchondral stabilization using small-diameter angular stable screws as well as buttressing of the joint and the metaphyseal component of a fracture. Biomechanically, they can be far stiffer than external fixators, because subcutaneous plates are located much closer...... to the bone surface than external fixator bars. External fixators have the advantage of being less expensive, highly flexible, and technically less demanding. They remain an integral part of orthopaedic surgery for emergent stabilization, for pediatric fractures, for definitive osteosynthesis in certain...

  14. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  15. Enzymatic Synthesis of Psilocybin.

    Science.gov (United States)

    Fricke, Janis; Blei, Felix; Hoffmeister, Dirk

    2017-09-25

    Psilocybin is the psychotropic tryptamine-derived natural product of Psilocybe carpophores, the so-called "magic mushrooms". Although its structure has been known for 60 years, the enzymatic basis of its biosynthesis has remained obscure. We characterized four psilocybin biosynthesis enzymes, namely i) PsiD, which represents a new class of fungal l-tryptophan decarboxylases, ii) PsiK, which catalyzes the phosphotransfer step, iii) the methyltransferase PsiM, catalyzing iterative N-methyl transfer as the terminal biosynthetic step, and iv) PsiH, a monooxygenase. In a combined PsiD/PsiK/PsiM reaction, psilocybin was synthesized enzymatically in a step-economic route from 4-hydroxy-l-tryptophan. Given the renewed pharmaceutical interest in psilocybin, our results may lay the foundation for its biotechnological production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Recent advances in nitrogen-fixing acetic acid bacteria.

    Science.gov (United States)

    Pedraza, Raúl O

    2008-06-30

    Nitrogen is an essential plant nutrient, widely applied as N-fertilizer to improve yield of agriculturally important crops. An interesting alternative to avoid or reduce the use of N-fertilizers could be the exploitation of plant growth-promoting bacteria (PGPB), capable of enhancing growth and yield of many plant species, several of agronomic and ecological significance. PGPB belong to diverse genera, including Azospirillum, Azotobacter, Herbaspirillum, Bacillus, Burkholderia, Pseudomonas, Rhizobium, and Gluconacetobacter, among others. They are capable of promoting plant growth through different mechanisms including (in some cases), the biological nitrogen fixation (BNF), the enzymatic reduction of the atmospheric dinitrogen (N(2)) to ammonia, catalyzed by nitrogenase. Aerobic bacteria able to oxidize ethanol to acetic acid in neutral or acid media are candidates of belonging to the family Acetobacteraceae. At present, this family has been divided into ten genera: Acetobacter, Gluconacetobacter, Gluconobacter, Acidomonas, Asaia, Kozakia, Saccharibacter, Swaminathania, Neoasaia, and Granulibacter. Among them, only three genera include N(2)-fixing species: Gluconacetobacter, Swaminathania and Acetobacter. The first N(2)-fixing acetic acid bacterium (AAB) was described in Brazil. It was found inside tissues of the sugarcane plant, and first named as Acetobacter diazotrophicus, but then renamed as Gluconacetobacter diazotrophicus. Later, two new species within the genus Gluconacetobacter, associated to coffee plants, were described in Mexico: G. johannae and G. azotocaptans. A salt-tolerant bacterium named Swaminathania salitolerans was found associated to wild rice plants. Recently, N(2)-fixing Acetobacter peroxydans and Acetobacter nitrogenifigens, associated with rice plants and Kombucha tea, respectively, were described in India. In this paper, recent advances involving nitrogen-fixing AAB are presented. Their natural habitats, physiological and genetic aspects

  17. Carbon Dioxide Fixation by Lupin Root Nodules

    Science.gov (United States)

    Laing, William A.; Christeller, John T.; Sutton, William D.

    1979-01-01

    Labeling studies using detached lupin (Lupinus angustifolius) nodules showed that over times of less than 3 minutes, label from [3,4-14C]glucose was incorporated into amino acids, predominantly aspartic acid, to a much greater extent than into organic acids. Only a slight preferential incorporation was observed with [1-14C]- and [6-14C]glucose, while with [U-14C]-glucose more label was incorporated into organic acids than into amino acids at all labeling times. These results are consistent with a scheme whereby the “carbon skeletons” for amino acid synthesis are provided by the phosphoenolpyruvate carboxylase reaction. A comparison of 14CO2 release from nodules supplied with [1-14C]- and [6-14C]glucose indicated that the oxidative pentose phosphate pathway accounted for less than 6% of glucose metabolism. Several enzymes of the oxidative pentose phosphate and glycolytic pathways were assayed in vitro using the 12,000g supernatant fraction from nodule homogenates. In all cases, the specific activities were adequate to account for the calculated in vivo fluxes. Three out of four diverse treatments that inhibited nodule nitrogen fixation also inhibited nodule CO2 fixation, and in the case of the fourth treatment, replacement of N2 with He, it was shown that the normal entry of label from exogenous 14CO2 into the nodule amino acid pool was strongly inhibited. PMID:16660746

  18. REVISION ANKLE SYNDESMOSIS FIXATION - FUNCTIONAL OUTCOME AFTER TIGHTROPE ® FIXATION

    Directory of Open Access Journals (Sweden)

    Sendhilvelan Rajagopalan

    2016-07-01

    Full Text Available BACKGROUND Syndesmotic disruptions are often seen in ankle fractures. Malreduction of these fractures can result in arthritis and instability. A proportion of these patients with malreduction require revision fixation. This study presents the results of revision fixation in such patients, using the Ankle TightRope ® (Arthrex system. METHODS Between January 2000 to December 2009, 124 patients who underwent ankle fracture fixations with syndesmotic stabilisation were analysed. Out of 124 patients, 8 patients were diagnosed with failure of primary stabilisation (based on radiological and clinical criteria and subjected to revision fixation using the Ankle TightRope ® (Arthrex system. Followup was done at periodic time intervals of 3, 6 and 12 months. Both clinical and radiological assessment was performed. Complications and duration of hospital stay was recorded. Functional evaluation was performed using the American Orthopaedic Foot and Ankle Society (AOFAS scoring system. RESULTS Five patients had good results, one satisfactory and two had poor outcomes. CONCLUSIONS Ankle TightRope ® fixation is an alternative method of stabilisation in patients who require revision syndesmosis fixation. Further studies are required to evaluate this method of revision stabilisation as compared to screws.

  19. Neuronal control of fixation and fixational eye movements

    Science.gov (United States)

    2017-01-01

    Ocular fixation is a dynamic process that is actively controlled by many of the same brain structures involved in the control of eye movements, including the superior colliculus, cerebellum and reticular formation. In this article, we review several aspects of this active control. First, the decision to move the eyes not only depends on target-related signals from the peripheral visual field, but also on signals from the currently fixated target at the fovea, and involves mechanisms that are shared between saccades and smooth pursuit. Second, eye position during fixation is actively controlled and depends on bilateral activity in the superior colliculi and medio-posterior cerebellum; disruption of activity in these circuits causes systematic deviations in eye position during both fixation and smooth pursuit eye movements. Third, the eyes are not completely still during fixation but make continuous miniature movements, including ocular drift and microsaccades, which are controlled by the same neuronal mechanisms that generate larger saccades. Finally, fixational eye movements have large effects on visual perception. Ocular drift transforms the visual input in ways that increase spatial acuity; microsaccades not only improve vision by relocating the fovea but also cause momentary changes in vision analogous to those caused by larger saccades. This article is part of the themed issue ‘Movement suppression: brain mechanisms for stopping and stillness’. PMID:28242738

  20. Neuronal control of fixation and fixational eye movements.

    Science.gov (United States)

    Krauzlis, Richard J; Goffart, Laurent; Hafed, Ziad M

    2017-04-19

    Ocular fixation is a dynamic process that is actively controlled by many of the same brain structures involved in the control of eye movements, including the superior colliculus, cerebellum and reticular formation. In this article, we review several aspects of this active control. First, the decision to move the eyes not only depends on target-related signals from the peripheral visual field, but also on signals from the currently fixated target at the fovea, and involves mechanisms that are shared between saccades and smooth pursuit. Second, eye position during fixation is actively controlled and depends on bilateral activity in the superior colliculi and medio-posterior cerebellum; disruption of activity in these circuits causes systematic deviations in eye position during both fixation and smooth pursuit eye movements. Third, the eyes are not completely still during fixation but make continuous miniature movements, including ocular drift and microsaccades, which are controlled by the same neuronal mechanisms that generate larger saccades. Finally, fixational eye movements have large effects on visual perception. Ocular drift transforms the visual input in ways that increase spatial acuity; microsaccades not only improve vision by relocating the fovea but also cause momentary changes in vision analogous to those caused by larger saccades.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'. © 2017 The Authors.

  1. Enzymatic cascade bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake A. (San Francisco, CA); Volponi, Joanne V. (Livermore, CA); Ingersoll, David (Albuquerque, NM); Walker, Andrew (Woodinville, WA)

    2007-09-04

    Disclosed is an apparatus and method for continuously converting sucrose to .beta.-D-glucose. The method comprises a three stage enzymatic reactor in which an aqueous solution of sucrose is first converted into a solution of fructose and .alpha.-D-glucose by passing it through a porous, packed column containing an inert media on which invertase is immobilized. This solution is then sent through a second packed column containing glucose isomerase and finally a third packed column containing mutarotase. Solution temperature and pH are adjusted to maximize glucose output.

  2. Enzymatic Hydrolysis of Lignocelluloses

    DEFF Research Database (Denmark)

    Kolasa, Marta; Ahring, Birgitte Kiær; Lübeck, Peter Stephensen

    2010-01-01

    bonds. Cellulose can be degraded to simple sugar components by means of enzymatic hydrolysis. However, due to its complex, crystalline structure it is difficult to break it down and the cooperative action of a variety of cellulolytic enzymes is necessary. Fungi are known to have potential in production...... source. By means of degenerate PCR, specific genes, homologous to the genes of previously classified glycoside hydrolases from CAZY database, are searched for in selected strains of Aspergillus sp., Trichoderma sp. and Penicillium sp. Both methods are anticipated to facilitate identification of target...

  3. Crescimento, nutrição e fixação biológica de nitrogênio em plantios mistos de eucalipto e leguminosas arbóreas Growth, nutrition and biological fixation of nitrogen in mixed-species plantations of eucalypt with leguminous trees

    Directory of Open Access Journals (Sweden)

    Selma Regina de Freitas Coelho

    2007-06-01

    Full Text Available O objetivo deste trabalho foi avaliar o crescimento inicial da parte aérea e do sistema radicular, a nutrição mineral e a fixação biológica de N2 (FBN em plantios consorciados de Eucalyptus grandis e leguminosas arbóreas. O delineamento experimental foi o de blocos ao acaso com três repetições e sete tratamentos por bloco. Nas linhas de plantio, entre as plantas de E. grandis, foram plantadas, intercaladamente, leguminosas arbóreas nativas de matas brasileiras - Peltophorum dubium, Inga sp., Mimosa scabrella, Acacia polyphylla, Mimosa caesalpiniaefolia - e uma leguminosa exótica, Acacia mangium. Realizou-se, também, o plantio puro de E. grandis. Mimosa scabrella e A. mangium foram as leguminosas com maior crescimento. Eucalyptus grandis consorciado com M. scabrella cresceu menos, no entanto foi o povoamento com maior acumulação de biomassa. As densidades de raízes finas (DRF do E. grandis foram 6 a 20 vezes maiores que as DRF das leguminosas na camada superficial do solo (0-10 cm 24 meses após plantio. A DRF de M. scabrella e de M. caesalpiniaefolia foi maior na camada 30-50 cm e menor na camada 10-30 cm. Os valores de delta15N da M. scabrella indicam que 90% do N acumulado em seus tecidos é oriundo da FBN.The objective of this work was to assess interactions between species on the above and belowground growth, nitrogen uptake and biological nitrogen fixation (BNF in mixed stands of Eucalyptus grandis and native leguminous N2-fixing trees. A complete randomized block design was installed with seven treatments and three blocks. Within the lines of the E. grandis seedlings, native leguminous N2-fixing trees - Peltophorum dubium, Inga sp., Mimosa scabrella, Acacia polyphylla, Mimosa caesalpiniaefolia - and one exotic leguminous plant, Acacia mangium, were intercropped. E. grandis was also solely planted. Mimosa scabrella and A. mangium were the legume trees that presented the highest growth. Although E. grandis showed a lower

  4. Box-modeling of the impacts of atmospheric nitrogen deposition and benthic remineralization on the nitrogen cycle of the eastern tropical South Pacific

    Science.gov (United States)

    Su, B.; Pahlow, M.; Oschlies, A.

    2015-09-01

    Both atmospheric deposition and benthic remineralization influence the marine nitrogen cycle, and hence ultimately also marine primary production. The biological and biogeochemical relations of the eastern tropical South Pacific (ETSP) to nitrogen deposition, benthic denitrification and phosphate regeneration are analysed in a prognostic box model of the oxygen, nitrogen and phosphorus cycles in the ETSP. In the model, atmospheric nitrogen deposition based on estimates for the years 2000-2009 is offset by half by reduced N2 fixation, with the other half transported out of the model domain. Both model- and data-based benthic denitrification are found to trigger nitrogen fixation, partly compensating for the NO3- loss. Since phosphate is the ultimate limiting nutrient in the model, enhanced sedimentary phosphate regeneration under suboxic conditions stimulates primary production and subsequent export production and NO3- loss in the oxygen minimum zone (OMZ). A sensitivity analysis of the local response to both atmospheric deposition and benthic remineralization indicates dominant stabilizing feedbacks in the ETSP, which tend to keep a balanced nitrogen inventory, i.e., nitrogen input by atmospheric deposition is counteracted by decreasing nitrogen fixation; NO3- loss via benthic denitrification is partly compensated by increased nitrogen fixation; enhanced nitrogen fixation stimulated by phosphate regeneration is partly removed by the stronger water-column denitrification. Even though the water column in our model domain acts as a NO3- source, the ETSP including benthic denitrification might become a NO3- sink.

  5. Modelling Tethered Enzymatic Reactions

    Science.gov (United States)

    Solis Salas, Citlali; Goyette, Jesse; Coker-Gordon, Nicola; Bridge, Marcus; Isaacson, Samuel; Allard, Jun; Maini, Philip; Dushek, Omer

    Enzymatic reactions are key to cell functioning, and whilst much work has been done in protein interaction in cases where diffusion is possible, interactions of tethered proteins are poorly understood. Yet, because of the large role cell membranes play in enzymatic reactions, several reactions may take place where one of the proteins is bound to a fixed point in space. We develop a model to characterize tethered signalling between the phosphatase SHP-1 interacting with a tethered, phosphorylated protein. We compare our model to experimental data obtained using surface plasmon resonance (SPR). We show that a single SPR experiment recovers 5 independent biophysical/biochemical constants. We also compare the results between a three dimensional model and a two dimensional model. The work gives the opportunity to use known techniques to learn more about signalling processes, and new insights into how enzyme tethering alters cellular signalling. With support from the Mexican Council for Science and Technology (CONACyT), the Public Education Secretariat (SEP), and the Mexican National Autonomous University's Foundation (Fundacion UNAM).

  6. Arthroscopy-assisted fracture fixation.

    Science.gov (United States)

    Atesok, Kivanc; Doral, M Nedim; Whipple, Terry; Mann, Gideon; Mei-Dan, Omer; Atay, O Ahmet; Beer, Yiftah; Lowe, Joseph; Soudry, Michael; Schemitsch, Emil H

    2011-02-01

    the purpose of this article was to systematically analyze the results of published studies in the literature which evaluated the use of arthroscopically assisted techniques in intra-articular fracture fixation. published investigations to date were analyzed by classifying them according to joints that were involved with intra-articular fractures including: knee, ankle, hip, shoulder, elbow, and wrist joints. The results were studied to assess the feasibility, efficiency, and outcomes of arthroscopy-assisted fracture fixation. arthroscopy-assisted techniques have been used successfully for the treatment of fractures of the tibial plateau, tibial eminence, malleoli, pilon, calcaneus, femoral head, glenoid, greater tuberosity, distal clavicle, radial head, coronoid, distal radius, and scaphoid. The major advantages of arthroscopic fracture fixation over open methods are direct visualization of the intra-articular space, decreased invasiveness, and the possibility for multitask interventions through which fixation of the fracture, and repair of the soft tissues and the cartilage can be performed simultaneously. The time-consuming and technically demanding nature of the procedures with a prolonged learning curve and limited fixation alternatives are the main disadvantages of this technique. arthroscopic fixation is increasingly utilized for certain intra-articular fracture types due to the minimally invasive nature of the procedures and high accuracy. Randomized controlled trials are needed to justify wider use of arthroscopy-assisted techniques for treatment of intra-articular fractures.

  7. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    Science.gov (United States)

    Batterman, Sarah A.; Hedin, Lars O.; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J.; Hall, Jefferson S.

    2013-10-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000kg carbon per hectare) in the first 12years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

  8. The global nitrogen cycle in the twenty-first century

    NARCIS (Netherlands)

    Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M. A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; Vitousek, P.; Leach, A.; Bouwman, A.F.; Butterbach-Bahl, K.; Dentener, F.; Stevenson, D.; Amann, M.; Voss, M.

    2013-01-01

    Global nitrogen fixation contributes 413 Tg of reactive nitrogen (Nr) to terrestrial and marine ecosystems annually of which anthropogenic activities are responsible for half, 210 Tg N. The majority of the transformations of anthropogenic Nr are on land (240 Tg N yr21) within soils and vegetation

  9. Comparison of routine fixation of tissues with rapid tissue fixation.

    Science.gov (United States)

    Tripathi, Meenakshi; Bansal, Rani; Gupta, Mamta; Bharat, Vinay

    2013-12-01

    Conventional formalin-fixed, paraffin-embedded tissue provides superior cellular morphology and long-term storage. Problems with formalin fixation comprise delay of fixation and variations in the duration of fixation. Microwave assisted tissue fixation removes the use of noxious and potentially toxic formalin that decreases the turnaround time and creates a personnel friendly workflow. The present study was conducted over a period of two years. One hundred and forty paired tissue sections were taken including both neoplastic and non-neoplastic tissues. One of the paired tissues was fixed in formalin and the other was fixed by using microwave irradiation in phosphate buffered saline. Both were then processed by conventional method. Each slide was examined and rated for the adequacy of fixation by two pathologists in a blinded fashion using 7 parameters: Cellular outline, cytoplasmic detail, nuclear detail, erythrocyte integrity, lymphocyte appearance, overall morphology and overall staining. Statistical analysis showed that sections obtained from microwave fixed tissues were comparable to that of routinely fixed tissue. The p-values of all parameters were not significant except for the overall morphology for which p-value was significant owing to loss of tissue in some cases. Microwave irradiation substantially shortened the time from specimen reception to diagnosis (turnaround time) and allowed same-day tissue processing and diagnosis of specimens without compromising the overall quality of the histologic section.

  10. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation.

    Science.gov (United States)

    Kim, Kyoung Hyoun; Choi, In Seong; Kim, Ho Myeong; Wi, Seung Gon; Bae, Hyeun-Jong

    2014-02-01

    The microalga Chlorella vulgaris is a potential feedstock for bioenergy due to its rapid growth, carbon dioxide fixation efficiency, and high accumulation of lipids and carbohydrates. In particular, the carbohydrates in microalgae make them a candidate for bioethanol feedstock. In this study, nutrient stress cultivation was employed to enhance the carbohydrate content of C. vulgaris. Nitrogen limitation increased the carbohydrate content to 22.4% from the normal content of 16.0% on dry weight basis. In addition, several pretreatment methods and enzymes were investigated to increase saccharification yields. Bead-beating pretreatment increased hydrolysis by 25% compared with the processes lacking pretreatment. In the enzymatic hydrolysis process, the pectinase enzyme group was superior for releasing fermentable sugars from carbohydrates in microalgae. In particular, pectinase from Aspergillus aculeatus displayed a 79% saccharification yield after 72h at 50°C. Using continuous immobilized yeast fermentation, microalgal hydrolysate was converted into ethanol at a yield of 89%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Actinorhizal nitrogen fixing nodules: infection process, molecular ...

    African Journals Online (AJOL)

    Admin

    several symbiotic promoters from legumes is also discussed. ... Key words: Nitrogen-fixation, actinorhizal nodules, Frankia, Casuarina, symbiotic gene. ..... Nonsymbiotic hemoglobins are widespread and have been identified in both symbiotic and non symbiotic plants (Bogusz et al.,. 1988; Taylor et al., 1994; Trevaskis et al., ...

  12. Enzymatic modification of starch

    DEFF Research Database (Denmark)

    Jensen, Susanne Langgård

    In the food industry approaches for using bioengineering are investigated as alternatives to conventional chemical and physical starch modification techniques in development of starches with specific properties. Enzyme-assisted post-harvest modification is an interesting approach to this, since...... it is considered a clean and energy saving technology. This thesis aimed to investigate the effect of using reaction conditions, simulating an industrial process, for enzymatic treatment of starch with branching enzyme (BE) from Rhodothermus obamensis. Thus treatements were conducted at 70°C using very high...... of the obtained products and were correlated to properties of the starch substrates. It was found that the obtained products differed depending on both the conditions used and the properties of the starch. Products of starch from certain origins completely lost their granular structure during the enzyme treatment...

  13. Mineral commodity profiles: nitrogen

    Science.gov (United States)

    Kramer, Deborah A.

    2004-01-01

    Overview -- Nitrogen (N) is an essential element of life and a part of all animal and plant proteins. As a part of the DNA and RNA molecules, nitrogen is an essential constituent of each individual's genetic blueprint. As an essential element in the chlorophyll molecule, nitrogen is vital to a plant's ability to photosynthesize. Some crop plants, such as alfalfa, peas, peanuts, and soybeans, can convert atmospheric nitrogen into a usable form by a process referred to as 'fixation.' Most of the nitrogen that is available for crop production, however, comes from decomposing animal and plant waste or from commercially produced fertilizers. Commercial fertilizers contain nitrogen in the form of ammonium and/or nitrate or in a form that is quickly converted to the ammonium or nitrate form once the fertilizer is applied to the soil. Ammonia is generally the source of nitrogen in fertilizers. Anhydrous ammonia is commercially produced by reacting nitrogen with hydrogen under high temperatures and pressures. The source of nitrogen is the atmosphere, which is almost 80 percent nitrogen. Hydrogen is derived from a variety of raw materials, which include water, and crude oil, coal, and natural gas hydrocarbons. Nitrogen-based fertilizers are produced from ammonia feedstocks through a variety of chemical processes. Small quantities of nitrates are produced from mineral resources principally in Chile. In 2002, anhydrous ammonia and other nitrogen materials were produced in more than 70 countries. Global ammonia production was 108 million metric tons (Mt) of contained nitrogen. With 28 percent of this total, China was the largest producer of ammonia. Asia contributed 46 percent of total world ammonia production, and countries of the former U.S.S.R. represented 13 percent. North America also produced 13 percent of the total; Western Europe, 9 percent; the Middle East, 7 percent; Central America and South America, 5 percent; Eastern Europe, 3 percent; and Africa and Oceania

  14. Molybdenum isotope fractionation by cyanobacterial assimilation during nitrate utilization and N2fixation

    Science.gov (United States)

    Zerkle, A L; Scheiderich, K; Maresca, J A; Liermann, L J; Brantley, S L

    2011-01-01

    We measured the δ98Mo of cells and media from molybdenum (Mo) assimilation experiments with the freshwater cyanobacterium Anabaena variabilis, grown with nitrate as a nitrogen (N) source or fixing atmospheric N2. This organism uses a Mo-based nitrate reductase during nitrate utilization and a Mo-based dinitrogenase during N2 fixation under culture conditions here. We also demonstrate that it has a high-affinity Mo uptake system (ModABC) similar to other cyanobacteria, including marine N2-fixing strains. Anabaena variabilis preferentially assimilated light isotopes of Mo in all experiments, resulting in fractionations of −0.2‰ to −1.0‰ ± 0.2‰ between cells and media (εcells–media), extending the range of biological Mo fractionations previously reported. The fractionations were internally consistent within experiments, but varied with the N source utilized and for different growth phases sampled. During growth on nitrate, A. variabilis consistently produced fractionations of −0.3 ± 0.1‰ (mean ± standard deviation between experiments). When fixing N2, A. variabilis produced fractionations of −0.9 ± 0.1‰ during exponential growth, and −0.5 ± 0.1‰ during stationary phase. This pattern is inconsistent with a simple kinetic isotope effect associated with Mo transport, because Mo is likely transported through the ModABC uptake system under all conditions studied. We present a reaction network model for Mo isotope fractionation that demonstrates how Mo transport and storage, coordination changes during enzymatic incorporation, and the distribution of Mo inside the cell could all contribute to the total biological fractionations. Additionally, we discuss the potential importance of biologically incorporated Mo to organic matter-bound Mo in marine sediments. PMID:21092069

  15. Molybdenum isotope fractionation by cyanobacterial assimilation during nitrate utilization and N₂ fixation.

    Science.gov (United States)

    Zerkle, A L; Scheiderich, K; Maresca, J A; Liermann, L J; Brantley, S L

    2011-01-01

    We measured the δ⁹⁸Mo of cells and media from molybdenum (Mo) assimilation experiments with the freshwater cyanobacterium Anabaena variabilis, grown with nitrate as a nitrogen (N) source or fixing atmospheric N₂. This organism uses a Mo-based nitrate reductase during nitrate utilization and a Mo-based dinitrogenase during N₂ fixation under culture conditions here. We also demonstrate that it has a high-affinity Mo uptake system (ModABC) similar to other cyanobacteria, including marine N₂-fixing strains. Anabaena variabilis preferentially assimilated light isotopes of Mo in all experiments, resulting in fractionations of -0.2‰ to -1.0‰ ± 0.2‰ between cells and media (ε(cells-media)), extending the range of biological Mo fractionations previously reported. The fractionations were internally consistent within experiments, but varied with the N source utilized and for different growth phases sampled. During growth on nitrate, A. variabilis consistently produced fractionations of -0.3 ± 0.1‰ (mean ± standard deviation between experiments). When fixing N₂, A. variabilis produced fractionations of -0.9 ± 0.1‰ during exponential growth, and -0.5 ± 0.1‰ during stationary phase. This pattern is inconsistent with a simple kinetic isotope effect associated with Mo transport, because Mo is likely transported through the ModABC uptake system under all conditions studied. We present a reaction network model for Mo isotope fractionation that demonstrates how Mo transport and storage, coordination changes during enzymatic incorporation, and the distribution of Mo inside the cell could all contribute to the total biological fractionations. Additionally, we discuss the potential importance of biologically incorporated Mo to organic matter-bound Mo in marine sediments. © 2010 Blackwell Publishing Ltd.

  16. Determinação da fixação biológica de nitrogênio no amendoim forrageiro (Arachis spp. por intermédio da abundância natural de 15N Determination of biological nitrogen fixation by the forage groundnut (Arachis spp. using the 15N natural abundance technique

    Directory of Open Access Journals (Sweden)

    Cesar Heraclides Behling Miranda

    2003-12-01

    Full Text Available Quantificou-se a fixação biológica de nitrogênio (FBN em cinco acessos de Arachis pintoi (BRA31534, BRA31828, BRA31796, BRA15121 e BRA30333 e dois de A. repens (BRA31801 e BRA31861. Os mesmos foram estabelecidos em um solo Latosolo Vermelho Escuro sujeito a inundação estacional, sendo a FBN estimada segundo a técnica da abundância natural do isótopo 15N (d15N. Estolões dos acessos foram plantados em novembro de 1999, em parcelas de 2,0 m x 2,0 m, com quatro repetições, distribuídas em blocos ao acaso. A massa verde das plantas acima de cinco centímetros do solo foi colhida em janeiro de 2000 e seca em estufa a 65ºC até peso constante, sendo posteriormente pesada e moída para análise dos conteúdos em N e d15N, em espectrômetro de massa. Verificaram-se diferenças significativas entre os genótipos quanto à produção de matéria seca (MS e N total, sobressaindo-se BRA31534 e BRA31828, com produções de 4,2 t/ha e conteúdos totais de N de 102 e 110 kg/ha, respectivamente. Os acessos BRA30333 e BRA31861 produziram apenas 2,6 t de MS/ha, com 59 e 65 kg/ha de N total, respectivamente. As taxas de FBN dos acessos testados, medidas por comparação dos seus teores de d15N com os de plantas não fixadoras crescendo na mesma área, variaram de 36% (BRA15121 a 90% (BRA31828 do N total das plantas, equivalente a 26 e 99 kg de N/ha, respectivamente. Verificou-se correlação positiva e significativa (r = 0,92, pThe biological nitrogen fixation (BNF of five Arachis pintoi (BRA31534, BRA31828, BRA31796, BRA15121 E BRA30333 and two A. repens (BRA31801 e BRA31861 accessions, grown in a Dark Red Latosol prone to seasonal flooding was evaluated using the 15N natural abundance method (d15N. Stolons of each accession were planted in November 1999, in plots of 2.0 m by 2.0 m, with four replications allotted to randomized blocks. Plant mass above five cm was harvested in January 2000. There were significant differences among the tested

  17. Nitrogen fixation and growth response of Alnus Rubra following fertiliztion with urea or biosolids Fixação de nitrogênio e crescimento de Alnus Rubra fertilização com uréia ou biosólidos

    Directory of Open Access Journals (Sweden)

    Linda S. Gaulke

    2006-08-01

    Full Text Available Nitrogen fertilization of forests using biosolids offers a potentially environmentally friendly means to accelerate tree growth. This field study was designed to analyze the effects of nitrogen fertilization on the symbiotic, nitrogen (N-fixing relationship between Alnus rubra Bong. (red alder and Frankia. Anaerobically digested, class B biosolids and synthetic urea (46% N were applied at rates of 140, 280 and 560 kg ha-1 available N to a well-drained, sandy, glacial outwash soil in the Indianola series (mixed, mesic Dystric Xeropsamments. Plots were planted with A. rubra seedlings. At the end of each of two growing seasons trees were harvested and analyzed for the rate of N fixation (as acetylene reduction activity, biomass and foliar N. At year 1, there was no N fixation for trees grown with urea amendments, but control (17 µmol C2H4 g-1 hr-1 and biosolids (26-45 µmol C2H4 g-1 hr-1 trees were fixing N. At the end of year 2, all trees in all treatments were fixing N (7 µmol C2H4 g-1 hr-1, 4-16 µmol C2H4 g-1 hr-1, and 20-29 µmol C2H4 g-1 hr-1 for control, urea and biosolids respectively. Trees grown with biosolids amendments were larger overall (year 1 shoot biomass 10 g, 5 g, and 23 g for control, urea, and biosolids respectively, year 2 shoot biomass 50 g, 51 g, and 190 g for control, urea, and biosolids respectively with higher concentrations of foliar N for both years of the study (year 1 foliar N 26 g kg-1, 27 g kg-1, and 40 g kg-1 for control, urea, and biosolids respectively, year 2 foliar N 17 g kg-1, 19 g kg-1, and 23 g kg-1 for control, urea, and biosolids respectively. Trees grown with urea amendments appeared to use the urea N over Frankia supplied N, whereas the biosolids trees appeared to be able to use both N in biosolids and N from Frankia. The results from this study indicated that the greater growth of A. rubra may have been responsible for the observed higher N demand. Biosolids may have supplied other nutrients to the

  18. Identification and nitrogen fixation effects of symbiotic Frankia ...

    African Journals Online (AJOL)

    Fourteen symbiotic isolates were obtained from root nodules of Casuarina equisetifolia and Casuarina cunninghamiana in Zhejiang, China. All isolates exhibited typical Frankia morphological characteristics, including filamentous hyphae, vesicles, and multilocular sporangia borne terminally or in an intercalary position.

  19. Nitrogen fixation and chemical composition of wild annual legumes ...

    African Journals Online (AJOL)

    yakoub@AHMED

    řixing (acetylene reducing) species were Medicago intertexta and Melilotus indicus. The structure oř nodules řrom most oř the wild herb legumes showed the characteristic řeatures oř indeterminate nodules (with an apical meristematic tissue).

  20. Enhancing the biological nitrogen fixation of leguminous crops ...

    African Journals Online (AJOL)

    ... and leguminous plants under severe conditions. The potential uses of such microorganisms due to their multifaceted beneficial activities are likely to play an important role in modern high intensive agricultural practices. Keywords: Rhizobium spp., legumes, growth promotion, plant protection, sustainable agriculture ...

  1. Nodulation and nitrogen fixation of field grown common bean ...

    African Journals Online (AJOL)

    A field experiment was conducted at Bel Air station, in Dakar using 15N isotope dilution technique and the non nodulating soybean (Glycine max) variety m129 as reference plant to test the compatibility of Dichlorofenthion-thiram (DCT) fungicide to the inoculation of common bean (Phaseolus vulgaris) Paulista variety with ...

  2. Cyanobacteria Occurrence and Nitrogen Fixation Rates in the ...

    African Journals Online (AJOL)

    Seagrass meadows support a high biodiversity and contribute substantially to the productivity of coastal waters (Ochieng & Erftemeijer, 2003). Their production sometimes exceeds that of seaweeds and corals (Sorokin, 1993). Seagrasses are hosts to many epiphytic organisms such as microalgae, macroalgae, bacteria and ...

  3. Theoretical Investigations of Novel Materials for Nitrogen Fixation

    DEFF Research Database (Denmark)

    Howalt, Jakob Geelmuyden

    This thesis is dedicated to the investigation and design of new catalyst materials for electrochemical ammonia production and especially the properties of the under-coordinated reaction sites on nanoparticles has been studied in great detail. Additionally, a universal transition state relation...... choice of reference systems the transition state scaling relations form a universality class that can be approximated with one single linear relation describing the entire range of reactions over all types of surfaces and nanoclusters. Theoretical studies of producing ammonia electrochemically at ambient...... should be low. For electro-catalysts the presence of water is very difficult to avert. Water will give rise to oxygen adsorption on most surfaces and the oxygen atoms will occupy important surfaces sites, which results in a decrease or a total hindrance of other chemical reactions taking place...

  4. Nodulation and nitrogen fixation in common bean (Phaseolus vulgaris)

    African Journals Online (AJOL)

    Mamadou Gueye

    Rhizobium. INTRODUCTION. In Senegal, common bean (Phaseolus vulgaris) needs to be inoculated with elite Rhizobium strains in the growing area called Niayes zone (Diouf et al., 1999). Usually, seeds of common bean supplied to farmers are often treated with fungicide to prevent losses due to seed- borne pathogens.

  5. Eco-physiological responses and symbiotic nitrogen fixation ...

    African Journals Online (AJOL)

    Administrator

    2010-11-01

    Nov 1, 2010 ... Na+ content generally increased in the plant organs with increasing salinity in the ... Especially, an excess accumulation of this cation was observed in leaves. Despite the .... efficient water and nutrient uptake under salt stress.

  6. Enzymatic degradation of multiwalled carbon nanotubes.

    Science.gov (United States)

    Zhao, Yong; Allen, Brett L; Star, Alexander

    2011-09-01

    Because of their unique properties, carbon nanotubes and, in particular, multiwalled carbon nanotubes (MWNTs) have been used for the development of advanced composite and catalyst materials. Despite their growing commercial applications and increased production, the potential environmental and toxicological impacts of MWNTs are not fully understood; however, many reports suggest that they may be toxic. Therefore, a need exists to develop protocols for effective and safe degradation of MWNTs. In this article, we investigated the effect of chemical functionalization of MWNTs on their enzymatic degradation with horseradish peroxidase (HRP) and hydrogen peroxide (H(2)O(2)). We investigated HRP/H(2)O(2) degradation of purified, oxidized, and nitrogen-doped MWNTs and proposed a layer-by-layer degradation mechanism of nanotubes facilitated by side wall defects. These results provide a better understanding of the interaction between HRP and carbon nanotubes and suggest an eco-friendly way of mitigating the environmental impact of nanotubes. © 2011 American Chemical Society

  7. Indicators: Nitrogen

    Science.gov (United States)

    Nitrogen, like phosphorus, is a critical nutrient required for all life. Nitrogen can occur in rivers and streams, lakes, and coastal waters in several forms including ammonia (NH3), nitrates (NO3), and nitrites (NO2).

  8. Comparison of Outcomes of Operatively Treated Bicondylar Tibial Plateau Fractures by External Fixation and Internal Fixation

    Directory of Open Access Journals (Sweden)

    CC Chan

    2012-03-01

    Full Text Available The outcome of bicondylar tibial plateau fractures treated with either external fixation (35 patients or internal fixation (24 patients was reviewed. Outcome measures included the Rasmussen score, clinical complications, development of osteoarthritis and the requirement for total knee replacement (TKR. Twenty-two (92% anatomical reductions were achieved in the internal fixation group compared to 27 (77% in the external fixation group. Infective complications were more common in the external fixation group (9 patients, 26% due to pin tract infection. There were no deep infections in the internal fixation group. The mean Rasmussen score was not significantly different (mean score 32 in external fixation and 29 in internal fixation between the two groups and the incidence of osteoarthritis was the same in both groups. Four patients in the external fixation group underwent a TKR compared to 5 patients in the internal fixation group. Bicondylar tibial plateau fractures have similar outcomes following external or internal fixation.

  9. Highly productive forage legume stands show no positive biodiversity effect on yield and N2-fixation

    DEFF Research Database (Denmark)

    Dhamala, Nawa Raj; Eriksen, Jørgen; Carlsson, Georg

    2017-01-01

    . Methodology N fixation, dry matter (DM) and nitrogen (N) yields were quantified in a field experiment for red clover (Trifolium pratense L.), white clover (Trifolium repens L.) and lucerne (Medicago sativa L.) pure stands and mixtures using the isotope dilution method. Results All three forage legume species...

  10. Some aspect of the logical way of studying dinitrogen fixation in an ...

    African Journals Online (AJOL)

    Dinitrogen fixation in an agroforestry context requires a careful approach which initially require derivation of the methods to be used and careful selection of the priorities of factors which influence the process. Nitrogen element is an important component of protein foods, hence its mechanisms of incorporation in biomass ...

  11. Significant N₂ fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries.

    Science.gov (United States)

    Bentzon-Tilia, Mikkel; Traving, Sachia J; Mantikci, Mustafa; Knudsen-Leerbeck, Helle; Hansen, Jørgen L S; Markager, Stiig; Riemann, Lasse

    2015-02-01

    Nitrogen (N) fixation is fueling planktonic production in a multitude of aquatic environments. In meso- and poly-haline estuaries, however, the contribution of N by pelagic N₂ fixation is believed to be insignificant due to the high input of N from land and the presumed absence of active N₂-fixing organisms. Here we report N₂ fixation rates, nifH gene composition and nifH gene transcript abundance for key diazotrophic groups over 1 year in two contrasting, temperate, estuarine systems: Roskilde Fjord (RF) and the Great Belt (GB) strait. Annual pelagic N₂ fixation rates averaged 17 and 61 mmol N m(-2) per year at the two sites, respectively. In RF, N₂ fixation was mainly accompanied by transcripts related to heterotrophic (for example, Pseudomonas sp.) and photoheterotrophic bacteria (for example, unicellular diazotrophic cyanobacteria group A). In the GB, the first of two N₂ fixation peaks coincided with a similar nifH-expressing community as in RF, whereas the second peak was synchronous with increased nifH expression by an array of diazotrophs, including heterotrophic organisms as well as the heterocystous cyanobacterium Anabaena. Thus, we show for the first time that significant planktonic N₂ fixation takes place in mesohaline, temperate estuaries and that the importance of heterotrophic, photoheterotrophic and photosynthetic diazotrophs is clearly variable in space and time.

  12. Significant N2 fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries

    Science.gov (United States)

    Bentzon-Tilia, Mikkel; Traving, Sachia J; Mantikci, Mustafa; Knudsen-Leerbeck, Helle; Hansen, Jørgen LS; Markager, Stiig; Riemann, Lasse

    2015-01-01

    Nitrogen (N) fixation is fueling planktonic production in a multitude of aquatic environments. In meso- and poly-haline estuaries, however, the contribution of N by pelagic N2 fixation is believed to be insignificant due to the high input of N from land and the presumed absence of active N2-fixing organisms. Here we report N2 fixation rates, nifH gene composition and nifH gene transcript abundance for key diazotrophic groups over 1 year in two contrasting, temperate, estuarine systems: Roskilde Fjord (RF) and the Great Belt (GB) strait. Annual pelagic N2 fixation rates averaged 17 and 61 mmol N m−2 per year at the two sites, respectively. In RF, N2 fixation was mainly accompanied by transcripts related to heterotrophic (for example, Pseudomonas sp.) and photoheterotrophic bacteria (for example, unicellular diazotrophic cyanobacteria group A). In the GB, the first of two N2 fixation peaks coincided with a similar nifH-expressing community as in RF, whereas the second peak was synchronous with increased nifH expression by an array of diazotrophs, including heterotrophic organisms as well as the heterocystous cyanobacterium Anabaena. Thus, we show for the first time that significant planktonic N2 fixation takes place in mesohaline, temperate estuaries and that the importance of heterotrophic, photoheterotrophic and photosynthetic diazotrophs is clearly variable in space and time. PMID:25026373

  13. Homogeneous, Heterogeneous, and Enzymatic Catalysis.

    Science.gov (United States)

    Oyama, S. Ted; Somorjai, Gabor A.

    1988-01-01

    Discusses three areas of catalysis: homegeneous, heterogeneous, and enzymatic. Explains fundamentals and economic impact of catalysis. Lists and discusses common industrial catalysts. Provides a list of 107 references. (MVL)

  14. Enzymatic regulation of photosynthetic and light-independent carbon fixation in Laminaria setchellii (Phaeophyta, Ulva lactuca (Chlorophyta and Iridaea cordata (Rhodophyta Regulación enzimática de la fotosíntesis y la fijación de carbono en obscuridad por Laminaria setchellii (Phaeophyta, Ulva lactuca (Chlorophyta e Iridaea cordata (Rhodophyta

    Directory of Open Access Journals (Sweden)

    ALEJANDRO CABELLO-PASINI

    2001-06-01

    Full Text Available Carbon is acquired through photosynthetic and non-photosynthetic processes in marine algae. However, little is known about the biochemical regulation of these metabolic pathways along the thallus of seaweeds. Consequently, the objective of this study was to assess the distribution of in vivo carboxylation pathways and to relate them to the in vitro activity of ribulose 1,5-bisphosphate carboxylase/oxygenase (RUBISCO, phosphoenolpyruvate carboxykinase (PEPCK, and phosphoenolpyruvate carboxylase (PEPC in the Phaeophyte Laminaria setchellii, the Chlorophyte Ulva lactuca, and the Rhodophyte Iridaea cordata. Chlorophyll-a levels did not vary in U. lactuca and I. cordata. However, pigment levels were significantly lower in the meristematic region of L. setchellii probably as a result of a lack of differentiation of the chloroplasts in this region. Similarly, net photosynthesis did not vary in the thallus of U. lactuca and I. cordata, while it increased from the stipe and meristem towards the lamina of L. setchellii. In contrast to photosynthesis, light-independent carbon fixation rates were significantly greater in the meristematic region of L. setchellii suggesting a compensating mechanism for carbon incorporation in photosynthetically limited tissue. The activity of RUBISCO and PEPCK followed a pattern similar to that of in vivo carboxylation processes indicating that in vivo carbon assimilation is regulated by the activity of the carboxylating enzymes throughout the thallus of L. setchelliiLa incorporación de carbono en algas marinas se lleva a cabo mediante procesos fotosintéticos y no-fotosintéticos. Sin embargo, poco se sabe sobre la regulación bioquímica de estas rutas metabólicas en el tejido de algas marinas. En consecuencia, el objetivo de este estudio fue el de evaluar la distribución de la carboxilación in vivo y relacionarlas a la actividad in vitro de ribulosa 1,5-bisfosfato carboxilasa/oxigenasa (RUBISCO, fosfoenolpiruvato

  15. Nodulação e fixação biológica de nitrogênio de Adesmia latifolia e Lotus corniculatus em vasos de Leonard Nodulation and biological nitrogen fixation of Adesmia latifolia and Lotus corniculatus in Leonard jars

    Directory of Open Access Journals (Sweden)

    Simone Meredith Scheffer-Basso

    2001-06-01

    , there is a reduced number of scientific works related to the nodule type and biological nitrogen fixation (BNF. This work had the purpose to analyze such processes in these species and also to compare their morphological development under different nitrogen sources: mineral-N (ammonium nitrate - 5%, symbiotic-N (inoculation and without nitrogen (control. The experiment was carried out in greenhouse conditions, utilizing Leonard Jars with nutritive solution; the substrate consisted of mixture of sand, vermiculite and charcoal. It was a randomized complete design with four replications. At the end of 65 days the plants were harvested and evaluated for length and volume of roots, number and weight of nodules, dry matter (DM accumulation and BNF. A. latifolia stand out for the character number of nodules (126/jar and total nodule weight (82.22 mg DM/jar as compared to birdsfoot trefoil with 82 nodules/jar and 20.25 mg DM/jar. The BNF was more effective in A. latifolia, whose inoculated plants produced an average of 37% of DM that was obtained by plants supplied with mineral-N, while birdsfoot reached only 15% of DM production with BNF. The amount of symbiotic fixed nitrogen was 43.12 mg N/jar in Adesmia and 9.92 mg in birdsfoot trefoil.

  16. Toward nitrogen neutral biofuel production.

    Science.gov (United States)

    Huo, Yi-Xin; Wernick, David G; Liao, James C

    2012-06-01

    Environmental concerns and an increasing global energy demand have spurred scientific research and political action to deliver large-scale production of liquid biofuels. Current biofuel processes and developing approaches have focused on closing the carbon cycle by biological fixation of atmospheric carbon dioxide and conversion of biomass to fuels. To date, these processes have relied on fertilizer produced by the energy-intensive Haber-Bosch process, and have not addressed the global nitrogen cycle and its environmental implications. Recent developments to convert protein to fuel and ammonia may begin to address these problems. In this scheme, recycling ammonia to either plant or algal feedstocks reduces the demand for synthetic fertilizer supplementation. Further development of this technology will realize its advantages of high carbon fixation rates, inexpensive and simple feedstock processing, in addition to reduced fertilizer requirements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Effectiveness of indigenous soyabean rhizobial isolates to fix nitrogen under field conditions of Zimbabwe

    NARCIS (Netherlands)

    Zengeni, R.; Giller, K.E.

    2007-01-01

    Ten promiscuous soyabean isolates that proved superior in nitrogen fixation effectiveness to commercial inoculant strains under greenhouse studies were evaluated for their symbiotic potential under field conditions. The promiscuous soyabean variety, Magoye and the specific variety Solitaire were

  18. Heterotrophic bacteria as major nitrogen fixers in the euphotic zone of the Indian Ocean

    National Research Council Canada - National Science Library

    Shiozaki, Takuhei; Ijichi, Minoru; Kodama, Taketoshi; Takeda, Shigenobu; Furuya, Ken

    2014-01-01

    .... We first examined the basin‐scale community structure of diazotrophs and their nitrogen fixation activity within the euphotic zone during the northeast monsoon period along about 69°E from 17°N to 20...

  19. Molecular basis of a microbe-mediated enhancement of symbiotic N/sub 2/-fixation. [Rhizobium meliloti; Pseudomonas syringae pv. tabaci

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, P.J.; Knight, T.J.

    1987-04-01

    Improvement of biological nitrogen fixation represents a potential source of both increased food production and decreased dependence on costly chemical fertilizer. They report the results of an investigation of the molecular basis of a unique, microbial-mediated mechanism for increased growth and nitrogen fixation rates in alfalfa. Inoculation of alfalfa plants with both Rhizobium meliloti and Pseudomonas syringae pv tabaci provides increased growth and N/sub 2/-fixation rates of alfalfa. Tabaci produces tabtoxinine-..beta..-lactam (T..beta..L), an exocellular product and glutamine synthetase (GS) inhibitor. The association of this pathogen with nodulating alfalfa plants appears to alter the normal regulation of nitrogen fixation such that nitrogenase activity is stimulated and GS activity is inhibited. Studies of the soluble amino acids in these nodules and the activities of the ammonia assimilatory enzymes indicate alternative pathways of ammonia assimilation are being employed.

  20. Robot Motion Vision by Fixation

    Science.gov (United States)

    1992-09-01

    These are 8 - bit images but the last two digits are usually too noisy to be reliable. The true motion between these frames is a combination of...Brightness Gradients 2nd ImageN Ist Image yk t k+) Sti+ l Figure B-i: The first brightness derivatives required in the direct methods can be estimated...individual time varying frames, the above algorithms compensate for part of the tessellation errors involved in discrete digitized images. Depth at Fixation

  1. On Fixation of Hip Prostheses

    OpenAIRE

    Palm, Lars

    2007-01-01

    This thesis, comprising 5 separate studies, is concerned with fixation of prosthetic components in total hip arthroplasty. The results and conclusions of the studies fol-low; The initial stability of femoral revision components, the long cementless PCA stem and the Exeter standard stem cemented in a bed of impacted bone graft, was com-pared in an experimental study. The PCA stem was more stable than the Exeter stem. However, for both stems initial stability may not be sufficient to allow bone...

  2. Virtual Nitrogen Losses from Organic Food Production

    Science.gov (United States)

    Cattell Noll, L.; Galloway, J. N.; Leach, A. M.; Seufert, V.; Atwell, B.; Shade, J.

    2015-12-01

    Reactive nitrogen (Nr) is necessary for crop and animal production, but when it is lost to the environment, it creates a cascade of detrimental environmental impacts. The nitrogen challenge is to maximize the food production benefits of Nr, while minimizing losses to the environment. The first nitrogen footprint tool was created in 2012 to help consumers learn about the Nr losses to the environment that result from an individual's lifestyle choices. The nitrogen lost during food production was estimated with virtual nitrogen factors (VNFs) that quantify the amount of nitrogen lost to the environment per unit nitrogen consumed. Alternative agricultural systems, such as USDA certified organic farms, utilize practices that diverge from conventional production. In order to evaluate the potential sustainability of these alternative agricultural systems, our team calculated VNFs that reflect organic production. Initial data indicate that VNFs for organic grains and organic starchy roots are comparable to, but slightly higher than conventional (+10% and +20% respectively). In contrast, the VNF for organic vegetables is significantly higher (+90%) and the VNF for organic legumes is significantly lower (-90%). Initial data on organic meat production shows that organic poultry and organic pigmeat are comparable to conventional production (both <5% difference), but that the organic beef VNF is significantly higher (+30%). These data show that in some cases organic and conventional production are comparable in terms of nitrogen efficiency. However, since conventional production relies heavily on the creation of new reactive nitrogen (Haber-Bosch, biological nitrogen fixation) and organic production primarily utilizes already existing reactive nitrogen (manure, crop residue, compost), the data also show that organic production contributes less new reactive nitrogen to the environment than conventional production (approximately 70% less). Therefore, we conclude that on a local

  3. Relationship between hyperglycemia, antioxidant capacity and some enzymatic and non-enzymatic antioxidants in African patients with type 2 diabetes.

    Science.gov (United States)

    Pieme, Constant Anatole; Tatangmo, Jérôme Antony; Simo, Gustave; Biapa Nya, Prosper Cabral; Ama Moor, Vicky Jocelyne; Moukette Moukette, Bruno; Tankeu Nzufo, Francine; Njinkio Nono, Borgia Legrand; Sobngwi, Eugene

    2017-03-29

    Studies demonstrate that free radicals are involved in the pathogenesis of diabetic complications. The aim of this study was to determine the implication of total antioxidant capacity (TAC) and some enzymatic and non-enzymatic antioxidants as suitable biomarkers of diabetic complications risk factors. A total of 90 patients (70 patients with or without diabetic complications +20 normal healthy) were examined by evaluating the level of lipid peroxidation, nitrogen monoxide (NO), fasting blood glucose, glycated haemoglobin (HbA1c), enzymatic and non-enzymatic antioxidants using standard spectrophotometric methods. The fasting blood glucose and HbA1c levels were respectively 2.05 and 2.32 times higher in the group of patients with diabetes and complications (DPWC) compared to those of healthy persons. A statistically higher level of malondialdehyde (MDA), NO and TAC was observed in a group of patients with diabetes and complications compared to those without complications (DPNC). A significant positive correlation was found between catalase (CAT) and fasting blood glucose while a significant and negative correlation was noted between reduced glutathione (GSH) and fasting blood glucose. Also was noted a significant relationship between HbA1c and other markers of oxidative stress. The results suggest that the plasma levels of CAT, TAC and reduced glutathione could give information on the risk of developing complications of diabetes, considering that the modification of these biomarkers levels were associated with oxidative stress.

  4. Smaller Fixation Target Size Is Associated with More Stable Fixation and Less Variance in Threshold Sensitivity.

    Directory of Open Access Journals (Sweden)

    Kazunori Hirasawa

    Full Text Available The aims of this randomized observational case control study were to quantify fixation behavior during standard automated perimetry (SAP with different fixation targets and to evaluate the relationship between fixation behavior and threshold variability at each test point in healthy young participants experienced with perimetry. SAP was performed on the right eyes of 29 participants using the Octopus 900 perimeter, program 32, dynamic strategy. The fixation targets of Point, Cross, and Ring were used for SAP. Fixation behavior was recorded using a wearable eye-tracking glass. All participants underwent SAP twice with each fixation target in a random fashion. Fixation behavior was quantified by calculating the bivariate contour ellipse area (BCEA and the frequency of deviation from the fixation target. The BCEAs (deg2 of Point, Cross, and Ring targets were 1.11, 1.46, and 2.02, respectively. In all cases, BCEA increased significantly with increasing fixation target size (p < 0.05. The logarithmic value of BCEA demonstrated the same tendency (p < 0.05. A positive correlation was identified between fixation behavior and threshold variability for the Point and Cross targets (ρ = 0.413-0.534, p < 0.05. Fixation behavior increased with increasing fixation target size. Moreover, a larger fixation behavior tended to be associated with a higher threshold variability. A small fixation target is recommended during the visual field test.

  5. Avaliação da fixação biológica de nitrogênio em feijão-caupi submetido a diferentes manejos da vegetação natural na savana de Roraima = Evaluation of the biological nitrogen fixation in cowpea subjected to different managements of the natural vegetation of the savanna in Roraima, Brazil.

    Directory of Open Access Journals (Sweden)

    Victorio Jacob Bastos

    2012-08-01

    Full Text Available Objetivou-se com este trabalho avaliar a fixação biológica de nitrogênio em feijão-caupi submetido a diferentes manejos da vegetação natural, com e sem adubação orgânica com esterco bovino, da savana de Roraima. O experimento foi instalado na área experimental do CCA/UFRR, em Boa Vista, Roraima. O plantio das sementes de feijão-caupi, cultivar BRS Aracê, inoculadas com Bradyrhizobium BR 3262, foi realizado em julho de 2011 e os tratamentos foram dispostos em umdelineamento experimental de blocos ao acaso em esquema fatorial (3 x 2 com quatro repetições. O primeiro fator correspondeu ao manejo da vegetação natural: com aplicação de glifosato, com corte da vegetação natural e sem corte da vegetação natural. O segundo fator correspondeu à aplicação de esterco bovino: com e sem aplicação. Aos 35 dias após o plantio foi efetuada a coleta das plantas de feijão-caupi para mensurar o número de nódulos; massa fresca e seca dos nódulos; altura da planta; número de folhas, massa fresca e seca da parte aérea; massa fresca e seca da raiz. A aplicação a lanço de esterco bovino na quantidade de 2,0 L m-2 sobre a vegetação natural da savana de Roraima favorece o aumento do número de nódulos por planta de feijão-caupi.O manejo da vegetação natural com o uso do glifosato, independentemente do uso do esterco, favorece a nodulação das raízese contribui com o maior crescimento e desenvolvimento da planta de feijão-caupi.This study evaluated the biological fixation of nitrogen in cowpea beans subjected to different managements of the natural vegetation of the savannah in Roraima. The experiment was done in the experimental area of the CCA/UFRR, Boa Vista, Roraima, Brazil. The planting of the BRS Aracê cowpea seeds, inoculated with Bradyrhizobium BR 3262, wasdone in July, 2011 and the treatments were arranged in factorial schemes (3 x 2 of experimental randomized blocks with fourrepetitions. The first factor was the

  6. Variações qualitativas e quantitativas na microbiota do solo e na fixação biológica do nitrogênio sob diferentes manejos com soja Qualitative and quantitative changes in soil microbiota and biological nitrogen fixation under different soybean managements

    Directory of Open Access Journals (Sweden)

    Alan Alves Pereira

    2007-12-01

    Eutrudox, in Londrina, PR, Brazil. Treatments were a combination of a crop sequence (S (soybean/wheat and a crop rotation (R (lupin/maize/black oat/soybean/wheat/soybean/wheat/soybean, either under conventional tillage (CT or no-tillage (NT. Evaluations were performed when all systems were under the soybean cropping season, at full flowering. Amounts of microbial biomass carbon and nitrogen (MB-C and MB-N, respectively were 114 and 157 % higher in NT than in CT. Furthermore, the metabolic quotient (qCO2 was lower under NT, indicating higher metabolic efficiency of the soil microbes. These parameters were not affected by the crop sequence/rotation. Genetic diversity of the total soil bacterial community was higher under NT and lower in the CT system with crop sequence. Regarding the biological N2 fixation, it was found that plant biomass, total N and fraction of N-ureides in shoots, as well as nodule efficiency, were higher under NT. Genetic diversity of rhizobia was affected mainly by crop management and was higher under crop rotation, probably due to the greater number of plant species. However, crop rotation decreased the efficiency of the biological N2 fixation process, which may be related to more abundant N in the soil or to a lower selection pressure for efficient rhizobia. For soil microbes with specific functions, e.g., rhizobia, genetic diversity may therefore differ from functionality.

  7. The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change

    OpenAIRE

    Voss, M.; Hermann W Bange; Dippner, J. W.; J. J. Middelburg; Montoya, J. P.; Ward, B

    2013-01-01

    The ocean's nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation, assimilation, nitrification, anammox and denitrification. Dinitrogen is the most abundant form of nitrogen in sea water but only accessible by nitrogen-fixing microbes. Denitrification and nitrification are both regulated by oxygen concentrations and potentially produce nitrous oxide (N2O), a climate-relevant atmospheric trace gas. The world's oceans, including the coastal areas and upwelli...

  8. Enzymatic Browning: a practical class

    Directory of Open Access Journals (Sweden)

    Maria Teresa Pedrosa Silva Clerici

    2014-10-01

    Full Text Available This paper presents a practical class about the enzymes polyphenol oxidases, which have been shown to be responsible for the enzymatic browning of fruits and vegetables. Vegetables samples were submitted to enzymatic inactivation process with chemical reagents, as well as by bleaching methods of applying heat by conventional oven and microwave oven. Process efficiency was assessed qualitatively by both observing the guaiacol peroxidase activity and after the storage period under refrigeration or freezing. The practical results obtained in this class allow exploring multidisciplinary knowledge in food science, with practical applications in everyday life.

  9. Abnormal Fixational Eye Movements in Amblyopia.

    Science.gov (United States)

    Shaikh, Aasef G; Otero-Millan, Jorge; Kumar, Priyanka; Ghasia, Fatema F

    2016-01-01

    Fixational saccades shift the foveal image to counteract visual fading related to neural adaptation. Drifts are slow eye movements between two adjacent fixational saccades. We quantified fixational saccades and asked whether their changes could be attributed to pathologic drifts seen in amblyopia, one of the most common causes of blindness in childhood. Thirty-six pediatric subjects with varying severity of amblyopia and eleven healthy age-matched controls held their gaze on a visual target. Eye movements were measured with high-resolution video-oculography during fellow eye-viewing and amblyopic eye-viewing conditions. Fixational saccades and drifts were analyzed in the amblyopic and fellow eye and compared with controls. We found an increase in the amplitude with decreased frequency of fixational saccades in children with amblyopia. These alterations in fixational eye movements correlated with the severity of their amblyopia. There was also an increase in eye position variance during drifts in amblyopes. There was no correlation between the eye position variance or the eye velocity during ocular drifts and the amplitude of subsequent fixational saccade. Our findings suggest that abnormalities in fixational saccades in amblyopia are independent of the ocular drift. This investigation of amblyopia in pediatric age group quantitatively characterizes the fixation instability. Impaired properties of fixational saccades could be the consequence of abnormal processing and reorganization of the visual system in amblyopia. Paucity in the visual feedback during amblyopic eye-viewing condition can attribute to the increased eye position variance and drift velocity.

  10. Chemical Characterization, Antioxidant and Enzymatic Activity of Brines from Scandinavian Marinated Herring Products

    DEFF Research Database (Denmark)

    Gringer, Nina; Osman, Ali; Nielsen, Henrik Hauch

    2014-01-01

    or spices. The chemical characterization encompassed pH, dry matter, ash, salt, fatty acids, protein, polypeptide pattern, iron and nitrogen. The antioxidant activity was tested with three assays measuring: iron chelation, reducing power and radical scavenging activity. The enzymatic activity for peroxidase...

  11. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation RID B-8834-2011

    DEFF Research Database (Denmark)

    Kuypers, MMM; Lavik, G.; Woebken, D.

    2005-01-01

    In many oceanic regions, growth of phytoplankton is nitrogen-limited because fixation of N-2 cannot make up for the removal of fixed inorganic nitrogen (NH4+, NO2-, and NO3-) by anaerobic microbial processes. Globally, 30-50% of the total nitrogen loss occurs in oxygen-minimum zones (OMZs) and is...

  12. Fixational eye movements and binocular vision.

    Science.gov (United States)

    Otero-Millan, Jorge; Macknik, Stephen L; Martinez-Conde, Susana

    2014-01-01

    During attempted visual fixation, small involuntary eye movements-called fixational eye movements-continuously change of our gaze's position. Disagreement between the left and right eye positions during such motions can produce diplopia (double vision). Thus, the ability to properly coordinate the two eyes during gaze fixation is critical for stable perception. For the last 50 years, researchers have studied the binocular characteristics of fixational eye movements. Here we review classical and recent studies on the binocular coordination (i.e., degree of conjugacy) of each fixational eye movement type: microsaccades, drift and tremor, and its perceptual contribution to increasing or reducing binocular disparity. We also discuss how amblyopia and other visual pathologies affect the binocular coordination of fixational eye movements.

  13. Comparison of fixation disparity curve parameters obtained with the Wesson and Saladin fixation disparity cards

    National Research Council Canada - National Science Library

    Ngan, Janice; Goss, David A; Despirito, Joseph

    2005-01-01

    This study compared fixation curve parameters with two commercially available fixation disparity cards, one that has been available for several years, the Wesson card, and a new one, the Saladin card...

  14. Enzymatic conversion of carbon dioxide.

    Science.gov (United States)

    Shi, Jiafu; Jiang, Yanjun; Jiang, Zhongyi; Wang, Xueyan; Wang, Xiaoli; Zhang, Shaohua; Han, Pingping; Yang, Chen

    2015-10-07

    With the continuous increase in fossil fuels consumption and the rapid growth of atmospheric CO2 concentration, the harmonious state between human and nature faces severe challenges. Exploring green and sustainable energy resources and devising efficient methods for CO2 capture, sequestration and utilization are urgently required. Converting CO2 into fuels/chemicals/materials as an indispensable element for CO2 capture, sequestration and utilization may offer a win-win strategy to both decrease the CO2 concentration and achieve the efficient exploitation of carbon resources. Among the current major methods (including chemical, photochemical, electrochemical and enzymatic methods), the enzymatic method, which is inspired by the CO2 metabolic process in cells, offers a green and potent alternative for efficient CO2 conversion due to its superior stereo-specificity and region/chemo-selectivity. Thus, in this tutorial review, we firstly provide a brief background about enzymatic conversion for CO2 capture, sequestration and utilization. Next, we depict six major routes of the CO2 metabolic process in cells, which are taken as the inspiration source for the construction of enzymatic systems in vitro. Next, we focus on the state-of-the-art routes for the catalytic conversion of CO2 by a single enzyme system and by a multienzyme system. Some emerging approaches and materials utilized for constructing single-enzyme/multienzyme systems to enhance the catalytic activity/stability will be highlighted. Finally, a summary about the current advances and the future perspectives of the enzymatic conversion of CO2 will be presented.

  15. Enumeration, Isolation and Identification of Nitrogen-Fixing Bacterial Strains at Seedling Stage in Rhizosphere of Rice Grown in Non-Calcareous Grey Flood Plain Soil of Bangladesh

    OpenAIRE

    Khan, Md. Harunor Rashid; Md.,Mohiuddin; M, Rahman

    2008-01-01

    Non-symbiotic diazotrophic systems for biological nitrogen fixation (BNF) in agriculture are most promising but the possibility for the extension of nitrogen fixation by rice is still speculative. Accordingly, the present study was conducted for the Enumeration, isolation and identification of nitrogen fixing bacterial strains at seedling stage (30 days after seed sowing) in rhizosphere of rice (BR 10, Oryza sativa L.) grown in Non-Calcareous Grey Flood Plain soil of Bangladesh. The soil is c...

  16. Percutaneous Fixation of Displaced Calcaneal Fracture

    Directory of Open Access Journals (Sweden)

    Yeung Yip-Kan

    2011-06-01

    Conclusion: Percutaneous fixation of displaced tongue-type calcaneal fractures is an effective treatment with acceptable clinical outcome, short hospital stay, minimal skin complications, and quick recovery.

  17. Suppressive interactions underlying visually evoked fixational saccades.

    Science.gov (United States)

    Wang, Helena X; Yuval-Greenberg, Shlomit; Heeger, David J

    2016-01-01

    Small saccades occur frequently during fixation, and are coupled to changes in visual stimulation and cognitive state. Neurophysiologically, fixational saccades reflect neural activity near the foveal region of a continuous visuomotor map. It is well known that competitive interactions between neurons within visuomotor maps contribute to target selection for large saccades. Here we asked how such interactions in visuomotor maps shape the rate and direction of small fixational saccades. We measured fixational saccades during periods of prolonged fixation while presenting pairs of visual stimuli (parafoveal: 0.8° eccentricity; peripheral: 5° eccentricity) of various contrasts. Fixational saccade direction was biased toward locations of parafoveal stimuli but not peripheral stimuli, ∼100-250ms following stimulus onset. The rate of fixational saccades toward parafoveal stimuli (congruent saccades) increased systematically with parafoveal stimulus contrast, and was suppressed by the simultaneous presentation of a peripheral stimulus. The suppression was best characterized as a combination of two processes: a subtractive suppression of the overall fixational saccade rate and a divisive suppression of the direction bias. These results reveal the nature of suppressive interactions within visuomotor maps and constrain models of the population code for fixational saccades. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Nitrogen Fixing Legumes in the Plant Communities

    OpenAIRE

    M. A.A. Al-Fredan

    2011-01-01

    Problems statement: Numerous authors have used energetic to explain the ecological success of N-fixing plants. Legume biodiversity assessment, species dynamics, nitrogen fixation monitoring and environment impact assessment of these ecological events in Al-Hassa Oasis, Saudi Arabia are rare and need to be continuous and more frequent. Approach: Thus the objectives of this study were to analyze legume abundance within and outside Al-Hassa Oasis and relate it to the dis...

  19. Carbon and energy fixation of great duckweed Spirodela polyrhiza growing in swine wastewater.

    Science.gov (United States)

    Wang, Wenguo; Yang, Chuang; Tang, Xiaoyu; Zhu, Qili; Pan, Ke; Cai, Denggao; Hu, Qichun; Ma, Danwei

    2015-10-01

    The ability to fix carbon and energy in swine wastewater of duckweeds was investigated using Spirodela polyrhiza as the model species. Cultures of S. polyrhiza were grown in dilutions of both original swine wastewater (OSW) and anaerobic digestion effluent (ADE) based on total ammonia nitrogen (TAN). Results showed that elevated concentrations of TAN caused decreased growth, carbon fixation, and energy production rates, particularly just after the first rise in two types of swine wastewater. Also, OSW was more suitable for S. polyrhiza cultivation than ADE. Maximum carbon and energy fixation were achieved at OSW-TAN concentrations of 12.08 and 13.07 mg L(-1), respectively. Photosynthetic activity of S. polyrhiza could be inhibited by both nutrient stress (in high-concentration wastewater) and nutrient limitation (in low-concentration wastewater), affecting its growth and ability for carbon-energy fixation.

  20. Kinetic modelling of enzymatic starch hydrolysis

    NARCIS (Netherlands)

    Bednarska, K.A.

    2015-01-01

    Kinetic modelling of enzymatic starch hydrolysis – a summary K.A. Bednarska The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch.

  1. Dinitrogen fixation associated with shoots of aquatic carnivorous plants: is it ecologically important?

    Science.gov (United States)

    Sirová, Dagmara; Santrůček, Jiří; Adamec, Lubomír; Bárta, Jiří; Borovec, Jakub; Pech, Jiří; Owens, Sarah M; Santrůčková, Hana; Schäufele, Rudi; Storchová, Helena; Vrba, Jaroslav

    2014-07-01

    Rootless carnivorous plants of the genus Utricularia are important components of many standing waters worldwide, as well as suitable model organisms for studying plant-microbe interactions. In this study, an investigation was made of the importance of microbial dinitrogen (N2) fixation in the N acquisition of four aquatic Utricularia species and another aquatic carnivorous plant, Aldrovanda vesiculosa. 16S rRNA amplicon sequencing was used to assess the presence of micro-organisms with known ability to fix N2. Next-generation sequencing provided information on the expression of N2 fixation-associated genes. N2 fixation rates were measured following (15)N2-labelling and were used to calculate the plant assimilation rate of microbially fixed N2. Utricularia traps were confirmed as primary sites of N2 fixation, with up to 16 % of the plant-associated microbial community consisting of bacteria capable of fixing N2. Of these, rhizobia were the most abundant group. Nitrogen fixation rates increased with increasing shoot age, but never exceeded 1·3 μmol N g(-1) d. mass d(-1). Plant assimilation rates of fixed N2 were detectable and significant, but this fraction formed less than 1 % of daily plant N gain. Although trap fluid provides conditions favourable for microbial N2 fixation, levels of nif gene transcription comprised aquatic Utricularia, despite the large potential capacity, is the high concentration of NH4-N (2·0-4·3 mg L(-1)) in the trap fluid. Resulting from fast turnover of organic detritus, it probably inhibits N2 fixation in most of the microorganisms present. Nitrogen fixation is not expected to contribute significantly to N nutrition of aquatic carnivorous plants under their typical growth conditions; however, on an annual basis the plant-microbe system can supply nitrogen in the order of hundreds of mg m(-2) into the nutrient-limited littoral zone, where it may thus represent an important N source. © The Author 2014. Published by Oxford University

  2. Biological N2 Fixation in the Upwelling Region off NW Iberia: Magnitude, Relevance, and Players

    Directory of Open Access Journals (Sweden)

    Víctor Moreira-Coello

    2017-09-01

    Full Text Available The classical paradigm about marine N2 fixation establishes that this process is mainly constrained to nitrogen-poor tropical and subtropical regions, and sustained by the colonial cyanobacterium Trichodesmium spp. and diatom-diazotroph symbiosis. However, the application of molecular techniques allowed determining a high phylogenic diversity and wide distribution of marine diazotrophs, which extends the range of ocean environments where biological N2 fixation may be relevant. Between February 2014 and December 2015, we carried out 10 one-day samplings in the upwelling system off NW Iberia in order to: (1 investigate the seasonal variability in the magnitude of N2 fixation, (2 determine its biogeochemical role as a mechanism of new nitrogen supply, and (3 quantify the main diazotrophs in the region under contrasting hydrographic regimes. Our results indicate that the magnitude of N2 fixation in this region was relatively low (0.001 ± 0.002 – 0.095 ± 0.024 μmol N m−3 d−1, comparable to the lower-end of rates described for the subtropical NE Atlantic. Maximum rates were observed at the surface during both upwelling and relaxation conditions. The comparison with nitrate diffusive fluxes revealed the minor role of N2 fixation (<2% as a mechanism of new nitrogen supply into the euphotic layer. Small diazotrophs (<10 μm were responsible for all N2 fixation activity detected in the region. Quantitative PCR targeting the nifH gene revealed the highest abundances of two sublineages of Candidatus Atelocyanobacterium thalassa or UCYN-A (UCYN-A1 and UCYN-A2, mainly at surface waters during upwelling and relaxation conditions, and of Gammaproteobacteria γ-24774A11 at deep waters during downwelling. Maximum abundance for the three groups were up to 6.7 × 102, 1.5 × 103, and 2.4 × 104nifH copies L−1, respectively. Our findings demonstrate measurable N2 fixation activity and presence of diazotrophs throughout the year in a nitrogen

  3. Models of Fixation and Tissue Processing

    Science.gov (United States)

    Grizzle, William E.

    2009-01-01

    Fixation and processing of tissue to paraffin blocks are used to permit tissues to be cut thinly (4 to 5 µm); cutting thin sections of tissue and staining them histochemically or immunohistochemically are necessary to permit tissues to be viewed adequately as to their structures (e.g., subcellular components and surrounding stroma) using a bright field microscope. Over the last century, anatomists and pathologists have used fixation in 10% neutral buffered formalin (10% NBF) as the fixative of choice. Also, both human and veterinary pathologists have trained using fixation in 10% NBF so these professionals have been and are reluctant to change the microscopic appearance of diagnostic tissues by using a different type of fixation; in addition, the effects of tissue processing on the microscopic appearance of tissue has essentially been ignored in most studies. Because of the use of 10% NBF by pathologists, archives of paraffin blocks contain essentially paraffin blocks only fixed in 10% NBF. Thus, if retrospective studies use archival paraffin blocks to correlate the molecular features of diseases with the outcomes of diseases, the studies must be based upon using tissue fixed in 10% NBF. Studies of how fixation in 10% NBF interacts with histochemical and immunohistochemical staining are very limited in number and most are based upon relatively long times of fixation in 10% NBF (≥ 36 hours). Current times of fixation in 10% NBF have been reduced to fixation in 10% NBF and its interaction with tissue processing at any time of fixation, especially short times of fixation. Even less is known about how fixation of tissues in 10% NBF interact with more modern assays using immunohistochemistry, real time quantitative PCR, and techniques which depend upon the analysis of proteins extracted from paraffin blocks such as analysis by multiplex immunoassays or by mass spectrometry. In general, multiple antibody-antigen combinations are reported not to work in tissues fixed

  4. Fixational saccades alter the gap effect.

    Science.gov (United States)

    Watanabe, Masayuki; Matsuo, Yuka; Zha, Ling; MacAskill, Michael R; Kobayashi, Yasushi

    2014-06-01

    The reaction times of saccadic eye movements have been studied extensively as a probe for cognitive behavior controlled by large-scale cortical and subcortical neural networks. Recent studies have shown that the reaction times of targeting saccades toward peripheral visual stimuli are prolonged by fixational saccades, the largest miniature eye movements including microsaccades. We have shown previously that the frequency of fixational saccades is decreased by volitional action preparation controlled internally during the antisaccade paradigm (look away from a stimulus). Instead, here we examined whether fixational saccade modulation induced externally by sensory events could also account for targeting saccade facilitation by the same sensory events. When targeting saccades were facilitated by prior fixation stimulus disappearance (gap effect), fixational saccade occurrence was reduced, which could theoretically facilitate targeting saccades. However, such reduction was followed immediately by the rebound of fixational saccade occurrence in some subjects, which could eliminate potential benefits from the previous fixational saccade reduction. These results do not mean that fixational saccades were unrelated to the gap effect because they indeed altered that effect by delaying targeting saccade initiation on trials without the fixation gap more strongly than trials with it. Such changes might be attributed to the disruption of volitional saccade preparation because the frequency of fixational saccades observed in this study was associated with the ability of volitional control over antisaccade behavior. These results suggest that fixational saccades alter the gap effect on targeting saccade reaction times, presumably by disrupting volitional saccade commands. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Utilization of nitrogen fixing trees

    Energy Technology Data Exchange (ETDEWEB)

    Brewbaker, J.L.; Beldt, R. van den; MacDicken, K.; Budowski, G.; Kass, D.C.L.; Russo, R.O.; Escalante, G.; Herrera, R.; Aranguren, J.; Arkcoll, D.B.; Doebereinger, J. (cord.)

    1983-01-01

    Six papers from the symposium are noted. Brewbaker, J.L., Beldt, R. van den, MacDicken, K. Fuelwood uses and properties of nitrogen-fixing trees, pp 193-204, (Refs. 15). Includes a list of 35 nitrogen-fixing trees of high fuelwood value. Budowski, G.; Kass, D.C.L.; Russo, R.O. Leguminous trees for shade, pp 205-222, (Refs. 68). Escalante, G., Herrera, R., Aranguren, J.; Nitrogen fixation in shade trees (Erythrina poeppigiana) in cocoa plantations in northern Venezuela, pp 223-230, (Refs. 13). Arkcoll, D.B.; Some leguminous trees providing useful fruits in the North of Brazil, pp 235-239, (Refs. 13). This paper deals with Parkia platycephala, Pentaclethra macroloba, Swartzia sp., Cassia leiandra, Hymenaea courbaril, dipteryz odorata, Inga edulis, I. macrophylla, and I. cinnamonea. Baggio, A.J.; Possibilities of the use of Gliricidia sepium in agroforestry systems in Brazil, pp 241-243; (Refs. 15). Seiffert, N.F.; Biological nitrogen and protein production of Leucaena cultivars grown to supplement the nutrition of ruminants, pp 245-249, (Refs. 14). Leucaena leucocephala cv. Peru, L. campina grande (L. leucocephala), and L. cunningham (L. leucocephalae) were promising for use as browse by beef cattle in central Brazil.

  6. Enhancement of symbiotic dinitrogen fixation by a toxin-releasing plant pathogen

    Energy Technology Data Exchange (ETDEWEB)

    Knight, T.J.; Langston-Unkefer, P.J.

    1988-08-19

    An approximate doubling in plant growth, total plant nitrogen, nodulation, and overall dinitrogen fixation of alfalfa are the consequences of the action of a toxin delivered by a Pseudomonas infesting the alfalfa rhizosphere. The toxin, tabtoxinine-..beta..-lactam, inactivates selectively one form of glutamine synthetase in the nodules. Thus, normal glutamine synthetase-catalyzed ammonia assimilation is significantly impaired; yet these plants assimilated about twice the normal amount of nitrogen. How plants regulate dinitrogen fixing symbiotic associates is an important and unresolved question; the current results imply that the glutamine synthetase-catalyzed step in ammonia assimilation, a plant function, strongly influences overall dinitrogen fixation in legumes. 26 references, 2 figures, 2 tables.

  7. Enzymatic synthesis of designer lipids

    Directory of Open Access Journals (Sweden)

    Devi B.L.A. Prabhavathi

    2008-05-01

    Full Text Available Even though natural oils and fats play an important role in human nutrition, its excessive intake became major cause for so many health related problems and hence designer lipids came into focus. Designed or structured lipids are nothing but tailor-made oils and fats with improved physical and organoleptic properties to enhance the role of fats and oils in food, nutrition, and health applications. These designer lipids can be produced by chemical- or enzymatic (interesterification reactions and genetic engineering of oilseed crops. This review gives a general idea about the enzymatic modifications of natural lipids and their derivatives for the preparation of designer lipids. The commercialization outlook, food, nutritional and pharmaceutical applications of designer lipids are also briefly discussed.

  8. Tips and Tricks in Mallet Fracture Fixation.

    Science.gov (United States)

    Chin, Yuin Cheng; Foo, Tun-Lin

    2016-10-01

    We describe three steps to aid fracture assessment and fixation in the extensor block pin technique for mallet fractures. The first step is the use of fluoroscopy in the initial assessment to determine indication for fixation. Next is the use of supplementary extension block pin to control larger dorsal fragments. The third technique described details the steps of open reduction of nascently malunited fractures.

  9. Enzymatic synthesis of designer lipids

    OpenAIRE

    Devi B.L.A. Prabhavathi; Zhang Hong; Damstrup Marianne L.; Guo Zheng; Zhang Long; Lue Bena-Marie; Xu Xuebing

    2008-01-01

    Even though natural oils and fats play an important role in human nutrition, its excessive intake became major cause for so many health related problems and hence designer lipids came into focus. Designed or structured lipids are nothing but tailor-made oils and fats with improved physical and organoleptic properties to enhance the role of fats and oils in food, nutrition, and health applications. These designer lipids can be produced by chemical- or enzymatic (inter)esterification reactions ...

  10. Outcome of rail fixator system in reconstructing bone gap

    Directory of Open Access Journals (Sweden)

    Amit Lakhani

    2014-01-01

    Conclusion: All patients well tolerated rail fixator with good functional results and gap reconstruction. Easy application of rail fixator and comfortable distraction procedure suggest rail fixator a good alternative for gap reconstruction of limbs.

  11. Marcha de absorção do nitrogênio do solo, do fertilizante e da fixação simbiótica em feijão-caupi (Vigna unguiculata (L. walp. e feijão-comum (Phaseolus vulgaris L. determinada com uso de 15N Uptake rate of nitrogen from soil and fertilizer, and n derived from symbiotic fixation in cowpea (Vigna unguiculata (L. walp. and common bean (Phaseolus vulgaris L. determined using the 15N isotope

    Directory of Open Access Journals (Sweden)

    Marciano de Medeiros Pereira Brito

    2009-08-01

    , through the 15N-dilution technique and using rice and non-nodulating soybean as control plants, the relative contributions of nitrogen sources (symbiotically fixed N, soil native N and fertilizer N on the growth of common bean and cowpea and to compare the isotopic technique (ID with the difference methods (DM for the evaluation of symbiotic N2 fixation. The study was carried out in a greenhouse of the Center for Nuclear Energy in Agriculture - CENA/USP, Sao Paulo State, Brazil, using 5 kg pots with a Typic Haplustox (Dystrophic Red-Yellow Latosol. The experiment was arranged in completely randomized blocks, with 16 treatments and three replications, in an 8 x 2 factorial design. The treatments were eight sampling times: 7, 24, 31, 38, 47, 58, 68 and 78 days after sowing (DAS and two crops: common bean and cowpea. An N rate of 10 mg kg-1 soil was used, as urea, enriched with an excess of 10 % of 15N atoms. Symbiotic N fixation supplied the bean and cowpea plants with the greatest amount of accumulated N, followed, in decreasing order, by soil and fertilizer. The highest rate of N symbiotic fixation was observed at the pre-flowering growth stage of the bean and cowpea plants. After the initial growth stage, 24 DAS, rice and non nodulating soybean were appropriate control plants to evaluate symbiotic N fixation. There was a good agreement between ID and DM, except in the initial growth stage of the crops.

  12. Rapid eye-fixation training without eyetracking.

    Science.gov (United States)

    Guzman-Martinez, Emmanuel; Leung, Parkson; Franconeri, Steve; Grabowecky, Marcia; Suzuki, Satoru

    2009-06-01

    Maintenance of stable central eye fixation is crucial for a variety of behavioral, electrophysiological, and neuroimaging experiments. Naive observers in these experiments are not typically accustomed to fixating, either requiring the use of cumbersome and costly eyetracking or producing confounds in results. We devised a flicker display that produced an easily detectable visual phenomenon whenever the eyes moved. A few minutes of training using this display dramatically improved the accuracy of eye fixation while observers performed a demanding spatial attention cuing task. The same amount of training using control displays did not produce significant fixation improvements, and some observers consistently made eye movements to the peripheral attention cue, contaminating the cuing effect. Our results indicate that (1) eye fixation can be rapidly improved in naive observers by providing real-time feedback about eye movements, and (2) our simple flicker technique provides an easy and effective method for providing this feedback.

  13. Comparison of fixation disparity curve parameters obtained with the Wesson and Saladin fixation disparity cards.

    Science.gov (United States)

    Ngan, Janice; Goss, David A; Despirito, Joseph

    2005-01-01

    This study compared fixation curve parameters with two commercially available fixation disparity cards, one that has been available for several years, the Wesson card, and a new one, the Saladin card. Fixation disparity curves were measured on 50 subjects with the Wesson fixation disparity card and the Saladin fixation disparity card. The x intercepts were on average more in the base-in direction with the Wesson card than with the Saladin card. The y intercepts were shifted in the exo direction with the Wesson card compared with the Saladin card. The slope with the Wesson card was steeper than the slope obtained with the Saladin card. The distribution of curve types was also different with the two different instruments. Fixation disparity curves measured with these two instruments are different, and separate norms should be used for each fixation disparity measurement method.

  14. Insect-mediated nitrogen dynamics in decomposing wood

    Science.gov (United States)

    Michael D. Ulyshen

    2015-01-01

    1.Wood decomposition is characterised by complex and poorly understood nitrogen (N) dynamics with unclear implications for forest nutrient cycling and productivity.Wood-dwelling microbes have developed unique strategies for coping with the N limitations imposed by their substrate, including the translocation of N into wood by cord-forming fungi and the fixation of...

  15. Early assessment of genotypic variation in growth and nitrogen ...

    African Journals Online (AJOL)

    To enhance the benefits from N2-fixing symbiosis in low nitrogen fixers such as Faidherbia albida, knowledge is needed on how genotypes of both the host and its bacterial partner interact to influence N fixation-related traits of the host legume. A greenhouse experiment was carried out to investigate the variability of several ...

  16. Effects of organic and inorganic phosphorus sources on nitrogen ...

    African Journals Online (AJOL)

    A field study was carried out in 2005 in Kakamega to quantify the effects of organic and inorganic sources of phosphorus on nitrogen fixation of common bean by the 15N Natural Abundance method. Field experiments were conducted on two different soil groups (Alfisol and Ultisol) in 20 farmers' fields. Six treatments: control ...

  17. High rates of microbial dinitrogen fixation and sulfate reduction associated with the Mediterranean seagrass Posidonia oceanica.

    Science.gov (United States)

    Lehnen, Nadine; Marchant, Hannah K; Schwedt, Anne; Milucka, Jana; Lott, Christian; Weber, Miriam; Dekaezemacker, Julien; Seah, Brandon K B; Hach, Philipp F; Mohr, Wiebke; Kuypers, Marcel M M

    2016-10-01

    Seagrass meadows of Posidonia oceanica represent hotspots of productivity in the oligotrophic Mediterranean Sea. The lack of dissolved inorganic nitrogen (DIN) in the seawater suggests that the N-demand of these meadows might be in part supported by microbial dinitrogen (N2) fixation. However, currently there are no direct N2 fixation measurements available for this productive marine macrophyte. Here we investigated N2 fixation activity associated with P. oceanica leaf, rhizome and root pieces. In 15N2 incubations, the roots exhibited highest rates of N2 fixation. The rates varied considerably between replicates, presumably due to a patchy microbial colonization of the roots. Additions of organic carbon compounds (acetate, glucose, sucrose or algal lysate) did not enhance the N2 fixation rates. Sulfate reduction rates measured alongside were also highest in root incubations. Correspondingly, sequences of the nifH gene (a marker gene for the iron protein of the N2-fixing enzyme nitrogenase) related to known sulfate-reducing bacteria were retrieved from P. oceanica roots. Other nifH sequences clustered with known heterotrophic diazotrophs previously identified in other marine macrophytes. In particular, many sequences obtained from P. oceanica roots were similar (>94%) to a saltmarsh rhizosphere-associated heterotrophic diazotroph, indicating that heterotrophic lifestyle might be common among marine macrophyte-associated diazotrophs. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Enzymatic reaction paths as determined by transition path sampling

    Science.gov (United States)

    Masterson, Jean Emily

    Enzymes are biological catalysts capable of enhancing the rates of chemical reactions by many orders of magnitude as compared to solution chemistry. Since the catalytic power of enzymes routinely exceeds that of the best artificial catalysts available, there is much interest in understanding the complete nature of chemical barrier crossing in enzymatic reactions. Two specific questions pertaining to the source of enzymatic rate enhancements are investigated in this work. The first is the issue of how fast protein motions of an enzyme contribute to chemical barrier crossing. Our group has previously identified sub-picosecond protein motions, termed promoting vibrations (PVs), that dynamically modulate chemical transformation in several enzymes. In the case of human heart lactate dehydrogenase (hhLDH), prior studies have shown that a specific axis of residues undergoes a compressional fluctuation towards the active site, decreasing a hydride and a proton donor--acceptor distance on a sub-picosecond timescale to promote particle transfer. To more thoroughly understand the contribution of this dynamic motion to the enzymatic reaction coordinate of hhLDH, we conducted transition path sampling (TPS) using four versions of the enzymatic system: a wild type enzyme with natural isotopic abundance; a heavy enzyme where all the carbons, nitrogens, and non-exchangeable hydrogens were replaced with heavy isotopes; and two versions of the enzyme with mutations in the axis of PV residues. We generated four separate ensembles of reaction paths and analyzed each in terms of the reaction mechanism, time of barrier crossing, dynamics of the PV, and residues involved in the enzymatic reaction coordinate. We found that heavy isotopic substitution of hhLDH altered the sub-picosecond dynamics of the PV, changed the favored reaction mechanism, dramatically increased the time of barrier crossing, but did not have an effect on the specific residues involved in the PV. In the mutant systems

  19. Nutrient co-limitedTrichodesmiumas nitrogen source or sink in a future ocean.

    Science.gov (United States)

    Walworth, Nathan G; Fu, Fei-Xue; Lee, Michael D; Cai, Xiaoni; Saito, Mak A; Webb, Eric A; Hutchins, David A

    2017-11-27

    Nitrogen-fixing (N 2 ) cyanobacteria provide bioavailable nitrogen to vast ocean regions but are in turn limited by iron (Fe) and/or phosphorus (P), which may force them to employ alternative nitrogen acquisition strategies. The adaptive responses of nitrogen-fixers to global-change drivers under nutrient-limited conditions could profoundly alter the current ocean nitrogen and carbon cycles. Here, we show that the globally-important N 2 -fixer Trichodesmium fundamentally shifts nitrogen metabolism towards organic-nitrogen scavenging following long-term high-CO 2 adaptation under iron and/or phosphorus (co)-limitation. Global shifts in transcripts and proteins under high CO 2 /Fe-limited and/or P-limited conditions include decreases in the N 2 -fixing nitrogenase enzyme, coupled with major increases in enzymes that oxidize trimethylamine (TMA). TMA is an abundant, biogeochemically-important organic nitrogen compound that supports rapid Trichodesmium growth while inhibiting N 2 fixation. In a future high-CO 2 ocean, this whole-cell energetic reallocation towards organic nitrogen scavenging and away from N 2 -fixation may reduce new-nitrogen inputs by Trichodesmium , while simultaneously depleting the scarce fixed-nitrogen supplies of nitrogen-limited open ocean ecosystems. Importance Trichodesmium is among the most biogeochemically-significant microorganisms in the ocean, since it supplies up to 50% of the new nitrogen supporting open ocean food webs. We used Trichodesmium cultures adapted to high CO 2 for 7 years followed by additional exposure to iron and/or phosphorus (co)-limitation. We show that 'future ocean' conditions of high CO 2 and concurrent nutrient limitation(s) fundamentally shift nitrogen metabolism away from nitrogen fixation, and instead towards upregulation of organic-nitrogen scavenging pathways. We show that Trichodesmium's responses to projected future ocean conditions include decreases in the nitrogen-fixing nitrogenase enzymes, coupled with

  20. Diversity of Nitrogen-Fixing Bacteria Associated with Switchgrass in the Native Tallgrass Prairie of Northern Oklahoma

    OpenAIRE

    Bahulikar, Rahul A; Torres-Jerez, Ivone; Worley, Eric; Craven, Kelly; Udvardi, Michael K

    2014-01-01

    Switchgrass (Panicum virgatum L.) is a perennial C4 grass native to North America that is being developed as a feedstock for cellulosic ethanol production. Industrial nitrogen fertilizers enhance switchgrass biomass production but add to production and environmental costs. A potential sustainable alternative source of nitrogen is biological nitrogen fixation. As a step in this direction, we studied the diversity of nitrogen-fixing bacteria (NFB) associated with native switchgrass plants from ...

  1. Fixational saccades reflect volitional action preparation.

    Science.gov (United States)

    Watanabe, Masayuki; Matsuo, Yuka; Zha, Ling; Munoz, Douglas P; Kobayashi, Yasushi

    2013-07-01

    Human volitional actions are preceded by preparatory processes, a critical mental process of cognitive control for future behavior. Volitional action preparation is regulated by large-scale neural circuits including the cerebral cortex and the basal ganglia. Because volitional action preparation is a covert process, the network dynamics of such neural circuits have been examined by neuroimaging and recording event-related potentials. Here, we examined whether such covert processes can be measured by the overt responses of fixational saccades (including microsaccades), the largest miniature eye movements that occur during eye fixation. We analyzed fixational saccades while adult humans maintained fixation on a central visual stimulus as they prepared to generate a volitional saccade in response to peripheral stimulus appearance. We used the antisaccade paradigm, in which subjects generate a saccade toward the opposite direction of a peripheral stimulus. Appropriate antisaccade performance requires the following two aspects of volitional control: 1) facilitation of saccades away from the stimulus and 2) suppression of inappropriate saccades toward the stimulus. We found that fixational saccades that occurred before stimulus appearance reflected the dual preparatory states of saccade facilitation and suppression and correlated with behavioral outcome (i.e., whether subjects succeeded or failed to cancel inappropriate saccades toward the stimulus). Moreover, fixational saccades explained a large proportion of individual differences in behavioral performance (poor/excellent) across subjects. These results suggest that fixational saccades predict the outcome of future volitional actions and may be used as a potential biomarker to detect people with difficulties in volitional action preparation.

  2. Immaturity of Visual Fixations in Dyslexic Children.

    Directory of Open Access Journals (Sweden)

    TIADI eBi Kuyami Guy Aimé

    2016-02-01

    Full Text Available To our knowledge, behavioral studies recording visual fixations abilities in dyslexic children are scarce. The object of this paper is to explore further the visual fixation ability in dyslexics compared to chronological age-matched and reading age-matched non-dyslexic children. Fifty-five dyslexic children from 7 to 14 years old, fifty-five chronological age-matched non-dyslexic children and fifty-five reading age-matched non-dyslexic children participated to this study. Eye movements from both eyes were recorded horizontally and vertically by a video-oculography system (EyeBrain® T2. The fixation task consisted in fixating a white-filled circle appearing in the centre of the screen for 30 seconds. Results showed that dyslexic children produced a significantly higher number of unwanted saccades than both groups of non-dyslexic children. Moreover, the number of unwanted saccades significantly decreased with age in both groups of non-dyslexic children, but not in dyslexics. Furthermore, dyslexics made more saccades during the last 15 sec of fixation period with respect to both groups of non-dyslexic children. Such poor visual fixation capability in dyslexic children could be due to impaired attention abilities, as well as to an immaturity of the cortical areas controlling the fixation system.

  3. Biomechanical Analysis of Latarjet Screw Fixation: Comparison of Screw Types and Fixation Methods.

    Science.gov (United States)

    Shin, Jason J; Hamamoto, Jason T; Leroux, Timothy S; Saccomanno, Maristella F; Jain, Akshay; Khair, Mahmoud M; Mellano, Christen R; Shewman, Elizabeth F; Nicholson, Gregory P; Romeo, Anthony A; Cole, Brian J; Verma, Nikhil N

    2017-09-01

    To compare the initial fixation stability, failure strength, and mode of failure of 5 different screw types and fixation methods commonly used for the classic Latarjet procedure. Thirty-five fresh-frozen cadaveric shoulder specimens were allocated into 5 groups. A 25% anteroinferior glenoid defect was created, and a classic Latarjet coracoid transfer procedure was performed. All grafts were fixed with 2 screws, differing by screw type and/or fixation method. The groups included partially threaded solid 4.0-mm cancellous screws with bicortical fixation, partially threaded solid 4.0-mm cancellous screws with unicortical fixation, fully threaded solid 3.5-mm cortical screws with bicortical fixation, partially threaded cannulated 4.0-mm cancellous screws with bicortical fixation, and partially threaded cannulated 4.0-mm captured screws with bicortical fixation. All screws were stainless steel. Outcomes included cyclic creep and secant stiffness during cyclic loading, as well as load and work to failure during the failure test. Intergroup comparisons were made by a 1-way analysis of variance. There were no significant differences among different screw types or fixation methods in cyclic creep or secant stiffness after cyclic loading or in load to failure or work to failure during the failure test. Post-failure radiographs showed evidence of screw bending in only 1 specimen that underwent the Latarjet procedure with partially threaded solid cancellous screws with bicortical fixation. The mode of failure for all specimens analyzed was screw cutout. In this biomechanical study, screw type and fixation method did not significantly influence biomechanical performance in a classic Latarjet procedure. When performing this procedure, surgeons may continue to select the screw type and method of fixation (unicortical or bicortical) based on preference; however, further studies are required to determine the optimal method of treatment. Surgeons may choose the screw type and

  4. Energy Considerations for Plasma-Assisted N-Fixation Reactions

    Directory of Open Access Journals (Sweden)

    Aikaterini Anastasopoulou

    2014-09-01

    Full Text Available In a time of increasing concerns about the immense energy consumption and poor environmental performance of contemporary processes in the chemical industry, there is great need to develop novel sustainable technologies that enhance energy efficiency. There is abundant chemical literature on process innovations (laboratory-scale around the plasma reactor itself, which, naturally, is the essential part to be intensified to achieve a satisfactory process. In essence, a plasma process needs attention beyond reaction engineering towards the process integration side and also with strong electrical engineering focus. In this mini-review, we have detailed our future focus on the process and energy intensification of plasma-based N-fixation. Three focal points are mainly stressed throughout the review: (I the integration of renewable energy; (II the power supply system of plasma reactors and (III process design of industrial plasma-assisted nitrogen fixation. These different enabling strategies will be set in a holistic and synergetic picture so as to improve process performance.

  5. Nitrogen cycling in Hot Spring Sediments and Biofilms (Invited)

    Science.gov (United States)

    Meyer-Dombard, D. R.; Burton, M. S.; Havig, J. R.; Shock, E.

    2010-12-01

    Over the past several decades, gene-targeted analyses have revealed that microbial communities in hydrothermal environments can be surprisingly diverse. However, we know shockingly little about basic ecological functions such as carbon and nitrogen cycling or community shifts over time, or environmental parameters such as growth criteria. Previous work has shown that carbon cycling in one hot spring in Yellowstone National Park [“Bison Pool”] and its associated runoff channel functions as a complex system. Analysis of carbon and nitrogen isotopes in biofilms across a temperature and chemical gradient at this location revealed that multiple autotrophic carbon fixation pathways are functioning in this system, and nitrogen fixation varies across the chemosynthetic/photosynthetic ecotone [1]. Further, sequencing of metagenomes from multiple locations at “Bison Pool” has indicated the presence of genes involved in carbon fixation [both phototrophic and autotrophic], and heterotrophy, as well as nitrogen fixation [2]. Studies from other Yellowstone locations have also found genetic evidence for carbon and nitrogen fixation [3-5]. The role of individual microbes in nitrogen cycling as environmental conditions vary over space and time is the focus of this study. Here, we explore the diversity of nifH [nitrogen fixation], nirK [nitrite reduction] and amoA [ammonia oxidation] genes across a variety of Yellowstone environments. Environmental nucleic acids were extracted, and the presence/absence of Bacteria and Archaea determined by PCR. In addition, PCR-directed screens reveal the presence or absence of the aforementioned functional genes, indicating genetic capacity for nitrogen cycling. We have examined the transition of genetic diversity and genetic capacity within sediments and biofilms at the chemosynthetic/photosynthetic ecotone in several hot springs spanning ranges of pH and geochemical conditions. By sampling across this ecotone, changes in the genetic

  6. Incorporating a prognostic representation of marine nitrogen fixers into the global ocean biogeochemical model HAMOCC

    Science.gov (United States)

    Paulsen, Hanna; Ilyina, Tatiana; Six, Katharina D.; Stemmler, Irene

    2017-03-01

    Nitrogen (N2) fixation is a major source of bioavailable nitrogen to the euphotic zone, thereby exerting an important control on ocean biogeochemical cycling. This paper presents the incorporation of prognostic N2 fixers into the HAMburg Ocean Carbon Cycle model (HAMOCC), a component of the Max Planck Institute Earth System Model (MPI-ESM). Growth dynamics of N2 fixers in the model are based on physiological characteristics of the cyanobacterium Trichodesmium. The applied temperature dependency confines diazotrophic growth and N2 fixation to the tropical and subtropical ocean roughly between 40°S and 40°N. Simulated large-scale spatial patterns compare well with observations, and the global N2 fixation rate of 135.6 Tg N yr-1 is within the range of current estimates. The vertical distribution of N2 fixation also matches well the observations, with a major fraction of about 85% occurring in the upper 20 m. The observed seasonal variability at the stations BATS and ALOHA is reasonably reproduced, with highest fixation rates in northern summer/fall. Iron limitation was found to be an important factor in controlling the simulated distribution of N2 fixation, especially in the Pacific Ocean. The new model component considerably improves the representation of present-day N2 fixation in HAMOCC. It provides the basis for further studies on the role of diazotrophs in global biogeochemical cycles, as well as on the response of N2 fixation to changing environmental conditions.

  7. Studies on the roles of GlnK and GlnB in regulating Klebsiella pneumoniae NifL-dependent nitrogen control.

    NARCIS (Netherlands)

    Arcondeguy, T.; van Heeswijk, W.C.; Merrick, M.

    1999-01-01

    In Klebsiella pneumoniae, nitrogen fixation (nif) genes are regulated in response to fixed nitrogen and oxygen. The activity of the nif-specific transcriptional activator NifA is modulated by NifL, which mediates both oxygen and nitrogen control. The signal transduction protein GlnK is required to

  8. Enzymatic activity of myccorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Roman Pachlewski

    2014-11-01

    Full Text Available The investigations included assays of enzymatic activity of ectomycorrhizal fungi from the genera: Amanita, Cenococcum, Coltricia, Hebeloma, Lactarius, Rhizopogon, Russula, Suillus, Tricholoma and the pine ectendomycorrhizal strain MrgX. Among the 22 investigated strains of fungi 18 could decompose starch, 14 urea, 11 asparagine, 7 protein, 6 pectin and 3 ce1lulose. The most varied enzyme activities were found in Amanita muscaria, A. verna, Hebeloma, mesophaeum, ectendomycorrhizal isolate MrgX, Rhizopogon luteolus and Suillus bovinus, the highest cellolotytic activity was shown by the ectendomycorrhizal strain.

  9. The Global Nitrogen Cycle

    Science.gov (United States)

    Galloway, J. N.

    2003-12-01

    effective fertilizer. However, the source of nitrogen was still uncertain. Lightning and atmospheric deposition were thought to be the most important sources. Although the existence of biological nitrogen fixation (BNF) was unknown at that time, in 1838 Boussingault demonstrated that legumes restore Nr to the soil and that somehow they create Nr directly. It took almost 50 more years to solve the puzzle. In 1888, Herman Hellriegel (1831-1895) and Hermann Wilfarth (1853-1904) published their work on microbial communities. They noted that microorganisms associated with legumes have the ability to assimilate atmospheric N2 (Smil, 2001). They also said that it was necessary for a symbiotic relationship to exist between legumes and microorganisms.Other important processes that drive the cycle were elucidated in the nineteenth century. In the late 1870s, Theophile Scholesing proved the bacterial origins of nitrification. About a decade later, Serfei Nikolaevich Winogradsky isolated the two nitrifers - Nitrosomonas and Nitrobacter - and showed that the species of the former genus oxidize ammonia to nitrite and that the species of the latter genus convert nitrite to nitrate. Then in 1885, Ulysse Gayon isolated cultures of two bacteria that convert nitrate to N2. Although there are only two bacterial genera that can convert N2 to Nr, several can convert Nr back to N2, most notably Pseudomonas, Bacillus, and Alcaligenes (Smil, 2001).By the end of the nineteenth century, humans had discovered nitrogen and the essential components of the nitrogen cycle. In other words, they then knew that some microorganisms convert N2 to NH4+, other microorganisms convert NH4+ to NO3-, and yet a third class of microorganisms convert NO3- back to N2, thus completing the cycle.The following sections of this chapter examine the biogeochemical reactions of Nr, the distribution of Nr in Earth's reservoirs, and the exchanges between the reservoirs. This chapter then discusses Nr creation by natural and

  10. Isotope evidence for N2-fixation in Sphagnum peat bogs

    Science.gov (United States)

    Novak, Martin; Jackova, Ivana; Buzek, Frantisek; Stepanova, Marketa; Veselovsky, Frantisek; Curik, Jan; Prechova, Eva

    2016-04-01

    Waterlogged organic soils store as much as 30 % of the world's soil carbon (C), and 15 % of the world's soil nitrogen (N). In the era of climate change, wetlands are vulnerable to increasing temperatures and prolonged periods of low rainfall. Higher rates of microbial processes and/or changing availability of oxygen may lead to peat thinning and elevated emissions of greenhouse gases (mostly CO2, but also CH4 and N2O). Biogeochemical cycling of C and N in peat bogs is coupled. Under low levels of pollution by reactive nitrogen (NO3-, NH4+), increasing N inputs may positively affect C storage in peat. Recent studies in North America and Scandinavia have suggested that pristine bogs are characterized by significant rates of microbial N2 fixation that augments C storage in the peat substrate. We present a nitrogen isotope study aimed at corroborating these findings. We conducted an isotope inventory of N fluxes and pools at two Sphagnum-dominated ombrotrophic peat bogs in the Czech Republic (Central Europe). For the first time, we present a time-series of del15N values of atmospheric input at the same locations as del15N values of living Sphagnum and peat. The mean del15N values systematically increased in the order: input NH4+ (-10.0 ‰) NO3- (-7.9 ‰) < peat porewater (-5.6 ‰) < Sphagnum (-5.0 ‰) < shallow peat (-4.2 ‰) < deep peat (-2.2 ‰) < runoff (-1.4 ‰) < porewater N2O (1.4 ‰). Importantly, N of Sphagnum was isotopically heavier than N of the atmospheric input (p < 0.001). If partial incorporation of reactive N from the atmosphere into Sphagnum was isotopically selective, the residual N would have to be isotopically extremely light. Such N, however, was not identified anywhere in the ecosystem. Alternatively, Sphagnum may have contained an admixture of isotopically heavier N from atmospheric N2 (del15N N2 = 0 ‰). We conlude that the N isotope systematics at the two Czech sites is consistent with the concept of significant N2 fixation rates in

  11. Vacuum suction fixation versus staple fixation in TAPP laparoscopic hernia repair: introduction of a new technique for mesh fixation.

    Science.gov (United States)

    Zhang, Guangyong; Zhang, Xiang; Zhan, Hanxiang; Hu, Sanyuan

    2016-01-01

    Proper mesh fixation is critical for successful TAPP laparoscopic hernia repair. Conventional mesh fixation may cause chronic neuralgia, groin paresthesia or other complications. This study aimed at introducing a new vacuum suction technique for mesh fixation and evaluating its efficacy and safety compared with traditional staple fixation way. Clinical data of 242 patients undergoing TAPP from July 2011 to March 2014 were retrospectively analyzed. Patients were divided into vacuum suction fixation group and staple fixation group. The operation time, hospital stay, complications, recurrence, visual analogue scale pain score and cost were evaluated. All surgeries were successful. The operation time of staple group was (42.34 ± 10.15) min for unilateral hernia and (64.08 ± 16.01) min for bilateral hernias. The postoperative hospital stay was (2.76 ± 0.84) days. One recurrence was observed (0.90%). For vacuum group, the operation time was (42.66 ± 7.76) min and (63.92 ± 10.49) min, and hospital stay was (2.60 ± 0.74) days. No recurrence was observed. There was no significant difference in recurrence, operation time, postoperative pain and hospital stay between two groups (P > 0.05). Average cost were (11,714 ± 726) RMB for vacuum group which was lower than staple group (14,837 ± 1568) RMB (P 0.05). Both techniques for mesh fixation are safe and effective. There is no significant difference in recurrence, operation time, postoperative pain or hospital stay. The vacuum suction fixation technique is more economical with lower incidence of scrotal emphysema.

  12. Assessment of nitrogen flows into the Cuban landscape

    OpenAIRE

    Baisre, J. A.

    2006-01-01

    The alteration of the nitrogen (N) cycle by human activities is widespread and has often resulted in increased flows of nitrogen to the marine environment. In this paper we have attempted to know the changes of N fluxes in Cuba by quantifying the N inputs to the landscape from (1) fertilizer applications, (2) atmospheric deposition, (3) biological nitrogen fixation and (4) net import of food and feeds. N-inputs to the country progressively increased until the end of the 20th century, reaching...

  13. The CO2 footprint of new nitrogen creation

    Science.gov (United States)

    Houlton, B. Z.

    2012-12-01

    For billions of years, in the absence of substantial human influence, the essential nutrient nitrogen (N) entered terrestrial ecosystems at naturally low rates. Today, human actions (i.e., Haber-Bosch fertilizer production, fossil fuel combustion) have dramatically reshaped the N cycle from its background state, more than doubling terrestrial N circulation, resulting in large increases in anthropogenic N deposition inputs to ecosystems globally. While producing many unwanted side-effects, increased N in both rain water and dry particulate matter has been purported in accelerated rates of forest CO2 uptake, thus slowing the pace of climate change. However, this perspective does not consider the amount of CO2 released to the atmosphere during new N creation. Here I analyze the gross CO2 footprint of N input pathways, including the CO2 released during N fixation vs. that which is consumed by forest vegetation per unit of N input. This analysis indicates the following C/N conversion efficiencies during fixation: lightening = 0; Haber-Bosch = 0.49; symbiotic fixation = 10; asymbiotic fixation = 50; fossil fuel fixation = 220. Thus, lightening envisions the highest forest CO2 uptake return (100 %) followed by Haber-Bosch N (99), symbiotic N fixation (88) and asymbiotic N fixation (neutral), and lastly, fossil fuel fixation (-279). In addition, widespread and well-documented negative interactions between excess N and biological N fixation further undermine any potential positive effects of fossil-fuel N deposition on terrestrial C storage. Thus, recapturing Haber-Bosch N by natural vegetation combined with policies that target reductions in fossil fuel N sources are proposed as the most effective means for maximizing the positive benefits of anthropocene N on terrestrial CO2 uptake and storage.

  14. The Stability of Double Jaw Surgery: A Comparison of Rigid Fixation versus Skeletal Wire Fixation

    Science.gov (United States)

    1988-08-01

    C. Moody Alexander and Dr. Robert Gaylord. It has been a wonderful and rewarding experience. Thanks to Dr. Warren Parker for his support and guidance...postoperative range of motion when compared to wire fixation with its associated four to six weeks of intermaxillary fixation ( Aragon and Van Sickels 1987...REFERENCES Aragon , Steven B., and Van Sickels, Joseph E. 1987. "Mandibular Range of Motion with Rigid/Nonrigid Fixation." Oral Surg. 63: 408-411. Araujo

  15. Nitrogen tank

    CERN Multimedia

    2006-01-01

    Wanted The technical file about the pressure vessel RP-270 It concerns the Nitrogen tank, 60m3, 22 bars, built in 1979, and installed at Point-2 for the former L3 experiment. If you are in possession of this file, or have any files about an equivalent tank (probably between registered No. RP-260 and -272), please contact Marc Tavlet, the ALICE Glimos.

  16. Enzymatic synthesis of structured lipids.

    Science.gov (United States)

    Iwasaki, Yugo; Yamane, Tsuneo

    2004-01-01

    Structured lipids (SLs) are defined as lipids that are modified chemically or enzymatically in order to change their structure. This review deals with structured triacylglycerols (STGs) and structured phospholipids (SPLs). The most typical STGs are MLM-type STGs, having medium chain fatty acids (FAs) at the 1- and 3-positions and a long chain fatty acid at the 2- position. MLM-type STGs are synthesized by: 1) 1,3-position-specific lipase-catalyzed acyl exchange of TG with FA or with FA ethylester (FAEt); 2) 1,3-position-specific lipase-catalyzed acylation of glycerol with FA, giving symmetric 1,3-diacyl-sn-glycerol, followed by chemical acylation at the sn-2 position, and; 3) 1,3-position-specific lipase-catalyzed deacylation of TG, giving 2-monoacylglycerol, followed by reacylation at the 1- and 3-positions with FA or with (FAEt). Enzymatic preparation of SPLs requires: 1) acyl group modification, and 2) head group modification of phospholipids. Acyl group modification is performed using lipases or phospholipase A2-mediated transesterification or ester synthesis to introduce arbitrary fatty acid to phospholipids. Head group modification is carried out by phospholipase D-catalyzed transphosphatidylation. A wide range of compounds can be introduced into the polar head of phospholipids, making it possible to prepare various SPLs.

  17. Fixation probability on clique-based graphs

    Science.gov (United States)

    Choi, Jeong-Ok; Yu, Unjong

    2018-02-01

    The fixation probability of a mutant in the evolutionary dynamics of Moran process is calculated by the Monte-Carlo method on a few families of clique-based graphs. It is shown that the complete suppression of fixation can be realized with the generalized clique-wheel graph in the limit of small wheel-clique ratio and infinite size. The family of clique-star is an amplifier, and clique-arms graph changes from amplifier to suppressor as the fitness of the mutant increases. We demonstrate that the overall structure of a graph can be more important to determine the fixation probability than the degree or the heat heterogeneity. The dependence of the fixation probability on the position of the first mutant is discussed.

  18. Bicondylar tibial fractures: Internal or external fixation?

    Directory of Open Access Journals (Sweden)

    Gunasekaran Kumar

    2011-01-01

    Full Text Available Bicondylar fractures of the tibia, representing the Schatzker V and VI fractures represent a challenging problem. Any treatment protocol should aim at restoring articular congruity and the metaphyseo-diaphsyeal dissociation (MDD-both of these are equally important to long-term outcome. Both internal and external fixations have their proponents, and each method of treatment is associated with its unique features and complications. We review the initial and definitive management of these injuries, and the advantages and disadvantages of each method of definitive fixation. We suggest the use of a protocol for definitive management, using either internal or external fixation as deemed appropriate. This protocol is based on the fracture configuration, local soft tissue status and patient condition. In a nutshell, if the fracture pattern and soft tissue status are amenable plate fixation (single or double is performed, otherwise limited open reduction and articular surface reconstruction with screws and circular frame is performed.

  19. Effects of carbon and nitrogen sources on the induction and ...

    African Journals Online (AJOL)

    This report illustrates the effect of two carbon sources; colloidal chitin and dextrose and a nitrogen source, yeast extract on the chitinase production of seventeen B. bassiana isolates. The chitinase activity varied among the isolates and the different media studied. A high enzymatic activity was observed in the medium with ...

  20. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland

    Science.gov (United States)

    Lassaletta, Luis; Billen, Gilles; Grizzetti, Bruna; Anglade, Juliette; Garnier, Josette

    2014-10-01

    Nitrogen (N) is crucial for crop productivity. However, nowadays more than half of the N added to cropland is lost to the environment, wasting the resource, producing threats to air, water, soil and biodiversity, and generating greenhouse gas emissions. Based on FAO data, we have reconstructed the trajectory followed, in the past 50 years, by 124 countries in terms of crop yield and total nitrogen inputs to cropland (manure, synthetic fertilizer, symbiotic fixation and atmospheric deposition). During the last five decades, the response of agricultural systems to increased nitrogen fertilization has evolved differently in the different world countries. While some countries have improved their agro-environmental performances, in others the increased fertilization has produced low agronomical benefits and higher environmental losses. Our data also suggest that, in general, those countries using a higher proportion of N inputs from symbiotic N fixation rather than from synthetic fertilizer have a better N use efficiency.

  1. Co-occurrence of methanogenesis and N{sub 2} fixation in oil sands tailings

    Energy Technology Data Exchange (ETDEWEB)

    Collins, C.E. Victoria [Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2G7 (Canada); Foght, Julia M. [Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9 (Canada); Siddique, Tariq, E-mail: tariq.siddique@ualberta.ca [Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2G7 (Canada)

    2016-09-15

    Oil sands tailings ponds in northern Alberta, Canada have been producing biogenic gases via microbial metabolism of hydrocarbons for decades. Persistent methanogenic activity in tailings ponds without any known replenishment of nutrients such as fixed nitrogen (N) persuaded us to investigate whether N{sub 2} fixation or polyacrylamide (PAM; used as a tailings flocculant) could serve as N sources. Cultures comprising mature fine tailings (MFT) plus methanogenic medium supplemented with or deficient in fixed N were incubated under an N{sub 2} headspace. Some cultures were further amended with citrate, which is used in oil sands processing, as a relevant carbon source, and/or with PAM. After an initial delay, N-deficient cultures with or without PAM produced methane (CH{sub 4}) at the same rate as N-containing cultures, indicating a mechanism of overcoming apparent N-deficiency. Acetylene reduction and {sup 15}N{sub 2} incorporation in all N-deficient cultures (with or without PAM) suggested active N{sub 2} fixation concurrently with methanogenesis but inability to use PAM as a N source. 16S rRNA gene pyrosequencing revealed little difference between archaeal populations regardless of N content. However, bacterial sequences in N-deficient cultures showed enrichment of Hyphomicrobiaceae and Clostridium members that might contain N{sub 2}-fixing species. The results are important in understanding long-term production of biogenic greenhouse gases in oil sands tailings. - Highlights: • Methanogenesis in oil sands tailings can occur under nitrogen depleted conditions. • {sup 15}N{sub 2} isotopic analysis reveals that indigenous microbes can fix N{sub 2} for microbial metabolism and methanogenesis. • 16S rRNA gene analysis suggests that members of Hyphomicrobiaceae and Clostridium may be involved in N{sub 2} fixation. • This is the first report that describes co-occurrence of methanogenesis and nitrogen fixation in oil sands tailings.

  2. Biological N2 fixation mainly controlled by Sphagnum tissue N:P ratio in ombrotrophic bogs

    Science.gov (United States)

    Zivkovic, Tatjana; Moore, Tim R.

    2017-04-01

    Most of the 18 Pg nitrogen (N) accumulated in northern nutrient-poor and Sphagnum-dominated peatlands (bogs and fens) can be attributed to N2-fixation by diazotrophs either associated with the live Sphagnum or non-symbiotically in the deeper peat such as through methane consumption close to the water table. Where atmospheric N deposition is low (Sphagnum, suggested by the increase in tissue N:P to >16. It is unclear how Sphagnum-hosted diazotrophic activity may be affected by N deposition and thus changes in N:P ratio. First, we investigated the effects of long-term addition of different sources of nitrogen (0, 1.6, 3.2 and 6.4 g N m-2 y-1as NH4Cl and NaNO3), and phosphorus (5 g P m-2 y-1as KH2PO4) on Sphagnum nutrient status (N, P and N:P ratio), net primary productivity (NPP) and Sphagnum-associated N2fixation at Mer Bleue, a temperate ombrotrophic bog. We show that N concentration in Sphagnum tissue increased with larger rates of N addition, with a stronger effect on Sphagnum from NH4 than NO3. The addition of P created a 3.5 fold increase in Sphagnum P content compared to controls. Sphagnum NPP decreased linearly with the rise in N:P ratio, while linear growth declined exponentially with increase in Sphagnum N content. Rates of N2-fixation determined in the laboratory significantly decreased in response to even the smallest addition of both N species. In contrast, the addition of P increased N2 fixation by up to 100 times compared to N treatments and up to 5-30 times compared to controls. The change in N2-fixation was best modeled by the N:P ratio, across all experimental treatments. Secondly, to test the role of N:P ratio on N2-fixation across a range of bogs, eight study sites along the latitudinal gradient from temperate, boreal to subarctic zone in eastern Canada were selected. From each bog, two predominant microptopographies, hummocks and hollows, were tested for both N2-fixation activity in the laboratory and Sphagnum tissue concentrations of N, P and N

  3. Maxwellian Eye Fixation during Natural Scene Perception

    Directory of Open Access Journals (Sweden)

    Jean Duchesne

    2012-01-01

    Full Text Available When we explore a visual scene, our eyes make saccades to jump rapidly from one area to another and fixate regions of interest to extract useful information. While the role of fixation eye movements in vision has been widely studied, their random nature has been a hitherto neglected issue. Here we conducted two experiments to examine the Maxwellian nature of eye movements during fixation. In Experiment 1, eight participants were asked to perform free viewing of natural scenes displayed on a computer screen while their eye movements were recorded. For each participant, the probability density function (PDF of eye movement amplitude during fixation obeyed the law established by Maxwell for describing molecule velocity in gas. Only the mean amplitude of eye movements varied with expertise, which was lower in experts than novice participants. In Experiment 2, two participants underwent fixed time, free viewing of natural scenes and of their scrambled version while their eye movements were recorded. Again, the PDF of eye movement amplitude during fixation obeyed Maxwell’s law for each participant and for each scene condition (normal or scrambled. The results suggest that eye fixation during natural scene perception describes a random motion regardless of top-down or of bottom-up processes.

  4. Tension band fixation of medial malleolus fractures.

    Science.gov (United States)

    Ostrum, R F; Litsky, A S

    1992-01-01

    A prospective study on tension band fixation of medial malleolus fractures was performed on 30 consecutive patients with 31 fractures from October 1987 until December 1990. All patients had at least a displaced medial malleolus fracture unreduced by closed methods. The fractures were classified into small, medium and large using a modified Lauge-Hansen classification. There were no nonunions or movements of wires postoperatively and only two patients had subjective complaints with reference to the wires that required hardware removal. There was one 2-mm malreduction and one patient with a wound slough and subsequent osteomyelitis. One fragment had 2 mm of displacement after fixation but went on to union. A biomechanical study was undertaken to compare fixation of the medial malleolus with K wires alone, K wires plus a tension band, and two cancellous screws. The tension band fixation provided the greatest resistance to pronation forces: for times stiffer than the two screws and 62% of the intact specimen. Tension band fixation of the medial malleolus is a biomechanically strong and clinically acceptable method of treatment for displaced medial malleolus fractures. This method of fixation may be especially useful for small fragments and in osteoporotic bone.

  5. Growth condition study of algae function in ecosystem for CO2 bio-fixation.

    Science.gov (United States)

    Tsai, David Dah-Wei; Ramaraj, Rameshprabu; Chen, Paris Honglay

    2012-02-06

    Algae niche play a crucial role on carbon cycle and have great potential for CO(2) sequestration. This study was to investigate the CO(2) bio-fixation by the high rate pond (HRP) to mimic the algae function of nature. All the reactors can keep CO(2) consumption efficiencies over 100%. The statistical analyses proved HRPs were close to the natural system from all the growth conditions. The HRP could show the "natural optimization as nature" to perform as well as the artificial reactor of continuously stirred tank reactor (CSTR). In the nutrition study, the carbon mass balance indicated CO(2) was the main carbon source. Accordingly, the HRPs can keep a neutral pH range to provide dissolved oxygen (DO), to promote total nitrogen (TN)/total phosphorous (TP) removal efficiencies and to demonstrate self-purification process. Furthermore, the observations of different nitrogen species in the reactors demonstrated that the major nitrogen source was decided by pH. This finding logically explained the complex nitrogen uptake by algae in nature. Consequently, this study took advantage of HRP to explore the processes of efficient CO(2) uptake with the corresponding growth condition in the ecosystem. Those results contributed the further understanding of the role of CO(2) bio-fixation in nature and demonstrated HRP could be a potential ecological engineering alternative. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Nutrient control of N2 fixation in the oligotrophic Mediterranean Sea and the impact of Saharan dust events

    Directory of Open Access Journals (Sweden)

    M. Pujo-Pay

    2011-09-01

    Full Text Available A better understanding of the factors controlling N2 fixation is a pre-requisite for improving our knowledge on the contribution of N2 fixation process in the nitrogen cycling. Trace-metal clean nutrient/dust addition bioassays (+P, +PFe, +dust were performed at three stations located in the western, central and eastern Mediterranean Sea, in summer 2008 as part of the BOUM cruise. The main goals were (1 to investigate the nutrient factor(s limiting N2 fixation (uptake of 15N2 and (2 to evaluate the potential impact of a Saharan dust event on this biological process during the stratification period. Initially, surface waters at the three stations were DIP-depleted (2 fixation (from 130 % to 430 %. The highest dust stimulation of N2 fixation was recorded at the station located in the eastern basin. The response of diazotrophic activity to nutrient additions was variable between the sampled stations suggesting a spatial variability of the factor controlling N2 fixation over the whole basin. At all stations, N2 fixation was not limited by Fe nor co-limited by P and Fe. At the western station, N2 fixation was DIP limited while at the eastern one, N2 fixation was first DIP limited, then was limited by one or several chemical element(s released by dust. Our results demonstrated that a Saharan dust input was able to relieve these successive on going limitations. Very interestingly, at the station located in the central basin, N2 fixation was not limited by the availability of P yet it was strongly stimulated by dust addition (x3.1. A chemical element or a combination of several, released by the added dust may have been responsible for the observed stimulations of N2 fixation. These results indicated that Saharan dust pulses to the surface Mediterranean waters, in addition to P and Fe, could be a source of chemical(s element(s that are necessary for metabolic processes and therefore influence rates of N2 fixation.

  7. Linked linear mixed models: A joint analysis of fixation locations and fixation durations in natural reading.

    Science.gov (United States)

    Hohenstein, Sven; Matuschek, Hannes; Kliegl, Reinhold

    2017-06-01

    The complexity of eye-movement control during reading allows measurement of many dependent variables, the most prominent ones being fixation durations and their locations in words. In current practice, either variable may serve as dependent variable or covariate for the other in linear mixed models (LMMs) featuring also psycholinguistic covariates of word recognition and sentence comprehension. Rather than analyzing fixation location and duration with separate LMMs, we propose linking the two according to their sequential dependency. Specifically, we include predicted fixation location (estimated in the first LMM from psycholinguistic covariates) and its associated residual fixation location as covariates in the second, fixation-duration LMM. This linked LMM affords a distinction between direct and indirect effects (mediated through fixation location) of psycholinguistic covariates on fixation durations. Results confirm the robustness of distributed processing in the perceptual span. They also offer a resolution of the paradox of the inverted optimal viewing position (IOVP) effect (i.e., longer fixation durations in the center than at the beginning and end of words) although the opposite (i.e., an OVP effect) is predicted from default assumptions of psycholinguistic processing efficiency: The IOVP effect in fixation durations is due to the residual fixation-location covariate, presumably driven primarily by saccadic error, and the OVP effect (at least the left part of it) is uncovered with the predicted fixation-location covariate, capturing the indirect effects of psycholinguistic covariates. We expect that linked LMMs will be useful for the analysis of other dynamically related multiple outcomes, a conundrum of most psychonomic research.

  8. Radiolytic and enzymatic dimerization of tyrosyl residues in insulin, ribonuclease, papain and collagen.

    Science.gov (United States)

    Boguta, G; Dancewicz, A M

    1983-03-01

    Insulin, ribonuclease, papain and collagen solutions saturated with nitrogen, N2O or air were irradiated with doses of 10 to 640 Gy of gamma rays. Protein solutions were also oxidized enzymatically in a system of horse-radish peroxidase: hydrogen peroxide. Column chromatography (Sephadex G-75 or Sephacryl S-200) of treated protein solutions revealed that they contain protein molecular aggregates. Nitrogen saturation of solution before irradiation was most favourable for radiation-induced aggregation of proteins. Fluorescence analysis of protein solutions resulted in detection of dityrosyl structures in irradiated as well as in enzymatically oxidized proteins. Concentration of dityrosine in proteins studied was determined fluorimetrically in their hydrolysates separated on BioGel P-2 column. In irradiated proteins, dityrosine was present almost exclusively in their aggregated forms. In proteins oxidized enzymatically, dityrosine was also present in fractions containing apparently unchanged protein. Mechanisms which could account for differences in the yield of dityrosine formation in radiolysis and in enzymatic oxidation of proteins are suggested.

  9. Posterior atlantoaxial fixation: a review of all techniques.

    Science.gov (United States)

    Huang, Da-Geng; Hao, Ding-Jun; He, Bao-Rong; Wu, Qi-Ning; Liu, Tuan-Jiang; Wang, Xiao-Dong; Guo, Hua; Fang, Xiang-Yi

    2015-10-01

    Posterior atlantoaxial fixation is an effective treatment for atlantoaxial instability. Great advancements on posterior atlantoaxial fixation techniques have been made in the past decades. However, there is no article reviewing all the posterior atlantoaxial fixation techniques yet. The aim was to review the evolution and advancements of posterior atlantoaxial fixation. This was a literature review. The application of all posterior fixation techniques in atlantoaxial stabilization, including wiring techniques, interlaminar clamp fixation, transarticular fixation, screw-plate systems, screw-rod systems, and hook-screw systems, are reviewed and discussed. Recent advancements on the novel technique of atlantoaxial fixation are described. The combination of the C1 and C2 screws in screw-rod systems are described in detail. All fixation techniques are useful. The screw-rod system appears to be the most popular approach. However, many novel or modified fixation methods have been introduced in recent years. Great advancements on posterior atlantoaxial fixation techniques have been made in the past decades. The wiring technique and interlaminar clamps technique have fallen out of favor because of the development of newer and superior fixation techniques. The C1-C2 transarticular screw technique may remain the gold standard for atlantoaxial fusion, whereas screw-rod systems, especially the C1 pedicle screw combined with C2 pedicle/pars screw fixation, have become the most popular fixation techniques. Hook-screw systems are alternatives for atlantoaxial fixation. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Enzymatic acylglycerol synthesis in membrane reactor systems

    NARCIS (Netherlands)

    Padt, van der A.

    1993-01-01

    Up till twenty years ago, only chemical modifications of agricultural oils for novel uses were studied. Because of the instability of various fatty acids, enzymatic biomodifications can have advantages above the chemical route. Nowadays, enzymatic catalysis can be used for the modification

  11. Design Fixation in the Wild: Design Environments and Their Influence on Fixation

    Science.gov (United States)

    Youmans, Robert J.

    2011-01-01

    Many studies of design fixation ask designers to work in controlled laboratory or classroom environments, but innovative design work frequently occurs in dynamic, social environments. The two studies reviewed in this paper investigated how three independent variables likely to be present in many design environments affect design fixation. The…

  12. Fixational Saccades and Their Relation to Fixation Instability in Strabismic Monkeys.

    Science.gov (United States)

    Upadhyaya, Suraj; Pullela, Mythri; Ramachandran, Santoshi; Adade, Samuel; Joshi, Anand C; Das, Vallabh E

    2017-11-01

    To evaluate the contribution of fixational saccades toward fixation instability in strabismic monkeys. Binocular eye movements were measured as six experimental monkeys (five strabismic monkeys and one monkey with downbeat nystagmus) and one normal monkey fixated targets of two shapes (Optotype, Disk) and two sizes (0.5°, 2°) during monocular and binocular viewing. Fixational saccades were detected using an unsupervised clustering algorithm. When compared with the normal monkey, amplitude and frequency of fixational saccades in both the viewing and nonviewing eye were greater in 3 of 5 strabismic monkeys (1-way ANOVA on ranks P saccades was largely due to quick phases of ongoing nystagmus. Fixational saccade amplitude was increased significantly (3-way ANOVA; P saccade amplitude and the Bivariate Contour Ellipse Area (BCEA) was nonlinear, showing saturation of saccade amplitude. Fixation instability in depth was significantly greater in strabismic monkeys (vergence BCEA: 0.63 deg2-2.15 deg2) compared with the normal animal (vergence BCEA: 0.15 deg2; P saccades. Target parameter effects on fixational saccades are similar to previous findings of target effects on BCEA.

  13. Deposition of nitrogen and phosphorus on the Baltic Sea: seasonal patterns and nitrogen isotope composition

    Directory of Open Access Journals (Sweden)

    C. Rolff

    2008-12-01

    Full Text Available Atmospheric deposition of nitrogen and phosphorus on the central Baltic Sea (Baltic Proper was estimated monthly at two coastal stations and two isolated islands in 2001 and 2002. Yearly nitrogen deposition ranged between 387 and 727 mg N m−2 yr−1 (average 617 and was composed of ~10% organic N and approximately equal amounts of ammonium and nitrate. Winter nitrate peaks at the isolated islands possibly indicated ship emissions. Load weighted δ15N of deposited N was 3.7‰ and 0.35‰ at the coastal stations and the isolated islands respectively. Winter δ15N was ~3‰ lighter than in summer, reflecting winter dominance of nitrate. The light isotopic composition of deposited nitrogen may cause overestimates of nitrogen fixation in basin-wide isotopic budgeting, whereas relatively heavy deposition of ammonium during summer instead may cause underestimates of fixation in budgets of the upper mixed layer. δ15N in atmospherically deposited nitrate and ammonium was estimated by regression to −7.9 and 13.5‰ respectively. Phosphorus deposition showed no clear seasonal pattern and was considerably lower at the isolated islands. Organic P constituted 20–40% of annual P deposition. P deposition is unlikely to be a major source for cyanobacterial blooms but may potentially prolong an ongoing bloom.

  14. Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems

    Directory of Open Access Journals (Sweden)

    Kathrin eRousk

    2013-06-01

    Full Text Available The biological fixation of atmospheric nitrogen (N is a major pathway for available N entering ecosystems. In N-limited boreal forests, a significant amount of N2 is fixed by cyanobacteria living in association with mosses, contributing up to 50 % to the total N input. In this review, we synthesize reports on the drivers of N2 fixation in feather moss-cyanobacteria associations to gain a deeper understanding of their role for ecosystem-N-cycling. Nitrogen fixation in moss-cyanobacteria associations is inhibited by N inputs and therefore, significant fixation occurs only in low N-deposition areas. While it has been shown that artificial N additions in the laboratory as well as in the field inhibit N2 fixation in moss-cyanobacteria associations, the type, as well as the amounts of N that enters the system, affect N2 fixation differently. Another major driver of N2 fixation is the moisture status of the cyanobacteria-hosting moss, wherein moist conditions promote N2 fixation. Mosses experience large fluctuations in their hydrological status, undergoing significant natural drying and rewetting cycles over the course of only a few hours, especially in summer, which likely compromises the N input to the system via N2 fixation. Perhaps the most central question, however, that remains unanswered is the fate of the fixed N2 in mosses. The cyanobacteria are likely to leak N, but whether this N is transferred to the soil and if so, at which rates and timescales, is unknown. Despite our increasing understanding of the drivers of N2 fixation, the role moss-cyanobacteria associations play in ecosystem-N-cycling remains unresolved. Further, the relationship mosses and cyanobacteria share is unknown to date and warrants further investigation.

  15. Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems

    Science.gov (United States)

    Rousk, Kathrin; Jones, Davey L.; DeLuca, Thomas H.

    2013-01-01

    The biological fixation of atmospheric nitrogen (N) is a major pathway for available N entering ecosystems. In N-limited boreal forests, a significant amount of N2 is fixed by cyanobacteria living in association with mosses, contributing up to 50% to the total N input. In this review, we synthesize reports on the drivers of N2 fixation in feather moss-cyanobacteria associations to gain a deeper understanding of their role for ecosystem-N-cycling. Nitrogen fixation in moss-cyanobacteria associations is inhibited by N inputs and therefore, significant fixation occurs only in low N-deposition areas. While it has been shown that artificial N additions in the laboratory as well as in the field inhibit N2 fixation in moss-cyanobacteria associations, the type, as well as the amounts of N that enters the system, affect N2 fixation differently. Another major driver of N2 fixation is the moisture status of the cyanobacteria-hosting moss, wherein moist conditions promote N2 fixation. Mosses experience large fluctuations in their hydrological status, undergoing significant natural drying and rewetting cycles over the course of only a few hours, especially in summer, which likely compromises the N input to the system via N2 fixation. Perhaps the most central question, however, that remains unanswered is the fate of the fixed N2 in mosses. The cyanobacteria are likely to leak N, but whether this N is transferred to the soil and if so, at which rates and timescales, is unknown. Despite our increasing understanding of the drivers of N2 fixation, the role moss-cyanobacteria associations play in ecosystem-N-cycling remains unresolved. Further, the relationship mosses and cyanobacteria share is unknown to date and warrants further investigation. PMID:23785359

  16. Reconciling cyanobacterial fixed-nitrogen distributions and transport experiments with quantitative modelling

    CERN Document Server

    Brown, Aidan I

    2011-01-01

    Filamentous cyanobacteria growing in media with insufficient fixed nitrogen differentiate some cells into heterocysts, which fix nitrogen for the remaining vegetative cells. Transport studies have shown both periplasmic and cytoplasmic connections between cells that could transport fixed-nitrogen along the filament. Two experiments have imaged fixed-nitrogen distributions along filaments. In 1974,Wolk et al found a peaked concentration of fixed-nitrogen at heterocysts using autoradiographic techniques. In contrast, in 2007, Popa et al used nanoSIMS to show large dips at the location of heterocysts, with a variable but approximately level distribution between them. With an integrated model of fixed-nitrogen transport and cell growth, we recover the results of both Wolk et al and of Popa et al using the same model parameters. To do this, we account for immobile incorporated fixed-nitrogen and for the differing durations of labeled nitrogen fixation that occurred in the two experiments. The variations seen by Po...

  17. Gustilo grade IIIB tibial fractures requiring microvascular free flaps: external fixation versus intramedullary rod fixation.

    Science.gov (United States)

    Rohde, Christine; Greives, Matthew R; Cetrulo, Curtis; Lerman, Oren Z; Levine, Jamie P; Hazen, Alexes

    2007-07-01

    Gustilo IIIB fractures involve high-energy tibial fractures for which there is inadequate soft tissue coverage. In addition to orthopedic fixation, these injuries require soft tissue reconstruction, often in the form of a microvascular free flap. Although the majority of orthopedic literature favorably compares intramedullary rod fixation to external fixation in open tibial fractures, these studies have not focused on the role of either method of fixation in relation to the soft tissue reconstruction. Because we