WorldWideScience

Sample records for enzymatic mnii oxidation

  1. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1

    Science.gov (United States)

    Bohu, Tsing; Santelli, Cara M; Akob, Denise M.; Neu, Thomas R; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten

    2015-01-01

    Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.

  2. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1

    Science.gov (United States)

    Bohu, Tsing; Santelli, Cara M; Akob, Denise M.; Neu, Thomas R; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten

    2015-01-01

    Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.

  3. The effect of Ca2+ ions and ionic strength on Mn(II) oxidation by spores of the marine Bacillus sp. SG-1

    Science.gov (United States)

    Toyoda, Kazuhiro; Tebo, Bradley M.

    2013-01-01

    Manganese(IV) oxides, believed to form primarily through microbial activities, are extremely important mineral phases in marine environments where they scavenge a variety of trace elements and thereby control their distributions. The presence of various ions common in seawater are known to influence Mn oxide mineralogy yet little is known about the effect of these ions on the kinetics of bacterial Mn(II) oxidation and Mn oxide formation. We examined factors affecting bacterial Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1 in natural and artificial seawater of varying ionic conditions. Ca2+ concentration dramatically affected Mn(II) oxidation, while Mg2+, Sr2+, K+, Na+ and NO3- ions had no effect. The rate of Mn(II) oxidation at 10 mM Ca2+ (seawater composition) was four or five times that without Ca2+. The relationship between Ca2+ content and oxidation rate demonstrates that the equilibrium constant is small (on the order of 0.1) and the binding coefficient is 0.5. The pH optimum for Mn(II) oxidation changed depending on the amount of Ca2+ present, suggesting that Ca2+ exerts a direct effect on the enzyme perhaps as a stabilizing bridge between polypeptide components. We also examined the effect of varying concentrations of NaCl or KNO3 (0-2000 mM) on the kinetics of Mn(II) oxidation in solutions containing 10 mM Ca2+. Mn(II) oxidation was unaffected by changes in ionic strength (I) below 0.2, but it was inhibited by increasing salt concentrations above this value. Our results suggest that the critical coagulation concentration is around 200 mM of salt (I = ca. 0.2), and that the ionic strength of seawater (I > 0.2) accelerates the precipitation of Mn oxides around the spores. Under these conditions, the aggregation of Mn oxides reduces the supply of dissolved O2 and/or Mn2+ and inhibits the Mn(II) → Mn(III) step controlling the enzymatic oxidation of Mn(II). Our results suggest that the hardness and ionic strength of the aquatic environment

  4. Characterization of pH dependent Mn(II oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1

    Directory of Open Access Journals (Sweden)

    Tsing eBohu

    2015-07-01

    Full Text Available Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB isolates limits our understanding of how pH influences biological Mn(II oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction (XRD, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase (MCO expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS, particularly superoxide, appeared to be more important for T-G1 mediated Mn(II oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.

  5. Oxidative Ce"3"+ sequestration by fungal manganese oxides with an associated Mn(II) oxidase activity

    International Nuclear Information System (INIS)

    Zheng, Haisu; Tani, Yukinori; Naitou, Hirotaka; Miyata, Naoyuki; Tojo, Fuyumi

    2016-01-01

    Sequestration of Ce"3"+ by biogenic manganese oxides (BMOs) formed by a Mn(II)-oxidizing fungus, Acremonium strictum strain KR21-2, was examined at pH 6.0. In anaerobic Ce"3"+ solution, newly formed BMOs exhibited stoichiometric Ce"3"+ oxidation, where the molar ratio of Ce"3"+ sequestered (Ce_s_e_q) relative to Mn"2"+ released (Mn_r_e_l) was maintained at approximately two throughout the reaction. A similar Ce"3"+ sequestration trend was observed in anaerobic treatment of BMOs in which the associated Mn(II) oxidase was completely inactivated by heating at 85 °C for 1 h or by adding 50 mM NaN_3. Aerobic Ce"3"+ treatment of newly formed BMO (enzymatically active) resulted in excessive Ce"3"+ sequestration over Mn"2"+ release, yielding Ce_s_e_q/Mn_r_e_l > 200, whereas heated or poisoned BMOs released a significant amount of Mn"2"+ with lower Ce"3"+ sequestration efficiency. Consequently, self-regeneration by the Mn(II) oxidase in newly formed BMO effectively suppressed Mn"2"+ release and enhanced oxidative Ce"3"+ sequestration under aerobic conditions. Repeated treatments of heated or poisoned BMOs under aerobic conditions confirmed that oxidative Ce"3"+ sequestration continued even after most Mn oxide was released from the solid phase, indicating auto-catalytic Ce"3"+ oxidation at the solid phase produced through primary Ce"3"+ oxidation by BMO. From X-ray diffraction analysis, the resultant solid phases formed through Ce"3"+ oxidation by BMO under both aerobic and anaerobic conditions consisted of cerianite with crystal sizes of 5.00–7.23 Å. Such nano-sized CeO_2 (CeO_2_,_B_M_O) showed faster auto-catalytic Ce"3"+ oxidation than that on well-crystalized cerianite under aerobic conditions, where the normalized pseudo-first order rate constants for auto-catalytic Ce"3"+ oxidation on CeO_2_,_B_M_O was two orders of magnitude higher. Consequently, we concluded that Ce"3"+ contact with BMOs sequesters Ce"3"+ through two oxidation paths: primary Ce"3

  6. Surface Mn(II) oxidation actuated by a multicopper oxidase in a soil bacterium leads to the formation of manganese oxide minerals.

    Science.gov (United States)

    Zhang, Zhen; Zhang, Zhongming; Chen, Hong; Liu, Jin; Liu, Chang; Ni, Hong; Zhao, Changsong; Ali, Muhammad; Liu, Fan; Li, Lin

    2015-06-03

    In this manuscript, we report that a bacterial multicopper oxidase (MCO266) catalyzes Mn(II) oxidation on the cell surface, resulting in the surface deposition of Mn(III) and Mn(IV) oxides and the gradual formation of bulky oxide aggregates. These aggregates serve as nucleation centers for the formation of Mn oxide micronodules and Mn-rich sediments. A soil-borne Escherichia coli with high Mn(II)-oxidizing activity formed Mn(III)/Mn(IV) oxide deposit layers and aggregates under laboratory culture conditions. We engineered MCO266 onto the cell surfaces of both an activity-negative recipient and wild-type strains. The results confirmed that MCO266 governs Mn(II) oxidation and initiates the formation of deposits and aggregates. By contrast, a cell-free substrate, heat-killed strains, and intracellularly expressed or purified MCO266 failed to catalyze Mn(II) oxidation. However, purified MCO266 exhibited Mn(II)-oxidizing activity when combined with cell outer membrane component (COMC) fractions in vitro. We demonstrated that Mn(II) oxidation and aggregate formation occurred through an oxygen-dependent biotic transformation process that requires a certain minimum Mn(II) concentration. We propose an approximate electron transfer pathway in which MCO266 transfers only one electron to convert Mn(II) to Mn(III) and then cooperates with other COMC electron transporters to transfer the other electron required to oxidize Mn(III) to Mn(IV).

  7. Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production

    International Nuclear Information System (INIS)

    Zhou, Hao; Pan, Haixia; Xu, Jianqiang; Xu, Weiping; Liu, Lifen

    2016-01-01

    Highlights: • An efficient Mn(II) oxidation marine sediments microbial community was obtained. • High-throughput sequencing indicated new Mn(II) oxidation associated genus. • Na_3MnPO_4CO_3 and MnCO_3 were synthesized by the consortium. • Consortium exhibited Mn(II) oxidation performance over a range of harsh conditions. - Abstract: Sediment contamination with metals is a widespread concern in the marine environment. Manganese oxidizing bacteria (MOB) are extensively distributed in various environments, but a marine microbial community containing MOB is rarely reported. In this study, a consortium of marine metal-contaminated sediments was acclimated using Mn(II). The shift in community structure was determined through high-throughput sequencing. In addition, the consortium resisted several harsh conditions, such as toxic metals (1 mM Cu(II) and Fe(III)), and exhibited high Mn(II) oxidation capacities even the Mn(II) concentration was up to 5 mM. Meanwhile, biogenic Mn containing particles were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and N_2 adsorption/desorption. Dye removal performance of the Mn containing particles was assayed using methylene blue, and 20.8 mg g"−"1 adsorption capacity was obtained. Overall, this study revealed several new genera associated with Mn(II) oxidation and rare biogenic Na_3MnPO_4CO_3_. Results suggested the complexity of natural microbe-mediated Mn transformation.

  8. Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hao, E-mail: zhouhao@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221 (China); Pan, Haixia [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221 (China); Xu, Jianqiang [School of Life Science and Medicine, Dalian University of Technology, Panjin 124221 (China); Xu, Weiping; Liu, Lifen [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221 (China)

    2016-03-05

    Highlights: • An efficient Mn(II) oxidation marine sediments microbial community was obtained. • High-throughput sequencing indicated new Mn(II) oxidation associated genus. • Na{sub 3}MnPO{sub 4}CO{sub 3} and MnCO{sub 3} were synthesized by the consortium. • Consortium exhibited Mn(II) oxidation performance over a range of harsh conditions. - Abstract: Sediment contamination with metals is a widespread concern in the marine environment. Manganese oxidizing bacteria (MOB) are extensively distributed in various environments, but a marine microbial community containing MOB is rarely reported. In this study, a consortium of marine metal-contaminated sediments was acclimated using Mn(II). The shift in community structure was determined through high-throughput sequencing. In addition, the consortium resisted several harsh conditions, such as toxic metals (1 mM Cu(II) and Fe(III)), and exhibited high Mn(II) oxidation capacities even the Mn(II) concentration was up to 5 mM. Meanwhile, biogenic Mn containing particles were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and N{sub 2} adsorption/desorption. Dye removal performance of the Mn containing particles was assayed using methylene blue, and 20.8 mg g{sup −1} adsorption capacity was obtained. Overall, this study revealed several new genera associated with Mn(II) oxidation and rare biogenic Na{sub 3}MnPO{sub 4}CO{sub 3.} Results suggested the complexity of natural microbe-mediated Mn transformation.

  9. Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction.

    Science.gov (United States)

    Hansel, Colleen M; Zeiner, Carolyn A; Santelli, Cara M; Webb, Samuel M

    2012-07-31

    Manganese (Mn) oxides are among the most reactive minerals within the environment, where they control the bioavailability of carbon, nutrients, and numerous metals. Although the ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides is scattered throughout the bacterial and fungal domains of life, the mechanism and physiological basis for Mn(II) oxidation remains an enigma. Here, we use a combination of compound-specific chemical assays, microspectroscopy, and electron microscopy to show that a common Ascomycete filamentous fungus, Stilbella aciculosa, oxidizes Mn(II) to Mn oxides by producing extracellular superoxide during cell differentiation. The reactive Mn oxide phase birnessite and the reactive oxygen species superoxide and hydrogen peroxide are colocalized at the base of asexual reproductive structures. Mn oxide formation is not observed in the presence of superoxide scavengers (e.g., Cu) and inhibitors of NADPH oxidases (e.g., diphenylene iodonium chloride), enzymes responsible for superoxide production and cell differentiation in fungi. Considering the recent identification of Mn(II) oxidation by NADH oxidase-based superoxide production by a common marine bacterium (Roseobacter sp.), these results introduce a surprising homology between some prokaryotic and eukaryotic organisms in the mechanisms responsible for Mn(II) oxidation, where oxidation appears to be a side reaction of extracellular superoxide production. Given the versatility of superoxide as a redox reactant and the widespread ability of fungi to produce superoxide, this microbial extracellular superoxide production may play a central role in the cycling and bioavailability of metals (e.g., Hg, Fe, Mn) and carbon in natural systems.

  10. Mn(II) oxidation in Fenton and Fenton type systems : Identification of Reaction Efficiency and Reaction Products

    NARCIS (Netherlands)

    van Genuchten, C.M.; Peña, Jasquelin

    2017-01-01

    Efficient and low-cost methods of removing aqueous Mn(II) are required to improve the quality of impacted groundwater supplies. In this work, we show that Fe(0) electrocoagulation (EC) permits the oxidative removal of Mn(II) from solution by reaction with the reactive oxidant species produced

  11. Secretome-based Manganese(II) Oxidation by Filamentous Ascomycete Fungi

    Science.gov (United States)

    Zeiner, C. A.; Purvine, S.; Zink, E.; Paša-Tolić, L.; Chaput, D.; Wu, S.; Santelli, C. M.; Hansel, C. M.

    2017-12-01

    Manganese (Mn) oxides are among the strongest oxidants in the environment, and Mn(II) oxidation to Mn(III/IV) (hydr)oxides includes both abiotic and microbially-mediated processes. While white-rot Basidiomycete fungi oxidize Mn(II) using laccases and Mn peroxidases in association with lignocellulose degradation, the mechanisms by which filamentous Ascomycete fungi oxidize Mn(II) and a physiological role for Mn(II) oxidation in these organisms remain poorly understood. Through a combination of chemical and in-gel assays, bulk mass spectrometry, and iTRAQ proteomics, we demonstrate enzymatic Mn(II) oxidation in the secretomes of three phylogenetically diverse Ascomycetes that were isolated from Mn-laden sediments. Candidate Mn(II)-oxidizing enzymes were species-specific and included bilirubin oxidase and tyrosinase in Stagonospora sp. SRC1lsM3a, GMC oxidoreductase in Paraconiothyrium sporulosum AP3s5-JAC2a, and FAD-binding oxidoreductases in Pyrenochaeta sp. DS3sAY3a. These findings were supported by full proteomic characterization of the secretomes, which revealed a lack of Mn, lignin, and versatile peroxidases in these Ascomycetes but a substantially higher proportion of LMCOs and GMC oxidoreductases compared to wood-rot Basidiomycetes. We also identified the potential for indirect enzymatic Mn(II) oxidation by hydroxyl radical, as the secretomes were rich in diverse lignocellulose-degrading enzymes that could participate in Fenton chemistry. A link between Mn(II) oxidation and carbon oxidation analogous to white-rot Basidiomycetes remains unknown in these Ascomycetes. Interestingly, growth rates on rich medium were unaffected by the presence of Mn(II), and the production of Mn(II)-oxidizing proteins in the secretome was constitutive and not inducible by Mn(II). Thus, no physiological benefit of Mn(II) oxidation in these Ascomycetes has yet been identified, and Mn(II) oxidation appears to be a side reaction. Future work will explore the lignin-degrading capacity of

  12. Mycogenic Mn(II) oxidation promotes remediation of acid mine drainage and other anthropogenically impacted environments

    Science.gov (United States)

    Santelli, C. M.; Chaput, D.; Hansel, C. M.; Burgos, W. D.

    2014-12-01

    Manganese is a pollutant in worldwide environments contaminated with metals and organics, such as acid mine drainage (AMD), freshwater ponds, and agricultural waste storage sites. Microorganisms contribute to the removal of dissolved Mn compounds in the environment by promoting Mn(II) oxidation reactions. The oxidation of Mn(II) results in the precipitation of sparingly soluble Mn(IV) oxide minerals, effectively removing the metal from the aqueous milieu (e.g., groundwater or wastewater streams). In recent years, our research has identified a diversity of Mn(II)-oxidizing fungi inhabiting these polluted environments, however their overall contribution to the remediation process in situ remains poorly understood. Here we present results of culture-based and Next Generation Sequencing (NGS) studies in AMD treatment systems actively remediating Mn and other metals where we profile the bacterial, fungal, algal and archaeal communities to determine the overall community diversity and to establish the relative abundance of known Mn(II) oxidizers. A variety of treatment systems with varying Mn-removal efficiencies were sampled to understand the relationship between remediation efficiency and microbial community composition and activity. Targeted-amplicon sequencing of DNA and RNA of the 16S rRNA genes (bacteria and archaea), 23S rRNA genes (algae) and ITS region (fungi) was performed using both 454 pyrosequencing and Illumina platforms. Results showed that only the fungal taxonomic profiles significantly differed between sites that removed the majority of influent Mn and those that did not. Specifically, Ascomycota (which include known Mn(II) oxidizers isolated from these treatment systems) dominated greater efficiency systems whereas less efficient systems were dominated by Basidiomycota. Furthermore, known Mn(II) oxidizers accounted for only a minor proportion of bacterial sequences but a far greater proportion of fungal sequences. These culture-independent studies lend

  13. Biological low pH Mn(II) oxidation in a manganese deposit influenced by metal-rich groundwater

    Science.gov (United States)

    Bohu, Tsing; Akob, Denise M.; Abratis, Michael; Lazar, Cassandre S.; Küsel, Kirsten

    2016-01-01

    The mechanisms, key organisms, and geochemical significance of biological low-pH Mn(II) oxidation are largely unexplored. Here, we investigated the structure of indigenous Mn(II)-oxidizing microbial communities in a secondary subsurface Mn oxide deposit influenced by acidic (pH 4.8) metal-rich groundwater in a former uranium mining area. Microbial diversity was highest in the Mn deposit compared to the adjacent soil layers and included the majority of known Mn(II)-oxidizing bacteria (MOB) and two genera of known Mn(II)-oxidizing fungi (MOF). Electron X-ray microanalysis showed that romanechite [(Ba,H2O)2(Mn4+,Mn3+)5O10] was conspicuously enriched in the deposit. Canonical correspondence analysis revealed that certain fungal, bacterial, and archaeal groups were firmly associated with the autochthonous Mn oxides. Eight MOB within the Proteobacteria, Actinobacteria, and Bacteroidetes and one MOF strain belonging to Ascomycota were isolated at pH 5.5 or 7.2 from the acidic Mn deposit. Soil-groundwater microcosms demonstrated 2.5-fold-faster Mn(II) depletion in the Mn deposit than adjacent soil layers. No depletion was observed in the abiotic controls, suggesting that biological contribution is the main driver for Mn(II) oxidation at low pH. The composition and species specificity of the native low-pH Mn(II) oxidizers were highly adapted to in situ conditions, and these organisms may play a central role in the fundamental biogeochemical processes (e.g., metal natural attenuation) occurring in the acidic, oligotrophic, and metalliferous subsoil ecosystems.

  14. Unraveling the role of animal heme peroxidases in superoxide mediated Mn oxide formation

    Science.gov (United States)

    Learman, D. R.; Hansel, C. M.

    2013-12-01

    Manganese(III,IV) oxides are important in the environment as they can impact the fate of a broad range of nutrients (e.g. carbon and phosphate) and contaminates (e.g. lead and chromium). Bacteria play a valuable role in the production of Mn oxides, yet the mechanisms and physiological reasons remain unclear. Roseobacter sp. AzwK-3b, an organism within the abundant and ubiquitous Roseobacter clade, has recently been shown to oxidize Mn(II) via a novel pathway that involves enzymatic extracellular superoxide production. However, in reactions with only Mn(II) and abiotically generated superoxide, we find superoxide alone is not enough to produce Mn(III,IV) oxides. Scavenging of the byproduct hydrogen peroxide (via the addition of catalase) is required to generate Mn oxides via abiotic reaction of Mn(II) with superoxide. Thus, R. AzwK-3b must produce superoxide and also scavenge hydrogen peroxide to form Mn oxides. Further, in-gel Mn(II) oxidation assay revealed a protein band that could generate Mn oxides in the presence of soluble Mn(II). This Mn(II)-oxidizing protein band was excised from the gel and the peptides identified via mass spectrometry. An animal heme peroxidase (AHP) was the predominant protein found in this band. This protein is homologous to the AHPs previously implicated as a Mn(II)-oxidizing enzyme within the Alphaproteobacteria, Erythrobacter SD-21 and Aurantimonas manganoxydans strain SI85-9A1. Currently, protein expression of the AHPs in R. AzwK-3b is being examined to determine if expression is correlated with Mn(II) concentration or oxidative stress. Our data suggests that AHPs do not directly oxidize Mn(II) but rather plays a role in scavenging hydrogen peroxide and/or producing an organic Mn(III) ligand that complexes Mn(III) and likely aids in Mn oxide precipitation.

  15. Kinetics of reaction between O 2 and Mn(II) species in aqueous solutions

    Science.gov (United States)

    Morgan, James J.

    2005-01-01

    The objective of this research is to assess critically the experimental rate data for O 2 oxidation of dissolved Mn(II) species at 25°C and to interpret the rates in terms of the solution species of Mn(II) in natural waters. A species kinetic rate expression for parallel paths expresses the total rate of Mn(II) oxidation as Σk i a ij, where k i is the rate constant of species i and a ij is the species concentration fraction in solution j. Among the species considered in the rate expression are Mn(II) hydrolysis products, carbonate complexes, ammonia complexes, and halide and sulfate complexes, in addition to the free aqueous ion. Experiments in three different laboratory buffers and in seawater yield an apparent rate constant for Mn(II) disappearance, k app,j ranging from 8.6 × 10 -5 to 2.5 × 10 -2 (M -1s -1), between pH 8.03 and 9.30, respectively. Observed values of k app exceed predictions based on Marcus outer-sphere electron transfer theory by more than four orders of magnitude, lending strong support to the proposal that Mn(II) + O 2 electron transfer follows an inner-sphere path. A multiple linear regression analysis fit of the observed rates to the species kinetic rate expression yields the following oxidation rate constants (M -1s -1) for the most reactive species: MnOH +, 1.66 × 10 -2; Mn(OH) 2, 2.09 × 10 1; and Mn(CO 3) 22-, 8.13 × 10 -2. The species kinetic rate expression accounts for the influence of pH and carbonate on oxidation rates of Mn(II), through complex formation and acid-base equilibria of both reactive and unreactive species. At pH ˜8, the greater fraction of the total rate is carried by MnOH +. At pH greater than ˜8.4, the species Mn(OH) 2 and Mn(CO 3) 22- make the greater contributions to the total rate.

  16. Multireversible redox processes in pentanuclear bis(triple-helical) manganese complexes featuring an oxo-centered triangular {Mn(II)2Mn(III)(μ3-O)}5+ or {Mn(II)Mn(III)2(μ3-O)}6+ core wrapped by two {Mn(II)2(bpp)3}-.

    Science.gov (United States)

    Romain, Sophie; Rich, Jordi; Sens, Cristina; Stoll, Thibaut; Benet-Buchholz, Jordi; Llobet, Antoni; Rodriguez, Montserrat; Romero, Isabel; Clérac, Rodolphe; Mathonière, Corine; Duboc, Carole; Deronzier, Alain; Collomb, Marie-Noëlle

    2011-09-05

    A new pentanuclear bis(triple-helical) manganese complex has been isolated and characterized by X-ray diffraction in two oxidation states: [{Mn(II)(μ-bpp)(3)}(2)Mn(II)(2)Mn(III)(μ-O)](3+) (1(3+)) and [{Mn(II)(μ-bpp)(3)}(2)Mn(II)Mn(III)(2)(μ-O)](4+) (1(4+)). The structure consists of a central {Mn(3)(μ(3)-O)} core of Mn(II)(2)Mn(III) (1(3+)) or Mn(II)Mn(III)(2) ions (1(4+)) which is connected to two apical Mn(II) ions through six bpp(-) ligands. Both cations have a triple-stranded helicate configuration, and a pair of enantiomers is present in each crystal. The redox properties of 1(3+) have been investigated in CH(3)CN. A series of five distinct and reversible one-electron waves is observed in the -1.0 and +1.50 V potential range, assigned to the Mn(II)(4)Mn(III)/Mn(II)(5), Mn(II)(3)Mn(III)(2)/Mn(II)(4)Mn(III), Mn(II)(2)Mn(III)(3)/Mn(II)(3)Mn(III)(2), Mn(II)Mn(III)(4)/Mn(II)(2)Mn(III)(3), and Mn(III)(5)/Mn(II)Mn(III)(4) redox couples. The two first oxidation processes leading to Mn(II)(3)Mn(III)(2) (1(4+)) and Mn(II)(2)Mn(III)(3) (1(5+)) are related to the oxidation of the Mn(II) ions of the central core and the two higher oxidation waves, close in potential, are thus assigned to the oxidation of the two apical Mn(II) ions. The 1(4+) and 1(5+) oxidized species and the reduced Mn(4)(II) (1(2+)) species are quantitatively generated by bulk electrolyses demonstrating the high stability of the pentanuclear structure in four oxidation states (1(2+) to 1(5+)). The spectroscopic characteristics (X-band electron paramagnetic resonance, EPR, and UV-visible) of these species are also described as well as the magnetic properties of 1(3+) and 1(4+) in solid state. The powder X- and Q-band EPR signature of 1(3+) corresponds to an S = 5/2 spin state characterized by a small zero-field splitting parameter (|D| = 0.071 cm(-1)) attributed to the two apical Mn(II) ions. At 40 K, the magnetic behavior is consistent for 1(3+) with two apical S = 5/2 {Mn(II)(bpp)(3)}(-) and one S

  17. CATALYTIC SPECTROPHOTOMETRIC DETERMINATION OF Mn(II ...

    African Journals Online (AJOL)

    Preferred Customer

    method is based on the catalytic effect of Mn(II) with the oxidation of Celestine blue .... water samples were filtered through a 0.45 μm pore size membrane filter to remove suspended .... slope of the calibration graph as the optimization criterion. ..... In presence of Phen as stability enhancement agent in indicator system. ( ) +.

  18. Stopped Flow Kinetics of MnII Catalysed Periodate Oxidation of 2, 3- dimethylaniline - Evaluation of Stability Constant of the Ternary Intermediate Complex

    Directory of Open Access Journals (Sweden)

    Rajneesh Dutt Kaushik

    2015-03-01

    Full Text Available The formation of ternary intermediate unstable complex during the oxidation of aromatic amines by periodate ion catalysed by MnII has been proposed in case of some anilines. This paper is the first report on stopped-flow kinetic study and evaluation of stability constant of ternary complex forming in the MnII - catalysed periodate oxidation of 2, 3-dimethylaniline (D in acetone-water medium. Stop-flow spectrophotometric method was used to study the ternary complex formation and to determine its stability constant. The stop-flow trace shows the reaction to occur in two steps. The first step, which is presumably the formation of ternary complex, is relatively fast while the second stage is relatively quite slow. The stability constant evaluated for D - MnII - IO4- ternary complex by determining  equilibrium absorbance is (2.2 ± 1.0 × 105. Kinetics of ternary complex formation was defined by the rate law(A  under pseudo first order conditions. ln{[C2]eq / ( [C2]eq -[C2]} = kobs . t (A where, kobs is the pseudo first order rate constant, [C2] is concentration of ternary complex at given time t, and [C2]eq is the equilibrium concentration of ternary complex. © 2015 BCREC UNDIP. All rights reservedReceived: 3rd October 2014; Revised: 4th December 2014; Accepted: 15th December 2014How to Cite: Kaushik, R.D., Agarwal, R., Tyagi, P., Singh, O., Singh, J. (2015. Stopped Flow Kinetics of MnII Catalysed Periodate Oxidation of 2,3-dimethylaniline - Evaluation of Stability Constant of the Ternary Intermediate Complex. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 78-87. (doi:10.9767/bcrec.10.1.7621.78-87Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.7621.78-87

  19. Constraints on superoxide mediated formation of manganese oxides

    Directory of Open Access Journals (Sweden)

    Deric R. Learman

    2013-09-01

    Full Text Available Manganese (Mn oxides are among the most reactive sorbents and oxidants within the environment, where they play a central role in the cycling of nutrients, metals, and carbon. Recent discoveries have identified superoxide (O2- (both of biogenic and abiogenic origin as an effective oxidant of Mn(II leading to the formation of Mn oxides. Here we examined the conditions under which abiotically produced superoxide led to oxidative precipitation of Mn and the solid-phases produced. Oxidized Mn, as both aqueous Mn(III and Mn(III/IV oxides, was only observed in the presence of active catalase, indicating that hydrogen peroxide, a product of the reaction of O2- with Mn(II, inhibits the oxidation process presumably through the reduction of Mn(III. Citrate and pyrophosphate increased the yield of oxidized Mn but decreased the amount of Mn oxide produced via formation of Mn(III-ligand complexes. While complexing ligands played a role in stabilizing Mn(III, they did not eliminate the inhibition of net Mn(III formation by H2O2. The Mn oxides precipitated were highly disordered colloidal hexagonal birnessite, similar to those produced by biotically generated superoxide. Yet, in contrast to the large particulate Mn oxides formed by biogenic superoxide, abiotic Mn oxides did not ripen to larger, more crystalline phases. This suggests that the deposition of crystalline Mn oxides within the environment requires a biological, or at least organic, influence. This work provides the first direct evidence that, under conditions relevant to natural waters, oxidation of Mn(II by superoxide can occur and lead to formation of Mn oxides. For organisms that oxidize Mn(II by producing superoxide, these findings may also point to other microbially mediated processes, in particular enzymatic hydrogen peroxide degradation and/or production of organic ligand metabolites, that allow for Mn oxide formation.

  20. The Enzymatic Oxidation of Graphene Oxide

    Science.gov (United States)

    Kotchey, Gregg P.; Allen, Brett L.; Vedala, Harindra; Yanamala, Naveena; Kapralov, Alexander A.; Tyurina, Yulia Y.; Klein-Seetharaman, Judith; Kagan, Valerian E.; Star, Alexander

    2011-01-01

    Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon – the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (~40 µM), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, UV-Vis, EPR and FT-IR spectroscopy, TEM, AFM, SDS-PAGE, and GC-MS. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Due to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors. PMID:21344859

  1. Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase

    Science.gov (United States)

    Butterfield, Cristina N.; Soldatova, Alexandra V.; Lee, Sung-Woo; Spiro, Thomas G.; Tebo, Bradley M.

    2013-01-01

    Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of the enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. With the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs. PMID:23818588

  2. Enzymatic biosensors based on the use of metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Shi, Xinhao; Gu, Wei; Li, Bingyu; Chen, Ningning; Zhao, Kai; Xian, Yuezhong

    2014-01-01

    Over the past decades, various techniques have been developed to obtain materials at a nanoscale level to design biosensors with high sensitivity, selectivity and efficiency. Metal oxide nanoparticles (MONPs) are of particular interests and have received much attention because of their unique physical, chemical and catalytic properties. This review summarizes the progress made in enzymatic biosensors based on the use of MONPs. Synthetic methods, strategies for immobilization, and the functions of MONPs in enzymatic biosensing systems are reviewed and discussed. The article is subdivided into sections on enzymatic biosensors based on (a) zinc oxide nanoparticles, (b) titanium oxide nanoparticles, (c) iron oxide nanoparticles, and (d) other metal oxide nanoparticles. While substantial advances have been made in MONPs-based enzymatic biosensors, their applications to real samples still lie ahead because issues such as reproducibility and sensor stability have to be solved. (author)

  3. Electrochemical, Chemical and Enzymatic Oxidations of Phenothiazines

    NARCIS (Netherlands)

    Blankert, B.; Hayen, H.; van Leeuwen, S.M.; Karst, U.; Bodoki, E.; Lotrean, S.; Sandulescu, R.; Mora Diaz, N.; Dominguez, O.; Arcos, J.; Kauffmann, J.-M.

    2005-01-01

    The oxidation of several phenothiazine drugs (phenothiazine, promethazine hydrochloride, promazine hydrochloride, trimeprazine hydrochloride and ethopropazine hydrochloride) has been carried out in aqueous acidic media by electrochemical, chemical and enzymatic methods. The chemical oxidation was

  4. Treatment of groundwater containing Mn(II), Fe(II), As(III) and Sb(III) by bioaugmented quartz-sand filters.

    Science.gov (United States)

    Bai, Yaohui; Chang, Yangyang; Liang, Jinsong; Chen, Chen; Qu, Jiuhui

    2016-12-01

    High concentrations of iron (Fe(II)) and manganese (Mn(II)) often occur simultaneously in groundwater. Previously, we demonstrated that Fe(II) and Mn(II) could be oxidized to biogenic Fe-Mn oxides (BFMO) via aeration and microbial oxidation, and the formed BFMO could further oxidize and adsorb other pollutants (e.g., arsenic (As(III)) and antimony (Sb(III))). To apply this finding to groundwater remediation, we established four quartz-sand columns for treating groundwater containing Fe(II), Mn(II), As(III), and Sb(III). A Mn-oxidizing bacterium (Pseudomonas sp. QJX-1) was inoculated into two parallel bioaugmented columns. Long-term treatment (120 d) showed that bioaugmentation accelerated the formation of Fe-Mn oxides, resulting in an increase in As and Sb removal. The bioaugmented columns also exhibited higher overall treatment effect and anti-shock load capacity than that of the non-bioaugmented columns. To clarify the causal relationship between the microbial community and treatment effect, we compared the biomass of active bacteria (reverse-transcribed real-time PCR), bacterial community composition (Miseq 16S rRNA sequencing) and community function (metagenomic sequencing) between the bioaugmented and non-bioaugmented columns. Results indicated that the QJX1 strain grew steadily and attached onto the filter material surface in the bioaugmented columns. In general, the inoculated strain did not significantly alter the composition of the indigenous bacterial community, but did improve the relative abundances of xenobiotic metabolism genes and Mn oxidation gene. Thus, bioaugmentation intensified microbial degradation/utilization for the direct removal of pollutants and increased the formation of Fe-Mn oxides for the indirect removal of pollutants. Our study provides an alternative method for the treatment of groundwater containing high Fe(II), Mn(II) and As/Sb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. High turnover catalysis of water oxidation by Mn(II) complexes of monoanionic pentadentate ligands

    DEFF Research Database (Denmark)

    Seidler-Egdal, Rune Kirk; Nielsen, Anne; Bond, Andrew

    2011-01-01

    -pyridylmethyl)ethane-1,2-diamine (bcbpen(-)), show the presence of a mixture of closely related Mn(II) species, assigned to the mono, di-, tri- and poly-cationic complexes [Mn(II)(L)(H(2)O)](n)(n+), L = mcbpen(-) or bcbpen(-) with n = 1, 2, 3, etc. In solution, these complexes are reversibly oxidized by tert......:1 reaction of TBHP with [Mn] is rate determining and the resultant species is proposed to be the mononuclear, catalytically competent, [Mn(IV)(O)(mcbpen)](+). At very close m/z values [Mn(III)(OH)(mcbpen)](+), [Mn(2)(III/IV)(O)(2)(mcbpen)(2)](+) and [Mn(IV)(2)(O)(2)(mcbpen)(2)](2+) are detected by ESI MS......-butyl hydrogen peroxide (TBHP), (NH(4))(2)[Ce(NO(3))(6)], Ce(ClO(4))(4), oxone and [Ru(bipy)(3)](3+) to form metastable (t(½) = min to h) higher valent (hydr)oxide species, showing a collective maximum absorbance at 430 nm. The same species can be produced by [Ru(bipy)(3)](2+)-mediated photooxidization...

  6. High Turnover Catalysis of Water Oxidation by Mn(II) complexes of Monoanionic Pentadentate Ligands

    DEFF Research Database (Denmark)

    Seidler-Egdal, Rune Kirk; Nielsen, Anne; Bond, Andrew

    2011-01-01

    -pyridylmethyl)ethane-1,2-diamine (bcbpen−), show the presence of a mixture of closely related Mn(II) species, assigned to the mono, di-, tri- and poly-cationic complexes [MnII(L)(H2O)]nn+, L = mcbpen− or bcbpen− with n = 1, 2, 3, etc. In solution, these complexes are reversibly oxidized by tert-butyl hydrogen...... determining and the resultant species is proposed to be the mononuclear, catalytically competent, [MnIV(O)(mcbpen)]+. At very close m/z values [MnIII(OH)(mcbpen)]+, [Mn2III/IV(O)2(mcbpen)2]+ and [MnIV2(O)2(mcbpen)2]2+are detected by ESI MS and CE when the concentration of TBHP is comparable to or lower than...... peroxide (TBHP), (NH4)2[Ce(NO3)6], Ce(ClO4)4, oxone and [Ru(bipy)3]3+ to form metastable (t½ = min to h) higher valent (hydr)oxide species, showing a collective maximum absorbance at 430 nm. The same species can be produced by [Ru(bipy)3]2+-mediated photooxidization in the presence of an electron acceptor...

  7. Redox Reactions between Mn(II) and Hexagonal Birnessite Change Its Layer Symmetry.

    Science.gov (United States)

    Zhao, Huaiyan; Zhu, Mengqiang; Li, Wei; Elzinga, Evert J; Villalobos, Mario; Liu, Fan; Zhang, Jing; Feng, Xionghan; Sparks, Donald L

    2016-02-16

    Birnessite, a phyllomanganate and the most common type of Mn oxide, affects the fate and transport of numerous contaminants and nutrients in nature. Birnessite exhibits hexagonal (HexLayBir) or orthogonal (OrthLayBir) layer symmetry. The two types of birnessite contain contrasting content of layer vacancies and Mn(III), and accordingly have different sorption and oxidation abilities. OrthLayBir can transform to HexLayBir, but it is still vaguely understood if and how the reverse transformation occurs. Here, we show that HexLayBir (e.g., δ-MnO2 and acid birnessite) transforms to OrthLayBir after reaction with aqueous Mn(II) at low Mn(II)/Mn (in HexLayBir) molar ratios (5-24%) and pH ≥ 8. The transformation is promoted by higher pH values, as well as smaller particle size, and/or greater stacking disorder of HexLayBir. The transformation is ascribed to Mn(III) formation via the comproportionation reaction between Mn(II) adsorbed on vacant sites and the surrounding layer Mn(IV), and the subsequent migration of the Mn(III) into the vacancies with an ordered distribution in the birnessite layers. This study indicates that aqueous Mn(II) and pH are critical environmental factors controlling birnessite layer structure and reactivity in the environment.

  8. Biological Superoxide In Manganese Oxide Formation

    Science.gov (United States)

    Hansel, C.; Learman, D.; Zeiner, C.; Santelli, C. M.

    2011-12-01

    Manganese (Mn) oxides are among the strongest sorbents and oxidants within the environment, controlling the fate and transport of numerous elements and the degradation of recalcitrant carbon. Both bacteria and fungi mediate the oxidation of Mn(II) to Mn(III/IV) oxides but the genetic and biochemical mechanisms responsible remain poorly understood. Furthermore, the physiological basis for microbial Mn(II) oxidation remains an enigma. We have recently reported that a common marine bacterium (Roseobacter sp. AzwK-3b) oxidizes Mn(II) via reaction with extracellular superoxide (O2-) produced during exponential growth. Here we expand this superoxide-mediated Mn(II) oxidation pathway to fungi, introducing a surprising homology between prokaryotic and eukaryotic metal redox processes. For instance, Stibella aciculosa, a common soil Ascomycete filamentous fungus, precipitates Mn oxides at the base of asexual reproductive structures (synnemata) used to support conidia (Figure 1). This distribution is a consequence of localized production of superoxide (and it's dismutation product hydrogen peroxide, H2O2), leading to abiotic oxidation of Mn(II) by superoxide. Disruption of NADPH oxidase activity using the oxidoreductase inhibitor DPI leads to diminished cell differentiation and subsequent Mn(II) oxidation inhibition. Addition of Cu(II) (an effective superoxide scavenger) leads to a concentration dependent decrease in Mn oxide formation. We predict that due to the widespread production of extracellular superoxide within the fungal and likely bacterial kingdoms, biological superoxide may be an important contributor to the cycling of Mn, as well as other metals (e.g., Hg, Fe). Current and future explorations of the genes and proteins involved in superoxide production and Mn(II) oxidation will ideally lend insight into the physiological and biochemical basis for these processes.

  9. Fungal oxidative dissolution of the Mn(II)-bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation.

    Science.gov (United States)

    Tang, Yuanzhi; Zeiner, Carolyn A; Santelli, Cara M; Hansel, Colleen M

    2013-04-01

    Microbially mediated oxidation of Mn(II) to Mn(III/IV) oxides influences the cycling of metals and remineralization of carbon. Despite the prevalence of Mn(II)-bearing minerals in nature, little is known regarding the ability of microbes to oxidize mineral-hosted Mn(II). Here, we explored oxidation of the Mn(II)-bearing mineral rhodochrosite (MnCO3 ) and characteristics of ensuing Mn oxides by six Mn(II)-oxidizing Ascomycete fungi. All fungal species substantially enhanced rhodochrosite dissolution and surface modification. Mineral-hosted Mn(II) was oxidized resulting in formation of Mn(III/IV) oxides that were all similar to δ-MnO2 but varied in morphology and distribution in relation to cellular structures and the MnCO3 surface. For four fungi, Mn(II) oxidation occurred along hyphae, likely mediated by cell wall-associated proteins. For two species, Mn(II) oxidation occurred via reaction with fungal-derived superoxide produced at hyphal tips. This pathway ultimately resulted in structurally unique Mn oxide clusters formed at substantial distances from any cellular structure. Taken together, findings for these two fungi strongly point to a role for fungal-derived organic molecules in Mn(III) complexation and Mn oxide templation. Overall, this study illustrates the importance of fungi in rhodochrosite dissolution, extends the relevance of biogenic superoxide-based Mn(II) oxidation and highlights the potential role of mycogenic exudates in directing mineral precipitation. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Complete genome sequence of the highly Mn(II) tolerant Staphylococcus sp. AntiMn-1 isolated from deep-sea sediment in the Clarion-Clipperton Zone.

    Science.gov (United States)

    Wang, Xing; Lin, Danqiu; Jing, Xiaohuan; Zhu, Sidong; Yang, Jifang; Chen, Jigang

    2018-01-20

    Staphylococcus sp. AntiMn-1 is a deep-sea bacterium inhabiting seafloor sediment in the Clarion-Clipperton Zone (CCZ) that is highly tolerant to Mn(II) and displays efficient Mn(II) oxidation. Herein, we present the assembly and annotation of its genome. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood

    DEFF Research Database (Denmark)

    Palonen, H.; Thomsen, A.B.; Tenkanen, M.

    2004-01-01

    The wet oxidation pretreatment (water, oxygen, elevated temperature, and pressure) of softwood (Picea abies) was investigated for enhancing enzymatic hydrolysis. The pretreatment was preliminarily optimized. Six different combinations of reaction time, temperature, and pH were applied......, and the compositions of solid and liquid fractions were analyzed. The solid fraction after wet oxidation contained 58-64% cellulose, 2-16% hemicellulose, and 24-30% lignin. The pretreatment series gave information about the roles of lignin and hemicellulose in the enzymatic hydrolysis. The temperature...

  12. Substrate specificity and copper loading of the manganese-oxidizing multicopper oxidase Mnx from Bacillus sp. PL-12.

    Science.gov (United States)

    Butterfield, Cristina N; Tebo, Bradley M

    2017-02-22

    Manganese(ii) oxidation in the environment is thought to be driven by bacteria because enzymatic catalysis is many orders of magnitude faster than the abiotic processes. The heterologously purified Mn oxidase (Mnx) from marine Bacillus sp. PL-12 is made up of the multicopper oxidase (MCO) MnxG and two small Cu and heme-binding proteins of unknown function, MnxE and MnxF. Mnx binds Cu and oxidizes both Mn(ii) and Mn(iii), generating Mn(iv) oxide minerals that resemble those found on the Bacillus spore surface. Spectroscopic techniques have illuminated details about the metallo-cofactors of Mnx, but very little is known about their requirement for catalytic activity, and even less is known about the substrate specificity of Mnx. Here we quantify the canonical MCO Cu and persistent peripheral Cu bound to Mnx, and test Mnx oxidizing ability toward different substrates at varying pH. Mn(ii) appears to be the best substrate in terms of k cat , but its oxidation does not follow Michaelis-Menten kinetics, instead showing a sigmoidal cooperative behavior. Mnx also oxidizes Fe(ii) substrate, but in a Michaelis-Menten manner and with a decreased activity, as well as organic substrates. The reduced metals are more rapidly consumed than the larger organic substrates, suggesting the hypothesis that the Mnx substrate site is small and tuned for metal oxidation. Of biological relevance is the result that Mnx has the highest catalytic efficiency for Mn(ii) at the pH of sea water, especially when the protein is loaded with greater than the requisite four MCO copper atoms, suggesting that the protein has evolved specifically for Mn oxidation.

  13. Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi

    International Nuclear Information System (INIS)

    Bonnarme, P.; Jeffries, T.W.

    1990-01-01

    Two families of peroxidases-lignin peroxidase (LiP) and manganese-dependent lignin peroxidase (MnP)-are formed by the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium and other white rot fungi. Isoenzymes of these enzyme families carry out reactions important to the biodegradation of lignin. This research investigated the regulation of LiP and MnP production by Mn(II). In liquid culture, LiP titers varied as an inverse function of and MnP titers varied as a direct function of the Mn(II) concentration. The extracellular isoenzyme profiles differed radically at low and high Mn(II) levels, whereas other fermentation parameters, including extracellular protein concentrations, the glucose consumption rate, and the accumulation of cell dry weight, did not change significantly with the Mn(II) concentration. In the absence of Mn(II), extracellular LiP isoenzymes predominated, whereas in the presence of Mn(II), MnP isoenzymes were dominant. The release of 14 CO 2 from 14 C-labeled dehydrogenative polymerizate lignin was likewise affected by Mn(II). The rate of 14 CO 2 release increased at low Mn(II) and decreased at high Mn(II) concentrations. This regulatory effect of Mn(II) occurred with five strains of P. chrysosporium, two other species of Phanerochaete, three species of Phlebia, Lentinula edodes, and Phellinus pini

  14. Zeolite-encapsulated Co(II), Mn(II), Cu(II) and Cr(III) salen complexes as catalysts for efficient selective oxidation of benzyl alcohol

    Science.gov (United States)

    Li, F. H.; Bi, H.; Huang, D. X.; Zhang, M.; Song, Y. B.

    2018-01-01

    Co(II), Mn(II), Cu(II) and Cr(III) salen type complexes were synthesized in situ in Y zeolite by the reaction of ion-exchanged metal ions with the flexible ligand molecules that had diffused into the cavities. Data of characterization indicates the formation of metal salen complexes in the pores without affecting the zeolite framework structure, the absence of any extraneous species and the geometry of encapsulated complexes. The catalytic activity results show that Cosalcyen Y exhibited higher catalytic activity in the water phase selective oxidation of benzyl alcohol, which could be attributed to their geometry and the steric environment of the metal actives sites.

  15. Conditions for the formation of pure birnessite during the oxidation of Mn(II) cations in aqueous alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Boumaiza, Hella [Laboratoire de Chimie des Matériaux et Catalyse, Faculté des Sciences de Tunis, Université El Manar (Tunisia); Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME)-UMR 7564, CNRS-Université de Lorraine, 405, rue de Vandoeuvre, 54600 Villers-lès-Nancy (France); Département de Génie Biologique et Chimique, Institut National des Sciences Appliquées et de Technologies (INSAT), Université de Carthage, Tunis (Tunisia); Coustel, Romain [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME)-UMR 7564, CNRS-Université de Lorraine, 405, rue de Vandoeuvre, 54600 Villers-lès-Nancy (France); Medjahdi, Ghouti [Institut Jean Lamour, Centre de Compétences Rayons X et Spectroscopie (X-Gamma), UMR 7198 CNRS-Université de Lorraine (France); Ruby, Christian, E-mail: Christian.ruby@univ-lorraine.fr [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME)-UMR 7564, CNRS-Université de Lorraine, 405, rue de Vandoeuvre, 54600 Villers-lès-Nancy (France); and others

    2017-04-15

    Birnessite was synthetized through redox reaction by mixing MnO{sub 4}{sup -}, Mn{sup 2+} and OH{sup -} solutions. The Mn(VII): Mn(II) ratio of 0.33 was chosen and three methods were used consisting in a quick mixing under vigorous stirring of two of the three reagents and then on the dropwise addition of the third one. The obtained solids were characterized by XRD, FTIR and XPS spectroscopies. Their average oxidation states were determined from ICP and CEC measurements while their surface properties were investigated by XPS. This study provides an increased understanding of the importance of dissolved oxygen in the formation of birnessite and hausmannite and shows the ways to obtain pure birnessite. The role of counter-ion ie. Na{sup +} or K{sup +} was also examined. - Graphical abstract: Pathways of birnessite formation. - Highlights: • Pure birnessite is prepared through a redox reaction. • Hausmannite formation is prevented by controlling dissolved O2. • The employed counterion influences the purity of birnessite. • Initial Mn(OH){sub 2} is oxidized by both MnO{sub 4}{sup -} and dissolved O{sub 2}.

  16. Physicochemical properties of 3,4,5-trimethoxybenzoates of Mn(II, Co(II, Ni(II and Zn(II

    Directory of Open Access Journals (Sweden)

    W. FERENC

    2005-09-01

    Full Text Available The complexes of Mn(II, Co(II, Ni(II, Cu(II and Zn(II with 3,4,5-trimethoxybenzoic acid anion of the formula: M(C10H11O52·nH2O, where n = 6 for Ni(II, n = 1 for Mn(II, Co(II, Cu(II, and n = 0 for Zn, have been synthesized and characterized by elemental analysis, IR spectroscopy, X–ray diffraction measurements, thermogravimetry and magnetic studies. They are crystalline compounds characterized by various symmetry. They decompose in various ways when heated in air to 1273 K. At first, they dehydrate in one step and form anhydrous salts. The final products of decomposition are oxides of the respective metals (Mn2O3, Co3O4, NiO, CuO, ZnO. The solubilities of the analysed complexes in water at 293 K are in the orders of 10-2 – 10-4 mol dm-3. The magnetic susceptibilities of the Mn(II, Co(II, Ni(II and Cu(II complexes were measured over the range of 76–303 K and the magnetic moments were calculated. The results show that the 3,4,5-trimethoxybenzoates of Mn(II, Co(II and Ni(II are high-spin complexes but that of Cu(II forms a dimer [Cu2(C10H11O54(H2O2]. The carboxylate groups bind as monodentate or bidentate chelating or bridging ligands.

  17. Production of biogenic manganese oxides coupled with methane oxidation in a bioreactor for removing metals from wastewater.

    Science.gov (United States)

    Matsushita, Shuji; Komizo, Daisuke; Cao, Linh Thi Thuy; Aoi, Yoshiteru; Kindaichi, Tomonori; Ozaki, Noriatsu; Imachi, Hiroyuki; Ohashi, Akiyoshi

    2018-03-01

    Biogenic manganese oxide (BioMnO x ) can efficiently adsorb various minor metals. The production of BioMnO x in reactors to remove metals during wastewater treatment processes is a promising biotechnological method. However, it is difficult to preferentially enrich manganese-oxidizing bacteria (MnOB) to produce BioMnO x during wastewater treatment processes. A unique method of cultivating MnOB using methane-oxidizing bacteria (MOB) to produce soluble microbial products is proposed here. MnOB were successfully enriched in a methane-fed reactor containing MOB. BioMnO x production during the wastewater treatment process was confirmed. Long-term continual operation of the reactor allowed simultaneous removal of Mn(II), Co(II), and Ni(II). The Co(II)/Mn(II) and Ni(II)/Mn(II) removal ratios were 53% and 19%, respectively. The degree to which Mn(II) was removed indicated that the enriched MnOB used utilization-associated products and/or biomass-associated products. Microbial community analysis revealed that methanol-oxidizing bacteria belonging to the Hyphomicrobiaceae family played important roles in the oxidation of Mn(II) by using utilization-associated products. Methane-oxidizing bacteria were found to be inhibited by MnO 2 , but the maximum Mn(II) removal rate was 0.49 kg m -3  d -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Oxidation of manganese(II) with ferrate: Stoichiometry, kinetics, products and impact of organic carbon.

    Science.gov (United States)

    Goodwill, Joseph E; Mai, Xuyen; Jiang, Yanjun; Reckhow, David A; Tobiason, John E

    2016-09-01

    Manganese is a contaminant of concern for many drinking water utilities, and future regulation may be pending. An analysis of soluble manganese (Mn(II)) oxidation by ferrate (Fe(VI)) was executed at the bench-scale, in a laboratory matrix, both with and without the presence of natural organic matter (NOM) and at two different pH values, 6.2 and 7.5. In the matrix without NOM, the oxidation of Mn(II) by Fe(VI) followed a stoichiometry of 2 mol Fe(VI) to 3 mol Mn(II). The presence of NOM did not significantly affect the stoichiometry of the oxidation reaction, indicating relative selectivity of Fe(VI) for Mn(II). The size distribution of resulting particles included significant amounts of nanoparticles. Resulting manganese oxide particles were confirmed to be MnO2 via X-ray photoelectron spectroscopy. The rate of the Mn(II) oxidation reaction was fast relative to typical time scales in drinking water treatment, with an estimated second order rate constant of approximately 1 × 10(4) M(-1) s(-1) at pH 9.2 and > 9 × 10(4) M(-1) s(-1) at pH 6.2. In general, ferrate is a potential option for Mn(II) oxidation in water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Enzymatic oxidation of rutin by horseradish peroxidase: kinetic mechanism and identification of a dimeric product by LC-Orbitrap mass spectrometry.

    Science.gov (United States)

    Savic, Sasa; Vojinovic, Katarina; Milenkovic, Sanja; Smelcerovic, Andrija; Lamshoeft, Marc; Petronijevic, Zivomir

    2013-12-15

    Flavonoid oxidation is important issue in food processing and quality. The kinetic mechanism of enzymatic oxidation of rutin by horseradish peroxidase (HRP) was studied. Rutin oxidation reaction was followed by recording of spectral changes over the time at 360 nm. The studied oxidation is mostly enzymatic and less part non-enzymatic. The reaction with HRP has a higher rate compared with the reaction without of HRP, whereby is part of non-enzymatic reaction about 10% of the total reaction. Kinetic parameters were determined from graphics of linear Michaelis-Menten equation, and it was found that investigated reactions of rutin oxidation by HRP take place in a ping-pong kinetic mechanism. High resolution HPLC-MS analysis of the mixture of oxidized products of rutin revealed the presence of rutin dimer. Because of widely distribution of rutin as well as presence of peroxidases and hydrogen peroxide in fresh foods identification of this enzymatic modification product can be beneficial for foods quality and safety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, Irina I. [Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219 (United States); Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow 119453 (Russian Federation); Kapralov, Alexandr A. [Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219 (United States); Michael, Zachary P.; Burkert, Seth C. [Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Shurin, Michael R. [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261 (United States); Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261 (United States); Star, Alexander [Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Shvedova, Anna A., E-mail: ats@cdc.gov [Pathology and Physiology Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH) and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26505 (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219 (United States); Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Departments of Pharmacology and Chemical Biology and Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2016-05-15

    Biopersistence of carbon nanotubes, graphene oxide (GO) and several other types of carbonaceous nanomaterials is an essential determinant of their health effects. Successful biodegradation is one of the major factors defining the life span and biological responses to nanoparticles. Here, we review the role and contribution of different oxidative enzymes of inflammatory cells – myeloperoxidase, eosinophil peroxidase, lactoperoxidase, hemoglobin, and xanthine oxidase – to the reactions of nanoparticle biodegradation. We further focus on interactions of nanomaterials with hemoproteins dependent on the specific features of their physico-chemical and structural characteristics. Mechanistically, we highlight the significance of immobilized peroxidase reactive intermediates vs diffusible small molecule oxidants (hypochlorous and hypobromous acids) for the overall oxidative biodegradation process in neutrophils and eosinophils. We also accentuate the importance of peroxynitrite-driven pathways realized in macrophages via the engagement of NADPH oxidase- and NO synthase-triggered oxidative mechanisms. We consider possible involvement of oxidative machinery of other professional phagocytes such as microglial cells, myeloid-derived suppressor cells, in the context of biodegradation relevant to targeted drug delivery. We evaluate the importance of genetic factors and their manipulations for the enzymatic biodegradation in vivo. Finally, we emphasize a novel type of biodegradation realized via the activation of the “dormant” peroxidase activity of hemoproteins by the nano-surface. This is exemplified by the binding of GO to cyt c causing the unfolding and ‘unmasking’ of the peroxidase activity of the latter. We conclude with the strategies leading to safe by design carbonaceous nanoparticles with optimized characteristics for mechanism-based targeted delivery and regulatable life-span of drugs in circulation. - Highlights: • Nanoparticles can be degraded by

  1. Comparative Study on Adsorption of Mn(II from Aqueous Solutions on Various Activated Carbons

    Directory of Open Access Journals (Sweden)

    K. A. Emmanuel

    2009-01-01

    Full Text Available The adsorption of Mn(II on indigenously prepared activated carbons (IPAC from Bombax malabaricum, Pithecelobium dulse, Ipomea batatas and Peltaforum ferraginium have been studied. The effects of various experimental parameters have been investigated using batch adsorption technique. The extent of Mn(II removal increased with decrease in initial concentration of the Mn(II, particle size of the adsorbent and increased with increase in contact time, amount of adsorbent used and the initial pH of the solution. Adsorption data were modeled using Freundlich and Langmuir adsorption isotherms and first order kinetic equations. The kinetics of adsorption was found to be first order with regard to intra-particle diffusion rate. The results indicate that such carbons could be employed as low cost adsorbents in waste water treatment for the removal of Mn(II.

  2. Manganese and iron oxidation by fungi isolated from building stone.

    Science.gov (United States)

    de la Torre, M A; Gomez-Alarcon, G

    1994-01-01

    Acid and nonacid generating fungal strains isolated from weathered sandstone, limestone, and granite of Spanish cathedrals were assayed for their ability to oxidize iron and manganese. In general, the concentration of the different cations present in the mineral salt media directly affected Mn(IV) oxide formation, although in some cases, the addition of glucose and nitrate to the culture media was necessary. Mn(II) oxidation in acidogenic strains was greater in a medium containing the highest concentrations of glucose, nitrate, and manganese. High concentrations of Fe(II), glucose, and mineral salts were optimal for iron oxidation. Mn(IV) precipitated as oxides or hydroxides adhered to the mycelium. Most of the Fe(III) remained in solution by chelation with organic acids excreted by acidogenic strains. Other metabolites acted as Fe(III) chelators in nonacidogenic strains, although Fe(III) deposits around the mycelium were also detected. Both iron and manganese oxidation were shown to involve extracellular, hydrosoluble enzymes, with maximum specific activities during exponential growth. Strains able to oxidize manganese were also able to oxidize iron. It is concluded that iron and manganese oxidation reported in this work were biologically induced by filamentous fungi mainly by direct (enzymatic) mechanisms.

  3. Manganese oxidation state mediates toxicity in PC12 cells

    International Nuclear Information System (INIS)

    Reaney, S.H.; Smith, D.R.

    2005-01-01

    The role of the manganese (Mn) oxidation state on cellular Mn uptake and toxicity is not well understood. Therefore, undifferentiated PC12 cells were exposed to 0-200 μM Mn(II)-chloride or Mn(III)-pyrophosphate for 24 h, after which cellular manganese levels were measured along with measures of cell viability, function, and cytotoxicity (trypan blue exclusion, medium lactate dehydrogenase (LDH), 8-isoprostanes, cellular ATP, dopamine, serotonin, H-ferritin, transferrin receptor (TfR), Mn-superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (CuZnSOD) protein levels). Exposures to Mn(III) >10 μM produced 2- to 5-fold higher cellular manganese levels than equimolar exposures to Mn(II). Cell viability and ATP levels both decreased at the highest Mn(II) and Mn(III) exposures (150-200 μM), while Mn(III) exposures produced increases in LDH activity at lower exposures (≥50 μM) than did Mn(II) (200 μM only). Mn(II) reduced cellular dopamine levels more than Mn(III), especially at the highest exposures (50% reduced at 200 μM Mn(II)). In contrast, Mn(III) produced a >70% reduction in cellular serotonin at all exposures compared to Mn(II). Different cellular responses to Mn(II) exposures compared to Mn(III) were also observed for H-ferritin, TfR, and MnSOD protein levels. Notably, these differential effects of Mn(II) versus Mn(III) exposures on cellular toxicity could not simply be accounted for by the different cellular levels of manganese. These results suggest that the oxidation state of manganese exposures plays an important role in mediating manganese cytotoxicity

  4. Cation Effects on the Layer Structure of Biogenic Mn-Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, M.; Ginder-Vogel, M; Parikh, S; Feng, X; Sparks, D

    2010-01-01

    Biologically catalyzed Mn(II) oxidation produces biogenic Mn-oxides (BioMnO{sub x}) and may serve as one of the major formation pathways for layered Mn-oxides in soils and sediments. The structure of Mn octahedral layers in layered Mn-oxides controls its metal sequestration properties, photochemistry, oxidizing ability, and topotactic transformation to tunneled structures. This study investigates the impacts of cations (H{sup +}, Ni(II), Na{sup +}, and Ca{sup 2+}) during biotic Mn(II) oxidation on the structure of Mn octahedral layers of BioMnO{sub x} using solution chemistry and synchrotron X-ray techniques. Results demonstrate that Mn octahedral layer symmetry and composition are sensitive to previous cations during BioMnO{sub x} formation. Specifically, H{sup +} and Ni(II) enhance vacant site formation, whereas Na{sup +} and Ca{sup 2+} favor formation of Mn(III) and its ordered distribution in Mn octahedral layers. This study emphasizes the importance of the abiotic reaction between Mn(II) and BioMnO{sub x} and dependence of the crystal structure of BioMnO{sub x} on solution chemistry.

  5. Effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Bruheim, I.; Haugsgjerd, B.O.

    2014-01-01

    was assessed by peroxide value and anisidine value, measurement of lipid derived volatiles, lipid classes and antioxidants. The non-enzymatic browning reactions were assessed through the measurement of pyrroles, free amino acids content and Strecker-derived volatiles. The increase of incubation temperature......The main objective of this study was to investigate the effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage. Krill oil was incubated at two different temperatures (20 and 40°C) for 28 or 42 days. The oxidative stability of krill oil...

  6. Kineococcus radiotolerans Dps forms a heteronuclear Mn-Fe ferroxidase center that may explain the Mn-dependent protection against oxidative stress.

    Science.gov (United States)

    Ardini, Matteo; Fiorillo, Annarita; Fittipaldi, Maria; Stefanini, Simonetta; Gatteschi, Dante; Ilari, Andrea; Chiancone, Emilia

    2013-06-01

    The ferroxidase center of DNA-binding protein from starved cells (Dps) is a major player in the iron oxidation/detoxification process that leads to a decreased reactive oxygen species production. The possible Mn(II) participation in this process has been studied in Dps from Kineococcus radiotolerans, a radiation-resistant bacterium with a high cytosolic Mn/Fe ratio and a high capacity to survive ionizing and stress conditions. The X-ray structure of recombinant K. radiotolerans Dps loaded with Mn(II) has been solved at 2.0Å resolution. Mn(II) binding to K. radiotolerans Dps and its effect on Fe(II) oxidation have been characterized in spectroscopic measurements. In K. radiotolerans Dps, the Fe-Fe ferroxidase center can have a Mn-Fe composition. Mn(II) binds only at the high affinity, so-called A site, whereas Fe(II) binds also at the low affinity, so-called B site. The Mn-Fe and Fe-Fe centers behave distinctly upon iron oxidation by O2. A site-bound Mn(II) or Fe(II) plays a catalytic role, while B site-bound Fe(II) behaves like a substrate and can be replaced by another Fe(II) after oxidation. When H2O2 is the Fe(II) oxidant, single electrons are transferred to aromatic residues near the ferroxidase center and give rise to intra-protein radicals thereby limiting OH release in solution. The presence of the Mn-Fe center results in significant differences in the development of such intra-protein radicals. Mn(II) bound at the Dps ferroxidase center A site undergoes redox cycling provided the B site contains Fe. The results provide a likely molecular mechanism for the protective role of Mn(II) under oxidative stress conditions as it participates in redox cycling in the hetero-binuclear ferroxidase center. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility.

    Science.gov (United States)

    Varga, Eniko; Schmidt, Anette S; Réczey, Kati; Thomsen, Anne Belinda

    2003-01-01

    Corn stover is an abundant, promising raw material for fuel ethanol production. Although it has a high cellulose content, without pretreatment it resists enzymatic hydrolysis, like most lignocellulosic materials. Wet oxidation (water, oxygen, mild alkali or acid, elevated temperature and pressure) was investigated to enhance the enzymatic digestibility of corn stover. Six different combinations of reaction temperature, time, and pH were applied. The best conditions (60 g/L of corn stover, 195 degrees C, 15 min, 12 bar O2, 2 g/L of Na2CO3) increased the enzymatic conversion of corn stover four times, compared to untreated material. Under these conditions 60% of hemicellulose and 30% of lignin were solubilized, whereas 90% of cellulose remained in the solid fraction. After 24-h hydrolysis at 50 degrees C using 25 filter paper units (FPU)/g of drymatter (DM) biomass, the achieved conversion of cellulose to glucose was about 85%. Decreasing the hydrolysis temperature to 40 degrees C increased hydrolysis time from 24 to 72 h. Decreasing the enzyme loading to 5 FPU/g of DM biomass slightly decreased the enzymatic conversion from 83.4 to 71%. Thus, enzyme loading can be reduced without significantly affecting the efficiency of hydrolysis, an important economical aspect.

  8. Nickel-functionalized reduced graphene oxide with polyaniline for non-enzymatic glucose sensing

    International Nuclear Information System (INIS)

    Zhang, Bing; He, Yu; Liu, Bingqian; Tang, Dianping

    2015-01-01

    We have developed a new class of organic–inorganic hybrid nanostructures based on the use of reduced graphene oxide (rGO), polyaniline, and a nickel metal nanostructure. It was applied to efficient non-enzymatic sensing of glucose based on its electrocatalytic oxidation. Scanning electron microscopy and energy-dispersive X-Ray were employed to characterize the material. It is shown that the doped polyaniline plays an important role in the formation of the hybrid nanostructures. Improved analytical performance is found when the hybrid nanostructures were placed on a glassy carbon electrode and used for non-enzymatic sensing of glucose at a typical working potential of +450 mV and a pH value of 13. Features include a fast response (∼2 s), high sensitivity (6,050 μA mM −1 cm −2 ), a linear range from 0.1 μM to 1.0 mM, and a low detection limit (0.08 μM). The response to glucose follows a Michaelis-Menten kinetic behavior, and the K M value was determined to be 0.241 μM. Reproducibility and specificity are acceptable. Fructose and maltose do not interfere significantly. Importantly, the methodology was validated and evaluated for the analysis of 15 spiked human serum specimens, receiving in a good accordance with the results obtained by the non-enzymatic glucose sensing and the commercialized personal glucose meter. (author)

  9. Characterization of manganese oxide precipitates from Appalachian coal mine drainage treatment systems

    International Nuclear Information System (INIS)

    Tan Hui; Zhang Gengxin; Heaney, Peter J.; Webb, Samuel M.; Burgos, William D.

    2010-01-01

    The removal of Mn(II) from coal mine drainage (CMD) by chemical addition/active treatment can significantly increase treatment costs. Passive treatment for Mn removal involves promotion of biological oxidative precipitation of manganese oxides (MnO x ). Manganese(II) removal was studied in three passive treatment systems in western Pennsylvania that differed based on their influent Mn(II) concentrations (20-150 mg/L), system construction (±inoculation with patented Mn(II)-oxidizing bacteria), and bed materials (limestone vs. sandstone). Manganese(II) removal occurred at pH values as low as 5.0 and temperatures as low as 2 deg. C, but was enhanced at circumneutral pH and warmer temperatures. Trace metals such as Zn, Ni and Co were removed effectively, in most cases preferentially, into the MnO x precipitates. Based on synchrotron radiation X-ray diffraction and Mn K-edge extended X-ray absorption fine structure spectroscopy, the predominant Mn oxides at all sites were poorly crystalline hexagonal birnessite, triclinic birnessite and todorokite. The surface morphology of the MnO x precipitates from all sites was coarse and 'sponge-like' composed of nm-sized lathes and thin sheets. Based on scanning electron microscopy (SEM), MnO x precipitates were found in close proximity to both prokaryotic and eukaryotic organisms. The greatest removal efficiency of Mn(II) occurred at the one site with a higher pH in the bed and a higher influent total organic C (TOC) concentration (provided by an upstream wetland). Biological oxidation of Mn(II) driven by heterotrophic activity was most likely the predominant Mn removal mechanism in these systems. Influent water chemistry and Mn(II) oxidation kinetics affected the relative distribution of MnO x mineral assemblages in CMD treatment systems.

  10. Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs

    Directory of Open Access Journals (Sweden)

    Ortega Ryan A

    2011-02-01

    Full Text Available Abstract Background Drug and contrast agent delivery systems that achieve controlled release in the presence of enzymatic activity are becoming increasingly important, as enzymatic activity is a hallmark of a wide array of diseases, including cancer and atherosclerosis. Here, we have synthesized clusters of ultrasmall superparamagnetic iron oxides (USPIOs that sense enzymatic activity for applications in magnetic resonance imaging (MRI. To achieve this goal, we utilize amphiphilic poly(propylene sulfide-bl-poly(ethylene glycol (PPS-b-PEG copolymers, which are known to have excellent properties for smart delivery of drug and siRNA. Results Monodisperse PPS polymers were synthesized by anionic ring opening polymerization of propylene sulfide, and were sequentially reacted with commercially available heterobifunctional PEG reagents and then ssDNA sequences to fashion biofunctional PPS-bl-PEG copolymers. They were then combined with hydrophobic 12 nm USPIO cores in the thin-film hydration method to produce ssDNA-displaying USPIO micelles. Micelle populations displaying complementary ssDNA sequences were mixed to induce crosslinking of the USPIO micelles. By design, these crosslinking sequences contained an EcoRV cleavage site. Treatment of the clusters with EcoRV results in a loss of R2 negative contrast in the system. Further, the USPIO clusters demonstrate temperature sensitivity as evidenced by their reversible dispersion at ~75°C and re-clustering following return to room temperature. Conclusions This work demonstrates proof of concept of an enzymatically-actuatable and thermoresponsive system for dynamic biosensing applications. The platform exhibits controlled release of nanoparticles leading to changes in magnetic relaxation, enabling detection of enzymatic activity. Further, the presented functionalization scheme extends the scope of potential applications for PPS-b-PEG. Combined with previous findings using this polymer platform that

  11. Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs).

    Science.gov (United States)

    Yu, Shann S; Scherer, Randy L; Ortega, Ryan A; Bell, Charleson S; O'Neil, Conlin P; Hubbell, Jeffrey A; Giorgio, Todd D

    2011-02-27

    Drug and contrast agent delivery systems that achieve controlled release in the presence of enzymatic activity are becoming increasingly important, as enzymatic activity is a hallmark of a wide array of diseases, including cancer and atherosclerosis. Here, we have synthesized clusters of ultrasmall superparamagnetic iron oxides (USPIOs) that sense enzymatic activity for applications in magnetic resonance imaging (MRI). To achieve this goal, we utilize amphiphilic poly(propylene sulfide)-bl-poly(ethylene glycol) (PPS-b-PEG) copolymers, which are known to have excellent properties for smart delivery of drug and siRNA. Monodisperse PPS polymers were synthesized by anionic ring opening polymerization of propylene sulfide, and were sequentially reacted with commercially available heterobifunctional PEG reagents and then ssDNA sequences to fashion biofunctional PPS-bl-PEG copolymers. They were then combined with hydrophobic 12 nm USPIO cores in the thin-film hydration method to produce ssDNA-displaying USPIO micelles. Micelle populations displaying complementary ssDNA sequences were mixed to induce crosslinking of the USPIO micelles. By design, these crosslinking sequences contained an EcoRV cleavage site. Treatment of the clusters with EcoRV results in a loss of R2 negative contrast in the system. Further, the USPIO clusters demonstrate temperature sensitivity as evidenced by their reversible dispersion at ~75°C and re-clustering following return to room temperature. This work demonstrates proof of concept of an enzymatically-actuatable and thermoresponsive system for dynamic biosensing applications. The platform exhibits controlled release of nanoparticles leading to changes in magnetic relaxation, enabling detection of enzymatic activity. Further, the presented functionalization scheme extends the scope of potential applications for PPS-b-PEG. Combined with previous findings using this polymer platform that demonstrate controlled drug release in oxidative

  12. Effect of exopolymers on oxidative dissolution of natural rhodochrosite by Pseudomonas putida strain MnB1: An electrochemical study

    International Nuclear Information System (INIS)

    Wang, Huawei; Zhang, Daoyong; Song, Wenjuan; Pan, Xiangliang; Al-Misned, Fahad A.; Golam Mortuza, M.

    2015-01-01

    Highlights: • The biogeochemical behavior of natural rhodochrosite was investigated by electrochemical methods. • Bacterial exopolymers contributed to the increasing dissolution of natural rhodochrosite. • Oxidative dissolution of natural rhodochrosite was well explained by Tafel and EIS analysis. - Abstract: Oxidative dissolution of natural rhodochrosite by the Mn(II) oxidizing bacterium Pseudomonas putida strain MnB1 was investigated based on batch and electrochemical experiments using natural rhodochrosite as the working electrode. Tafel curves and batch experiments revealed that bacterial exopolymers (EPS) significantly increased dissolution of natural rhodochrosite. The corrosion current significantly increased with reaction time for EPS treatment. However, the corrosion process was blocked in the presence of cells plus extra EPS due to formation of the passivation layer. Moreover, the scanning electron microscopy and the energy dispersive spectroscopy (SEM–EDS) results showed that the surface of the natural rhodochrosite was notably changed in the presence of EPS alone or/and bacterial cells. This study is helpful for understanding the role of EPS in bacterially oxidation of Mn(II). It also indicates that the Mn(II) oxidizing bacteria may exert their effects on Mn(II) cycle and other biological and biogeochemical processes much beyond their local ambient environment because of the catalytically dissolution of solid Mn(II) by EPS and the possible long distance transport of the detached EPS

  13. Lignocellulose pretreatment technologies affect the level of enzymatic cellulose oxidation by LPMO

    DEFF Research Database (Denmark)

    Rodríguez-Zúñiga, Ursula Fabiola; Cannella, David; de Campos Giordano, Roberto

    2015-01-01

    of the cellulose oxidizing enzyme lytic polysaccharide monooxygenase (LPMO). The highest activity of LPMO was observed for the hydrothermally pretreated biomasses, which also contained the highest level of lignin. All hydrolysis were done at high dry matter levels, using a commercial enzyme preparation containing......Sugarcane bagasse, corn stover, and wheat straw are among the most available resources for production of cellulosic ethanol. For these biomasses we study the influence of pre-treatment methods on the chemical composition, as well as on the subsequent reactions of enzymatic hydrolysis and oxidation...

  14. Mn(II), Zn(II) and VO(II) Schiff

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 113; Issue 3. Synthesis and characterisation of Cu(II), Ni(II), Mn(II), Zn(II) and VO(II) Schiff base complexes derived from o-phenylenediamine and acetoacetanilide. N Raman Y Pitchaikani Raja A Kulandaisamy. Inorganic Volume 113 Issue 3 June 2001 pp 183-189 ...

  15. Comparison between wet oxidation and steam explosion as pretreatment methods for enzymatic hydrolysis of sugarcane bagasse

    DEFF Research Database (Denmark)

    Medina, Carlos Martín; Marcet, M.; Thomsen, Anne Belinda

    2008-01-01

    , and to a two-fold increase of cellulose content in the pretreated solids, while steam explosion solubilised only 60% of xylan and 35% of lignin and increased cellulose content in the solid material by one third. Wet oxidation formed more aliphatic acids and phenolics, and less furan aldehydes in the liquid......Alkaline wet oxidation and steam explosion pretreatments of sugarcane bagasse were compared with regard to biomass fractionation, formation of by-products, and enzymatic convertibility of the pretreated material. Wet oxidation led to the solubilisation of 82% of xylan and 50% of lignin...... fraction than steam explosion did. A better enzymatic convertibility of cellulose was achieved for the wet-oxidised material (57.4 %) than for the steam-exploded material (48.9 %). Cellulose convertibility was lower for the whole slurry than for the washed solids in both pretreatments, but more...

  16. New Methods of Simulation of Mn(II) EPR Spectra: Single Crystals, Polycrystalline and Amorphous (Biological) Materials

    Science.gov (United States)

    Misra, Sushil K.

    Biological systems exhibit properties of amorphous materials. The Mn(II) ion in amorphous materials is characterized by distributions of spin-Hamiltonian parameters around mean values. It has a certain advantage over other ions, being one of the most abundant elements on the earth. The extent to which living organisms utilize manganese varies from one organism to the other. There is a fairly high concentration of the Mn(II) ion in green plants, which use it in the O2 evolution reaction of photosynthesis (Sauer, 1980). Structure-reactivity relationships in Mn(II)-O2 complexes are given in a review article by Coleman and Taylor (1980). Manganese is a trace requirement in animal nutrition; highly elevated levels of manganese in the diet can be toxic, probably because of an interference with iron homeostasis (Underwood, 1971). On the other hand, animals raised with a dietary deficiency of manganese exhibit severe abnormalities in connective tissue; these problems have been attributed to the obligatory role of Mn(II) in mucopolysaccharide metabolism (Leach, 1971). Mn(II) has been detected unequivocally in living organisms.

  17. Blood parameters and enzymatic and oxidative activity in the liver of chickens fed with calcium anacardate

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Braga Cruz

    Full Text Available ABSTRACT The aim of this research was to evaluate the inclusion of calcium anacardate (CAC as a source of anacardic acid in the diet of broiler chickens on blood parameters, and enzymatic and oxidative activity in the liver. A total of 840 male chicks, one day old, were kept in a completely randomised experimental design, with six treatments and seven replications of 20 birds, totalling 140 birds per treatment. The treatments consisted of feed without the addition of growth promoter (GP, feed with GP, and feed with no GP and the addition of CAC at levels of 0.25, 0.50, 0.75 and 1%. The biochemical blood variables to be analysed were uric acid, total cholesterol, HDL, LDL, creatinine, AST, ALT, triglycerides, total erythrocytes, haemoglobin, haematocrit, mean corpuscular volume, corpuscular haemoglobin concentration, total plasma protein, total leukocytes, heterophils, lymphocytes, platelets and heterophil/lymphocyte ratio. The concentrations of superoxide dismutase, glutathione peroxidase and malondialdehyde were analysed for the enzymatic and oxidative parameters in the liver. There were no significant differences between treatments in the blood parameters or the enzymatic and oxidative activity in the liver of the chickens, demonstrating that the use of calcium anacardate as a source of anacardic acid is non-toxic, and does not affect these parameters.

  18. Binuclear and tetranuclear Mn(II) clusters in coordination polymers derived from semirigid tetracarboxylate and N‑donor ligands: syntheses, new topology structures and magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-Ling [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China); Liu, Guang-Zhen, E-mail: gzliuly@126.com [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China); Xin, Ling-Yun [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China); Wang, Li-Ya [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China); College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, Henan 473061 (China)

    2017-02-15

    Two topologically new Mn(II) coordination polymers, namely ([Mn{sub 2}(H{sub 4}ipca)(4,4′-bpy){sub 1.5}(CH{sub 3}CH{sub 2}OH){sub 0.5}(H{sub 2}O){sub 1.5}]·0.5CH{sub 3}CH{sub 2}OH·2.5H{sub 2}O){sub n} (1) and (Mn{sub 4}(H{sub 4}ipca){sub 2}(bze)(H{sub 2}O){sub 4}){sub n} (2) were prepared by the solvothermal reactions of Mn(II) acetate with 5-(2’,3’-dicarboxylphenoxy)isophthalic acid (H{sub 4}ipca) in the presence of different N-donor coligands (4,4′-bpy=4,4′-bipyridyl and bze=1, 4-bis(1-imidazoly)benzene). The single crystal X-ray diffractions reveal that two complexes display 3D metal-organic frameworks with binuclear and tetranuclear Mn(II) units, respectively. Complex 1 features a (3,4,6)-connected porous framework based on dinuclear Mn(II) unit with the (4.5{sup 2}){sub 2}(4{sup 2}.6{sup 8}.8{sup 3}.9{sup 2})(5{sup 2}.8.9{sup 2}.10) new topology, and complex 2 possesses a (3,8)-connected network based on tetranuclear Mn(II) unit with the (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 14}.7{sup 7}.8{sup 2}.9) new topology. Magnetic analyses indicate that both two compounds show weak antiferromagnetic interactions within binuclear and tetranuclear Mn(II) units. - Graphical abstract: Two topologically new Mn(II) metal-organic frameworks with dinuclear and tetranuclear Mn(II) units respectively were assembled by using 5-(2′,3′-Dicarboxylphenoxy)isophthalic acid and N-donor ancillary coligands. Magnetic analysis revealed the existence of dominant antiferromagnetic interactions within the polynuclear Mn(II) units. - Highlights: • Mixed ligand strategy produces two topologically new MOFs with dinuclear and tetranuclear Mn(II) respectively. • Magnetic fitting gives weak antiferromagnetic interactions within the polynuclear Mn(II) units.

  19. Marine Bacillus spores as catalysts for oxidative precipitation and sorption of metals.

    Science.gov (United States)

    Francis, C A; Tebo, B M

    1999-08-01

    The oxidation of soluble manganese(II) to insoluble Mn(III,IV) oxide precipitates plays an important role in the environment. These Mn oxides are known to oxidize numerous organic and inorganic compounds, scavenge a variety of other metals on their highly charged surfaces, and serve as electron acceptors for anaerobic respiration. Although the oxidation of Mn(II) in most environments is believed to be bacterially-mediated, the underlying mechanisms of catalysis are not well understood. In recent years, however, the application of molecular biological approaches has provided new insights into these mechanisms. Genes involved in Mn oxidation were first identified in our model organism, the marine Bacillus sp. strain SG-1, and subsequently have been identified in two other phylogenetically distinct organisms, Leptothrix discophora and Pseudomonas putida. In all three cases, enzymes related to multicopper oxidases appear to be involved, suggesting that copper may play a universal role in Mn(II) oxidation. In addition to catalyzing an environmentally important process, organisms capable of Mn(II) oxidation are potential candidates for the removal, detoxification, and recovery of metals from the environment. The Mn(II)-oxidizing spores of the marine Bacillus sp. strain SG-1 show particular promise, due to their inherent physically tough nature and unique capacity to bind and oxidatively precipitate metals without having to sustain growth.

  20. Thiol-functionalized polysilsesquioxane as efficient adsorbent for adsorption of Hg(II) and Mn(II) from aqueous solution

    International Nuclear Information System (INIS)

    Niu, Yuzhong; Qu, Rongjun; Liu, Xiguang; Mu, Lei; Bu, Baihui; Sun, Yuting; Chen, Hou; Meng, Yangfeng; Meng, Lina; Cheng, Lin

    2014-01-01

    Highlights: • PMPSQ was promising adsorbent for the removal of Hg(II) and Mn(II). • The adsorption kinetics followed the pseudo-second-order model. • The adsorption isotherms can be described by the monolayer Langmuir model. • The adsorption was controlled by film diffusion and chemical ion-exchange mechanism. - Abstract: Thiol-functionalized polysilsesquioxane was synthesized and used for the adsorption of Hg(II) and Mn(II) from aqueous solution. Results showed that the optimal pH was about 6 and 5 for Hg(II) and Mn(II), respectively. Adsorption kinetics showed that the adsorption equilibriums were established within 100 min and followed pseudo-second-order model. Adsorption isotherms revealed that the adsorption capacities increased with the increasing of temperature. The adsorption was found to be well described by the monolayer Langmuir isotherm model and took place by chemical ion-exchange mechanism. The thermodynamic properties indicated the adsorption processes were spontaneous and endothermic nature. Selectively adsorption showed that PMPSQ can selectively adsorb Hg(II) from binary ion systems in the presence of the coexistent ions Mn(II), Cu(II), Pb(II), Co(II), and Ni(II). Based on the results, it is concluded that PMPSQ had comparable high adsorption efficiency and could be potentially used for the removal of Hg(II) and Mn(II) from aqueous solution

  1. Direct electrocatalytic reduction of coenzyme NAD{sup +} to enzymatically-active 1,4-NADH employing an iridium/ruthenium-oxide electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Nehar, E-mail: nehar.ullah@mail.mcgill.ca; Ali, Irshad; Omanovic, Sasha

    2015-01-15

    A thermally prepared iridium/ruthenium-oxide coating (Ir{sub 0.8}Ru{sub 0.2}-oxide) formed on a titanium substrate was investigated as a possible electrode for direct electrochemical regeneration of enzymatically-active 1,4-NADH from its oxidized form NAD{sup +}, at various electrode potentials, in a batch electrochemical reactor. The coating surface was characterized by ‘cracked mud’ morphology, yielding a high surface roughness. The NADH regeneration results showed that the percentage of enzymatically-active 1,4-NADH present in the product mixture (i.e. recovery) is strongly dependent on the electrode potential, reaching a maximum (88%) at −1.70 V vs. MSE. The relatively high recovery was explained on the basis of availability of adsorbed ‘active’ hydrogen (H{sub ads}) on the Ir/Ru-oxide surface, i.e. on the basis of electrochemical hydrogenation. - Highlights: • Ir{sub 0.8}Ru{sub 0.2}-oxide coating was formed thermally on a Ti substrate. • Electrochemical regeneration of enzymatically-active 1,4-NADH was investigated. • The 1,4-NADH recovery percentage is strongly dependent on the electrode potential. • A highest recovery, 88%, was obtained at −1.70 V vs. MSE. • The NADH regeneration process involved electrochemical hydrogenation.

  2. Oxidative enzymatic gelation of sugar beet pectin for emulsion stabilization

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Meyer, Anne S.

    2013-01-01

    Pectin from sugar beet is derived from the sugar beet pulp residue which results when sugar beets are processed for sucrose extraction. The sugar beet pectin has poor gelationability by the classic divalentcation molecular mechanism because of a relatively high acetylation degree and short...... polygalacturonate backbone chain length. However, due to the feruloyl-substitutions on the side chains, the sugar beet pectic polysaccharides can be cross-linked via enzyme catalyzed oxidation. The enzyme kinetics and functionality of such oxidativelycross-linked sugar beet pectin, in relation to stabilizing...... emulsions has recently been investigated in model food emulsions. This paper reviews the pectin chemistry, enzymatic oxidative gelation mechanisms, interaction mechanisms of the sugar beet pectin with the emulsion droplets and explores how the gelation affects the rheology and stability of emulsion systems...

  3. Enzymatic lipid oxidation by eosinophils propagates coagulation, hemostasis, and thrombotic disease

    Science.gov (United States)

    Uderhardt, Stefan; Ackermann, Jochen A.; Fillep, Tobias; Hammond, Victoria J.; Willeit, Johann; Stark, Konstantin; Rossaint, Jan; Schubert, Irene; Mielenz, Dirk; Dietel, Barbara; Raaz-Schrauder, Dorette; Ay, Cihan; Thaler, Johannes; Heim, Christian; Collins, Peter W.; Schabbauer, Gernot; Mackman, Nigel; Voehringer, David; Nadler, Jerry L.; Lee, James J.; Massberg, Steffen; Rauh, Manfred; O’Donnell, Valerie B.

    2017-01-01

    Blood coagulation is essential for physiological hemostasis but simultaneously contributes to thrombotic disease. However, molecular and cellular events controlling initiation and propagation of coagulation are still incompletely understood. In this study, we demonstrate an unexpected role of eosinophils during plasmatic coagulation, hemostasis, and thrombosis. Using a large-scale epidemiological approach, we identified eosinophil cationic protein as an independent and predictive risk factor for thrombotic events in humans. Concurrent experiments showed that eosinophils contributed to intravascular thrombosis by exhibiting a strong endogenous thrombin-generation capacity that relied on the enzymatic generation and active provision of a procoagulant phospholipid surface enriched in 12/15-lipoxygenase–derived hydroxyeicosatetraenoic acid–phosphatidylethanolamines. Our findings reveal a previously unrecognized role of eosinophils and enzymatic lipid oxidation as regulatory elements that facilitate both hemostasis and thrombosis in response to vascular injury, thus identifying promising new targets for the treatment of thrombotic disease. PMID:28566277

  4. Enzymatic biomarkers can portray nanoCuO-induced oxidative and neuronal stress in freshwater shredders.

    Science.gov (United States)

    Pradhan, Arunava; Silva, Carla O; Silva, Carlos; Pascoal, Cláudia; Cássio, Fernanda

    2016-11-01

    Commercial applications of nanometal oxides have increased concern about their release into natural waters and consequent risks to aquatic biota and the processes they drive. In forest streams, the invertebrate shredder Allogamus ligonifer plays a key role in detritus food webs by transferring carbon and energy from plant litter to higher trophic levels. We assessed the response profiles of oxidative and neuronal stress enzymatic biomarkers in A. ligonifer after 96h exposure to nanoCuO at concentration ranges stress, Cu 2+ released from nanoCuO was quantified and the enzymatic responses to Cu 2+ exposure at similar effective concentrations were compared. The highest activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) were observed at concentrations stress at low concentrations (released ionic copper on enzyme activities were concentration-dependent, and led to oxidative stress and even to animal death. The activity of acetylcholinesterase (AChE) was strongly inhibited even at concentrations stress in A. ligonifer. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment.

    Science.gov (United States)

    Li, Hailong; Xiong, Lian; Chen, Xuefang; Wang, Can; Qi, Gaoxiang; Huang, Chao; Luo, Mutan; Chen, Xinde

    2017-03-01

    This study aims to propose a biorefinery pretreatment technology for the bioconversion of sugarcane bagasse (SB) into biofuels and N-fertilizers. Performance of diluted acid (DA), aqueous ammonia (AA), oxidate ammonolysis (OA) and the combined DA with AA or OA were compared in SB pretreatment by enzymatic hydrolysis, structural characterization and acetone-butanol-ethanol (ABE) fermentation. Results indicated that DA-OA pretreatment improves the digestibility of SB by sufficiently hydrolyzing hemicellulose into fermentable monosaccharides and oxidating lignin into soluble N-fertilizer with high nitrogen content (11.25%) and low C/N ratio (3.39). The enzymatic hydrolysates from DA-OA pretreated SB mainly composed of glucose was more suitable for the production of ABE solvents than the enzymatic hydrolysates from OA pretreated SB containing high ratio of xylose. The fermentation of enzymatic hydrolysates from DA-OA pretreated SB produced 12.12g/L ABE in 120h. These results suggested that SB could be utilized efficient, economic, and environmental by DA-OA pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Non-Enzymatic Glucose Sensor Composed of Carbon-Coated Nano-Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Ren-Jei Chung

    2017-02-01

    Full Text Available Nowadays glucose detection is of great importance in the fields of biological, environmental, and clinical analyzes. In this research, we report a zinc oxide (ZnO nanorod powder surface-coated with carbon material for non-enzymatic glucose sensor applications through a hydrothermal process and chemical vapor deposition method. A series of tests, including crystallinity analysis, microstructure observation, and electrochemical property investigations were carried out. For the cyclic voltammetric (CV glucose detection, the low detection limit of 1 mM with a linear range from 0.1 mM to 10 mM was attained. The sensitivity was 2.97 μA/cm2mM, which is the most optimized ever reported. With such good analytical performance from a simple process, it is believed that the nanocomposites composed of ZnO nanorod powder surface-coated with carbon material are promising for the development of cost-effective non-enzymatic electrochemical glucose biosensors with high sensitivity.

  7. Population structure of manganese-oxidizing bacteria in stratified soils and properties of manganese oxide aggregates under manganese-complex medium enrichment.

    Directory of Open Access Journals (Sweden)

    Weihong Yang

    Full Text Available Manganese-oxidizing bacteria in the aquatic environment have been comprehensively investigated. However, little information is available about the distribution and biogeochemical significance of these bacteria in terrestrial soil environments. In this study, stratified soils were initially examined to investigate the community structure and diversity of manganese-oxidizing bacteria. Total 344 culturable bacterial isolates from all substrata exhibited Mn(II-oxidizing activities at the range of 1 µM to 240 µM of the equivalent MnO2. The high Mn(II-oxidizing isolates (>50 mM MnO2 were identified as the species of phyla Actinobacteria, Firmicutes and Proteobacteria. Seven novel Mn(II-oxidizing bacterial genera (species, namely, Escherichia, Agromyces, Cellulomonas, Cupriavidus, Microbacterium, Ralstonia, and Variovorax, were revealed via comparative phylogenetic analysis. Moreover, an increase in the diversity of soil bacterial community was observed after the combined enrichment of Mn(II and carbon-rich complex. The phylogenetic classification of the enriched bacteria represented by predominant denaturing gradient gel electrophoresis bands, was apparently similar to culturable Mn(II-oxidizing bacteria. The experiments were further undertaken to investigate the properties of the Mn oxide aggregates formed by the bacterial isolates with high Mn(II-oxidizing activity. Results showed that these bacteria were closely encrusted with their Mn oxides and formed regular microspherical aggregates under prolonged Mn(II and carbon-rich medium enrichment for three weeks. The biotic oxidation of Mn(II to Mn(III/IV by these isolates was confirmed by kinetic examinations. X-ray diffraction assays showed the characteristic peaks of several Mn oxides and rhodochrosite from these aggregates. Leucoberbelin blue tests also verified the Mn(II-oxidizing activity of these aggregates. These results demonstrated that Mn oxides were formed at certain amounts under the

  8. Permanganate-based synthesis of manganese oxide nanoparticles in ferritin

    Science.gov (United States)

    Olsen, Cameron R.; Smith, Trevor J.; Embley, Jacob S.; Maxfield, Jake H.; Hansen, Kameron R.; Peterson, J. Ryan; Henrichsen, Andrew M.; Erickson, Stephen D.; Buck, David C.; Colton, John S.; Watt, Richard K.

    2017-05-01

    This paper investigates the comproportionation reaction of MnII with {{{{MnO}}}4}- as a route for manganese oxide nanoparticle synthesis in the protein ferritin. We report that {{{{MnO}}}4}- serves as the electron acceptor and reacts with MnII in the presence of apoferritin to form manganese oxide cores inside the protein shell. Manganese loading into ferritin was studied under acidic, neutral, and basic conditions and the ratios of MnII and permanganate were varied at each pH. The manganese-containing ferritin samples were characterized by transmission electron microscopy, UV/Vis absorption, and by measuring the band gap energies for each sample. Manganese cores were deposited inside ferritin under both the acidic and basic conditions. All resulting manganese ferritin samples were found to be indirect band gap materials with band gap energies ranging from 1.01 to 1.34 eV. An increased UV/Vis absorption around 370 nm was observed for samples formed under acidic conditions, suggestive of MnO2 formation inside ferritin.

  9. Chlorine-induced assembly of a cationic coordination cage with a μ5-carbonato-bridged Mn(II)24 core.

    Science.gov (United States)

    Xiong, Ke-Cai; Jiang, Fei-Long; Gai, Yan-Li; Yuan, Da-Qiang; Han, Dong; Ma, Jie; Zhang, Shu-Quan; Hong, Mao-Chun

    2012-04-27

    Chlorine caged in! The chlorine-induced assembly of six shuttlecock-like tetranuclear Mn(II) building blocks generated in situ based on p-tert-butylthiacalix[4]arene and facial anions gave rise to a novel truncated distorted octahedral cationic coordination cage with a μ(5)-carbonato-bridged Mn(II)(24) core. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Determination of Proton Relaxivities of Mn(II, Cu(II and Cr(III added to Solutions of Serum Proteins

    Directory of Open Access Journals (Sweden)

    Ali Yilmaz

    2009-04-01

    Full Text Available Relaxometric studies are still of scientific interest due to their use in medicine and biology. In this study, proton T1 and T2 relaxivities of Mn(II, Cu(II and Cr(III in water were determined in the presence and absence of various proteins (albumin, α-globulin, γ-globulin, lysozyme, fibrinogen. The 1/T1 and 1/T2 in all solutions are linearly proportional to the concentration of the paramagnetic ions. Mn(II has the great influence to alter relaxations in all protein solutions, while Cu(II and Cr(III have a poor influence on the relaxations. In addition, Mn(II and Cu(II are bound to each protein, but Cr(III is not bound to any protein.

  11. Synthesis and Characterization of Multimetallic Fe(II) and Mn(II ...

    African Journals Online (AJOL)

    Iron(II) and Manganese(II) complexes of the resulting ligand were obtained from its reactions with Fe(II) and Mn(II) salts in absolute methanol for the metal to ligand ratio 2:3. These complexes were characterized by Solubility, Conductivity, IR and UV-VIS spectrometry, elemental analysis and mass spectrometry. Keywords: ...

  12. Structure and Heme-Independent Peroxidase Activity of a Fully-Coordinated Mononuclear Mn(II) Complex with a Schiff-Base Tripodal Ligand Containing Three Imidazole Groups

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Shuranjan; Lee, Hong In [Kyungpook National University, Daegu (Korea, Republic of); Moon, Do Hyun [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Lah, Myoung Soo [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2010-11-15

    New complex [Mn(II)H{sub 1.5}L]{sub 2}[Mn(II)H{sub 3}L]{sub 2}(ClO{sub 4}){sub 5}·3H{sub 2}O, where H{sub 3}L is tris{2-(4-imidazolyl)methyliminoethyl} amine (imtren), has been prepared by reacting manganese(II) perchlorate hexahydrate with the imtren ligand in methanol. X-ray crystallographic study revealed that the imtren ligand hexadentately binds to Mn(II) ion through the three Schiff-base imine N atoms and three imidazole N atoms with a distorted octahedral geometry, and the apical tertiary amine N atom of the ligand pseudo-coordinates to Mn(II), forming overall a pseudo-seven coordination environment. The hydrogen-bonds between imidazole and imidazolate of [Mn(II)H{sub 1.5}L]{sup 0.5+} complex ions are extended to build a 2D puckered network with trigonal voids. [Mn(II)H{sub 3}L]{sup 2+} complex ions constitutes another extended 2D puckered layer without hydrogen bonds. Two layers are wedged each other to constitute overall stack of the crystal. Peroxidase activity of complex 1 was examined by observing the oxidation of 2,2'-azinobis(3-ethylbenzothiazoline)- 6-sulfonic acid (ABTS) with hydrogen peroxide in the presence of complex 1. Generation of ABTS{sup +·} was observed by UV-vis and EPR spectroscopies, indicating that the complex 1, a fully-coordinated mononuclear Mn(II) complex with nitrogen-only ligand, has a heme-independent peroxidase activity.

  13. A novel Mn(II) oxalato-bridged 2D coordination polymer: synthesis ...

    Indian Academy of Sciences (India)

    Hiba Sehimi

    2018-02-28

    Feb 28, 2018 ... susceptibility. The title compound exhibits antiferromagnetic coupling between Mn(II) centres. Keywords. ..... to the theoretical dimer model expression (eq. 3) based .... Financial support from the Ministry of Higher Education and. Scientific ... thesis and Charachterisation of (μ-Oxalato)dimetal(II). Complexes ...

  14. As(III) oxidation by MnO2 during groundwater treatment.

    Science.gov (United States)

    Gude, J C J; Rietveld, L C; van Halem, D

    2017-03-15

    The top layer of natural rapid sand filtration was found to effectively oxidise arsenite (As(III)) in groundwater treatment. However, the oxidation pathway has not yet been identified. The aim of this study was to investigate whether naturally formed manganese oxide (MnO 2 ), present on filter grains, could abiotically be responsible for As(III) oxidation in the top of a rapid sand filter. For this purpose As(III) oxidation with two MnO 2 containing powders was investigated in aerobic water containing manganese(II) (Mn(II)), iron(II) (Fe(II)) and/or iron(III) (Fe(III)). The first MnO 2 powder was a very pure - commercially available - natural MnO 2 powder. The second originated from a filter sand coating, produced over 22 years in a rapid filter during aeration and filtration. Jar test experiments showed that both powders oxidised As(III). However, when applying the MnO 2 in aerated, raw groundwater, As(III) removal was not enhanced compared to aeration alone. It was found that the presence of Fe(II)) and Mn(II) inhibited As(III) oxidation, as Fe(II) and Mn(II) adsorption and oxidation were preferred over As(III) on the MnO 2 surface (at pH 7). Therefore it is concluded that just because MnO 2 is present in a filter bed, it does not necessarily mean that MnO 2 will be available to oxidise As(III). However, unlike Fe(II), the addition of Fe(III) did not hinder As(III) oxidation on the MnO 2 surface; resulting in subsequent effective As(V) removal by the flocculating hydrous ferric oxides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Rationalization and in vitro modeling of the chemical mechanisms of the enzymatic oxidation of phenolic compounds in planta: from flavonols and stilbenoids to lignins.

    Science.gov (United States)

    Cottyn, Betty; Kollmann, Albert; Waffo-Teguo, Pierre; Ducrot, Paul-Henri

    2011-06-20

    Enzymatic oxidation of phenolic compounds is a widespread phenomenon in plants. It is responsible for the formation of many oligomers and polymers, which are generally described as the result of a combinatorial coupling of the different radicals formed through oxidation of the phenol group and delocalization of the radical. We focused our interest on several phenolic compounds that are present in plants and known to form, under enzymatic oxidation, oligomers with different type of linkages between monomers. To explain this diversity of inter-monomer linkages and their variation according to the experimental procedure used for the enzymatic oxidation, we report an alternative mechanistic pathway involving dismutation of the radicals, leading to the formation of carbocations which, thereafter, react with nucleophilic species present in the medium. This alternative pathway allows the understanding of peculiar linkages between monomeric units in the oligomer and offers new insights for understanding the formation of phenolic biopolymers in plants. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    Science.gov (United States)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P pulmonary hypertension.

  17. Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds.

    Science.gov (United States)

    Ndiaye, Fatou; Vuong, Tri; Duarte, Jairo; Aluko, Rotimi E; Matar, Chantal

    2012-02-01

    Enzymatic protein hydrolysates of yellow pea seed have been shown to possess high anti-oxidant and anti-bacterial activities. The aim of this work was to confirm the anti-oxidant, anti-inflammatory and immunomodulating activities of an enzymatic protein hydrolysate of yellow field pea seeds. The anti-oxidant and anti-inflammatory properties of peptides from yellow field pea proteins (Pisum sativum L.) were investigated in LPS/IFN-γ-activated RAW 264.7 NO⁻ macrophages. The immunomodulating potential of pea protein hydrolysate (PPH) was then studied in a murine model. Pea protein hydrolysate, after a 12 h pre-treatment, showed significant inhibition of NO production by activated macrophages up to 20%. Moreover, PPH significantly inhibited their secretion of pro-inflammatory cytokines, TNF-α- and IL-6, up to 35 and 80%, respectively. Oral administration of PPH in mice enhanced the phagocytic activity of their peritoneal macrophages and stimulated the gut mucosa immune response. The number of IgA+ cells was elevated in the small intestine lamina propria, accompanied by an increase in the number of IL-4+, IL-10+ and IFN-γ+ cells. This was correlated to up-regulation of IL-6 secretion by small intestine epithelial cells (IEC), probably responsible for B-cell terminal differentiation to IgA-secreting cells. Moreover, PPH might have increased IL-6 production in IECs via the stimulation of toll-like receptors (TLRs) family, especially TLR2 and TLR4 since either anti-TLR2 or anti-TLR4 was able to completely abolish PPH-induced IL-6 secretion. Enzymatic protein degradation confers anti-oxidant, anti-inflammatory and immunomodulating potentials to pea proteins, and the resulted peptides could be used as an alternative therapy for the prevention of inflammatory-related diseases.

  18. Computational study on a puzzle in the biosynthetic pathway of anthocyanin: Why is an enzymatic oxidation/ reduction process required for a simple tautomerization?

    Science.gov (United States)

    Sato, Hajime; Wang, Chao; Yamazaki, Mami; Saito, Kazuki; Uchiyama, Masanobu

    2018-01-01

    In the late stage of anthocyanin biosynthesis, dihydroflavonol reductase (DFR) and anthocyanidin synthase (ANS) mediate a formal tautomerization. However, such oxidation/reduction process requires high energy and appears to be unnecessary, as the oxidation state does not change during the transformation. Thus, a non-enzymatic pathway of tautomerization has also been proposed. To resolve the long-standing issue of whether this non-enzymatic pathway is the main contributor for the biosynthesis, we carried out density functional theory (DFT) calculations to examine this non-enzymatic pathway from dihydroflavonol to anthocyanidin. We show here that the activation barriers for the proposed non-enzymatic tautomerization are too high to enable the reaction to proceed under normal aqueous conditions in plants. The calculations also explain the experimentally observed requirement for acidic conditions during the final step of conversion of 2-flaven-3,4-diol to anthocyanidin; a thermodynamically and kinetically favorable concerted pathway can operate under these conditions.

  19. A reagentless non-enzymatic hydrogen peroxide sensor presented using electrochemically reduced graphene oxide modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mutyala, Sankararao; Mathiyarasu, Jayaraman, E-mail: al_mathi@yahoo.com

    2016-12-01

    Herein, we report a simple, facile and reproducible non-enzymatic hydrogen peroxide (H{sub 2}O{sub 2}) sensor using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The modified electrode was characterized by Fourier transform infrared (FT-IR), UV–Visible, scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Cyclic voltammetric (CV) analysis revealed that ERGO/GCE exhibited virtuous charge transfer properties for a standard redox systems and showed excellent performance towards electroreduction of H{sub 2}O{sub 2}. Amperometric study using ERGO/GCE showed high sensitivity (0.3 μA/μM) and faster response upon the addition of H{sub 2}O{sub 2} at an applied potential of − 0.25 V vs. Ag/AgCl. The detection limit is assessed to be 0.7 μM (S/N = 3) and the time to reach a stable study state current is < 3 s for a linear range of H{sub 2}O{sub 2} concentration (1–16 μM). In addition, the modified electrode exhibited good reproducibility and long-term stability. - Graphical abstract: We presented a reagentless non-enzymatic hydrogen peroxide sensor using electrochemically reduced graphene oxide material. - Highlights: • A facile green procedure proposed for high quality graphene synthesis using electrochemical reduction of graphene oxide • A simple, facile and reagentless non-enzymatic hydrogen peroxide sensor developed using ERGO/GCE. • ERGO/GCE exhibited high sensitivity, selectivity and finite limit of detection for H{sub 2}O{sub 2} sensing at low overpotential. • ERGO/GCE exhibited long term stability and good reproducibility.

  20. A reagentless non-enzymatic hydrogen peroxide sensor presented using electrochemically reduced graphene oxide modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Mutyala, Sankararao; Mathiyarasu, Jayaraman

    2016-01-01

    Herein, we report a simple, facile and reproducible non-enzymatic hydrogen peroxide (H 2 O 2 ) sensor using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The modified electrode was characterized by Fourier transform infrared (FT-IR), UV–Visible, scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Cyclic voltammetric (CV) analysis revealed that ERGO/GCE exhibited virtuous charge transfer properties for a standard redox systems and showed excellent performance towards electroreduction of H 2 O 2 . Amperometric study using ERGO/GCE showed high sensitivity (0.3 μA/μM) and faster response upon the addition of H 2 O 2 at an applied potential of − 0.25 V vs. Ag/AgCl. The detection limit is assessed to be 0.7 μM (S/N = 3) and the time to reach a stable study state current is < 3 s for a linear range of H 2 O 2 concentration (1–16 μM). In addition, the modified electrode exhibited good reproducibility and long-term stability. - Graphical abstract: We presented a reagentless non-enzymatic hydrogen peroxide sensor using electrochemically reduced graphene oxide material. - Highlights: • A facile green procedure proposed for high quality graphene synthesis using electrochemical reduction of graphene oxide • A simple, facile and reagentless non-enzymatic hydrogen peroxide sensor developed using ERGO/GCE. • ERGO/GCE exhibited high sensitivity, selectivity and finite limit of detection for H 2 O 2 sensing at low overpotential. • ERGO/GCE exhibited long term stability and good reproducibility.

  1. Equilibrium, thermodynamic and kinetic studies on biosorption of Mn(II) from aqueous solution by Pseudomonas sp., Staphylococcus xylosus and Blakeslea trispora cells

    International Nuclear Information System (INIS)

    Gialamouidis, D.; Mitrakas, M.; Liakopoulou-Kyriakides, M.

    2010-01-01

    Biosorption of Mn(II) from aqueous solutions using Pseudomonas sp., Staphylococcus xylosus and Blakeslea trispora cells was investigated under various experimental conditions of pH, biomass concentration, contact time and temperature. The optimum pH value was determined to 6.0 and the optimum biomass concentration to 1.0 g L -1 for all types of cells. Mn(II) biosorption was found to fit better to the Langmuir model for Pseudomonas sp. and B. trispora and to Freundlich model for S. xylosus. Langmuir model gave maximum Mn(II) uptake capacity 109 mg g -1 for Pseudomonas sp. and much lower, 59 mg g -1 and 40 mg g -1 for S. xylosus and B. trispora, respectively. Pseudo-second-order kinetic model was also found to be in good agreement with the experimental results. Thermodynamic parameters of the adsorption confirmed the endothermic nature of sorption process with positive heat of enthalpy, accompanied by a positive value of entropy change. Interestingly, desorption experiments by treating biomass with 0.1 M HNO 3 solution resulted to more than 88% recovery of the adsorbed Mn(II) from Pseudomonas sp. and almost 95% and 99% from S. xylosus and B. trispora cells respectively, thus indicating that Mn(II) can be easily and quantitatively recovered from biomass.

  2. Oxidation mechanisms occurring in wines

    OpenAIRE

    Oliveira, Carla Maria; Ferreira, António César Silva; Freitas, Victor De; Silva, Artur M. S.

    2011-01-01

    The present review aims to show the state of the art on the oxidation mechanisms occurring in wines, as well as the methods to monitor, classify and diagnose wine oxidation. Wine oxidation can be divided in enzymatic oxidation and non-enzymatic oxidation. Enzymatic oxidation almost entirely occurs in grape must and is largely correlated with the content of hydroxycinnamates, such as caffeoyltartaric acid and paracoumaroyltartaric acid, and flavan-3-ols. Non-enzymatic oxidation, al...

  3. Inhibition of tyrosinase-mediated enzymatic browning by sulfite and natural alternatives

    NARCIS (Netherlands)

    Kuijpers, T.F.M.; Vincken, J.P.

    2013-01-01

    Although sulfite is widely used to counteract enzymatic browning, its mechanism has remained largely unknown. We describe a double inhibitory mechanism of sulfite on enzymatic browning, affecting both the enzymatic oxidation of phenols into o‑quinones, as well as the non‑enzymatic

  4. Removal of Mn(II) from the acid mine wastewaters using coal fired bottom ash

    Science.gov (United States)

    Mahidin, M.; Sulaiman, T. N.; Muslim, A.; Gani, A.

    2017-06-01

    Acid mine wastewater (AMW), the wastewater from mining activities which has low pH about 3-5 and contains hazardous heavy metals such as Cu, Fe, Mn, Zn, Pb, etc. Those heavy metals pollution is of prime concern from the environmental view point. Among the heavy metals, Mn occupies the third position in the AMW from one the iron ore mining company in Aceh, Indonesia. In this study, the possibility use of bottom ash from coal fired boiler of steam power plants for the removal of Mn(II) in AMW has been investigated. Experimental has been conducted as follows. Activation of bottom ash was done both by physical and chemical treatments through heating at 270 °C and washing with NaOH activator 0.5 and 1 M. Adsorption test contains two parts observation; preliminary and primary experiments. Preliminary study is addressed to select the best condition of three independent variables i.e.: pH of AMW (3 & 7), bottom ash particle size (40, 60 & 100 mesh) and initial Mn(II) concentrations (100 & 600 mg/l). AMW used was synthetics wastewater. It was found that the best value for NaOH is 1 M, pH is 7, particle size is 100 meshes and initial Mn(II) concentration is 600 mg/l from the adsorption efficiency point of view. The maximum adsorption capacity (q e) is 63.7 mg/g with the efficiency of 85%.

  5. Investigation of lipid oxidation and non-enzymatic browning reactions in marine PL emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    Marine phospholipids (PL) have received much attention recently due to their numerous advantages. One of these advantages is their better resistance towards oxidation as compared to fish oil. In addition to the antioxidative properties of α-tocopherol and phospholipids, the better oxidative...... stability of marine PL might be attributed to antioxidative properties of pyrroles formed between oxidised lipids with amine groups from phosphatidylethanolamine (PE) or residues amino acids that are present in marine PL. The main objective of this study was to investigate if the presence of amine group...... of amino acids (leucine, methionine and lysine) from 2 authentic standards (PC and PE) and 2 purified marine PL (LC and MPL) through sonication method. Emulsions were incubated at 60 ºC for 0, 2, 4 and 6 days. Non-enzymatic browning reactions were investigated through measurement of i) Strecker aldehydes...

  6. Copper-promoted methylene C-H oxidation to a ketone derivative by O2

    DEFF Research Database (Denmark)

    Deville, Claire; McKee, Vickie; McKenzie, Christine J.

    2017-01-01

    stoichiometric dpeo C-H oxidation is reminiscent of the previously observed catalysis of dpeo oxidation by Mn(ii) [C. Deville, S. K. Padamati, J. Sundberg, V. McKee, W. R. Browne, C. J. McKenzie, Angew. Chem., Int. Ed., 2016, 55, 545-549]. By contrast dpeo oxidation is not observed during complexation reactions...

  7. Non-enzymatic glucose sensing platform using self assembled cobalt oxide/graphene nanocomposites immobilized graphite modified electrode

    DEFF Research Database (Denmark)

    Vivekananth, R.; Babu, R. Suresh; Prasanna, K.

    2018-01-01

    A new strategy to prepare the densely packed cobalt oxide (Co3O4)/graphene nanocomposites by a self-assembly method were adopted in this work. A new non-enzymatic glucose determination has been fabricated by using Co3O4/graphene nanocomposites modified electrode as a sensing material. The nanocom...... of the modified electrode for glucose determination has been evaluated in urine samples....

  8. Effects of exogenous pyoverdines on Fe availability and their impacts on Mn(II) oxidation by Pseudomonas putida GB-1

    Science.gov (United States)

    Lee, Sung-Woo; Parker, Dorothy L.; Geszvain, Kati; Tebo, Bradley M.

    2014-01-01

    Pseudomonas putida GB-1 is a Mn(II)-oxidizing bacterium that produces pyoverdine-type siderophores (PVDs), which facilitate the uptake of Fe(III) but also influence MnO2 formation. Recently, a non-ribosomal peptide synthetase mutant that does not synthesize PVD was described. Here we identified a gene encoding the PVDGB-1 (PVD produced by strain GB-1) uptake receptor (PputGB1_4082) of strain GB-1 and confirmed its function by in-frame mutagenesis. Growth and other physiological responses of these two mutants and of wild type were compared during cultivation in the presence of three chemically distinct sets of PVDs (siderotypes n°1, n°2, and n°4) derived from various pseudomonads. Under iron-limiting conditions, Fe(III) complexes of various siderotype n°1 PVDs (including PVDGB-1) allowed growth of wild type and the synthetase mutant, but not the receptor mutant, confirming that iron uptake with any tested siderotype n°1 PVD depended on PputGB1_4082. Fe(III) complexes of a siderotype n°2 PVD were not utilized by any strain and strongly induced PVD synthesis. In contrast, Fe(III) complexes of siderotype n°4 PVDs promoted the growth of all three strains and did not induce PVD synthesis by the wild type, implying these complexes were utilized for iron uptake independent of PputGB1_4082. These differing properties of the three PVD types provided a way to differentiate between effects on MnO2 formation that resulted from iron limitation and others that required participation of the PVDGB-1 receptor. Specifically, MnO2 production was inhibited by siderotype n°1 but not n°4 PVDs indicating PVD synthesis or PputGB1_4082 involvement rather than iron-limitation caused the inhibition. In contrast, iron limitation was sufficient to explain the inhibition of Mn(II) oxidation by siderotype n°2 PVDs. Collectively, our results provide insight into how competition for iron via siderophores influences growth, iron nutrition and MnO2 formation in more complex environmental

  9. Bioelectrocatalytic NAD+/NADH inter-conversion: transformation of an enzymatic fuel cell into an enzymatic redox flow battery.

    Science.gov (United States)

    Quah, Timothy; Milton, Ross D; Abdellaoui, Sofiene; Minteer, Shelley D

    2017-07-25

    Diaphorase and a benzylpropylviologen redox polymer were combined to create a bioelectrode that can both oxidize NADH and reduce NAD + . We demonstrate how bioelectrocatalytic NAD + /NADH inter-conversion can transform a glucose/O 2 enzymatic fuel cell (EFC) with an open circuit potential (OCP) of 1.1 V into an enzymatic redox flow battery (ERFB), which can be rapidly recharged by operation as an EFC.

  10. Role of ligands in permanganate oxidation of organics.

    Science.gov (United States)

    Jiang, Jin; Pang, Su-Yan; Ma, Jun

    2010-06-01

    We previously demonstrated that several ligands such as phosphate, pyrophosphate, EDTA, and humic acid could significantly enhance permanganate oxidation of triclosan (one phenolic biocide), which was explained by the contribution of ligand-stabilized reactive manganese intermediates in situ formed upon permanganate reduction. To further understand the underlying mechanism, we comparatively investigated the influence of ligands on permanganate oxidation of bisphenol A (BPA, one phenolic endocrine-disrupting chemical), carbamazepine (CBZ, a pharmaceutical containing the olefinic group), and methyl p-tolyl sulfoxide (TMSO, a typical oxygen-atom acceptor). Selected ligands exerted oxidation enhancement for BPA but had negligible influence for CBZ and TMSO. This was mainly attributed to the effects of identified Mn(III) complexes, which would otherwise disproportionate spontaneously in the absence of ligands. The one-electron oxidant Mn(III) species exhibited no reactivity toward CBZ and TMSO for which the two-electron oxygen donation may be the primary oxidation mechanism but readily oxidized BPA. The latter case was a function of pH, the complexing ligand, and the molar [Mn(III)]:[ligand] ratio, generally consistent with the patterns of ligand-affected permanganate oxidation. Moreover, the combination of the one-electron reduction of Mn(III) (Mn(III) + e(-) -->Mn(II)) and the Mn(VII)/Mn(II) reaction in excess ligands (Mn(VII) + 4Mn(II) ----> (ligands) 5Mn(III)) suggested a catalytic role of the Mn(III)/Mn(II) pair in permanganate oxidation of some phenolics in the presence of ligands.

  11. Improvement of enzymatic hydrolysis and ethanol production from corn stalk by alkali and N-methylmorpholine-N-oxide pretreatments.

    Science.gov (United States)

    Cai, Ling-Yan; Ma, Yu-Long; Ma, Xiao-Xia; Lv, Jun-Min

    2016-07-01

    A combinative technology of alkali and N-methylmorpholine-N-oxide (NMMO) was used to pretreat corn stalk (CS) for improving the efficiencies of subsequent enzymatic hydrolysis and ethanol fermentation. The results showed that this strategy could not only remove hemicellulose and lignin but also decrease the crystallinity of cellulose. About 98.0% of enzymatic hydrolysis yield was obtained from the pretreated CS as compared with 46.9% from the untreated sample. The yield for corresponding ethanol yield was 64.6% while untreated CS was only 18.8%. Besides, xylose yield obtained from the untreated CS was only 11.1%, while this value was 93.8% for alkali with NMMO pretreated sample. These results suggest that a combination of alkali with 50% (wt/wt) NMMO solution may be a promising alternative for pretreatment of lignocellulose, which can increase the productions of subsequent enzymatic hydrolysis and ethanol fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Synthesis, Hirshfeld surface analyses and magnetism of a 1D Mn(II ...

    African Journals Online (AJOL)

    A new Mn-based complex of {[Mn(L)2(mi)]·H2O}n (1) (HL = p-hydroxy phenylacetic acid; mi = 1,1'-(1,4-butanediyl)bis(imidazole)), has been synthesized and structurally characterized. Single-crystal X-ray analyses reveal that compound 1 has a dinuclear Mn(II) unit linking by four carboxylate groups. The bridging N-donor ...

  13. Dual functional rhodium oxide nanocorals enabled sensor for both non-enzymatic glucose and solid-state pH sensing.

    Science.gov (United States)

    Dong, Qiuchen; Huang, Yikun; Song, Donghui; Wu, Huixiang; Cao, Fei; Lei, Yu

    2018-07-30

    Both pH-sensitive and glucose-responsive rhodium oxide nanocorals (Rh 2 O 3 NCs) were synthesized through electrospinning followed by high-temperature calcination. The as-prepared Rh 2 O 3 NCs were systematically characterized using various advanced techniques including scanning electron microscopy, X-ray powder diffraction and Raman spectroscopy, and then employed as a dual functional nanomaterial to fabricate a dual sensor for both non-enzymatic glucose sensing and solid-state pH monitoring. The sensing performance of the Rh 2 O 3 NCs based dual sensor toward pH and glucose was evaluated using open circuit potential, cyclic voltammetry and amperometric techniques, respectively. The results show that the as-prepared Rh 2 O 3 NCs not only maintain accurate and reversible pH sensitivity of Rh 2 O 3 , but also demonstrate a good electrocatalytic activity toward glucose oxidation in alkaline medium with a sensitivity of 11.46 μA mM -1 cm -2 , a limit of detection of 3.1 μM (S/N = 3), and a reasonable selectivity against various interferents in non-enzymatic glucose detection. Its accuracy in determining glucose in human serum samples was further demonstrated. These features indicate that the as-prepared Rh 2 O 3 NCs hold great promise as a dual-functional sensing material in the development of a high-performance sensor forManjakkal both solid-state pH and non-enzymatic glucose sensing. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Antioxidant and enzymatic responses to oxidative stress induced by pre-harvest water supply reduction and ripening on mango (Mangifera indica L. cv. 'Cogshall') in relation to carotenoid content

    OpenAIRE

    Rosalie , Rémy; Joas , Jacques; Deytieux-Belleau , Christelle; Vulcain , Emmanuelle; Payet , Bertrand; Dufossé , Laurent; Léchaudel , Mathieu

    2015-01-01

    International audience; The effects of a reduction in water supply during fruit development and postharvest fruit ripening on the oxidative status and the antioxidant defense system were studied in the mango fruit (Mangifera indica L.) cv. Cogshall. Changes in non-enzymatic (ascorbate) and enzymatic (SOD, CAT, APX, MDHAR, DHAR and GR) antioxidants, as well as oxidative parameters (H 2 O 2 and MDA) and major carotenoids, were measured in unripe and ripe fruits from well-irrigated and non-irrig...

  15. MWCNT-ruthenium oxide composite paste electrode as non-enzymatic glucose sensor.

    Science.gov (United States)

    Tehrani, Ramin M A; Ab Ghani, Sulaiman

    2012-01-01

    A non-enzymatic glucose sensor of multi-walled carbon nanotube-ruthenium oxide/composite paste electrode (MWCNT-RuO(2)/CPE) was developed. The electrode was characterized by using XRD, SEM, TEM and EIS. Meanwhile, cyclic voltammetry and amperometry were used to check on the performances of the MWCNT-RuO(2)/CPE towards glucose. The proposed electrode has displayed a synergistic effect of RuO(2) and MWCNT on the electrocatalytic oxidation of glucose in 3M NaOH. This was possible via the formation of transitions of two redox pairs, viz. Ru(VI)/Ru(IV) and Ru(VII)/Ru(VI). A linear range of 0.5-50mM glucose and a limit of detection of 33 μM glucose (S/N=3) were observed. There was no significant interference observable from the traditional interferences, viz. ascorbic acid and uric acid. Indeed, results so obtained have indicated that the developed MWCNT-RuO(2)/CPE would pave the way for a better future to glucose sensor development as its fabrication was without the use of any enzyme. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Enzymatic network for production of ether amines from alcohols

    NARCIS (Netherlands)

    Palacio, Cyntia M.; Crismaru, Gica Ciprian; Bartsch, Sebastian; Navickas, Vaidotas; Ditrich, Klaus; Breuer, Michael; Abu, Rohana; Woodley, John; Baldenius, Kai-Uwe; Wu, Bian; Janssen, Dick

    We constructed an enzymatic network composed of three different enzymes for the synthesis of valuable ether amines. The enzymatic reactions are interconnected to catalyze the oxidation and subsequent transamination of the substrate and to provide cofactor recycling. This allows production of the

  17. Effect of Thermal Processing towards Lipid Oxidation and Non-enzymatic Browning Reactions of Antartic Krill (Euphausia superba) Meal.

    Science.gov (United States)

    Liu, Yanzi; Cong, Peixu; Li, Beijia; Song, Yu; Liu, Yanjun; Xu, Jie; Xue, Changhu

    2018-04-13

    Antarctic krill is a huge source of biomass and prospective high-quality lipid source. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), nutritionally important lipid components with poor oxidative stability, were used as markers of oxidation during thermal processing of Antarctic krill (Euphausia superba) meal by evaluating the lipolysis, lipid oxidation, and non-enzymatic browning reactions. Liquid chromatography-mass spectrometry of the phospholipids (PLs) and the main oxidation products of free fatty acids (FFAs) and phosphatidylcholine (PC) was effective for evaluating the oxidation of EPA and DHA. During boiling, oxidation of EPA and DHA in the FFA and PC fractions and hydrolysis of the fatty acids at the sn-2 position of the PLs were predominant. The changes in PC during drying were mainly attributed to the oxidation of EPA and DHA. Heat treatment increased the oxidation products and concentration of hydrophobic pyrrole owing to pyrrolization between phosphatidylethanolamine (PE) and the lipid oxidation products. The lipid oxidation level of Antarctic krill increased after drying, owing to prolonged heating under the severe conditions. This article is protected by copyright. All rights reserved.

  18. Application of photocatalytic cadmium sulfide nanoparticles to detection of enzymatic activities of glucose oxidase and glutathione reductase using oxidation of 3,3′,5,5′-tetramethylbenzidine

    Energy Technology Data Exchange (ETDEWEB)

    Grinyte, Ruta; Garai-Ibabe, Gaizka; Saa, Laura; Pavlov, Valeri, E-mail: vpavlov@cicbiomagune.es

    2015-06-30

    Highlights: • The light-powered nanosensor fabricated by enzymatic reactions was reported. • The sensor use energy of photons for oxidation of chromogenic enzymatic substrates. • Enzymatic assays for glucose oxidase and glutathione reductase were developed. - Abstract: It was found out that semiconductor CdS nanoparticles (NPs) are able to catalyze photooxidation of the well known chromogenic enzymatic substrate 3,3′,5,5′-tetramethylbenzidine (TMB) by oxygen. The photocatalytical oxidation of TMB does not require hydrogen peroxide and its rate is directly proportional to the quantity of CdS NPs produced in situ through the interaction of Cd{sup 2+} and S{sup 2−} ions in an aqueous medium. This phenomenon was applied to development of colorimetric sensitive assays for glucose oxidase and glutathione reductase based on enzymatic generation of CdS NPs acting as light-powered catalysts. Sensitivity of the developed chromogenic assays was of the same order of magnitude or even better than that of relevant fluorogenic assays. The present approach opens the possibility for the design of simple and sensitive colorimetric assays for a number of enzymes using inexpensive and available TMB as a universal chromogenic compound.

  19. Radiolytic and enzymatic dimerization of tyrosyl residues in insulin, ribonuclease, papain and collagen

    Energy Technology Data Exchange (ETDEWEB)

    Boguta, G; Dancewicz, A M [Institute of Nuclear Research, Warsaw (Poland)

    1983-03-01

    Insulin ribonuclease, papain and collagen solutions saturated with nitrogen, N/sub 2/O or air were irradiated with doses of 10 to 640 Gy of gamma rays. Protein solutions were also oxidized enzymatically in a system of horse-radish peroxidase: hydrogen peroxide. Column chromatography (Sephadex G-75 or Sephacryl S-200) of treated protein solutions revealed that they contain protein molecular aggregates. Nitrogen saturation of solution before irradiation was most favourable for radiation-induced aggregation of proteins. Fluorescence analysis of protein solutions resulted in detection of dityrosyl structures in irradiated as well as in enzymatically oxidized proteins. Concentration of dityrosine in proteins studied was determined fluorimetrically in their hydrolysates separated on BioGel P-2 column. In irradiated proteins, dityrosine was present almost exclusively in their aggregated forms. In proteins oxidized enzymatically, dityrosine was also present in fractions containing apparently unchanged protein. Mechanisms which could account for differences in the yield of dityrosine formation in radiolysis and in enzymatic oxidation of proteins are suggested.

  20. Radiolytic and enzymatic dimerization of tyrosyl residues in insulin, ribonuclease, papain and collagen

    International Nuclear Information System (INIS)

    Boguta, G.; Dancewicz, A.M.

    1983-01-01

    Insulin ribonuclease, papain and collagen solutions saturated with nitrogen, N 2 O or air were irradiated with doses of 10 to 640 Gy of gamma rays. Protein solutions were also oxidized enzymatically in a system of horse-radish peroxidase: hydrogen peroxide. Column chromatography (Sephadex G-75 or Sephacryl S-200) of treated protein solutions revealed that they contain protein molecular aggregates. Nitrogen saturation of solution before irradiation was most favourable for radiation-induced aggregation of proteins. Fluorescence analysis of protein solutions resulted in detection of dityrosyl structures in irradiated as well as in enzymatically oxidized proteins. Concentration of dityrosine in proteins studied was determined fluorimetrically in their hydrolysates separated on BioGel P-2 column. In irradiated proteins, dityrosine was present almost exclusively in their aggregated forms. In proteins oxidized enzymatically, dityrosine was also present in fractions containing apparently unchanged protein. Mechanisms which could account for differences in the yield of dityrosine formation in radiolysis and in enzymatic oxidation of proteins are suggested. (author)

  1. Application of Local Adsorbant From Southeast Sulawesi Clay Immobilized Saccharomyces Cerevisiae Bread’s Yeast Biomass for Adsorption Of Mn(Ii) Metal Ion

    Science.gov (United States)

    R, Halimahtussaddiyah; Mashuni; Budiarni

    2017-05-01

    Southeast Sulawesi has a great stock of clay. It is probably to use as a source of adsorbent. The adsorbent capacity of clay can be largered with teratment using bread’s yeast as biomass. At this research, study of analysis adsorption of Mn(II) metal ion on clay immobilized Saccharomyces cerevisiae bread’s yeast biomass adsorbent has been conducted. The aims of this research were to determine the effects of contact time, pH and concentration of Mn(II) metal ion and to determine the adsorption capacity of clay immobilized S. cerevisiae biomass for adsorbtion of Mn(II) metal ion. Activated clay was synthesized by reaction of clay with KMnO4, H2SO4 and HCl. S. cerevisiae biomass was result by bread’s yeast mashed. Immobilization of S. cerevisiae biomass into clay was done by mixing of ratio of S. cerevisiae bread’s yeast biomass and clay equal to 1:3 (mass of biomassa : mass of clay). The adsorption capacity was determined by using Freundlich and Langmuir adsorption isoterms. The results of FTIR spectrums showed that the functional groups of clay immobilized S. cerevisiae biomass were Si-OH (wave number 1643 cm-1), Si-O-Si (wave number 1033 cm-1), N-H (wave number 2337 cm-1), O-H (wave number 3441cm-1), and C-H (wave number 2931 cm-1). The result of adsorption capacity from Mn(II) metal ion of contact time optimum 120 minutes, pH optimun at 7 and concentration optimum 50 mg/L were 1,816 mg/g; 0,509 mg/g and 2,624mg/g respectively. The adsorption capacity of Mn(II) metal ion with ratio 1:3 (biomass : clay) was 0,1045 mg/g. Type of isothermal adsorption followed the Freunlich adsorption.

  2. Evaluation of peroxidases from roots of Cyperus hermaphroditus as enzymatic mechanisms in phenanthrene oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero Zuniga, A. [Inst. Mexicano del Petroleo, Mexico City (Mexico). Environmental Protection Management Office; Rodriguez Dorantes, A.M. [Lab. Fisiologia Vegetal, Escuela Nacional de Ciencias Biologicas, Mexico City (Mexico). Depto Botanica

    2006-07-01

    Although phenanthrene is not mutagenic or carcinogenic, it has been shown to be toxic to aquatic organisms. This study evaluated in-vitro phenanthrene oxidation by peroxidases from radical extracts of Cyperus hermaphroditus plants. The characterization of oxidation products of phenanthrene related to the induction of root peroxidases was also examined. Concentrated ethanol stock of phenanthrene solution was added to the mineral solution of each plant container. The total radical biomass was placed in 4.5 ml of an ionic solution to analyze the enzymatic activity of the extracellular peroxidases. The total protein for each experiment was quantified by the Bradford method. Extracellular peroxidases activity was measured using the spectrophotometric method. The amount of radical biomass was quantified as high in the 80 and 120 ppm phenanthrene treatments relative to the control plants. It was suggested that the nature of the Cyperaceae roots combined with the high-octanol water coefficient and a low water solubility for phenanthrene may have facilitated the stabilization of the contaminant towards the roots. The ability of Cyperus hermaphroditus to immobilize phenanthrene through its adhesion was encouraged by the conditions of the hydroponic culture system. The adsorption of phenanthrene was increased with the time of exposure to the contaminant due to the greater total root mass. The study also showed the transformation of phenanthrene by radical extracts of Cyperus hermaphroditus containing guaiacol peroxidases with 12 per cent residual phenanthrene in the in vitro assays. The spectrophotometric analysis confirmed that the enzymatic systems are responsible for the phytotransformation of the pollutant. 9 refs., 2 tabs., 5 figs.

  3. In Vitro Enzymatic Reduction Kinetics of Mineral Oxides by Membrane Fractions from Shewanella oneidensis MR-1

    International Nuclear Information System (INIS)

    Ruebush, S.; Icopini, G.; Brantley, S.; Tien, M.

    2006-01-01

    This study documents the first example of in vitro solid-phase mineral oxide reduction by enzyme-containing membrane fractions. Previous in vitro studies have only reported the reduction of aqueous ions. Total membrane (TM) fractions from iron-grown cultures of Shewanella oneidensis MR-1 were isolated and shown to catalyze the reduction of goethite, hematite, birnessite, and ramsdellite/pyrolusite using formate. In contrast, nicotinamide adenine dinucleotide (NADH) and succinate cannot function as electron donors. The significant implications of observations related to this cell-free system are: (i) both iron and manganese mineral oxides are reduced by the TM fraction, but aqueous U(VI) is not; (ii) TM fractions from anaerobically grown, but not aerobically grown, cells can reduce the mineral oxides; (iii) electron shuttles and iron chelators are not needed for this in vitro reduction, documenting conclusively that reduction can occur by direct contact with the mineral oxide; (iv) electron shuttles and EDTA stimulate the in vitro Fe(III) reduction, documenting that exogenous molecules can enhance rates of enzymatic mineral reduction; and (v) multiple membrane components are involved in solid-phase oxide reduction. The membrane fractions, consisting of liposomes of cytoplasmic and outer membrane segments, contain at least 100 proteins including the enzyme that oxidizes formate, formate dehydrogenase. Mineral oxide reduction was inhibited by the addition of detergent Triton X-100, which solubilizes membranes and their associated proteins, consistent with the involvement of multiple electron carriers that are disrupted by detergent addition. In contrast, formate dehydrogenase activity was not inhibited by Triton X-100. The addition of anthraquinone-2,6-disulfonate (AQDS) and menaquinone-4 was unable to restore activity; however, menadione (MD) restored 33% of the activity. The addition of AQDS and MD to reactions without added detergent increased the rate of goethite

  4. Impact of primary amine group from aminophospholipids and amino acids on marine phospholipids stability: Non-enzymatic browning and lipid oxidation

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2013-01-01

    The main objective of this study was to investigate the oxidative stability and non-enzymatic browning reactions of marine PL in the presence or in the absence of primary amine group from aminophospholipids and amino acids. Marine phospholipids liposomal dispersions were prepared from two authentic......) Strecker derived volatiles, (ii) yellowness index (YI), (iii) hydrophobic and (iv) hydrophilic pyrroles content. The oxidative stability of the samples was assessed through measurement of secondary lipid derived volatile oxidation products. The result showed that the presence of PE and amino acids caused...... the formation of pyrroles, generated Strecker derived volatiles, decreased the YI development and lowered lipid oxidation. The lower degree of lipid oxidation in liposomal dispersions containing amino acids might be attributed to antioxidative properties of pyrroles or amino acids....

  5. Anticancer system created by acrolein and hydroxyl radical generated in enzymatic oxidation of spermine and other biochemical reactions.

    Science.gov (United States)

    Alarcon, R A

    2012-10-01

    A hypothesis suggesting the existence of a ubiquitous physiological anticancer system created by two highly reactive oxidative stress inducers with anticancer properties, acrolein and hydroxyl radical, is reported in this communication. Both components can originate separately or together in several biochemical interactions, among them, the enzymatic oxidation of the polyamine spermine, which appear to be their main source. The foundations of this hypothesis encompass our initial search for growth-inhibitors or anticancer compounds in biological material leading to the isolation of spermine, a polyamine that became highly cytotoxic through the generation of acrolein, when enzymatically oxidized. Findings complemented with pertinent literature data by other workers and observed anticancer activities by sources capable of producing acrolein and hydroxyl radical. This hypothesis obvious implication: spermine enzymatic oxidations or other biochemical interactions that would co-generate acrolein and hydroxyl radical, the anticancer system components, should be tried as treatments for any given cancer. The biochemical generation of acrolein observed was totally unexpected, since this aldehyde was known; as a very toxic and highly reactive xenobiotic chemical produced in the pyrolysis of fats and other organic material, found as an atmospheric pollutant, in tobacco smoke and car emissions, and mainly used as a pesticide or aquatic herbicide. Numerous studies on acrolein, considered after our work a biological product, as well, followed. In them, acrolein widespread presence, its effects on diverse cellular proteins, such as, growth factors, and its anticancer activities, were additionally reported. Regarding hydroxyl radical, the second component of the proposed anticancer system, and another cytotoxic product in normal cell metabolism, it co-generates with acrolein in several biochemical interactions, occurrences suggesting that these products might jointly fulfill some

  6. Study of manganese binding to the ferroxidase centre of human H-type ferritin.

    Science.gov (United States)

    Ardini, Matteo; Howes, Barry D; Fiorillo, Annarita; Falvo, Elisabetta; Sottini, Silvia; Rovai, Donella; Lantieri, Marco; Ilari, Andrea; Gatteschi, Dante; Spina, Gabriele; Chiancone, Emilia; Stefanini, Simonetta; Fittipaldi, Maria

    2018-05-01

    Ferritins are ubiquitous and conserved proteins endowed with enzymatic ferroxidase activity, that oxidize Fe(II) ions at the dimetal ferroxidase centre to form a mineralized Fe(III) oxide core deposited within the apo-protein shell. Herein, the in vitro formation of a heterodimetal cofactor constituted by Fe and Mn ions has been investigated in human H ferritin (hHFt). Namely, Mn and Fe binding at the hHFt ferroxidase centre and its effects on Fe(II) oxidation have been investigated by UV-Vis ferroxidation kinetics, fluorimetric titrations, multifrequency EPR, and preliminary Mössbauer spectroscopy. Our results show that in hHFt, both Fe(II) and Mn(II) bind the ferroxidase centre forming a Fe-Mn cofactor. Moreover, molecular oxygen seems to favour Mn(II) binding and increases the ferroxidation activity of the Mn-loaded protein. The data suggest that Mn influences the Fe binding and the efficiency of the ferroxidation reaction. The higher efficiency of the Mn-Fe heterometallic centre may have a physiological relevance in specific cell types (i.e. glia cells), where the concentration of Mn is the same order of magnitude as iron. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Enzymatic approaches to rare sugar production.

    Science.gov (United States)

    Zhang, Wenli; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    Rare sugars have recently attracted much attention because of their potential applications in the food, nutraceutical, and pharmaceutical industries. A systematic strategy for enzymatic production of rare sugars, named Izumoring, was developed >10years ago. The strategy consists of aldose-ketose isomerization, ketose C-3 epimerization, and monosaccharide oxidation-reduction. Recent development of the Izumoring strategy is reviewed herein, especially the genetic approaches to the improvement of rare sugar-producing enzymes and the applications of target-oriented bioconversion. In addition, novel non-Izumoring enzymatic approaches are also summarized, including enzymatic condensation, phosphorylation-dephosphorylation cascade reaction, aldose epimerization, ulosonic acid decarboxylation, and biosynthesis of rare disaccharides. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH

    Science.gov (United States)

    Mayanna, Sathish; Peacock, Caroline L.; Schäffner, Franziska; Grawunder, Anja; Merten, Dirk; Kothe, Erika; Büchel, Georg

    2014-05-01

    The precipitation of biogenic Mn oxides at acidic pH is rarely reported and poorly understood, compared to biogenic Mn oxide precipitation at near neutral conditions. Here we identified and investigated the precipitation of biogenic Mn oxides in acidic soil, and studied their role in the retention of heavy metals, at the former uranium mining site of Ronneburg, Germany. The site is characterized by acidic pH, low carbon content and high heavy metal loads including rare earth elements. Specifically, the Mn oxides were present in layers identified by detailed soil profiling and within these layers pH varied from 4.7 to 5.1, Eh varied from 640 to 660 mV and there were enriched total metal contents for Ba, Ni, Co, Cd and Zn in addition to high Mn levels. Using electron microprobe analysis, synchrotron X-ray diffraction and X-ray absorption spectroscopy, we identified poorly crystalline birnessite (δ-MnO2) as the dominant Mn oxide in the Mn layers, present as coatings covering and cementing quartz grains. With geochemical modelling we found that the environmental conditions at the site were not favourable for chemical oxidation of Mn(II), and thus we performed 16S rDNA sequencing to isolate the bacterial strains present in the Mn layers. Bacterial phyla present in the Mn layers belonged to Firmicutes, Actinobacteria and Proteobacteria, and from these phyla we isolated six strains of Mn(II) oxidizing bacteria and confirmed their ability to oxidise Mn(II) in the laboratory. The biogenic Mn oxide layers act as a sink for metals and the bioavailability of these metals was much lower in the Mn layers than in adjacent layers, reflecting their preferential sorption to the biogenic Mn oxide. In this presentation we will report our findings, concluding that the formation of natural biogenic poorly crystalline birnessite can occur at acidic pH, resulting in the formation of a biogeochemical barrier which, in turn, can control the mobility and bioavailability of heavy metals in

  9. Synthesis and characterisation of Cu(II), Ni(II), Mn(II), Zn(II) and VO(II ...

    Indian Academy of Sciences (India)

    Unknown

    Synthesis and characterisation of Cu(II), Ni(II), Mn(II), Zn(II) and VO(II) Schiff base complexes derived from o-phenylenediamine and acetoacetanilide. N RAMAN*, Y PITCHAIKANI RAJA and A KULANDAISAMY. Department of Chemistry, VHNSN College, Virudhunagar 626 001, India e-mail: ra_man@123india.com.

  10. Synthesis and spectroscopic studies of biologically active tetraazamacrocyclic complexes of Mn(II, Co(II, Ni(II, Pd(II and Pt(II

    Directory of Open Access Journals (Sweden)

    Monika Tyagi

    2014-01-01

    Full Text Available Complexes of Mn(II, Co(II, Ni(II, Pd(II and Pt(II were synthesized with the macrocyclic ligand, i.e., 2,3,9,10-tetraketo-1,4,8,11-tetraazacycoletradecane. The ligand was prepared by the [2 + 2] condensation of diethyloxalate and 1,3-diamino propane and characterized by elemental analysis, mass, IR and 1H NMR spectral studies. All the complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, IR, electronic and electron paramagnetic resonance spectral studies. The molar conductance measurements of Mn(II, Co(II and Ni(II complexes in DMF correspond to non electrolyte nature, whereas Pd(II and Pt(II complexes are 1:2 electrolyte. On the basis of spectral studies an octahedral geometry has been assigned for Mn(II, Co(II and Ni(II complexes, whereas square planar geometry assigned for Pd(II and Pt(II. In vitro the ligand and its metal complexes were evaluated against plant pathogenic fungi (Fusarium odum, Aspergillus niger and Rhizoctonia bataticola and some compounds found to be more active as commercially available fungicide like Chlorothalonil.

  11. Physical and oxidative stability of fish oil-in-water emulsions fortified with enzymatic hydrolysates from common carp (Cyprinus carpio) roe

    DEFF Research Database (Denmark)

    Ghelichi, Sakhi; Sørensen, Ann-Dorit Moltke; García Moreno, Pedro Jesús

    2017-01-01

    Physical and oxidative stability of 5% (by weight) cod liver oil-in-water emulsions fortified with common carp (C. carpio) roe protein hydrolysate (CRPH) were examined. CRPH was obtained by enzymatic hydrolysis of discarded roe by using Alcalase 2.4 L for 30, 60, 90, and 120 min to yield different...

  12. ENZYMATIC AND NON-ENZYMATIC ANTIOXIDANT DEFENSE WITH ALZHEIMER DISEASE1

    Directory of Open Access Journals (Sweden)

    A. Vaisi-Raygani

    2007-07-01

    Full Text Available The etiopathogenesis of Alzheimer's disease (AD is still unclear.  However, long-term oxidative stress is believed to be one of the major contributing factors in progression of neuronal degeneration and decline of cognitive function in AD. In order to assess the presence of oxidative stress in AD, we examined the enzymatic activities of the erythrocyte Cu-Zn superoxide dismutase (Cu-Zn SOD, glutathione peroxidase (GSH-Px, catalase (CAT, and plasma level of total antioxidant status (TAS in AD and control groups (age and sex-matched. The results showed that the Cu-Zn SOD activity was significantly higher and the level of GSH-Px and TAS activities were significantly lower in AD subjects than that in the control group (2111 ± 324 U/grHb, 43.7 ± 11.6 U/grHb, and 1.17 ± 0.23 mmol/l compared with 1371 ± 211 U/grHb; t= -2.17, P = 0.036, 56.3 ± 9.5 U/grHb; t=3.8, P = 0.014, and 1.54±0.2 mmol/l; t=11.18, P < 0.001, respectively.  While, the erythrocyte CAT activity was lower in AD subjects compared to the control group, the difference was not statistically significant (t = 1.3, P = 0.15. These findings support the idea that the oxidative stress plays an important role in the pathogenesis underlying AD neurodegeneration. In addition, the enzymatic activity of the erythrocyte Cu-Zn SOD and GSH-Px and the plasma level of TAS can be used as a measure of the oxidative stress and a marker for pathological changes in the brain of patients with AD. 

  13. ASSOCIATION BETWEEN ENZYMATIC AND NON-ENZYMATIC ANTIOXIDANT DEFENSE WITH ALZHEIMER DISEASE

    Directory of Open Access Journals (Sweden)

    A. Vaisi-Raygani

    2008-04-01

    Full Text Available The etiopathogenesis of dementia in Alzheimer's disease (AD is still unclear. However, long-term oxidative stress is believed to be one of the major contributing factors in progression of neuronal degeneration and decline of cognitive function in AD. In order to assess the presence of oxidative stress in AD, we examined the enzymatic activities of the erythrocyte Cu-Zn superoxide dismutase (Cu-Zn SOD, glutathione peroxidase (GSH-Px, catalase (CAT, and plasma level of total antioxidant status (TAS in AD and control groups (age and sex-matched. The results showed that the Cu-Zn SOD activity was significantly higher and the level of GSH-Px and TAS activities were significantly lower in AD subjects than that in the control group (2111±324 U/grHb, 43.7±11.6 U/grHb, and 1.17 ±0.23 mmol/L compared with 1371±211 U/gHb; t= -2.17, p=0.036, 56.3±9.5 U/gHb; t=3.8, p=0.014, and 1.54±0.2 mmol/L; t=11.18, P<0.001, respectively. While, the erythrocyte CAT activity was lower in AD subjects compared to the control group, the difference was not statistically significant (t=1.3, P=0.15. These findings support the idea that the oxidative stress plays an important role in the pathogenesis underlying AD neurodegeneration. In addition, the enzymatic activity of the erythrocyte Cu-Zn SOD and GSH-Px and the plasma level of TAS can be used as a measure of the oxidative stress and a marker for pathological changes in the brain of patients with AD.

  14. Chemo-enzymatic Baeyer-Villiger oxidation of 4-methylcyclohexanone via kinetic resolution of racemic carboxylic acids: direct access to enantioenriched lactone.

    Science.gov (United States)

    Drożdż, Agnieszka; Chrobok, Anna

    2016-01-21

    A new method for the asymmetric chemo-enzymatic Baeyer-Villiger oxidation of prochiral 4-methylcyclohexanone to (R)-4-methylcaprolactone in the presence of (±)-4-methyloctanoic acid, Candida Antarctica lipase B and 30% aq. H2O2 has been developed. A mechanism for the asymmetric induction based on kinetic resolution of racemic carboxylic acids is proposed.

  15. Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions.

    Science.gov (United States)

    Vaghetti, Julio C P; Lima, Eder C; Royer, Betina; da Cunha, Bruna M; Cardoso, Natali F; Brasil, Jorge L; Dias, Silvio L P

    2009-02-15

    In the present study we reported for the first time the feasibility of pecan nutshell (PNS, Carya illinoensis) as an alternative biosorbent to remove Cu(II), Mn(II) and Pb(II) metallic ions from aqueous solutions. The ability of PNS to remove the metallic ions was investigated by using batch biosorption procedure. The effects such as, pH, biosorbent dosage on the adsorption capacities of PNS were studied. Four kinetic models were tested, being the adsorption kinetics better fitted to fractionary-order kinetic model. Besides that, the kinetic data were also fitted to intra-particle diffusion model, presenting three linear regions, indicating that the kinetics of adsorption should follow multiple sorption rates. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. Taking into account a statistical error function, the data were best fitted to Sips isotherm model. The maximum biosorption capacities of PNS were 1.35, 1.78 and 0.946mmolg(-1) for Cu(II), Mn(II) and Pb(II), respectively.

  16. Comparative studies on P-vanillin and O-vanillin of 2-hydrazinyl-2-oxo-N-phenylacetamide and their Mn(II) and Co(II) complexes

    Science.gov (United States)

    Yousef, T. A.; El-Reash, G. M. Abu; El-Tabai, M. N.

    2018-05-01

    Synthesis of complexes derived from hydrazones derived from both P-vanillin (H2L1) and its isomer O-vanillin (H2L2) of 2-hydrazinyl-2-oxo-N-phenylacetamide that coordinated with high magnetic metal ions of both Mn(II) and Co(II) were performed and characterized by different physicochemical methods, elemental analysis, (1H NMR, IR, and UV-visible spectra), also thermal analysis (TG and DTG) techniques and magnetic measurements. The molecular structures of the ligands and their Mn(II) and Co(II) complexes were optimized theoretically and the quantum chemical parameters were calculated. IR spectra suggest that the H2L1 behaved in a mononegative bidentate manner with both but H2L2 coordinated as mononegative tridentate with both Mn(II) and Co(II). The electronic spectra of the complexes as well as their magnetic moments suggested octahedral geometries for all the isolated complexes. The calculated values of binding energies indicated the stability of complexes is higher than that of ligand. The kinetic and thermodynamic parameters for the different decomposition steps in complexes were calculated using Coats-Redfern and Horowitz-Metzger equations. Moreover, the prepared ligands and their Mn(II) and Co(II) complexes were individually tested against a panel of gram positive Bacillus Subtilis and negative Escherichia coli microscopic organisms. Additionally cytotoxicity assay of two human tumor cell lines namely; hepatocellular carcinoma (liver) HePG-2, and mammary gland (breast) MCF-7 were tested.

  17. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  18. Non-Enzymatic Glucose Sensing Using Carbon Quantum Dots Decorated with Copper Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Houcem Maaoui

    2016-10-01

    Full Text Available Perturbations in glucose homeostasis is critical for human health, as hyperglycemia (defining diabetes leads to premature death caused by macrovascular and microvascular complications. However, the simple and accurate detection of glucose in the blood at low cost remains a challenging task, although it is of great importance for the diagnosis and therapy of diabetic patients. In this work, carbon quantum dots decorated with copper oxide nanostructures (CQDs/Cu2O are prepared by a simple hydrothermal approach, and their potential for electrochemical non-enzymatic glucose sensing is evaluated. The proposed sensor exhibits excellent electrocatalytic activity towards glucose oxidation in alkaline solutions. The glucose sensor is characterized by a wide concentration range from 6 µM to 6 mM, a sensitivity of 2.9 ± 0.2 µA·µM−1·cm−2, and a detection limit of 6 µM at a signal-to-noise ratio S/N = 3. The sensors are successfully applied for glucose determination in human serum samples, demonstrating that the CQDs/Cu2O-based glucose sensor satisfies the requirements of complex sample detection with adapted potential for therapeutic diagnostics.

  19. Processing surface sizing starch using oxidation, enzymatic hydrolysis and ultrasonic treatment methods--Preparation and application.

    Science.gov (United States)

    Brenner, Tobias; Kiessler, Birgit; Radosta, Sylvia; Arndt, Tiemo

    2016-03-15

    The surface application of starch is a well-established method for increasing paper strength. In surface sizing, a solution of degraded starch is applied to the paper. Two procedures have proved valuable for starch degradation in the paper mill: enzymatic and thermo-oxidative degradation. The objective of this study was to determine achievable efficiencies of cavitation in preparing degraded starch for surface application on paper. It was found that ultrasonic-assisted starch degradation can provide a starch solution that is suitable for surface sizing. The molecular composition of starch solutions prepared by ultrasonic treatment differed from that of starch solutions degraded by enzymes or by thermo-oxidation. Compared to commercial degradation processes, this resulted in intensified film formation and in greater penetration during surface sizing and ultimately in a higher starch content of the paper. Paper sized with ultrasonically treated starch solutions show the same strength properties compared to commercially sized paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. 3D-copper oxide and copper oxide/few-layer graphene with screen printed nanosheet assembly for ultrasensitive non-enzymatic glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhimei [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Advanced Materials and Printed Electronics Center, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Pan, Peng, E-mail: panpeny@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Advanced Materials and Printed Electronics Center, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Liu, Xuewen [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Advanced Materials and Printed Electronics Center, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Yang, Zhengchun; Wei, Jun [Advanced Materials and Printed Electronics Center, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Wei, Zhen, E-mail: weizhenxinxi@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Advanced Materials and Printed Electronics Center, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China)

    2017-02-01

    Screen-printed copper oxide (CuO) and CuO/few-layer graphene on graphite electrodes were used to fabricate the ultrasensitive nonenzymatic glucose biosensors. Flower-like CuO and flower-like CuO/few-layer graphene composites were prepared by screen-printing method and characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HETEM). On the basis of their cyclic voltammetry (CV) and chronoamperometry results, it was concluded that the addition of graphene to CuO significantly improved the performance of the fabricated glucose sensors, exhibiting high and reproducible sensitivity of 3120 μAmM{sup −1} cm{sup −2} with three linear ranges from 4 μM to 13.5 mM and the detection limit of 4 μM (S/N = 3) in a fast response time of 2 s. In addition, the fabricated sensors could effectively avoid the disturbance by interferents, such as Ascorbic Acid (AA), Uric Acid (UA), and Dopamine (DA). Most importantly, the testing results of real blood serum samples demonstrated that the electrodes were applicable and acceptable for the determination of glucose concentrations in human serum. The efficiencies of two non-enzymatic glucose biosensors for glucose determination were comparable with that of a commercial enzymatic sensor. - Highlights: • The method 2D nanosheet turns to 3D microflower by using screen printing was proposed. • Few-layer graphene added improved the sensor’s performance on base of CuO functional material. • Two ultrasensitive non-enzymatic glucose sensors were successfully fabricated. • The proposed sensor shows a high sensitivity of 3120 μA mM{sup −1} cm{sup −2}.

  1. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.

    Science.gov (United States)

    Lovley, D R; Phillips, E J

    1988-06-01

    A dissimilatory Fe(III)- and Mn(IV)-reducing microorganism was isolated from freshwater sediments of the Potomac River, Maryland. The isolate, designated GS-15, grew in defined anaerobic medium with acetate as the sole electron donor and Fe(III), Mn(IV), or nitrate as the sole electron acceptor. GS-15 oxidized acetate to carbon dioxide with the concomitant reduction of amorphic Fe(III) oxide to magnetite (Fe(3)O(4)). When Fe(III) citrate replaced amorphic Fe(III) oxide as the electron acceptor, GS-15 grew faster and reduced all of the added Fe(III) to Fe(II). GS-15 reduced a natural amorphic Fe(III) oxide but did not significantly reduce highly crystalline Fe(III) forms. Fe(III) was reduced optimally at pH 6.7 to 7 and at 30 to 35 degrees C. Ethanol, butyrate, and propionate could also serve as electron donors for Fe(III) reduction. A variety of other organic compounds and hydrogen could not. MnO(2) was completely reduced to Mn(II), which precipitated as rhodochrosite (MnCO(3)). Nitrate was reduced to ammonia. Oxygen could not serve as an electron acceptor, and it inhibited growth with the other electron acceptors. This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe(III) or Mn(IV) reduction can yield energy for microbial growth. GS-15 provides a model for how enzymatically catalyzed reactions can be quantitatively significant mechanisms for the reduction of iron and manganese in anaerobic environments.

  2. Reactivity of biogenic manganese oxide for metal sequestration and photochemistry: Computational solid state physics study

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, K.D.; Sposito, G.

    2010-02-01

    Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

  3. Non-enzymatic lipid oxidation products in biological systems: assessment of the metabolites from polyunsaturated fatty acids.

    Science.gov (United States)

    Vigor, Claire; Bertrand-Michel, Justine; Pinot, Edith; Oger, Camille; Vercauteren, Joseph; Le Faouder, Pauline; Galano, Jean-Marie; Lee, Jetty Chung-Yung; Durand, Thierry

    2014-08-01

    Metabolites of non-enzymatic lipid peroxidation of polyunsaturated fatty acids notably omega-3 and omega-6 fatty acids have become important biomarkers of lipid products. Especially the arachidonic acid-derived F2-isoprostanes are the classic in vivo biomarker for oxidative stress in biological systems. In recent years other isoprostanes from eicosapentaenoic, docosahexaenoic, adrenic and α-linolenic acids have been evaluated, namely F3-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes and F1-phytoprostanes, respectively. These have been gaining interest as complementary specific biomarkers in human diseases. Refined extraction methods, robust analysis and elucidation of chemical structures have improved the sensitivity of detection in biological tissues and fluids. Previously the main reliable instrumentation for measurement was gas chromatography-mass spectrometry (GC-MS), but now the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunological techniques is gaining much attention. In this review, the types of prostanoids generated from non-enzymatic lipid peroxidation of some important omega-3 and omega-6 fatty acids and biological samples that have been determined by GC-MS and LC-MS/MS are discussed. Copyright © 2014. Published by Elsevier B.V.

  4. Enzymatically and chemically oxidized lignin nanoparticles for biomaterial applications.

    Science.gov (United States)

    Mattinen, Maija-Liisa; Valle-Delgado, Juan José; Leskinen, Timo; Anttila, Tuomas; Riviere, Guillaume; Sipponen, Mika; Paananen, Arja; Lintinen, Kalle; Kostiainen, Mauri; Österberg, Monika

    2018-04-01

    Cross-linked and decolorized lignin nanoparticles (LNPs) were prepared enzymatically and chemically from softwood Kraft lignin. Colloidal lignin particles (CLPs, ca. 200 nm) in a non-malodorous aqueous dispersion could be dried and redispersed in tetrahydrofuran (THF) or in water retaining their stability i.e. spherical shape and size. Two fungal laccases, Trametes hirsuta (ThL) and Melanocarpus albomyces (MaL) were used in the cross-linking reactions. Reactivity of ThL and MaL on Lignoboost™ lignin and LNPs was confirmed by high performance size exclusion chromatography (HPSEC) and oxygen consumption measurements with simultaneous detection of red-brown color due to the formation of quinones. Zeta potential measurements verified oxidation of LNPs via formation of surface-oriented carboxylic acid groups. Dynamic light scattering (DLS) revealed minor changes in the particle size distributions of LNPs after laccase catalyzed radicalization, indicating preferably covalent intraparticular cross-linking over polymerization. Changes in the surface morphology of laccase treated LNPs were imaged by atomic force (AFM) and transmission emission (TEM) microscopy. Furthermore, decolorization of LNPs without degradation was obtained using ultrasonication with H 2 O 2 in alkaline reaction conditions. The research results have high impact for the utilization of Kraft lignin as nanosized colloidal particles in advanced bionanomaterial applications in medicine, foods and cosmetics including different sectors from chemical industry. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Antioxidant and enzymatic responses to oxidative stress induced by pre-harvest water supply reduction and ripening on mango (Mangifera indica L. cv. 'Cogshall') in relation to carotenoid content.

    Science.gov (United States)

    Rosalie, Rémy; Joas, Jacques; Deytieux-Belleau, Christelle; Vulcain, Emmanuelle; Payet, Bertrand; Dufossé, Laurent; Léchaudel, Mathieu

    2015-07-20

    The effects of a reduction in water supply during fruit development and postharvest fruit ripening on the oxidative status and the antioxidant defense system were studied in the mango fruit (Mangifera indica L.) cv. Cogshall. Changes in non-enzymatic (ascorbate) and enzymatic (SOD, CAT, APX, MDHAR, DHAR and GR) antioxidants, as well as oxidative parameters (H2O2 and MDA) and major carotenoids, were measured in unripe and ripe fruits from well-irrigated and non-irrigated trees. Under non-limiting water supply conditions, ripening induced oxidation as a result of the production of ROS and decreased ascorbate content. Antioxidant enzymatic systems were activated to protect fruit tissues and to regenerate the ascorbate pool. The carotenoid pool, mainly represented by β-carotene and esterified violaxanthine isomers, accumulated naturally during mango ripening. The suppression of irrigation decreased fruit size and induced accumulation of ABA and of its storage form, ABA-GE, in fruit pulp from the earliest harvest. It also increased oxidation, which was observable by the high levels of ascorbate measured at the early stages at harvest, and by the delay in the time it took to reach the pseudo constant carotene-to-xanthophyll ratio in ripe fruits. Nevertheless, differences between the irrigation treatments on the antioxidant system in ripe fruits were not significant, mainly because of the drastic changes in this system during ripening. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

    Directory of Open Access Journals (Sweden)

    Matthias Augustin

    2015-01-01

    Full Text Available Manganese oxides are one of the most important groups of materials in energy storage science. In order to fully leverage their application potential, precise control of their properties such as particle size, surface area and Mnx+ oxidation state is required. Here, Mn3O4 and Mn5O8 nanoparticles as well as mesoporous α-Mn2O3 particles were synthesized by calcination of Mn(II glycolate nanoparticles obtained through an economical route based on a polyol synthesis. The preparation of the different manganese oxides via one route facilitates assigning actual structure–property relationships. The oxidation process related to the different MnOx species was observed by in situ X-ray diffraction (XRD measurements showing time- and temperature-dependent phase transformations occurring during oxidation of the Mn(II glycolate precursor to α-Mn2O3 via Mn3O4 and Mn5O8 in O2 atmosphere. Detailed structural and morphological investigations using transmission electron microscopy (TEM and powder XRD revealed the dependence of the lattice constants and particle sizes of the MnOx species on the calcination temperature and the presence of an oxidizing or neutral atmosphere. Furthermore, to demonstrate the application potential of the synthesized MnOx species, we studied their catalytic activity for the oxygen reduction reaction in aprotic media. Linear sweep voltammetry revealed the best performance for the mesoporous α-Mn2O3 species.

  7. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility

    DEFF Research Database (Denmark)

    Varga, E.; Schmidt, A.S.; Reczey, K.

    2003-01-01

    was about 85%. Decreasing the hydrolysis temperature to 40degreesC increased hydrolysis time from 24 to 72 h. Decreasing the enzyme loading to 5 FPU/g of DM biomass slightly decreased the enzymatic conversion from 83.4 to 71%. Thus, enzyme loading can be reduced without significantly affecting......) was investigated to enhance the enzymatic digestibility of corn stover. Six different combinations of reaction temperature, time, and pH were applied. The best conditions (60 g/L of corn stover, 195degreesC, 15 min, 12 bar O-2, 2 g/L of Na2CO) increased the enzymatic conversion of corn stover four times, compared...... to untreated material. Under these conditions 60% of hemicellulose and 30% of lignin were solubilized, whereas 90% of cellulose remained in the solid fraction. After 24-h hydrolysis at 50degreesC using 25 filter paper units (FPU)/g of drymatter (DM) biomass, the achieved conversion of cellulose to glucose...

  8. Vertically grown zinc oxide nanorods functionalized with ferric oxide for in vivo and non-enzymatic glucose detection

    Science.gov (United States)

    Marie, Mohammed; Manoharan, Anishkumar; Kuchuk, Andrian; Ang, Simon; Manasreh, M. O.

    2018-03-01

    An enzyme-free glucose sensor based on vertically grown zinc oxide nanorods (NRs) functionalized with ferric oxide (Fe2O3) is investigated. The well-aligned and high density ZnO NRs were synthesized on an FTO/glass substrate by a sol-gel and hydrothermal growth method. A dip-coating technique was utilized to modify the surface of the as-grown ZnO NRs with Fe2O3. The immobilized surface was coated with a layer of nafion membrane. The fabricated glucose sensor was characterized amperometrically at room temperature using three electrodes stationed in the phosphate buffer solution, where ZnO NRs/Fe2O3/nafion membrane was the sensing or working electrode, and platinum plate and silver/silver chloride were used as the counter and reference electrodes, respectively. The proposed non-enzymatic and modified glucose sensor exhibited a high sensitivity in the order of 0.052 μA cm-2 (mg/dL)-1, a lower detection limit of around 0.95 mmol L-1, a sharp and fast response time of ˜1 s, and a linear response to changes in glucose concentrations from 100-400 mg dL-1. The linear amperometric response of the sensor covers the physiological and clinical interest of glucose levels for diabetic patients. The device continues to function accurately after multiple measurements with a good reproducibility. The proposed glucose sensor is expected to be used clinically for in vivo monitoring of glucose.

  9. Impact of environmental chemistry on mycogenic Mn oxide minerals

    Science.gov (United States)

    Santelli, C. M.; Farfan, G. A.; Post, A.; Post, J. E.

    2012-12-01

    Manganese (Mn) oxide minerals are ubiquitous in aquatic and terrestrial environments and their presence can have broad environmental consequences. In particular, Mn oxides scavenge nutrients and metals, degrade complex organics, and oxidize a variety of inorganic contaminants. The "reactivity" of Mn oxides, however, is highly dependent upon crystallite size, composition, and structure, which are largely determined by environmental factors such as solution chemistry. It is has been suggested that most Mn oxides in terrestrial and aquatic environments are formed by microbial activity; indeed, a diversity of Mn(II)-oxidizing bacteria and fungi have been isolated and their mineral byproducts are consistent with those observed in natural systems. Previous studies showed that Mn(II)-oxidizing Ascomycete fungi produce highly-disordered, nanocrystalline Mn oxides that are structurally similar to synthetic δ-MnO2 or natural vernadite. Unlike related studies with Mn-oxidizing bacteria, Mn oxides produced by these fungi did not "age" or transform to more crystalline mineral phases with time. We hypothesize that fungal growth conditions, in particular the low concentration of cations, are inhibiting secondary mineral formation. The overall goal of this research is to examine the structure and speciation of fungally-precipitated Mn oxides with respect to fungal species, time, and concentration of soluble Mn(II), Na, and Ca - three environmentally relevant cations that promote the transformation of δ-MnO2 to more crystalline mineral phases such as feitknechtite, birnessite, or ranciéite. For this study, we examined the Mn oxides formed by different species of Mn(II)-oxidizing fungi (Pyrenochaeta sp., Stagonospora sp., Plectosphaerella cucumerina., and Acremonium strictum). Isolates were grown for 8 or 16 days in a nutrient lean media consisting of yeast extract, trace elements and 0.2 mM MnCl2 supplemented with varying concentrations of Na, Ca, or Mn(II) compounds. The

  10. Self-assembled decanuclear Na(I)2Mn(II)4Mn(III)4 complexes: from discrete clusters to 1-D and 2-D structures, with the Mn(II)4Mn(III)4 unit displaying a large spin ground state and probable SMM behaviour.

    Science.gov (United States)

    Langley, Stuart K; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S

    2011-12-07

    The synthesis, magnetic characterization and X-ray crystal structures are reported for five new manganese compounds, [Mn(III)(teaH(2))(sal)]·(1/2)H(2)O (1), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(4)]·6MeOH (2), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·7MeOH (3), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·2MeOH·Et(2)O (4) and [K(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(H(2)O)(2)](n)·5MeOH (5). Complex 1 is a mononuclear compound, formed via the reaction of Mn(NO(3))(2)·4H(2)O, triethanolamine (teaH(3)) and salicylic acid (salH(2)) in a basic methanolic solution. Compound 2 is a mixed-valent hetero-metallic cluster made up of a Mn(8)Na(2) decanuclear core and is formed via the reaction of sodium azide (NaN(3)) with 1. Compounds 3-5 are isolated as 1- or 2-D coordination polymers, each containing the decanuclear Mn(8)M(2) (M = Na(+) or K(+)) core building block as the repeating unit. Compound 3 is isolated when 1 is reacted with NaN(3) over a very short reaction time and forms a 1-D coordination polymer. Each unit displays inter-cluster bridges via the O-atoms of teaH(2-) ligands bonding to the sodium ions of an adjacent cluster. Increasing the reaction time appears to drive the formation of 4 which forms 2-D polymeric sheets and is a packing polymorph of 3. The addition of KMnO(4) and NaN(3) to 1 resulted in compound 5, which also forms a 1-D coordination polymer of the decanuclear core unit. The 1-D chains are now linked via inter-cluster potassium and salicylate bridges. Solid state DC susceptibility measurements were performed on compounds 1-5. The data for 1 are as expected for an S = 2 Mn(III) ion, with the isothermal M vs. H data being fitted by matrix diagonalization methods to give values of g and the axial (D) and rhombic (E) zero field splitting parameters of 2.02, -2.70 cm(-1) and 0.36 cm(-1) respectively. The data for 2-5, each with an identical Mn(II)(4)Mn(III)(4

  11. Effect of Cadmium Stress on Non-enzymatic Antioxidant and Nitric Oxide Levels in Two Varieties of Maize (Zea mays).

    Science.gov (United States)

    Akinyemi, Ayodele Jacob; Faboya, Oluwabamise Lekan; Olayide, Israel; Faboya, Opeyemi Ayodeji; Ijabadeniyi, Tosin

    2017-06-01

    Cadmium (Cd) is one of the most toxic heavy metals that inhibit physiological processes of plants. Hence, the present study sought to investigate the effect of cadmium-contaminated seeds from two varieties of maize (Zea mays) on non-enzymatic antioxidant and nitric oxide levels. Seeds of yellow and white maize were exposed to different concentrations of Cd (0, 1, 3 and 5 ppm) for two weeks. The results from this study revealed that both varieties of maize bio-accumulate Cd in leaves in a dose-dependent manner. In addition, Cd exposure caused a significant (p < 0.05) decrease in total phenolic, GSH and nitric oxide (NO) levels at the highest concentration tested when compared with control. Therefore, the observed decrease in NO and endogenous antioxidant status by Cd treatment in maize plants could suggest some possible mechanism of action for Cd-induced oxidative stress and counteracting effect of the plants against Cd toxicity.

  12. Enzymatic hydrolysis of cellulose dissolved in N-methyl morpholine oxide/water solutions.

    Science.gov (United States)

    Ramakrishnan, S; Collier, J; Oyetunji, R; Stutts, B; Burnett, R

    2010-07-01

    In situ hydrolysis of cellulose (dissolving pulp) in N-methyl morpholine oxide (NMMO) solutions by commercially available Accellerase1000 is carried out. The yield of reducing sugars is followed as a function of time at three different temperatures and four different enzyme loadings to study the effect of system parameters on enzymatic hydrolysis. Initial results show that rates of hydrolysis of cellulose and yields of reducing sugars in the presence of NMMO-water is superior initially (ratio of initial reaction rates approximately 4) and comparable to that of regenerated cellulose (for times greater than 5h) when suspended in aqueous solutions. The usage of Accellerase1000 results predominantly in the formation of glucose with minimal amounts of cellobiose. This study proves the ability of cellulases to remain active in NMMO to carry out an in situ saccharification of cellulose thus eliminating the need to recover regenerated cellulose. Thus this work will form the basis for developing a continuous process for conversion of biomass to hydrogen, ethanol and other hydrocarbons. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. A Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry and Other Voltammetry Methods and a Comparison to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Yifan Dai

    2018-01-01

    Full Text Available A cuprous oxide (Cu2O thin layer served as the base for a non-enzymatic glucose sensor in an alkaline medium, 0.1 NaOH solution, with a linear range of 50–200 mg/dL using differential pulse voltammetry (DPV measurement. An X-ray photoelectron spectroscopy (XPS study confirmed the formation of the cuprous oxide layer on the thin gold film sensor prototype. Quantitative detection of glucose in both phosphate-buffered saline (PBS and undiluted human serum was carried out. Neither ascorbic acid nor uric acid, even at a relatively high concentration level (100 mg/dL in serum, interfered with the glucose detection, demonstrating the excellent selectivity of this non-enzymatic cuprous oxide thin layer-based glucose sensor. Chronoamperometry and single potential amperometric voltammetry were used to verify the measurements obtained by DPV, and the positive results validated that the detection of glucose in a 0.1 M NaOH alkaline medium by DPV measurement was effective. Nickel, platinum, and copper are commonly used metals for non-enzymatic glucose detection. The performance of these metal-based sensors for glucose detection using DPV were also evaluated. The cuprous oxide (Cu2O thin layer-based sensor showed the best sensitivity for glucose detection among the sensors evaluated.

  14. Graphene paper based bioelectrodes for enzymatic biofuel cells

    DEFF Research Database (Denmark)

    Werchmeister, Rebecka Maria Larsen; Shen, Fei; Zhang, Jingdong

    We aim at developing bioelectrodes for enzymatic biofuel cells, where sustainable and renewable enzymes are used for catalyzing the oxidation and reduction of fuel molecules. Here glucose is chosen as fuel molecule and glucose oxidase (GOx) is target enzyme which catalyzes the oxidation of glucose...... of glucose. This indicates that the enzyme has been successfully immobilized and is actively consuming glucose while transferring electrons to the graphene paper-GOx bioanode. Stability and efficiency of the bioelectrodes are under investigation....

  15. 31P and 1H NMR studies of the structure of enzyme-bound substrate complexes of lobster muscle arginine kinase: Relaxation measurements with Mn(II) and Co(II)

    International Nuclear Information System (INIS)

    Jarori, G.K.; Ray, B.D.; Rao, B.D.N.

    1989-01-01

    The paramagnetic effects of Mn(II) and Co(II) on the spin-lattice relaxation rates of 31 P nuclei of ATP and ADP and of Mn(II) on the spin-lattice relaxation rate of the δ protons of arginine bound to arginine kinase from lobster tail muscle have been measured. Temperature variation of 31 P relaxation rates in E-MnADP and E-MnATP yields activation energies (ΔE) in the range 6-10 kcal/mol. Thus, the 31 P relaxation rates in these complexes are exchange limited and cannot provide structural information. However, the relaxation rates in E-CoADP and E-CoATP exhibit frequency dependence and ΔE values in the range 1-2 kcal/mol; i.e., these rates depend upon 31 P-Co(II) distances. These distances were calculated to be in the range 3.2-4.5 angstrom, appropriate for direct coordination between Co(II) and the phosphoryl groups. The paramagnetic effect of Mn(II) on the 1 H spin-lattice relaxation rate of the δ protons of arginine in the E-MnADP-Arg complex was also measured at three frequencies. From the frequency dependence of the relaxation rate an effective τ C of 0.6 ns has also been calculated, which is most likely to be the electron spin relaxation rate (τ S1 ) for Mn(II) in this complex. The distance estimated on the basis of the reciprocal sixth root of the average relaxation rate of the δ protons was 10.9 ± 0.3 angstrom

  16. Novel differential refractometry study of the enzymatic degradation kinetics of poly(ethylene oxide)-b-poly(epsilon-caprolactone) particles dispersed in water.

    Science.gov (United States)

    Lam, HiuFung; Gong, Xiangjun; Wu, Chi

    2007-02-22

    A poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) diblock copolymer was micronized into small micelle-like particles (approximately 80 nm) via dialysis-induced microphase inversion. The enzymatic biodegradation of the PCL portion of these particles in water was in situ investigated inside a recently developed novel differential refractometer. Using this refractometry method, we were able to monitor the real-time biodegradation via the refractive index change (Deltan) of the dispersion because Deltan is directly proportional to the particle mass concentration. We found that the degradation rate is proportional to either the polymer or enzyme concentration. Our results directly support previous speculation on the basis of the light-scattering data that the biodegradation follows the first-order kinetics for a given enzyme concentration. This study not only leads to a better understanding of the enzymatic biodegradation of PCL, but also demonstrates a novel, rapid, noninvasive, and convenient way to test the degradability of polymers.

  17. New Mn(II, Ni(II, Cd(II, Pb(II complexes with 2-methylbenzimidazole and other ligands. Synthesis, spectroscopic characterization, crystal structure, magnetic susceptibility and biological activity studies

    Directory of Open Access Journals (Sweden)

    Shayma A. Shaker

    2016-11-01

    Full Text Available Synthesis and characterization of Mn(II, Ni(II, Cd(II and Pb(II mixed ligand complexes of 2-methylbenzimidazole with other ligands have been reported. The structure of the ligands and their complexes was investigated using elemental analysis, IR, UV–Vis, (1H, 13C NMR spectroscopy, molar conductivity and magnetic susceptibility measurements. In all the studies of complexes, the 2-methylbenzimidazole behaves as a neutral monodentate ligand which is coordinated with the metal ions through the N atom. While benzotriazole behaves as a neutral bidentate ligand which is coordinated with the Ni(II ion through the two N atoms. Moreover, the N-acetylglycine behaves as a bidentate ligand which is coordinated with the Mn(II, Ni(II and Pb(II ions through the N atom and the terminal carboxyl oxygen atom. The magnetic and spectral data indicate the tetrahedral geometry for Mn(II complex, irregular tetrahedral geometry for Pb(II complex and octahedral geometry for Ni(II complex. The X-ray single crystal diffraction method was used to confirm a centrosymmetric dinuclear Cd(II complex as each two metal ions are linked by a pair of thiocyanate N = S bridge. Two 2-methylbenzimidazole N-atom donors and one terminal thiocyanate N atom complete a highly distorted square pyramid geometry around the Cd atom. Besides, different cell types were used to determine the inhibitory effect of Mn(II, Ni(II, Cd(II and Pb(II complexes on cell growth using MTT assay. Cd(II complex showed cytotoxic effect on various types of cancer cell lines with different EC50 values.

  18. Adhesion improvement of lignocellulosic products by enzymatic pre-treatment.

    Science.gov (United States)

    Widsten, Petri; Kandelbauer, Andreas

    2008-01-01

    Enzymatic bonding methods, based on laccase or peroxidase enzymes, for lignocellulosic products such as medium-density fiberboard and particleboard are discussed with reference to the increasing costs of presently used petroleum-based adhesives and the health concerns associated with formaldehyde emissions from current composite products. One approach is to improve the self-bonding properties of the particles by oxidation of their surface lignin before they are fabricated into boards. Another method involves using enzymatically pre-treated lignins as adhesives for boards and laminates. The application of this technology to achieve wet strength characteristics in paper is also reviewed.

  19. Syntheses, structures, electrochemistry and catalytic oxidation degradation of organic dyes of two new coordination polymers derived from Cu(II) and Mn(II) and 1-(tetrazo-5-yl)-4-(triazo-1-yl)benzene

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ming; Mu, Bao; Huang, Ru-Dan, E-mail: huangrd@bit.edu.cn

    2017-02-15

    Two new coordination polymers (CPs), namely, [Cu{sub 2}(ttbz)(H{sub 2}btc){sub 2}(OH)]{sub n} (1) and [Mn(ttbz){sub 2}(H{sub 2}O){sub 2}]{sub n} (2) (Httbz =1-(tetrazo-5-yl)-4-(triazo-1-yl)benzene, H{sub 3}btc =1,3,5-benzenetricarboxylic acid), have been hydrothermally synthesized and structurally characterized. Complex 1 exhibits a (3,5,5,5)-connected 2D layer with a Schläfli symbol of (3·4{sup 2})(3·4{sup 4}0.5{sup 2}0.6{sup 3})(3{sup 2}0.4{sup 4}0.5{sup 2}0.6{sup 2})(3{sup 2}0.4{sup 4}0.5{sup 3}0.6), in which the ttbz{sup -} ligand can be described as μ{sub 5}-bridge, linking Cu(II) ions into a 2D layer and H{sub 2}btc{sup -} ions play a supporting role in complex 1. The ttbz{sup -} ligand in complex 2 represents the bridging coordination mode, connecting two Mn(II) ions to form the infinite 1D zigzag chains, respectively, which are further connected by two different types of hydrogen bonds to form a 3D supramolecular. Furthermore, catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated at room temperature in aqueous solutions, indicating these complexes may be applicable to color removal in a textile wastewater stream and practical applications in areas of electrocatalytic reduction toward nitrite, respectively. - Graphical abstract: Two new coordination polymers based on different structural characteristics have been hydrothermally synthesized by the mixed ligands. The catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated. - Highlights: • The organic ligand containing the tetrazolyl group and triazolyl group with some advantages has been used. • Two new coordination polymers with different structural characteristics has been discussed in detail. • Catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated.

  20. [Isolation and identification of Mn oxidizing bacterium Aminobacter sp. H1 and its oxidation mechanism].

    Science.gov (United States)

    Yan, Ping; Jiang, Li-Ying; Chen, Jian-Meng; He, Zhi-Min; Xiao, Shao-Dan; Jiang, Yi-Feng

    2014-04-01

    A bacterium with high manganese oxidizing activity was isolated from a biological manganese removal filter and named as H1. Based on its characteristics and the analysis of 16S rDNA sequence, the strain H1 belonged to the genus Aminobacter sp. and its manganese oxidizing ability had never been reported. In this paper, the microbiologic properties of the strain H1, the manganese oxidation mechanisms and characteristics of biogenic manganese oxides were investigated. The results showed that the maximal tolerant Mn concentration of strain H1 was 50 mmol x L(-1), and Mn(II) could be completely removed by strain H1 when the concentration was lower than 10 mmol x L(-1). Strain H1 could oxidize Mn2+ by both the production of manganese oxidizing activity factor and alkaline metabolites during growth, which were synthesized in the cell and then secreted into extracellular culture medium. During the oxidation process, the intermediate of soluble Mn(III) was detected. SEM showed that the biogenic manganese oxides were amorphous and poorly-crystalline, and it closely combined with bacteria. The components of the biogenic manganese oxides produced by strain H1 were identified as MnCO3, MnOOH, Mn3O4 and MnO2 by XRD, XPS and SEM-EDX.

  1. Analysis of Chlorogenic Acid Oxidation Pathway in Simulated ...

    African Journals Online (AJOL)

    Keywords: Honeysuckle, Chlorogenic acid, Enzymatic browning, Mimic system, Oxidation pathway, ... enzymatic oxidation of CA is the major cause of ..... to the concentration of catechol, o-quinone and current at PPO-modified microcylinder biosensor for diffusion- kinetic model. J Electroanal Chem 2011; 660: 200-208.

  2. Speciation of Mn(II), Mn(VII) and total manganese in water and food samples by coprecipitation-atomic absorption spectrometry combination

    International Nuclear Information System (INIS)

    Citak, Demirhan; Tuzen, Mustafa; Soylak, Mustafa

    2010-01-01

    A speciation procedure based on the coprecipitation of manganese(II) with zirconium(IV) hydroxide has been developed for the investigation of levels of manganese species. The determination of manganese levels was performed by flame atomic absorption spectrometry (FAAS). Total manganese was determined after the reduction of Mn(VII) to Mn(II) by ascorbic acid. The analytical parameters including pH, amount of zirconium(IV), sample volume, etc., were investigated for the quantitative recoveries of manganese(II). The effects of matrix ions were also examined. The recoveries for manganese(II) were in the range of 95-98%. Preconcentration factor was calculated as 50. The detection limit for the analyte ions based on 3 sigma (n = 21) was 0.75 μg L -1 for Mn(II). The relative standard deviation was found to be lower than 7%. The validation of the presented procedure was performed by analysis of certified reference material having different matrices, NIST SRM 1515 (Apple Leaves) and NIST SRM 1568a (Rice Flour). The procedure was successfully applied to natural waters and food samples.

  3. Synthesis, spectral characterization thermal stability, antimicrobial studies and biodegradation of starch–thiourea based biodegradable polymeric ligand and its coordination complexes with [Mn(II), Co(II), Ni(II), Cu(II), and Zn(II)] metals

    OpenAIRE

    Nahid Nishat; Ashraf Malik

    2016-01-01

    A biodegradable polymer was synthesized by the modification reaction of polymeric starch with thiourea which is further modified by transition metals, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). All the polymeric compounds were characterized by (FT-IR) spectroscopy, 1H NMR spectroscopy, 13C NMR spectroscopy, UV–visible spectra, magnetic moment measurements, thermogravimetric analysis (TGA) and antibacterial activities. Polymer complexes of Mn(II), Co(II) and Ni(II) show octahedral geometry, wh...

  4. Reinterpreting the best biomarker of oxidative stress: The 8-iso-PGF(2α)/PGF(2α) ratio distinguishes chemical from enzymatic lipid peroxidation.

    Science.gov (United States)

    van 't Erve, Thomas J; Lih, Fred B; Kadiiska, Maria B; Deterding, Leesa J; Eling, Thomas E; Mason, Ronald P

    2015-06-01

    The biomarker 8-iso-prostaglandin F2α (8-iso-PGF2α) is regarded as the gold standard for detection of excessive chemical lipid peroxidation in humans. However, biosynthesis of 8-iso-PGF2α via enzymatic lipid peroxidation by prostaglandin-endoperoxide synthases (PGHSs), which are significantly induced in inflammation, could lead to incorrect biomarker interpretation. To resolve the ambiguity with this biomarker, the ratio of 8-iso-PGF2α to prostaglandin F2α (PGF2α) is established as a quantitative measure to distinguish enzymatic from chemical lipid peroxidation in vitro, in animal models, and in humans. Using this method, we find that chemical lipid peroxidation contributes only 3% to the total 8-iso-PGF2α in the plasma of rats. In contrast, the 8-iso-PGF2α levels in plasma of human males are generated >99% by chemical lipid peroxidation. This establishes the potential for an alternate pathway of biomarker synthesis, and draws into question the source of increases in 8-iso-PGF2α seen in many human diseases. In conclusion, increases in 8-iso-PGF2α do not necessarily reflect increases in oxidative stress; therefore, past studies using 8-iso-PGF2α as a marker of oxidative stress may have been misinterpreted. The 8-iso-PGF2α/PGF2α ratio can be used to distinguish biomarker synthesis pathways and thus confirm the potential change in oxidative stress in the myriad of disease and chemical exposures known to induce 8-iso-PGF2α. Published by Elsevier Inc.

  5. The effects of iron(II) on the kinetics of arsenic oxidation and sorption on manganese oxides.

    Science.gov (United States)

    Wu, Yun; Li, Wei; Sparks, Donald L

    2015-11-01

    In this study, As(III) oxidation kinetics by a poorly-crystalline phyllomanganate (δ-MnO2) in the presence and absence of dissolved Fe(II) was investigated using stirred-flow and batch experiments. Chemically synthetic δ-MnO2 was reacted with four influent solutions, containing the same As(III) concentration but different Fe(II) concentrations, at pH 6. The results show an initial rapid As(III) oxidation by δ-MnO2, which is followed by an appreciably slow reaction after 8h. In the presence of Fe(II), As(III) oxidation is inhibited due to the competitive oxidation of Fe(II) as well as the formation of Fe(III)-(hydr)oxides on the δ-MnO2 surface. However, the sorption of As(III), As(V) and Mn(II) are increased, for the newly formed Fe(III)-(hydr)oxides provide additional sorption sites. This study suggests that the competitive oxidation of Fe(II) and consequently the precipitation of Fe(III) compounds on the δ-MnO2 surface play an important role in As(III) oxidation and As sequestration. Understanding these processes would be helpful in developing in situ strategies for remediation of As-contaminated waters and soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Impact of lignins isolated from pretreated lignocelluloses on enzymatic cellulose saccharification

    DEFF Research Database (Denmark)

    Barsberg, Søren Talbro; Selig, Michael Joseph; Felby, Claus

    2013-01-01

    and cellulose-lignin systems. Consequently, the presence of the lignins had minimal effect, if any, on enzymatic cellulose conversion. Furthermore, this result, coupled with significant calcium levels in the isolated lignins, supports previous work suggesting lignin-calcium complexes reduce enzyme......Lignins were enzymatically isolated from corn stover and wheat straw samples and subjected to hydrothermal or wet oxidation pretreatments for enzyme adsorption experimentations. Lignin contents of the isolates ranged from 26 to 71 % (w/w); cellulose ranged from 3 to 22 % (w/w); xylan from 0.7 to 6...

  7. Immobilization of alcohol dehydrogenase on ceramic silicon carbide membranes for enzymatic CH3 OH production

    DEFF Research Database (Denmark)

    Zeuner, Birgitte; Ma, Nicolaj; Berendt, Kasper

    2018-01-01

    BACKGROUND Alcohol dehydrogenase (ADH; EC 1.1.1.1) catalyzes oxidation of CH3OH to CHOH during NAD+ reduction to NADH. ADH can also accelerate the reverse reaction, which is studied as part of cascadic enzymatic conversion of CO2 to CH3OH. In the present study, immobilization of ADH onto macropor......BACKGROUND Alcohol dehydrogenase (ADH; EC 1.1.1.1) catalyzes oxidation of CH3OH to CHOH during NAD+ reduction to NADH. ADH can also accelerate the reverse reaction, which is studied as part of cascadic enzymatic conversion of CO2 to CH3OH. In the present study, immobilization of ADH onto......‐of‐concept for the use of NaOH‐treated SiC membranes for covalent enzyme immobilization and biocatalytic efficiency improvement of ADH during multiple reaction cycles. These data have implications for the development of robust extended enzymatic reactions....

  8. O2 Activation and Double C-H Oxidation by a Mononuclear Manganese(II) Complex.

    Science.gov (United States)

    Deville, Claire; Padamati, Sandeep K; Sundberg, Jonas; McKee, Vickie; Browne, Wesley R; McKenzie, Christine J

    2016-01-11

    A Mn(II) complex, [Mn(dpeo)2](2+) (dpeo=1,2-di(pyridin-2-yl)ethanone oxime), activates O2, with ensuing stepwise oxidation of the methylene group in the ligands providing an alkoxide and ultimately a ketone group. X-ray crystal-structure analysis of an intermediate homoleptic alkoxide Mn(III) complex shows tridentate binding of the ligand via the two pyridyl groups and the newly installed alkoxide moiety, with the oxime group no longer coordinated. The structure of a Mn(II) complex of the final ketone ligand, cis-[MnBr2(hidpe)2] (hidpe=2-(hydroxyimino)-1,2-di(pyridine-2-yl)ethanone) shows that bidentate oxime/pyridine coordination has been resumed. H2(18)O and (18)O2 labeling experiments suggest that the inserted O atoms originate from two different O2 molecules. The progress of the oxygenation was monitored through changes in the resonance-enhanced Raman bands of the oxime unit. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electrochemical non-enzymatic glucose sensors

    International Nuclear Information System (INIS)

    Park, Sejin; Boo, Hankil; Chung, Taek Dong

    2006-01-01

    The electrochemical determination of glucose concentration without using enzyme is one of the dreams that many researchers have been trying to make come true. As new materials have been reported and more knowledge on detailed mechanism of glucose oxidation has been unveiled, the non-enzymatic glucose sensor keeps coming closer to practical applications. Recent reports strongly imply that this progress will be accelerated in 'nanoera'. This article reviews the history of unraveling the mechanism of direct electrochemical oxidation of glucose and making attempts to develop successful electrochemical glucose sensors. The electrochemical oxidation of glucose molecules involves complex processes of adsorption, electron transfer, and subsequent chemical rearrangement, which are combined with the surface reactions on the metal surfaces. The information about the direct oxidation of glucose on solid-state surfaces as well as new electrode materials will lead us to possible breakthroughs in designing the enzymeless glucose sensing devices that realize innovative and powerful detection. An example of those is to introduce nanoporous platinum as an electrode, on which glucose is oxidized electrochemically with remarkable sensitivity and selectivity. Better model of such glucose sensors is sought by summarizing and revisiting the previous reports on the electrochemistry of glucose itself and new electrode materials

  10. Enzymatic reduction of U(VI) in groundwaters

    International Nuclear Information System (INIS)

    Addelouas, A.; Gong, W.; Lutze, W.; Nuttall, E.; Fritz, B.; Crovisier, J.L.

    1999-01-01

    The use of enzymatic reduction of U(VI) in remediation of groundwater contaminated with U(VI) is receiving considerable attention. Certain strains of bacteria can combine the oxidation of an organic compound to the reduction of U(VI) to U(IV), which precipitates as uraninite. In the present study, we tested the reduction of U(VI) in groundwaters with various origins and compositions. In all groundwaters u(VI) was reduced by sulfate reducing bacteria that had been activated by ethanol and tri-metaphosphate. The reduction rate of U(VI) depends on sulfate concentration in water and the abundance of bacteria in the system. This work shows that bacteria capable of U(VI) reduction are ubiquitous in nature, and suggests the possibility of a large application of the enzymatic reduction of U(VI) for in situ clean up of groundwaters contaminated with uranium. (authors)

  11. Enzymatic halogenation and oxidation using an alcohol oxidase-vanadium chloroperoxidase cascade

    NARCIS (Netherlands)

    But, Andrada; Noord, Van Aster; Poletto, Francesca; Sanders, Johan P.M.; Franssen, Maurice C.R.; Scott, Elinor L.

    2017-01-01

    The chemo-enzymatic cascade which combines alcohol oxidase from Hansenula polymorpha (AOXHp) with vanadium chloroperoxidase (VCPO), for the production of biobased nitriles from amino acids was investigated. In the first reaction H2O2 (and acetaldehyde) are generated from ethanol and oxygen by AOXHp.

  12. Preparation, Investigation and the Study of the Effect of Mn(II Complex of Catechol and 2-Aminopyridine on Seed Germination

    Directory of Open Access Journals (Sweden)

    F. I. El-Moshaty

    2011-01-01

    Full Text Available The formation of mixed ligand complex of Mn(II with catechol (L1 and 2-aminopyridine (L2 was determined by elemental analyses (C, H and N, molar conductance measurement, thermogravimetric analysis, infrared, electronic and electron paramagnetic resonance spectroscopies. The elemental analysis data show the formation of 1:1:1 [M: L1: L2] complex. The molar conductance measurement shows a non-electrolyte nature. The thermogravimetric analysis data of the complex display the existence of hydrated and coordinated water molecules. The infrared spectral data exhibit the coordination sites that are through -OH,-C=N and –NH2 groups. The electronic spectral data display the electronic transitions of the ligands and suggest an octahedral structure for the complex. The electron paramagnetic resonance spectrum of the complex reveals the existence of paramagnetic phenomena and supports its geometrical structure. Seed germination and root length of grass were also assayed under the effect of MnCl2.4H2O, catechol, 2-aminopyridine and its complex. Mn(II salt was the most effective on germination than its complex which possess the high test effect on root length, while the ligands are the least active of all.

  13. Metal Inhibition of Growth and Manganese Oxidation in Pseudomonas putida GB-1

    Science.gov (United States)

    Pena, J.; Sposito, G.

    2009-12-01

    Biogenic manganese oxides (MnO2) are ubiquitous nanoparticulate minerals that contribute to the adsorption of nutrient and toxicant metals, the oxidative degradation of various organic compounds, and the respiration of metal-reducing bacteria in aquatic and terrestrial environments. The formation of these minerals is catalyzed by a diverse and widely-distributed group of bacteria and fungi, often through the enzymatic oxidation of aqueous Mn(II) to Mn(IV). In metal-impacted ecosystems, toxicant metals may alter the viability and metabolic activity of Mn-oxidizing organisms, thereby limiting the conditions under which biogenic MnO2 can form and diminishing their potential as adsorbent materials. Pseudomonas putida GB-1 (P. putida GB-1) is a model Mn-oxidizing laboratory culture representative of freshwater and soil biofilm-forming bacteria. Manganese oxidation in P. putida GB-1 occurs via two single-electron-transfer reactions, involving a multicopper oxidase enzyme found on the bacterial outer membrane surface. Near the onset of the stationary phase of growth, dark brown MnO2 particles are deposited in a matrix of bacterial cells and extracellular polymeric substances, thus forming heterogeneous biomineral assemblages. In this study, we assessed the influence of various transition metals on microbial growth and manganese oxidation capacity in a P. putida GB-1 culture propagated in a nutrient-rich growth medium. The concentration-response behavior of actively growing P. putida GB-1 cells was investigated for Fe, Co, Ni, Cu and Zn at pH ≈ 6 in the presence and absence of 1 mM Mn. Toxicity parameters such as EC0, EC50 and Hillslope, and EC100 were obtained from the sigmoidal concentration-response curves. The extent of MnO2 formation in the presence of the various metal cations was documented 24, 50, 74 and 104 h after the metal-amended medium was inoculated. Toxicity values were compared to twelve physicochemical properties of the metals tested. Significant

  14. Increased saccharification yields from aspen biomass upon treatment with enzymatically generated peracetic acid.

    Science.gov (United States)

    Duncan, Shona; Jing, Qing; Katona, Adrian; Kazlauskas, Romas J; Schilling, Jonathan; Tschirner, Ulrike; Aldajani, Waleed Wafa

    2010-03-01

    The recalcitrance of lignocellulosic biomass to enzymatic release of sugars (saccharification) currently limits its use as feedstock for biofuels. Enzymatic hydrolysis of untreated aspen wood releases only 21.8% of the available sugars due primarily to the lignin barrier. Nature uses oxidative enzymes to selectively degrade lignin in lignocellulosic biomass, but thus far, natural enzymes have been too slow for industrial use. In this study, oxidative pretreatment with commercial peracetic acid (470 mM) removed 40% of the lignin (from 19.9 to 12.0 wt.% lignin) from aspen and enhanced the sugar yields in subsequent enzymatic hydrolysis to about 90%. Increasing the amount of lignin removed correlated with increasing yields of sugar release. Unfortunately, peracetic acid is expensive, and concentrated forms can be hazardous. To reduce costs and hazards associated with using commercial peracetic acid, we used a hydrolase to catalyze the perhydrolysis of ethyl acetate generating 60-70 mM peracetic acid in situ as a pretreatment to remove lignin from aspen wood. A single pretreatment was insufficient, but multiple cycles (up to eight) removed up to 61.7% of the lignin enabling release of >90% of the sugars during saccharification. This value corresponds to a predicted 581 g of fermentable sugars from 1 kg of aspen wood. Improvements in the enzyme stability are needed before the enzymatically generated peracetic acid is a commercially viable alternative.

  15. A New Bis(aquated) High Relaxivity Mn(II) Complex as an Alternative to Gd(III)-Based MRI Contrast Agent.

    Science.gov (United States)

    Phukan, Bedika; Mukherjee, Chandan; Goswami, Upashi; Sarmah, Amrit; Mukherjee, Subhajit; Sahoo, Suban K; Moi, Sankar Ch

    2018-03-05

    Disclosed here are a piperazine, a pyridine, and two carboxylate groups containing pentadentate ligand H 2 pmpa and its corresponding water-soluble Mn(II) complex (1). DFT-based structural optimization implied that the complex had pentagonal bipyramidal geometry where the axial positions were occupied by two water molecules, and the equatorial plane was constituted by the ligand ON 3 O donor set. Thus, a bis(aquated) disc-like Mn(II) complex has been synthesized. The complex showed higher stability compared with Mn(II)-EDTA complex [log K MnL = 14.29(3)] and showed a very high r 1 relaxivity value of 5.88 mM -1 s -1 at 1.41 T, 25 °C, and pH = 7.4. The relaxivity value remained almost unaffected by the pH of the medium in the range of 6-10. Although the presence of 200 equiv of fluoride and bicarbonate anions did not affect the relaxivity value appreciably, an increase in the value was noticed in the presence of phosphate anion due to slow tumbling of the complex. Cell viability measurements, as well as phantom MR images using clinical MRI imager, consolidated the possible candidature of complex 1 as a positive contrast agent.

  16. Unraveling the mechanism responsible for the contrasting tolerance of Synechocystis and Synechococcus to Cr(VI): Enzymatic and non-enzymatic antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Alka [Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Ballal, Anand, E-mail: aballal@barc.gov.in [Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 40085 (India)

    2015-07-15

    Highlights: • Cr(VI) accumulation generates higher ROS in Synechocystis than in Synechococcus. • Synechococcus exhibits better photosynthetic activity in response to Cr(VI). • Synechococcus has higher enzymatic/non-enzymatic antioxidants than Synechocystis. • Synechococcus shows better tolerance to other oxidative stresses than Synechocystis. • Differential detoxification of ROS is responsible for the contrasting tolerance to Cr(VI) - Abstract: Two unicellular cyanobacteria, Synechocystis and Synechococcus, showed contrasting tolerance to Cr(VI); with Synechococcus being 12-fold more tolerant than Synechocystis to potassium dichromate. The mechanism responsible for this differential sensitivity to Cr(VI) was explored in this study. Total content of photosynthetic pigments as well as photosynthetic activity decreased at lower concentration of Cr(VI) in Synechocystis as compared to Synechococcus. Experiments with {sup 51}Cr showed Cr to accumulate intracellularly in both the cyanobacteria. At lower concentrations, Cr(VI) caused excessive ROS generation in Synechocystis as compared to that observed in Synechococcus. Intrinsic levels of enzymatic antioxidants, i.e., superoxide dismutase, catalase and 2-Cys-peroxiredoxin were considerably higher in Synechococcus than Synechocystis. Content of total thiols (both protein as well as non-protein) and reduced glutathione (GSH) was also higher in Synechococcus as compared to Synechocystis. This correlated well with higher content of carbonylated proteins observed in Synechocystis than Synechococcus. Additionally, in contrast to Synechocystis, Synechococcus exhibited better tolerance to other oxidative stresses like high intensity light and H{sub 2}O{sub 2}. The data indicate that the disparity in the ability to detoxify ROS could be the primary mechanism responsible for the differential tolerance of these cyanobacteria to Cr(VI)

  17. Development of an enzymatic microreactor based on microencapsulated laccase with off-line capillary electrophoresis for measurement of oxidation reactions.

    Science.gov (United States)

    Roman-Gusetu, Georgiana; Waldron, Karen C; Rochefort, Dominic

    2009-11-20

    Microencapsulation is used here as a new technique to immobilize enzymes in a microreactor coupled off-line to capillary electrophoresis (CE), allowing the determination of enzymatic reaction products. The redox enzyme laccase was encapsulated using the method of interfacial cross-linking of poly(ethyleneimine) (PEI). The 50 microm diameter capsules were slurry packed from a suspension into a capillary-sized reactor made easily and quickly from a short length of 530 microm diameter fused-silica tubing. The volume of the bed of laccase microcapsules in the microreactor was in the order of 1.1 microL through which 50 microL of the substrate o-phenylenediamine (OPD) was flowed. The oxidation product 2,3-diaminophenazine (DAP) and the remaining OPD were quantified by CE in a pH 2.5 phosphate buffer. Peak migration time reproducibility was in the order of 0.4% RSD and peak area reproducibility was less than 1.7% RSD within the same day. Using the OPD peak area calibration curve, a conversion efficiency of 48% was achieved for a 2-min oxidation reaction in the microreactor.

  18. Enzymatic network for production of ether amines from alcohols

    DEFF Research Database (Denmark)

    Palacio, Cyntia M.; Crismaru, Ciprian G.; Bartsch, Sebastian

    2016-01-01

    We constructed an enzymatic network composed of three different enzymes for the synthesis of valuable ether amines. The enzymatic reactions are interconnected to catalyze the oxidation and subsequent transamination of the substrate and to provide cofactor recycling. This allows production...... of the desired ether amines from the corresponding ether alcohols with inorganic ammonium as the only additional substrate. To examine conversion, individual and overall reaction equilibria were established. Using these data, it was found that the experimentally observed conversions of up to 60% observed...... for reactions containing 10mM alcohol and up to 280mM ammonia corresponded well to predicted conversions. The results indicate that efficient amination can be driven by high concentrations of ammonia and may require improving enzyme robustness for scale-up....

  19. Enzymatic oxidation of mercury vapor by erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Halbach, S; Clarkson, T W

    1978-01-01

    The formation of glutathione radicals, the evolution of nascent oxygen or the peroxidatic reaction with catalase complex I are considered as possible mechanisms for the oxidation of mercury vapor by red blood cells. To select among these, the uptake of atomic mercury by erythrocytes from different species was studied and related to their various activities of catalase (hydrogen-peroxide:hydrogen-peroxide oxidoreductase, EC 1.11.1.6) and glutathione peroxidase (glutathione:hydrogen-peroxide oxidoreductase, EC 1.11.1.9). A slow and continuouus infusion of diluted H/sub 2/O/sub 2/ was used to maintain steady concentrations of complex I. 1% red cell suspensions were found most suitable showing high rates of Hg uptake and yielding still enough cells for subsequent determinations. The results indicate that the oxidation of mercury depends upon the H/sub 2/O/sub 2/-generation rate and upon the specific acticity of red-cell catalase. The oxidation occurred in a range of the catalase-H/sub 2/O/sub 2/ reaction where the evolution of oxygen could be excluded. Compounds reacting with complex I were shown to be effective inhibitors of the mercury uptake. GSH-peroxidase did not participate in the oxidation but rather, was found to inhibit it by competing with catalase for hydrogen peroxide. These findings support the view that elemental mercury is oxidized in erythrocytes by a peroxidatic reaction with complex I only.

  20. Indirect Manganese Removal by Stenotrophomonas sp. and Lysinibacillus sp. Isolated from Brazilian Mine Water

    Directory of Open Access Journals (Sweden)

    Natália Rocha Barboza

    2015-01-01

    Full Text Available Manganese is a contaminant in the wastewaters produced by Brazilian mining operations, and the removal of the metal is notoriously difficult because of the high stability of the Mn(II ion in aqueous solutions. To explore a biological approach for removing excessive amounts of aqueous Mn(II, we investigated the potential of Mn(II oxidation by both consortium and bacterial isolates from a Brazilian manganese mine. A bacterial consortium was able to remove 99.7% of the Mn(II. A phylogenetic analysis of isolates demonstrated that the predominant microorganisms were members of Stenotrophomonas, Bacillus, and Lysinibacillus genera. Mn(II removal rates between 58.5% and 70.9% were observed for Bacillus sp. and Stenotrophomonas sp. while the Lysinibacillus isolate 13P removes 82.7%. The catalytic oxidation of Mn(II mediated by multicopper oxidase was not properly detected; however, in all of the experiments, a significant increase in the pH of the culture medium was detected. No aggregates inside the cells grown for a week were found by electronic microscopy. Nevertheless, an energy-dispersive X-ray spectroscopy of the isolates revealed the presence of manganese in Stenotrophomonas sp. and Lysinibacillus sp. grown in K medium. These results suggest that members of Stenotrophomonas and Lysinibacillus genera were able to remove Mn(II by a nonenzymatic pathway.

  1. Fabrication of Nickel/nanodiamond/boron-doped diamond electrode for non-enzymatic glucose biosensor

    International Nuclear Information System (INIS)

    Dai, Wei; Li, Mingji; Gao, Sumei; Li, Hongji; Li, Cuiping; Xu, Sheng; Wu, Xiaoguo; Yang, Baohe

    2016-01-01

    Highlights: • Nanodiamonds (NDs) were electrophoretically deposited on the BDD film. • The NDs significantly extended the potential window. • Ni/NDs/BDD electrode was prepared by electrodeposition. • The electrode shows good catalytic activity for glucose oxidation. - Abstract: A stable and sensitive non-enzymatic glucose sensor was prepared by modifying a boron-doped diamond (BDD) electrode with nickel (Ni) nanosheets and nanodiamonds (NDs). The NDs were electrophoretically deposited on the BDD surface, and acted as nucleation sites for the subsequent electrodeposition of Ni. The morphology and composition of the modified BDD electrodes were characterized by field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The Ni nanosheet-ND modified BDD electrode exhibited good current response towards the non-enzymatic oxidation of glucose in alkaline media. The NDs significantly extended the potential window. The response to glucose was linear over the 0.2–1055.4-μM range. The limit of detection was 0.05 μM, at a signal-to-noise ratio of 3. The Ni nanosheet-ND/BDD electrode exhibited good selectivity, reproducibility and stability. Its electrochemical performance, low cost and simple preparation make it a promising non-enzymatic glucose sensor.

  2. A novel reduction approach to fabricate quantum-sized SnO₂-conjugated reduced graphene oxide nanocomposites as non-enzymatic glucose sensors.

    Science.gov (United States)

    Ye, Yixing; Wang, Panpan; Dai, Enmei; Liu, Jun; Tian, Zhenfei; Liang, Changhao; Shao, Guosheng

    2014-05-21

    Quantum-sized SnO2 nanocrystals can be well dispersed on reduced graphene oxide (rGO) nanosheets through a convenient one-pot in situ reduction route without using any other chemical reagent or source. Highly reactive metastable tin oxide (SnO(x)) nanoparticles (NPs) were used as reducing agents and composite precursors derived by the laser ablation in liquid (LAL) technique. Moreover, the growth and phase transition of LAL-induced SnO(x) NPs and graphene oxide (GO) were examined by optical absorption, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and high-resolution transmission electron microscopy. Highly dispersed SnO(x) NPs can also prevent rGO from being restacked into a multilayer structure during GO reduction. Given the good electron transfer ability and unsaturated dangling bonds of rGO, as well as the ample electrocatalytic active sites of quantum-sized SnO2 NPs on unfolded rGO sheets, the fabricated SnO2-rGO nanocomposite exhibited excellent performance in the non-enzymatic electrochemical detection of glucose molecules. The use of LAL-induced reactive NPs for in situ GO reduction is also expected to be a universal and environmentally friendly approach for the formation of various rGO-based nanocomposites.

  3. Photoelectrochemical enzymatic biosensors.

    Science.gov (United States)

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-06-15

    Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The dependence of the discharge of nitrous oxide by ordinary chernozem steppe of the Central-Chernozem Region of Russia from the content of humus, nitrogen and enzymatic activity

    Science.gov (United States)

    Avksentev, Alexey; Negrobova, Elena; Kramareva, Tatiana; Moiseeva, Evgenya

    2016-04-01

    The dependence of the discharge of nitrous oxide by ordinary chernozem steppe of the Central-Chernozem Region of Russia from the content of humus, nitrogen and enzymatic activity Alexey Avksentev, Elena Negrobova, Tatiana Kramareva, Evgenya Moiseeva 394000 Voronezh, Universitetskaya square, 1 Voronezh State University Nitrous oxide is emitted by soil as a result of microbiological processes, ranks third in the list of aggressive greenhouse gas after carbon dioxide and methane. Nitrous oxide is formed during nitrification and denitrification of ammonia that enters the soil during microbial decomposition of complex organic compounds. Denitrification can be direct and indirect. In the microbiological process of recovery of nitrates involved of the organic substance. In aerobic conditions microorganisms denitrificator behave like normal saprotrophs and oxidize organic matter in the act of breathing oxygen. Thus, they operate at different times two enzyme systems: the electron transport chain with an oxygen acceptor in aerobic and restoration of nitrates under anaerobic conditions. Investigation of the emission of nitrous oxide by ordinary Chernozem steppe of the Central-Chernozem Region showed that it depends on the type of cenosis and the content of available forms of nitrogen. Natural ecosystems emit nitrous oxide more than the soil of arable land. The dependence of the emission of nitrous oxide from the humus content shows positive trend, but the aggregation of data, significant differences are not detected. Research shows that nitrous oxide emissions are seasonal. So the autumn season is characterized by nitrous oxide emissions than spring. Enzymatic processes are an important link in the biological cycle of elements and, consequently, participate in the process of decomposition of organic matter, nitrification and other processes. Analysis of the data on enzyme activity of ordinary Chernozem and the intensity of emission of N20 shows a clear relationship between

  5. Oxidative stress signaling to chromatin in health and disease

    KAUST Repository

    Kreuz, Sarah

    2016-06-20

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.

  6. Three Rate-Constant Kinetic Model for Permanganate Reactions Autocatalyzed by Colloidal Manganese Dioxide: The Oxidation of L-Phenylalanine.

    Science.gov (United States)

    Perez-Benito, Joaquin F; Ferrando, Jordi

    2014-12-26

    The reduction of permanganate ion to MnO(2)-Mn(2)O(3) soluble colloidal mixed oxide by l-phenylalanine in aqueous phosphate-buffered neutral solutions has been followed by a spectrophotometric method, monitoring the decay of permanganate ion at 525 nm and the formation of the colloidal oxide at 420 nm. The reaction is autocatalyzed by the manganese product, and three rate constants have been required to fit the experimental absorbance-time kinetic data. The reaction shows base catalysis, and the values of the activation parameters at different pHs have been determined. A mechanism including both the nonautocatalytic and the autocatalytic reaction pathways, and in agreement with the available experimental data, has been proposed. Some key features of this mechanism are the following: (i) of the two predominant forms of the amino acid, the anionic form exhibits a stronger reducing power than the zwitterionic form; (ii) the nonautocatalytic reaction pathway starts with the transfer of the hydrogen atom in the α position of the amino acid to permanganate ion; and (iii) the autocatalytic reaction pathway involves the reduction of Mn(IV) to Mn(II) by the amino acid and the posterior reoxidation of Mn(II) to Mn(IV) by permanganate ion.

  7. Breakthrough Curve Analysis for Column Dynamics Sorption of Mn(II Ions from Wastewater by Using Mangostana garcinia Peel-Based Granular-Activated Carbon

    Directory of Open Access Journals (Sweden)

    Z. Z. Chowdhury

    2013-01-01

    Full Text Available The potential of granular-activated carbon (GAC derived from agrowaste of Mangostene (Mangostana garcinia fruit peel was investigated in batch and fixed bed system as a replacement of current expensive methods for treating wastewater contaminated by manganese, Mn(II cations. Batch equilibrium data was analyzed by Langmuir, Freundlich, and Temkin isotherm models at different temperatures. The effect of inlet metal ion concentration (50 mg/L, 70 mg/L, and 100 mg/L, feed flow rate (1 mL/min and 3 mL/min, and activated carbon bed height (4.5 cm and 3 cm on the breakthrough characteristics of the fixed bed sorption system were determined. The adsorption data were fitted with well-established column models, namely, Thomas, Yoon-Nelson, and Adams-Bohart. The results were best-fitted with Thomas and Yoon-Nelson models rather than Adams-Bohart model for all conditions. The column had been regenerated and reused consecutively for five cycles. The results demonstrated that the prepared activated carbon was suitable for removal of Mn(II ions from wastewater using batch as well as fixed bed sorption system.

  8. CuO nanoparticles supported on nitrogen and sulfur co-doped graphene nanocomposites for non-enzymatic glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meixia [Hebei University of Engineering, Faculty of Material Science and Engineering (China); Guo, Qingbin, E-mail: guoqingbinhue@163.com [Hebei University of Engineering, Academic Affairs office (China); Xie, Juan; Li, Yongde; Feng, Yapeng [Hebei University of Engineering, Faculty of Material Science and Engineering (China)

    2017-01-15

    Developing highly active catalysts to promote the electrocatalytic glucose oxidation (EGO) is a crucial demand for non-enzymatic glucose sensing. Herein, we reported the use of nitrogen and sulfur co-doped graphene (NSG) as a novel support material for anchoring CuO nanoparticles and obtained CuO/NSG was employed as an efficient EGO catalyst for non-enzymatic glucose sensing. The results showed that the NSG endowed the CuO/NSG with large surface area, increased structural defects, improved conductivity, and strong covalent coupling between NSG and CuO. Owing to the significant contribution of NSG and the synergistic effect of NSG and CuO, the CuO/NSG exhibited a remarkably higher EGO activity than CuO and CuO/reduced graphene oxide. The CuO/NSG-based sensor displayed excellent glucose sensing performances with a considerably low detection limit of 0.07 μM. These findings elucidate that the NSG is a promising support material for non-enzymatic glucose detection.

  9. Enzymatic synthesis of C-11 formaldehyde: concise communication

    International Nuclear Information System (INIS)

    Slegers, G.; Lambrecht, R.H.D.; Vandewalle, T.; Meulewaeter, L.; Vandecasteele, C.

    1984-01-01

    An enzymatic synthesis of C-11 formaldehyde from C-11 methanol is presented, with immobilized alcohol oxidase and catalase: a rapid, simple procedure, with a high and reproducible yield. Carbon-11 methanol is oxidized to C-11 formaldehyde by passage over a column on which the enzymes alcohol oxidase and catalase are immobilized. The catalase increases reaction velocity by recycling the oxygen, and prevents destruction of the alcohol oxidase by eliminating the excess of hydrogen peroxide. The yield of the enzyme-catalyzed oxidation was 80-95%. A specific activity of 400-450 mCi/μmole was obtained at EOB + 20 min. Various immobilization techniques and the optimal reaction conditions of the immobilized enzymes are investigated

  10. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment

    DEFF Research Database (Denmark)

    Sørensen, Annette; Teller, Philip Johan; Hilstrøm, Troels

    2008-01-01

    xylose prior to wet explosion. The acid presoaking extracted 63.2% xylose and 5.2% glucose. Direct enzymatic hydrolysis of the presoaked biomass was found to give only low sugar yields of 24-26% glucose. Wet explosion is a pre-treatment method that combines wet-oxidation and steam explosion. The effect...... of wet explosion on non-presoaked and presoaked Miscanthus was investigated using both atmospheric air and hydrogen peroxide as the oxidizing agent. All wet explosion pre-treatments showed to have a disrupting effect on the lignocellulosic biomass, making the sugars accessible for enzymatic hydrolysis......Miscanthus is a high yielding bioenergy crop. In this study we used acid presoaking, wet explosion, and enzymatic hydrolysis to evaluate the combination of the different pre-treatment methods for bioethanol production with Miscanthus. Acid presoaking is primarily carried out in order to remove...

  11. Determination and significance of the Mn(II) Zero-Field Splitting (ZFS) interaction in the geochemistry of travertines

    Energy Technology Data Exchange (ETDEWEB)

    Montegrossi, G. [Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche (CNR), via G. La Pira 4, I-50121, Florence (Italy)]. E-mail: giordano@geo.unifi.it; Di Benedetto, F. [Museo di Storia Naturale, Universita di Firenze, via G. La Pira 4, I-50121, Florence (Italy); Minissale, A. [Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche (CNR), via G. La Pira 4, I-50121, Florence (Italy); Paladini, M. [Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche (CNR), via G. La Pira 4, I-50121, Florence (Italy); Pardi, L.A. [Istituto per i Processi Chimico-Fisici, CNR, via G. Moruzzi 1, I-56124 Pisa (Italy); Romanelli, M. [Dipartimento di Chimica, Universita di Firenze, via della Lastruccia 3, I-50019 Sesto Fiorentino (Italy); Romei, F. [Dipartimento di Biologia Animale e Genetica, Universita di Firenze, Via Romana 17, I-50100 Florence (Italy)

    2006-05-15

    An analytical approach, based on the electron paramagnetic resonance (EPR) spectroscopy of Mn(II) in travertines, has been developed in order to obtain relevant information about the local inhomogeneity of calcite and about the thermodynamic conditions which control the formation of travertine deposits. This information is crucial to constrain the precipitation of travertine under different geochemical contexts. An empirical correlation between the spectral features and the zero-field splitting (ZFS) interaction has been established through numerical simulations of EPR spectra. The variability of the investigated parameters and the applicability of the method have been tested on several travertines from Central Italy.

  12. Determination and significance of the Mn(II) Zero-Field Splitting (ZFS) interaction in the geochemistry of travertines

    International Nuclear Information System (INIS)

    Montegrossi, G.; Di Benedetto, F.; Minissale, A.; Paladini, M.; Pardi, L.A.; Romanelli, M.; Romei, F.

    2006-01-01

    An analytical approach, based on the electron paramagnetic resonance (EPR) spectroscopy of Mn(II) in travertines, has been developed in order to obtain relevant information about the local inhomogeneity of calcite and about the thermodynamic conditions which control the formation of travertine deposits. This information is crucial to constrain the precipitation of travertine under different geochemical contexts. An empirical correlation between the spectral features and the zero-field splitting (ZFS) interaction has been established through numerical simulations of EPR spectra. The variability of the investigated parameters and the applicability of the method have been tested on several travertines from Central Italy

  13. Optimization of a Liquid Crystal-based Sensory Platform for Monitoring Enzymatic Glucose Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yibin; Jang, Chang-Hyun [Gachon University, Seongnam (Korea, Republic of)

    2016-05-15

    Managing glucose levels in human blood is extremely important for the treatment of diabetes. Here, an innovative sensory strategy has been developed to monitor the enzymatic activities of glucose and glucose oxidase by using confined liquid crystal (LC) birefringent droplet patterns. Acidic products released during the glucose oxidation process lead to a slight decrease in the pH of aqueous systems that can be monitored by pH-sensitive LC materials. Of the existing pH-sensitive LC materials, dodecanoic acid-doped 4-cyano-4'-pentylbiphenyl is inexpensive and easily adjusted to satisfy the 7.4 ± 0.05 pH requirement of human blood. Moreover, the orientational alignment of capillary-confined pH-responsive LCs can be disrupted at the aqueous/LC interface following a slight decrease in the critical pH of aqueous reaction systems, which results in an optical signal that can be observed with the naked eye by using polarizing optical microscopy. Based on the stable LC droplet patterns generated by the cylindrical confinement system, the functionalized LCs can selectively detect glucose at concentrations as low as 0.1 pM. This study further advances the previously reported LC-based glucose monitoring systems by reducing production costs and instituting a smarter LC sensory design. This improved system shows potential for the use in clinical bioassay applications.

  14. Extraction studies of Cd(II), Cu(II), Mn(II), Ni(II) and Zn(II) using N, N', N, N' -Bis((2-hydroxy-3,5-di-tert-butylbenzyl) (2-pyridylmethyl)) -ethylenediamine as a novel ligand

    International Nuclear Information System (INIS)

    Laus, R.; Anjos, A.D.; Naves, A.

    2008-01-01

    In the present study, the use of N,N',N,N'-bis((2-hydroxy-3,5-di-tert-butylbenzyl) (2- pyridylmethyl))-ethylenediamine (H2L) as ligand was evaluated in the liquid-liquid (water- chloroform) extraction of Cd(II), Cu(II), Mn(II), Ni(II) and Zn(II). Experiments were carried out to determine the pH for maximum extraction for each metal ion by ligand, maximum extraction capacity, extraction kinetics and extraction selectivity. The results revealed that the extraction of metal ions is dependent on the pH: maximum extraction maximum was obtained in the pH range of 4.5 - 6.0 for Cu(II) and 8.0 - 9.0 for Zn(II). Cd(II) and Mn(II) were best extracted at pH 9.0 and Ni(II) at 10.0. The ligand H2L was effective for the extraction of Cd(II), Cu(II) and Zn(II) (extraction efficient, %E equal 100%), whereas %E of 76% and 23.5% were observed for Mn(II) and Ni(II), respectively. The ligand presented high selectivity for the extraction of Cu(II) at pH 4.0. (author)

  15. Enzymatic polymerization of aniline in the presence of different inorganic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Loyola, E. [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna No. 140, CP 25100 Saltillo, Coah (Mexico); Escuela de Ciencias Biologicas, UA de C. Carr. Torreon-Matamoros Km 7.5, Ciudad Universitaria, CP 27400 Torreon, Coah. (Mexico)], E-mail: erika-flores@mail.uadec.mx; Cruz-Silva, R. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, UAEM. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca Mor. (Mexico); Romero-Garcia, J.; Angulo-Sanchez, J.L. [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna No. 140, CP 25100 Saltillo, Coah (Mexico); Castillon, F.F.; Farias, M.H. [Centro de Ciencias de la Materia Condensada de la UNAM, Apdo. Postal 2681, CP 22800 Ensenada, B.C. (Mexico)

    2007-09-15

    The effect of different inorganic substrates in the structure of polyaniline synthesized by enzymatic oxidation was studied. The polymer characterization was done by electronic absorption and X-ray photoelectron spectroscopy. The substrates studied were: controlled pore glass, mordenite, zeolite Y, zeolite MCM-41, Wollastonite, silica gel, fuming silica and short glass fibers type E. Polyaniline was synthesized in the presence of the substrates under acidic aqueous conditions, using hydrogen peroxide as oxidizer and HRP or SBP enzymes as catalyst. The composition of the substrates strongly affected the degree of electronic conjugation of the synthesized polyaniline, whereas the pore size and the enzyme type apparently had no effect. The chemical structure of polyaniline enzymatically synthesized was more sensitive to the substrate composition than that chemically synthesized. Apparently substrates containing alkaline ions, such as sodium and calcium, promoted the formation of the branched, non-conductive polyaniline form. The effect of the substrates on the polyaniline structure can be explained considering the local pH effect of the templates surface on the coupling reaction of aniline radicals.

  16. Characterizing Enzymatic Deposition for Microelectrode Neurotransmitter Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hosein, W. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yorita, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tolosa, V. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-12

    The enzyme immobilization process, one step in creating an enzymatic biosensor, was characterized and analyzed as a function of its physical properties. The neural glutamic biosensor is a flexible device, effectively minimizing trauma to the area of implantation. The Multielectrode Array (MEA) is composed primarily of a proprietary polymer which has been successfully implanted into human subjects in recent years. This polymer allows the device the pliability that other devices normally lack, though this poses some challenges to implantation. The electrodes are made of Platinum (Pt), and can range in number from eight to thirty two electrodes per device. These electrodes are electroplated with a semipermeable polymer layer to improve selectivity of the electrode to the neurotransmitter of interest, in this case glutamate. A signal is created from the interaction of glutamate in the brain with the glutamate oxidase (GluOx) which is immobilized on the surface of the electrode by using crosslinking chemistry in conjunction with glutaraldehyde and Bovine Serum Albumin (BSA). The glutamate is oxidized by glutamate oxidase, producing α-ketoglutarate and hydrogen peroxide (H2O2) as a by-product. The production of H2O2 is crucial for detection of the presence of the glutamate within the enzymatic coating, as it diffuses through the enzyme layer and oxidizes at the surface of the electrode. This oxidation is detectable by measurable change in the current using amperometry. Hence, the MEA allows for in vivo monitoring of neurotransmitter activity in real time. The sensitivity of the sensor to these neurotransmitters is dependent on the thickness of the layer, which is investigated in these experiments in order to optimize the efficacy of the device to detecting the substrate, once implanted.

  17. Graphitic carbon nitride induced activity enhancement of OMS-2 catalyst for pollutants degradation with peroxymonosulfate

    Science.gov (United States)

    Li, Jun; Fang, Jia; Gao, Long; Zhang, Jingwen; Ruan, Xinchao; Xu, Aihua; Li, Xiaoxia

    2017-04-01

    Low valent manganese species and surface oxygen vacancies in OMS-2 play an important role in catalytic reactions, and it is highly desirable and challenging to develop a feasible strategy of increasing the Mn(II) and Mn(III) species concentration in the oxide. Herein, the OMS-2/g-C3N4 hybrids (OMS-2/CN) were prepared by a facile refluxing approach. It was found that the MnOx precursor from the reaction of KMnO4 and MnSO4 was transformed into OMS-2 nanofibers with the formation of more Mn(II) and Mn(III) species in OMS-2 and the destruction and oxidation of g-C3N4. The hybrids exhibited higher efficiency for pollutants degradation in the presence of PMS than the pure OMS-2 or g-C3N4. There was a linear correlation between the specific initial rate and the ratio of Mn(II + III)/Mn(IV). Mechanism investigation indicated that high active manganese species or caged radicals were produced through the oxidation of Mn(II) and Mn(III) by PMS and contributed to the degradation reaction. During five consecutive cycles, the catalyst exhibited good reusability and stability. Therefore, the OMS-2/CN hybrids are promising catalysts for wastewater treatment with PMS as the oxidant.

  18. In situ ligand generation for novel Mn(II) and Ni(II) coordination polymers with disulfide ligand: Solvothermal syntheses, structures and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yinfeng, E-mail: hanyinfeng@gmail.com; Wang, Chang' an; Zheng, Zebao; Sun, Jiafeng; Nie, Kun; Zuo, Jian; Zhang, Jianping

    2015-07-15

    Two coordination polymers, ([Mn{sub 2}(L1){sub 2}(μ{sub 2}-H{sub 2}O)(H{sub 2}O){sub 4}]·5H{sub 2}O){sub n}1 and ([Ni(L1)(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n}2 (H{sub 2}L1=2,2′-dithiobisnicotinic acid), were prepared by the solvothermal reactions of the Mn(II) or Ni(II) ions with 2-mercaptonanicotinic acid. In 1, the [Mn{sub 2}(COO){sub 4}] units are connected by the 2,2′-dithiobisnicotinic dianion to form a two-dimensional (4,4)-connected network. In 2, the adjacent Ni(II) ions are connected by the carboxyl groups of the 2,2′-dithiobisnicotinic dianion to form an one-dimensional inorganic rod-shaped chain [Ni(COO){sub 2}]{sub n}, which are further interconnected by the 2,2′-dithiobisnicotinic ligand, giving rise to a two-dimensional framework. Variable-temperature magnetic susceptibilities of 1 and 2 exhibit overall weak antiferromagnetic coupling between the adjacent metal ions. - Graphical abstract: Two 2D coordination polymers were synthesized by transition-metal/in-situ oxidation of 2-mercaptonicotinic acid. The compounds pack into 2D frameworks by the carboxyl groups of 2,2′-dithiobisnicotinic dianion and exhibit overall weak antiferromagnetic coupling. - Highlights: • Two 2D coordination polymers containing 2,2′-dithiobisnicotinic dianion. • In situ oxidation and dehydro coupling reaction of 2-mercaptonbenzoic acid. • Two compounds display weak antiferromagnetic exchanges.

  19. On-chip enzymatic microbiofuel cell-powered integrated circuits.

    Science.gov (United States)

    Mark, Andrew G; Suraniti, Emmanuel; Roche, Jérôme; Richter, Harald; Kuhn, Alexander; Mano, Nicolas; Fischer, Peer

    2017-05-16

    A variety of diagnostic and therapeutic medical technologies rely on long term implantation of an electronic device to monitor or regulate a patient's condition. One proposed approach to powering these devices is to use a biofuel cell to convert the chemical energy from blood nutrients into electrical current to supply the electronics. We present here an enzymatic microbiofuel cell whose electrodes are directly integrated into a digital electronic circuit. Glucose oxidizing and oxygen reducing enzymes are immobilized on microelectrodes of an application specific integrated circuit (ASIC) using redox hydrogels to produce an enzymatic biofuel cell, capable of harvesting electrical power from just a single droplet of 5 mM glucose solution. Optimisation of the fuel cell voltage and power to match the requirements of the electronics allow self-powered operation of the on-board digital circuitry. This study represents a step towards implantable self-powered electronic devices that gather their energy from physiological fluids.

  20. Improved removal performance and mechanism investigation of papermaking wastewater treatment using manganese enhanced Fenton reaction.

    Science.gov (United States)

    Wang, Yingcai; Wang, Can; Shi, Shuai; Fang, Shuai

    2018-06-01

    The effects of Mn(II) on Fenton system to treat papermaking wastewater and the mechanism of Mn(II) enhanced Fenton reaction were investigated in this study. The chemical oxygen demand (COD) removal efficiency was enhanced in the presence of Mn(II), which increased by 19% compared with that of the Fenton system alone. The pseudo-first order reaction kinetic rate constant of Mn(II)/Fenton system was 2.11 times higher than that of Fenton system. 67%-81% COD were removed with the increasing Mn(II) concentration from 0 to 0.8 g/L. COD removal efficiency was also enhanced in a wider pH range (3-7), which indicated the operation parameters of Fenton technology could be broadened to a milder condition. The study of the mechanism showed that Mn(II) participated in the oxidation and coagulation stages in Fenton system. In the oxidation stage, Mn(II) promotes the production of HO 2 •/ O 2 • - , then HO 2 •/ O 2 • - reacts with Fe(III) to accelerate the formation of Fe(II), and finally accelerates the production of HO•. Meantime MnMnO 3 and Fe(OH) 3 forms in the coagulation stage, facilitating the removal of suspended substances and a large amount of COD, which enhances the overall COD removal of papermaking wastewater. This study provided a detailed mechanism to improve practical applications of Fenton technology.

  1. Column solid phase extraction and flame atomic absorption spectrometric determination of manganese(II) and iron(III) ions in water, food and biological samples using 3-(1-methyl-1H-pyrrol-2-yl)-1H-pyrazole-5-carboxylic acid on synthesized graphene oxide

    International Nuclear Information System (INIS)

    Pourjavid, Mohammad Reza; Sehat, Ali Akbari; Arabieh, Masoud; Yousefi, Seyed Reza; Hosseini, Majid Haji; Rezaee, Mohammad

    2014-01-01

    A modified, selective, highly sensitive and accurate procedure for the determination of trace amounts of manganese and iron ions is established in the presented work. 3-(1-Methyl-1H-pyrrol-2-yl)-1H-pyrazole-5-carboxylic acid (MPPC) and graphene oxide (GO) were used in a glass column as chelating reagent and as adsorbent respectively prior to their determination by flame atomic absorption spectrometry. The adsorption mechanism of titled metals complexes on GO was investigated by using computational chemistry approach based on PM6 semi-empirical potential energy surface (PES). The effect of some parameters including pH, flow rate and volume of sample and type, volume and concentration of eluent, as well as the adsorption capacity of matrix ions on the recovery of Mn(II) and Fe(III) was investigated. The limit of detection was 145 and 162 ng L −1 for Mn(II) and Fe(III), respectively. Calibration was linear over the range of 0.31–355 μg L −1 for Mn(II) and 0.34–380 μg L −1 for Fe(III) ions. The method was successfully applied for the determination of understudied ions in water, food and biological samples. - Highlights: • We use synthesized graphene oxide as adsorbent for SPE of Mn(II) and Fe(III) ions. • Adsorption mechanism was investigated by PM6 semi-empirical potential energy surface. • Detection limits were 145 and 162 ng L −1 for Mn and Fe, respectively. • The preconcentration factor was 325 and sample flow rate is 8 mL min −1 . • It was successfully applied to the determination of Mn and Fe ions in real samples

  2. Column solid phase extraction and flame atomic absorption spectrometric determination of manganese(II) and iron(III) ions in water, food and biological samples using 3-(1-methyl-1H-pyrrol-2-yl)-1H-pyrazole-5-carboxylic acid on synthesized graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Pourjavid, Mohammad Reza, E-mail: pourjavid@gmail.com [NFCRS, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran (Iran, Islamic Republic of); Sehat, Ali Akbari [Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran (Iran, Islamic Republic of); Arabieh, Masoud; Yousefi, Seyed Reza; Hosseini, Majid Haji; Rezaee, Mohammad [NFCRS, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran (Iran, Islamic Republic of)

    2014-02-01

    A modified, selective, highly sensitive and accurate procedure for the determination of trace amounts of manganese and iron ions is established in the presented work. 3-(1-Methyl-1H-pyrrol-2-yl)-1H-pyrazole-5-carboxylic acid (MPPC) and graphene oxide (GO) were used in a glass column as chelating reagent and as adsorbent respectively prior to their determination by flame atomic absorption spectrometry. The adsorption mechanism of titled metals complexes on GO was investigated by using computational chemistry approach based on PM6 semi-empirical potential energy surface (PES). The effect of some parameters including pH, flow rate and volume of sample and type, volume and concentration of eluent, as well as the adsorption capacity of matrix ions on the recovery of Mn(II) and Fe(III) was investigated. The limit of detection was 145 and 162 ng L{sup −1} for Mn(II) and Fe(III), respectively. Calibration was linear over the range of 0.31–355 μg L{sup −1} for Mn(II) and 0.34–380 μg L{sup −1} for Fe(III) ions. The method was successfully applied for the determination of understudied ions in water, food and biological samples. - Highlights: • We use synthesized graphene oxide as adsorbent for SPE of Mn(II) and Fe(III) ions. • Adsorption mechanism was investigated by PM6 semi-empirical potential energy surface. • Detection limits were 145 and 162 ng L{sup −1} for Mn and Fe, respectively. • The preconcentration factor was 325 and sample flow rate is 8 mL min{sup −1}. • It was successfully applied to the determination of Mn and Fe ions in real samples.

  3. Effect of ozonation on the reactivity of lignocellulose substrates in enzymatic hydrolyses to sugars

    Science.gov (United States)

    Ben'ko, E. M.; Manisova, O. R.; Lunin, V. V.

    2013-07-01

    The efficiency of pre-treatment of aspen wood with ozone for subsequent enzymatic hydrolysis into sugars is determined by the amount of absorbed ozone. The ozone absorption rate depended on the water content in the sample being ozonized and was maximum at a relative humidity of wood of ˜40%. As a result of ozone pre-treatment, the initial rate of the enzymatic hydrolysis of wood under the action of a cellulase complex increased eightfold, and the maximum yield of sugars increased tenfold depending on the ozone dose. The ozonation at ozone doses of more than 3 mol/PPU (phenylpropane structural unit of lignin) led to a decrease in the yield of sugars because of the oxidative destruction of cellulose and hemicellulose. The alkaline ozonation in 2 and 12% NaOH was inefficient because of the accompanying oxidation of carbohydrates and considerably decreased the yield of sugars.

  4. Recent Advances in Carbon Nanotube-Based Enzymatic Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Cosnier, Serge, E-mail: serge.cosnier@ujf-grenoble.fr; Holzinger, Michael; Le Goff, Alan [Département de Chimie Moléculaire (DCM) UMR 5250, Université Grenoble Alpes, Grenoble (France); Département de Chimie Moléculaire (DCM) UMR 5250, CNRS, Grenoble (France)

    2014-10-24

    This review summarizes recent trends in the field of enzymatic fuel cells. Thanks to the high specificity of enzymes, biofuel cells can generate electrical energy by oxidation of a targeted fuel (sugars, alcohols, or hydrogen) at the anode and reduction of oxidants (O{sub 2}, H{sub 2}O{sub 2}) at the cathode in complex media. The combination of carbon nanotubes (CNT), enzymes and redox mediators was widely exploited to develop biofuel cells since the electrons involved in the bio-electrocatalytic processes can be efficiently transferred from or to an external circuit. Original approaches to construct electron transfer based CNT-bioelectrodes and impressive biofuel cell performances are reported as well as biomedical applications.

  5. Magnetic Fe3S4 nanoparticles with peroxidase-like activity, and their use in a photometric enzymatic glucose assay

    International Nuclear Information System (INIS)

    Ding, Caiping; Yan, Yinghan; Zhang, Cuiling; Xian, Yuezhong; Xiang, Dongshan

    2016-01-01

    Greigite magnetic nanoparticles (Fe 3 S 4 -MNPs) were prepared and reveal a peroxidase-like activity. Kinetic studies revealed a pseudo-enzymatic activity that is much higher than that of other magnetic nanomaterial-based enzyme mimetics. This finding was exploited to design a photometric enzymatic glucose assay based on the formation of H 2 O 2 during enzymatic oxidation of glucose by glucose oxidase, and the formation of a blue product from an enzyme substrate that is catalytically oxidized by H 2 O 2 in the presence of Fe 3 S 4 -MNPs. Glucose can be detected in the 2 to 100 μM concentration range, and the low detection limit is 0.16 μM. The method was applied to quantify glucose in human serum. In our perception, this enzyme mimetic has a large potential in that it may be used in other oxidase based assays, but also in ELISAs. (author)

  6. Pretreatment of sugarcane bagasse using the advanced oxidation process by electron beam for enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Ribeiro, Marcia Almeida

    2013-01-01

    The sugar cane bagasse is a renewable energy source and a raw material promise in the biofuel production, once represents about 30% of glucose contained in the plant with the potential to be hydrolyzed and then converted to ethanol. The bagasse is composed of cellulose, straight chain of glucose, of hemicellulose, an amorphous polymer consisting of xylose, arabinose, galactose, and mannose, and of lignin, a complex polymer consisting of fenilpropan units that acts as waterproof coating on the fibers, which is hard to remove due its recalcitrant nature. The aim of this work was to study the electron beam processing as a pretreatment of sugarcane bagasse to enzymatic hydrolysis of cellulose. The pretreatment of sugarcane bagasse is one of the most important steps to make this material economically viable and competitive on the energy production. As a pretreatment the electron beam processing can weak the hemicellulose and lignin structures by the action highly reactive radicals that breaks the links, reducing the degree of polymerization fibers. It was evaluated the chemical and structural modifications on fibers caused by the irradiation, the enzymatic hydrolysis of electron beam as the only pretreatment and combined to steam explosion. For enzymatic hydrolysis it was used the commercial enzymes from Novozymes. The radiation processing promotes changes in structure and composition of sugarcane bagasse, increasing the solubility, that is related to hemicellulose and cellulose cleavage, and also increasing the enzymatic conversion yield. In the case of exploded bagasse there is no changes in the enzymatic hydrolysis yield, however the electron beam processing promoted a 67% reduction of furfural, that is formed in the steam explosion process. (author)

  7. Enzymatic synthesis of bioactive compounds with high potential for cosmeceutical application

    OpenAIRE

    Antonopoulou, Io; Varriale, Simona; Topakas, Evangelos; Rova, Ulrika; Christakopoulos, Paul; Faraco, Vincenza

    2016-01-01

    Cosmeceuticals are cosmetic products containing biologically active ingredients purporting to offer a pharmaceutical therapeutic benefit. The active ingredients can be extracted and purified from natural sources (botanicals, herbal extracts, or animals) but can also be obtained biotechnologically by fermentation and cell cultures or by enzymatic synthesis and modification of natural compounds. A cosmeceutical ingredient should possess an attractive property such as anti-oxidant, anti-inflamma...

  8. A Sequential Combination of Laccase Pretreatment and Enzymatic Hydrolysis for Glucose Production from Furfural Residues

    Directory of Open Access Journals (Sweden)

    Hailong Yu

    2014-06-01

    Full Text Available Furfural residues (FRs were pretreated with laccase or a laccase-mediator (1-hydroxybenzotriazole, HBT system to produce fermentable sugar for bioethanol production. Compared to laccase-only pretreatment, laccase-mediator pretreatment dissolved more lignin. Approximately 10.5% of the initially present lignin was removed when FRs were treated with a laccase loading of 100 U/g of dry substrate in 1% (w/w HBT at 48 °C for 24 h in an acetate buffer (pH 4.8. The enzymatic saccharification process was carried out by a combined laccase or laccase-mediator pretreatment without washing of the treated solids. The results showed that active laccase had a negative effect on the rate and yield of enzymatic hydrolysis. Laccase-oxidized HBT seriously reduced glucose yield. However, non-oxidized HBT increased glucose yield when laccase was deactivated at 121 °C for 20 min prior to enzymatic hydrolysis. The highest glucose yield, 80.9%, was obtained from the substrate pretreated with 100 U/g of dry substrate laccase and 1% (w/w HBT at 48 °C for 24 h in an acetate buffer (pH 4.8. Furthermore, the structures of FRs before and after laccase-mediator pretreatment were characterized by scanning electron microscopy (SEM and Fourier Transform Infrared spectroscopy (FT-IR.

  9. Effect of elevated manganese on the ultraviolet- and blue light-absorbing compounds of cucumber cotyledons and leaf tissues

    International Nuclear Information System (INIS)

    Caldwell, C.R.

    1998-01-01

    The effect of manganese [Mn(II)] on the pigments of cucumber (Cucumis sativus L., cv Poinsett 76) leaf and cotyledon tissues was investigated. Tissue disks (7 mm) were exposed to increasing Mn(II) concentrations from 100 micromolar to 2.5 mM. Acetone (carotenoid-rich fraction) and acidified methanol (flavonoid-rich fraction) extracts were analyzed by high performance liquid chromatography. Although none of the Mn(II)-treated tissues showed visible damage, Mn(II) at concentrations of 250 micromolar and above significantly reduced (60%) the beta-carotene levels of light-incubated leaf tissues. A major Mn(II)-induced, UV-absorbing compound was observed in methanol extracts of cotyledonary tissues exposed to Mn(II) in the dark. In leaf tissues, Mn(II) reduced the levels of certain UV-absorbing compounds under both light conditions. These results demonstrate that excess leaf Mn(II) can rapidly impair isoprenoid metabolism, altering tissue carotenoid composition. Furthermore, Mn(II) may also modify phenylpropanoid metabolism, changing the tissue flavonoid composition. Both situations could sensitize plant tissues to oxidative stresses, particularly enhanced solar UV-B radiation, and may reduce the nutritional quality of leafy vegetables

  10. Breakthrough Curve Analysis for Column Dynamics Sorption of Mn(II) Ions from Wastewater by Using Mangostana garcinia Peel-Based Granular-Activated Carbon

    OpenAIRE

    Z. Z. Chowdhury; S. M. Zain; A. K. Rashid; R. F. Rafique; K. Khalid

    2013-01-01

    The potential of granular-activated carbon (GAC) derived from agrowaste of Mangostene (Mangostana garcinia) fruit peel was investigated in batch and fixed bed system as a replacement of current expensive methods for treating wastewater contaminated by manganese, Mn(II) cations. Batch equilibrium data was analyzed by Langmuir, Freundlich, and Temkin isotherm models at different temperatures. The effect of inlet metal ion concentration (50 mg/L, 70 mg/L, and 100 mg/L), feed flow rate (1 mL/min...

  11. The oxidative hypothesis of senescence

    Directory of Open Access Journals (Sweden)

    Gilca M

    2007-01-01

    Full Text Available The oxidative hypothesis of senescence, since its origin in 1956, has garnered significant evidence and growing support among scientists for the notion that free radicals play an important role in ageing, either as "damaging" molecules or as signaling molecules. Age-increasing oxidative injuries induced by free radicals, higher susceptibility to oxidative stress in short-lived organisms, genetic manipulations that alter both oxidative resistance and longevity and the anti-ageing effect of caloric restriction and intermittent fasting are a few examples of accepted scientific facts that support the oxidative theory of senescence. Though not completely understood due to the complex "network" of redox regulatory systems, the implication of oxidative stress in the ageing process is now well documented. Moreover, it is compatible with other current ageing theories (e.g., those implicating the mitochondrial damage/mitochondrial-lysosomal axis, stress-induced premature senescence, biological "garbage" accumulation, etc. This review is intended to summarize and critically discuss the redox mechanisms involved during the ageing process: sources of oxidant agents in ageing (mitochondrial -electron transport chain, nitric oxide synthase reaction- and non-mitochondrial- Fenton reaction, microsomal cytochrome P450 enzymes, peroxisomal β -oxidation and respiratory burst of phagocytic cells, antioxidant changes in ageing (enzymatic- superoxide dismutase, glutathione-reductase, glutathion peroxidase, catalase- and non-enzymatic glutathione, ascorbate, urate, bilirubine, melatonin, tocopherols, carotenoids, ubiquinol, alteration of oxidative damage repairing mechanisms and the role of free radicals as signaling molecules in ageing.

  12. Enzymatic determination of cadmium, zinc, and lead in plant materials

    International Nuclear Information System (INIS)

    Muginova, S.V.; Veselova, I.A.; Parova, L.M.; Shekhovtseva, T.N.

    2008-01-01

    Prospects are outlined for using the following enzymes (native and immobilized on polyurethane foam) in the rapid and highly sensitive determination of cadmium, zinc, and lead ions in plant materials (wild grass, fresh pea, and grape): horseradish peroxidase and alkaline phosphatases isolated from chicken intestine and Greenland seal small intestine. The analytical ranges of the above metals are 1x10 -3 -25; 7x10 -3 -250, and 3x10 -2 -67 mg/kg dry matter, respectively. The enzymatic determination procedures developed are based on the inhibiting effect of metal ions on the catalytic activity of peroxidase in the oxidation of o-dianisidine with hydrogen peroxide and alkaline phosphatases in the hydrolysis of p-nitrophenyl phosphate. The rates of enzymatic reactions were monitored spectrophotometrically or visually. In the analysis of plant extracts, their high acidity was diminished by choosing optimum dilution factors and pH values for test samples and the nature and concentration of a buffer solution. The interference of iron(III) was removed by introducing a 0.1 M tartaric acid solution into the indicator reaction. The accuracy of the results of the enzymatic determination of cadmium, zinc, and lead in plant materials was supported by atomic absorption spectrometry and anodic stripping voltammetry [ru

  13. Enzymatic oxidation of 2-phenylethylamine to phenylacetic acid and 2-phenylethanol with special reference to the metabolism of its intermediate phenylacetaldehyde.

    Science.gov (United States)

    Panoutsopoulos, Georgios I; Kouretas, Demetrios; Gounaris, Elias G; Beedham, Christine

    2004-12-01

    2-phenylethylamine is an endogenous constituent of the human brain and is implicated in cerebral transmission. This bioactive amine is also present in certain foodstuffs such as chocolate, cheese and wine and may cause undesirable side effects in susceptible individuals. Metabolism of 2-phenylethylamine to phenylacetaldehyde is catalysed by monoamine oxidase B but the oxidation to its acid is usually ascribed to aldehyde dehydrogenase and the contribution of aldehyde oxidase and xanthine oxidase, if any, is ignored. The objective of this study was to elucidate the role of the molybdenum hydroxylases, aldehyde oxidase and xanthine oxidase, in the metabolism of phenylacetaldehyde derived from its parent biogenic amine. Treatments of 2-phenylethylamine with monoamine oxidase were carried out for the production of phenylacetaldehyde, as well as treatments of synthetic or enzymatic-generated phenylacetaldehyde with aldehyde oxidase, xanthine oxidase and aldehyde dehydrogenase. The results indicated that phenylacetaldehyde is metabolised mainly to phenylacetic acid with lower concentrations of 2-phenylethanol by all three oxidising enzymes. Aldehyde dehydrogenase was the predominant enzyme involved in phenylacetaldehyde oxidation and thus it has a major role in 2-phenylethylamine metabolism with aldehyde oxidase playing a less prominent role. Xanthine oxidase does not contribute to the oxidation of phenylacetaldehyde due to low amounts being present in guinea pig. Thus aldehyde dehydrogenase is not the only enzyme oxidising xenobiotic and endobiotic aldehydes and the role of aldehyde oxidase in such reactions should not be ignored.

  14. Effects of Polyelectrolyte Complex Micelles and Their Components on the Enzymatic Activity of Lipase

    NARCIS (Netherlands)

    Lindhoud, Saskia; Norde, Willem; Stuart, Martien Cohen

    2010-01-01

    The enzymatic activity of Hi-lipase embedded in complexes of poly-2-methylvinylpyridinium-co-poly(ethylene oxide) (P2MVP(41)-PEG(205)) and poly(acrylic acid)(PAA(139)) is studied as a function of the PAA(139) + P2MVP(41) - PEO(205) complex composition. The measurements revealed that there are

  15. The effects of xylitol and sorbitol on lysozyme- and peroxidase-related enzymatic and candidacidal activities.

    Science.gov (United States)

    Kim, Bum-Soo; Chang, Ji-Youn; Kim, Yoon-Young; Kho, Hong-Seop

    2015-07-01

    To investigate whether xylitol and sorbitol affect enzymatic and candidacidal activities of lysozyme, the peroxidase system, and the glucose oxidase-mediated peroxidase system. Xylitol and sorbitol were added to hen egg-white lysozyme, bovine lactoperoxidase, glucose oxidase-mediated peroxidase, and whole saliva in solution and on hydroxyapatite surfaces. The enzymatic activities of lysozyme, peroxidase, and glucose oxidase-mediated peroxidase were determined by the turbidimetric method, the NbsSCN assay, and production of oxidized o-dianisidine, respectively. Candidacidal activities were determined by comparing colony forming units using Candida albicans ATCC strains 10231, 11006, and 18804. While xylitol and sorbitol did not affect the enzymatic activity of hen egg-white lysozyme both in solution and on hydroxyapatite surfaces, they did inhibit the enzymatic activity of salivary lysozyme significantly in solution, but not on the surfaces. Xylitol and sorbitol enhanced the enzymatic activities of both bovine lactoperoxidase and salivary peroxidase significantly in a dose-dependent manner in solution, but not on the surfaces. Sorbitol, but not xylitol, inhibited the enzymatic activity of glucose oxidase-mediated peroxidase significantly. Both xylitol and sorbitol did not affect candidacidal activities of hen egg-white lysozyme, the bovine lactoperoxidase system, or the glucose oxidase-mediated bovine lactoperoxidase system. Xylitol and sorbitol inhibited salivary lysozyme activity, but enhanced both bovine lactoperoxidase and salivary peroxidase activities significantly in solution. Xylitol and sorbitol did not augment lysozyme- and peroxidase-related candidacidal activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Inhibiting mitochondrial β-oxidation selectively reduces levels of nonenzymatic oxidative polyunsaturated fatty acid metabolites in the brain.

    Science.gov (United States)

    Chen, Chuck T; Trépanier, Marc-Olivier; Hopperton, Kathryn E; Domenichiello, Anthony F; Masoodi, Mojgan; Bazinet, Richard P

    2014-03-01

    Schönfeld and Reiser recently hypothesized that fatty acid β-oxidation is a source of oxidative stress in the brain. To test this hypothesis, we inhibited brain mitochondrial β-oxidation with methyl palmoxirate (MEP) and measured oxidative polyunsaturated fatty acid (PUFA) metabolites in the rat brain. Upon MEP treatment, levels of several nonenzymatic auto-oxidative PUFA metabolites were reduced with few effects on enzymatically derived metabolites. Our finding confirms the hypothesis that reduced fatty acid β-oxidation decreases oxidative stress in the brain and β-oxidation inhibitors may be a novel therapeutic approach for brain disorders associated with oxidative stress.

  17. A combined chemical + enzymatic method to remove selected aromatics from aqueous streams

    International Nuclear Information System (INIS)

    Xu, X.; John, V.

    1993-01-01

    Aromatics are major pollutants found in aqueous environments and in sediments. While there are many chemical and biochemical processes to remove and/or destroy these contaminants, they have to be considered in light of the economics and the time-scales for treatment. We describe our initial work on a hybrid chemical + enzymatic technique to remove aromatics from aqueous stream. The aromatic is first converted to the corresponding phenol through classical Fenton type chemistry involving catalysis by Fe(II). The phenol is subsequently polymerized through an enzymatic mechanism, using horseradish peroxidase as the oxidative enzyme. The polymer is insoluble in water and can be easily recovered. In addition, such phenolic polymers are useful products with varied applications in coatings and resin technologies. Thus, the pollutants can be eventually converted to useful products

  18. A comparative genomic analysis of the oxidative enzymes potentially involved in lignin degradation by Agaricus bisporus

    Science.gov (United States)

    Harshavardhan Doddapaneni; Venkataramanan Subramanian; Bolei Fu; Dan Cullen

    2013-01-01

    The oxidative enzymatic machinery for degradation of organic substrates in Agaricus bisporus (Ab) is at the core of the carbon recycling mechanisms in this fungus. To date, 156 genes have been tentatively identified as part of this oxidative enzymatic machinery, which includes 26 peroxidase encoding genes, nine copper radical oxidase [including three...

  19. Kinetic modelling of enzymatic starch hydrolysis

    NARCIS (Netherlands)

    Bednarska, K.A.

    2015-01-01

    Kinetic modelling of enzymatic starch hydrolysis – a summary

    K.A. Bednarska

    The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch.

  20. Oxaliplatin-induced Oxidative Stress Provokes Toxicity in Isolated Rat Liver Mitochondria.

    Science.gov (United States)

    Tabassum, Heena; Waseem, Mohammad; Parvez, Suhel; Qureshi, M Irfan

    2015-11-01

    Oxaliplatin is a widely employed platinum-derived chemotherapeutic agent commonly used for the treatment of colorectal cancer. Unfortunately, the benefit of this important drug is compromised by severe side effects such as neuropathy, ototoxicity, gastrointestinal toxicity, and hematological toxicity. Recently, few studies have also suggested the occurrence of hepatotoxicity in oxaliplatin-treated patients. Mitochondria have emerged as targets for anticancer drugs in various kinds of toxicity including hepatotoxicity that can lead to neoplastic disease. Oxidative stress is a well-established biomarker of mitochondrial toxicity. The purpose of this study was to investigate the dose-dependent damage caused by oxaliplatin on isolated liver mitochondria under in vitro conditions. The study was conducted in mitochondria isolated from liver of Wistar rats. Oxaliplatin was incubated with mitochondria in a dose-dependent manner under in vitro conditions. Oxidative stress indexes, non-enzymatic and enzymatic antioxidants were evaluated, looking at the overall armamentarium against the toxicity induced by oxaliplatin. Oxaliplatin caused a significant rise in the mitochondrial oxidative stress indexes lipid peroxidation and protein carbonyl. Alterations in the levels of non-enzymatic antioxidants and activities of enzymatic antioxidants were also observed. Oxidative stress plays an important role in the mitochondrial toxicity of oxaliplatin. The integrity of the hepatic tissue is compromised by the reactive oxygen species-mediated lipid peroxidation and protein carbonyl formation. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  1. Non-Enzymatic Glucose Biosensor Based on CuO-Decorated CeO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Panpan Guan

    2016-08-01

    Full Text Available Copper oxide (CuO-decorated cerium oxide (CeO2 nanoparticles were synthesized and used to detect glucose non-enzymatically. The morphological characteristics and structure of the nanoparticles were characterized through transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The sensor responses of electrodes to glucose were investigated via an electrochemical method. The CuO/CeO2 nanocomposite exhibited a reasonably good sensitivity of 2.77 μA mM−1cm−2, an estimated detection limit of 10 μA, and a good anti-interference ability. The sensor was also fairly stable under ambient conditions.

  2. Effects of Polyelectrolyte Complex Micelles and Their Components on the Enzymatic Activity of Lipase

    NARCIS (Netherlands)

    Lindhoud, Saskia; Norde, Willem; Cohen Stuart, Martinus Abraham

    2010-01-01

    The enzymatic activity of Hl-lipase embedded in complexes of poly-2-methylvinylpyridinium-co-poly(ethylene oxide) (P2MVP41−PEO205) and poly(acrylic acid)(PAA139) is studied as a function of the PAA139 + P2MVP41−PEO205 complex composition. The measurements revealed that there are several factors that

  3. Impact of lignins isolated from pretreated lignocelluloses on enzymatic cellulose saccharification.

    Science.gov (United States)

    Barsberg, Søren; Selig, Michael Joseph; Felby, Claus

    2013-02-01

    Lignins were enzymatically isolated from corn stover and wheat straw samples and subjected to hydrothermal or wet oxidation pretreatments for enzyme adsorption experimentations. Lignin contents of the isolates ranged from 26 to 71 % (w/w); cellulose ranged from 3 to 22 % (w/w); xylan from 0.7 to 6 % (w/w) and ash was from 5.8 to 30 % (w/w). ATR-IR analyses indicated significant and similar levels of calcium in all lignin isolates. Commercial cellulase adsorption studies showed that the presence of these lignins had no significant impact on the total amount of adsorbed enzyme in cellulose and cellulose-lignin systems. Consequently, the presence of the lignins had minimal effect, if any, on enzymatic cellulose conversion. Furthermore, this result, coupled with significant calcium levels in the isolated lignins, supports previous work suggesting lignin-calcium complexes reduce enzyme-lignin interactions.

  4. Strategies to inhibit the lipid oxidation in the enzymatic synthesis of monoglycerides by glycerolysis of Babassu oil - doi: 10.4025/actascitechnol.v35i3.14187

    Directory of Open Access Journals (Sweden)

    Larissa Freitas

    2013-06-01

    Full Text Available Different strategies to avoid the lipid feedstock oxidation in the enzymatic synthesis of monoglycerides (MAG from glycerolysis of babassu oil were tested. The reactions were catalyzed by Burkholderia cepacia lipase immobilized on SiO2-PVA and the tests carried out in batchwise. The best strategy was tested in a continuous packed-bed reactor. Different antioxidants and emulsifiers were used, including: Buthyl-hydroxy-toluene (BHT, tocopherol, soy lecithin and Triton X-100. The influence of inert atmosphere (N2 on the MAG production was also investigated. Results were compared with those attaining in the control reaction. The best performance was obtained using N2 in the reaction medium, preventing the oxidation of babassu oil. MAG concentrations were 60 and 24% in batch and continuous mode, respectively. Among the tested antioxidant and emulsifying agents, only soy lecithin was found to be efficient but its application showed limit performance to be used in continuous runs.  

  5. Enzymatic gelation of sugar beet pectin in food products

    DEFF Research Database (Denmark)

    Bergsøe, Merete Norsker; Jensen, Mette; Adler-Nissen, Jens

    2000-01-01

    Sugar beet pectin is a food ingredient with specific functional properties. It may form gels by an oxidative cross-linking of ferulic acid. In the present study, the gel forming properties of three oxidative enzymes were examined in different food relevant conditions. The enzymes chosen were two...... laccases and one peroxidase. The textural properties of the produced gels were measured on a texture analyser. The influence of sugar, salt and protein were analysed. Finally, the enzymatic gelation was studied in three food products with added sugar beet pectin. These were black currant juice, milk...... and chopped heat-treated meat emulsion. The addition of salt resulted in softer, less stiff and chewy, and less adhesive gels. Generally speaking, sugar addition increased the hardness but at high concentration the gels were very brittle. However, Young's modulus was lower in gels containing sugar than...

  6. Synthesis of nanostructured mixed oxide CeO2-Mn2O3 and investigation of their sorption ability for arsenic, ammoniac, iron, manganese

    International Nuclear Information System (INIS)

    Luu Minh Dai; Dao Ngoc Nhiem; Duong Thi Lim

    2012-01-01

    The nanostrutured mixed oxide CeO 2 -Mn 2 O 3 have been synthesised at low temperature (350 o C) by the combustion of gel prepared from polyvinyl alcohol (PVA), Ce (NO 3 ) 4 and Mn(No 3 ) 3 , CeO 2 -Mn 2 O 3 characterizations were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET (Brunauce-Emmet-Teller) measurements. The phase of CeO 2 -Mn 2 O 3 , with large specific surface ares 65.3 m 2 /g was obtained at 350 o C for 2 hours. The nanostructured CeO 2 -Mn 2 O 3 has been investigated for removing iron, manganese, arsenic and ammoniac from water. The sorption characteristics of the nanostrutured CeO 2 -Mn 2 O 3 for AS(V), NH4 + , Fe(III), Mn(II) according to the langmuir isotherm. The sorption capacities of nanostrutured CeO 2 -Mn 2 O 3 are 57.10 mg As(V)g; 154.54 mg NH4 + /g; 72.97 mg Fe(III)/g; 60.27 Mn(II) / g. (author)

  7. Oxidative Stress Induction by Lead in Leaves of Radish (Raphanus sativus Seedlings

    Directory of Open Access Journals (Sweden)

    Nadjet BITEUR

    2011-11-01

    Full Text Available Oxidative stress was induced by lead acetate (Pb in Raphanus sativus seedlings grown in a hydroponic system using sand as substrate. Thirty day old acclimated seeds were treated for 7 days with five Pb levels (0 as control, 100, 200, 500 and 1000 mg l-1. Parameters such as growth, oxidative damage markers (lipid peroxidation, protein oxidation and hydrogen peroxide contents and enzymatic activities of catalase (CAT and peroxidase (POD were investigated. Lead concentration in plant tissues increased with increasing of Pb levels. Shoot fresh weight, chlorophyll and carotenoid concentration were significantly decreased at 100 mg l-1 Pb. Lipid peroxidation, protein oxidation and H2O2 levels were increased at 500 and 1000 mg l-1 Pb compared to control treatment, in shoots. Peroxidase activity showed a straight correlation with H2O2 concentration, whereas CAT activity decreased only in shoots. These changes in enzymatic and non-enzymatic antioxidants showed that the Pb exposition had a significant disturbance on Raphanus sativus plantlets and affect the biochemical and physiological processes.

  8. Influence of NO2 and metal ions on oxidation of aqueous-phase S(IV in atmospheric concentrations

    Directory of Open Access Journals (Sweden)

    Cláudia R. Martins

    2008-06-01

    Full Text Available An investigation was made of the influence of atmospheric concentrations (15 or 130 ppbv of NO2 on the aqueous-phase oxidation rate of S(IV in the presence and absence of Fe(III, Mn(II and Cr(VI metal ions under controlled experimental conditions (pH, T, concentration of reactants, etc.. The reaction rate in the presence of the NO2 flow was slower than the reaction rate using only clean air with an initial S(IV concentration of 10-4 mol/L. NO2 appears to react with S(IV, producing a kind of inhibitor that slows down the reaction. Conversely, tenfold lower concentrations of S(IV ([S(IV]º = 10-5 mol/L caused a faster reaction in the presence of NO2 than the reaction using purified air. Under these conditions, therefore, the equilibrium shifts to sulfate formation. With the addition of Fe(III, Mn(II or Cr(VI in the presence of a NO2 flow, the reaction occurred faster under all the conditions in which S(IV oxidation was investigated.A reação de oxidação de S(IV em fase aquosa foi estudada em laboratório em presença de NO2 dos íons metálicos Fe(III, Mn(II, e Cr(VI sob condições experimentais controladas (pH, T, concentração dos reagentes, etc.. Na presença de corrente de ar com NO2 (15 ou 130 ppbv a reação de oxidação de S(IV ocorreu mais lentamente do que na presença de ar purificado, para uma concentração inicial de S(IV de 10-4 mol/L. Ao contrário, para concentração inicial de S(IV dez vezes menor ([S(IV]° = 10-5 mol/L a reação ocorreu mais rapidamente na presença de NO2. A explicação está relacionada com o equilíbrio envolvendo a formação de espécies intermediárias de longa vida, que impedem o prosseguimento da reação, porém a depender das concentrações relativas de S(IV e NO2, essas espécies se decompõem deslocando o equilíbrio no sentido de formação de sulfato. A adição dos íons Fe(III, Mn(II ou Cr(VI em presença de corrente de ar com NO2 indicou atividade catalítica para esses íons, em todas

  9. Oxidant-antioxidant imbalance in horses infected with equine infectious anaemia virus.

    Science.gov (United States)

    Bolfă, Pompei Florin; Leroux, Caroline; Pintea, Adela; Andrei, Sanda; Cătoi, Cornel; Taulescu, Marian; Tăbăran, Flaviu; Spînu, Marina

    2012-06-01

    This study assesses the impact of equine infectious anaemia virus (EIAV) infection on the oxidant/antioxidant equilibrium of horses. Blood samples from 96 Romanian horses aged 1-25 years, were divided into different groups according to their EIAV-infection status, age, and time post-seroconversion. The effect of infection on oxidative stress was estimated by measuring enzymatic antioxidants (superoxide dismutase [SOD], glutathione peroxidase [GPx] and catalase), non-enzymatic antioxidants (uric acid and carotenoids), and lipid peroxidation (malondialdehyde [MDA]). Infection modified the oxidant/antioxidant equilibrium in the horses, influencing GPx and uric acid levels (P5 years old, represented the most vulnerable category in terms of oxidative stress, followed by recently infected animals <5 years old. The results of this study are novel in implicating EIAV infection in the development of oxidative stress in horses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Fabrication of high surface area graphene electrodes with high performance towards enzymatic oxygen reduction

    International Nuclear Information System (INIS)

    Di Bari, Chiara; Goñi-Urtiaga, Asier; Pita, Marcos; Shleev, Sergey; Toscano, Miguel D.; Sainz, Raquel; De Lacey, Antonio L.

    2016-01-01

    High surface area graphene electrodes were prepared by simultaneous electrodeposition and electroreduction of graphene oxide. The electrodeposition process was optimized in terms of pH and conductivity of the solution and the obtained graphene electrodes were characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy and electrochemical methods (cyclic voltammetry and impedance spectroscopy). Electrodeposited electrodes were further functionalized to carry out covalent immobilization of two oxygen-reducing multicopper oxidases: laccase and bilirubin oxidase. The enzymatic electrodes were tested as direct electron transfer based biocathodes and catalytic currents as high as 1 mA/cm 2 were obtained. Finally, the mechanism of the enzymatic oxygen reduction reaction was studied for both enzymes calculating the Tafel slopes and transfer coefficients.

  11. Sequential enzymatic epoxidation involved in polyether lasalocid biosynthesis.

    Science.gov (United States)

    Minami, Atsushi; Shimaya, Mayu; Suzuki, Gaku; Migita, Akira; Shinde, Sandip S; Sato, Kyohei; Watanabe, Kenji; Tamura, Tomohiro; Oguri, Hiroki; Oikawa, Hideaki

    2012-05-02

    Enantioselective epoxidation followed by regioselective epoxide opening reaction are the key processes in construction of the polyether skeleton. Recent genetic analysis of ionophore polyether biosynthetic gene clusters suggested that flavin-containing monooxygenases (FMOs) could be involved in the oxidation steps. In vivo and in vitro analyses of Lsd18, an FMO involved in the biosynthesis of polyether lasalocid, using simple olefin or truncated diene of a putative substrate as substrate mimics demonstrated that enantioselective epoxidation affords natural type mono- or bis-epoxide in a stepwise manner. These findings allow us to figure out enzymatic polyether construction in lasalocid biosynthesis. © 2012 American Chemical Society

  12. Enzymatic activity of the cellulolytic complex produced by trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Alfonsel Jaen, M.; Negro, M.J.; Saez, R.; Martin Moreno, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reese QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass from Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars productions, have been selected. Previous studies on enzymatic hydrolysis of O. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (author). 10 figs.; 10 refs

  13. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Alfonsel J, M.; Negro A, M. J.; Saez A, R.; Martin M, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs

  14. Seawater operating bio-photovoltaic cells coupling semiconductor photoanodes and enzymatic biocathodes

    DEFF Research Database (Denmark)

    Zhang, Lingling; Alvarez-Martos, Isabel; Vakurov, Alexander

    2017-01-01

    and inexpensive way. Here, we report clean and sustainable conversion of solar energy into electricity by photo-and bio-electrocatalytic recycling of the H2O/O-2 redox couple in a hybrid bio-photovoltaic (BPV) membraneless cell comprising a sunlight-illuminated water-oxidizing semiconductor anode (either Zn......-doped hematite or TiO2) and an oxygen-reducing enzymatic biocathode, in such environmental media as seawater. Upon simulated solar light illumination (AM 1.5G, 100 mW cm(-2)), the maximum power density (P-max) generated by the cell was 236 and 21.4 mu W cm(-2) in 1 M Tris-HCl and seawater, both at pH 8...... thermodynamically feasible coupling of cost-effective photoactive materials such as TiO2 or hematite semiconductors and enzymatic counterparts in seawater media opens a prospective clean and sustainable way of transformation of the most abundant, clean and renewable source of energy - solar light - and the Earth...

  15. Blocked Enzymatic Etching of Gold Nanorods: Application to Colorimetric Detection of Acetylcholinesterase Activity and Its Inhibitors.

    Science.gov (United States)

    Saa, Laura; Grinyte, Ruta; Sánchez-Iglesias, Ana; Liz-Marzán, Luis M; Pavlov, Valeri

    2016-05-04

    The anisotropic morphology of gold nanorods (AuNRs) has been shown to lead to nonuniform ligand distribution and preferential etching through their tips. We have recently demonstrated that this effect can be achieved by biocatalytic oxidation with hydrogen peroxide, catalyzed by the enzyme horseradish peroxidase (HRP). We report here that modification of AuNRs with thiol-containing organic molecules such as glutathione and thiocholine hinders enzymatic AuNR etching. Higher concentrations of thiol-containing molecules in the reaction mixture gradually decrease the rate of enzymatic etching, which can be monitored by UV-vis spectroscopy through changes in the AuNR longitudinal plasmon band. This effect can be applied to develop novel optical assays for acetylcholinesterase (AChE) activity. The biocatalytic hydrolysis of acetylthiocholine by AChE yields thiocholine, which prevents enzymatic AuNR etching in the presence of HRP. Additionally, the same bioassay can be used for the detection of nanomolar concentrations of AChE inhibitors such as paraoxon and galanthamine.

  16. Comparison of the role that entropy has played in processes of non-enzymatic and enzymatic catalysis

    International Nuclear Information System (INIS)

    Dixon Pineda, Manuel Tomas

    2012-01-01

    The function that entropy has played is compared in processes of non-enzymatic and enzymatic catalysis. The processes followed are showed: the kinetics of the acid hydrolysis of 3-pentyl acetate and cyclopentyl acetate catalyzed by hydrochloric acid and enzymatic hydrolysis of ethyl acetate and γ-butyrolactone catalyzed by pig liver esterase. The activation parameters of Eyring were determined for each process and interpreted the contribution of the entropy of activation for catalysis in this type of model reactions. (author) [es

  17. In Situ Enzymatically Generated Photoswitchable Oxidase Mimetics and Their Application for Colorimetric Detection of Glucose Oxidase.

    Science.gov (United States)

    Cao, Gen-Xia; Wu, Xiu-Ming; Dong, Yu-Ming; Li, Zai-Jun; Wang, Guang-Li

    2016-07-09

    In this study, a simple and amplified colorimetric assay is developed for the detection of the enzymatic activity of glucose oxidase (GOx) based on in situ formation of a photoswitchable oxidase mimetic of PO₄(3-)-capped CdS quantum dots (QDs). GOx catalyzes the oxidation of 1-thio-β-d-glucose to give 1-thio-β-d-gluconic acid which spontaneously hydrolyzes to β-d-gluconic acid and H₂S; the generated H₂S instantly reacts with Cd(2+) in the presence of Na₃PO₄ to give PO₄(3-)-stabilized CdS QDs in situ. Under visible-light (λ ≥ 400 nm) stimulation, the PO₄(3-)-capped CdS QDs are a new style of oxidase mimic derived by producing some active species, such as h⁺, (•)OH, O₂(•-) and a little H₂O₂, which can oxidize the typical substrate (3,3,5,5-tetramethylbenzydine (TMB)) with a color change. Based on the GOx-triggered growth of the oxidase mimetics of PO₄(3-)-capped CdS QDs in situ, we developed a simple and amplified colorimetric assay to probe the enzymatic activity of GOx. The proposed method allowed the detection of the enzymatic activity of GOx over the range from 25 μg/L to 50 mg/L with a low detection limit of 6.6 μg/L. We believe the PO₄(3-)-capped CdS QDs generated in situ with photo-stimulated enzyme-mimicking activity may find wide potential applications in biosensors.

  18. Crystal structure and spectroscopic analysis of a new oxalate-bridged MnII compound: catena-poly[guanidinium [[aquachloridomanganese(II]-μ2-oxalato-κ4O1,O2:O1′,O2′] monohydrate

    Directory of Open Access Journals (Sweden)

    Hiba Sehimi

    2016-05-01

    Full Text Available As part of our studies on the synthesis and the characterization of oxalate-bridged compounds M–ox–M (ox = oxalate dianion and M = transition metal ion, we report the crystal structure of a new oxalate-bridged MnII phase, {(CH6N3[Mn(C2O4Cl(H2O]·H2O}n. In the compound, a succession of MnII ions (situated on inversion centers adopting a distorted octahedral coordination and bridged by oxalate ligands forms parallel zigzag chains running along the c axis. These chains are interconnected through O—H...O hydrogen-bonding interactions to form anionic layers parallel to (010. Individual layers are held together via strong hydrogen bonds involving the guanidinium cations (N—H...O and N—H...Cl and the disordered non-coordinating water molecule (O—H...O and O—H...Cl, as well as by guanidinium π–π stacking. The structural data were confirmed by IR and UV–Visible spectroscopic analysis.

  19. Mechano-Enzymatic Deconstruction with a New Enzymatic Cocktail to Enhance Enzymatic Hydrolysis and Bioethanol Fermentation of Two Macroalgae Species

    Directory of Open Access Journals (Sweden)

    Sameh Amamou

    2018-01-01

    Full Text Available The aim of this study was to explore the efficiency of a mechano-enzymatic deconstruction of two macroalgae species for sugars and bioethanol production, by using a new enzymatic cocktail (Haliatase and two types of milling modes (vibro-ball: VBM and centrifugal milling: CM. By increasing the enzymatic concentration from 3.4 to 30 g/L, the total sugars released after 72 h of hydrolysis increased (from 6.7 to 13.1 g/100 g TS and from 7.95 to 10.8 g/100 g TS for the green algae U. lactuca and the red algae G. sesquipedale, respectively. Conversely, total sugars released from G. sesquipedale increased (up to 126% and 129% after VBM and CM, respectively. The best bioethanol yield (6 geth/100 g TS was reached after 72 h of fermentation of U. lactuca and no increase was obtained after centrifugal milling. The latter led to an enhancement of the ethanol yield of G. sesquipedale (from 2 to 4 g/100 g TS.

  20. The economic pre-treatment of coal mine drainage water with caustic and ozone.

    Science.gov (United States)

    Boyden, B H; Nador, L; Addleman, S; Jeston, L

    2017-09-01

    Coal mine drainage waters are low in pH with varying amounts of iron and manganese and are generally brackish. The Austar Coal Mine in NSW, Australia, sought alternatives to their current lime dosing as the pre-treatment before the downstream reverse osmosis plant. Undesirable operating aspects of the current system include manganese and gypsum scaling/fouling, the need for anti-scalants and reduced water recovery. Thirteen processes for acid mine drainage were initially considered. The preferred process of caustic and ozone for Mn(II) oxidation was pilot tested at up to 0.74 kL/hr at the mine site. Under proper conditions and no aeration, about 81 per cent of the Fe could be removed (initially at 156 mg/L) as green rust. Supplemental aeration followed first-order kinetics and allowed 99.9 per cent Fe(II) oxidation and removal but only with a hydraulic residence time of about 47 minutes. The addition of supplemental Cu catalyst improved Fe removal. Ozone applied after caustic was effective in stoichiometrically oxidising recalcitrant Mn(II) and any remaining Fe(II). Control of the ozonation was achieved using the oxidation reduction potential during oxidation of the Mn(II) species. The use of caustic, followed by ozone, proved economically comparable to the current lime pre-treatment.

  1. Effects of Lytic Polysaccharide Monooxygenase Oxidation on Cellulose Structure and Binding of Oxidized Cellulose Oligomers to Cellulases

    Energy Technology Data Exchange (ETDEWEB)

    Vermaas, Josh V.; Crowley, Michael F.; Beckham, Gregg T.; Payne, Christina M.

    2015-05-21

    In nature, polysaccharide glycosidic bonds are cleaved by hydrolytic enzymes for a vast array of biological functions. Recently, a new class of enzymes that utilize an oxidative mechanism to cleave glycosidic linkages was discovered; these enzymes are called lytic polysaccharide monooxygenases (LPMO). These oxidative enzymes are synergistic with cocktails of hydrolytic enzymes and are thought to act primarily on crystalline regions, in turn providing new sites of productive attachment and detachment for processive hydrolytic enzymes. In the case of cellulose, the homopolymer of ..beta..-1,4-d-glucose, enzymatic oxidation occurs at either the reducing end or the nonreducing end of glucose, depending on enzymatic specificity, and results in the generation of oxidized chemical substituents at polymer chain ends. LPMO oxidation of cellulose is thought to produce either a lactone at the reducing end of glucose that can spontaneously or enzymatically convert to aldonic acid or 4-keto-aldose at the nonreducing end that may further oxidize to a geminal diol. Here, we use molecular simulation to examine the effect of oxidation on the structure of crystalline cellulose. The simulations highlight variations in behaviors depending on the chemical identity of the oxidized species and its location within the cellulose fibril, as different oxidized species introduce steric effects that disrupt local crystallinity and in some cases reduce the work needed for polymer decrystallization. Reducing-end oxidations are easiest to decrystallize when located at the end of the fibril, whereas nonreducing end oxidations readily decrystallize from internal cleavage sites despite their lower solvent accessibility. The differential in decrystallization free energy suggests a molecular mechanism consistent with experimentally observed LPMO/cellobiohydrolase synergy. Additionally, the soluble oxidized cellobiose products released by hydrolytic cellulases may bind to the active sites of cellulases

  2. Identification of Manganese Superoxide Dismutase from Sphingobacterium sp. T2 as a Novel Bacterial Enzyme for Lignin Oxidation.

    Science.gov (United States)

    Rashid, Goran M M; Taylor, Charles R; Liu, Yangqingxue; Zhang, Xiaoyang; Rea, Dean; Fülöp, Vilmos; Bugg, Timothy D H

    2015-10-16

    The valorization of aromatic heteropolymer lignin is an important unsolved problem in the development of a biomass-based biorefinery, for which novel high-activity biocatalysts are needed. Sequencing of the genomic DNA of lignin-degrading bacterial strain Sphingobacterium sp. T2 revealed no matches to known lignin-degrading genes. Proteomic matches for two manganese superoxide dismutase proteins were found in partially purified extracellular fractions. Recombinant MnSOD1 and MnSOD2 were both found to show high activity for oxidation of Organosolv and Kraft lignin, and lignin model compounds, generating multiple oxidation products. Structure determination revealed that the products result from aryl-Cα and Cα-Cβ bond oxidative cleavage and O-demethylation. The crystal structure of MnSOD1 was determined to 1.35 Å resolution, revealing a typical MnSOD homodimer harboring a five-coordinate trigonal bipyramidal Mn(II) center ligated by three His, one Asp, and a water/hydroxide in each active site. We propose that the lignin oxidation reactivity of these enzymes is due to the production of a hydroxyl radical, a highly reactive oxidant. This is the first demonstration that MnSOD is a microbial lignin-oxidizing enzyme.

  3. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    Science.gov (United States)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  4. A green synthetic strategy of nickel hexacyanoferrate nanoparticals supported on the graphene substrate and its non-enzymatic amperometric sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zhonghua, E-mail: xzh@nwnu.edu.cn [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); He, Nan [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Rao, Honghong [College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, 730070 (China); Hu, Chenxian; Wang, Xiaofen; Wang, Hui; Liu, Xiuhui [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Lu, Xiaoquan, E-mail: luxq@nwnu.edu.cn [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2017-02-28

    Highlights: • A sensitive non-enzymatic glucose sensor was explored by using a facile and green strategy. • Well dispersed and uniform NiHCF nanoparticles can be effectively produced by the introduction of electrochemical reduction graphene oxide films. • Metal hexacyanoferrate as a potential electron mediator was proposed and applied into non-enzymatic sensing. - Abstract: Rapid glucose detection is a key requirement for both diagnosis and treatment of diabetes. A facile and green strategy to achieve spherical-shaped nickel hexacyanoferrate (NiHCF) nanoparticals supported on electrochemical reduction graphene oxide by using electrochemical cyclic voltammetry is explored. As a sensing substrate, electrochemical reduction graphene oxide deposited on a glassy carbon electrode surface exhibited obvious positive effect on the electrodeposition of NiHCF nanoparticals with spherical structure and thus effectively improved the electrical conductivity and electrochemical sensing of the proposed amperometric sensor. Proof-concept experiments demonstrated that the proposed nanocomposites modified electrode exhibited excellent sensitivity toward glucose oxidation as well as with a satisfying detection limit of 0.11 μM. More importantly, we also explore that as a simple, green and facile method, electrochemical technology can be employed and provide a new strategy for developing GO and metal hexacyanoferrate based amperometric sensing platform toward glucose and other biomolecules.

  5. A green synthetic strategy of nickel hexacyanoferrate nanoparticals supported on the graphene substrate and its non-enzymatic amperometric sensing application

    International Nuclear Information System (INIS)

    Xue, Zhonghua; He, Nan; Rao, Honghong; Hu, Chenxian; Wang, Xiaofen; Wang, Hui; Liu, Xiuhui; Lu, Xiaoquan

    2017-01-01

    Highlights: • A sensitive non-enzymatic glucose sensor was explored by using a facile and green strategy. • Well dispersed and uniform NiHCF nanoparticles can be effectively produced by the introduction of electrochemical reduction graphene oxide films. • Metal hexacyanoferrate as a potential electron mediator was proposed and applied into non-enzymatic sensing. - Abstract: Rapid glucose detection is a key requirement for both diagnosis and treatment of diabetes. A facile and green strategy to achieve spherical-shaped nickel hexacyanoferrate (NiHCF) nanoparticals supported on electrochemical reduction graphene oxide by using electrochemical cyclic voltammetry is explored. As a sensing substrate, electrochemical reduction graphene oxide deposited on a glassy carbon electrode surface exhibited obvious positive effect on the electrodeposition of NiHCF nanoparticals with spherical structure and thus effectively improved the electrical conductivity and electrochemical sensing of the proposed amperometric sensor. Proof-concept experiments demonstrated that the proposed nanocomposites modified electrode exhibited excellent sensitivity toward glucose oxidation as well as with a satisfying detection limit of 0.11 μM. More importantly, we also explore that as a simple, green and facile method, electrochemical technology can be employed and provide a new strategy for developing GO and metal hexacyanoferrate based amperometric sensing platform toward glucose and other biomolecules.

  6. Organic carboxylate anions effect on the structures of a series of Mn(II) complexes based on 2-phenylimidazo[4,5-f]1,10-phenanthroline ligand

    International Nuclear Information System (INIS)

    Wang Xiuli; Chen Yongqiang; Liu Guocheng; Lin Hongyan; Zhang Jinxia

    2009-01-01

    In our efforts to tune the structures of Mn(II) complexes by selection of organic carboxylic acid ligands, six new complexes [Mn(PIP) 2 Cl 2 ] (1), [Mn(PIP) 2 (4,4'-bpdc)(H 2 O)].2H 2 O (2), [Mn(PIP) 2 (1,4-bdc)] (3), [Mn(PIP)(1,3-bdc)] (4), [Mn(PIP) 2 (2,6-napdc)].H 2 O (5), and [Mn(PIP)(1,4-napdc)].H 2 O (6) were obtained, where PIP=2-phenylimidazo[4,5-f]1,10-phenanthroline, 4,4'-H 2 bpdc=biphenyl-4,4'-dicarboxylic acid, 1,4-H 2 bdc=benzene-1,4-dicarboxylic acid, 1,3-H 2 bdc=benzene-1,3-dicarboxylic acid, 2,6-H 2 napdc=2,6-naphthalenedicarboxylic acid, 1,4-H 2 napdc=1,4-naphthalenedicarboxylic acid. All complexes have been structurally characterized by IR, elemental analyses, and single crystal X-ray diffraction. Structural analyses show that complexes 1 and 2 possess mononuclear structures, complexes 3, 4, and 5 feature chain structures, and complex 6 exhibits a 2D (4,4) network. The structural difference of 1-6 indicates that organic carboxylate anions play important roles in the formation of such coordination architectures. Furthermore, the thermal properties of complexes 1-6 and the magnetic property of 4 have been investigated. - Graphical Abstract: Through selecting organic carboxylate anions, six Mn(II) complexes have been synthesized under hydrothermal conditions and characterized by single crystal X-ray diffraction.

  7. Binderless solution processed Zn doped Co3O4 film on FTO for rapid and selective non-enzymatic glucose detection

    CSIR Research Space (South Africa)

    Chowdhury, M

    2016-09-01

    Full Text Available A simple solution based deposition process has been used to fabricate Zn doped Co(sub3)O(sub4) electrode as an electrocatalyst for non-enzymatic oxidation of glucose. XRD, HRTEM, SEM, EELS, AFM, EIS was used to characterise the electrode...

  8. Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis

    International Nuclear Information System (INIS)

    Clark, Andrea; Zhu Aiping; Sun Kai; Petty, Howard R.

    2011-01-01

    Catalytic nanoparticles represent a potential clinical approach to replace or correct aberrant enzymatic activities in patients. Several diseases, including many blinding eye diseases, are promoted by excessive oxidant stress due to reactive oxygen species (ROS). Cerium oxide and platinum nanoparticles represent two potentially therapeutic nanoparticles that de-toxify ROS. In the present study, we directly compare these two classes of catalytic nanoparticles. Cerium oxide and platinum nanoparticles were found to be 16 ± 2.4 and 1.9 ± 0.2 nm in diameter, respectively. Using surface plasmon-enhanced microscopy, we find that these nanoparticles associate with cells. Furthermore, cerium oxide and platinum nanoparticles demonstrated superoxide dismutase catalytic activity, but did not promote hemolytic or cytolytic pathways in living cells. Importantly, both cerium oxide and platinum nanoparticles reduce oxidant-mediated apoptosis in target cells as judged by the activation of caspase 3. The ability to diminish apoptosis may contribute to maintaining healthy tissues.

  9. Inhibition of Lipid Peroxidation by Enzymatic Hydrolysates from Wheat Bran

    Directory of Open Access Journals (Sweden)

    Yanping Cao

    2011-01-01

    Full Text Available Wheat bran, an important by-product of the cereal industry, is rich in potentially health-promoting phenolic compounds. The phenolics are mainly esterified to the cell wall polysaccharides. In our previous paper, wheat bran was destarched and deproteinated by α-amylase, protease and amyloglucosidase successively and further hydrolyzed using Bacillus subtilis xylanases, and the enzymatic hydrolysates from wheat bran (EHWB showed good scavenging activity in vitro. The aim of this study is to further characterize the antioxidant potential of EHWB against various systems, both ex vivo and in vivo, namely, rat liver microsomal lipid peroxidation systems induced by Fe2+/H2O2 and Fe3+-adenosine diphosphate (ADP/dihydronicotinamide adenine dinucleotide phosphate (NADPH, copper- and 2,2’-azo-bis(2-amidinopropane dihydrochloride (AAPH-induced human low-density lipoprotein (LDL oxidation systems, and alloxan-induced in vivo lipid peroxidation in mice. EHWB inhibited lipid peroxidation in rat liver microsomes induced by Fe2+/H2O2 and Fe3+-ADP/NADPH in a concentration-dependent manner with 90.3 and 87 % inhibition of lipid peroxidation at 50 mg/L, respectively, which were similar to that of butylated hydroxytoluene (BHT at 20 mg/L. The antioxidant potential of EHWB at a concentration ranging from 10 to 20 mg/L in the nonenzymatic system was more effective than in the enzymatic system. EHWB strongly inhibited in vitro copper- and AAPH-mediated oxidation of LDL in a concentration- and time-dependent manner with 52.41 and 63.03 % inhibition at 20 mg/L, respectively, which were similar to that of ascorbate at 10 mg/L. EHWB significantly decreased the level of thiobarbituric acid reactive substances (TBARS and increased the activities of glutathione peroxidase (GSH-Px, catalase (CAT and superoxide dismutase (SOD in serum and liver of alloxan-treated mice compared with the control. These results demonstrated that EHWB might be efficient in the protection of

  10. Process technology for multi-enzymatic reaction systems

    DEFF Research Database (Denmark)

    Xue, Rui; Woodley, John M.

    2012-01-01

    In recent years, biocatalysis has started to provide an important green tool in synthetic organic chemistry. Currently, the idea of using multi-enzymatic systems for industrial production of chemical compounds becomes increasingly attractive. Recent examples demonstrate the potential of enzymatic...... synthesis and fermentation as an alternative to chemical-catalysis for the production of pharmaceuticals and fine chemicals. In particular, the use of multiple enzymes is of special interest. However, many challenges remain in the scale-up of a multi-enzymatic system. This review summarizes and discusses...... the technology options and strategies that are available for the development of multi-enzymatic processes. Some engineering tools, including kinetic models and operating windows, for developing and evaluating such processes are also introduced....

  11. Enzymatic Baeyer-Villiger Oxidation of Benzo-Fused Ketones : Formation of Regiocomplementary Lactones

    NARCIS (Netherlands)

    Rioz-Martinez, Ana; de Gonzalo, Gonzalo; Pazmino, Daniel E. Torres; Fraaije, Marco W.; Gotor, Vicente

    Baeyer-Villiger monooxygenases (BVMOs) are enzymes that are known to catalyse the Baeyer-Villiger oxidation of ketones in aqueous media using O(2) as oxidant. Herein, we describe the oxidation of a set of diverse benzo-fused ketones by three different BVMOs in both aqueous and non-conventional

  12. Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement

    Science.gov (United States)

    Louie, Gordon; Noel, Joseph P.; Baran, Phil S.; Palfey, Bruce; Moore, Bradley S.

    2013-01-01

    Flavoproteins catalyze a diversity of fundamental redox reactions and are one of the most studied enzyme families1,2. As monooxygenases, they are universally thought to control oxygenation by means of a peroxyflavin species that transfers a single atom of molecular oxygen to an organic substrate1,3,4. Here we report that the bacterial flavoenzyme EncM5,6 catalyzes the peroxyflavin-independent oxygenation-dehydrogenation dual oxidation of a highly reactive poly(β-carbonyl). The crystal structure of EncM with bound substrate mimics coupled with isotope labeling studies reveal previously unknown flavin redox biochemistry. We show that EncM maintains an unanticipated stable flavin oxygenating species, proposed to be a flavin-N5-oxide, to promote substrate oxidation and trigger a rare Favorskii-type rearrangement that is central to the biosynthesis of the antibiotic enterocin. This work provides new insight into the fine-tuning of the flavin cofactor in offsetting the innate reactivity of a polyketide substrate to direct its efficient electrocyclization. PMID:24162851

  13. Protective effects against H2O2-induced damage by enzymatic hydrolysates of an edible brown seaweed, sea tangle (Laminaria japonica).

    Science.gov (United States)

    Park, Pyo-Jam; Kim, Eun-Kyung; Lee, Seung-Jae; Park, Sun-Young; Kang, Dong-Soo; Jung, Bok-Mi; Kim, Kui-Shik; Je, Jae-Young; Ahn, Chang-Bum

    2009-02-01

    Enzymatic hydrolysates of Laminaria japonica were evaluated for antioxidative activities using hydroxyl radical scavenging activity and protective effects against H(2)O(2)-induced DNA and cell damage. In addition, activities of antioxidative enzymes, including catalase, glutathione peroxidase, and glutathione S-transferase, of the enzymatic hydrolysates from L. japonica were also estimated. L. japonica was first enzymatically hydrolyzed by seven carbohydrases (Dextrozyme, AMG, Promozyme, Maltogenase, Termamyl, Viscozyme, and Celluclast [all from Novo Co., Novozyme Nordisk, Bagsvaerd, Denmark]) and five proteinases (Flavourzyme, Neutrase, Protamex, Alcalase [all from Novo Co.], and pancreatic trypsin). The hydroxyl radical scavenging activities of Promozyme and pancreatic trypsin hydrolysates from L. japonica were the highest as compared to those of the other carbohydrases and proteinases, and their 50% inhibitory concentration values were 1.67 and 317.49 mug/mL, respectively. The pancreatic trypsin hydrolysates of L. japonica exerted a protective effect on H(2)O(2)-induced DNA damage. We also evaluated the protective effect on hydroxyl radical-induced oxidative damage in PC12 cells via propidium iodide staining using a flow cytometer. The AMG and pancreatic trypsin hydrolysates of L. japonica dose-dependently protected PC12 cells against cell death caused by hydroxyl radical-induced oxidative damage. Additionally, we analyzed the activity of antioxidative enzymes such as catalase, glutathione peroxidase, and the phase II biotransformation enzyme glutathione S-transferase in L. japonica-treated cells. The activity of all antioxidative enzymes was higher in L. japonica-treated cells compared with the nontreated cells. These results indicate that enzymatic hydrolysates of L. japonica possess antioxidative activity.

  14. Enzymatic interesterification of vegetable oil/ fish oil blend for margarine production

    DEFF Research Database (Denmark)

    Ibrahim, Nuzul Amri Bin; Xu, Xuebing

    the desired properties. In this study, palm stearin (PS), palm kernel oil (PKO) and fish oil (FO) are blended and modified by enzymatic interesterification. PS functioned as the hard stock, PKO as the soft oil and FO as a source for eicosapentaenoic acid (EPA)/ docosahexaenoic acid (DHA). The purpose...... cause the product to be susceptible to oxidation due to the presence of high content of polyunsaturated fatty acids. Furthermore, FO could also influence the melting properties of the product. Therefore, in addition to determining the fatty acid position on the glycerol backbone, it is also pertinent...

  15. Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose

    Science.gov (United States)

    Meher, Sumanta Kumar; Rao, G. Ranga

    2013-02-01

    In the quest to enhance the selectivity and sensitivity of novel structured metal oxides for electrochemical non-enzymatic sensing of glucose, we report here a green synthesis of unique sandwich-structured CuO on a large scale under microwave mediated homogeneous precipitation conditions. The physicochemical studies carried out by XRD and BET methods show that the monoclinic CuO formed via thermal decomposition of Cu2(OH)2CO3 possesses monomodal channel-type pores with largely improved surface area (~43 m2 g-1) and pore volume (0.163 cm3 g-1). The fascinating surface morphology and pore structure of CuO is formulated due to homogeneous crystallization and microwave induced self assembly during synthesis. The cyclic voltammetry and chronoamperometry studies show diffusion controlled glucose oxidation at ~0.6 V (vs. Ag/AgCl) with extremely high sensitivity of 5342.8 μA mM-1 cm-2 and respective detection limit and response time of ~1 μM and ~0.7 s, under a wide dynamic concentration range of glucose. The chronoamperometry measurements demonstrate that the sensitivity of CuO to glucose is unaffected by the absence of dissolved oxygen and presence of poisoning chloride ions in the reaction medium, which essentially implies high poison resistance activity of the sandwich-structured CuO. The sandwich-structured CuO also shows insignificant interference/significant selectivity to glucose, even in the presence of high concentrations of other sugars as well as reducing species. In addition, the sandwich-structured CuO shows excellent reproducibility (relative standard deviation of ~2.4% over ten identically fabricated electrodes) and outstanding long term stability (only ~1.3% loss in sensitivity over a period of one month) during non-enzymatic electrochemical sensing of glucose. The unique microstructure and suitable channel-type pore architecture provide structural stability and maximum accessible electroactive surface for unimpeded mobility of glucose as well as the

  16. Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ

    Science.gov (United States)

    Bargar, J.R.; Fuller, C.C.; Marcus, M.A.; Brearley, A.J.; Perez De la Rosa, M.; Webb, S.M.; Caldwell, W.A.

    2009-01-01

    The microbial catalysis of Mn(II) oxidation is believed to be a dominant source of abundant sorption- and redox-active Mn oxides in marine, freshwater, and subsurface aquatic environments. In spite of their importance, environmental oxides of known biogenic origin have generally not been characterized in detail from a structural perspective. Hyporheic zone Mn oxide grain coatings at Pinal Creek, Arizona, a metals-contaminated stream, have been identified as being dominantly microbial in origin and are well studied from bulk chemistry and contaminant hydrology perspectives. This site thus presents an excellent opportunity to study the structures of terrestrial microbial Mn oxides in detail. XRD and EXAFS measurements performed in this study indicate that the hydrated Pinal Creek Mn oxide grain coatings are layer-type Mn oxides with dominantly hexagonal or pseudo-hexagonal layer symmetry. XRD and TEM measurements suggest the oxides to be nanoparticulate plates with average dimensions on the order of 11 nm thick ?? 35 nm diameter, but with individual particles exhibiting thickness as small as a single layer and sheets as wide as 500 nm. The hydrated oxides exhibit a 10-?? basal-plane spacing and turbostratic disorder. EXAFS analyses suggest the oxides contain layer Mn(IV) site vacancy defects, and layer Mn(III) is inferred to be present, as deduced from Jahn-Teller distortion of the local structure. The physical geometry and structural details of the coatings suggest formation within microbial biofilms. The biogenic Mn oxides are stable with respect to transformation into thermodynamically more stable phases over a time scale of at least 5 months. The nanoparticulate layered structural motif, also observed in pure culture laboratory studies, appears to be characteristic of biogenic Mn oxides and may explain the common occurrence of this mineral habit in soils and sediments. ?? 2008 Elsevier Ltd.

  17. The enzymatic and antioxidative stress response of Lemna minor to copper and a chloroacetamide herbicide.

    Science.gov (United States)

    Obermeier, Michael; Schröder, Christian A; Helmreich, Brigitte; Schröder, Peter

    2015-12-01

    Lemna minor L., a widely used model plant for toxicity tests has raised interest for its application to phytoremediation due to its rapid growth and ubiquitous occurrence. In rural areas, the pollution of water bodies with heavy metals and agrochemicals poses a problem to surface water quality. Among problematic compounds, heavy metals (copper) and pesticides are frequently found in water bodies. To establish duckweed as a potential plant for phytoremediation, enzymatic and antioxidative stress responses of Lemna minor during exposure to copper and a chloroacetamide herbicide were investigated in laboratory studies. The present study aimed at evaluating growth and the antioxidative and glutathione-dependent enzyme activity of Lemna plants and its performance in a scenario for phytoremediation of copper and a chloroacetamide herbicide. Lemna minor was grown in Steinberg medium under controlled conditions. Plants were treated with CuSO4 (ion conc. 50 and 100 μg/L) and pethoxamide (1.25 and 2.5 μg/L). Measurements following published methods focused on plant growth, oxidative stress, and basic detoxification enzymes. Duckweed proved to survive treatment with the respective concentrations of both pollutants very well. Its growth was inhibited scarcely, and no visible symptoms occurred. On the cellular basis, accumulation of O2(-) and H2O2 were detected, as well as stress reactions of antioxidative enzymes. Duckweed detoxification potential for organic pollutants was high and increased significantly with incubation. Pethoxamide was found to be conjugated with glutathione. Copper was accumulated in the fronds at high levels, and transient oxidative defense reactions were triggered. This work confirms the significance of L. minor for the removal of copper from water and the conjugation of the selective herbicide pethoxamide. Both organic and inorganic xenobiotics induced different trends of enzymatic and antioxidative stress response. The strong increase of stress

  18. Resveratrol and Endothelial Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-10-01

    Full Text Available Nitric oxide (NO derived from the endothelial NO synthase (eNOS has antihypertensive, antithrombotic, anti-atherosclerotic and antiobesogenic properties. Resveratrol is a polyphenol phytoalexin with multiple cardiovascular and metabolic effects. Part of the beneficial effects of resveratrol are mediated by eNOS. Resveratrol stimulates NO production from eNOS by a number of mechanisms, including upregulation of eNOS expression, stimulation of eNOS enzymatic activity and reversal of eNOS uncoupling. In addition, by reducing oxidative stress, resveratrol prevents oxidative NO inactivation by superoxide thereby enhancing NO bioavailability. Molecular pathways underlying these effects of resveratrol involve SIRT1, AMPK, Nrf2 and estrogen receptors.

  19. Synthesis and characterization of polychelates of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), oxovanadium(IV) and dioxouranium(VI) with 2,4-dihydroxybenzaldehyde-urea-formaldehyde polymer

    International Nuclear Information System (INIS)

    Patel, G.C.; Pancholi, H.B.; Patel, M.M.

    1991-01-01

    Polychelates of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), oxovandium(IV) and dioxouranium(VI) with 2,4-dihydroxybenzaldehyde (2,4-DB)-urea(U)-formaldehyde(F) polymer (2,4-DBUF) have been prepared. Elemental analyses of the polychelates indicate a metal:ligand ratio of 1:2. The structures of the polychelates have been assigned on the basis of their elemental analyses, IR, reflectance spectra, magnetic moment, thermal data and their electrical conductivity behaviour. (author). 1 tab., 18 refs

  20. Manganese Driven Carbon Oxidation along Oxic-Anoxic Interfaces in Forest Soils

    Science.gov (United States)

    Jones, M. E.; Keiluweit, M.

    2017-12-01

    Soils are the largest and most dynamic terrestrial carbon pool, storing a total of 3000 Pg of C - more than the atmosphere and biosphere combined. Because microbial oxidation determines the proportion of carbon that is either stored in the soil or emitted as climate active CO2, its rate directly impacts the global carbon cycle. Recently, a strong correlation between oxidation rates and manganese (Mn) content has been observed in forest soils globally, leading researchers conclude that Mn "is the single main factor governing" the oxidation of plant-derived particulate organic carbon (POC). Many soils are characterized by steep oxygen gradients, forming oxic-anoxic transitions that enable rapid redox cycling of Mn. Oxic-anoxic interfaces have been shown to promote fungal Mn oxidation and the formation of ligand-stabilized Mn(III), which ranks second only to superoxide as the most powerful oxidizing agent in the environment. Here we examined fungal Mn(III) formation along redox gradients in forest soils and their impact on POC oxidation rates. In both field and laboratory settings, oxic-anoxic transition zones showed the greatest Mn(III) concentrations, along with enhanced fungal growth, oxidative potential, production of soluble oxidation products, and CO2 production. Additional electrochemical and X-ray (micro)spectroscopic analyses indicated that oxic-anoxic interfaces represent ideal niches for fungal Mn(III) formation, owing to the ready supply of Mn(II), ligands and O2. Combined, our results suggest that POC oxidation relies on fungal Mn cycling across oxic-anoxic interfaces to produce Mn(III) based oxidants. Because predicted changes in the frequency and timing of precipitation dramatically alter soil moisture regimes in forest soils, understanding the mechanistic link between Mn cycling and carbon oxidation along oxic-anoxic interfaces is becoming increasingly important.

  1. Enzymatic hydrolysis of pretreated soybean straw

    International Nuclear Information System (INIS)

    Xu Zhong; Wang Qunhui; Jiang Zhaohua; Yang Xuexin; Ji Yongzhen

    2007-01-01

    In order to produce lactic acid, from agricultural residues such as soybean straw, which is a raw material for biodegradable plastic production, it is necessary to decompose the soybean straw into soluble sugars. Enzymatic hydrolysis is one of the methods in common use, while pretreatment is the effective way to increase the hydrolysis rate. The optimal conditions of pretreatment using ammonia and enzymatic hydrolysis of soybean straw were determined. Compared with the untreated straw, cellulose in straw pretreated by ammonia liquor (10%) soaking for 24 h at room temperature increased 70.27%, whereas hemicellulose and lignin in pretreated straw decreased to 41.45% and 30.16%, respectively. The results of infrared spectra (IR), scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis also showed that the structure and the surface of the straw were changed through pretreatment that is in favor of the following enzymatic hydrolysis. maximum enzymatic hydrolysis rate of 51.22% was achieved at a substrate concentration of 5% (w/v) at 50 deg. C and pH 4.8 using cellulase (50 fpu/g of substrate) for 36 h

  2. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling; Ma, Long; Liu, Tingting; Chai, Rongfei; Zheng, Zhaodi [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China); Zhang, Qunye, E-mail: wz.zhangqy@sdu.edu.cn [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong (China); Li, Guorong, E-mail: grli@sdnu.edu.cn [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China)

    2015-03-13

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation.

  3. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    International Nuclear Information System (INIS)

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling; Ma, Long; Liu, Tingting; Chai, Rongfei; Zheng, Zhaodi; Zhang, Qunye; Li, Guorong

    2015-01-01

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation

  4. Synthesis, spectral characterization thermal stability, antimicrobial studies and biodegradation of starch–thiourea based biodegradable polymeric ligand and its coordination complexes with [Mn(II, Co(II, Ni(II, Cu(II, and Zn(II] metals

    Directory of Open Access Journals (Sweden)

    Nahid Nishat

    2016-09-01

    Full Text Available A biodegradable polymer was synthesized by the modification reaction of polymeric starch with thiourea which is further modified by transition metals, Mn(II, Co(II, Ni(II, Cu(II and Zn(II. All the polymeric compounds were characterized by (FT-IR spectroscopy, 1H NMR spectroscopy, 13C NMR spectroscopy, UV–visible spectra, magnetic moment measurements, thermogravimetric analysis (TGA and antibacterial activities. Polymer complexes of Mn(II, Co(II and Ni(II show octahedral geometry, while polymer complexes of Cu(II and Zn(II show square planar and tetrahedral geometry, respectively. The TGA revealed that all the polymer metal complexes are more thermally stable than their parental ligand. In addition, biodegradable studies of all the polymeric compounds were also carried out through ASTM-D-5338-93 standards of biodegradable polymers by CO2 evolution method which says that coordination decreases biodegradability. The antibacterial activity was screened with the agar well diffusion method against some selected microorganisms. Among all the complexes, the antibacterial activity of the Cu(II polymer–metal complex showed the highest zone of inhibition because of its higher stability constant.

  5. Rapid enzymatic analysis of plasma for tyrosine.

    Science.gov (United States)

    Shimizu, H; Taniguchi, K; Sugiyama, M; Kanno, T

    1990-01-01

    In this rapid, simple, and convenient enzymatic method for measurement of tyrosine in plasma, tyrosine is converted to tyramine by action of tyrosine decarboxylase (EC 4.1.1.25) and the tyramine produced is oxidized to p-hydroxybenzyl aldehyde and hydrogen peroxide by action of tyramine oxidase (EC 1.4.3.9). The hydrogen peroxide is reacted with 4-aminoantipyrine and N-ethyl-N-(2-hydroxy-3-sulfopropyl)-m-toluidine in the presence of peroxidase (EC 1.11.1.7) to obtain quinoneimine dye, the absorbance of which is measured at 570 nm. Thus tyrosine is measured in the visible range. The CV was 4.6% or less, and the measurement was unaffected by other amino acids, except for phenylalanine. The values obtained (y) correlated well with those obtained with an amino acid analyzer (x): y = 0.902x + 3.92 mumol/L (Syx = 12.3; r = 0.985; n = 54).

  6. Syntheses, X-ray structures, solid state high-field electron paramagnetic resonance, and density-functional theory investigations on chloro and aqua Mn(II) mononuclear complexes with amino-pyridine pentadentate ligands.

    Science.gov (United States)

    Hureau, Christelle; Groni, Sihem; Guillot, Régis; Blondin, Geneviève; Duboc, Carole; Anxolabéhère-Mallart, Elodie

    2008-10-20

    The two pentadentate amino-pyridine ligands L5(2) and L5(3) (L5(2) and L5(3) stand for the N-methyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine and the N-methyl-N,N',N'-tris(2-pyridylmethyl)propane-1,3-diamine, respectively) were used to synthesize four mononuclear Mn(II) complexes, namely [(L5(2))MnCl](PF6) (1(PF6)), [(L5(3))MnCl](PF6) (2(PF6)), [(L5(2))Mn(OH2)](BPh4)2 (3(BPh4)2), and [(L5(3))Mn(OH2)](BPh4)2 (4(BPh4)2). The X-ray diffraction studies revealed different configurations for the ligand L5(n) (n = 2, 3) depending on the sixth exogenous ligand and/or the counterion. Solid state high-field electron paramagnetic resonance spectra were recorded on complexes 1-4 as on previously described mononuclear Mn(II) systems with tetra- or hexadentate amino-pyridine ligands. Positive and negative axial zero-field splitting (ZFS) parameters D were determined whose absolute values ranged from 0.090 to 0.180 cm(-1). Density-functional theory calculations were performed unraveling that, in contrast with chloro systems, the spin-spin and spin-orbit coupling contributions to the D-parameter are comparable for mixed N,O-coordination sphere complexes.

  7. A wheel-shaped single-molecule magnet of [MnII 3MnIII 4]: quantum tunneling of magnetization under static and pulse magnetic fields.

    Science.gov (United States)

    Koizumi, Satoshi; Nihei, Masayuki; Shiga, Takuya; Nakano, Motohiro; Nojiri, Hiroyuki; Bircher, Roland; Waldmann, Oliver; Ochsenbein, Stefan T; Güdel, Hans U; Fernandez-Alonso, Felix; Oshio, Hiroki

    2007-01-01

    The reaction of N-(2-hydroxy-5-nitrobenzyl)iminodiethanol (=H3(5-NO2-hbide)) with Mn(OAc)2* 4 H2O in methanol, followed by recrystallization from 1,2-dichloroethane, yielded a wheel-shaped single-molecule magnet (SMM) of [MnII 3MnIII 4(5-NO2-hbide)6].5 C2H4Cl2 (1). In 1, seven manganese ions are linked by six tri-anionic ligands and form the wheel in which the two manganese ions on the rim and the one in the center are MnII and the other four manganese ions are MnIII ions. Powder magnetic susceptibility measurements showed a gradual increase with chimT values as the temperature was lowered, reaching a maximum value of 53.9 emu mol(-1) K. Analyses of magnetic susceptibility data suggested a spin ground state of S=19/2. The zero-field splitting parameters of D and B 0 4 were estimated to be -0.283(1) K and -1.64(1)x10(-5) K, respectively, by high-field EPR measurements (HF-EPR). The anisotropic parameters agreed with those estimated from magnetization and inelastic neutron scattering experiments. AC magnetic susceptibility measurements showed frequency-dependent in- and out-of-phase signals, characteristic data for an SMM, and an Arrhenius plot of the relaxation time gave a re-orientation energy barrier (DeltaE) of 18.1 K and a pre-exponential factor of 1.63x10(-7) s. Magnetization experiments on aligned single crystals below 0.7 K showed a stepped hysteresis loop, confirming the occurrence of quantum tunneling of the on magnetization (QTM). QTM was, on the other hand, suppressed by rapid sweeps of the magnetic field even at 0.5 K. The sweep-rate dependence of the spin flips can be understood by considering the Landau-Zener-Stückelberg (LZS) model.

  8. Enzymatic hydrolysis of biomimetic bacterial cellulose-hemicellulose composites.

    Science.gov (United States)

    Penttilä, Paavo A; Imai, Tomoya; Hemming, Jarl; Willför, Stefan; Sugiyama, Junji

    2018-06-15

    The production of biofuels and other chemicals from lignocellulosic biomass is limited by the inefficiency of enzymatic hydrolysis. Here a biomimetic composite material consisting of bacterial cellulose and wood-based hemicelluloses was used to study the effects of hemicelluloses on the enzymatic hydrolysis with a commercial cellulase mixture. Bacterial cellulose synthesized in the presence of hemicelluloses, especially xylan, was found to be more susceptible to enzymatic hydrolysis than hemicellulose-free bacterial cellulose. The reason for the easier hydrolysis could be related to the nanoscale structure of the substrate, particularly the packing of cellulose microfibrils into ribbons or bundles. In addition, small-angle X-ray scattering was used to show that the average nanoscale morphology of bacterial cellulose remained unchanged during the enzymatic hydrolysis. The reported easier enzymatic hydrolysis of bacterial cellulose produced in the presence of wood-based xylan offers new insights to overcome biomass recalcitrance through genetic engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Biomonitoring of carcinogenic substances: enzymatic digestion of globin for detecting alkylated amino acids

    Science.gov (United States)

    Bader, Michael; Rauscher, Dankwart; Geibel, Kurt; Angerer, Juergen

    1993-03-01

    We report the application of proteases for the total hydrolysis of globin with subsequent determination of amino acids. Optimization of the proteolysis was made with respect to enzyme concentration, time of incubation and type of protease. Ethylene oxide modified globin was used to compare the results of the analysis of the N-terminal amino acid valine after enzymatic cleavage to those obtained from the widely used modified Edman procedure. It is shown that the cleavage is of good reproducibility and yields more alkylated amino acid than the Edman procedure.

  10. Electrodeposition of flower-like platinum on electrophoretically grown nitrogen-doped graphene as a highly sensitive electrochemical non-enzymatic biosensor for hydrogen peroxide detection

    International Nuclear Information System (INIS)

    Tajabadi, M.T.; Sookhakian, M.; Zalnezhad, E.; Yoon, G.H.; Hamouda, A.M.S.; Azarang, Majid; Basirun, W.J.; Alias, Y.

    2016-01-01

    Highlights: • Nitrogen doped graphene with different thickness by electrophoretic deposition. • The conductivity of N-graphene layer depends on the tickness. • Support of platinum shows efficient electrocatalytic performance for biosensor. • CV curves and amperometric responses improved and optimized in the presence of N-graphene. - Abstract: An efficient non-enzymatic biosensor electrode consisting of nitrogen-doped graphene (N-graphene) and platinum nanoflower (Pt NF) with different N-graphene loadings were fabricated on indium tin oxide (ITO) glass using a simple layer-by-layer electrophoretic and electrochemical sequential deposition approach. N-graphene was synthesized by annealing graphene oxide with urea at 900 °C. The structure and morphology of the as-fabricated non-enzymatic biosensor electrodes were determined using X-ray diffraction, field emission electron microscopy, transmission electron microscopy, Raman and X-ray photoelectron spectra. The as-fabricated Pt NF-N-graphene-modified ITO electrodes with different N-graphene loadings were utilized as a non-enzymatic biosensor electrode for the detection of hydrogen peroxide (H_2O_2). The behaviors of the hybrid electrodes towards H_2O_2 reduction were assessed using chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy analysis. The Pt NF-N-graphene-modified ITO electrode with a 0.05 mg ml"−"1 N-graphene loading exhibited the lowest detection limit, fastest amperometric sensing, a wide linear response range, excellent stability and reproducibility for the non-enzymatic H_2O_2 detection, due to the synergistic effect between the electrocatalytic activity of the Pt NF and the high conductivity and large surface area of N-graphene.

  11. Non-Enzymatic Wearable Sensor for Electrochemical Analysis of Perspiration Glucose.

    Science.gov (United States)

    Zhu, Xiaofei; Ju, Yinhui; Chen, Jian; Liu, Deye; Liu, Hong

    2018-05-16

    We report a non-enzymatic wearable sensor for electrochemical analysis of perspiration glucose. Multi-potential steps are applied on a Au electrode, including a high negative pretreatment potential step for proton reduction which produc-es a localized alkaline condition, a moderate potential step for electrocatalytic oxidation of glucose under the alkaline condi-tion, and a positive potential step to clean and reactivate the electrode surface for the next detection. Fluorocarbon-based materials were coated on the Au electrode for improving the selectivity and robustness of the sensor. A fully integrated wrist-band is developed for continuous real-time monitoring of perspiration glucose during physical activities, and uploading the test result to a Smartphone App via Bluetooth.

  12. Zn(II, Mn(II and Sr(II Behavior in a Natural Carbonate Reservoir System. Part I: Impact of Salinity, Initial pH and Initial Zn(II Concentration in Atmospheric Conditions

    Directory of Open Access Journals (Sweden)

    Auffray B.

    2016-07-01

    Full Text Available The sorption of inorganic elements on carbonate minerals is well known in strictly controlled conditions which limit the impact of other phenomena such as dissolution and/or precipitation. In this study, we evidence the behavior of Zn(II (initially in solution and two trace elements, Mn(II and Sr(II (released by carbonate dissolution in the context of a leakage from a CO2 storage site. The initial pH chosen are either equal to the pH of the water-CO2 equilibrium (~ 2.98 or equal to the pH of the water-CO2-calcite system (~ 4.8 in CO2 storage conditions. From this initial influx of liquid, saturated or not with respect to calcite, the batch experiments evolve freely to their equilibrium, as it would occur in a natural context after a perturbation. The batch experiments are carried out on two natural carbonates (from Lavoux and St-Emilion with PCO2 = 10−3.5 bar, with different initial conditions ([Zn(II]i from 10−4 to 10−6 M, either with pure water or 100 g/L NaCl brine. The equilibrium regarding calcite dissolution is confirmed in all experiments, while the zinc sorption evidenced does not always correspond to the two-step mechanism described in the literature. A preferential sorption of about 10% of the concentration is evidenced for Mn(II in aqueous experiments, while Sr(II is more sorbed in saline conditions. This study also shows that this preferential sorption, depending on the salinity, is independent of the natural carbonate considered. Then, the simulations carried out with PHREEQC show that experiments and simulations match well concerning the equilibrium of dissolution and the sole zinc sorption, with log KZn(II ~ 2 in pure water and close to 4 in high salinity conditions. When the simulations were possible, the log K values for Mn(II and Sr(II were much different from those in the literature obtained by sorption in controlled conditions. It is shown that a new conceptual model regarding multiple Trace Elements (TE sorption is

  13. Oxidative stress in cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Shyamal K Goswami

    2015-01-01

    Full Text Available Oxidative stress caused by various oxygen containing free radicals and reactive species (collectively called "Reactive Oxygen Species" or ROS has long been attributed to cardiovascular diseases. In human body, major oxidizing species are super oxide, hydrogen peroxide, hydroxyl radical, peroxy nitrite etc. ROS are produced from distinct cellular sources, enzymatic and non-enzymatic; have specific physicochemical properties and often have specific cellular targets. Although early studies in nineteen sixties and seventies highlighted the deleterious effects of these species, later it was established that they also act as physiological modulators of cellular functions and diseases occur only when ROS production is deregulated. One of the major sources of cellular ROS is Nicotinamide adenine dinucleotide phosphate oxidases (Noxes that are expressed in almost all cell types. Superoxide and hydrogen peroxide generated from them under various conditions act as signal transducers. Due to their immense importance in cellular physiology, various Nox inhibitors are now being developed as therapeutics. Another free radical of importance in cardiovascular system is nitric oxide (a reactive nitrogen species generated from nitric oxide synthase(s. It plays a critical role in cardiac function and its dysregulated generation along with superoxide leads to the formation of peroxynitrite a highly deleterious agent. Despite overwhelming evidences of association between increased level of ROS and cardiovascular diseases, antioxidant therapies using vitamins and omega 3 fatty acids have largely been unsuccessful till date. Also, there are major discrepancies between studies with laboratory animals and human trials. It thus appears that the biology of ROS is far complex than anticipated before. A comprehensive understanding of the redox biology of diseases is thus needed for developing targeted therapeutics.

  14. Topotactic reduction as a synthetic route for the preparation of low-dimensional Mn(II) oxide phases: the structure and magnetism of LaAMnO(4-x) (A = Sr, Ba).

    Science.gov (United States)

    Kitchen, Helen J; Saratovsky, Ian; Hayward, Michael A

    2010-07-14

    Reaction of LaSrMnO(4) with CaH(2) at 420 degrees C yields LaSrMnO(3.67(3)). Raising the temperature to 480 degrees C yields the Mn(II) phase LaSrMnO(3.50(2)). Neutron powder diffraction data show both phases adopt body-centred orthorhombic crystal structures (LaSrMnO(3.67(3)), Immm: a = 3.7256(1) A, b = 3.8227(1) A, c = 13.3617(4) A; LaSrMnO(3.50(2)), Immm: a = 3.7810(1) A, b = 3.7936(1) A, c = 13.3974(3) A) with anion vacancies located within the equatorial MnO(2-x) planes of the materials. Analogous reactivity is observed between LaBaMnO(4) and CaH(2) to yield body-centred tetragonal reduced phases (LaBaMnO(3.53(3)), I4/mmm: a = 3.8872(1)A, c = 13.6438(2) A). Low-temperature neutron diffraction and magnetisation data show that LaSrMnO(3.5) and LaBaMnO(3.5) exhibit three-dimensional antiferromagnetic order below 155 K and 135 K respectively. Above these temperatures, they exhibit two-dimensional antiferromagnetic order with paramagnetic behaviour observed above 480 K in both phases. The origin of the low dimensional magnetic order and ordering of the anion vacancies in the reduced phases is discussed.

  15. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene.

    Science.gov (United States)

    Jiang, Ding; Liu, Qian; Wang, Kun; Qian, Jing; Dong, Xiaoya; Yang, Zhenting; Du, Xiaojiao; Qiu, Baijing

    2014-04-15

    Copper nanoparticles (NPs) decorated nitrogen-doped graphene (Cu-N-G) was prepared by a facile thermal treatment, and further employed as a novel sensing material for fabricating the sensitive non-enzymatic glucose sensor. Compared with pure Cu NPs, the Cu-N-G showed enhanced electrocatalytic activity to glucose oxidation due to the integration of N-G, which exhibited the oxidation peak current of glucose ca. 23-fold higher than that of pure Cu NPs. The presented sensor showed excellent performances for glucose detection including wide linear range of 0.004-4.5 mM, low detection limit (1.3 μM, S/N=3), high sensitivity (48.13 μA mM(-1)), fast response time (doped graphene as enhanced materials in fabricating sensors for chemical and biochemical analysis. © 2013 Published by Elsevier B.V.

  16. Mechanism of potentiostatic deposition of MnO2 and electrochemical characteristics of the deposit in relation to carbohydrate oxidation

    International Nuclear Information System (INIS)

    Das, Debasmita; Sen, Pratik Kumar; Das, Kaushik

    2008-01-01

    Cyclic voltammetric (CV) and chronoamperometric (CA) studies on potentiostatic deposition of MnO 2 on Pt from Mn(II) solution in very weakly alkaline media show the process to be controlled by a one-electron transfer step, which means that the deposition proceeds through the generation of Mn(III). The electrocatalytic activity of the deposited electrode towards carbohydrate oxidation is found to be maximum at an optimum amount of deposition. Chronopotentiometric (CP) and CV measurements show that the oxidation of carbohydrates on the deposited electrodes follows a catalytic EC (electrochemical-chemical) mechanism via electrolytic formation of Mn(V) and its subsequent consumption either by disproportionation or by chemical reaction in the presence of carbohydrates. The rate constants of the reaction of Mn(V) with dextrose and fructose have been obtained from CA results. The relative order of the oxidation currents for dextrose and fructose as well as their dependence on carbohydrate concentration has been discussed. Replacement of Pt by carbon as the electrode support material does not affect the electrocatalytic activity of the MnO 2 deposit. The observed linear variation of the steady state oxidation currents with carbohydrate concentration can be exploited for analytical application

  17. Method for the enzymatic production of hydrogen

    Science.gov (United States)

    Woodward, J.; Mattingly, S.M.

    1999-08-24

    The present invention is an enzymatic method for producing hydrogen comprising the steps of: (a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch; the reaction mixture also comprising an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; (b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and (c) detecting the hydrogen produced from the reaction mixture. 8 figs.

  18. Improved enzymatic production of phenolated glycerides through alkyl phenolate intermediate

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Feddern, Vivian; Glasius, Marianne

    2011-01-01

    This work reported a novel approach for synthesis of dihydrocaffoylated glycerides, consisting of 2 steps: enzymatic synthesis of octyl dihydrocaffeate (as a synthetic intermediate) from octanol and dihydrocaffeic acid (DHCA), and enzymatic interesterification of triglycerides with octyl dihydroc......This work reported a novel approach for synthesis of dihydrocaffoylated glycerides, consisting of 2 steps: enzymatic synthesis of octyl dihydrocaffeate (as a synthetic intermediate) from octanol and dihydrocaffeic acid (DHCA), and enzymatic interesterification of triglycerides with octyl...

  19. Enzymatic reduction of U(VI) in groundwaters; Reduction enzymatique de U(VI) dans des eaux souterraines

    Energy Technology Data Exchange (ETDEWEB)

    Addelouas, A.; Gong, W. [Center for Radioactive Waste Management, Advanced Materials Laboratory, 1001 University, Albuquerque (United States); Lutze, W.; Nuttall, E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Fritz, B.; Crovisier, J.L. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Centre de Sedimentologie et Geochimie de la Surface

    1999-03-01

    The use of enzymatic reduction of U(VI) in remediation of groundwater contaminated with U(VI) is receiving considerable attention. Certain strains of bacteria can combine the oxidation of an organic compound to the reduction of U(VI) to U(IV), which precipitates as uraninite. In the present study, we tested the reduction of U(VI) in groundwaters with various origins and compositions. In all groundwaters u(VI) was reduced by sulfate reducing bacteria that had been activated by ethanol and tri-metaphosphate. The reduction rate of U(VI) depends on sulfate concentration in water and the abundance of bacteria in the system. This work shows that bacteria capable of U(VI) reduction are ubiquitous in nature, and suggests the possibility of a large application of the enzymatic reduction of U(VI) for in situ clean up of groundwaters contaminated with uranium. (authors) 12 refs.

  20. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil-lead-rice (Oryza sativa L.) system.

    Science.gov (United States)

    Zeng, Lu S; Liao, Min; Chen, Cheng L; Huang, Chang Y

    2007-05-01

    The effect of lead (Pb) treatment on the soil enzymatic activities, soil microbial biomass, rice physiological indices and rice biomass were studied in a greenhouse pot experiment. Six levels of Pb viz. 0(CK), 100, 300, 500, 700, 900 mg/kg soil were applied in two types of paddy soils. The results showed that Pb treatment had a stimulating effect on soil enzymatic activities and microbial biomass carbon (Cmic) at low concentration and an inhibitory influence at higher concentration. The degree of influence on enzymatic activities and Cmic by Pb was related to the clay and organic matter contents of the soils. When the Pb treatment was raised to the level of 500 mg/kg, ecological risk appeared both to soil microorganisms and plants. The results also revealed a consistent trend of increased chlorophyll contents and rice biomass initially, maximum at a certain Pb treatment, and then decreased gradually with the increase in Pb concentration. Pb was effective in inducing proline accumulation and its toxicity causes oxidative stress in rice plants. Therefore, it was concluded that soil enzymatic activities, Cmic and rice physiological indices, could be sensitive indicators to reflect environmental stress in soil-lead-rice system.

  1. Oxidative and antibacterial activity of Mn3O4

    International Nuclear Information System (INIS)

    Chowdhury, Al-Nakib; Azam, Md. Shafiul; Aktaruzzaman, Md.; Rahim, Abdur

    2009-01-01

    Mn 3 O 4 nanoparticles with diameter ca. 10 nm were synthesized by the forced hydrolysis of Mn(II) acetate at 80 deg. C. The X-ray diffraction (XRD), Fourier transform infra red (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques were employed to study structural features and chemical composition of the nanoparticles. The unique oxidative activity of the Mn 3 O 4 nanoparticles was demonstrated in the polymerization and dye degradation reactions. On adding Mn 3 O 4 suspension to an acidic solution of aniline, yielded immediately green sediment of polyaniline (PANI). The organic dyes, viz., methylene blue (MB) and procion red (PR) were found to be completely decolorized from their aqueous solution on treating the dyes with Mn 3 O 4 suspension in acidic media. The Mn 3 O 4 nanoparticles also showed a clear antibacterial activity against the Vibrio cholerae, Shigella sp., Salmonella sp., and Escherichi coli bacteria that cause cholera, dysentery, typhoid, and diarrhea diseases, respectively.

  2. Standardization and quality control in quantifying non-enzymatic oxidative protein modifications in relation to ageing and disease: Why is it important and why is it hard?

    DEFF Research Database (Denmark)

    Nedić, Olgica; Rogowska-Wrzesinska, Adelina; Rattan, Suresh

    2015-01-01

    Post-translational modifications (PTM) of proteins determine the activity, stability, specificity, transportability and lifespan of a protein. Some PTM are highly specific and regulated involving various enzymatic pathways, but there are other non-enzymatic PTM (nePTM), which occur stochastically...

  3. Electrodeposition of flower-like platinum on electrophoretically grown nitrogen-doped graphene as a highly sensitive electrochemical non-enzymatic biosensor for hydrogen peroxide detection

    Energy Technology Data Exchange (ETDEWEB)

    Tajabadi, M.T. [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Sookhakian, M., E-mail: m.sokhakian@gmail.com [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Zalnezhad, E., E-mail: erfan@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Yoon, G.H. [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Hamouda, A.M.S. [Mechanical and Industrial Engineering Department, College of Engineering, Qatar University, 2713, Doha (Qatar); Azarang, Majid [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Basirun, W.J. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Institute of Nanotechnology & Catalysis Research, Institute of Postgraduate Studies, University Malaya, 50603 Kuala Lumpur (Malaysia); Alias, Y., E-mail: yatimah70@um.edu.my [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2016-11-15

    Highlights: • Nitrogen doped graphene with different thickness by electrophoretic deposition. • The conductivity of N-graphene layer depends on the tickness. • Support of platinum shows efficient electrocatalytic performance for biosensor. • CV curves and amperometric responses improved and optimized in the presence of N-graphene. - Abstract: An efficient non-enzymatic biosensor electrode consisting of nitrogen-doped graphene (N-graphene) and platinum nanoflower (Pt NF) with different N-graphene loadings were fabricated on indium tin oxide (ITO) glass using a simple layer-by-layer electrophoretic and electrochemical sequential deposition approach. N-graphene was synthesized by annealing graphene oxide with urea at 900 °C. The structure and morphology of the as-fabricated non-enzymatic biosensor electrodes were determined using X-ray diffraction, field emission electron microscopy, transmission electron microscopy, Raman and X-ray photoelectron spectra. The as-fabricated Pt NF-N-graphene-modified ITO electrodes with different N-graphene loadings were utilized as a non-enzymatic biosensor electrode for the detection of hydrogen peroxide (H{sub 2}O{sub 2}). The behaviors of the hybrid electrodes towards H{sub 2}O{sub 2} reduction were assessed using chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy analysis. The Pt NF-N-graphene-modified ITO electrode with a 0.05 mg ml{sup −1} N-graphene loading exhibited the lowest detection limit, fastest amperometric sensing, a wide linear response range, excellent stability and reproducibility for the non-enzymatic H{sub 2}O{sub 2} detection, due to the synergistic effect between the electrocatalytic activity of the Pt NF and the high conductivity and large surface area of N-graphene.

  4. Enzymatic Browning: a practical class

    Directory of Open Access Journals (Sweden)

    Maria Teresa Pedrosa Silva Clerici

    2014-10-01

    Full Text Available This paper presents a practical class about the enzymes polyphenol oxidases, which have been shown to be responsible for the enzymatic browning of fruits and vegetables. Vegetables samples were submitted to enzymatic inactivation process with chemical reagents, as well as by bleaching methods of applying heat by conventional oven and microwave oven. Process efficiency was assessed qualitatively by both observing the guaiacol peroxidase activity and after the storage period under refrigeration or freezing. The practical results obtained in this class allow exploring multidisciplinary knowledge in food science, with practical applications in everyday life.

  5. Enzymatic biodiesel production: Technical and economical considerations

    DEFF Research Database (Denmark)

    Munk Nielsen, Per; Brask, Jesper; Fjerbæk, Lene

    2008-01-01

    It is well documented in the literature that enzymatic processing of oils and fats for biodiesel is technically feasible. However, with very few exceptions, enzyme technology is not currently used in commercial-scale biodiesel production. This is mainly due to non-optimized process design...... and a lack of available costeffective enzymes. The technology to re-use enzymes has typically proven insufficient for the processes to be competitive. However, literature data documenting the productivity of enzymatic biodiesel together with the development of new immobilization technology indicates...... that enzyme catalysts can become cost effective compared to chemical processing. This work reviews the enzymatic processing of oils and fats into biodiesel with focus on process design and economy....

  6. Single-molecule study of oxidative enzymatic deconstruction of cellulose.

    Science.gov (United States)

    Eibinger, Manuel; Sattelkow, Jürgen; Ganner, Thomas; Plank, Harald; Nidetzky, Bernd

    2017-10-12

    LPMO (lytic polysaccharide monooxygenase) represents a unique paradigm of cellulosic biomass degradation by an oxidative mechanism. Understanding the role of LPMO in deconstructing crystalline cellulose is fundamental to the enzyme's biological function and will help to specify the use of LPMO in biorefinery applications. Here we show with real-time atomic force microscopy that C1 and C4 oxidizing types of LPMO from Neurospora crassa (NcLPMO9F, NcLPMO9C) bind to nanocrystalline cellulose with high preference for the very same substrate surfaces that are also used by a processive cellulase (Trichoderma reesei CBH I) to move along during hydrolytic cellulose degradation. The bound LPMOs, however, are immobile during their adsorbed residence time ( ~ 1.0 min for NcLPMO9F) on cellulose. Treatment with LPMO resulted in fibrillation of crystalline cellulose and strongly ( ≥ 2-fold) enhanced the cellulase adsorption. It also increased enzyme turnover on the cellulose surface, thus boosting the hydrolytic conversion.Understanding the role of enzymes in biomass depolymerization is essential for the development of more efficient biorefineries. Here, the authors show by atomic force microscopy the real-time mechanism of cellulose deconstruction by lytic polysaccharide monooxygenases.

  7. Determination of myoglobin based on its enzymatic activity by stopped-flow spectrophotometry

    Science.gov (United States)

    Zheng, Qi; Liu, Zhihong; Cai, Ruxiu

    2005-04-01

    A new method has been developed for the determination of myoglobin (Mb) based on its enzymatic activity for the oxidation of o-phenylenediamine (OPDA) with hydrogen peroxide. Stopped-flow spectrophotometry was used to study the kinetic behavior of the oxidation reaction. The catalytic activity of Mb was compared to other three kinds of catalyst. The time dependent absorbance of the reaction product, 2,3-diamimophenazine (DAPN), at a wavelength of 426 nm was recorded. The initial reaction rate obtained at 40 °C was found to be proportional to the concentration of Mb in the range of 1.0 × 10 -6 to 4.0 × 10 -9 mol L -1. The detection limit of Mb was found to be 9.93 × 10 -10 mol L -1. The relative standard deviations were within 5% for the determination of different concentrations of Mb. Excess of bovine serum albumin (BSA), Ca(II), Mg(II), Cu(II), glucose, caffeine, lactose and uric acid did not interfere.

  8. Simultaneous iridium catalysed oxidation and enzymatic reduction employing orthogonal reagents

    NARCIS (Netherlands)

    Mutti, Francesco G.; Orthaber, Andreas; Schrittwieser, Joerg H.; Vries, Johannes G. de; Pietschnig, Rudolf; Kroutil, Wolfgang

    2010-01-01

    An iridium catalysed oxidation was coupled concurrently to an asymmetric biocatalytic reduction in one-pot; thus it was shown for the first time that iridium- and alcohol dehydrogenase-catalysed redox reactions are compatible. As a model system racemic chlorohydrins were transformed to

  9. Enzymatic oxidations of alcohols in biosynthesis of bumblebee pheromones

    OpenAIRE

    Bártová, Adéla

    2016-01-01

    Secretion of cephalic labial gland of Buff-tailed bumblebee males (Bombus terrestris) contains a mixture of terpene alcohols, aliphatic alcohols, esters and alkanes with small amount of aldehydes potentially biosynthetized of (S)-2,3-dihydrofarnesol and geranylcitronellol (major alcoholic compounds). This secretion acts as a marking and luring pheromone during patrolling. This study is focused on oxidation of terpene alcohols using enzymes of cephalic labial gland of a bumblebee. In vitro inc...

  10. Next-Generation Catalysis for Renewables: Combining Enzymatic with Inorganic Heterogeneous Catalysis for Bulk Chemical Production

    DEFF Research Database (Denmark)

    Vennestrøm, Peter Nicolai Ravnborg; Christensen, C.H.; Pedersen, S.

    2010-01-01

    chemical platform under different conditions than those conventionally employed. Indeed, new process and catalyst concepts need to be established. Both enzymatic catalysis (biocatalysis) and heterogeneous inorganic catalysis are likely to play a major role and, potentially, be combined. One type...... of combination involves one-pot cascade catalysis with active sites from bio- and inorganic catalysts. In this article the emphasis is placed specifically on oxidase systems involving the coproduction of hydrogen peroxide, which can be used to create new in situ collaborative oxidation reactions for bulk...

  11. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans

    Directory of Open Access Journals (Sweden)

    Ilaria Marrocco

    2017-01-01

    Full Text Available Oxidative stress is the result of the imbalance between reactive oxygen species (ROS formation and enzymatic and nonenzymatic antioxidants. Biomarkers of oxidative stress are relevant in the evaluation of the disease status and of the health-enhancing effects of antioxidants. We aim to discuss the major methodological bias of methods used for the evaluation of oxidative stress in humans. There is a lack of consensus concerning the validation, standardization, and reproducibility of methods for the measurement of the following: (1 ROS in leukocytes and platelets by flow cytometry, (2 markers based on ROS-induced modifications of lipids, DNA, and proteins, (3 enzymatic players of redox status, and (4 total antioxidant capacity of human body fluids. It has been suggested that the bias of each method could be overcome by using indexes of oxidative stress that include more than one marker. However, the choice of the markers considered in the global index should be dictated by the aim of the study and its design, as well as by the clinical relevance in the selected subjects. In conclusion, the clinical significance of biomarkers of oxidative stress in humans must come from a critical analysis of the markers that should give an overall index of redox status in particular conditions.

  12. Bioavailability of Compounds Susceptible to Enzymatic Oxidation Enhances Growth of Shiitake Medicinal Mushroom (Lentinus edodes) in Solid-State Fermentation with Vineyard Prunings.

    Science.gov (United States)

    Cabrera, Rosina; López-Peña, Damian; Asaff, Ali; Esqueda, Martín; Valenzuela-Soto, Elisa M

    2018-01-01

    Grapes are widely produced in northwestern Mexico, generating many wood trimmings (vineyard prunings) that have no further local use. This makes vineyard prunings a very attractive alternative for the cultivation of white-rot medicinal mushrooms such as Lentinus edodes. This type of wood can also offer a model for the evaluation of oxidative enzyme production during the fermentation process. We tested the effect of wood from vineyard prunings on the vegetative growth of and production of ligninolytic enzymes in L. edodes in solid-state fermentation and with wheat straw as the control substrate. The specific growth rate of the fungus was 2-fold higher on vineyard pruning culture (μM = 0.95 day-1) than on wheat straw culture (μM = 0.47 day-1). Laccase-specific production was 4 times higher in the vineyard prunings culture than on wheat straw (0.34 and 0.08 mU · mg protein-1 · ppm CO2-1, respectively), and manganese peroxidase production was 3.7 times higher on wheat straw culture than on vineyard prunings (2.21 and 0.60 mU · mg protein-1 · ppm CO2-1, respectively). To explain accurately these differences in growth and ligninolytic enzyme activity, methanol extracts were obtained from each substrate and characterized. Resveratrol and catechins were the main compounds identified in vineyard prunings, whereas epigallocatechin was the only one detected in wheat straw. Compounds susceptible to enzymatic oxidation are more bioavailable in vineyard prunings than in wheat straw, and thus the highest L. edodes growth rate is associated with the presence of these compounds.

  13. Effects of Pomegranate Juice Supplementation on Oxidative Stress Biomarkers Following Weightlifting Exercise

    Directory of Open Access Journals (Sweden)

    Achraf Ammar

    2017-07-01

    Full Text Available The aim of this study was to test the hypothesis that pomegranate juice supplementation would blunt acute and delayed oxidative stress responses after a weightlifting training session. Nine elite weightlifters (21.0 ± 1 years performed two Olympic-Weightlifting sessions after ingesting either the placebo or pomegranate juice supplements. Venous blood samples were collected at rest and 3 min and 48 h after each session. Compared to the placebo condition, pomegranate juice supplementation attenuated the increase in malondialdehyde (−12.5%; p < 0.01 and enhanced the enzymatic (+8.6% for catalase and +6.8% for glutathione peroxidase; p < 0.05 and non-enzymatic (+12.6% for uric acid and +5.7% for total bilirubin; p < 0.01 antioxidant responses shortly (3 min after completion of the training session. Additionally, during the 48 h recovery period, pomegranate juice supplementation accelerated (p < 0.05 the recovery kinetics of the malondialdehyde (5.6% and the enzymatic antioxidant defenses compared to the placebo condition (9 to 10%. In conclusion, supplementation with pomegranate juice has the potential to attenuate oxidative stress by enhancing antioxidant responses assessed acutely and up to 48 h following an intensive weightlifting training session. Therefore, elite weightlifters might benefit from blunted oxidative stress responses following intensive weightlifting sessions, which could have implications for recovery between training sessions.

  14. Biosensing strategies based on enzymatic reactions and nanoparticles.

    Science.gov (United States)

    Díez-Buitrago, Beatriz; Briz, Nerea; Liz-Marzán, Luis M; Pavlov, Valeri

    2018-04-16

    Enzymes are pivotal elements in bioanalysis due to their specificity and extremely high catalytic activity. The sensitivity of bioanalytical assays depends mainly on the capacity of an observer to detect the product(s) of a biocatalytic reaction. Both natural and artificial compounds have been traditionally used to evaluate enzymatic activities. The drawbacks of chromogenic and fluorogenic organic enzymatic substrates are their high cost and low stability, resulting in high background signals. We review here state of the art assays in the detection of enzymatic activities using recent advances in nanoscience. Novel methods based on the use of nanoparticles lead to increased sensitivity and decreased costs for bioanalysis based on enzymes as recognition elements and signal amplifiers in Enzyme-Linked Immunosorbent Assays (ELISA). Novel approaches toward the detection of enzymatic activities are based on biocatalytic synthesis, modulation, etching, and aggregation of nanoparticles under physiological conditions.

  15. Nucleoside adducts from the in vitro reaction of benzo[a]pyrene-7,8-dihydrodiol 9,10-oxide or benzo[a]pyrene 4,5-oxide with nucleic acids.

    Science.gov (United States)

    Jennette, K W; Jeffrey, A M; Blobstein, S H; Beland, F A; Harvey, R G; Weinstein, I B

    1977-03-08

    The covalent binding of benzo[a]pyrene 4,5-oxide and benzo[a]pyrene-7,8-dihydrodiol 9,10-oxide isomer I and isomer II to nucleic acids in aqueous acetone solution has been investigated. Benzo[a]pyrene 4,5-oxide reacted preferentially with guanosine residues. On the other hand, benzo[a]pyrene-7,8-dihydrodiol 9,10-oxide isomer I and II reacted extensively with guanosine, adenosine, and cytidine residues. Time course studies showed that the reactivity of isomer I or isomer II with homopolyribonucleotides followed the order poly(G) greater than poly(A) greater than poly(C). Alkaline or enzymatic hydrolysis of the modified nucleic acids and subsequent chromatography on Sephadex LH-20 columns yielded benzo[a]pyrene-nucleotide adducts. These were enzymatically converted to the corresponding nucleosides which were resolved into several distinct components by high-pressure liquid chromatography. Evidence was obtained for the presence of multiple nucleoside adducts of guanosine, adenosine, cytidine, deoxyguanosine, deoxyadenosine, and deoxycytidine. The HPLC profiles of adducts formed with isomer I were different from the corresponding profiles of adducts formed with isomer II. Structural aspects of these nucleoside adducts are discussed.

  16. Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst.

    Science.gov (United States)

    Wang, Huan; Gu, Hongcheng; Chen, Zhuoyue; Shang, Luoran; Zhao, Ze; Gu, Zhongze; Zhao, Yuanjin

    2017-04-19

    Enzymatic carriers have a demonstrated value for chemical reactions and industrial applications. Here, we present a novel kind of inverse opal hydrogel particles as the enzymatic carriers. The particles were negatively replicated from spherical colloidal crystal templates by using magnetic nanoparticles tagged acrylamide hydrogel. Thus, they were endowed with the features of monodispersity, small volume, complete penetrating structure, and controllable motion, which are all beneficial for improving the efficiency of biocatalysis. In addition, due to the ordered porous nanostructure, the inverse opal hydrogel particles were imparted with unique photonic band gaps (PBGs) and vivid structural colors for encoding varieties of immobilized enzymes and for constructing a multienzymes biocatalysis system. These features of the inverse opal hydrogel particles indicate that they are ideal enzymatic carriers for biocatalysis.

  17. Enzymatic Processes in Marine Biotechnology.

    Science.gov (United States)

    Trincone, Antonio

    2017-03-25

    In previous review articles the attention of the biocatalytically oriented scientific community towards the marine environment as a source of biocatalysts focused on the habitat-related properties of marine enzymes. Updates have already appeared in the literature, including marine examples of oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases ready for food and pharmaceutical applications. Here a new approach for searching the literature and presenting a more refined analysis is adopted with respect to previous surveys, centering the attention on the enzymatic process rather than on a single novel activity. Fields of applications are easily individuated: (i) the biorefinery value-chain, where the provision of biomass is one of the most important aspects, with aquaculture as the prominent sector; (ii) the food industry, where the interest in the marine domain is similarly developed to deal with the enzymatic procedures adopted in food manipulation; (iii) the selective and easy extraction/modification of structurally complex marine molecules, where enzymatic treatments are a recognized tool to improve efficiency and selectivity; and (iv) marine biomarkers and derived applications (bioremediation) in pollution monitoring are also included in that these studies could be of high significance for the appreciation of marine bioprocesses.

  18. Oxidative Stress and Antioxidant Potential of One Hundred Medicinal Plants.

    Science.gov (United States)

    Hassan, Waseem; Noreen, Hamsa; Rehman, Shakila; Gul, Shehnaz; Kamal, Mohammad Amjad; Kamdem, Jean Paul; Zaman, Bakht; da Rocha, Joao B T

    2017-01-01

    Reactive species are produced in biological system because of redox reactions. The imbalance in pro-oxidant and antioxidant homeostasis leads to the production of toxic reactive oxygen and nitrogen species like hydrogen peroxide, organic peroxides, hydroxyl radicals, superoxide anion and nitric oxide. Inactivation of metabolic enzymes, oxidation of biomolecules and cellular damage are some of the prominent characteristics of reactive species. Similarly, oxidative stress has been associated with more than one hundred (100) pathologies such as atherosclerosis, diabetes, cardiovascular diseases, pancreatic and liver diseases, joint disorders, cardiac fibrosis, acute respiratory distress syndrome, neurological diseases (amyotrophic lateral sclerosis, Huntington's disorder, Parkinson's disease and Alzheimer's disease), ageing and cancer etc. The toxicity of reactive species is balanced by the integrated antioxidant systems, which include enzymatic and non-enzymatic antioxidants. Antioxidant therapies or defenses protect the biological sites by removing or quenching the free radicals (prooxidants). Medicinal plants can not only protect the oxidative damage, but also play a vital role in health maintenance and prevention of chronic degenerative diseases. This review will provide a valuable discussion of one hundred (100) well known medicinal plants, which may add to the optimization of antioxidants rank. Besides, some of the antioxidant evaluation techniques or mechanisms via which medicinal plants act as antioxidants are also described. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Synthesis, Characterization and Thermal Decomposition Studies of Cr(III, Mn(II and Fe(III Complexes of N, N '-Bis[1,3-benzodioxol-5-ylmethylene]butane-1,4-diamine

    Directory of Open Access Journals (Sweden)

    Prasad M. Alex

    2009-01-01

    Full Text Available A bidentate Schiff base ligand namely, N,N'-bis-1,3-benzodioxol-5-ylmethylene]butane-1,4-diamine was synthesised by condensing piperonal (3,4-dioxymethylenebenzaldehyde with butane-1,4-diamine. Cr(III, Mn(II, Fe(III complexes of this chelating ligand were synthesised using acetates, chlorides, bromides, nitrates and perchlorates of these metals. The ligand and the complexes were characterised by elemental analysis, 1H NMR, UV-Vis and IR spectra, conductance and magnetic susceptibility measurements and thermogravimetric analysis. The thermograms of three complexes were analysed and the kinetic parameters for the different stages of decompositions were determined.

  20. Redox Cycling, pH Dependence, and Ligand Effects of Mn(III) in Oxalate Decarboxylase from Bacillus subtilis.

    Science.gov (United States)

    Twahir, Umar T; Ozarowski, Andrew; Angerhofer, Alexander

    2016-11-29

    This contribution describes electron paramagnetic resonance (EPR) experiments on Mn(III) in oxalate decarboxylase of Bacillus subtilis, an interesting enzyme that catalyzes the redox-neutral dissociation of oxalate into formate and carbon dioxide. Chemical redox cycling provides strong evidence that both Mn centers can be oxidized, although the N-terminal Mn(II) appears to have the lower reduction potential and is most likely the carrier of the +3 oxidation state under moderate oxidative conditions, in agreement with the general view that it represents the active site. Significantly, Mn(III) was observed in untreated OxDC in succinate and acetate buffers, while it could not be directly observed in citrate buffer. Quantitative analysis showed that up to 16% of the EPR-visible Mn is in the +3 oxidation state at low pH in the presence of succinate buffer. The fine structure and hyperfine structure parameters of Mn(III) are affected by small carboxylate ligands that can enter the active site and have been recorded for formate, acetate, and succinate. The results from a previous report [Zhu, W., et al. (2016) Biochemistry 55, 429-434] could therefore be reinterpreted as evidence of formate-bound Mn(III) after the enzyme is allowed to turn over oxalate. The pH dependence of the Mn(III) EPR signal compares very well with that of enzymatic activity, providing strong evidence that the catalytic reaction of oxalate decarboxylase is driven by Mn(III), which is generated in the presence of dioxygen.

  1. Enzymatic Synthesis of Psilocybin.

    Science.gov (United States)

    Fricke, Janis; Blei, Felix; Hoffmeister, Dirk

    2017-09-25

    Psilocybin is the psychotropic tryptamine-derived natural product of Psilocybe carpophores, the so-called "magic mushrooms". Although its structure has been known for 60 years, the enzymatic basis of its biosynthesis has remained obscure. We characterized four psilocybin biosynthesis enzymes, namely i) PsiD, which represents a new class of fungal l-tryptophan decarboxylases, ii) PsiK, which catalyzes the phosphotransfer step, iii) the methyltransferase PsiM, catalyzing iterative N-methyl transfer as the terminal biosynthetic step, and iv) PsiH, a monooxygenase. In a combined PsiD/PsiK/PsiM reaction, psilocybin was synthesized enzymatically in a step-economic route from 4-hydroxy-l-tryptophan. Given the renewed pharmaceutical interest in psilocybin, our results may lay the foundation for its biotechnological production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Abiotic Protein Fragmentation by Manganese Oxide: Implications for a Mechanism to Supply Soil Biota with Oligopeptides.

    Science.gov (United States)

    Reardon, Patrick N; Chacon, Stephany S; Walter, Eric D; Bowden, Mark E; Washton, Nancy M; Kleber, Markus

    2016-04-05

    The ability of plants and microorganisms to take up organic nitrogen in the form of free amino acids and oligopeptides has received increasing attention over the last two decades, yet the mechanisms for the formation of such compounds in soil environments remain poorly understood. We used Nuclear Magnetic Resonance (NMR) and Electron Paramagnetic Resonance (EPR) spectroscopies to distinguish the reaction of a model protein with a pedogenic oxide (Birnessite, MnO2) from its response to a phyllosilicate (Kaolinite). Our data demonstrate that birnessite fragments the model protein while kaolinite does not, resulting in soluble peptides that would be available to soil biota and confirming the existence of an abiotic pathway for the formation of organic nitrogen compounds for direct uptake by plants and microorganisms. The absence of reduced Mn(II) in the solution suggests that birnessite acts as a catalyst rather than an oxidant in this reaction. NMR and EPR spectroscopies are shown to be valuable tools to observe these reactions and capture the extent of protein transformation together with the extent of mineral response.

  3. Operation and Control of Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Huusom, Jakob Kjøbsted; Nordblad, Mathias

    This work explores the control of biodiesel production via an enzymatic catalyst. The process involves the transesterification of oils/fats with an alcohol (usually methanol or ethanol), using enzymatic catalysts to generate mono-alkyl esters (the basis of biodiesel) and glycerol as by......-product. Current literature indicates that enzymatic processing of oils and fats to produce biodiesel is technically feasible and developments in immobilization technology indicate that enzyme catalysts can become cost effective compared to chemical processing. However, with very few exceptions, enzyme technology...... is not currently used in commercial-scale biodiesel production. This is mainly due to non-optimized process designs, which do not use the full potential of the catalysts in a cost-efficient way. Furthermore is it unclear what process variables need to be monitored and controlled to ensure optimal economics...

  4. Poly(ethylene oxide monomethyl ether)- block-poly(propylene succinate) Nanoparticles: Synthesis and Characterization, Enzymatic and Cellular Degradation, Micellar Solubilization of Paclitaxel, and in Vitro and in Vivo Evaluation.

    Science.gov (United States)

    Jäger, Alessandro; Jäger, Eliézer; Syrová, Zdeňka; Mazel, Tomas; Kováčik, Lubomír; Raška, Ivan; Höcherl, Anita; Kučka, Jan; Konefal, Rafal; Humajova, Jana; Poučková, Pavla; Štěpánek, Petr; Hrubý, Martin

    2018-04-11

    Polyester-based nanostructures are widely studied as drug-delivery systems due to their biocompatibility and biodegradability. They are already used in the clinic. In this work, we describe a new and simple biodegradable and biocompatible system as the Food and Drug Administration approved polyesters (poly-ε-caprolactone, polylactic acid, and poly(lactic- co-glycolic acid)) for the delivery of the anticancer drug paclitaxel (PTX) as a model drug. A hydrophobic polyester, poly(propylene succinate) (PPS), was prepared from a nontoxic alcohol (propylene glycol) and monomer from the Krebs's cycle (succinic acid) in two steps via esterification and melt polycondensation. Furthermore, their amphiphilic block copolyester, poly(ethylene oxide monomethyl ether)- block-poly(propylene succinate) (mPEO- b-PPS), was prepared by three steps via esterification followed by melt polycondensation and the addition of mPEO to the PPS macromolecules. Analysis of the in vitro cellular behavior of the prepared nanoparticle carriers (NPs) (enzymatic degradation, uptake, localization, and fluorescence resonance energy-transfer pair degradation studies) was performed by fluorescence studies. PTX was loaded to the NPs of variable sizes (30, 70, and 150 nm), and their in vitro release was evaluated in different cell models and compared with commercial PTX formulations. The mPEO- b-PPS copolymer analysis displays glass transition temperature hydrolysis during transport in bloodstream, and simultaneous enzymatic degradability after uptake into the cells. The detailed cytotoxicity in vitro and in vivo tumor efficacy studies have shown the superior efficacy of the NPs compared with PTX and PTX commercial formulations.

  5. Immobilization of enzymatic extracts of Portulaca oleracea cv. roots for oxidizing aqueous bisphenol A.

    Science.gov (United States)

    Matsushima, Kazuki; Kaneda, Hirokazu; Harada, Kazuo; Matsuura, Hideyuki; Hirata, Kazumasa

    2015-05-01

    Water pollution from the release of industrial wastewater is a serious problem for almost every industry. Enzymes from portulaca, Portulaca oleracea cv., have been investigated for their ability to degrade bisphenol A (BPA), one of the well-known estrogenic pollutants. Enzymatic crude extracts from P. oleracea cv. roots were immobilized on aminopropyl-modified glass beads. They maintained BPA metabolic activity over a broad range of pH values and temperatures. The immobilized enzyme was reusable with more than 50 % of its initial activity retained after 12 batch reactions and no loss of activity after storage for 1 month at -30 °C. Thus, the immobilization of extracts from P. oleracea cv. roots is a useful method for removing BPA from industrial wastewater.

  6. Glucose obtained from rice bran by ultrasound-assisted enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Raquel Cristine Kuhn

    2015-05-01

    Full Text Available In this work ultrasound-assisted solid-state enzymatic hydrolysis of rice bran to obtain fermentable sugars was investigated. For this purpose, process variables such as temperature, enzyme concentration and moisture content were evaluated during the enzymatic hydrolysis with and without ultrasound irradiation. The enzyme used is a blend of amylases derived from genetically modified strains of Trichoderma reesei. Kinetic of the enzymatic hydrolysis of rice bran at the constant-reaction rate period were measured. The best results for the ultrasound-assisted enzymatic hydrolysis was obtained using 3 wt% of enzyme, 60 oC and moisture content of 65 wt%, yielding 0.38 g sugar/g rice bran, whereas for the hydrolysis in the absence of ultrasound the highest yield was 0.20 g sugar/g rice bran using 3 wt% of enzyme, 60 oC and moisture content of 50 wt%. The use of ultrasound-assisted enzymatic hydrolysis of rice bran was intensified, obtaining around 74% more fermentable sugar than in the absence, showing that the use of ultrasound is a promising technology to be used in enzymatic reaction as an alternative of process intensification.

  7. Enzymatic hydrolysis of plant extracts containing inulin

    Energy Technology Data Exchange (ETDEWEB)

    Guiraud, J.P.; Galzy, P.

    1981-10-01

    Inulin-rich extracts of chicory and Jerusalem artichoke are a good potential source of fructose. Total enzymatic hydrolysis of these extracts can be effected by yeast inulinases (EC 3.2.1.7). Chemical prehydrolysis is unfavourable. Enzymatic hydrolysis has advantages over chemical hydrolysis: it does not produce a dark-coloured fraction or secondary substances. It is possible to envisage the preparation of high fructose syrups using this process. (Refs. 42).

  8. Investigation of oxidative degradation and non‐enzymatic browning reactions in krill and fish oils

    DEFF Research Database (Denmark)

    Thomsen, Birgitte Raagaard; Haugsgjerd, Bjørn Ole; Griinari, Mikko

    2013-01-01

    conditions using the Oxipres™ at 90°C. The results from analysis of PV, AV, TBARS, conjugated dienes and trienes, and the antioxidant content suggested that krill oil was more oxidatively stable than fish oil. However, the color or other constituents of the krill oil might affect the result......The aim of this research was to investigate the oxidation progress and pathways of krill and fish oil during 21 days of incubation at 40°C. The oxidative stability of the oils was investigated through: (i) classical methods such as peroxide value (PV), anisidine value (AV), thiobarbituric reactive...... substance (TBARS), conjugated dienes and trienes, and antioxidant content, and (ii) advanced methods such as determination of volatiles content by dynamic headspace (DHS)‐GC/MS, lipid classes, and pyrrole content. In addition, the oxidative stability of the oils was evaluated under accelerated oxidation...

  9. Oxidation flux change on spermatozoa membrane in important pathologic conditions leading to male infertility.

    Science.gov (United States)

    Wiwanitkit, V

    2008-06-01

    Free radicals or reactive oxygen species mediate their action through proinflammatory cytokines and this mechanism has been proposed as a common underlying factor for male infertility. There is extensive literature on oxidative stress and its role in male infertility and sperm DNA damage and its effects on assisted reproductive techniques. However, there has never been a report on the oxidation flux change in spermatozoa. Here, the author determined the oxidation flux change in such hypoxic cases, using the simulation test based on nanomedicine technique is used. Of interest, change of flux can be detected. The main pathogenesis should be the direct injury of membrane structure of spermatozoa by free radicals which can lead to sperm defect. Therefore, this work can support the finding that the oxidation flux change corresponding to oxygen pressure change in spermatozoa does not exist. However, the flux change can be seen if the membrane thickness of spermatozoa is varied. Thin membrane spermatozoa are more prone to oxidative stress than thick membrane ones. The defect in the enzymatic system within the spermatozoa should be a better explanation for vulnerability of spermatozoa to oxidative stress. The use of enzymatic modification technique by antioxidants can be useful alternative in management of male infertility.

  10. Enzymatic biosensor of horseradish peroxidase immobilized on Au-Pt nanotube/Au-graphene for the simultaneous determination of antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Long; Yin, Wenmin; Tang, Kun; Li, Dian; Shao, Kang; Zuo, Yunpeng; Ma, Jing; Liu, Jiawei; Han, Heyou, E-mail: hyhan@mail.hzau.edu.cn

    2016-08-24

    A new electrochemical method has been proposed for the simultaneous determination of butylated hydroxyanisole (BHA) and propyl gallate (PG) in food matrices based on enzymatic biosensors. Spiny Au-Pt nanotubes (SAP NTs) was first synthesized and demonstrated to exhibit intrinsic peroxidase and catalase-like activity. The structure of SAP NTs provides large surface area and favorable medium for electron transfer, on which HRP were immobilized and acted as enzymatic biosensor for the simultaneous detection of BHA and PG. The results revealed that BHA and PG both have well-defined oxidation waves with peak potentials of 624 and 655 mV, respectively. Under the optimal conditions, the method behaved satisfactory analytical performance towards BHA and PG with a wide linear range of 0.3–50 mg L{sup −1} and 0.1–100 mg L{sup −1}, as well as a detection limit of 0.046 mg L{sup −1} and 0.024 mg L{sup −1} (3σ/slope), respectively. Besides, the proposed method exhibits good sensitivity, stability and reproducibility, providing an alternative to fabricate electrode and construct sensitive biosensors. - Highlights: • SAP NTs was synthesized and demonstrated to exhibit intrinsic peroxidase and catalase-like activity. • The structure of SAP NTs provides larger surface area and more favorable medium for electron transfer. • Horseradish peroxidase immobilized on Au-Pt nanotube/Au-graphene acted as enzymatic biosensor. • The simultaneous detection of BHA and PG in food matrices was achieved based on enzymatic biosensors.

  11. Kinetics of enzymatic hydrolysis of methyl ricinoleate

    OpenAIRE

    Neeharika, T. S.V.R.; Lokesh, P.; Prasanna Rani, K. N.; Prathap Kumar, T.; Prasad, R. B.N.

    2015-01-01

    Ricinoleic acid is an unsaturated hydroxy fatty acid that naturally occurs in castor oil in proportions of up to 85–90%. Ricinoleic acid is a potential raw material and finds several applications in coatings, lubricant formulations and pharmaceutical areas. Enzymatic hydrolysis of castor oil is preferred over conventional hydrolysis for the preparation of ricinoleic acid to avoid estolide formation. A kinetics analysis of the enzymatic hydrolysis of Methyl Ricinoleate in the presence of Candi...

  12. Oxidative DNA damage & repair: An introduction.

    Science.gov (United States)

    Cadet, Jean; Davies, Kelvin J A

    2017-06-01

    This introductory article should be viewed as a prologue to the Free Radical Biology & Medicine Special Issue devoted to the important topic of Oxidatively Damaged DNA and its Repair. This special issue is dedicated to Professor Tomas Lindahl, co-winner of the 2015 Nobel Prize in Chemistry for his seminal discoveries in the area repair of oxidatively damaged DNA. In the past several years it has become abundantly clear that DNA oxidation is a major consequence of life in an oxygen-rich environment. Concomitantly, survival in the presence of oxygen, with the constant threat of deleterious DNA mutations and deletions, has largely been made possible through the evolution of a vast array of DNA repair enzymes. The articles in this Oxidatively Damaged DNA & Repair special issue detail the reactions by which intracellular DNA is oxidatively damaged, and the enzymatic reactions and pathways by which living organisms survive such assaults by repair processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. On the role of Mn(IV) vacancies in the photoreductive dissolution of hexagonal birnessite

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, K.D.; Refson, K.; Sposito, G.

    2009-06-01

    Photoreductive dissolution of layer type Mn(IV) oxides (birnessite) under sunlight illumination to form soluble Mn(II) has been observed in both field and laboratory settings, leading to a consensus that this process is a key driver of the biogeochemical cycling of Mn in the euphotic zones of marine and freshwater ecosystems. However, the underlying mechanisms for the process remain unknown, although they have been linked to the semiconducting characteristics of hexagonal birnessite, the ubiquitous Mn(IV) oxide produced mainly by bacterial oxidation of soluble Mn(II). One of the universal properties of this biogenic mineral is the presence of Mn(IV) vacancies, long-identified as strong adsorption sites for metal cations. In this paper, the possible role of Mn vacancies in photoreductive dissolution is investigated theoretically using quantum mechanical calculations based on spin-polarized density functional theory (DFT). Our DFT study demonstrates unequivocally that Mn vacancies significantly reduce the band-gap energy for hexagonal birnessite relative to a hypothetical vacancy-free MnO{sub 2} and thus would increase the concentration of photo-induced electrons available for Mn(IV) reduction upon illumination of the mineral by sunlight. Calculations of the charge distribution in the presence of vacancies, although not fully conclusive, show a clear separation of photo-induced electrons and holes, implying a slow recombination of these charge-carriers that facilitates the two-electron reduction of Mn(IV) to Mn(II).

  14. Effect of ascorbic and folic acids supplementation on oxidative ...

    African Journals Online (AJOL)

    An experiment was conducted on the effect of supplementation of ascorbic and folic acids on the oxidative hormones, enzymatic antioxidants, haematological and biochemical properties of layers exposed to increased heat load. A total of 72 Isa Brown laying hens at 31 weeks of age were randomly divided into four groups ...

  15. Enzymatic synthesis of vanillin

    NARCIS (Netherlands)

    van den Heuvel, RHH; Fraaije, MW; Laane, C; van Berkel, WJH; Heuvel, Robert H.H. van den; Berkel, Willem J.H. van

    Due to increasing interest in natural vanillin, two enzymatic routes for the synthesis of vanillin were developed. The flavoprotein vanillyl alcohol oxidase (VAO) acts on a wide range of phenolic compounds and converts both creosol and vanillylamine to vanillin with high yield. The VAO-mediated

  16. Enzymatic synthesis of vanillin

    NARCIS (Netherlands)

    Heuvel, van den R.H.H.; Fraaije, M.W.; Laane, C.; Berkel, van W.J.H.

    2001-01-01

    Due to increasing interest in natural vanillin, two enzymatic routes for the synthesis of vanillin were developed. The flavoprotein vanillyl alcohol oxidase (VAO) acts on a wide range of phenolic compounds and converts both creosol and vanillylamine to vanillin with high yield. The VAO-mediated

  17. Serum biochemical responses under oxidative stress of aspartame in wistar albino rats

    Directory of Open Access Journals (Sweden)

    Arbind Kumar Choudhary

    2014-02-01

    Full Text Available Objective: To study whether the oral administration of aspartame (40 mg/kg body weight for 15 d, 30 d and 90 d have any effect on marker enzymes, some selective liver and kidney function parameter, lipid peroxidation and antioxidant status in serum. To mimic human methanol metabolism, folate deficient animals were used. Method: Animal weight, complete hemogram, marker enzyme in serum, some selected serum profile reflect liver and kidney function, plasma corticosterone level, and in serum, lipid peroxidation, nitric oxide, enzymatic and non-enzymatic antioxidant level was measured . Result: After 15 d of aspartame administration animals showed a significant change in marker enzymes, and antioxidant level. However, after repeated long term administration (30 d and 90 d showed a significant change in some selected serum profile reflects liver and kidney function, along with marker enzymes, and antioxidant level. Conclusions: This study concludes that oral administration of aspartame (40 mg/kg body weight causes oxidative stress in Wistar albino rats by altering their oxidant/antioxidant balance.

  18. Dietary enzymatically treated Artemisia annua L. supplementation alleviates liver oxidative injury of broilers reared under high ambient temperature

    Science.gov (United States)

    Wan, Xiaoli; Zhang, Jingfei; He, Jintian; Bai, Kaiwen; Zhang, Lili; Wang, Tian

    2017-09-01

    Heat stress induced by high ambient temperature is a major concern in commercial broiler production. To evaluate the effects of dietary enzymatically treated Artemisia annua L. (EA) supplementation on growth performance and liver oxidative injury of broilers reared under heat stress, a total of 320 22-day-old male broilers were randomly allotted into five groups with eight replicates of eight birds each. Broilers in the control group were housed at 22 ± 1 °C and fed the basal diet. Broilers in the HS, HS-EA1, HS-EA2, and HS-EA3 groups were fed basal diet supplemented with 0, 0.75, 1.00, and 1.25 g/kg EA, respectively, and reared under cyclic high temperature (34 ± 1 °C for 8 h/day and 22 ± 1 °C for 16 h/day). Broilers fed EA diets had higher final body weight, average daily body weight gain, and average daily feed intake, as well as liver concentration of reduced glutathione, activities of antioxidant enzymes, abilities to inhibit hydroxyl radical and superoxide radical (HS-EA2 and HS-EA3), and lower liver concentrations of reactive oxygen metabolites, malondialdehyde, and protein carbonyl (HS-EA1, HS-EA2, and HS-EA3) than HS group ( P proteins 70 and 90, upregulated the mRNA levels of nuclear factor erythroid 2-related factor 2 (HS-EA1, HS-EA2, and HS-EA3) and heme oxygenase 1 (HS-EA2 and HS-EA3) in liver of heat-treated broilers ( P diet is 1.00-1.25 g/kg.

  19. CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  20. Recent insights in enzymatic synthesis of fructooligosaccharides from inulin.

    Science.gov (United States)

    Singh, Ram Sarup; Singh, Rupinder Pal; Kennedy, John F

    2016-04-01

    In the past few years, people are paying more attention to their dietary habits, and functional foods are playing a key role in maintaining the health of man. Prebiotics are considered as a main component of the functional foods which are usually composed of short chains of carbohydrates. Fructooligosaccharides (FOSs) are considered as one of the main group of prebiotics which have recognisable bifidogenic properties. FOSs are obtained either by extraction from various plant materials or by enzymatic synthesis from different substrates. Enzymatically, these can be obtained either from sucrose using fructosyltransferase or from inulin by endoinulinase. Inulin is a potent substrate for the enzymatic production of FOSs. This review article will provide an overview on the inulin as potent substrate, microbial sources of endoinulinases, enzymatic synthesis of FOSs from inulin, commercial status of FOSs, and their future perspectives. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Supported manganese oxide on TiO{sub 2} for total oxidation of toluene and polycyclic aromatic hydrocarbons (PAHs): Characterization and catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Aboukaïs, Antoine, E-mail: aboukais@univ-littoral.fr [Univ Lille Nord de France, 59000 Lille (France); Equipe Catalyse, UCEIV, EA 4492, MREI, ULCO, 59140 Dunkerque (France); Abi-Aad, Edmond [Univ Lille Nord de France, 59000 Lille (France); Equipe Catalyse, UCEIV, EA 4492, MREI, ULCO, 59140 Dunkerque (France); Taouk, Bechara [Laboratoire de Sécurité des procédés Chimiques (LSPC), EA 4704, INSA Rouen, Avenue de l' Université, 76801 Saint Etienne du Rouvray (France)

    2013-11-01

    Manganese oxide catalysts supported on titania (TiO{sub 2}) were prepared by incipient wetness impregnation method in order to elaborate catalysts for total oxidation of toluene and PAHs. These catalysts have been characterized by means of X-ray diffraction (XRD), electron paramagnetic resonance (EPR), temperature programmed reduction (TPR) and temperature programmed desorption (TPD). It has been shown that for the 5%Mn/TiO{sub 2} catalyst the reducibility and the mobility of oxygen are higher compared, in one side, to other x%Mn/TiO{sub 2} samples and, in another side, to catalysts where TiO{sub 2} support was replaced by γ-Al{sub 2}O{sub 3} or SiO{sub 2}. It has been shown that the content of manganese loading on TiO{sub 2} has an effect on the catalytic activity in the toluene oxidation. A maximum of activity was obtained for the 5%Mn/TiO{sub 2} catalyst where the total conversion of toluene was reached at 340 °C. This activity seems to be correlated to the presence of the Mn{sup 3+}/Mn{sup 4+} redox couple in the catalyst. When the Mn content increases, large particles of Mn{sub 2}O{sub 3} appear leading then to the decrease in the corresponding activity. In addition, compared to both other supports, TiO{sub 2} seems to be the best to give the best catalytic activity for the oxidation of toluene when it is loaded with 5% of manganese. For this reason, the latter catalyst was tested for the abatement of some PAHs. The light off temperature of PAHs compounds increases with increasing of benzene rings number and with decreasing of H/C ratio. All of PAHs are almost completely oxidized and converted at temperatures lower than 500 °C. - Highlights: • Preparation of x%MnO{sub 2}/TiO{sub 2} catalysts. • Catalytic oxidation tests of toluene and PAHs. • EPR, TPR and TPD characterizations of Mn(II) and Mn(IV) ions.

  2. Chemical interaction of disulfiram with nitrosodimethylamine after in vitro enzymatic activation

    International Nuclear Information System (INIS)

    Tacchi, A.M.; Bertram, B.; Wiessler, M.

    1984-01-01

    The in vitro reaction between disulfiram (DSF) and N-nitroso[ 14 C]dimethylamine [( 14 C]NDMA) was studied. Incubations of DSF with [ 14 C]NDMA were carried out in the presence of rat liver microsomes, control 9000 g (S9) supernatant fraction and phenobarbital-induced S9 fraction. HPLC analysis and liquid scintillation measurement provided evidence for the formation of methyldiethyldithiocarbamate (MeDDTC) as a product of the reaction between diethyldithiocarbamate (DDTC), the main active metabolite of DSF and the 'methyl-cation' released by NDMA after enzymatic activation. The amount of MeDDTC found here was consistent with the rate of oxidation of NDMA to formaldehyde. Scintillation counting confirmed that other radioactive peaks, not due to MeDDTC, were unrelated to the methylation of L-cysteine by [ 14 C]NDMA

  3. Oxidative degradation of alkylphenols by horseradish peroxidase.

    Science.gov (United States)

    Sakuyama, Hisae; Endo, Yasushi; Fujimoto, Kenshiro; Hatana, Yasuhiko

    2003-01-01

    Alkylphenols such as bisphenol A (2,2-bis(4-hydroxyphenyl)propane; BPA), p-nonylphenol (p-NP), and p-octylphenol (p-OP) that are known as endocrine disrupters were oxidized by horseradish (Armoracia rusticana) peroxidase (HRP) with H2O2. The optimal pHs for BPA, p-NP, and p-OP were 8.0, 7.0, and 5.0, respectively. The optimal temperature for BPA was 20 degrees C. Although BPA was rapidly degraded by HRP, its degradation depended on the concentration of HRP. Most of the oxidation products of BPA were polymers, although some 4-isopropenylphenol was produced. When male Japanese medaka (Oryzias latipes) were exposed to BPA, vitellogenin in the blood increased. However, no increased vitellogenin was observed in medaka exposed to HRP-oxidized BPA. The enzymatic oxidation of BPA using HRP was able to eliminate its estrogen-like activity.

  4. Impact of the redox-cycling herbicide diquat on transcript expression and antioxidant enzymatic activities of the freshwater snail Lymnaea stagnalis

    Energy Technology Data Exchange (ETDEWEB)

    Bouetard, Anthony, E-mail: anthony.bouetard@rennes.inra.fr [INRA, UMR INRA-Agrocampus Ouest ESE 0985, Equipe Ecotoxicologie et Qualite des Milieux Aquatiques, 65 rue de Saint-Brieuc, 35042 Rennes cedex (France); Besnard, Anne-Laure; Vassaux, Daniele; Lagadic, Laurent; Coutellec, Marie-Agnes [INRA, UMR INRA-Agrocampus Ouest ESE 0985, Equipe Ecotoxicologie et Qualite des Milieux Aquatiques, 65 rue de Saint-Brieuc, 35042 Rennes cedex (France)

    2013-01-15

    The presence of pesticides in the environment results in potential unwanted effects on non-target species. Freshwater organisms inhabiting water bodies adjacent to agricultural areas, such as ditches, ponds and marshes, are good models to test such effects as various pesticides may reach these habitats through several ways, including aerial drift, run-off, and drainage. Diquat is a non-selective herbicide used for crop protection or for weed control in such water bodies. In this study, we investigated the effects of diquat on a widely spread aquatic invertebrate, the holarctic freshwater snail Lymnaea stagnalis. Due to the known redox-cycling properties of diquat, we studied transcript expression and enzymatic activities relative to oxidative and general stress in the haemolymph and gonado-digestive complex (GDC). As diquat is not persistent, snails were exposed for short times (5, 24, and 48 h) to ecologically relevant concentrations (22.2, 44.4, and 222.2 {mu}g l{sup -1}) of diquat dibromide. RT-qPCR was used to quantify the transcription of genes encoding catalase (cat), a cytosolic superoxide dismutase (Cu/Zn-sod), a selenium-dependent glutathione peroxidase (gpx), a glutathione reductase (gred), the retinoid X receptor (rxr), two heat shock proteins (hsp40 and hsp70), cortactin (cor) and the two ribosomal genes r18S and r28s. Enzymatic activities of SOD, Gpx, Gred and glutathione S-transferase (GST) were investigated in the GDC using spectrophoto/fluorometric methods. Opposite trends were obtained in the haemolymph depending on the herbicide concentration. At the lowest concentration, effects were mainly observed after 24 h of exposure, with over-transcription of cor, hsp40, rxr, and sod, whereas higher concentrations down-regulated the expression of most of the studied transcripts, especially after 48 h of exposure. In the GDC, earlier responses were observed and the fold-change magnitude was generally much higher: transcription of all target genes increased

  5. Manganese acquisition by Lactobacillus plantarum

    Energy Technology Data Exchange (ETDEWEB)

    Archibald, F.S.; Duong, M.N.

    1984-04-01

    Lactobacillus plantarum has an unusually high Mn(II) requirement for growth and accumulated over 30 mM intracellular Mn(II). The acquisition of Mn(II) by L. plantarum occurred via a specific active transport system powered by the transmembrane proton gradient. The Mn(II) uptake system has a K/sub m/ of 0.2 ..mu..M and a V/sub max/ of 24 nmol mg/sup -1/ of protein min/sup -1/. Above a medium Mn(II) concentration of 200 ..mu..M, the intracellular Mn(II) level was independent of the medium Mn(II) and unresponsive to oxygen stresses but was reduced by phosphate limitation. At a pH of 5.5, citrate, isocitrate, and cis-aconitate effectively promoted MN(II) uptake, although measurable levels of 1,5-(/sup 14/C)citrate were not accumulated. When cells were presented with equimolar Mn(II) and Cd(II), Cd(II) was preferentially taken up by the Mn(II) transport system. Both Mn(II) and Cd(II) uptake were greatly increased by Mn(II) starvation. Mn(II) uptake by Mn(II)-starved cells was subject to a negative feedback regulatory mechanism functioning less than 1 min after exposure of the cells to Mn(II) and independent of protein synthesis. When presented with a relatively large amount of exogenous Mn(II), Mn(II)-starved cells exhibited a measurable efflux of their internal Mn(II), but the rate was only a small fraction of the maximal Mn(II) uptake rate.

  6. Kinetics of 25-hydroperoxycholesterol formation during photo-oxidation of crystalline cholesterol.

    Science.gov (United States)

    Medina-Meza, Ilce Gabriela; Rodriguez-Estrada, Maria Teresa; Lercker, Giovanni; Barnaba, Carlo; García, Hugo Sergio

    2014-06-01

    25-Hydroxycholesterol (25-OH), a side-chain product of cholesterol oxidation, has emerged as one of the important issues in food chemistry and biochemistry, because of its involvement in several human pathologies. This oxysterol is derived from both enzymatic and non-enzymatic pathways. However, the latter mechanism has been scarcely studied in either food or model systems. In this work, a kinetic model was developed to evaluate the formation of 25-OH and its precursor 25-hydroperoxycholesterol (25-OOH) during photo-oxidation of cholesterol for 28 days under fluorescent light. 25-OOH was estimated by an indirect method, using thin-layer chromatography coupled with gas chromatography-mass spectrometry. Peroxide value (POV) and cholesterol oxidation products (COPs) were determined. POV showed a hyperbolic behavior, typical of a crystalline system in which the availability of cholesterol is the limiting factor. Further reactions of hydroperoxides were followed; in particular, after photo-oxidation, 25-OOH (0.55 mg g(-1) ) and 25-OH (0.08 mg g(-1) ) were found in cholesterol, as well as seven other oxysterols, including 7-hydroxy and 5,6-epoxy derivatives. The application of kinetic models to the data showed good correlation with theoretical values, allowing derivation of the kinetic parameters for each oxidation route. The results of this work confirm that cholesterol in the crystalline state involves different oxidation patterns as compared to cholesterol in solution. Moreover, the numerical fit proved that hydroperoxidation is the rate-limiting step in 25-OH formation. © 2013 Society of Chemical Industry.

  7. Colorimetric method for enzymatic screening assay of ATP using Fe(III)-xylenol orange complex formation.

    Science.gov (United States)

    Ishida, Akihiko; Yamada, Yasuko; Kamidate, Tamio

    2008-11-01

    In hygiene management, recently there has been a significant need for screening methods for microbial contamination by visual observation or with commonly used colorimetric apparatus. The amount of adenosine triphosphate (ATP) can serve as the index of a microorganism. This paper describes the development of a colorimetric method for the assay of ATP, using enzymatic cycling and Fe(III)-xylenol orange (XO) complex formation. The color characteristics of the Fe(III)-XO complexes, which show a distinct color change from yellow to purple, assist the visual observation in screening work. In this method, a trace amount of ATP was converted to pyruvate, which was further amplified exponentially with coupled enzymatic reactions. Eventually, pyruvate was converted to the Fe(III)-XO complexes through pyruvate oxidase reaction and Fe(II) oxidation. As the assay result, yellow or purple color was observed: A yellow color indicates that the ATP concentration is lower than the criterion of the test, and a purple color indicates that the ATP concentration is higher than the criterion. The method was applied to the assay of ATP extracted from Escherichia coli cells added to cow milk.

  8. A high performance non-enzymatic glucose sensor based on nickel hydroxide modified nitrogen-incorporated nanodiamonds.

    Science.gov (United States)

    Ko, Chih-Yu; Huang, Jin-Hua; Raina, Supil; Kang, Weng P

    2013-06-07

    A highly selective, sensitive, and stable non-enzymatic glucose sensor based on Ni hydroxide modified nitrogen-incorporated nanodiamonds (Ni(OH)2-NND) was developed. The sensor was fabricated by e-beam evaporation of a thin Ni film on NND followed by the growth of Ni(OH)2 using an electrochemical process. It was found that the Ni film thickness greatly affects the morphology and electro-catalytic activity of the as-synthesized electrode for non-enzymatic glucose oxidation. Owing to its nanostructure characteristics, the best sensor fabricated by 150 nm Ni deposition showed two wide response ranges, namely, 0.02-1 mM and 1-9 mM, with sensitivities of 3.20 and 1.41 mA mM(-1) cm(-2), respectively, and a detection limit of 1.2 μM (S/N = 3). The sensor also showed good long-term stability as well as high selectivity in the presence of interferences such as ascorbic acid, acetaminophen, and uric acid. This finding reveals the possibility of exploiting the NND as an electrochemical biosensor platform where high performance addressable sensor arrays could be built.

  9. Linking Mn(II)-oxidizing bacteria to natural attenuation at a former U mining site

    Science.gov (United States)

    Akob, D.; Bohu, T.; Beyer, A.; Schäffner, F.; Händel, M.; Johnson, C.; Merten, D.; Büchel, G.; Totsche, K.; Küsel, K.

    2012-04-01

    Uranium mining near Ronneburg, Germany resulted in widespread environmental contamination with acid mine drainage (AMD) and high concentrations of heavy metals and radionuclides. Despite physical remediation of the area, groundwater is still a source of heavy metal contaminants, e.g., Cd, Ni, Co, Cu and Zn, to nearby ecosystems. However, natural attenuation of heavy metals is occurring in Mn oxide rich soils and sediments ranging in pH from 5 to 7. While microorganisms readily oxidize Mn(II) and precipitate Mn oxides at pH ~7 under oxic conditions, few studies describe Mn(II)-oxidizing bacteria (MOB) at pH ~5 and/or in the presence of heavy metals. In this study we (1) isolated MOB from the contaminated Ronneburg area at pH 5.5 and 7 and (2) evaluated the biological formation of Mn oxides. We isolated nine MOB strains at pH 7 (members of the Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla) and a single isolate at pH 5.5 (Oxalobacteraceae isolate AB_14, within the β-Proteobacteria). LA-ICP-MS showed that all isolates accumulated Mn and Fe in their biomass. However, the Oxalobacteraceae isolate AB_14 oxidizes more Mn without additional Fe in the medium. Preliminary FTIR analysis indicated that all isolates formed precipitates, which showed absorption bands that were characteristic for birnessite. High resolution TEM showed variable morphology of precipitates and EDS confirmed the presence of Mn oxides. Isolate AB_14 was not surrounded with precipitates whereas our Actinobacteria isolate AB_18 was encrusted with Mn oxides. Electron diffraction is currently being used to confirm the presence of birnessite and other Mn oxide phases. This, the first known report of any organism capable of Mn oxidation at low pH, demonstrated that MOB can be involved in the natural attenuation of both moderately acidic and neutral pH soils and sediments via the formation of biogenic Mn oxides. Future work will fully evaluate the minerals formed in this process as well

  10. Evaluation of radioprotective efficacy of pyrimidine-5-carboxylate derivative on radiation induced oxidative stress using Drosophila melanogaster

    International Nuclear Information System (INIS)

    Sarojini, B.K.; Mohan, B.J.; Narayana, B.; Sanjeev, Ganesh

    2014-01-01

    In the present study, radioprotection efficacy of Ethyl 4-(4-fluorophenyl)-6-methyl-2-thioxo-1,2,3,4-tetra hydropyrimidine-5-carboxylate (PYR) was evaluated against the gamma ray induced oxidative stress using drosophila melanogaster (Oregon K). The gamma ray irradiated flies were assayed for oxidative stress markers namely; Thiobarbituric acid reactive substances (TBARS) and enzymatic antioxidant SOD and CAT. The oxidative stress was induced at 6 Gy. (author)

  11. Optimization of enzymatic clarification of green asparagus juice using response surface methodology.

    Science.gov (United States)

    Chen, Xuehong; Xu, Feng; Qin, Weidong; Ma, Lihua; Zheng, Yonghua

    2012-06-01

    Enzymatic clarification conditions for green asparagus juice were optimized by using response surface methodology (RSM). The asparagus juice was treated with pectinase at different temperatures (35 °C-45 °C), pH values (4.00-5.00), and enzyme concentrations (0.6-1.8 v/v%). The effects of enzymatic treatment on juice clarity and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging capacity were investigated by employing a 3-factor central composite design coupled with RSM. According to response surface analysis, the optimal enzymatic treatment condition was pectinase concentration of 1.45%, incubation temperature of 40.56 °C and pH of 4.43. The clarity, juice yield, and soluble solid contents in asparagus juice were significantly increased by enzymatic treatment at the optimal conditions. DPPH radical-scavenging capacity was maintained at the level close to that of raw asparagus juice. These results indicated that enzymatic treatment could be a useful technique for producing green asparagus juice with high clarity and high-antioxidant activity. Treatment with 1.45% pectinase at 40.56 ° C, pH 4.43, significantly increased the clarity and yield of asparagus juice. In addition, enzymatic treatment maintained antioxidant activity. Thus, enzymatic treatment has the potential for industrial asparagus juice clarification. © 2012 Institute of Food Technologists®

  12. Oxidative stress and antioxidant status in sportsmen two hours after ...

    African Journals Online (AJOL)

    This study was designed to investigate the serum lipid profile and non-enzymatic antioxidants markers (serum uric acid and albumin) as well as lipid hydroperoxide (a marker of oxidative stress) in 39 sportsmen after 2 h of strenuous training exercise and also in 24 sedentary age-matched males who served as controls ...

  13. The Influence of Hyperoxia On Heat Shock Proteins Expression and Nitric Oxide Synthase Activity – the Review

    Directory of Open Access Journals (Sweden)

    Szyller Jakub

    2017-03-01

    Full Text Available Any stay in an environment with an increased oxygen content (a higher oxygen partial pressure, pO2 and an increased pressure (hyperbaric conditions leads to an intensification of oxidative stress. Reactive oxygen species (ROS damage the molecules of proteins, nucleic acids, cause lipid oxidation and are engaged in the development of numerous diseases, including diseases of the circulatory system, neurodegenerative diseases, etc. There are certain mechanisms of protection against unfavourable effects of oxidative stress. Enzymatic and non-enzymatic systems belong to them. The latter include, among others, heat shock proteins (HSP. Their precise role and mechanism of action have been a subject of intensive research conducted in recent years. Hyperoxia and hyperbaria also have an effect on the expression and activity of nitrogen oxide synthase (NOS. Its product - nitrogen oxide (NO can react with reactive oxygen species and contribute to the development of nitrosative stress. NOS occurs as isoforms in various tissues and exhibit different reactions to the discussed factors. The authors have prepared a brief review of research determining the effect of hyperoxia and hyperbaria on HSP expression and NOS activity.

  14. Production of MAG via enzymatic glycerolysis

    Science.gov (United States)

    Jamlus, Norul Naziraa Ahmad; Derawi, Darfizzi; Salimon, Jumat

    2015-09-01

    Enzymatic glycerolysis of a medium chain methyl ester, methyl laurate was performed using lipase Candida antarctica (Novozyme 435) for 6 hours at 55°C. The percentage of components mixture of product were determined by using gas chromatography technique. The enzymatic reaction was successfully produced monolaurin (45.9 %), dilaurin (47.1 %) and trilaurin (7.0 %) respectively. Thin layer chromatography (TLC) plate also showed a good separation of component spots. Fourier transformation infra-red (FTIR) spectrum showed the presence of ester carbonyl at wavenumber 1739.99 cm-1 and hydrogen bonded O-H at 3512.03 cm-1. The product is potentially to be used as emulsifier and additive in food industry, pharmaceutical, as well as antibacterial.

  15. Graphene oxide directed in-situ synthesis of Prussian blue for non-enzymatic sensing of hydrogen peroxide released from macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Weiwei; Zhu, Qionghua; Gao, Fei; Gao, Feng [College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China); Huang, Jiafu; Pan, Yutian [College of Biological Science and Technology, Minnan Normal University, Zhangzhou 363000 (China); Wang, Qingxiang, E-mail: axiang236@126.com [College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China)

    2017-03-01

    A novel electrochemical non-enzymatic hydrogen peroxide (H{sub 2}O{sub 2}) sensor has been developed based on Prussian blue (PB) and electrochemically reduced graphene oxide (ERGO). The GO was covalently modified on glassy carbon electrode (GCE), and utilized as a directing platform for in-situ synthesis of electroactive PB. Then the GO was electrochemically treated to reduction form to improve the effective surface area and electroactivity of the sensing interface. The fabrication process was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). The results showed that the rich oxygen containing groups play a crucial role for the successful synthesis of PB, and the obtained PB layer on the covalently immobilized GO has good stability. Electrochemical sensing assay showed that the modified electrode had tremendous electrocatalytic property for the reduction of H{sub 2}O{sub 2}. The steady-state current response increased linearly with H{sub 2}O{sub 2} concentrations from 5 μM to 1 mM with a fast response time (less than 3 s). The detection limit was estimated to be 0.8 μM. When the sensor was applied for determination of H{sub 2}O{sub 2} released from living cells of macrophages, satisfactory results were achieved. - Highlights: • Covalent method was applied for immobilization of GO on glassy carbon electrode. • GO directed in-situ synthesis of electroactive PB. • PB-ERGO composite shows high electrocatalytic activity toward H{sub 2}O{sub 2}. • The modified biosensor is capable of detecting H{sub 2}O{sub 2} released from living macrophages.

  16. Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses

    Directory of Open Access Journals (Sweden)

    Wang ZJ

    2013-01-01

    Full Text Available Abstract Background Nonspecific (nonproductive binding (adsorption of cellulase by lignin has been identified as a key barrier to reduce cellulase loading for economical sugar and biofuel production from lignocellulosic biomass. Sulfite Pretreatment to Overcome Recalcitrance of Lignocelluloses (SPORL is a relatively new process, but demonstrated robust performance for sugar and biofuel production from woody biomass especially softwoods in terms of yields and energy efficiencies. This study demonstrated the role of lignin sulfonation in enhancing enzymatic saccharification of lignocelluloses – lignosulfonate from SPORL can improve enzymatic hydrolysis of lignocelluloses, contrary to the conventional belief that lignin inhibits enzymatic hydrolysis due to nonspecific binding of cellulase. Results The study found that lignosulfonate from SPORL pretreatment and from a commercial source inhibits enzymatic hydrolysis of pure cellulosic substrates at low concentrations due to nonspecific binding of cellulase. Surprisingly, the reduction in enzymatic saccharification efficiency of a lignocellulosic substrate was fully recovered as the concentrations of these two lignosulfonates increased. We hypothesize that lignosulfonate serves as a surfactant to enhance enzymatic hydrolysis at higher concentrations and that this enhancement offsets its inhibitive effect from nonspecific binding of cellulase, when lignosulfonate is applied to lignocellulosic solid substrates. Lignosulfonate can block nonspecific binding of cellulase by bound lignin on the solid substrates, in the same manner as a nonionic surfactant, to significantly enhance enzymatic saccharification. This enhancement is linearly proportional to the amount of lignosulfonate applied which is very important to practical applications. For a SPORL-pretreated lodgepole pine solid, 90% cellulose saccharification was achieved at cellulase loading of 13 FPU/g glucan with the application of its

  17. Oxidative stability during storage of structured lipids produced from fish oil and caprylic acid

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Xu, Xuebing; Timm Heinrich, Maike

    2004-01-01

    Structured lipids produced by enzymatic or chemical methods for different applications have been receiving considerable attention. The oxidative stability of a randomized structured lipid (RFO), produced by chemical interesterification from fish oil (FO) and tricaprylin, and a specific structured...... lipid (SFO), produced by enzymatic interesterification from the same oil and caprylic acid, was compared with the stability of FO. Oils were stored at 2degreesC for 11 wk followed by storage at 20degreesC for 6 wk. In addition, the antioxidative effect of adding the metal chelators EDTA or citric acid...

  18. Enzymatic transformation of nonfood biomass to starch

    Science.gov (United States)

    You, Chun; Chen, Hongge; Myung, Suwan; Sathitsuksanoh, Noppadon; Ma, Hui; Zhang, Xiao-Zhou; Li, Jianyong; Zhang, Y.-H. Percival

    2013-01-01

    The global demand for food could double in another 40 y owing to growth in the population and food consumption per capita. To meet the world’s future food and sustainability needs for biofuels and renewable materials, the production of starch-rich cereals and cellulose-rich bioenergy plants must grow substantially while minimizing agriculture’s environmental footprint and conserving biodiversity. Here we demonstrate one-pot enzymatic conversion of pretreated biomass to starch through a nonnatural synthetic enzymatic pathway composed of endoglucanase, cellobiohydrolyase, cellobiose phosphorylase, and alpha-glucan phosphorylase originating from bacterial, fungal, and plant sources. A special polypeptide cap in potato alpha-glucan phosphorylase was essential to push a partially hydrolyzed intermediate of cellulose forward to the synthesis of amylose. Up to 30% of the anhydroglucose units in cellulose were converted to starch; the remaining cellulose was hydrolyzed to glucose suitable for ethanol production by yeast in the same bioreactor. Next-generation biorefineries based on simultaneous enzymatic biotransformation and microbial fermentation could address the food, biofuels, and environment trilemma. PMID:23589840

  19. Radiation degradation and the subsequent enzymatic hydrolysis of waste paper

    International Nuclear Information System (INIS)

    Kamakura, M.; Kaetsu, I.

    1982-01-01

    Various studies have been carried out to find methods for the pretreatment of waste cellulosic materials to make them more susceptible to enzymatic hydrolysis. In the work reported here, the effects of preirradiating waste papers on subsequent enzymatic hydrolysis have been studied

  20. Enzyme-immobilized SiO2-Si electrode: Fast interfacial electron transfer with preserved enzymatic activity

    Science.gov (United States)

    Wang, Gang; Yau, Siu-Tung

    2005-12-01

    The enzyme, glucose oxidase (GOx), is immobilized using electrostatic interaction on the native oxide of heavily doped n-type silicon. Voltammetric measurement shows that the immobilized GOx gives rise to a very fast enzyme-silicon interfacial electron transfer rate constant of 7.9s-1. The measurement also suggests that the enzyme retains its native conformation when immobilized on the silicon surface. The preserved native conformation of GOx is further confirmed by testing the enzymatic activity of the immobilized GOx using glucose. The GOx-immobilized silicon is shown to behave as a glucose sensor that detects glucose with concentrations as low as 50μM.

  1. Application of enzymatic methods for chia (Salvia hispanica L oil extraction

    Directory of Open Access Journals (Sweden)

    Norma Ciau-Solís

    2016-07-01

    Full Text Available Aim. The aim was to evaluate the use of different enzymatic treatments on the oil extraction yield from Chia (Salvia hispanica L. seeds Methods. Enzymatic extraction was performed by treating of whole and degummed chia flours with different conditions of enzyme concentration, pH and temperature. Commercial enzymes were employed: Viscozyme LTM (endo-1,3 (4-betaglucanase derived from Aspergillus aculeatus, with 100 FBG g (Beta Glucanase-unit Fungal and Neutrase0.8LTM, neutral protease with 0.8 AU-NH/g of activity, derived from Bacillus amyloliquefaciens. Results. All treatments of enzymatic oil extraction were different (P <0.05 and the maximum oil yield obtained was 9.35%. Conclusion. Oil extraction using enzymatic methods is not a viable for chia seed

  2. Enzymatic and free radical formation of cis- and trans- epoxyeicosatrienoic acids in vitro and in vivo.

    Science.gov (United States)

    Aliwarga, Theresa; Raccor, Brianne S; Lemaitre, Rozenn N; Sotoodehnia, Nona; Gharib, Sina A; Xu, Libin; Totah, Rheem A

    2017-11-01

    Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid (AA) oxidation that have important cardioprotective and signaling properties. AA is an ω-6 polyunsaturated fatty acid (PUFA) that is prone to autoxidation. Although hydroperoxides and isoprostanes are major autoxidation products of AA, EETs are also formed from the largely overlooked peroxyl radical addition mechanism. While autoxidation yields both cis- and trans-EETs, cytochrome P450 (CYP) epoxygenases have been shown to exclusively catalyze the formation of all regioisomer cis-EETs, on each of the double bonds. In plasma and red blood cell (RBC) membranes, cis- and trans-EETs have been observed, and both have multiple physiological functions. We developed a sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay that separates cis- and trans- isomers of EETs and applied it to determine the relative distribution of cis- vs. trans-EETs in reaction mixtures of AA subjected to free radical oxidation in benzene and liposomes in vitro. We also determined the in vivo distribution of EETs in several tissues, including human and mouse heart, and RBC membranes. We then measured EET levels in heart and RBC of young mice compared to old. Formation of EETs in free radical reactions of AA in benzene and in liposomes exhibited time- and AA concentration-dependent increase and trans-EET levels were higher than cis-EETs under both conditions. In contrast, cis-EET levels were overall higher in biological samples. In general, trans-EETs increased with mouse age more than cis-EETs. We propose a mechanism for the non-enzymatic formation of cis- and trans-EETs involving addition of the peroxyl radical to one of AA's double bonds followed by bond rotation and intramolecular homolytic substitution (S H i). Enzymatic formation of cis-EETs by cytochrome P450 most likely occurs via a one-step concerted mechanism that does not allow bond rotation. The ability to accurately measure

  3. Iron and Arsenic Speciation During As(III) Oxidation by Manganese Oxides in the Presence of Fe(II): Molecular-Level Characterization Using XAFS, Mössbauer, and TEM Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yun [Environmental Soil Chemistry Research Group, Delaware Environmental Institute, University of Delaware, Newark, Delaware 19716, United States; Kukkadapu, Ravi K. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Livi, Kenneth J. T. [The High-Resolution Analytical Electron Microbeam Facility, Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland 21218, United States; Xu, Wenqian [Department of Chemistry, Brookhaven National Lab, Upton, New York 11796, United States; Li, Wei [Environmental Soil Chemistry Research Group, Delaware Environmental Institute, University of Delaware, Newark, Delaware 19716, United States; Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210046, People’s Republic of China; Sparks, Donald L. [Environmental Soil Chemistry Research Group, Delaware Environmental Institute, University of Delaware, Newark, Delaware 19716, United States

    2018-01-17

    The redox state and speciation of metalloid arsenic (As) determine its toxicity and mobility. Knowledge of biogeochemical processes influencing the As redox state is therefore important to understand and predict its environmental behavior. Many previous studies examined As(III) oxidation by various Mn-oxides, but little is known the environmental influences (e.g. co-existing ions) on such process. In this study, we investigated the mechanisms of As(III) oxidation by a poorly crystalline hexagonal birnessite (δ-MnO2) in the presence of Fe(II) using X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy and transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDS). As K-edge X-ray absorption near edge spectroscopy (XANES) analysis revealed that, at low Fe(II) concentration (100 μM), As(V) was the predominant As species on the solid phase, while at higher Fe(II) concentration (200-1000 μM), both As(III) and As(V) were sorbed on the solid phase. As K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) analysis showed an increasing As-Mn/Fe distance over time, indicating As prefers to bind with the newly formed Fe(III)-(hydr)oxides. As adsorbed on Fe(III)-(hydr)oxides as a bidentate binuclear corner-sharing complex. Both Mössbauer and TEM-EDS investigations demonstrated that the oxidized Fe(III) products formed during Fe(II) oxidation by δ-MnO2 were predominantly ferrihydrite, goethite, and ferric arsenate like compounds. However, Fe EXAFS analysis also suggested the formation of a small amount of lepidocrocite. The Mn K-edge XANES data indicated that As(III) and Fe(II) oxidation occurs as a two electron transfer with δ-MnO2 and the observed Mn(III) is due to conproportionation of surface sorbed Mn(II) with Mn(IV) in δ-MnO2 structure. This study reveals that the mechanisms of As(III) oxidation by δ-MnO2 in the presence of Fe(II) are very complex, involving many simultaneous reactions, and the formation of

  4. Accurate determination of the oxidative phosphorylation affinity for ADP in isolated mitochondria.

    Directory of Open Access Journals (Sweden)

    Gilles Gouspillou

    Full Text Available BACKGROUND: Mitochondrial dysfunctions appear strongly implicated in a wide range of pathologies. Therefore, there is a growing need in the determination of the normal and pathological integrated response of oxidative phosphorylation to cellular ATP demand. The present study intends to address this issue by providing a method to investigate mitochondrial oxidative phosphorylation affinity for ADP in isolated mitochondria. METHODOLOGY/PRINCIPAL FINDINGS: The proposed method is based on the simultaneous monitoring of substrate oxidation (determined polarographically and phosphorylation (determined using the glucose-hexokinase glucose-6-phosphate dehydrogenase-NADP(+ enzymatic system rates, coupled to the determination of actual ADP and ATP concentrations by bioluminescent assay. This enzymatic system allows the study of oxidative phosphorylation during true steady states in a wide range of ADP concentrations. We demonstrate how the application of this method allows an accurate determination of mitochondrial affinity for ADP from both oxidation (K(mVox and phosphorylation (K(mVp rates. We also demonstrate that determination of K(mVox leads to an important overestimation of the mitochondrial affinity for ADP, indicating that mitochondrial affinity for ADP should be determined using phosphorylation rate. Finally, we show how this method allows the direct and precise determination of the mitochondrial coupling efficiency. Data obtained from rat skeletal muscle and liver mitochondria illustrate the discriminating capabilities of this method. CONCLUSIONS/SIGNIFICANCE: Because the proposed method allows the accurate determination of mitochondrial oxidative phosphorylation affinity for ADP in isolated mitochondria, it also opens the route to a better understanding of functional consequences of mitochondrial adaptations/dysfunctions arising in various physiological/pathophysiological conditions.

  5. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B; Wanscher, B

    2004-01-01

    We used post-mortem magnetic resonance imaging (MRI) guidance to obtain paired biopsies from the brains of four patients with clinical definite multiple sclerosis (MS). Samples were analyzed for the immunoreactivity (IR) of the three nitric oxide (NO) synthase isoforms [inducible, neuronal......NOS expressing cells in active lesions. NOS IR expressing cells were widely distributed in plaques, in white and gray matter that appeared normal macroscopically, and on MR. Endothelial NOS (eNOS) was highly expressed in intraparenchymal vascular endothelial cells of MS patients. A control group matched for age...

  6. Enzymatic synthesis of arbutin undecylenic acid ester and its inhibitory effect on mushroom tyrosinase.

    Science.gov (United States)

    Tokiwa, Y; Kitagawa, M; Raku, T

    2007-03-01

    A novel tyrosinase inhibitor, an arbutin derivative having undecylenic acid at the 6-position of its glucose moiety, was enzymatically synthesized. Its inhibitory activity was studied in vitro by using catechol and phenol as substrates. The IC(50) value of the arbutin ester on tyrosinase using catechol (4 x 10(-4) M) was 1% of that when arbutin (4 x 10(-2) M) was used. Using phenol, IC(50) of the arbutin ester (3 x 10(-4) M) as substrate was 10% of that of arbutin (3 x 10(-3) M). These results suggest that the arbutin ester inhibits the latter part of the tyrosinase reaction, which consists of hydroxylation and oxidation.

  7. Targeting NADPH oxidase decreases oxidative stress in the transgenic sickle cell mouse penis.

    Science.gov (United States)

    Musicki, Biljana; Liu, Tongyun; Sezen, Sena F; Burnett, Arthur L

    2012-08-01

    Sickle cell disease (SCD) is a state of chronic vasculopathy characterized by endothelial dysfunction and increased oxidative stress, but the sources and mechanisms responsible for reactive oxygen species (ROS) production in the penis are unknown. We evaluated whether SCD activates NADPH oxidase, induces endothelial nitric oxide synthase (eNOS) uncoupling, and decreases antioxidants in the SCD mouse penis. We further tested the hypothesis that targeting NADPH oxidase decreases oxidative stress in the SCD mouse penis. SCD transgenic (sickle) mice were used as an animal model of SCD. Hemizygous (hemi) mice served as controls. Mice received an NADPH oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Penes were excised at baseline for molecular studies. Markers of oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NADPH oxidase subunits p67(phox) , p47(phox) , and gp91(phox) ), and enzymatic antioxidants (superoxide dismutase [SOD]1, SOD2, catalase, and glutathione peroxidase-1 [GPx1]) were measured by Western blot in penes. Sources of ROS, oxidative stress, and enzymatic antioxidants in the SCD penis. Relative to hemi mice, SCD increased (Ppenis. Apocynin treatment of sickle mice reversed (P0.05) prevented eNOS uncoupling in the penis. Apocynin treatment of hemi mice did not affect any of these parameters. NADPH oxidase and eNOS uncoupling are sources of oxidative stress in the SCD penis; decreased GPx1 further contributes to oxidative stress. Inhibition of NADPH oxidase upregulation decreases oxidative stress, implying a major role for NADPH oxidase as a ROS source and a potential target for improving vascular function in the SCD mouse penis. © 2012 International Society for Sexual Medicine.

  8. Enzymatic hydrolysis of biomass at high-solids loadings – A review

    International Nuclear Information System (INIS)

    Modenbach, Alicia A.; Nokes, Sue E.

    2013-01-01

    Enzymatic hydrolysis is the unit operation in the lignocellulose conversion process that utilizes enzymes to depolymerize lignocellulosic biomass. The saccharide components released are the feedstock for fermentation. When performed at high-solids loadings (≥15% solids, w/w), enzymatic hydrolysis potentially offers many advantages over conversions performed at low- or moderate-solids loadings, including increased sugar and ethanol concentrations and decreased capital and operating costs. The goal of this review is to provide a consolidated source of information on studies using high-solids loadings in enzymatic hydrolysis. Included in this review is a brief discussion of the limitations, such as a lack of available water, difficulty with mixing and handling, insufficient mass and heat transfer, and increased concentration of inhibitors, associated with the use of high solids, as well as descriptions and findings of studies that performed enzymatic hydrolysis at high-solids loadings. Reactors designed and/or equipped for improved handling of high-solids slurries are also discussed. Lastly, this review includes a brief discussion of some of the operations that have successfully scaled-up and implemented high-solids enzymatic hydrolysis at pilot- and demonstration-scale facilities. -- Highlights: •High solids enzymatic hydrolysis needed for conversion process to be cost-effective. •Limitations must be addressed before benefits of high-solid loadings fully realized. •Some success with high-solids loadings at pilot and demonstration scale

  9. Strong Associations Exist among Oxidative Stress and Antioxidant Biomarkers in the Circulating, Cellular and Urinary Anatomical Compartments in Guatemalan Children from the Western Highlands.

    Directory of Open Access Journals (Sweden)

    María J Soto-Méndez

    Full Text Available A series of antioxidant enzymes and non-enzymatic compounds act to protect cells from uncontrolled propagation of free radicals. It is poorly understood, though, to what extent and how their interaction is harmonized.To explore associative interactions among a battery of urinary and blood biomarkers of oxidative stress and enzymatic and non-enzymatic markers of the antioxidant defense system in children from low income households.For this cross-sectional descriptive study, urine, red cells, and plasma were sampled in 82 preschool children attending three daycare centers in Quetzaltenango Guatemala. The urinary oxidative stress biomarkers studied were F2-isoprostanes and 8-hydroxy-deoxy-guanosine. Red cell enzyme activities measured were: catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase. Circulating non-enzymatic antioxidants selected were: retinol, tocopherols, β-carotene and coenzymes Q9 and Q10.In a Spearman rank-order correlation hemi-matrix, of 55 paired combinations of the 11 biomarkers, 28 (51% were significantly correlated among each other (p ≤ 0.05, with the strongest association being retinol and tocopherols (r = 0.697, p 0.5 to ≤ 0.10. F2-isoprostanes showed the greatest number of cross-associations, having significant interactions with 8 of the 10 remaining biomarkers. Goodness-of-fit modeling improved or maintained the r value for 24 of the significant interactions and for one of the 5 borderline associations. Multiple regression backward stepwise analysis indicated that plasma retinol, β-carotene and coenzyme Q10 were independent predictors of urinary F2-isoprostanes.Numerous significant associations resulted among biomarkers of oxidation and responders to oxidation. Interesting findings were the apparent patterns of harmonious interactions among the elements of the oxidation-antioxidation systems in this population.

  10. Synthesis of CdS quantum dots decorated graphene nanosheets and non-enzymatic photoelectrochemical detection of glucose

    International Nuclear Information System (INIS)

    Zhang, Xuyan; Xu, Fang; Zhao, Bingqing; Ji, Xin; Yao, Yanwen; Wu, Dapeng; Gao, Zhiyong; Jiang, Kai

    2014-01-01

    Graphical abstract: - Highlights: • Graphene-CdS hybrid materials were prepared via one-step hydrothermal method. • Graphene-CdS was used as non-enzymatic photoelectrochemical sensor to detect glucose. • Glucose in real sample was detected and showed good specificity and sensitivity. - ABSTRACT: Graphene-CdS quantum dots (QDs) hybrid materials were successfully prepared via one-step hydrothermal method. CdS QDs with average size of ∼6 nm were dispersed on graphene sheets with high coverage through non-covalent bonding. Photocurrent and electrochemical impedance spectroscopy (EIS) results suggested that the best dosage of graphene oxide for graphene-CdS hybrid materials is 0.5% (G0.5-CdS). When G0.5-CdS QDs was used as photoanode materials in non-enzymatic sensor, and the sensor was used to detect glucose and displayed satisfactory analytical performance with good linear range from 0.1∼4 mmol dm −3 with a detection limit of 7 μmol dm −3 at a signal-to-noise ratio of 3. The sensor also possessed high selectivity and durability in trace detection of glucose

  11. Oxidative degradation and non-enzymatic browning due to the interaction between oxidised lipids and primary amine groups in different marine PL emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2012-01-01

    investigated through the measurement of secondary volatile compounds by solid-phase microextraction (SPME) and dynamic headspace (DHS) connected to gas chromatography (GC–MS). Non-enzymatic browning reactions were investigated through the measurement of Strecker derived volatiles, colour changes and pyrrole...

  12. Enzymatic vegetable organic extracts as soil biochemical biostimulants and atrazine extenders.

    Science.gov (United States)

    García-Martínez, Ana María; Tejada, Manuel; Díaz, Ana Isabel; Rodríguez-Morgado, Bruno; Bautista, Juan; Parrado, Juan

    2010-09-08

    The purpose of this study was to gather information on the potential effects of organic biostimulants on soil activity and atrazine biodegradation. Carob germ enzymatic extract (CGEE) and wheat condensed distiller solubles enzymatic extract (WCDS-EE) have been obtained using an enzymatic process; their main organic components are soluble carbohydrates and proteins in the form of peptides and free amino acids. Their application to soil results in high biostimulation, rapidly increased dehydrogenase, phosphatase and glucosidase activities, and an observed atrazine extender capacity due to inhibition of its mineralization. The extender capacity of both extracts is proportional to the protein/carbohydrate ratio content. As a result, these enzymatic extracts are highly microbially available, leading to two independent phenomena, fertility and an atrazine persistence that is linked to increased soil activity.

  13. Evaluation of physical structural features on influencing enzymatic hydrolysis efficiency of micronized wood

    Science.gov (United States)

    Jinxue Jiang; Jinwu Wang; Xiao Zhang; Michael Wolcott

    2016-01-01

    Enzymatic hydrolysis of lignocellulosic biomass is highly dependent on the changes in structural features after pretreatment. Mechanical milling pretreatment is an effective approach to alter the physical structure of biomass and thus improve enzymatic hydrolysis. This study examined the influence of structural characteristics on the enzymatic hydrolysis of micronized...

  14. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions.

    Science.gov (United States)

    Netto, Luis Eduardo S; de Oliveira, Marcos Antonio; Tairum, Carlos A; da Silva Neto, José Freire

    2016-01-01

    Thiol-disulfide exchange reactions are highly reversible, displaying nucleophilic substitutions mechanism (S(N)2 type). For aliphatic, low molecular thiols, these reactions are slow, but can attain million times faster rates in enzymatic processes. Thioredoxin (Trx) proteins were the first enzymes described to accelerate thiol-disulfide exchange reactions and their high reactivity is related to the high nucleophilicity of the attacking thiol. Substrate specificity in Trx is achieved by several factors, including polar, hydrophobic, and topological interactions through a groove in the active site. Glutaredoxin (Grx) enzymes also contain the Trx fold, but they do not share amino acid sequence similarity with Trx. A conserved glutathione binding site is a typical feature of Grx that can reduce substrates by two mechanisms (mono and dithiol). The high reactivity of Grx enzymes is related to the very acid pK(a) values of reactive Cys that plays roles as good leaving groups. Therefore, although distinct oxidoreductases catalyze similar thiol–disulfide exchange reactions, their enzymatic mechanisms vary. PDI and DsbA are two other oxidoreductases, but they are involved in disulfide bond formation, instead of disulfide reduction, which is related to the oxidative environment where they are found. PDI enzymes and DsbC are endowed with disulfide isomerase activity, which is related with their tetra-domain architecture. As illustrative description of specificity in thiol-disulfide exchange, redox aspects of transcription activation in bacteria, yeast, and mammals are presented in an evolutionary perspective. Therefore, thiol-disulfide exchange reactions play important roles in conferring specificity to pathways, a required feature for signaling.

  15. Oxidative and antibacterial activity of Mn{sub 3}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Al-Nakib, E-mail: nakib@chem.buet.ac.bd [Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Azam, Md. Shafiul, E-mail: azam@ualberta.ca [Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Aktaruzzaman, Md.; Rahim, Abdur [Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh)

    2009-12-30

    Mn{sub 3}O{sub 4} nanoparticles with diameter ca. 10 nm were synthesized by the forced hydrolysis of Mn(II) acetate at 80 deg. C. The X-ray diffraction (XRD), Fourier transform infra red (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques were employed to study structural features and chemical composition of the nanoparticles. The unique oxidative activity of the Mn{sub 3}O{sub 4} nanoparticles was demonstrated in the polymerization and dye degradation reactions. On adding Mn{sub 3}O{sub 4} suspension to an acidic solution of aniline, yielded immediately green sediment of polyaniline (PANI). The organic dyes, viz., methylene blue (MB) and procion red (PR) were found to be completely decolorized from their aqueous solution on treating the dyes with Mn{sub 3}O{sub 4} suspension in acidic media. The Mn{sub 3}O{sub 4} nanoparticles also showed a clear antibacterial activity against the Vibrio cholerae, Shigella sp., Salmonella sp., and Escherichi coli bacteria that cause cholera, dysentery, typhoid, and diarrhea diseases, respectively.

  16. Enzymatic saccharification of dilute acid pretreated saline crops for fermentable sugar production

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Zhang, Ruihong [Biological and Agricultural Engineering Department, University of California, Davis One Shields Avenue, Davis, CA 95616 (United States); Pan, Zhongli [Biological and Agricultural Engineering Department, University of California, Davis One Shields Avenue, Davis, CA 95616 (United States); Processed Foods Research Unit, USDA-ARS-WRRC, 800 Buchanan Street, Albany, CA 94710 (United States); Wang, Donghai [Biological and Agricultural Engineering Department, Kansas State University, Manhattan, KS 66506 (United States)

    2009-11-15

    Four saline crops [athel (Tamarix aphylla L), eucalyptus (Eucalyptus camaldulensis), Jose Tall Wheatgrass (Agropyron elongatum), and Creeping Wild Ryegrass (Leymus triticoides)] that are used in farms for salt uptake from soil and drainage irrigation water have the potential for fuel ethanol production because they don't take a large number of arable lands. Dilute sulfuric acid pretreatment and enzymatic hydrolysis were conducted to select the optimum pretreatment conditions and the best saline crop for further enzymatic hydrolysis research. The optimum dilute acid pretreatment conditions included T = 165 C, t = 8 min, and sulfuric acid concentration 1.4% (w/w). Creeping Wild Ryegrass was decided to be the best saline crop. Solid loading, cellulase and {beta}-glucosidase concentrations had significant effects on the enzymatic hydrolysis of dilute acid pretreated Creeping Wild Ryegrass. Glucose concentration increased by 36 mg/mL and enzymatic digestibility decreased by 20% when the solid loading increased from 4 to 12%. With 8% solid loading, enzymatic digestibility increased by over 30% with the increase of cellulase concentration from 5 to 15 FPU/g-cellulose. Under given cellulase concentration of 15 FPU/g-cellulose, 60% increase of enzymatic digestibility of pretreated Creeping Wild Ryegrass was obtained with the increase of {beta}-glucosidase concentration up to 15 CBU/g-cellulose. With a high solid loading of 10%, fed-batch operation generated 12% and 18% higher enzymatic digestibility and glucose concentration, respectively, than batch process. (author)

  17. Application of extended Kalman filter to identification of enzymatic deactivation.

    Science.gov (United States)

    Caminal, G; Lafuente, J; López-Santín, J; Poch, M; Solà, C

    1987-02-01

    A recursive estimation scheme, the Extended Kalman Filter (EKF) technique, was applied to study enzymatic deactivation in the enzymatic hydrolysis of pretreated cellulose using a model previously developed by the authors. When no deactivation model was assumed, the results showed no variation with time for all the model parameters except for the maximum rate of cellobiose-to-glucose conversion (r'(m)).The r'(m) variation occurred in two zones with a grace period. A new model of enzymatic hydrolysis of pretreated cellulose deactivation was proposed and validated showing better behavior than the old deactivation model. This approach allows one to study enzyme deactivation without additional experiments and within operational conditions.

  18. Heme oxygenase-1, oxidation, inflammation and atherosclerosis

    Directory of Open Access Journals (Sweden)

    Jesus A Araujo

    2012-07-01

    Full Text Available Atherosclerosis is an inflammatory process of the vascular wall characterized by the infiltration of lipids and inflammatory cells. Oxidative modifications of infiltrating low density lipoproteins and induction of oxidative stress play a major role in lipid retention in the vascular wall, uptake by macrophages and generation of foam cells, a hallmark of this disorder. The vasculature has a plethora of protective resources against oxidation and inflammation, many of them regulated by the Nrf2 transcription factor. Heme oxygenase-1 (HO-1 is a Nrf2-regulated gene that plays a critical role in the prevention of vascular inflammation. It is the inducible isoform of heme oxygenase, responsible for the oxidative cleavage of heme groups leading to the generation of biliverdin, carbon monoxide and release of ferrous iron. HO-1 has important antioxidant, antiinflammatory, antiapoptotic, antiproliferative and immunomodulatory effects in vascular cells, most of which play a significant role in the protection against atherogenesis. HO-1 may also be an important feature in macrophage differentiation and polarization to certain subtypes. The biological effects of HO-1 are largely attributable to its enzymatic activity, which can be conceived as a system with three arms of action, corresponding to its three enzymatic byproducts. HO-1 mediated vascular protection may be due to a combination of systemic and vascular local effects. It is usually expressed at low levels but can be highly upregulated in the presence of several proatherogenic stimuli. The HO-1 system is amenable for use in the development of new therapies, some of them currently under experimental and clinical trials. Interestingly, in contrast to the HO-1 antiatherogenic actions, the expression of its transcriptional regulator Nrf2 leads to proatherogenic effects instead. This article reviews the evidence that supports the antiatherogenic role of HO-1, potential pathways and mechanisms mediating

  19. Anti-Inflammatory and Antioxidant Properties of Peptides Released from β-Lactoglobulin by High Hydrostatic Pressure-Assisted Enzymatic Hydrolysis.

    Science.gov (United States)

    Bamdad, Fatemeh; Bark, Seonghee; Kwon, Chul Hee; Suh, Joo-Won; Sunwoo, Hoon

    2017-06-07

    β-lactoglobulin hydrolysates (BLGH) have shown antioxidant, antihypertensive, antimicrobial, and opioid activity. In the current study, an innovative combination of high hydrostatic pressure and enzymatic hydrolysis (HHP-EH) was used to increase the yield of short bioactive peptides, and evaluate the anti-inflammatory and antioxidant properties of the BLGH produced by the HHP-EH process. BLG was enzymatically hydrolyzed by different proteases at an enzyme-to-substrate ratio of 1:100 under HHP (100 MPa) and compared with hydrolysates obtained under atmospheric pressure (AP-EH at 0.1 MPa). The degree of hydrolysis (DH), molecular weight distribution, and the antioxidant and anti-inflammatory properties of hydrolysates in chemical and cellular models were evaluated. BLGH obtained under HHP-EH showed higher DH than the hydrolysates obtained under AP-EH. Free radical scavenging and the reducing capacity were also significantly stronger in HHP-BLGH compared to AP-BLGH. The BLGH produced by alcalase (Alc) (BLG-Alc) showed significantly higher antioxidant properties among the six enzymes examined in this study. The anti-inflammatory properties of BLG-HHP-Alc were observed in lipopolysaccharide-stimulated macrophage cells by a lower level of nitric oxide production and the suppression of the synthesis of pro-inflammatory cytokines. Peptide sequencing revealed that 38% of the amino acids in BLG-HHP-Alc are hydrophobic and aromatic residues, which contribute to its anti-inflammatory properties. Enzymatic hydrolysis of BLG under HHP produces a higher yield of short bioactive peptides with potential antioxidant and anti-inflammatory effects.

  20. pH catalyzed pretreatment of corn bran for enhanced enzymatic arabinoxylan degradation

    DEFF Research Database (Denmark)

    Agger, Jane; Johansen, Katja Salomon; Meyer, Anne S.

    2011-01-01

    Corn bran is mainly made up of the pericarp of corn kernels and is a byproduct stream resulting from the wet milling step in corn starch processing. Through statistic modeling this study examined the optimization of pretreatment of corn bran for enzymatic hydrolysis. A low pH pretreatment (pH 2......, 150°C, 65min) boosted the enzymatic release of xylose and glucose and maximized biomass solubilization. With more acidic pretreatment followed by enzymatic hydrolysis the total xylose release was maximized (at pH 1.3) reaching ∼50% by weight of the original amount present in destarched corn bran......, but the enzyme catalyzed xylose release was maximal after pretreatment at approx. pH 2. The total glucose release peaked after pretreatment of approx. pH 1.5 with an enzymatic release of approx. 68% by weight of the original amounts present in destarched corn bran. For arabinose the enzymatic release...

  1. Enhancement of enzymatic saccharification of Eucalyptus globulus: steam explosion versus steam treatment.

    Science.gov (United States)

    Martin-Sampedro, Raquel; Revilla, Esteban; Villar, Juan C; Eugenio, Maria E

    2014-09-01

    Steam explosion and steam pre-treatment have proved capable of enhancing enzymatic saccharification of lignocellulosic materials. However, until now, these methods had not been compared under the same operational conditions and using the same raw material. Both pre-treatments lead to increased yields in the saccharification of Eucalyptus globulus; but results have been better with steam pre-treatments, despite the more accessible surface of exploded samples. The reason for this finding could be enzymatic inhibition: steam explosion causes a more extensive extraction of hemicelluloses and releases a greater amount of degradation products which can inhibit enzymatic action. Enzymatic inhibition is also dependent on the amount and chemical structure of lignin, which was also a contributing factor to the lower enzymatic yields obtained with the most severe pre-treatment. Thus, the highest yields (46.7% glucose and 73.4% xylose yields) were obtained after two cycle of steam treatment, of 5 and 3 min, at 183°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Enzymatic Synthesis of Biobased Polyesters and Polyamides

    Directory of Open Access Journals (Sweden)

    Yi Jiang

    2016-06-01

    Full Text Available Nowadays, “green” is a hot topic almost everywhere, from retailers to universities to industries; and achieving a green status has become a universal aim. However, polymers are commonly considered not to be “green”, being associated with massive energy consumption and severe pollution problems (for example, the “Plastic Soup” as a public stereotype. To achieve green polymers, three elements should be entailed: (1 green raw materials, catalysts and solvents; (2 eco-friendly synthesis processes; and (3 sustainable polymers with a low carbon footprint, for example, (biodegradable polymers or polymers which can be recycled or disposed with a gentle environmental impact. By utilizing biobased monomers in enzymatic polymerizations, many advantageous green aspects can be fulfilled. For example, biobased monomers and enzyme catalysts are renewable materials that are derived from biomass feedstocks; enzymatic polymerizations are clean and energy saving processes; and no toxic residuals contaminate the final products. Therefore, synthesis of renewable polymers via enzymatic polymerizations of biobased monomers provides an opportunity for achieving green polymers and a future sustainable polymer industry, which will eventually play an essential role for realizing and maintaining a biobased and sustainable society.

  3. Metal nanostructures for non-enzymatic glucose sensing

    International Nuclear Information System (INIS)

    Tee, Si Yin; Teng, Choon Peng; Ye, Enyi

    2017-01-01

    This review covers the recent development of metal nanostructures in electrochemical non-enzymatic glucose sensing. It highlights a variety of nanostructured materials including noble metals, other transition metals, bimetallic systems, and their hybrid with carbon-based nanomaterials. Particularly, attention is devoted to numerous approaches that have been implemented for improving the sensors performance by tailoring size, shape, composition, effective surface area, adsorption capability and electron-transfer properties. The correlation of the metal nanostructures to the glucose sensing performance is addressed with respect to the linear concentration range, sensitivity and detection limit. In overall, this review provides important clues from the recent scientific achievements of glucose sensor nanomaterials which will be essentially useful in designing better and more effective electrocatalysts for future electrochemical sensing industry. - Highlights: • Overview of recent development of metal nanostructures in electrochemical non-enzymatic glucose sensing. • Special attention is focussed on noble metals, other transition metals, bimetallic systems, and their hybrid with carbon-based nanomaterials. • Merits and limitations of various metal nanostructures in electrochemical non-enzymatic glucose sensing. • Strategies to improve the glucose sensing performance of metal nanostructures as electrocatalysts.

  4. Automatic single- and multi-label enzymatic function prediction by machine learning

    Directory of Open Access Journals (Sweden)

    Shervine Amidi

    2017-03-01

    Full Text Available The number of protein structures in the PDB database has been increasing more than 15-fold since 1999. The creation of computational models predicting enzymatic function is of major importance since such models provide the means to better understand the behavior of newly discovered enzymes when catalyzing chemical reactions. Until now, single-label classification has been widely performed for predicting enzymatic function limiting the application to enzymes performing unique reactions and introducing errors when multi-functional enzymes are examined. Indeed, some enzymes may be performing different reactions and can hence be directly associated with multiple enzymatic functions. In the present work, we propose a multi-label enzymatic function classification scheme that combines structural and amino acid sequence information. We investigate two fusion approaches (in the feature level and decision level and assess the methodology for general enzymatic function prediction indicated by the first digit of the enzyme commission (EC code (six main classes on 40,034 enzymes from the PDB database. The proposed single-label and multi-label models predict correctly the actual functional activities in 97.8% and 95.5% (based on Hamming-loss of the cases, respectively. Also the multi-label model predicts all possible enzymatic reactions in 85.4% of the multi-labeled enzymes when the number of reactions is unknown. Code and datasets are available at https://figshare.com/s/a63e0bafa9b71fc7cbd7.

  5. Influence of enzymatic reactions on the electrochemical behavior of EN X2CrNiMo17-11-2 (AISI 316L) stainless steel in bio-corrosion: role of interfacial processes on the modification of the passive layer

    International Nuclear Information System (INIS)

    Landoulsi, J.

    2008-01-01

    The outstanding corrosion behavior of stainless steels (SS) results from the presence of thin oxide layer (some nanometers). In non sterile aqueous media, stainless steels may exhibit a non stable behavior resulting from interactions between microbial species and passive film. In fact, microorganisms can be deeply involved in the corrosion processes usually reported as Microbial Influenced Corrosion (MIC). They can induce the initiation or the acceleration of this phenomenon and they do so when organized in bio-films. From the electrochemical point of view, stainless steels showed an increase of the free corrosion potential (Ecorr) attributed to the bio-film settlement. The Eco' ennoblement was broadly reported in seawater and seems to be confirmed in fresh water according to recent findings. A considerable progress in the comprehension of MIC processes was related to the role of extracellular species, essentially enzymes. Many enzymatic reactions occurring in bio-films consist on using oxygen as electron acceptor to generate hydrogen peroxide and related species. The aim of this work is to understand the mechanisms involved in the electrochemical behavior of stainless steel according to an enzymatic approach in medium simulating fresh water. To this end, glucose oxidase was chosen to globalize aerobic activities of bio-films. Electrochemical measurements in situ and surface analysis allow the comprehension of the role and the nature of interfacial processes. Surface characterization was performed with the help of a new quantitative utilization of XPS analysis and AFM. Results show a significant evolution in term of morphology (surface organization), (ii) chemical composition (passive layer, adsorbed organic species) and (iii) chemical reaction (oxidation, dissolution, effect of enzyme). Finally, a new enzymatic system is proposed to mimic specific physicochemical conditions at the SS / bio-film interface, in particular enzymatic generation of oxidant species in

  6. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase.

    Science.gov (United States)

    Caranto, Jonathan D; Lancaster, Kyle M

    2017-08-01

    Ammonia (NH 3 )-oxidizing bacteria (AOB) emit substantial amounts of nitric oxide (NO) and nitrous oxide (N 2 O), both of which contribute to the harmful environmental side effects of large-scale agriculture. The currently accepted model for AOB metabolism involves NH 3 oxidation to nitrite (NO 2 - ) via a single obligate intermediate, hydroxylamine (NH 2 OH). Within this model, the multiheme enzyme hydroxylamine oxidoreductase (HAO) catalyzes the four-electron oxidation of NH 2 OH to NO 2 - We provide evidence that HAO oxidizes NH 2 OH by only three electrons to NO under both anaerobic and aerobic conditions. NO 2 - observed in HAO activity assays is a nonenzymatic product resulting from the oxidation of NO by O 2 under aerobic conditions. Our present study implies that aerobic NH 3 oxidation by AOB occurs via two obligate intermediates, NH 2 OH and NO, necessitating a mediator of the third enzymatic step.

  7. Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes.

    Science.gov (United States)

    Tejirian, Ani; Xu, Feng

    2010-12-01

    Enzymatic lignocellulose hydrolysis plays a key role in microbially driven carbon cycling and energy conversion and holds promise for bio-based energy and chemical industries. Cellulases (key lignocellulose-active enzymes) are prone to interference from various noncellulosic substances (e.g., metal ions). During natural cellulolysis, these substances may arise from other microbial activities or abiotic events, and during industrial cellulolysis, they may be derived from biomass feedstocks or upstream treatments. Knowledge about cellulolysis-inhibiting reactions is of importance for the microbiology of natural biomass degradation and the development of biomass conversion technology. Different metal ions, including those native to microbial activity or employed for biomass pretreatments, are often tested for enzymatic cellulolysis. Only a few metal ions act as inhibitors of cellulases, which include ferrous and ferric ions as well as cupric ion. In this study, we showed inhibition by ferrous/ferric ions as part of a more general effect from oxidative (or redox-active) metal ions and their complexes. The correlation between inhibition and oxidation potential indicated the oxidative nature of the inhibition, and the dependence on air established the catalytic role that iron ions played in mediating the dioxygen inhibition of cellulolysis. Individual cellulases showed different susceptibilities to inhibition. It is likely that the inhibition exerted its effect more on cellulose than on cellulase. Strong iron ion chelators and polyethylene glycols could mitigate the inhibition. Potential microbiological and industrial implications of the observed effect of redox-active metal ions on enzymatic cellulolysis, as well as the prevention and mitigation of this effect in industrial biomass conversion, are discussed.

  8. THEORY DEVELOPMENT OF ENZYMATIC AROMA RECOVERY

    Directory of Open Access Journals (Sweden)

    G. E. Dubova

    2014-01-01

    Full Text Available Summary. The fruit and vegetable pretreatment conditions and subsequent environment in which enzymatic reactions take place can be considered as potential factors in the formation of fresh flavors. The synthesis of aromatic components of fresh grass and green leaves occurs involving vegetable lipoxygenases. The molecules of a precursor-compound can withstand the processing modes, while enzymes and aromatic compounds break down frequently. Vegetable homogenates are potential sources of enzymes which produce natural aromatic substances. Formation of fresh favors is the most perceptible when it occurs as the result of the reaction between poliunsaturated fatty acids of cytoplasmic membranes and lipoxygenases and hydroperoxide lyase of plant material. Pre-treatment of samples positively influences binding energy in the complex of enzyme-substrate. The change of iodine number in treated homogenates, as compared to fresh ones, shows isomerization of flavor precursors. The minimal quantity of homogenates introduced (up to 20 g and the duration of aroma-restoring reaction (from 5 to 7 minutes were defined. Pre-cooling of homogenates activates enzymes, strengthens oxidability of the PUFA, and results in recovery of fresh aroma of plant material. Under conditions of enzyme inactivation, the synthesis of aromas is not possible. Conversely, production of aroma in food glazes and foams is possible in case of interphase activation between a substrate and enzymes.

  9. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse.

    Science.gov (United States)

    Agarwal, Vinayak; Miles, Zachary D; Winter, Jaclyn M; Eustáquio, Alessandra S; El Gamal, Abrahim A; Moore, Bradley S

    2017-04-26

    Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.

  10. Non-enzymatic antioxidant accumulations in BR-deficient and BR-insensitive barley mutants under control and drought conditions.

    Science.gov (United States)

    Gruszka, Damian; Janeczko, Anna; Dziurka, Michal; Pociecha, Ewa; Fodor, Jozsef

    2017-12-07

    Drought is one of the most adverse stresses that affect plant growth and yield. Disturbances in metabolic activity resulting from drought cause overproduction of reactive oxygen species. It is postulated that brassinosteroids (BRs) regulate plant tolerance to the stress conditions, but the underlying mechanisms remain largely unknown. An involvement of endogenous BRs in regulation of the antioxidant homeostasis is not fully clarified either. Therefore, the aim of this study was to elucidate the role of endogenous BRs in regulation of non-enzymatic antioxidants in barley (Hordeum vulgare) under control and drought conditions. The plant material included the 'Bowman' cultivar and a group of semi-dwarf near-isogenic lines (NILs), representing mutants deficient in BR biosynthesis or signaling. In general, accumulations of 11 compounds representing various types of non-enzymatic antioxidants were analyzed under both conditions. The analyses of accumulations of reduced and oxidized forms of ascorbate indicated that the BR mutants contain significantly higher contents of dehydroascorbic acid under drought conditions when compared with the 'Bowman' cultivar. The analysis of glutathione accumulation indicated that under the control conditions the BR-insensitive NILs contained significantly lower concentrations of this antioxidant when compared with the rest of genotypes. Therefore, we postulate that BR sensitivity is required for normal accumulation of glutathione. A complete accumulation profile of various tocopherols indicated that functional BR biosynthesis and signaling are required for their normal accumulation under both conditions. Results of this study provided an insight into the role of endogenous BRs in regulation of the non-enzymatic antioxidant homeostasis. © 2017 Scandinavian Plant Physiology Society.

  11. A STUDY OF OXIDATIVE STRESS IN DIABETES

    Directory of Open Access Journals (Sweden)

    Babu Rao

    2015-06-01

    Full Text Available Non - enzymatic free radical mediated oxidation of biological molecules, membranes and tissues is associated with a variety of pathological events such as cancer, aging and diabetes mellitus . [1] Increased oxidative stress is seen in both types of diabetes me llitus namely type 1 and type 2, irrespective of duration, complications and treatment. In diabetes mellitus, oxidative stress seems primarily due to both an increased plasma free radical concentration and a sharp decline in antioxidant defences . [1] Among the causes of enhanced free radical production, hyperglycemia and hyper insulinemia seem to play a major role , [2,3] Hyperglycemia is the more easily modifiable factor among the two and good glycemic control can reduce the oxidative stress. Controversy pers ists regarding the other possible mechanisms of increased oxidative stress in diabetes and whether oxidative stress normalizes with adequate metabolic control alone. The role of oxidative stress and diabetic complications has been extensively investigated. Oxidative stress has been suggested to be involved in the genesis of both macro and micro angiopathy [4,5] Prospective trials are now underway addressing the controversial issues of possible role of pharmacological antioxidants in preventing or at least de laying the onset of diabetic complications.

  12. Enhanced oxidative stress in the jasmonic acid-deficient tomato mutant def-1 exposed to NaCl stress.

    Science.gov (United States)

    Abouelsaad, Ibrahim; Renault, Sylvie

    2018-04-21

    Jasmonic acid (JA) has been mostly studied in responses to biotic stresses, such as herbivore attack and pathogenic infection. More recently, the involvement of JA in abiotic stresses including salinity was highlighted; yet, its role in salt stress remained unclear. In the current study, we compared the physiological and biochemical responses of wild-type (WT) tomato (Solanum lycopersicum) cv Castlemart and its JA-deficient mutant defenseless-1 (def-1) under salt stress to investigate the role of JA. Plant growth, photosynthetic pigment content, ion accumulation, oxidative stress-related parameters, proline accumulation and total phenolic compounds, in addition to both enzymatic and non-enzymatic antioxidant activities, were measured in both genotypes after 14 days of 100 mM NaCl treatment. Although we observed in both genotypes similar growth pattern and sodium, calcium and potassium levels in leaves under salt stress, def-1 plants exhibited a more pronounced decrease of nitrogen content in both leaves and roots and a slightly higher level of sodium in roots compared to WT plants. In addition, def-1 plants exposed to salt stress showed reactive oxygen species (ROS)-associated injury phenotypes. These oxidative stress symptoms in def-1 were associated with lower activity of both enzymatic antioxidants and non-enzymatic antioxidants. Furthermore, the levels of the non-enzymatic ROS scavengers proline and total phenolic compounds increased in both genotypes exposed to salt stress, with a higher amount of proline in the WT plants. Overall the results of this study suggest that endogenous JA mainly enhanced tomato salt tolerance by maintaining ROS homeostasis. Copyright © 2018 Elsevier GmbH. All rights reserved.

  13. Enzymatic cell disruption of microalgae biomass in biorefinery processes.

    Science.gov (United States)

    Demuez, Marie; Mahdy, Ahmed; Tomás-Pejó, Elia; González-Fernández, Cristina; Ballesteros, Mercedes

    2015-10-01

    When employing biotechnological processes for the procurement of biofuels and bio-products from microalgae, one of the most critical steps affecting economy and yields is the "cell disruption" stage. Currently, enzymatic cell disruption has delivered effective and cost competitive results when compared to mechanical and chemical cell disruption methods. However, the introduction of enzymes implies additional associated cost within the overall process. In order to reduce this cost, autolysis of microalgae is proposed as alternative enzymatic cell disruption method. This review aims to provide the state of the art of enzymatic cell disruption treatments employed in biorefinery processes and highlights the use of endopeptidases. During the enzymatic processes of microalgae life cycle, some lytic enzymes involved in cell division and programmed cell death have been proven useful in performing cell lysis. In this context, the role of endopeptidases is emphasized. Mirroring these natural events, an alternative cell disruption approach is proposed and described with the potential to induce the autolysis process using intrinsic cell enzymes. Integrating induced autolysis within biofuel production processes offers a promising approach to reduce overall global costs and energetic input associated with those of current cell disruption methods. A number of options for further inquiry are also discussed. © 2015 Wiley Periodicals, Inc.

  14. Optimization of Substrate Feeding for Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Huusom, Jakob Kjøbsted; Nordblad, Mathias

    2013-01-01

    to be effective in mitigating the effects of substrate inhibition. Using enzymatic biodiesel production as a case study, the volumetric productivity of the reactor is increased while minimizing inactivation of the enzyme due to the alcohol. This is done by using a simple optimization routine where the substrate...... (both the vegetable oil and alcohol) feed rate/concentration is manipulated simultaneously. The results of the simulation were tested in the laboratory and are sufficiently positive to suggest the implementation of a feeding strategy for large scale enzymatic biodiesel production...

  15. Moving towards a Competitive Fully Enzymatic Biodiesel Process

    Directory of Open Access Journals (Sweden)

    Silvia Cesarini

    2015-06-01

    Full Text Available Enzymatic biodiesel synthesis can solve several problems posed by the alkaline-catalyzed transesterification but it has the drawback of being too expensive to be considered competitive. Costs can be reduced by lipase improvement, use of unrefined oils, evaluation of soluble/immobilized lipase preparations, and by combination of phospholipases with a soluble lipase for biodiesel production in a single step. As shown here, convenient natural tools have been developed that allow synthesis of high quality FAMEs (EN14214 from unrefined oils in a completely enzymatic single-step process, making it fully competitive.

  16. Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress

    International Nuclear Information System (INIS)

    Guo, B.; Liang, Y.C.; Zhu, Y.G.; Zhao, F.J.

    2007-01-01

    Time-dependent changes in enzymatic and non-enzymatic antioxidants, and lipid peroxidation were investigated in roots of rice (Oryza sativa) grown hydroponically with Cd, with or without pretreatment of salicylic acid (SA). Exposure to 50 μM Cd significantly decreased root growth, and activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), but increased the concentrations of H 2 O 2 , malondialdehyde (MDA), ascorbic acid (AsA), glutathione (GSH) and non-protein thiols (NPT). However, pretreatment with 10 μM SA enhanced the activities of antioxidant enzymes and the concentrations of non-enzymatic antioxidants, but lowered the concentrations of H 2 O 2 and MDA in the Cd-stressed rice compared with the Cd treatment alone. Pretreatment with SA alleviated the Cd-induced inhibition of root growth. The results showed that pretreatment with SA enhanced the antioxidant defense activities in Cd-stressed rice, thus alleviating Cd-induced oxidative damage and enhancing Cd tolerance. The possible mechanism of SA-induced H 2 O 2 signaling in mediating Cd tolerance was discussed. - Pretreatment with SA enhanced the antioxidant defense activities in Cd-stressed rice, thus alleviating Cd-induced oxidative damage and enhancing Cd tolerance

  17. Sorption and precipitation of Mn2+ by viable and autoclaved Shewanella putrefaciens: Effect of contact time

    KAUST Repository

    Chubar, Natalia

    2013-01-01

    The sorption of Mn(II) by viable and inactivated cells of Shewanella putrefaciens, a non-pathogenic, facultative anaerobic, gram-negative bacterium characterised as a Mn(IV) and Fe(III) reducer, was studied under aerobic conditions, as a function of pH, bacterial density and metal loading. During a short contact time (3-24h), the adsorptive behaviour of live and dead bacteria toward Mn(II) was sufficiently similar, an observation that was reflected in the studies on adsorption kinetics at various metal loadings, effects of pH, bacteria density, isotherms and drifting of pH during adsorption. Continuing the experiment for an additional 2-30days demonstrated that the Mn(II) sorption by suspensions of viable and autoclaved cells differed significantly from one another. The sorption to dead cells was characterised by a rapid equilibration and was described by an isotherm. In contrast, the sorption (uptake) to live bacteria exhibited a complex time-dependent uptake. This uptake began as adsorption and ion exchange processes followed by bioprecipitation, and it was accompanied by the formation of polymeric sugars (EPS) and the release of dissolved organic substances. FTIR, EXAFS/XANES and XPS demonstrated that manganese(II) phosphate was the main precipitate formed in 125ml batches, which is the first evidence of the ability of microbes to synthesise manganese phosphates. XPS and XANES spectra did not detect Mn(II) oxidation. Although the release of protein-like compounds by the viable bacteria increased in the presence of Mn2+ (and, by contrast, the release of carbohydrates did not change), electrochemical analyses did not indicate any aqueous complexation of Mn(II) by the organic ligands. © 2012 Elsevier Ltd.

  18. Preparation and Enzymatic Degradation of Porous Crosslinked Polylactides of Biomass Origin

    Directory of Open Access Journals (Sweden)

    Yuya Kido

    2014-06-01

    Full Text Available To understand the enzymatic degradation behavior of crosslinked polylactide (PLA, the preparation and enzymatic degradation of both thermoplastic (linear and crosslinked PLAs that have pore structures with different dimensions were carried out. The porous structures of the linear PLA samples were of micro and nanoporous nature, and prepared by batch foaming with supercritical CO2 and compared with the porous structures of crosslinked PLA (Lait-X created by the salt leaching method. The surface and cross-sectional morphologies of the porous structures were investigated by using scanning electron microscopy. The morphological analysis of porous Lait-X showed a rapid loss of physical features within 120 h of exposure to proteinase-K enzymatic degradation at 37 °C. Due to the higher affinity for water, enhanced enzymatic activity as compared to the linear PLA porous structures in the micro and nanoporous range was observed.

  19. Metabolomic profiling reveals a role for CPT1c in neuronal oxidative metabolism.

    Science.gov (United States)

    Lee, Jieun; Wolfgang, Michael J

    2012-10-25

    Carnitine Palmitoyltransferase-1c (CPT1c) is a neuron specific homologue of the carnitine acyltransferase family of enzymes. CPT1 isoenzymes transfer long chain acyl groups to carnitine. This constitutes a rate setting step for mitochondrial fatty acid beta-oxidation by facilitating the initial step in acyl transfer to the mitochondrial matrix. In general, neurons do not heavily utilize fatty acids for bioenergetic needs and definitive enzymatic activity has been unable to be demonstrated for CPT1c. Although there are studies suggesting an enzymatic role of CPT1c, its role in neurochemistry remains elusive. In order to better understand how CPT1c functions in neural metabolism, we performed unbiased metabolomic profiling on wild-type (WT) and CPT1c knockout (KO) mouse brains. Consistent with the notion that CPT1c is not involved in fatty acid beta-oxidation, there were no changes in metabolites associated with fatty acid oxidation. Endocannabinoids were suppressed in the CPT1c KO, which may explain the suppression of food intake seen in CPT1c KO mice. Although products of beta-oxidation were unchanged, small changes in carnitine and carnitine metabolites were observed. Finally, we observed changes in redox homeostasis including a greater than 2-fold increase in oxidized glutathione. This indicates that CPT1c may play a role in neural oxidative metabolism. Steady-state metabolomic analysis of CPT1c WT and KO mouse brains identified a small number of metabolites that differed between CPT1c WT and KO mice. The subtle changes in a broad range of metabolites in vivo indicate that CPT1c does not play a significant or required role in fatty acid oxidation; however, it could play an alternative role in neuronal oxidative metabolism.

  20. Metabolomic profiling reveals a role for CPT1c in neuronal oxidative metabolism

    Directory of Open Access Journals (Sweden)

    Lee Jieun

    2012-10-01

    Full Text Available Abstract Background Carnitine Palmitoyltransferase-1c (CPT1c is a neuron specific homologue of the carnitine acyltransferase family of enzymes. CPT1 isoenzymes transfer long chain acyl groups to carnitine. This constitutes a rate setting step for mitochondrial fatty acid beta-oxidation by facilitating the initial step in acyl transfer to the mitochondrial matrix. In general, neurons do not heavily utilize fatty acids for bioenergetic needs and definitive enzymatic activity has been unable to be demonstrated for CPT1c. Although there are studies suggesting an enzymatic role of CPT1c, its role in neurochemistry remains elusive. Results In order to better understand how CPT1c functions in neural metabolism, we performed unbiased metabolomic profiling on wild-type (WT and CPT1c knockout (KO mouse brains. Consistent with the notion that CPT1c is not involved in fatty acid beta-oxidation, there were no changes in metabolites associated with fatty acid oxidation. Endocannabinoids were suppressed in the CPT1c KO, which may explain the suppression of food intake seen in CPT1c KO mice. Although products of beta-oxidation were unchanged, small changes in carnitine and carnitine metabolites were observed. Finally, we observed changes in redox homeostasis including a greater than 2-fold increase in oxidized glutathione. This indicates that CPT1c may play a role in neural oxidative metabolism. Conclusions Steady-state metabolomic analysis of CPT1c WT and KO mouse brains identified a small number of metabolites that differed between CPT1c WT and KO mice. The subtle changes in a broad range of metabolites in vivo indicate that CPT1c does not play a significant or required role in fatty acid oxidation; however, it could play an alternative role in neuronal oxidative metabolism.

  1. A Highly Sensitive Electrochemical Glucose Sensor By Nickel-Epoxy Electrode With Non-Enzymatic Sensor

    Directory of Open Access Journals (Sweden)

    Riyanto Riyanto

    2016-03-01

    Full Text Available The preparation of new sensor for glucose was based on the fact that glucose can be determined by non-enzymatic glucose oxidase. The Ni metals (99.98% purity, 0.5 mm thick, Aldrich Chemical Company was used to prepare Ni-Epoxy electrode. The Ni-epoxy electrodes were prepared in square cut of 1 cm and 1 mm by length and wide respectively. The Ni metal electrodes were connected to silver wire with silver conducting paint prior covered with epoxy gum. The prepared of nickel-epoxy modified electrode showed outstanding electro catalytic activity toward the oxidation of glucose in alkaline solution. The result from this research are correlation of determination using Nickel-Epoxyelectrode for electroanalysis of glucose in NaOH was R2 = 0.9984. LOQ, LOD and recovery of the Nickel-Epoxy electrode towards glucose were found to be 4.4 μM, 1.48 μM and 98.19%, respectively. The Nickel-Epoxy wire based electrochemical glucose sensor demonstrates good sensitivity, wide linear range, outstanding detection limit, attractive selectivity, good reproducibility, high stability as well as prominent feasibility use of non-enzymatic sensor for monitoring glucose in human urine owing to its advantages of low cost, simple preparation and excellent properties for glucose detection.

  2. Microbial Enzymatic Degradation of Biodegradable Plastics.

    Science.gov (United States)

    Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch

    2017-01-01

    The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Preparation and characterization of electrically conducting polypyrrole Sn(IV phosphate cation-exchanger and its application as Mn(II ion selective membrane electrode

    Directory of Open Access Journals (Sweden)

    A.A. Khan

    2011-10-01

    Full Text Available Polypyrrole Sn(IV phosphate, an organic–inorganic composite cation-exchanger was synthesized via sol-gel mixing of an organic polymer, polypyrrole, into the matrices of the inorganic precipitate of Sn(IV phosphate. The physico-chemical properties of the material were determined using Atomic Absorption Spectrometry (AAS, CHN elemental analysis (inductively coupled plasma mass spectrometry, ICP-MS, UV–VIS spectrophotometry, FTIR (Fourier Transform Infra-Red, SEM (Scanning Electron Microscopy, TGA–DTA (Thermogravimetric Analysis–Differential Thermal Analysis, and XRD (X-ray diffraction. Ion-exchange behavior was observed to characterize the material. On the basis of distribution studies, the material was found to be highly selective for toxic heavy metal ion Mn2+. Due to its selective nature, the material was used as an electroactive component for the construction of an ion-selective membrane electrode. The proposed electrode shows fairly good discrimination of mercury ion over several other inorganic ions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations for Mn(II in water.

  4. Enzymatic degradation of polycaprolactone–gelatin blend

    International Nuclear Information System (INIS)

    Banerjee, Aditi; Chatterjee, Kaushik; Madras, Giridhar

    2015-01-01

    Blends of polycaprolactone (PCL), a synthetic polymer and gelatin, natural polymer offer a optimal combination of strength, water wettability and cytocompatibility for use as a resorbable biomaterial. The enzymatic degradation of PCL, gelatin and PCL–gelatin blended films was studied in the presence of lipase (Novozym 435, immobilized) and lysozyme. Novozym 435 degraded the PCL films whereas lysozyme degraded the gelatin. Though Novozym 435 and lysozyme individually could degrade PCL–gelatin blended films, the combination of these enzymes showed the highest degradation of these blended films. Moreover, the enzymatic degradation was much faster when fresh enzymes were added at regular intervals. The changes in physico-chemical properties of polymer films due to degradation were studied by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. These results have important implications for designing resorbable biomedical implants. (paper)

  5. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    Science.gov (United States)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  6. Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Ardica, S.; Calderaro, E.; Cappadona, C.

    1985-01-01

    The effect of γ-ray pre-irradiation of cellulose materials such as wood chips, paper, grain straw, hay and kapok on glucose production on enzymatic hydrolysis by cellulase has been investigated. These materials have been irradiated in air, water and acetate buffer solution over the dose range 10 3 to 4 x 10 6 Gy. In the relatively low dose range, up to about 5 x 10 5 Gy, the glucose yields after enzymatic hydrolysis are practically insensitive to radiation. At higher dose levels, up to 1.7 to 2 x 10 6 Gy, the pre-irradiation becomes very effective on enzymatic cellulose conversion. It has been found that the radiation-induced degradation of cellulose into low molecular weight polysaccharides is dependent on the nature and chemical composition of the cellulose materials and on the radiation environmental conditions. Further increases of dose causes radiation-induced structural modifications in polysaccharides previously produced, which can lead to a decrease in glucose production by enzymatic hydrolysis. (author)

  7. Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling

    Directory of Open Access Journals (Sweden)

    Ivan Ivanov

    2010-04-01

    Full Text Available Enzymatic fuel cells convert the chemical energy of biofuels into electrical energy. Unlike traditional fuel cell types, which are mainly based on metal catalysts, the enzymatic fuel cells employ enzymes as catalysts. This fuel cell type can be used as an implantable power source for a variety of medical devices used in modern medicine to administer drugs, treat ailments and monitor bodily functions. Some advantages in comparison to conventional fuel cells include a simple fuel cell design and lower cost of the main fuel cell components, however they suffer from severe kinetic limitations mainly due to inefficiency in electron transfer between the enzyme and the electrode surface. In this review article, the major research activities concerned with the enzymatic fuel cells (anode and cathode development, system design, modeling by highlighting the current problems (low cell voltage, low current density, stability will be presented.

  8. Tandem and sequential multi-enzymatic syntheses

    NARCIS (Netherlands)

    Kim, B.G.; Ahn, J.H.; Sello, G.; Di Gennaro, P.; van Herk, T.; Hartog, A.F.; Wever, R.; Oroz-Guinea, I.; Sánchez-Moreno, I.; García-Junceda, E.; Wu, B.; Szymanski, W.; Feringa, B.L.; Janssen, D.B.; Villo, L.; Kreen, M.; Kudryashova, M.; Metsala, A.; Tamp, S.; Lille, ü.; Pehk, T.; Parve, O.; McClean, K.; Eddowes, P.; Whittall, J.; Sutton, P.W.

    2012-01-01

    This chapter contains sections titled: Production of Isorhamnetin 3-O-Glucoside in Escherichia coli Using Engineered Glycosyltransferase Multienzymatic Preparation of (−)-3-(Oxiran-2-yl)Benzoic Acid Enzymatic Synthesis of Carbohydrates from Dihydroxyacetone and Aldehydes by a One Pot Enzyme Cascade

  9. Nitric oxide in the rat cerebellum after hypoxia/ischemia.

    Science.gov (United States)

    Rodrigo, José; Fernández, Ana Patricia; Alonso, David; Serrano, Julia; Fernández-Vizarra, Paula; Martínez-Murillo, Ricardo; Bentura, María Luisa; Martinez, Alfredo

    2004-01-01

    Nitric oxide is a regulatory biological substance and an important intracellular messenger that acts as a specific mediator of various neuropathological disorders. In mammals and invertebrates, nitric oxide is synthesized from L-arginine in the central and peripheral neural structures by the endothelial, neuronal and inducible enzymatic isoforms of nitric oxide synthase. Nitric oxide may affect the function of various neurotransmitter-specific systems, and is involved in neuromodulation, reproductive function, immune response, and regulation of the cerebral blood circulation. This makes nitric oxide the main candidate in brain responses to brain ischemia/hypoxia. The cerebellum has been reported to be the area of the brain that has the highest nitric oxide synthase activity and the highest concentration of glutamate and aspartate. By glutamate receptors and physiological action of nitric oxide, cyclic guanisine-5'-monophosphate may be rapidly increased. The cerebellum significantly differs with respect to ischemia and hypoxia, this response being directly related to the duration and intensity of the injury. The cerebellum could cover the eventual need for nitric oxide during the hypoxia, boosting the nitric oxide synthase activity, but overall ischemia would require de novo protein synthesis, activating the inducible nitric oxide synthase to cope with the new situation. The specific inhibitors of nitric oxide synthesis show neuroprotective effects.

  10. Real-time ESI-MS of enzymatic conversion: impact of organic solvents and multiplexing.

    Science.gov (United States)

    Scheerle, Romy K; Grassmann, Johanna; Letzel, Thomas

    2012-01-01

    Different enzymatic assays were characterized systematically by real-time electrospray ionization mass spectrometry (ESI-MS) in the presence of organic solvents as well as in multiplex approaches and in a combination of both. Typically, biological enzymatic reactions are studied in aqueous solutions, since most enzymes show their full activity solely in aqueous solutions. However, in recent years, the use of organic solvents in combination with enzymatic reactions has gained increasing interest due to biotechnological advantages in chemical synthesis, development of online coupled setups screening for enzyme regulatory compounds, advantages regarding mass spectrometric detection and others. In the current study, the influence of several common organic solvents (methanol, ethanol, isopropanol, acetone, acetonitrile) on enzymatic activity (hen egg white lysozyme, chitinase, α-chymotrypsin, elastase from human neutrophils and porcine pancreas, acetylcholinesterase) was tested. Moreover, multiplexing is a promising approach enabling fast and cost-efficient screening methods, e.g. for determination of inhibitors in complex mixtures or in the field of biomedical research. Although in multiplexed setups the enzymatic activity may be affected by the presence of other substrates and/or enzymes, the expected advantages possibly will predominate. To investigate those effects, we measured multiple enzymatic assays simultaneously. For all conducted measurements, the conversion rate of the substrate(s) was calculated, which reflects the enzymatic activity. The results provide an overview about the susceptibility of the selected enzymes towards diverse factors and a reference point for many applications in analytical chemistry and biotechnology.

  11. Enzymatic pH control for biomimetic depostion of calcium phosphate coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.G.; Nejadnik, M.R.; Nudelman, F.; Walboomers, X.F.; Riet, te J.; Habibovic, P.; Birgani, Z.T.; Li, Y.B.; Bomans, P.H.H.; Jansen, J.A.; Sommerdijk, N.A.J.M.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study examines the enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of calcium phospate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium

  12. Enzymatic pH control for biomimetic deposition of calcium phosphate coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.G.; Nejadnik, M.R.; Nudelman, F.; Walboomers, X.F.; Riet, J. te; Habibovic, P.; Tahmasebi Birgani, Z.; Li, Y.; Bomans, P.H.; Jansen, J.A.; Sommerdijk, N.A.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study examines the enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of calcium phosphate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium

  13. Therapeutic effectiveness of a new enzymatic bleaching dentifrice.

    Science.gov (United States)

    Forner, Leopaldo; Amengual, José; Liena, Carmen; Riutord, Pere

    2012-01-01

    Research into bleaching focuses on new products in order to minimize undesirable effects. This study evaluated the bleaching effectiveness of a new enzymatic-activated dentifrice. A total of 20 volunteers were bleached with a dentifrice containing 5% lactoperoxidase and 3% carbamide peroxide applied three times a day for two minutes over 21 days. Color was recorded before and after the treatment using a spectrophotometer. CIELAB differences were calculated before and after treatment using the paired t test (P whitening teeth. Enzymatic dental bleaching is able to increase the efficiency of low concentration peroxides, reducing the potential risk of peroxides on oral tissues.

  14. Multi-Scale Computational Enzymology: Enhancing Our Understanding of Enzymatic Catalysis

    Science.gov (United States)

    Gherib, Rami; Dokainish, Hisham M.; Gauld, James W.

    2014-01-01

    Elucidating the origin of enzymatic catalysis stands as one the great challenges of contemporary biochemistry and biophysics. The recent emergence of computational enzymology has enhanced our atomistic-level description of biocatalysis as well the kinetic and thermodynamic properties of their mechanisms. There exists a diversity of computational methods allowing the investigation of specific enzymatic properties. Small or large density functional theory models allow the comparison of a plethora of mechanistic reactive species and divergent catalytic pathways. Molecular docking can model different substrate conformations embedded within enzyme active sites and determine those with optimal binding affinities. Molecular dynamics simulations provide insights into the dynamics and roles of active site components as well as the interactions between substrate and enzymes. Hybrid quantum mechanical/molecular mechanical (QM/MM) can model reactions in active sites while considering steric and electrostatic contributions provided by the surrounding environment. Using previous studies done within our group, on OvoA, EgtB, ThrRS, LuxS and MsrA enzymatic systems, we will review how these methods can be used either independently or cooperatively to get insights into enzymatic catalysis. PMID:24384841

  15. Multi-Scale Computational Enzymology: Enhancing Our Understanding of Enzymatic Catalysis

    Directory of Open Access Journals (Sweden)

    Rami Gherib

    2013-12-01

    Full Text Available Elucidating the origin of enzymatic catalysis stands as one the great challenges of contemporary biochemistry and biophysics. The recent emergence of computational enzymology has enhanced our atomistic-level description of biocatalysis as well the kinetic and thermodynamic properties of their mechanisms. There exists a diversity of computational methods allowing the investigation of specific enzymatic properties. Small or large density functional theory models allow the comparison of a plethora of mechanistic reactive species and divergent catalytic pathways. Molecular docking can model different substrate conformations embedded within enzyme active sites and determine those with optimal binding affinities. Molecular dynamics simulations provide insights into the dynamics and roles of active site components as well as the interactions between substrate and enzymes. Hybrid quantum mechanical/molecular mechanical (QM/MM can model reactions in active sites while considering steric and electrostatic contributions provided by the surrounding environment. Using previous studies done within our group, on OvoA, EgtB, ThrRS, LuxS and MsrA enzymatic systems, we will review how these methods can be used either independently or cooperatively to get insights into enzymatic catalysis.

  16. Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line.

    Science.gov (United States)

    Senevirathne, Mahinda; Kim, Soo-Hyun; Jeon, You-Jin

    2010-06-01

    Blueberry was enzymatically hydrolyzed using selected commercial food grade carbohydrases (AMG, Celluclast, Termamyl, Ultraflo and Viscozyme) and proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to obtain water soluble compounds, and their protective effect was investigated against H(2)O(2)-induced damage in Chinese hamster lung fibroblast cell line (V79-4) via various published methods. Both AMG and Alcalase hydrolysates showed higher total phenolic content as well as higher cell viability and ROS scavenging activities, and hence, selected for further antioxidant assays. Both AMG and Alcalase hydrolysates also showed higher protective effects against lipid peroxidation, DNA damage and apoptotic body formation in a dose-dependent fashion. Thus, the results indicated that water soluble compounds obtained by enzymatic hydrolysis of blueberry possess good antioxidant activity against H(2)O(2)-induced cell damage in vitro.

  17. ETHANOL ORGANOSOLV PRETREATMENT OF BAMBOO FOR EFFICIENT ENZYMATIC SACCHARIFICATION

    Directory of Open Access Journals (Sweden)

    Zhiqiang Li,

    2012-06-01

    Full Text Available Bamboo is a potential lignocellulosic biomass for the production of bioethanol because of its high cellulose and hemicelluloses content. In this research, ethanol organosolv pretreatment with dilute sulfuric acid as the catalyst was studied in order to enhance enzymatic saccharification of moso bamboo. The addition of 2% (w/w bamboo dilute sulfuric acid in 75% ethanol had a particularly strong effect on fractionation of bamboo. It yielded a solids fraction containing 83.4% cellulose in the treated substrate. The cellulose conversion to glucose yield reached 77.1 to 83.4% after enzymatic hydrolysis of the solids fraction for 48 h at an enzyme loading of 15 FPU cellulase/g cellulose and 30 IU β-glucosidase/g cellulose. The enzymatic hydrolysis rate was significantly accelerated as the ethanol organosolv pretreatment time increased, reaching the highest enzymatic glucose yield of 83.4% after 48 h at 50 °C. The concentrations of fermentation inhibitors such as HMF (5-hydroxy-2-methyl furfural and furfural were 0.96 g/L and 4.38 g/L in the spent liquor after the ethanol organosolv pretreatment, which were slightly lower than the concentrations quantified during H2SO4-water treatment. Spent liquor was diluted with water, and more than 87.2% of lignin in raw bamboo was recovered as ethanol organosolv lignin through the filtration process.

  18. Molecular Mechanisms behind Free Radical Scavengers Function against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Fereshteh Ahmadinejad

    2017-07-01

    Full Text Available Accumulating evidence shows that oxidative stress is involved in a wide variety of human diseases: rheumatoid arthritis, Alzheimer’s disease, Parkinson’s disease, cancers, etc. Here, we discuss the significance of oxidative conditions in different disease, with the focus on neurodegenerative disease including Parkinson’s disease, which is mainly caused by oxidative stress. Reactive oxygen and nitrogen species (ROS and RNS, respectively, collectively known as RONS, are produced by cellular enzymes such as myeloperoxidase, NADPH-oxidase (nicotinamide adenine dinucleotide phosphate-oxidase and nitric oxide synthase (NOS. Natural antioxidant systems are categorized into enzymatic and non-enzymatic antioxidant groups. The former includes a number of enzymes such as catalase and glutathione peroxidase, while the latter contains a number of antioxidants acquired from dietary sources including vitamin C, carotenoids, flavonoids and polyphenols. There are also scavengers used for therapeutic purposes, such as 3,4-dihydroxyphenylalanine (L-DOPA used routinely in the treatment of Parkinson’s disease (not as a free radical scavenger, and 3-methyl-1-phenyl-2-pyrazolin-5-one (Edaravone that acts as a free radical detoxifier frequently used in acute ischemic stroke. The cell surviving properties of L-DOPA and Edaravone against oxidative stress conditions rely on the alteration of a number of stress proteins such as Annexin A1, Peroxiredoxin-6 and PARK7/DJ-1 (Parkinson disease protein 7, also known as Protein deglycase DJ-1. Although they share the targets in reversing the cytotoxic effects of H2O2, they seem to have distinct mechanism of function. Exposure to L-DOPA may result in hypoxia condition and further induction of ORP150 (150-kDa oxygen-regulated protein with its concomitant cytoprotective effects but Edaravone seems to protect cells via direct induction of Peroxiredoxin-2 and inhibition of apoptosis.

  19. Manganese-oxidizing photosynthesis before the rise of cyanobacteria

    Science.gov (United States)

    Johnson, J. E.; Webb, S.; Thomas, K. S.; Ono, S.; Kirschvink, J. L.; Fischer, W. W.

    2012-12-01

    The evolution of oxygenic photosynthesis was a singularity that fundamentally transformed our planet's core biogeochemical cycles and changed the redox structure of Earth's surface, crust, and mantle. To date, understanding the evolution of this molecular machinery has largely been derived from comparative biology. Several biochemical innovations enabled water-splitting, including a central photosynthetic pigment with a higher redox potential and coupled photosystems. However the critical photochemical invention was the water oxidizing complex (WOC) of photosystem II, a cubane cluster of four redox-active Mn atoms and a Ca atom bound by oxo bridges, that couple the single electron photochemistry of the photosystem to the four-electron oxidation of water to O2. Transitional forms of the WOC have been postulated, including an Mn-containing catalase-like peptide using an H2O2 donor, or uptake and integration of environmental Mn-oxides. One attractive hypothesis from the perspective of modern photo-assembly of the WOC posits an initial Mn(II)-oxidizing photosystem as a precursor to the WOC (Zubay, 1996; Allen and Martin, 2007). To test these hypotheses, we studied the behavior of the ancient Mn cycle captured by 2415 ± 6 Ma scientific drill cores retrieved by the Agouron Drilling Project through the Koegas Subgroup in Griqualand West, South Africa. This succession contains substantial Mn-enrichments (up to 17 wt.% in bulk). To better understand the petrogenesis and textural context of these deposits, we employed a novel X-ray absorption spectroscopy microprobe to make redox maps of ultra-thin sample sections at a 2μm scale. Coupled to light and electron microscopy and C isotopic measurements, we observe that all of the Mn is present as Mn(II), contained within carbonate minerals produced from early diagenetic reduction of Mn-oxide phases with organic matter. To assay the environmental oxidant responsible for the production of the Mn-oxides we examined two independent

  20. Production of xylooligosaccharide from wheat bran by microwave assisted enzymatic hydrolysis.

    Science.gov (United States)

    Wang, Tseng-Hsing; Lu, Shin

    2013-06-01

    The effective production of xylooligosaccharides (XOS) from wheat bran was investigated. Wheat bran contains rich hemicellulose which can be hydrolyzed by enzyme; the XOS were obtained by microwave assisted enzymatic hydrolysis. To improve the productivity of XOS, repeated microwave assisted enzymatic hydrolysis and activated carbon adsorption method was chosen to eliminate macromolecules in the XOS. On the basis of experimental data, an industrial XOS production process consisting of pretreatment, repeated microwave assisted enzymatic treatment and purification was designed. Using the designed process, 3.2g dry of purified XOS was produced from 50 g dry wheat bran powder. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. The development and evaluation of a continuous flow process for the lipase-mediated oxidation of alkenes

    Directory of Open Access Journals (Sweden)

    Charlotte Wiles

    2009-06-01

    Full Text Available We report the use of an immobilised form of Candida antarctica lipase B, Novozym® 435, in a preliminary investigation into the development of a continuous flow reactor capable of performing the chemo-enzymatic oxidation of alkenes in high yield and purity, utilising the commercially available oxidant hydrogen peroxide (100 volumes. Initial investigations focussed on the lipase-mediated oxidation of 1-methylcyclohexene, with the optimised reaction conditions subsequently employed for the epoxidation of an array of aromatic and aliphatic alkenes in 97.6 to 99.5% yield and quantitative purity.

  2. Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor

    Science.gov (United States)

    Nguyen, Thu-Thuy; Huy, Bui The; Hwang, Seo-Young; Vuong, Nguyen Minh; Pham, Quoc-Thai; Nghia, Nguyen Ngoc; Kirtland, Aaron; Lee, Yong-Ill

    2018-05-01

    Cuprous oxide (Cu2O) nanostructure has been synthesized using an electrochemical method with a two-electrode system. Cu foils were used as electrodes and NH2(OH) was utilized as the reducing agent. The effects of pH and applied voltages on the morphology of the product were investigated. The morphology and optical properties of Cu2O particles were characterized using scanning electron microscopy, x-ray diffraction, and diffuse reflectance spectra. The synthesized Cu2O nanostructures that formed in the vicinity of the anode at 2 V and pH = 11 showed high uniform distribution, small size, and good electrochemical sensing. These Cu2O nanoparticles were coated on an Indium tin oxide substrate and applied to detect non-enzyme glucose as excellent biosensors. The non-enzyme glucose biosensors exhibited good performance with high response, good selectivity, wide linear detection range, and a low detection limit at 0.4 μM. Synthesized Cu2O nanostructures are potential materials for a non-enzyme glucose biosensor.

  3. Enzymatic pH Control for Biomimetic Deposition of Calcium Phosphate Coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.; Reza Nejadnik, M.; Nudelman, F.; Walboomers, X.F.; te Riet, J.; Habibovic, Pamela; Tahmasebi Birgani, Zeinab; Yubao, L.; Bomans, P.H.H.; Jansen, J.A.; Sommerdijk, N.A.J.M.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study has focused on enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of Calcium Phospate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium

  4. Enzymatic added extraction and clarification of fruit juices-A review.

    Science.gov (United States)

    Sharma, Harsh P; Patel, Hiral; Sugandha

    2017-04-13

    Enzymatic treatment for juice extraction is most commonly used now a days. The enzymatic process is claimed to offer a number of advantages over mechanical-thermal comminution of several fruit pulps. Enzymes are an integral component of modern fruit juice manufacturing and are highly suitable for optimizing processes. Their main purposes are: increase extraction of juice from raw material, increase processing efficiency (pressing, solid settling or removal), and generate a final product that is clear and visually attractive. Juice extraction can be done by using various mechanical processes, which may be achieved through diffusion extraction, decanter centrifuge, screw type juice extractor, fruit pulper and by different types of presses. Enzymatic treatment prior to mechanical extraction significantly improves juice recovery compared to any other extraction process. Enzymatic hydrolysis of the cell walls increases the extraction yield, reducing sugars, soluble dry matter content and galacturonic acid content and titrable acidity of the products. Enzymatic degradation of the biomaterial depends upon the type of enzyme, incubation time, incubation temperature, enzyme concentration, agitation, pH and use of different enzyme combinations. We can conclude from the technical literature that use of the enzymes i.e. cellulases, pectinases, amylases and combination of these enzymes can give better juice yield with superior quality of the fruit juice. Pectinase enzyme can give maximum juice yield i.e. 92.4% at 360 minutes incubation time, 37°C incubation temperature and 5 mg/100 g of enzyme concentration. Whereas the combination of two enzymes i.e. pectin methyl esterase (PME) and polygalacturonase (PG) at 120 minutes of incubation time, 50°C of incubation temperature and 0.05 mg/100 gm of enzymatic concentration can give the maximum yield of 96.8% for plum fruits. This paper discusses the use of enzymes in fruit juice production focusing on the juice recovery

  5. Isoprene Production on Enzymatic Hydrolysate of Peanut Hull Using Different Pretreatment Methods

    Directory of Open Access Journals (Sweden)

    Sumeng Wang

    2016-01-01

    Full Text Available The present study is about the use of peanut hull for isoprene production. In this study, two pretreatment methods, hydrogen peroxide-acetic acid (HPAC and popping, were employed prior to enzymatic hydrolysis, which could destroy the lignocellulosic structure and accordingly improve the efficiency of enzymatic hydrolysis. It is proven that the isoprene production on enzymatic hydrolysate with HPAC pretreatment is about 1.9-fold higher than that of popping pretreatment. Moreover, through High Performance Liquid Chromatography (HPLC analysis, the amount and category of inhibitors such as formic acid, acetic acid, and HMF were assayed and were varied in different enzymatic hydrolysates, which may be the reason leading to a decrease in isoprene production during fermentation. To further increase the isoprene yield, the enzymatic hydrolysate of HPAC was detoxified by activated carbon. As a result, using the detoxified enzymatic hydrolysate as the carbon source, the engineered strain YJM21 could accumulate 297.5 mg/L isoprene, which accounted for about 90% of isoprene production by YJM21 fermented on pure glucose (338.6 mg/L. This work is thought to be the first attempt on isoprene production by E. coli using peanut hull as the feedstock. More importantly, it also shows the prospect of peanut hull to be considered as an alternative feedstock for bio-based chemicals or biofuels production due to its easy access and high polysaccharide content.

  6. Comparison of Chemical and Enzymatic Interesterification of Fully Hydrogenated Soybean Oil and Walnut Oil to Produce a Fat Base with Adequate Nutritional and Physical Characteristics

    Directory of Open Access Journals (Sweden)

    Mariel Farfán

    2015-01-01

    Full Text Available The optimal physical, chemical and nutritional properties of natural lipids depend on the structure and composition of triacylglycerols. However, they are not always mutually compatible. Lipid modification is a good way to give them specific functionalities, increase their oxidative stability, or improve their nutritional value. As such, chemical and enzymatic interesterification may be used to modify them and produce structured lipids. In accordance, the aim of this study is to compare chemical and enzymatic interesterifi cation of binary blends of fully hydrogenated soybean oil and walnut oil, using sodium methoxide or Lipozyme TL IM, respectively, to produce a fat base with adequate nutritional and physical characteristics. Three different mass ratios of fully hydrogenated soybean oil and walnut oil blends (20:80, 40:60 and 60:40 were interesterified and evaluated. Total interesterification was determined by the stabilization of the solid fat content. Chemical reaction of the 20:80 blend was completed in 10 min and of the 40:60 and 60:40 blends in 15 min. Enzymatically interesterified blends were stabilized in 120 min at all of the mass ratios. Complete interesterification significantly reduced the solid fat content of the blends at any composition. Chemical and enzymatically interesterified fully hydrogenated blend of soybean and walnut oil at mass ratio of 40:60 showed the plastic curve of an all-purpose-type shortening rich in polyunsaturated fatty acids, with a high linolenic acid (C18:3n3 content and with zero trans-fatty acids.

  7. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz)

    OpenAIRE

    Xu, Jia; Yang, Jun; Duan, Xiaoguang; Jiang, Yueming; Zhang, Peng

    2014-01-01

    Background Cassava (Manihot esculenta Crantz) is a tropical root crop, and is therefore, extremely sensitive to low temperature; its antioxidative response is pivotal for its survival under stress. Timely turnover of reactive oxygen species (ROS) in plant cells generated by chilling-induced oxidative damages, and scavenging can be achieved by non-enzymatic and enzymatic reactions in order to maintain ROS homeostasis. Results Transgenic cassava plants that co-express cytosolic superoxide dismu...

  8. Biocolloids with ordered urease multilayer shells as enzymatic reactors.

    Science.gov (United States)

    Lvov, Y; Caruso, F

    2001-09-01

    The preparation of biocolloids with organized enzyme-containing multilayer shells for exploitation as colloidal enzymatic nanoreactors is described. Urease multilayers were assembled onto submicrometer-sized polystyrene spheres by the sequential adsorption of urease and polyelectrolyte, in a predetermined order, utilizing electrostatic interactions for layer growth. The catalytic activity of the biocolloids increased proportionally with the number of urease layers deposited on the particles, demonstrating that biocolloid particles with tailored enzymatic activities can be produced. It was further found that precoating the latex spheres with nanoparticles (40-nm silica or 12-nm magnetite) enhanced both the stability (with respect to adsorption) and enzymatic activity of the urease multilayers. The presence of the magnetite nanoparticle coating also provided a magnetic function that allowed the biocolloids to be easily and rapidly separated with a permanent magnet. The fabrication of such colloids opens new avenues for the application of bioparticles and represents a promising route for the creation of complex catalytic particles.

  9. High volumetric power density, non-enzymatic, glucose fuel cells.

    Science.gov (United States)

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.

  10. Multiple enzymatic profiles of Vibrio parahaemolyticus strains isolated from oysters

    Directory of Open Access Journals (Sweden)

    Renata Albuquerque Costa

    Full Text Available The enzymatic characterization of vibrios has been used as a virulence indicator of sanitary interest. The objective of this study was to determine the enzymatic profile of Vibrio parahaemolyticus strains (n = 70 isolated from Crassostrea rhizophorae oysters. The strains were examined for the presence of gelatinase (GEL, caseinase (CAS, elastase (ELAS, phospholipase (PHOS, lipase (LIP, amilase (AML and DNase. All enzymes, except elastase, were detected in more than 60% of the strains. The most recurrent enzymatic profiles were AML + DNase + PHOS + GEL + LIP (n = 16; 22.9% and AML + CAS + DNase + PHOS + GEL + LIP (n = 21; 30%. Considering the fact that exoenzyme production by vibrios is closely related to virulence, one must be aware of the bacteriological risk posed to human health by the consumption of raw or undercooked oysters.

  11. Construction of a non-enzymatic sensor based on the poly(o-phenylenediamine)/Ag-NPs composites for detecting glucose in blood

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinxiang; Wang, Meirong [College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si–Wang–Ting Road, Yangzhou 225002 (China); Guan, Jun [Clinical Medical College of Yangzhou University, Subei People' s Hospital of Jiangsu Province, Yangzhou 225002 (China); Wang, Chengyin, E-mail: wangcy@yzu.edu.cn [College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si–Wang–Ting Road, Yangzhou 225002 (China); Wang, Guoxiu [School of Mathematical and Physical Sciences, University of Technology Sydney, City Campus, Broadway, Sydney, NSW 2007 (Australia)

    2017-02-01

    A non-enzymatic glucose sensor, based on the silver nanoparticles (Ag-NPs)/poly (o-phenylenediamine) (PoPD) composites, is developed by the electrochemical polymerization of o-phenylenediamine and electrodeposition of silver nanoparticles on an indium tin oxide electrode. The Ag-NPs/PoPD composites are characterized by atomic force microscopy, scanning electronic microscopy and energy dispersive spectrometer. Under the optimized experimental conditions, the proposed glucose sensor demonstrates a wide linear range from 0.15 to 13 mmol L{sup −1} with a correlation coefficient of 0.998. The proposed glucose sensor can be used to detect glucose in blood sample with a satisfactory result. In addition, the proposed sensor presents the advantages, such as facile preparation, low cost, high sensitivity and fast response time. It also exhibits good anti-interference performance and stability. - Highlights: • A facile AgNPs/PoPD/ITO modified sensor was developed for the first time. • The non-enzymatic sensor can detect glucose in human blood directly with a wide detection range. • This sensor is of rapid response, low cost, high sensitivity, and long-time stability.

  12. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose; Actividad enzimatica del complejo celulolitico producido por Trichoderma reesei. Hidrolisis enzimatica de la celulosa

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsel, M; Negro, M J; Saez, R; Martin, C

    1986-07-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs.

  13. Hyperthyroidism in the developing rat testis is associated with oxidative stress and hyperphosphorylated vimentin accumulation.

    Science.gov (United States)

    Zamoner, Ariane; Barreto, Kátia Padilha; Filho, Danilo Wilhelm; Sell, Fabíola; Woehl, Viviane Mara; Guma, Fátima Costa Rodrigues; Silva, Fátima Regina Mena Barreto; Pessoa-Pureur, Regina

    2007-03-15

    Hyperthyroidism was induced in rats and somatic indices and metabolic parameters were analyzed in testis. In addition, the morphological analysis evidenced testes maturation and intense protein synthesis and processing, supporting the enhancement in vimentin synthesis in hyperthyroid testis. Furthermore, vimentin phosphorylation was increased, indicating an accumulation of phosphorylated vimentin associated to the cytoskeleton, which could be a consequence of the extracellular-regulated kinase (ERK) activation regulating the cytoskeleton. Biomarkers of oxidative stress demonstrated an increased basal metabolic rate measured by tissue oxygen consumption, as well as, increased TBARS levels. In addition, the enzymatic and non-enzymatic antioxidant defences appeared to respond according to the augmented oxygen consumption. We observed decreased total glutathione levels, with enhancement of reduced glutathione, whereas most of the antioxidant enzyme activities were induced. Otherwise, superoxide dismutase activity was inhibited. These results support the idea that an increase in mitochondrial ROS generation, underlying cellular oxidative damage, is a side effect of hyperthyroid-induced biochemical changes by which rat testis increase their metabolic capacity.

  14. Enzymatic assay for methotrexate in erythrocytes

    DEFF Research Database (Denmark)

    Schrøder, H; Heinsvig, E M

    1985-01-01

    Methotrexate (MTX) accumulates in erythrocytes in MTX-treated patients. We present a modified enzymatic assay measuring MTX concentrations between 10 and 60 nmol/l in erythrocytes, adapted for a centrifugal analyser (Cobas Bio). About 40 patient's samples could be analysed within 1 h. The detection...

  15. Correlation of nucleotides and carbohydrates metabolism with pro-oxidant and antioxidant systems of erythrocytes depending on age in patients with colorectal cancer.

    Science.gov (United States)

    Zuikov, S A; Borzenko, B G; Shatova, O P; Bakurova, E M; Polunin, G E

    2014-06-01

    To examine the relationship between metabolic features of purine nucleotides and antioxidant system depending on the age of patients with colorectal cancer. The activity of adenosine deaminase, xanthine oxidase, glutathione peroxidase, superoxide dismutase and glucose-6-phosphate dehydrogenase, the NOx concentration and the oxidative modification of proteins were determined spectrophotometricaly in 50 apparently healthy people and 26 patients with colorectal cancer stage -III---IV, aged 40 to 79 years. Increase of pro-oxidant system of erythrocytes with the age against decrease in level of antioxidant protection in both healthy individuals and colorectal cancer patients was determined. A significant increase of pro-ducts of oxidative proteins modification in erythrocytes with ageing was shown. Statistically significant correlation between enzymatic and non enzymatic markers pro-oxidant system and the activity of antioxidant defense enzymes in erythrocytes of patient with colorectal cancer was determined. Obtained results have demonstrated the imbalance in the antioxidant system of erythrocytes in colorectal cancer patients that improve the survival of cancer cells that is more distinctly manifested in ageing.

  16. Detection of extracellular enzymatic activity in microorganisms ...

    African Journals Online (AJOL)

    Detection of extracellular enzymatic activity in microorganisms isolated from waste vegetable oil contaminated soil using plate methodologies. Eugenia G. Ortiz Lechuga, Isela Quintero Zapata, Katiushka Arévalo Niño ...

  17. Detection of extracellular enzymatic activity in microorganisms ...

    African Journals Online (AJOL)

    sunny t

    2015-09-18

    Sep 18, 2015 ... microorganisms with all three enzymatic activities, thereby establishing these techniques as ... supplemented at 1% with vegetable oils, including olive (OLI) ..... cepacia lipase for biodiesel fuel production from soybean oil.

  18. Synthesis, molecular structure, biological properties and molecular docking studies on Mn(II), Co(II) and Zn(II) complexes containing bipyridine-azide ligands.

    Science.gov (United States)

    Thamilarasan, Vijayan; Jayamani, Arumugam; Sengottuvelan, Nallathambi

    2015-01-07

    Metal complexes of the type Mn(bpy)2(N3)2 (1), Co(bpy)2(N3)2·3H2O (2) and Zn2(bpy)2(N3)4 (3) (Where bpy = 2,2-bipyridine) have been synthesized and characterized by elemental analysis and spectral (FT-IR, UV-vis) studies. The structure of complexes (1-3) have been determined by single crystal X-ray diffraction studies and the configuration of ligand-coordinated metal(II) ion was well described as distorted octahedral coordination geometry for Mn(II), Co(II) and distorted square pyramidal geometry for Zn(II) complexes. DNA binding interaction of these complexes (1-3) were investigated by UV-vis absorption, fluorescence circular dichroism spectral and molecular docking studies. The intrinsic binding constants Kb of complexes 1, 2 and 3 with CT-DNA obtained from UV-vis absorption studies were 8.37 × 10(4), 2.23 × 10(5) and 5.52 × 10(4) M(-1) respectively. The results indicated that the three complexes are able to bind to DNA with different binding affinity, in the order 2 > 1 > 3. Complexes (1-3) exhibit a good binding propensity to bovine serum albumin (BSA) proteins having relatively high binding constant values. Gel electrophoresis assay demonstrated the ability of the complexes 1-3 promote the cleavage ability of the pBR322 plasmid DNA in the presence of the reducing agent 3-mercaptopropionic acid (MPA) but with different cleavage mechanisms: the complex 3 cleaves DNA via hydrolytic pathway (T4 DNA ligase assay), while the DNA cleavage by complexes 1 and 2 follows oxidative pathway. The chemical nuclease activity follows the order: 2 > 1 > 3. The effects of various activators were also investigated and the nuclease activity efficacy followed the order MPA > GSH > H2O2 > Asc. The cytotoxicity studies of complexes 1-3 were tested in vitro on breast cancer cell line (MCF-7) and they found to be active. Copyright © 2014. Published by Elsevier Masson SAS.

  19. Multi-Scale Computational Enzymology: Enhancing Our Understanding of Enzymatic Catalysis

    OpenAIRE

    Rami Gherib; Hisham M. Dokainish; James W. Gauld

    2013-01-01

    Elucidating the origin of enzymatic catalysis stands as one the great challenges of contemporary biochemistry and biophysics. The recent emergence of computational enzymology has enhanced our atomistic-level description of biocatalysis as well the kinetic and thermodynamic properties of their mechanisms. There exists a diversity of computational methods allowing the investigation of specific enzymatic properties. Small or large density functional theory models allow the comparison of a pleth...

  20. Precision Synthesis of Functional Polysaccharide Materials by Phosphorylase-Catalyzed Enzymatic Reactions

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2016-04-01

    Full Text Available In this review article, the precise synthesis of functional polysaccharide materials using phosphorylase-catalyzed enzymatic reactions is presented. This particular enzymatic approach has been identified as a powerful tool in preparing well-defined polysaccharide materials. Phosphorylase is an enzyme that has been employed in the synthesis of pure amylose with a precisely controlled structure. Similarly, using a phosphorylase-catalyzed enzymatic polymerization, the chemoenzymatic synthesis of amylose-grafted heteropolysaccharides containing different main-chain polysaccharide structures (e.g., chitin/chitosan, cellulose, alginate, xanthan gum, and carboxymethyl cellulose was achieved. Amylose-based block, star, and branched polymeric materials have also been prepared using this enzymatic polymerization. Since phosphorylase shows a loose specificity for the recognition of substrates, different sugar residues have been introduced to the non-reducing ends of maltooligosaccharides by phosphorylase-catalyzed glycosylations using analog substrates such as α-d-glucuronic acid and α-d-glucosamine 1-phosphates. By means of such reactions, an amphoteric glycogen and its corresponding hydrogel were successfully prepared. Thermostable phosphorylase was able to tolerate a greater variance in the substrate structures with respect to recognition than potato phosphorylase, and as a result, the enzymatic polymerization of α-d-glucosamine 1-phosphate to produce a chitosan stereoisomer was carried out using this enzyme catalyst, which was then subsequently converted to the chitin stereoisomer by N-acetylation. Amylose supramolecular inclusion complexes with polymeric guests were obtained when the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of the guest polymers. Since the structure of this polymeric system is similar to the way that a plant vine twines around a rod, this polymerization system has been named

  1. Changes in Non-Enzymatic Antioxidants in the Blood Following Anaerobic Exercise in Men and Women

    Science.gov (United States)

    Wiecek, Magdalena; Kantorowicz, Malgorzata

    2015-01-01

    Purpose The aim of this study was to compare changes in total oxidative status (TOS), total antioxidative capacity (TAC) and the concentration of VitA, VitE, VitC, uric acid (UA), reduced (GSH) and oxidized glutathione (GSSG) in blood within 24 hours following anaerobic exercise (AnEx) among men and women. Methods 10 women and 10 men performed a 20-second bicycle sprint (AnEx). Concentrations of oxidative stress indicators were measured before AnEx and 3, 15 and 30 minutes and 1 hour afterwards. UA, GSH and GSSH were also measured 24 hours after AnEx. Lactate and H+ concentrations were measured before and 3 minutes after AnEx. Results The increase in lactate and H+ concentrations following AnEx was similar in both sexes. Changes in the concentrations of all oxidative stress indicators were significant and did not differ between men and women. In both sexes, TOS, TAC, TOS/TAC and VitA and VitE concentrations were the highest 3 minutes, VitC concentration was the highest 30 minutes, and UA concentration was the highest 1 hour after AnEx. GSH concentration was significantly lower than the initial concentration from 15 minutes to 24 hour after AnEx. GSSG concentration was significantly higher, while the GSH/GSSG ratio was significantly lower than the initial values 1 hour and 24 hour after AnEx. Conclusions With similar changes in lactate and H+ concentrations, AnEx induces the same changes in TAC, TOS, TOS/TAC and non-enzymatic antioxidants of low molecular weight in men and women. Oxidative stress lasted at least 24 hours after AnEx. PMID:26600020

  2. Fatty acid oxidation in the human fetus: implications for fetal and adult disease

    NARCIS (Netherlands)

    Oey, Nadia A.; Ruiter, Jos P. N.; Attié-Bitach, Tania; Ijlst, Lodewijk; Wanders, Ronald J. A.; Wijburg, Frits A.

    2006-01-01

    Studies in the last few years have shown a remarkably high activity of fatty acid oxidation (FAO) enzymes in human placenta. We have recently shown mRNA expression as well as enzymatic activity of long-chain FAO enzymes in the human embryo and fetus. In this study we show activity of the FAO enzymes

  3. Understanding the effects of lignosulfonate on enzymatic saccharification of pure cellulose

    Science.gov (United States)

    Hongming Lou; Haifeng Zhou; Xiuli Li; Mengxia Wang; J.Y. Zhu; Xueqing Qiu

    2014-01-01

    The effects of lignosulfonate (LS) on enzymatic saccharification of pure cellulose were studied. Four fractions of LS with different molecular weight (MW) prepared by ultrafiltration of a commercial LS were applied at different loadings to enzymatic hydrolysis of Whatman paper under different pH. Using LS fractions with low MW and high degree of sulfonation can enhance...

  4. Rapid and sensitive enzymatic-radiochemical assay for the determination of triglycerides

    International Nuclear Information System (INIS)

    Khoo, J.C.; Miller, E.; Goldberg, D.I.

    1987-01-01

    An enzymatic-radiochemical method suitable for the determination of triglyceride levels of cells in culture is described. The method is based on the enzymatic hydrolysis of triglycerides to free fatty acids which then complex with 63 Ni. The method is rapid, accurate, and inexpensive. The procedure extends the sensitivity of triglyceride measurement to as low as 0.25 nanomoles

  5. Microwave Deposition of Palladium Catalysts on Graphite Spheres and Reduced Graphene Oxide Sheets for Electrochemical Glucose Sensing.

    Science.gov (United States)

    Xie, Jian-De; Gu, Siyong; Zhang, Houan

    2017-09-21

    This work outlines a synthetic strategy inducing the microwave-assisted synthesis of palladium (Pd) nanocrystals on a graphite sphere (GS) and reduced graphene oxide (rGO) supports, forming the Pd catalysts for non-enzymatic glucose oxidation reaction (GOR). The pulse microwave approach takes a short period (i.e., 10 min) to fast synthesize Pd nanocrystals onto a carbon support at 150 °C. The selection of carbon support plays a crucial role in affecting Pd particle size and dispersion uniformity. The robust design of Pd-rGO catalyst electrode displays an enhanced electrocatalytic activity and sensitivity toward GOR. The enhanced performance is mainly attributed to the synergetic effect that combines small crystalline size and two-dimensional conductive support, imparting high accessibility to non-enzymatic GOR. The rGO sheets serve as a conductive scaffold, capable of fast conducting electron. The linear plot of current response versus glucose concentration exhibits good correlations within the range of 1-12 mM. The sensitivity of the Pd-rGO catalyst is significantly enhanced by 3.7 times, as compared to the Pd-GS catalyst. Accordingly, the Pd-rGO catalyst electrode can be considered as a potential candidate for non-enzymatic glucose biosensor.

  6. Enzymatic saccharification of brown seaweed for production of fermentable sugars.

    Science.gov (United States)

    Sharma, Sandeep; Horn, Svein Jarle

    2016-08-01

    This study shows that high drying temperatures negatively affect the enzymatic saccharification yield of the brown seaweed Saccharina latissima. The optimal drying temperature of the seaweed in terms of enzymatic sugar release was found to be 30°C. The enzymatic saccharification process was optimized by investigating factors such as kinetics of sugar release, enzyme dose, solid loading and different blend ratios of cellulases and an alginate lyase. It was found that the seaweed biomass could be efficiently hydrolysed to fermentable sugars using a commercial cellulase cocktail. The inclusion of a mono-component alginate lyase was shown to improve the performance of the enzyme blend, in particular at high solid loadings. At 25% dry matter loading a combined glucose and mannitol concentration of 74g/L was achieved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A Networks Approach to Modeling Enzymatic Reactions.

    Science.gov (United States)

    Imhof, P

    2016-01-01

    Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes. © 2016 Elsevier Inc. All rights reserved.

  8. Non-enzymatic detection of glucose in fruits using TiO2-Mn3O4 hybrid nano interface

    Science.gov (United States)

    Jayanth Babu, K.; Sasya, Madhurantakam; Nesakumar, Noel; Shankar, Prabakaran; Gumpu, Manju Bhargavi; Ramachandra, Bhat Lakshmishri; Kulandaisamy, Arockia Jayalatha; Rayappan, John Bosco Balaguru

    2017-08-01

    Consumption of fruits leads to increase in glucose level in blood for diabetic patients, which in turn leads to peripheral, vascular, ocular complications and cardiac diseases. In this context, a non-enzymatic hybrid glucose biosensor was fabricated for the first time to detect glucose by immobilizing titanium oxide-manganese oxide (TiO2-Mn3O4) nanocomposite and chitosan membrane on to the surface of Pt working electrode (Pt/TiO2-Mn3O4/chitosan). TiO2-Mn3O4 nanocomposite catalyzed the oxidation of glucose to gluconolactone in the absence of glucose oxidase enzyme with high electron transfer rate, good biocompatibility and large surface coverage. Electrochemical measurements revealed the excellent sensing response of the developed biosensor towards glucose with a high sensitivity of 7.073 µA mM-1, linearity of 0.01-0.1 mM, low detection limit of 0.01 µM, reproducibility of 1.5% and stability of 98.8%. The electrochemical parameters estimated from the anodic process were subjected to linear regression models for the detection of unknown concentration of glucose in different fruit samples.

  9. Enzymatic detection of formalin-fixed museum specimens for DNA analysis and enzymatic maceration of formalin-fixed specimens

    DEFF Research Database (Denmark)

    Sørensen, Margrethe; Redsted Rasmussen, Arne; Simonsen, Kim Pilkjær

    2016-01-01

    % ethanol. The method was subsequently tested on wild-living preserved specimens and an archived specimen. The protease enzyme used was SavinaseH 16 L, Type EX from Novozymes A/S. The enzymatic screening test demands only simple laboratory equipment. The method is useful for natural history collections...

  10. Enzymatic Upgrading of Heavy Crudes via Partial Oxidation or Conversion of PAHs

    Energy Technology Data Exchange (ETDEWEB)

    Borole, A P; Davison, B H; Kuritz, T

    2002-07-01

    The objective of this program was to investigate new enzyme-based technologies for upgrading of heavy oils. Enzymes were selected for screening from those capable of conversion of polyaromatic hydrocarbons (PAHs) reported in the literature. Oxidative reactions of PAHs using hydrogen peroxide as an oxidant with conversion to partially oxidized products were used. The enzymes (lignin peroxidase, cytochrome c) were tested in various organic solvents and found to loose activity in pure organic solvents. A thermodynamic analysis revealed lack of effective interaction between the substrate and enzyme as the cause for low activity. The protein cytochrome c was modified to work in organic media by chemical hydrophobic group attachment. Two different modifications were made: attachment of polyethylene glycol (PEG) and alkyl groups. Alkyl groups, being small could be attached at interior locations within the core of the enzyme and possibly near the active site. Increase in the threshold solvent concentration where maximum enzyme activity occurred indicated potential of this strategy for effective enzyme-substrate interaction. Further improvements in enzyme activity called for other diverse methods due to the unavailability of sufficient chemical modification sites. Genetic techniques were therefore explored for further improvements. These experiments focused on cloning of a gene for the fungal enzyme lignin peroxidase (lip) into yeast Pichia pastoris, which would allow easy manipulation of the gene. However, differences in the fungal and yeast cellular machinery impeded significant expression of the fungal enzyme. Several strategies were explored to allow higher-level expression of the enzyme, which was required for enzyme improvement. The strategies used in this investigation are described in the report. Industrial in-kind support was available throughout the project period. review of the research results was carried out on a regular basis (bimonthly reports and annual

  11. Thermal stability and degradation kinetics of polyphenols and polyphenylenediamines enzymatically synthesized by horseradish peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hansol; Ryu, Keungarp [University of Ulsan, Ulsan (Korea, Republic of); Kwon, Oyul [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2015-09-15

    Various substituted phenols and phenylenediamines were enzymatically polymerized by horseradish peroxidase in 80% (v/v) organic solvents-aqueous buffer (100 mM sodium acetate, pH 5) mixtures with H{sub 2}O{sub 2} as the oxidant. The thermal stability of the polymers was investigated by thermogravimetric analysis (TGA) and represented by the char yield (wt% of the initial polymer mass) after being heated at 800 .deg. C. Poly(p-phenylphenol) had the highest thermal stability among the synthesized polymers with a char yield of 47 wt%. The polymers containing amino groups such as poly(p-aminophenol) and polyphenylenediamines were also shown to possess high thermal stabilities. The activation energies for the thermal degradation of the polymers determined by derivative thermogravimetric analysis (DTG) using Horowitz-Metzger's pseudo-first-order kinetics were in the range between 23-65 kJ/mol and comparable to those of the chemically synthesized polymers. Dynamic structural changes of the enzymatically synthesized polymers upon heating were studied by differential scanning calorimetry (DSC). The DSC curves of poly(p-phenylphenol) showed a broad exothermic peaks between 150-250 .deg. C, indicating that the polymer undergoes complex structural transitions in the temperature range. On the other hand, the DSC curves of the poly(p-aminophenol) and the poly(p-phenylenediamine) which contain amino groups showed strong sharp endothermic peaks near 150 .deg. C, implying that these polymers possess homogeneous oriented structures which undergo a concerted structural disintegration upon heating.

  12. Thermal stability and degradation kinetics of polyphenols and polyphenylenediamines enzymatically synthesized by horseradish peroxidase

    International Nuclear Information System (INIS)

    Park, Hansol; Ryu, Keungarp; Kwon, Oyul

    2015-01-01

    Various substituted phenols and phenylenediamines were enzymatically polymerized by horseradish peroxidase in 80% (v/v) organic solvents-aqueous buffer (100 mM sodium acetate, pH 5) mixtures with H 2 O 2 as the oxidant. The thermal stability of the polymers was investigated by thermogravimetric analysis (TGA) and represented by the char yield (wt% of the initial polymer mass) after being heated at 800 .deg. C. Poly(p-phenylphenol) had the highest thermal stability among the synthesized polymers with a char yield of 47 wt%. The polymers containing amino groups such as poly(p-aminophenol) and polyphenylenediamines were also shown to possess high thermal stabilities. The activation energies for the thermal degradation of the polymers determined by derivative thermogravimetric analysis (DTG) using Horowitz-Metzger's pseudo-first-order kinetics were in the range between 23-65 kJ/mol and comparable to those of the chemically synthesized polymers. Dynamic structural changes of the enzymatically synthesized polymers upon heating were studied by differential scanning calorimetry (DSC). The DSC curves of poly(p-phenylphenol) showed a broad exothermic peaks between 150-250 .deg. C, indicating that the polymer undergoes complex structural transitions in the temperature range. On the other hand, the DSC curves of the poly(p-aminophenol) and the poly(p-phenylenediamine) which contain amino groups showed strong sharp endothermic peaks near 150 .deg. C, implying that these polymers possess homogeneous oriented structures which undergo a concerted structural disintegration upon heating.

  13. Starch facilitates enzymatic wheat gluten hydrolysis

    NARCIS (Netherlands)

    Hardt, N.A.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Wheat gluten can be hydrolyzed by either using (vital) wheat gluten or directly from wheat flour. This study investigates the influence of the presence of starch, the main component of wheat, on enzymatic wheat gluten hydrolysis. Wheat gluten present in wheat flour (WFG) and vital wheat gluten (VWG)

  14. Influence of microorganisms on the oxidation state distribution of multivalent actinides under anoxic conditions

    International Nuclear Information System (INIS)

    Reed, Donald Timothy; Borkowski, Marian; Lucchini, Jean-Francois; Ams, David; Richmann, M.K.; Khaing, H.; Swanson, J.S.

    2010-01-01

    The fate and potential mobility of multivalent actinides in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium, uranium and neptunium are the near-surface multivalent contaminants of concern and are also key contaminants for the deep geologic disposal of nuclear waste. Their mobility is highly dependent on their redox distribution at their contamination source as well as along their potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. Under anoxic conditions, indirect and direct bioreduction mechanisms exist that promote the prevalence of lower-valent species for multivalent actinides. Oxidation-state-specific biosorption is also an important consideration for long-term migration and can influence oxidation state distribution. Results of ongoing studies to explore and establish the oxidation-state specific interactions of soil bacteria (metal reducers and sulfate reducers) as well as halo-tolerant bacteria and Archaea for uranium, neptunium and plutonium will be presented. Enzymatic reduction is a key process in the bioreduction of plutonium and uranium, but co-enzymatic processes predominate in neptunium systems. Strong sorptive interactions can occur for most actinide oxidation states but are likely a factor in the stabilization of lower-valent species when more than one oxidation state can persist under anaerobic microbiologically-active conditions. These results for microbiologically active systems are interpreted in the context of their overall importance in defining the potential migration of multivalent actinides in the subsurface.

  15. Chemistry of phospholipid oxidation.

    Science.gov (United States)

    Reis, Ana; Spickett, Corinne M

    2012-10-01

    The oxidation of lipids has long been a topic of interest in biological and food sciences, and the fundamental principles of non-enzymatic free radical attack on phospholipids are well established, although questions about detail of the mechanisms remain. The number of end products that are formed following the initiation of phospholipid peroxidation is large, and is continually growing as new structures of oxidized phospholipids are elucidated. Common products are phospholipids with esterified isoprostane-like structures and chain-shortened products containing hydroxy, carbonyl or carboxylic acid groups; the carbonyl-containing compounds are reactive and readily form adducts with proteins and other biomolecules. Phospholipids can also be attacked by reactive nitrogen and chlorine species, further expanding the range of products to nitrated and chlorinated phospholipids. Key to understanding the mechanisms of oxidation is the development of advanced and sensitive technologies that enable structural elucidation. Tandem mass spectrometry has proved invaluable in this respect and is generally the method of choice for structural work. A number of studies have investigated whether individual oxidized phospholipid products occur in vivo, and mass spectrometry techniques have been instrumental in detecting a variety of oxidation products in biological samples such as atherosclerotic plaque material, brain tissue, intestinal tissue and plasma, although relatively few have achieved an absolute quantitative analysis. The levels of oxidized phospholipids in vivo is a critical question, as there is now substantial evidence that many of these compounds are bioactive and could contribute to pathology. The challenges for the future will be to adopt lipidomic approaches to map the profile of oxidized phospholipid formation in different biological conditions, and relate this to their effects in vivo. This article is part of a Special Issue entitled: Oxidized phospholipids

  16. Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors

    NARCIS (Netherlands)

    Budzaki, S.; Miljic, G.; Sundaram, S.; Tisma, M.; Hessel, V.

    2017-01-01

    A cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors using refined sunflower oil is performed in this work. A few enzymatic micro-flow reactors have so far reached a performance close to gram-scale, which might be sufficient for the pharmaceutical industry. This

  17. Characterization of Volatile Flavor Compounds in Chinese Rice Wine Fermented from Enzymatic Extruded Rice.

    Science.gov (United States)

    Xu, Enbo; Long, Jie; Wu, Zhengzong; Li, Hongyan; Wang, Fang; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan

    2015-07-01

    Enzymatic extrusion, instead of traditional steam cooking, to treat rice is an efficient and alternative pretreatment for Chinese rice wine fermentation. In order to determine the formation of volatiles in enzymatic extrusion-processed rice wine (EE), and to confirm its characteristic flavor compounds, headspace solid-phase micro-extraction followed by GC-MS was used. A total of 66 volatile compounds were identified in EE. During fermentation, most volatiles generated from enzymatic extruded rice had the similar trends with those from steam-cooked rice, but the differences in the concentration of volatiles indicated a changed balance of flavors release caused by enzymatic extrusion. Besides, the concentrations and sorts of volatiles in EEs fermented from different rice particle sizes, were not dramatically different. By principal component analysis, EE could be distinctly separated from other traditional Chinese rice wines according to its characteristic volatiles, namely, 2-heptanol, 1-octen-3-ol, ethyl 4-hydroxybenzoate, methylpentyl 2-propenoate, γ-hexalactone, and 4-vinylguaiacol. Enzymatic extrusion liquefaction has been a popular thermal treatment for cereals, and gradually being applied in fermentation and liquor-making industry all over the world. The characterization of volatile flavor compounds in Chinese rice wine processed by enzymatic extrusion liquefaction pretreatment, might be made use not only for a better understanding of this new-type rice wine, but for the further utilization of enzymatic extrusion in other wine or alcohol production as well. © 2015 Institute of Food Technologists®

  18. Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus

    Energy Technology Data Exchange (ETDEWEB)

    Dewez, David [Departement de Chimie et de Biochimie, Centre TOXEN, Universite du Quebec a Montreal, CP 8888, Succursale Centre-Ville, Montreal, Quebec, H3C 3P8 (Canada); Geoffroy, Laure [Laboratoire d' Eco-Toxicologie, Unite de recherche ' Vignes et Vins de Champagne' , UPRES-EA 2069, Universite de Reims Champagne-Ardenne BP 1039, F51687 REIMS CEDEX 2 (France); Vernet, Guy [Laboratoire d' Eco-Toxicologie, Unite de recherche ' Vignes et Vins de Champagne' , UPRES-EA 2069, Universite de Reims Champagne-Ardenne BP 1039, F51687 REIMS CEDEX 2 (France); Popovic, Radovan [Departement de Chimie et de Biochimie, Centre TOXEN, Universite du Quebec a Montreal, CP 8888, Succursale Centre-Ville, Montreal, Quebec, H3C 3P8 (Canada)]. E-mail: popovic.radovan@uqam.ca

    2005-08-30

    Modulated PAM fluorometry and Plant Efficiency Analyser methods were used to investigate photosynthetic fluorescence parameters of alga Scenedesmus obliquus exposed to inhibitory effect of fungicides copper sulphate and fludioxonil (N-(4-nitrophenyl)-N'-propyl-uree). The change of those parameters were studied when alga S. obliquus have been exposed during 48 h to different concentrations of fungicides (1, 2 and 3 mg l{sup -1}). Under the same condition, enzymatic activities of catalase, ascorbate peroxidase, glutathione reductase and glutathione S-transferase were investigated to evaluate antioxidative response to fungicides effects. The change of sensitivity of those parameters was dependent to the mode of fungicide action, their concentration and time of exposure. For copper effects, the most indicative photosynthetic biomarkers were parameters Q {sub N} as non-photochemical fluorescence quenching, Q {sub Emax} as the proton induced fluorescence quenching and ABS/RC as the antenna size per photosystem II reaction center. Copper induced oxidative stress was indicated by increased activity of catalase serving as the most sensitive and valuable enzymatic biomarker. On the other hand, fludioxonil effect on photosynthetic parameters was very negligible and consequently not very useful as biomarkers. However, fludioxonil induced strong antioxidative activities associated with cytosol enzymes, as we found for catalase, ascorbate peroxidase and glutathione S-transferase activities. By obtained results, we may suggest for the activation of those enzymes to be sensitive and valuable biomarkers of oxidative stress induced by fludioxonil. Determination of biomarkers sensitivity may offer advantages in providing real criteria to use them for ecotoxicological diagnostic studies.

  19. Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus

    International Nuclear Information System (INIS)

    Dewez, David; Geoffroy, Laure; Vernet, Guy; Popovic, Radovan

    2005-01-01

    Modulated PAM fluorometry and Plant Efficiency Analyser methods were used to investigate photosynthetic fluorescence parameters of alga Scenedesmus obliquus exposed to inhibitory effect of fungicides copper sulphate and fludioxonil (N-(4-nitrophenyl)-N'-propyl-uree). The change of those parameters were studied when alga S. obliquus have been exposed during 48 h to different concentrations of fungicides (1, 2 and 3 mg l -1 ). Under the same condition, enzymatic activities of catalase, ascorbate peroxidase, glutathione reductase and glutathione S-transferase were investigated to evaluate antioxidative response to fungicides effects. The change of sensitivity of those parameters was dependent to the mode of fungicide action, their concentration and time of exposure. For copper effects, the most indicative photosynthetic biomarkers were parameters Q N as non-photochemical fluorescence quenching, Q Emax as the proton induced fluorescence quenching and ABS/RC as the antenna size per photosystem II reaction center. Copper induced oxidative stress was indicated by increased activity of catalase serving as the most sensitive and valuable enzymatic biomarker. On the other hand, fludioxonil effect on photosynthetic parameters was very negligible and consequently not very useful as biomarkers. However, fludioxonil induced strong antioxidative activities associated with cytosol enzymes, as we found for catalase, ascorbate peroxidase and glutathione S-transferase activities. By obtained results, we may suggest for the activation of those enzymes to be sensitive and valuable biomarkers of oxidative stress induced by fludioxonil. Determination of biomarkers sensitivity may offer advantages in providing real criteria to use them for ecotoxicological diagnostic studies

  20. Bioethanol production: Pretreatment and enzymatic hydrolysis of softwood

    Energy Technology Data Exchange (ETDEWEB)

    Tengborg, Charlotte

    2000-05-01

    The enzymatic hydrolysis process can be used to produce bioethanol from softwood, which are the dominating raw material in the Northern hemisphere. This thesis deals with the development of the process focusing on the pretreatment and the enzymatic hydrolysis stages. The influence of pretreatment conditions on sugar yield, and the effect of inhibitors on the ethanol yield, were investigated for spruce and pine. The maximum yields of hemicellulose sugars and glucose were obtained under different pretreatment conditions. This indicates that two-stage pretreatment may be preferable. The added catalysts, H{sub 2}SO{sub 4} and SO{sub 2}, resulted in similar total sugar yields about 40 g/100 g dry raw material. However, the fermentability of SO{sub 2}-impregnated material was better. This pretreatment resulted in the formation of inhibitors to the subsequent process steps, e.g. sugar and lignin degradation products. The glucose yield in the enzymatic hydrolysis stage was affected by various parameters such as enzyme loading, temperature, pH, residence time, substrate concentration, and agitation. To decrease the amount of fresh water used and thereby waste water produced, the sugar-rich prehydrolysate from the pretreatment step was included in the enzymatic hydrolysis of the solid fraction, resulting in a reduction in the cellulose conversion of up to 36%. Different prehydrolysate detoxification methods, such as treatment with Ca(OH){sub 2}, laccase, and fermentation using yeast, were investigated. The latter was shown to be very efficient. The amount of fresh water used can be further reduced by recycling various process streams. This was simulated experimentally in a bench-scale process. A reduction in fresh water demand of 50% was obtained without any further negative effects on either hydrolysis or fermentation.

  1. Role of Creatine Supplementation on Exercise-Induced Cardiovascular Function and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Michael I. C. Kingsley

    2009-01-01

    Full Text Available Many degenerative diseases are associated with increased oxidative stress. Creatine has the potential to act as an indirect and direct antioxidant; however, limited data exist to evaluate the antioxidant capabilities of creatine supplementation within in vivo human systems. This study aimed to investigate the effects of oral creatine supplementation on markers of oxidative stress and antioxidant defenses following exhaustive cycling exercise. Following preliminary testing and two additional familiarization sessions, 18 active males repeated two exhaustive incremental cycling trials (T1 and T2 separated by exactly 7 days. The subjects were assigned, in a double-blind manner, to receive either 20 g of creatine (Cr or a placebo (P for the 5 days preceding T2. Breath-by-breath respiratory data and heart rate were continually recorded throughout the exercise protocol and blood samples were obtained at rest (preexercise, at the end of exercise (postexercise, and the day following exercise (post24 h. Serum hypdroperoxide concentrations were elevated at postexercise by 17 ± 5% above preexercise values (p = 0.030. However, supplementation did not influence lipid peroxidation (serum hypdroperoxide concentrations, resistance of low density lipoprotein to oxidative stress (t1/2max LDL oxidation and plasma concentrations of non-enzymatic antioxidants (retinol, α-carotene, β-carotene, α-tocopherol, γ-tocopherol, lycopene and vitamin C. Heart rate and oxygen uptake responses to exercise were not affected by supplementation. These findings suggest that short-term creatine supplementation does not enhance non-enzymatic antioxidant defence or protect against lipid peroxidation induced by exhaustive cycling in healthy males.

  2. Glycosylation site-targeted PEGylation of glucose oxidase retains native enzymatic activity.

    Science.gov (United States)

    Ritter, Dustin W; Roberts, Jason R; McShane, Michael J

    2013-04-10

    Targeted PEGylation of glucose oxidase at its glycosylation sites was investigated to determine the effect on enzymatic activity, as well as the bioconjugate's potential in an optical biosensing assay. Methoxy-poly(ethylene glycol)-hydrazide (4.5kDa) was covalently coupled to periodate-oxidized glycosylation sites of glucose oxidase from Aspergillus niger. The bioconjugate was characterized using gel electrophoresis, liquid chromatography, mass spectrometry, and dynamic light scattering. Gel electrophoresis data showed that the PEGylation protocol resulted in a drastic increase (ca. 100kDa) in the apparent molecular mass of the protein subunit, with complete conversion to the bioconjugate; liquid chromatography data corroborated this large increase in molecular size. Mass spectrometry data proved that the extent of PEGylation was six poly(ethylene glycol) chains per glucose oxidase dimer. Dynamic light scattering data indicated the absence of higher-order oligomers in the PEGylated GOx sample. To assess stability, enzymatic activity assays were performed in triplicate at multiple time points over the course of 29 days in the absence of glucose, as well as before and after exposure to 5% w/v glucose for 24h. At a confidence level of 95%, the bioconjugate's performance was statistically equivalent to native glucose oxidase in terms of activity retention over the 29 day time period, as well as following the 24h glucose exposure. Finally, the bioconjugate was entrapped within a poly(2-hydroxyethyl methacrylate) hydrogel containing an oxygen-sensitive phosphor, and the construct was shown to respond approximately linearly with a 220±73% signal change (n=4, 95% confidence interval) over the physiologically-relevant glucose range (i.e., 0-400mg/dL); to our knowledge, this represents the first demonstration of PEGylated glucose oxidase incorporated into an optical biosensing assay. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Nutrigenetics and modulation of oxidative stress.

    Science.gov (United States)

    Da Costa, Laura A; Badawi, Alaa; El-Sohemy, Ahmed

    2012-01-01

    Oxidative stress develops as a result of an imbalance between the production and accumulation of reactive species and the body's ability to manage them using exogenous and endogenous antioxidants. Exogenous antioxidants obtained from the diet, including vitamin C, vitamin E, and carotenoids, have important roles in preventing and reducing oxidative stress. Individual genetic variation affecting proteins involved in the uptake, utilization and metabolism of these antioxidants may alter their serum levels, exposure to target cells and subsequent contribution to the extent of oxidative stress. Endogenous antioxidants include the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, paraoxanase, and glutathione S-transferase. These enzymes metabolize reactive species and their by-products, reducing oxidative stress. Variation in the genes coding these enzymes may impact their enzymatic antioxidant activity and, thus, the levels of reactive species, oxidative stress, and risk of disease development. Oxidative stress may contribute to the development of chronic disease, including osteoporosis, type 2 diabetes, neurodegenerative diseases, cardiovascular disease, and cancer. Indeed, polymorphisms in most of the genes that code for antioxidant enzymes have been associated with several types of cancer, although inconsistent findings between studies have been reported. These inconsistencies may, in part, be explained by interactions with the environment, such as modification by diet. In this review, we highlight some of the recent studies in the field of nutrigenetics, which have examined interactions between diet, genetic variation in antioxidant enzymes, and oxidative stress. Copyright © 2012 S. Karger AG, Basel.

  4. Microstructural study of pre-treated and enzymatic hydrolyzed bamboo

    Directory of Open Access Journals (Sweden)

    Funsho O. KOLAWOLE

    2016-07-01

    Full Text Available Bamboo was used as biomass feedstock which was pre-treated using dilute acid hydrolysis followed by enzymatic hydrolysis. The bamboo was mechanical ground to particle sizes 212–500µm, followed by pre-treatment with dilute sulfuric acid at a concentration of 0.5 and 1.0 (%v/v at temperatures of 25, 110, 120, 150 and 200°C with time intervals of 2 and 4 hours. Pre-hydrolyzate was later analyzed for reducing sugar using UV-Vis spectrophotometry. Under the above conditions, a maximum glucose yield of 153.1 mg/g was obtained at 200°C and acid concentrations of 1% for 4 hours. Water insoluble solids obtained were subsequently hydrolyzed with Celluclast (Trichoderma reesi and β-glucosidase (Novozyme 188 for 72 hours. Optical Microscope and ESEM images of bamboo samples were obtained at various stages of pre-treatment and enzymatic hydrolysis. Result reveals a breakdown in the ligno-cellulosic structure of the bamboo during exposure to dilute acid and enzymatic hydrolysis.

  5. Enzymatic degradation behavior and cytocompatibility of silk fibroin-starch-chitosan conjugate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baran, Erkan T., E-mail: erkantur@metu.edu.tr; Tuzlakoglu, Kadriye, E-mail: kadriye@dep.uminho.pt; Mano, Joao F., E-mail: jmano@dep.uminho.pt; Reis, Rui L., E-mail: rgreis@dep.uminho.pt

    2012-08-01

    The objective of this study was to investigate the influence of silk fibroin and oxidized starch conjugation on the enzymatic degradation behavior and the cytocompatability of chitosan based biomaterials. The tensile stress of conjugate membranes, which was at 50 Megapascal (MPa) for the lowest fibroin and starch composition (10 weight percent (wt.%)), was decreased significantly with the increased content of fibroin and starch. The weight loss of conjugates in {alpha}-amylase was more notable when the starch concentration was the highest at 30 wt.%. The conjugates were resistant to the degradation by protease and lysozyme except for the conjugates with the lowest starch concentration. After 10 days of cell culture, the proliferation of osteoblast-like cells (SaOS-2) was stimulated significantly by higher fibroin compositions and the DNA synthesis on the conjugate with the highest fibroin (30 wt.%) was about two times more compared to the native chitosan. The light microscopy and the image analysis results showed that the cell area and the lengths were decreased significantly with higher fibroin/chitosan ratio. The study proved that the conjugation of fibroin and starch with the chitosan based biomaterials by the use of non-toxic reductive alkylation crosslinking significantly improved the cytocompatibility and modulated the biodegradation, respectively. - Highlights: Black-Right-Pointing-Pointer Silk fibroin, starch and chitosan conjugates were prepared by reductive alkylation. Black-Right-Pointing-Pointer The enzymatic biodegradation and the cytocompatibility of conjugates were tested. Black-Right-Pointing-Pointer The conjugate with 30% starch composition was degraded by {alpha}-amylase significantly. Black-Right-Pointing-Pointer Higher starch composition in conjugates prevented protease and lysozyme degradation. Black-Right-Pointing-Pointer Fibroin incorporation effectively increased the cell proliferation of conjugates.

  6. Passive smoking reduces and vitamin C increases exercise-induced oxidative stress: does this make passive smoking an anti-oxidant and vitamin C a pro-oxidant stimulus?

    Science.gov (United States)

    Theodorou, Anastasios A; Paschalis, Vassilis; Kyparos, Antonios; Panayiotou, George; Nikolaidis, Michalis G

    2014-11-07

    The current interpretative framework states that, for a certain experimental treatment (usually a chemical substance) to be classified as "anti-oxidant", it must possess the property of reducing (or even nullifying) exercise-induced oxidative stress. The aim of the study was to compare side by side, in the same experimental setup, redox biomarkers responses to an identical acute eccentric exercise session, before and after chronic passive smoking (considered a pro-oxidant stimulus) or vitamin C supplementation (considered an anti-oxidant stimulus). Twenty men were randomly assigned into either passive smoking or vitamin C group. All participants performed two acute eccentric exercise sessions, one before and one after either exposure to passive smoking or vitamin C supplementation for 12 days. Vitamin C, oxidant biomarkers (F2-isoprostanes and protein carbonyls) and the non-enzymatic antioxidant (glutathione) were measured, before and after passive smoking, vitamin C supplementation or exercise. It was found that chronic exposure to passive smoking increased the level of F2-isoprostanes and decreased the level of glutathione at rest, resulting in minimal increase or absence of oxidative stress after exercise. Conversely, chronic supplementation with vitamin C decreased the level of F2-isoprostanes and increased the level of glutathione at rest, resulting in marked exercise-induced oxidative stress. Contrary to the current scientific consensus, our results show that, when a pro-oxidant stimulus is chronically delivered, it is more likely that oxidative stress induced by subsequent exercise is decreased and not increased. Reversely, it is more likely to find greater exercise-induced oxidative stress after previous exposure to an anti-oxidant stimulus. We believe that the proposed framework will be a useful tool to reach more pragmatic explanations of redox biology phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Destruction of enzymatic activities of corn and soybean leaves exposed to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Leffler, H R; Cherry, J H

    1974-01-01

    Experiments were conducted to determine the effects of a single ozone exposure on selected enzymatic activities and chlorophyll contents of corn and soybean seedlings. Both nitrite reductase activity and chlorophyll content of the seedlings were found to be quite sensitive to ozonation and were seen to decrease as much as 50% after exposure to 80 parts per hundred million (pphm) ozone. After exposure to lower levels of ozone, less-pronounced decreases were observed. Nitrate reductase activity was reduced only after exposure to seedling leaf tissues to high concentrations of ozone. These results are discussed in relation to the concept of a two-phase response to oxidant exposure. The first phase is at the chloroplast level and is quite sensitive to the low as well as the high concentrations of ozone; the second is at the cellular level and is relatively resistant to all but the highest ozone concentrations. 27 references, 2 tables.

  8. Wet Oxidation Pretreatment of Tobacco Stalks and Orange Waste for Bioethanol Production. Preliminary results

    DEFF Research Database (Denmark)

    Martin, Carlos; Fernandez, Teresa; Garcia, Ariel

    2009-01-01

    Wet oxidation (WO) was used as a pretreatment method prior to enzymatic hydrolysis of tobacco stalks and orange waste. The pretreatment, performed at 195 degrees C and an oxygen pressure of 1.2 MPa, for 15 min, in the presence of Na2CO3, increased the cellulose content of the materials and gave c...

  9. Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Koo, Bon-Wook; Min, Byeong-Cheol; Gwak, Ki-Seob; Lee, Soo-Min; Choi, Joon-Weon; Yeo, Hwanmyeong; Choi, In-Gyu

    2012-01-01

    Although organosolv pretreatment removed substantial amounts of lignin and xylan, the yield of glucan which is a major sugar source for fermentation to ethanol is more than 90% in most conditions of the organosolv pretreatment. Relative lignin contents of all pretreated biomass were more than 200 g kg −1 , however enzymatic conversions were increased dramatically comparing to untreated biomass. Therefore the correlation between lignin and enzymatic hydrolysis could not be explained just by lignin content, and other changes resulting from lignin removal affected enzymatic hydrolysis. Results on enzymatic conversion and sugar recovery suggested that the critical temperature improving enzymatic hydrolysis significantly was between 120 °C and 130 °C. Microscopic analysis using Field emission scanning electron microscopy (FE-SEM) showed that structural lignin changes happened through organosolv pretreatment. Lignins were isolated from lignin carbohydrate complex (LCC) at the initial stage and then migrated to the surface of biomass. The isolated and migrated lignins were finally redistributed onto surface. These structural changes formed droplets on surface and increased pore volume in pretreated biomass. The increase in pore volume also increased available surface area and enzyme adsorption at initial stage, and thus enzymatic conversion increased significantly through organosolv pretreatment. It was verified that the droplets were mainly composed of lignin and the lignin droplets inhibited enzymatic hydrolysis through adsorption with cellulase. -- Highlights: ► Just lignin contents cannot explain a correlation with enzymatic hydrolysis. ► Several changes resulted from lignin removal must affect enzymatic hydrolysis. ► Droplets are formed by structural changes in lignin during organosolv pretreatment. ► Formation of the lignin droplet increases the pore volume in biomass. ► The increase in pore volume enhances the enzymatic hydrolysis.

  10. Oxidative stress in ageing of hair.

    Science.gov (United States)

    Trüeb, Ralph M

    2009-01-01

    Experimental evidence supports the hypothesis that oxidative stress plays a major role in the ageing process. Reactive oxygen species are generated by a multitude of endogenous and environmental challenges. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage cellular structural membranes, lipids, proteins, and DNA. The body possesses endogenous defence mechanisms, such as antioxidative enzymes and non-enzymatic antioxidative molecules, protecting it from free radicals by reducing and neutralizing them. With age, the production of free radicals increases, while the endogenous defence mechanisms decrease. This imbalance leads to the progressive damage of cellular structures, presumably resulting in the ageing phenotype. Ageing of hair manifests as decrease of melanocyte function or graying, and decrease in hair production or alopecia. There is circumstantial evidence that oxidative stress may be a pivotal mechanism contributing to hair graying and hair loss. New insights into the role and prevention of oxidative stress could open new strategies for intervention and reversal of the hair graying process and age-dependent alopecia.

  11. Oxidation of Phe454 in the Gating Segment Inactivates Trametes multicolor Pyranose Oxidase during Substrate Turnover

    Czech Academy of Sciences Publication Activity Database

    Halada, Petr; Brugger, D.; Volc, Jindřich; Peterbauer, C.K.; Leitner, C.; Haltrich, D.

    2016-01-01

    Roč. 11, č. 2 (2016), e0148108 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LO1509; GA MŠk MEB060910 Institutional support: RVO:61388971 Keywords : AMINO -ACID-RESIDUES * PROTEIN PHARMACEUTICALS * ENZYMATIC OXIDATION Subject RIV: EE - Microbiology, Virology Impact factor: 2.806, year: 2016

  12. A non-enzymatic hydrogen peroxide sensor based on a glassy carbon electrode modified with cuprous oxide and nitrogen-doped graphene in a nafion matrix

    International Nuclear Information System (INIS)

    Jiang, Bin-Bin; Wei, Xian-Wen; Wu, Fang-Hui; Chen, Le; Yuan, Guo-Zan; Wu, Kong-Lin; Dong, Chao; Ye, Yin

    2014-01-01

    We have modified a glassy carbon electrode (GCE) with copper(I) oxide nanoparticles (NPs), nitrogen-doped graphene (N-graphene) and Nafion to obtain a novel sensing platform for the non-enzymatic detection of hydrogen peroxide. The deposition of the Cu 2 O NPs on N-graphene was accomplished by single-step chemical reduction. The nanocomposite was characterized by using X-ray diffraction and scanning electron microscopy which revealed the successful attachment of monodispersed Cu 2 O NPs to the N-graphene. Electrochemical studies revealed that the composite possesses excellent electrocatalytic activity toward the reduction of H 2 O 2 in pH 7.4 phosphate buffer solution at a working potential of −0.60 V. Nafion obviously enhances the stability of the modified GCE and repels any negatively charged species. Compared to a conventional Cu 2 O/Nafion-modified GCE, the modified GCE presented here exhibits (a) a higher catalytic activity for the reduction of H 2 O 2 (1.94 times), (b) a wider linear range (from 5.0 μM to 3.57 mM), (c) a lower detection limit (0.8 μM at an S/N of 3), (d) higher sensitivity (26.67 μA mM −1 ) and (e) a shorter response time (2 s). Moreover, the new GCE exhibits good selectivity and stability. These properties make the new hybrid electrode a promising tool for to the development of electrochemical sensors, molecular bioelectronic devices, biosensors, and biofuel cells. (author)

  13. Investigation of bi-enzymatic reactor based on hybrid monolith with nanoparticles embedded and its proteolytic characteristics.

    Science.gov (United States)

    Shangguan, Lulu; Zhang, Lingyi; Xiong, Zhichao; Ren, Jun; Zhang, Runsheng; Gao, Fangyuan; Zhang, Weibing

    2015-04-03

    The bottom-up strategy of proteomic profiling study based on mass spectrometer (MS) has drawn high attention. However, conventional solution-based digestion could not satisfy the demands of highly efficient and complete high throughput proteolysis of complex samples. We proposed a novel bi-enzymatic reactor by immobilizing two different enzymes (trypsin/chymotrypsin) onto a mixed support of hybrid organic-inorganic monolith with SBA-15 nanoparticles embedded. Typsin and chymotrypsin were crossly immobilized onto the mixed support by covalent bonding onto the monolith with glutaraldehyde as bridge reagent and chelation via copper ion onto the nanoparticles, respectively. Compared with single enzymatic reactors, the bi-enzymatic reactor improved the overall functional analysis of membrane proteins of rat liver by doubling the number of identified peptides (from 1184/1010 with trypsin/chymotrypsin enzymatic reactors to 2891 with bi-enzymatic reactor), which led to more proteins identified with deep coverage (from 452/336 to 620); the efficiency of the bi-enzymatic reactor is also better than that of solution-based tandem digestion, greatly shorting the digestion time from 24h to 50s. Moreover, more transmembrane proteins were identified by bi-enzymatic reactor (106) compared with solution-based tandem digestion (95) with the same two enzymes and enzymatic reactors with single enzyme immobilized (75 with trypsin and 66 with chymotrypsin). The proteolytic characteristics of the bi-enzymatic reactors were evaluated by applying them to digestion of rat liver proteins. The reactors showed good digestion capability for proteins with different hydrophobicity and molecular weight. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Role of enzymatic free radical scavengers in management of oxidative stress in autoimmune disorders.

    Science.gov (United States)

    Srivastava, Shikha; Singh, Deependra; Patel, Satish; Singh, Manju R

    2017-08-01

    Autoimmune disorders are distinct with over production and accumulation of free radicals due to its undisclosed genesis. The cause of numerous disorders as cancer, arthritis, psoriasis, diabetes, alzheimer's, cardiovascular disease, Parkinson's, respiratory distress syndrome, colitis, crohn's, pulmonary fibrosis, obesity and ageing have been associated with immune dysfunction and oxidative stress. In an oxidative stress, reactive oxygen species generally provoke the series of oxidation at cellular level. The buildup of free radicals in turn triggers various inflammatory cells causing release of various inflammatory interleukins, cytokines, chemokines, and tumor necrosis factors which mediate signal transduction and transcription pathways as nuclear factor- kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1 (HIF-1α) and nuclear factor-erythroid 2-related factor (Nrf2). The imbalance could only be combat by supplementing natural defensive antioxidant enzymes such as superoxide dismutase and catalase. The efficiency of these enzymes is enhanced by use of colloidal carriers which include cellular carriers, vesicular and particulate systems like erythrocytes, leukocytes, platelets, liposomes, transferosomes, solid lipid nanoparticles, microspheres, emulsions. Thus this review provides a platform for understanding importance of antioxidant enzymes and its therapeutic applications in treatment of various autoimmune disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Chemo-enzymatic Synthesis of Clickable Xylo-oligosaccharide Monomers from Hardwood 4-O-Methylglucuronoxylan.

    Science.gov (United States)

    MacCormick, Benjamin; Vuong, Thu V; Master, Emma R

    2018-02-12

    A chemo-enzymatic pathway was developed to transform 4-O-methylglucuronic acid (MeGlcpA) containing xylo-oligosaccharides from beechwood into clickable monomers capable of polymerizing at room temperature and in aqueous conditions to form unique polytriazoles. While the gluco-oligosaccharide oxidase (GOOX) from Sarocladium strictum was used to oxidize C6-propargylated oligosaccharides, the acid-amine coupling reagents 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide (EDAC) and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) were employed and compared for their ability to append click functionalities to carboxylic acid groups of enzyme-treated oligosaccharides. While DMT-MM was a superior coupling reagent for this application, a triazine side product was observed during C-1 amidation. Resulting bifunctional xylo-oligosaccharide monomers were polymerized using a Cu(I) catalyst, forming a soft gel which was characterized by 1 H NMR, confirming the triazole product.

  16. Oxidative stress caused by the use of preemergent herbicides in rice crops

    Directory of Open Access Journals (Sweden)

    Ana Claudia Langaro

    Full Text Available ABSTRACT Among the methods of weed control, stands out chemical control. However, even selective, herbicides can trigger the production of reactive species of oxygen and cause oxidative stress. The aim of the study was to evaluate changes in photosynthetic parameters, oxidative damage, antioxidant enzyme activity and altered metabolism of rice plants after applying pre-emergent herbicides. The experiment was conducted in a greenhouse and herbicides used were oxadiazon, pendimethalin and oxyfluorfen, beyond the control without herbicide. There was a reduction of photosynthetic rate and efficiency of carboxylation, compared to the control, when applied herbicides oxyfluorfen and pendimethalin. The major lipid peroxidation and proline accumulation was observed for the herbicide oxyfluorfen. The oxyfluorfen and oxadiazon herbicides also resulted in increased activity of superoxide dismutase, compared to control. When evaluated ascorbate peroxidase activity, there was a higher enzyme activity in plants treated with oxadiazon and pendimethalin. Even selective herbicides registered for weed control in rice crops cause phytotoxicity, reduce height and alter the metabolism of plants, generating reactive oxygen species, which activate enzymatic and non-enzymatic defense systems and result in the degradation of photosynthetic pigments and in reduced protein content.

  17. Efficient Enzymatic Synthesis of Phenolic Ester by Increasing Solubility of Phenolic Acids in Ionic Liquids

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Guo, Zheng; Xu, Xuebing

    Compounds from phenolic acid family are well known natural antioxidants, but the application of phenolic acids as antioxidants in industry is limited due to the relatively low solubility in oil-based media. The properties of phenolic acids can be modified through enzymatic lipophilization...... and modified phenolic acids will have amphiphilic property, therefore they can be localized at oil-water or water-oil phase where oxidation is considered to occur frequently. It had been reported that immobilized Candida Antarctica lipase B was the most effective biocatalyst for the various esterification...... reactions, and it had been widely used for esterification of various phenolic acids with fatty alcohol or triglycerides. However, the conversion of phenolic acids is low due to low solubility in hydrophobic solvents and hindrance effect of unsaturated side chain towards the enzyme. Our studies show...

  18. Starch: chemistry, microstructure, processing and enzymatic degradation

    Science.gov (United States)

    Starch is recognized as one of the most abundant and important commodities containing value added attributes for a vast number of industrial applications. Its chemistry, structure, property and susceptibility to various chemical, physical and enzymatic modifications offer a high technological value ...

  19. Enzymatic production of polysaccharides from gum tragacanth

    DEFF Research Database (Denmark)

    2014-01-01

    Plant polysaccharides, relating to the field of natural probiotic components, can comprise structures similar to human milk oligosaccharides. A method for enzymatic hydrolysis of gum tragacanth from the bush-like legumes of the genus Astragalus, using a combination of pectin hydrolases...

  20. Oxidative stability of mayonnaise containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Mayonnaise based on enzymatically produced specific structured lipid (SL) from sunflower oil and caprylic acid was compared with mayonnaise based on traditional sunflower oil (SO) or chemically randomized lipid (RL) with respect to their oxidative stability, sensory and rheological properties......, but was most likely influenced by the structure of the lipid, the lower tocopherol content and the higher initial levels of lipid hydroperoxides and secondary volatile oxidation compounds in the SL itself compared with the RL and traditional sunflower oil employed. EDTA was a strong antioxidant, while propyl...

  1. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz).

    Science.gov (United States)

    Xu, Jia; Yang, Jun; Duan, Xiaoguang; Jiang, Yueming; Zhang, Peng

    2014-08-05

    Cassava (Manihot esculenta Crantz) is a tropical root crop, and is therefore, extremely sensitive to low temperature; its antioxidative response is pivotal for its survival under stress. Timely turnover of reactive oxygen species (ROS) in plant cells generated by chilling-induced oxidative damages, and scavenging can be achieved by non-enzymatic and enzymatic reactions in order to maintain ROS homeostasis. Transgenic cassava plants that co-express cytosolic superoxide dismutase (SOD), MeCu/ZnSOD, and ascorbate peroxidase (APX), MeAPX2, were produced and tested for tolerance against oxidative and chilling stresses. The up-regulation of MeCu/ZnSOD and MeAPX2 expression was confirmed by the quantitative reverse transcriptase-polymerase chain reaction, and enzymatic activity analyses in the leaves of transgenic cassava plant lines with a single-transgene integration site. Upon exposure to ROS-generating agents, 100 μM ROS-generating reagent methyl viologen and 0.5 M H₂O₂, higher levels of enzymatic activities of SOD and APX were detected in transgenic plants than the wild type. Consequently, the oxidative stress parameters, such as lipid peroxidation, chlorophyll degradation and H₂O₂ synthesis, were lower in the transgenic lines than the wild type. Tolerance to chilling stress at 4°C for 2 d was greater in transgenic cassava, as observed by the higher levels of SOD, catalase, and ascorbate-glutathione cycle enzymes (e.g., APX, monodehydroascorbate reductase, dehydroascorbate reducatase and glutathione reductase) and lower levels of malondialdehyde content. These results suggest that the expression of native cytosolic SOD and APX simultaneously activated the antioxidative defense mechanisms via cyclic ROS scavenging, thereby improving its tolerance to cold stress.

  2. Blood antioxidant and oxidative stress biomarkers acute responses to a 1000-m kayak sprint in elite male kayakers.

    Science.gov (United States)

    Teixeira, V H; Valente, H F; Casal, S I; Marques, F P; Moreira, P A

    2013-02-01

    This study aimed to investigate the response of blood antioxidants and biomarkers of lipid peroxidation, muscle damage and inflammation to a 1000m kayak trial in elite male kayakers. Enzymatic (superoxide dismutase [SOD], glutathione reductase [Gr] and glutathione peroxidase [GPx] activities) and non-enzymatic (total antioxidant status [TAS], uric acid, α-tocopherol, α-carotene, β-carotene, lycopene and lutein and zeaxanthin) antioxidants, thiobarbituric acid reactive substances (TBARS), creatine kinase (CK), interleukin-6 (IL-6) and cortisol were determined in 15 elite male kayakers before and 15 min after a 1000-m kayak simulated race. Both enzymatic and non-enzymatic antioxidants were unaffected by exercise, with the exception of α-carotene which decreased (P=0.013). Uric acid levels were incremented following exercise (P=0.016). The acute exercise resulted in a significant decrease in TAS (P=0.001) and in an increase in CK (P=0.023), TBARS (P<0.001) and IL-6 (P=0.028). Our study suggests that a 1000-m kayak simulated race induces oxidative stress and damage in highly-trained kayakers.

  3. Protective effect of Piper betle leaf extract against cadmium-induced oxidative stress and hepatic dysfunction in rats.

    Science.gov (United States)

    Milton Prabu, S; Muthumani, M; Shagirtha, K

    2012-04-01

    The present study was undertaken to examine the attenuative effect of Piper betle leaf extract (PBE) against cadmium (Cd) induced oxidative hepatic dysfunction in the liver of rats. Pre-oral supplementation of PBE (200 mg/kg BW) treated rats showed the protective efficacy against Cd induced hepatic oxidative stress. Oral administration of Cd (5 mg/kg BW) for four weeks to rats significantly (P > 0.05) elevated the level of serum hepatic markers such as serum aspartate transaminase (AST), serum alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), gamma-glutamyl transpeptidase (GGT), bilirubin (TBRNs), oxidative stress markers viz., thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH), protein carbonyls (PC) and conjugated dienes (CD) and significantly (P > 0.05) reduced the enzymatic antioxidants viz., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD) and non-enzymatic antioxidants Viz., reduced glutathione (GSH), total sulfhydryls (TSH), vitamin C and vitamin E in the liver. Pre-oral supplementation of PBE (200 mg/kg BW) in Cd intoxicated rats, the altered biochemical indices and pathological changes were recovered significantly (P > 0.05) which showed ameliorative effect of PBE against Cd induced hepatic oxidative stress. From the above findings, we suggested that the pre-administration of P. betle leaf extract exhibited remarkable protective effects against cadmium-induced oxidative hepatic injury in rats.

  4. Sequence homolog-based molecular engineering for shifting the enzymatic pH optimum

    Directory of Open Access Journals (Sweden)

    Fuqiang Ma

    2016-09-01

    Full Text Available Cell-free synthetic biology system organizes multiple enzymes (parts from different sources to implement unnatural catalytic functions. Highly adaption between the catalytic parts is crucial for building up efficient artificial biosynthetic systems. Protein engineering is a powerful technology to tailor various enzymatic properties including catalytic efficiency, substrate specificity, temperature adaptation and even achieve new catalytic functions. However, altering enzymatic pH optimum still remains a challenging task. In this study, we proposed a novel sequence homolog-based protein engineering strategy for shifting the enzymatic pH optimum based on statistical analyses of sequence-function relationship data of enzyme family. By two statistical procedures, artificial neural networks (ANNs and least absolute shrinkage and selection operator (Lasso, five amino acids in GH11 xylanase family were identified to be related to the evolution of enzymatic pH optimum. Site-directed mutagenesis of a thermophilic xylanase from Caldicellulosiruptor bescii revealed that four out of five mutations could alter the enzymatic pH optima toward acidic condition without compromising the catalytic activity and thermostability. Combination of the positive mutants resulted in the best mutant M31 that decreased its pH optimum for 1.5 units and showed increased catalytic activity at pH < 5.0 compared to the wild-type enzyme. Structure analysis revealed that all the mutations are distant from the active center, which may be difficult to be identified by conventional rational design strategy. Interestingly, the four mutation sites are clustered at a certain region of the enzyme, suggesting a potential “hot zone” for regulating the pH optima of xylanases. This study provides an efficient method of modulating enzymatic pH optima based on statistical sequence analyses, which can facilitate the design and optimization of suitable catalytic parts for the construction

  5. Total control of chromium in tanneries - thermal decomposition of filtration cake from enzymatic hydrolysis of chrome shavings.

    Science.gov (United States)

    Kocurek, P; Kolomazník, K; Bařinová, M; Hendrych, J

    2017-04-01

    This paper deals with the problem of chromium recovery from chrome-tanned waste and thus with reducing the environmental impact of the leather industry. Chrome-tanned waste was transformed by alkaline enzymatic hydrolysis promoted by magnesium oxide into practically chromium-free, commercially applicable collagen hydrolysate and filtration cake containing a high portion of chromium. The crude and magnesium-deprived chromium cakes were subjected to a process of thermal decomposition at 650°C under oxygen-free conditions to reduce the amount of this waste and to study the effect of magnesium removal on the resulting products. Oxygen-free conditions were applied in order to prevent the oxidation of trivalent chromium into the hazardous hexavalent form. Thermal decomposition products from both crude and magnesium-deprived chrome cakes were characterized by high chromium content over 50%, which occurred as eskolaite (Cr 2 O 3 ) and magnesiochromite (MgCr 2 O 4 ) crystal phases, respectively. Thermal decomposition decreased the amount of chrome cake dry feed by 90%. Based on the performed experiments, a scheme for the total control of chromium in the leather industry was designed.

  6. Economical synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in the detection of Mn(II ions

    Directory of Open Access Journals (Sweden)

    R. Sithara

    2017-11-01

    Full Text Available This study was focused on the synthesis of silver nanoparticles using Acalypha hispida leaf extract and the characterization of the particles using UV–Vis spectroscopy, XRD, FT-IR, and TEM. The results showed the formation of silver nanoparticles, crystalline in nature, with an average size of 20–50 nm. The leaf extract components were analyzed with GC–MS and exhibited a high content of Phytol (40.52%, n-Hexadecanoic acid (9.67%, 1,2,3-Benzenetriol (7.04%, α-d-Mannofuranoside methyl (6.22%, and d-Allose (4.45%. The optimization and statistical investigation of reaction parameters were studied and maximum yield with suitable properties of silver nanoparticles was obtained at leaf extract volume (0.5 mL, the concentration of silver nitrate (1.75 mM, and reaction temperature (50 °C. The method of detecting Mn2+ ions using the colloidal silver nanoparticles was discussed. The minimum and maximum detection limit were found to be 50 and 200 µM of Mn(II ions, respectively. Thus, the obtained results encourage the use of economical synthesis of silver nanoparticles in the development of nanosensors to detect the pollutants present in industrial effluents.

  7. Perspectives for the industrial enzymatic production of glycosides.

    Science.gov (United States)

    de Roode, B Mattheus; Franssen, Maurice C R; van der Padt, Albert; Boom, Remko M

    2003-01-01

    Glycosides are of commercial interest for industry in general and specifically for the pharmaceutical and food industry. Currently chemical preparation of glycosides will not meet EC food regulations, and therefore chemical preparation of glycosides is not applicable in the food industry. Thus, enzyme-catalyzed reactions are a good alternative. However, until now the low yields obtained by enzymatic methods prevent the production of glycosides on a commercial scale. Therefore, high yields should be established by a combination of optimum reaction conditions and continuous removal of the product. Unfortunately, a bioreactor for the commercial scale production of glycosides is not available. The aim of this article is to discuss the literature with respect to enzymatic production of glycosides and the design of an industrially viable bioreactor system.

  8. From Fed-batch to Continuous Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Nordblad, Mathias; Woodley, John M.

    2015-01-01

    In this this paper, we use mechanistic modelling to guide the development of acontinuous enzymatic process that is performed as a fed-batch operation. In this workwe use the enzymatic biodiesel process as a case study. A mechanistic model developedin our previous work was used to determine...... measured components (triglycerides, diglycerides, monoglycerides, free fatty acid and fatty acid methyl esters(biodiesel)) much better than using fed-batch data alone given the smaller residuals. We also observe a reduction in the correlation between the parameters.The model was then used to predict that 5...... reactors are required (with a combined residence time of 30 hours) to reach a final biodiesel concentration within 2 % of the95.6 mass % achieved in a fed-batch operation, for 24 hours....

  9. Improving biogas production from microalgae by enzymatic pretreatment.

    Science.gov (United States)

    Passos, Fabiana; Hom-Diaz, Andrea; Blanquez, Paqui; Vicent, Teresa; Ferrer, Ivet

    2016-01-01

    In this study, enzymatic pretreatment of microalgal biomass was investigated under different conditions and evaluated using biochemical methane potential (BMP) tests. Cellulase, glucohydrolase and an enzyme mix composed of cellulase, glucohydrolase and xylanase were selected based on the microalgae cell wall composition (cellulose, hemicellulose, pectin and glycoprotein). All of them increased organic matter solubilisation, obtaining high values already after 6h of pretreatment with an enzyme dose of 1% for cellulase and the enzyme mix. BMP tests with pretreated microalgae showed a methane yield increase of 8 and 15% for cellulase and the enzyme mix, respectively. Prospective research should evaluate enzymatic pretreatments in continuous anaerobic reactors so as to estimate the energy balance and economic cost of the process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Variations in Enzymatic Activities of Shoots and Roots as an Indicator for Irradiated Seeds

    International Nuclear Information System (INIS)

    Abdelbbaary, N.A.; Elagamay, M.R.

    2005-01-01

    Germinated seedlings from oil seeds (sesame and sunflower) and legumes (Trigonella, Haricot, broad bean and cow pea) were irradiated with gamma rays at doses of 0, 0.2, 0.4, 0.8 and 1 kGy and the data were collected from shoots and roots. Enzymatic activities appeared to be correlated with gamma irradiation dose. The enzymatic activities of irradiated seeds understudy were significantly higher than controls. The peroxidase activities were nearly similar in both roots and shoots, while acid phosphatase activities in roots were higher than in shoots. Also protein contents were higher in roots. The peroxidase and acid phosphatase specific activities in roots were similar. Shoots peroxidase enzymatic activity increased with increased gamma doses. The seedling under study showed two different levels of peroxidase activity, higher as sesame, Trigonella and Sunflower, and lower such as all other legumes understudy. Similar tendency have been also noticed in roots-enzymatic activity, positive correlation between gamma doses treatment and peroxidase enzymatic activity, again two groups higher activity cow pea, broad bean, bean and Trigonella lower such as sesame, such as sesame, sunflower and haircut

  11. Enzymatic conversion of lignocellulose into fermentable sugars

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Kristensen, Jan Bach; Felby, Claus

    2007-01-01

    and hemicelluloses but these are not readily accessible to enzymatic hydrolysis and require a pretreatment, which causes an extensive modification of the lignocellulosic structure. A number of pretreatment technologies are under development and being tested in pilot scale. Hydrolysis of lignocellulose carbohydrates...

  12. Evaluation of soluble fraction and enzymatic residual fraction of dilute dry acid, ethylenediamine, and steam explosion pretreated corn stover on the enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Qin, Lei; Liu, Li; Li, Wen-Chao; Zhu, Jia-Qing; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-06-01

    This study is aimed to examine the inhibition of soluble fraction (SF) and enzymatic residual fraction (ERF) in dry dilute acid (DDA), ethylenediamine (EDA) and steam explosion (SE) pretreated corn stover (CS) on the enzymatic digestibility of cellulose. SF of DDA, EDA and SE pretreated CS has high xylose, soluble lignin and xylo-oligomer content, respectively. SF of EDA pretreated CS leads to the highest inhibition, followed by SE and DDA pretreated CS. Inhibition of ERF of DDA and SE pretreated CS is higher than that of EDA pretreated CS. The inhibition degree (A0/A) of SF is 1.76 and 1.21 times to that of ERF for EDA and SE pretreated CS, respectively. The inhibition degree of ERF is 1.05 times to that of SF in DDA pretreated CS. The quantitative analysis shows that SF of EDA pretreated CS, SF and ERF of SE pretreated CS cause significant inhibition during enzymatic hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Optimization of Pumpkin Oil Recovery by Using Aqueous Enzymatic Extraction and Comparison of the Quality of the Obtained Oil with the Quality of Cold-Pressed Oil

    Science.gov (United States)

    Roszkowska, Beata; Czaplicki, Sylwester; Tańska, Małgorzata

    2016-01-01

    Summary The study was carried out to optimize pumpkin oil recovery in the process of aqueous extraction preceded by enzymatic maceration of seeds, as well as to compare the quality of the obtained oil to the quality of cold-pressed pumpkin seed oil. Hydrated pulp of hulless pumpkin seeds was macerated using a 2% (by mass) cocktail of commercial pectinolytic, cellulolytic and proteolytic preparations (Rohapect® UF, Rohament® CL and Colorase® 7089). The optimization procedure utilized response surface methodology based on Box- -Behnken plan of experiment. The optimized variables of enzymatic pretreatment were pH, temperature and maceration time. The results showed that the pH value, temperature and maceration time of 4.7, 54 °C and 15.4 h, respectively, were conducive to maximize the oil yield up to 72.64%. Among these variables, the impact of pH was crucial (above 73% of determined variation) for oil recovery results. The oil obtained by aqueous enzymatic extraction was richer in sterols, squalene and tocopherols, and only slightly less abundant in carotenoids than the cold-pressed one. However, it had a lower oxidative stability, with induction period shortened by approx. 30% in relation to the cold-pressed oil. PMID:28115898

  14. Optimization of Pumpkin Oil Recovery by Using Aqueous Enzymatic Extraction and Comparison of the Quality of the Obtained Oil with the Quality of Cold-Pressed Oil

    Directory of Open Access Journals (Sweden)

    Beata Roszkowska

    2016-01-01

    Full Text Available The study was carried out to optimize pumpkin oil recovery in the process of aqueous extraction preceded by enzymatic maceration of seeds, as well as to compare the quality of the obtained oil to the quality of cold-pressed pumpkin seed oil. Hydrated pulp of hulless pumpkin seeds was macerated using a 2 % (by mass cocktail of commercial pectinolytic, cellulolytic and proteolytic preparations (Rohapect® UF, Rohament® CL and Colorase® 7089. The optimization procedure utilized response surface methodology based on Box-Behnken plan of experiment. The optimized variables of enzymatic pretreatment were pH, temperature and maceration time. The results showed that the pH value, temperature and maceration time of 4.7, 54 °C and 15.4 h, respectively, were conducive to maximize the oil yield up to 72.64 %. Among these variables, the impact of pH was crucial (above 73 % of determined variation for oil recovery results. The oil obtained by aqueous enzymatic extraction was richer in sterols, squalene and tocopherols, and only slightly less abundant in carotenoids than the cold-pressed one. However, it had a lower oxidative stability, with induction period shortened by approx. 30 % in relation to the cold-pressed oil.

  15. A singular enzymatic megacomplex from Bacillus subtilis.

    Science.gov (United States)

    Straight, Paul D; Fischbach, Michael A; Walsh, Christopher T; Rudner, David Z; Kolter, Roberto

    2007-01-02

    Nonribosomal peptide synthetases (NRPS), polyketide synthases (PKS), and hybrid NRPS/PKS are of particular interest, because they produce numerous therapeutic agents, have great potential for engineering novel compounds, and are the largest enzymes known. The predicted masses of known enzymatic assembly lines can reach almost 5 megadaltons, dwarfing even the ribosome (approximately 2.6 megadaltons). Despite their uniqueness and importance, little is known about the organization of these enzymes within the native producer cells. Here we report that an 80-kb gene cluster, which occupies approximately 2% of the Bacillus subtilis genome, encodes the subunits of approximately 2.5 megadalton active hybrid NRPS/PKS. Many copies of the NRPS/PKS assemble into a single organelle-like membrane-associated complex of tens to hundreds of megadaltons. Such an enzymatic megacomplex is unprecedented in bacterial subcellular organization and has important implications for engineering novel NRPS/PKSs.

  16. Xylanase supplementation on enzymatic saccharification of dilute acid pretreated poplars at different severities

    Science.gov (United States)

    Chao Zhang; Xinshu Zhuang; Zhao Jiang Wang; Fred Matt; Franz St. John; J.Y. Zhu

    2013-01-01

    Three pairs of solid substrates from dilute acid pretreatment of two poplar wood samples were enzymatically hydrolyzed by cellulase preparations supplemented with xylanase. Supplementation of xylanase improved cellulose saccharification perhaps due to improved cellulose accessibility by xylan hydrolysis. Total xylan removal directly affected enzymatic cellulose...

  17. Enzymatic Hydrolysis of Alkaline Pretreated Coconut Coir

    Directory of Open Access Journals (Sweden)

    Akbarningrum Fatmawati

    2013-06-01

    Full Text Available The purpose of this research is to study the effect of concentration and temperature on the cellulose and lignin content, and the reducing sugars produced in the enzymatic hydrolysis of coconut coir. In this research, the coconut coir is pretreated using 3%, 7%, and 11% NaOH solution at 60oC, 80oC, and 100oC. The pretreated coir were assayed by measuring the amount of cellulose and lignin and then hydrolysed using Celluclast and Novozyme 188 under various temperature (30oC, 40oC, 50oC and pH (3, 4, 5. The hydrolysis results were assayed for the reducing sugar content. The results showed that the alkaline delignification was effective to reduce lignin and to increase the cellulose content of the coir. The best delignification condition was observed at 11% NaOH solution and 100oC which removed 14,53% of lignin and increased the cellulose content up to 50,23%. The best condition of the enzymatic hydrolysis was obtained at 50oC and pH 4 which produced 7,57 gr/L reducing sugar. © 2013 BCREC UNDIP. All rights reservedReceived: 2nd October 2012; Revised: 31st January 2013; Accepted: 6th February 2013[How to Cite: Fatmawati, A., Agustriyanto, R., Liasari, Y. (2013. Enzymatic Hydrolysis of Alkaline Pre-treated Coconut Coir. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 34-39 (doi:10.9767/bcrec.8.1.4048.34-39[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4048.34-39] | View in  |

  18. Inhibition of peptide aggregation by means of enzymatic phosphorylation

    Directory of Open Access Journals (Sweden)

    Kristin Folmert

    2016-11-01

    Full Text Available As is the case in numerous natural processes, enzymatic phosphorylation can be used in the laboratory to influence the conformational populations of proteins. In nature, this information is used for signal transduction or energy transfer, but has also been shown to play an important role in many diseases like tauopathies or diabetes. With the goal of determining the effect of phosphorylation on amyloid fibril formation, we designed a model peptide which combines structural characteristics of α-helical coiled-coils and β-sheets in one sequence. This peptide undergoes a conformational transition from soluble structures into insoluble amyloid fibrils over time and under physiological conditions and contains a recognition motif for PKA (cAMP-dependent protein kinase that enables enzymatic phosphorylation. We have analyzed the pathway of amyloid formation and the influence of enzymatic phosphorylation on the different states along the conformational transition from random-coil to β-sheet-rich oligomers to protofilaments and on to insoluble amyloid fibrils, and we found a remarkable directing effect from β-sheet-rich structures to unfolded structures in the initial growth phase, in which small oligomers and protofilaments prevail if the peptide is phosphorylated.

  19. The variations of enzymatic activity of pepsin preparation by γ-irradiation

    International Nuclear Information System (INIS)

    Kimura, Syojiro; Taimatsu, Meiko; Kanbashi, Toshitaka; Okamoto, Shinichi; Ohnishi, Tokuhiro.

    1993-01-01

    Effect of γ-irradiation on the enzymatic activity of raw pepsin and some saccharated pepsin preparations were studied in the dose range from 0 to 300 kGy. As a result, the apparent reduction rate of saccharated pepsin preparations is less than of raw pepsin. K values of raw and saccharated pepsins were 0.014 and 0.0040-0.0061, and G values of raw and saccharated pepsins were 3.98 and 1.13-1.73, respectively. The lower K and G values of saccharated pepsin than those of raw pepsin seem to be due to radiolytic products of lactose in the preparations as an excipient. Retention rates of enzymatic activity of irradiated preparations at the dose of 25 kGy, which is a complete sterilization dose of pharmaceutical materials, were estimated to be 83% for raw pepsin, and 86% and 93% for saccharated pepsin preparations. At the dose of 10 kGy suggested for food irradiation the retention rates were more than 93% for all pepsins. Therefore, this method is applicable considering the stability of the enzymatic activity after irradiation in the proper range of dose. However, it is necessary to consider the fact that radiolytic products of lactose affect the measurement of enzymatic activity. (author)

  20. Kinetic study of enzymatic hydrolysis of acid-pretreated coconut coir

    Science.gov (United States)

    Fatmawati, Akbarningrum; Agustriyanto, Rudy

    2015-12-01

    Biomass waste utilization for biofuel production such as bioethanol, has become more prominent currently. Coconut coir is one of lignocellulosic food wastes, which is abundant in Indonesia. Bioethanol production from such materials consists of more than one step. Pretreatment and enzymatic hydrolysis is crucial steps to produce sugar which can then be fermented into bioethanol. In this research, ground coconut coir was pretreated using dilute sulfuric acid at 121°C. This pretreatment had increased the cellulose content and decreased the lignin content of coconut coir. The pretreated coconut coir was hydrolyzed using a mix of two commercial cellulase enzymes at pH of 4.8 and temperature of 50°C. The enzymatic hydrolysis was conducted at several initial coconut coir slurry concentrations (0.1-2 g/100 mL) and reaction times (2-72 hours). The reducing sugar concentration profiles had been produced and can be used to obtain reaction rates. The highest reducing sugar concentration obtained was 1,152.567 mg/L, which was produced at initial slurry concentration of 2 g/100 mL and 72 hours reaction time. In this paper, the reducing sugar concentrations were empirically modeled as a function of reaction time using power equations. Michaelis-Menten kinetic model for enzymatic hydrolysis reaction is adopted. The kinetic parameters of that model for sulfuric acid-pretreated coconut coir enzymatic hydrolysis had been obtained which are Vm of 3.587×104 mg/L.h, and KM of 130.6 mg/L.

  1. Novel investigation of enzymatic biodiesel reaction by isothermal calorimetry

    DEFF Research Database (Denmark)

    Søtoft, Lene Fjerbaek; Westh, Peter; Christensen, Knud V.

    2010-01-01

    Isothermal calorimetry (ITC) was used to investigate solvent-free enzymatic biodiesel production. The transesterification of rapeseed oil with methanol and ethanol was catalyzed by immobilized lipase Novozym 435 at 40 °C. The aim of the study was to determine reaction enthalpy for the enzymatic...... transesterification and to elucidate the mass transfer and energetic processes taking place. Based on the measured enthalpy and composition change in the system, the heat of reaction at 40 °C for the two systems was determined as −9.8 ± 0.9 kJ/mole biodiesel formed from rapeseed oil and methanol, and −9.3 ± 0.7 k...

  2. Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal

    DEFF Research Database (Denmark)

    Ahmadi Gavlighi, Hassan; Meyer, Anne S.; Mikkelsen, Jørn Dalgaard

    2013-01-01

    Product inhibition by cellobiose decreases the rate of enzymatic cellulose degradation. The optimal reaction conditions for two Emericella (Aspergillus) nidulans-derived cellobiohydrolases I and II produced in Pichia pastoris were identified as CBHI: 52 °C, pH 4.5–6.5, and CBHII: 46 °C, pH 4.......8. The optimum in a mixture of the two was 50 °C, pH 4.9. An almost fourfold increase in enzymatic hydrolysis yield was achieved with intermittent product removal of cellobiose with membrane filtration (2 kDa cut-off): The conversion of cotton cellulose after 72 h was ~19 % by weight, whereas the conversion...

  3. Wet oxidation treatment of organic household waste enriched with wheat straw for simultaneous saccharification and fermentation into ethanol

    DEFF Research Database (Denmark)

    Lissens, G.; Klinke, H.B.; Verstraete, W.

    2004-01-01

    Organic municipal solid waste enriched with wheat straw was subjected to wet-oxidation as a pre-treatment for subsequent enzymatic conversion and fermentation into bio-ethanol. The effect of tempera (185-195degrees C), oxygen pressure (3-12) and sodium carbonate (0-2 g l(-1)) addition on enzymatic...... in the treated waste could be converted into respectively hexose and pentose sugars compared to 46% for cellulose and 36% for hemicellulose in the raw waste. For all wet oxidation conditions tested, total carbohydrate recoveries were high (> 89%) and 44-66% of the original lignin could be converted into non......-toxic carboxylic acids mainly (2.2-4.5 % on DS basis). Simultaneous saccharification and fermentation (SSF) of the treated waste at 10% DS by Saccharomyces cerevisae yielded average ethanol concentrations of 16.5 to 22 g l(-1) for enzyme loadings of 5 and 25 FPU g(-1) DS, respectively. The cellulose to ethanol...

  4. Lignin-based polyoxyethylene ether enhanced enzymatic hydrolysis of lignocelluloses by dispersing cellulase aggregates.

    Science.gov (United States)

    Lin, Xuliang; Qiu, Xueqing; Yuan, Long; Li, Zihao; Lou, Hongming; Zhou, Mingsong; Yang, Dongjie

    2015-06-01

    Water-soluble lignin-based polyoxyethylene ether (EHL-PEG), prepared from enzymatic hydrolysis lignin (EHL) and polyethylene glycol (PEG1000), was used to improve enzymatic hydrolysis efficiency of corn stover. The glucose yield of corn stover at 72h was increased from 16.7% to 70.1% by EHL-PEG, while increase in yield with PEG4600 alone was 52.3%. With the increase of lignin content, EHL-PEG improved enzymatic hydrolysis of microcrystalline cellulose more obvious than PEG4600. EHL-PEG could reduce at least 88% of the adsorption of cellulase on the lignin film measured by quartz crystal microbalance with dissipation monitoring (QCM-D), while reduction with PEG4600 was 43%. Cellulase aggregated at 1220nm in acetate buffer analyzed by dynamic light scattering. EHL-PEG dispersed cellulase aggregates and formed smaller aggregates with cellulase, thereby, reduced significantly nonproductive adsorption of cellulase on lignin and enhanced enzymatic hydrolysis of lignocelluloses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effect of restricted motion in high temperature on enzymatic activity of the pancreas

    Science.gov (United States)

    Abdusattarov, A.; Smirnova, G. I.

    1980-01-01

    Effects of 30 day hypodynamia coupled with high temperature (35-36 C) on enzymatic activity of the pancreas of male adult rats were studied. The test animals were divided into four groups. Group one served as controls (freedom of movement and a temperature of 25-26 C, considered optimal). The remaining animals were divided into three additional groups: Group two freedom of movement but high temperature (35-36 C); group three hypodynamia but an optimal temperature; group four hypodynamia and 35-36 C. Considerable change in the enzymatic activity in the pancreas of the four groups is observed in three experimental groups (two, three, and four) as compared to the control (group one). The results indicate that adaption of the organism to the thermal factor and restricted movement is accompanied by a change in the enzymatic spectrum of the pancreas. With the combined effect of these two stresses under conditions of the adaption of the organism especially sharp shifts occur in the enzymatic activity.

  6. Antimicrobial and enzymatic activity of anemophilous fungi of a public university in Brazil

    Directory of Open Access Journals (Sweden)

    LAUREANA V. SOBRAL

    2017-10-01

    Full Text Available ABSTRACT To the fungal microbiota the UFPE and biotechnological potential enzymatic and antimicrobial production. Air conditioned environments were sampled using a passive sedimentation technique, the air I ratio and the presence of aflatoxigenic strains evaluated for ANVISA. Icelles were to determine the enzymatic activity of lipase, amylase and protease metabolic liquids to determine antimicrobial activity. Diversity was observed in all CAV environments, CFU/m3 ranged from 14 to 290 and I/E ratio from 0.1 to 1.5. The of the fungal genera were: Aspergillus (50%, Penicillium (21%, Talaromyces (14%, Curvularia and Paecilomyces (7% each. Aspergillus sydowii (Bainier & Sartory Thom & Church presented enzymatic activity and the Talaromyces purpureogenus Samson, Yilmaz, Houbraken, Spierenb., Seifert, Peterson, Varga & Frisvad presented antibacterial activity against all bacteria that all environments present fungal species biodiversity no toxigenic or pathogenic fungi were found, according to ANVISA legislation for conditioned environments and airborne filamentous fungi present potential for enzymatic and antimicrobial activity.

  7. Influence of enzymatic hydrolysis on the allergenic reactivity of processed cashew and pistachio.

    Science.gov (United States)

    Cuadrado, Carmen; Cheng, Hsiaopo; Sanchiz, Africa; Ballesteros, Isabel; Easson, Michael; Grimm, Casey C; Dieguez, M Carmen; Linacero, Rosario; Burbano, Carmen; Maleki, Soheila J

    2018-02-15

    Cashew and pistachio allergies are considered a serious health problem. Previous studies have shown that thermal processing, pressurization and enzymatic hydrolysis may reduce the allergenic properties of food by changing the protein structure. This study assesses the allergenic properties of cashew and pistachio after thermal treatment (boiling and autoclaving), with or without pressure (autoclaving), and multiple enzymatic treatments under sonication, by SDS-PAGE, western blot and ELISA, with serum IgE of allergic individuals, and mass spectroscopy. Autoclaving and enzymatic hydrolysis under sonication separately induced a measurable reduction in the IgE binding properties of pastes made from treated cashew and pistachio nuts. These treatments were more effective with pistachio allergens. However, heat combined with enzymatic digestion was necessary to markedly lower IgE binding to cashew allergens. The findings identify highly effective simultaneous processing conditions to reduce or even abolish the allergenic potency of cashew and pistachio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Chelating agents improve enzymatic solubilization of pectinaceous co-processing streams

    DEFF Research Database (Denmark)

    Ravn, Helle Christine; Meyer, Anne S.

    2014-01-01

    of different levels of ethylene-diaminetetraacetic acid (EDTA), citric acid, oxalic acid, and phosphate was assessed in relation to enzymatic solubilization of isopropanol precipitatable oligo- and polysaccharides from sugar beet pulp, citrus peel, and two types of potato pulp. The two types of potato pulp...... solubilization yields. The effect of the chelating agents correlated to their dissociation constants (pKa values) and calcium binding constants and citric acid and EDTA exerted highest effects. Maximum polysaccharide yield was obtained for FiberBind 400 where the enzymatic treatment in presence of citric acid...

  9. Enzymatic lipophilization of epicatechin with free fatty acids and its effect on antioxidative capacity in crude camellia seed oil.

    Science.gov (United States)

    Chen, Sa-Sa; Luo, Shui-Zhong; Zheng, Zhi; Zhao, Yan-Yan; Pang, Min; Jiang, Shao-Tong

    2017-02-01

    Crude camellia seed oil is rich in free fatty acids, which must be removed to produce an oil of acceptable quality. In the present study, we reduced the free fatty acid content of crude camellia seed oil by lipophilization of epicatechin with these free fatty acids in the presence of Candida antarctica lipase B (Novozym 435), and this may enhance the oxidative stability of the oil at the same time. The acid value of crude camellia seed oil reduced from 3.7 to 2.5 mgKOH g -1 after lipophilization. Gas chomatography-mass spectrometry analysis revealed that epicatechin oleate and epicatechin palmitate were synthesized in the lipophilized oil. The peroxide, p-anisidine, and total oxidation values during heating of the lipophilized oil were much lower than that of the crude oil and commercially available camellia seed oil, suggesting that lipophilized epicatechin derivatives could help enhance the oxidative stability of edible oil. The enzymatic process to lipophilize epicatechin with the free fatty acids in crude camellia seed oil described in the present study could decrease the acid value to meet the quality standards for commercial camellia seed oil and, at the same time, obtain a new edible camellia seed oil product with good oxidative stability. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Manganese and the Evolution of Photosynthesis

    Science.gov (United States)

    Fischer, Woodward W.; Hemp, James; Johnson, Jena E.

    2015-09-01

    Oxygenic photosynthesis is the most important bioenergetic event in the history of our planet—it evolved once within the Cyanobacteria, and remained largely unchanged as it was transferred to algae and plants via endosymbiosis. Manganese plays a fundamental role in this history because it lends the critical redox behavior of the water-oxidizing complex of photosystem II. Constraints from the photoassembly of the Mn-bearing water-oxidizing complex fuel the hypothesis that Mn(II) once played a key role as an electron donor for anoxygenic photosynthesis prior to the evolution of oxygenic photosynthesis. Here we review the growing body of geological and geochemical evidence from the Archean and Paleoproterozoic sedimentary records that supports this idea and demonstrates that the oxidative branch of the Mn cycle switched on prior to the rise of oxygen. This Mn-oxidizing phototrophy hypothesis also receives support from the biological record of extant phototrophs, and can be made more explicit by leveraging constraints from structural biology and biochemistry of photosystem II in Cyanobacteria. These observations highlight that water-splitting in photosystem II evolved independently from a homodimeric ancestral type II reaction center capable of high potential photosynthesis and Mn(II) oxidation, which is required by the presence of homologous redox-active tyrosines in the modern heterodimer. The ancestral homodimer reaction center also evolved a C-terminal extension that sterically precluded standard phototrophic electron donors like cytochrome c, cupredoxins, or high-potential iron-sulfur proteins, and could only complete direct oxidation of small molecules like Mn2+, and ultimately water.

  11. Synthesis, Characterization, and Biological Activity of Mn(II, Fe(II, Co(II, Ni(II, Cu(II, Zn(II, and Cd(II Complexes of N-Thiophenoyl-N′-Phenylthiocarbohydrazide

    Directory of Open Access Journals (Sweden)

    M. Yadav

    2013-01-01

    Full Text Available Mn(II, Fe(II, Co(II, Ni(II, Cu(II, Zn(II, and Cd(II complex of N-thiophenoyl -N′-phenylthiocarbohydrazide (H2 TPTH have been synthesized and characterized by elemental analysis, magnetic susceptibility measurements, infrared, NMR, electronic, and ESR spectral studies. The complexes were found to have compositions [Mn(H TPTH2], [Co(TPTH (H2O2], [Ni(TPTH (H2O2], [Cu(TPTH], [Zn(H TPTH], [Cd(H TPTH2], and [Fe(H TPTH2(EtOH]. The magnetic and electronic spectral studies suggest square planar geometry for [Cu(TPTH], tetrahedral geometry for [Zn(TPTH] and [Cd(H TPTH2], and octahedral geometry for rest of the complexes. The infrared spectral studies of the 1 : 1 deprotonated complexes suggest bonding through enolic oxygen, thiolato sulfur, and both the hydrazinic nitrogens. Thus, H2TPTH acts as a binegative tetradentate ligand. H2 TPTH and its metal complexes have been screened against several bacteria and fungi.

  12. Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from environmental samples by flame atomic absorption spectrometry (FAAS)

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Celal [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Gundogdu, Ali [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Bulut, Volkan Numan [Department of Chemistry, Giresun Faculty of Art and Science, Karadeniz Technical University, 28049 Giresun (Turkey); Soylak, Mustafa [Department of Chemistry, Faculty of Art and Science, Erciyes University, 38039 Kayseri (Turkey)]. E-mail: soylak@erciyes.edu.tr; Elci, Latif [Department of Chemistry, Faculty of Art and Science, Pamukkale University, 20020 Denizli (Turkey); Sentuerk, Hasan Basri [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Tuefekci, Mehmet [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2007-07-19

    A new method using a column packed with Amberlite XAD-2010 resin as a solid-phase extractant has been developed for the multi-element preconcentration of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), and Pb(II) ions based on their complex formation with the sodium diethyldithiocarbamate (Na-DDTC) prior to flame atomic absorption spectrometric (FAAS) determinations. Metal complexes sorbed on the resin were eluted by 1 mol L{sup -1} HNO{sub 3} in acetone. Effects of the analytical conditions over the preconcentration yields of the metal ions, such as pH, quantity of Na-DDTC, eluent type, sample volume and flow rate, foreign ions etc. have been investigated. The limits of detection (LOD) of the analytes were found in the range 0.08-0.26 {mu}g L{sup -1}. The method was validated by analyzing three certified reference materials. The method has been applied for the determination of trace elements in some environmental samples.

  13. Influence of enzymatic maceration on the microstructure and microhardness of compact bone

    International Nuclear Information System (INIS)

    Yin Ling; Venkatesan, Sudharshan; Kalyanasundaram, Shankar; Qin Qinghua

    2010-01-01

    The cleaning of fresh bones to remove their soft tissues while maintaining their structural integrity is a basic and essential part of bone studies. The primary issue is how the cleaning process influences bone microstructures and mechanical properties. We cleaned fresh lamb femurs using enzymatic maceration in comparison with water maceration at room temperature. The microstructures of these compact bones were examined using scanning electron microscopy (SEM) and their porosities were quantified using image processing software. The bone microhardness was measured using a Vickers indentation tester for studying the mechanical properties. The results show that enzymatic maceration of compact bone resulted in a significant microhardness reduction in comparison with water maceration. However, enzymatic maceration did not cause any significant change of porosity in bone structures.

  14. Influence of enzymatic maceration on the microstructure and microhardness of compact bone

    Energy Technology Data Exchange (ETDEWEB)

    Yin Ling [School of Engineering and Physical Sciences, James Cook University, Townsville, QLD 4811 (Australia); Venkatesan, Sudharshan; Kalyanasundaram, Shankar; Qin Qinghua, E-mail: ling.yin@jcu.edu.a [Department of Engineering, Australian National University, Canberra, ACT 0200 (Australia)

    2010-02-15

    The cleaning of fresh bones to remove their soft tissues while maintaining their structural integrity is a basic and essential part of bone studies. The primary issue is how the cleaning process influences bone microstructures and mechanical properties. We cleaned fresh lamb femurs using enzymatic maceration in comparison with water maceration at room temperature. The microstructures of these compact bones were examined using scanning electron microscopy (SEM) and their porosities were quantified using image processing software. The bone microhardness was measured using a Vickers indentation tester for studying the mechanical properties. The results show that enzymatic maceration of compact bone resulted in a significant microhardness reduction in comparison with water maceration. However, enzymatic maceration did not cause any significant change of porosity in bone structures.

  15. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Directory of Open Access Journals (Sweden)

    Gupta Rishi

    2012-03-01

    Full Text Available Abstract Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates.

  16. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Science.gov (United States)

    2012-01-01

    Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v) and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates. PMID:22433563

  17. Structural Characterization and Enzymatic Modification of Soybean Polysaccharides

    DEFF Research Database (Denmark)

    Pierce, Brian; Wichmann, Jesper

    % galacturonic acid, 8% xylose, 3% rhamnose, and 3% fucose. Currently, the majority of this material is disposed of as waste, increasing production costs. Opportunities exist for the develop-ment of novel functional ingredients from this abundant and underutilized ma-terial; however, efforts in this area......The work in this thesis explores the structure of soybean polysaccharides, and examines approaches for the chemical and enzymatic degradation and solu-bilization of this material. Soybean polysaccharides are produced in large quantities globally as a by-product of various soy production processes...... are currently limited by the material’s insol-ubility. A central hypothesis of this work was that by obtaining a more complete understanding of the structure of this material, chemical and enzymatic ap-proaches could be developed to modify the polysaccharides, creating soluble polysaccharide fractions...

  18. Textile industrial enzymatic processes; Enzimologia nel tessile. Biopreparazione del cotone ed uso degli enzimi nell'industria tessile. (2. parte)

    Energy Technology Data Exchange (ETDEWEB)

    Galante, Y. M. [Lamberti SpA, Albizzate, VA (Italy)

    2001-05-01

    In the last ten years, the textile industry has become one of the main field of industrial applications of enzymes. From traditional desizing to enzymatic stone washing to biopolishing of cellulosic fibers to protease treatment of silk and wool to catalase utilization after bleaching, textile processing has evolved into a field of primary importance for modern enzymology. A number of new recombinant and/or bioengineered enzymes (e.g., cellulases) have been recently introduced into textile processing and finishing dye-houses. Furthermore, new recombinant redox enzymes have been developed for dye oxidation on garments or in the liquor bath (e.g., laccase and peroxidase), which in the future might replace more harsh and polluting chemical oxiding systems. [Italian] Si presenta un approccio enzimatico integrato nella filiera tessile e si dimostra che e' possibile e conveniente applicare in un singolo processo differenti enzimi (ad esempio amilasi, pectinasi, catalisi, cellulasi) in successione o in contemporaneo, in combinazione con ausiliari chimici facilmente biodegradabili.

  19. Production of a carob enzymatic extract: potential use as a biofertilizer.

    Science.gov (United States)

    Parrado, J; Bautista, J; Romero, E J; García-Martínez, A M; Friaza, V; Tejada, M

    2008-05-01

    In this paper, we describe a biological process that converts carob germ (CG), a proteinic vegetable by-product, into a water-soluble enzymatic hydrolyzate extract (CGHE). The chemical and physical properties are also described. The conversion is done using a proteolytic enzyme mixture. The main component of CGHE extracted by the enzymatic process is protein (68%), in the form of peptides and free amino acids, having a high content of glutamine and arginine, and a minor component of phytohormones, which are also extracted and solubilized from the CG. We have also compared its potential fertilizer/biostimulant capacity on growth, flowering, and fruiting of tomato plants (Licopericon pimpinellifolium cv. Momotaro) with that of an animal enzymatic protein hydrolyzate. CGHE had a significantly beneficial impact, most notably regarding the greater plant height, number of flowers per plant, and number of fruits per plant. This could be due primarily to its phytohormonal action.

  20. Operation variables in transesterification of vegetable oil: an enzymatic catalysis review

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Rojas González

    2010-01-01

    Full Text Available This paper presents the results of a literature review regarding how operating conditions influence vegetable oil enzymatic transesterification yield. The following parameters were studied: temperature and time reaction, alcohol: oil molar ratio, alcohol type, biocatalyst type and concentration, solvent, mixed intensity, reagent purity and free fatty acid and moisture concentration. Yields greater than 90% can be achieved in the enzymatic catalyst of vegetable oil using 35-50°C temperatures, long time reactions (7- 90h and a 3:1alcohol: vegetable oil molar ratio; however, such values would intrinsically depend on the type of lipase and oil u- sed. It was also found that free fatty acid and moisture concentration were parameters which did not require rigorous control due to high enzyme specificity. Lipases immobilised from Pseudomona cepacia bacteria and Rhizopus orizae fungi were most used in vegetable oil enzymatic transesterification.

  1. Dynamic Simulation, Sensitivity and Uncertainty Analysis of a Demonstration Scale Lignocellulosic Enzymatic Hydrolysis Process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Sin, Gürkan

    2014-01-01

    This study presents the uncertainty and sensitivity analysis of a lignocellulosic enzymatic hydrolysis model considering both model and feed parameters as sources of uncertainty. The dynamic model is parametrized for accommodating various types of biomass, and different enzymatic complexes...

  2. Second-Order Biomimicry: In Situ Oxidative Self-Processing Converts Copper(I)/Diamine Precursor into a Highly Active Aerobic Oxidation Catalyst.

    Science.gov (United States)

    McCann, Scott D; Lumb, Jean-Philip; Arndtsen, Bruce A; Stahl, Shannon S

    2017-04-26

    A homogeneous Cu-based catalyst system consisting of [Cu(MeCN) 4 ]PF 6 , N , N '-di- tert -butylethylenediamine (DBED), and p -( N , N -dimethylamino)pyridine (DMAP) mediates efficient aerobic oxidation of alcohols. Mechanistic study of this reaction shows that the catalyst undergoes an in situ oxidative self-processing step, resulting in conversion of DBED into a nitroxyl that serves as an efficient cocatalyst for aerobic alcohol oxidation. Insights into this behavior are gained from kinetic studies, which reveal an induction period at the beginning of the reaction that correlates with the oxidative self-processing step, EPR spectroscopic analysis of the catalytic reaction mixture, which shows the buildup of the organic nitroxyl species during steady state turnover, and independent synthesis of oxygenated DBED derivatives, which are shown to serve as effective cocatalysts and eliminate the induction period in the reaction. The overall mechanism bears considerable resemblance to enzymatic reactivity. Most notable is the "oxygenase"-type self-processing step that mirrors generation of catalytic cofactors in enzymes via post-translational modification of amino acid side chains. This higher-order function within a synthetic catalyst system presents new opportunities for the discovery and development of biomimetic catalysts.

  3. Neutrophilic Iron-Oxidizing Zetaproteobacteria and Mild Steel Corrosion in Nearshore Marine Environments

    Science.gov (United States)

    2011-02-16

    sample harvested at 14 days, and 316L stainless steel controls did not show evidence of corrosion product formation at any of the time points. A...direct or indirect enzymatic reduction or oxidation of corrosion products, formation of biofilms that create corrosive microen- vironments, or...sampler prior to deployment. Cold-finish 1018 mild steel coupons and 3161. stainless steel control coupons (13 by 15 by 3 mm) were polished with a

  4. Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk

    Science.gov (United States)

    Muharja, Maktum; Junianti, Fitri; Nurtono, Tantular; Widjaja, Arief

    2017-05-01

    Coconut husk wastes are abundantly available in Indonesia. It has a potential to be used into alternative renewable energy sources such as hydrogen using enzymatic hydrolysis followed by a fermentation process. Unfortunately, enzymatic hydrolysis is hampered by the complex structure of lignocellulose, so the cellulose component is hard to degrade. In this study, Combined Subcritical Water (SCW) and enzymatic hydrolysis are applied to enhance fermentable, thereby reducing production of sugar from coconut husk. There were two steps in this study, the first step was coconut husk pretreated by SCW in batch reactor at 80 bar and 150-200°C for 60 minutes reaction time. Secondly, solid fraction from the results of SCW was hydrolyzed using the mixture of pure cellulose and xylanase enzymes. Analysis was conducted on untreated and SCW-treated by gravimetric assay, liquid fraction after SCW and solid fraction after enzymatic hydrolysis using DNS assay. The maximum yield of reducing sugar (including xylose, arabinose glucose, galactose, mannose) was 1.254 gr per 6 gr raw material, representing 53.95% of total sugar in coconut husk biomass which was obtained at 150°C 80 bar for 60 minutes reaction time of SCW-treated and 6 hour of enzymatic hydrolysis using mixture of pure cellulose and xylanase enzymes (18.6 U /gram of coconut husk).

  5. Role of supramolecular cellulose structures in enzymatic hydrolysis of plant cell walls

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Hidayat, Budi Juliman; Johansen, Katja Salomon

    2011-01-01

    The study of biomass deconstruction by enzymatic hydrolysis has hitherto not focussed on the importance of supramolecular structures of cellulose. In lignocellulose fibres, regions with a different organisation of the microfibrils are present. These regions are called dislocations or slip planes ...... the initial part of enzymatic hydrolysis of cellulose. The implications of this phenomenon have not yet been recognized or explored within cellulosic biofuels....

  6. Rapid near infrared spectroscopy for prediction of enzymatic hydrolysis of corn bran after various pretreatments

    DEFF Research Database (Denmark)

    Baum, Andreas; Wittrup Agger, Jane; Meyer, Anne S.

    2012-01-01

    Efficient generation of a fermentable hydrolysate is a primary requirement in the utilization of fibrous plant biomass as feedstocks in bioethanol processes. The first biomass conversion step usually involves a hydrothermal pretreatment before enzymatic hydrolysis. The purpose of the pretreatment...... step is to increase the responsivity of the substrate to enzymatic attack and the type of pretreatment affects the enzymatic conversion efficiency. Destarched corn bran is a fibrous, heteroxylan-rich side-stream from the starch industry which may be used as a feedstock for bioethanol production...... release of different levels of arabinose, xylose and glucose from all the differently pretreated destarched corn bran samples. The present study also demonstrates a generic, non-destructive solution to determine the enzymatic monosaccharide release from polymers in biomass side-streams, thereby...

  7. Enzymatic hydrolysis and fermentation of agricultural residues to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Mes-Hartree, M.; Hogan, C.M.; Saddler, J.N.

    1984-01-01

    A combined enzymatic hydrolysis and fermentation process was used to convert steam-treated wheat and barley straw to ethanol. Maximum conversion efficiencies were obtained when the substrates were steamed for 90 s. These substrates could yield over 0.4 g ethanol/g cellulose following a combined enzymatic hydrolysis and fermentation process procedure using culture filtrates derived from Trichoderma harzianum E58. When culture filtrates from Trichoderma reesei C30 and T. reesei QM9414 were used, the ethanol yields obtained were 0.32 and 0.12 g ethanol/g cellulose utilized, respectively. The lower ethanol yields obtained with these strains were attributed to the lower amounts of ..beta..-glucosidase detected in the T. reesei culture filtrates.

  8. Enzymatic transesterification of used frying oils

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, S.; Hancsok, J. (Univ. of Pannonia, Veszprem (HU)), Email: hancsokj@almos.uni-pannon.hu

    2009-07-01

    The research of converting used frying oils to less harmful products with much higher value was forced by environmental, human biological and economical reasons. One possible pathway of the transformation is the enzymatic transesterification. Through the research work used frying oils (UFO) and sunflower oils (SO) from different origins were first properly pre-treated. Then the previously mentioned feeds and different mixtures of them were transesterified in the presence of Novozym 435 enzyme catalyst under different process conditions. Characteristics of the produced methyl esters were evaluated according to the requirements of EN 14214:2009 standard. We determined that the transesterification of used frying oils is not expediential in the presence of enzyme catalyst because the significant decreasing of catalyst activity. We have found proper UFO and SO mixtures and combination of process conditions (pressure: atmospheric, temperature: 54 +-1 deg C; methanol to triglyceride molar ratio: 4:1; reaction time: 16 hours) resulting in high (>90 %) yield of monoesters. We clearly established that the best results through the enzymatic transesterification were obtained with the improved sunflower oils containing the highest amount (>88 %) of oleic acid and the used frying oils originated from this source. (orig.)

  9. First results on enzymatic activities in two salt marsh soils under different hydromorphic level and vegetation

    Directory of Open Access Journals (Sweden)

    Carmen Trasar-Cepeda

    2015-12-01

    Full Text Available Salt-marsh soils are soils characterized by non-permanent hydric saturation that, depending on factors like duration of submersion periods, are dominated by different salt-tolerant plant species. The composition of microbial communities is an essential component in trophic dynamics and biogeochemical processes in salt marshes, and determines the level of enzymatic activities, which catalyze the conversion of complex molecules into simpler ones. Despite of this, the enzymatic activities in marsh-soils has not yet been investigated. The aim of this study was to analyze the enzymatic activities in two soil profiles of marsh-soils under different water saturation level and dominated by different plant species [Juncus maritimus Lam and Spartina maritima (Curtis Fernald (Sp]. In both soils, the enzymatic activities were much lower than the levels typically found in terrestrial ecosystems. The enzymatic activities were measured both in air-dried and in re-moistened and incubated soil samples. In air-dried samples, the enzymatic activities were higher in Juncus than in Spartina soil and tended to decrease with depth, being sharper the decrease in Juncus than in Spartina soil. Re-moistened and pre-incubated soils showed a general increase in all the enzymatic activities and throughout the whole soil profile, especially in Spartina soils. Hydrolase activities showed a strong and positive relationship with organic matter content both in air-dried and in re-moistened soil samples, higher in these latter. In general, oxidoreductase activities only showed this relationship in re-moistened soil samples. More studies, preferably using freshly collected soil samples, are needed to understand the relationship between enzymatic activities and these environmental conditions.

  10. Enzymatic conversion of CO2 to CH3OH via reverse dehydrogenase cascade biocatalysis: Quantitative comparison of efficiencies of immobilized enzyme systems

    DEFF Research Database (Denmark)

    Marpani, Fauziah Binti; Pinelo, Manuel; Meyer, Anne S.

    2017-01-01

    A designed biocatalytic cascade system based on reverse enzymatic catalysis by formate dehydrogenase (EC 1.2.1.2), formaldehyde dehydrogenase (EC 1.2.1.46), and alcohol dehydrogenase (EC 1.1.1.1) can convert carbon dioxide (CO2) to methanol (CH3OH) via formation of formic acid (CHOOH......) and formaldehyde (CHOH) during equimolar cofactor oxidation of NADH to NAD+. This reaction is appealing because it represents a double gain: (1) reduction of CO2 and (2) an alternative to fossil fuel based production of CH3OH. The present review evaluates the efficiency of different immobilized enzyme systems...

  11. Purification and characterization of Mn-peroxidase from Musa paradisiaca (banana) stem juice.

    Science.gov (United States)

    Yadav, Pratibha; Singh, V K; Yadav, Meera; Singh, Sunil Kumar; Yadava, Sudha; Yadav, K D S

    2012-02-01

    Mn-peroxidase (MnP), a biotechnologically important enzyme was purified for the first time from a plant source Musa paradisiaca (banana) stem, which is an agro-waste easily available after harvest of banana fruits. MnP was earlier purified only from the fungal sources. The enzyme was purified from stem juice by ultrafiltration and anion-exchange column chromatography on diethylamino ethylcellulose with 8-fold purification and purification yield of 65%. The enzyme gave a single protein band in SDS-PAGE corresponding to molecular mass 43 kDa. The Native-PAGE of the enzyme also gave a single protein band, confirming the purity of the enzyme. The UV/VIS spectrum of the purified enzyme differed from the other heme peroxidases, as the Soret band was shifted towards lower wavelength and the enzyme had an intense absorption band around 250 nm. The K(m) values using MnSO4 and H2O2 as the substrates of the purified enzyme were 21.0 and 9.5 microM, respectively. The calculated k(cat) value of the purified enzyme using Mn(II) as the substrate in 50 mM lactate buffer (pH 4.5) at 25 degrees C was 6.7s(-1), giving a k(cat)/K(m) value of 0.32 microM(-1)s(-1). The k(cat) value for the MnP-catalyzed reaction was found to be dependent of the Mn(III) chelator molecules malonate, lactate and oxalate, indicating that the enzyme oxidized chelated Mn(II) to Mn(III). The pH and temperature optima of the enzyme were 4.5 and 25 degrees C, respectively. The enzyme in combination with H2O2 liberated bromine and iodine in presence of KBr and KI respectively. All these enzymatic characteristics were similar to those of fungal MnP. The enzyme has the potential as a green brominating and iodinating agent in combination with KBr/KI and H2O2.

  12. RGO/Au NPs/N-doped CNTs supported on nickel foam as an anode for enzymatic biofuel cells.

    Science.gov (United States)

    Zhang, He; Zhang, Lingling; Han, Yujie; Yu, You; Xu, Miao; Zhang, Xueping; Huang, Liang; Dong, Shaojun

    2017-11-15

    In this study, three-dimensional reduced graphene oxide/Au NPs/nitrogen-doped carbon nanotubes (RGO/Au NPs/N-doped CNTs) assembly supported on nickel foam was utilized as an anode for enzymatic biofuel cells (EBFCs). 3D RGO/Au NPs was obtained by electrodepositing reduced graphene oxide on nickel foam (Ni foam), while Au NPs were co-deposited during the process. Afterwards, nitrogen doped CNTs (N-CNTs) were allowed to grow seamlessly on the surfaces of 3D RGO/Au NPs via a simple chemical vapor deposition (CVD) process. In this nanostructure, Au NPs co-deposition and nitrogen doping offer more active sites for bioelectrocatalysis. Additionally, N-CNTs were demonstrated providing high specific surface area for enzyme immobilization and facilitating the electron transfer between glucose oxidase (GOx) and electrode. The resulting bioanode achieved efficient glucose oxidation with high current densities of 7.02mAcm -2 (0.3V vs. Ag/AgCl). Coupling with a Pt cathode, the fabricated glucose/air biofuel cell exhibited an open-circuit potential of 0.32V and generated a maximum power density 235µWcm -2 at 0.15V. This novel electrode substrate achieved high performance in current density at bioelectrochemical systems and could be useful for further exploiting the application of three dimensional carbon-based nanomaterials in EBFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Enzymatic Hydrolysis of Oleuropein from Olea europea (Olive Leaf Extract and Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Jiao-Jiao Yuan

    2015-02-01

    Full Text Available Oleuropein (OE, the main polyphenol in olive leaf extract, is likely to decompose into hydroxytyrosol (HT and elenolic acid under the action of light, acid, base, high temperature. In the enzymatic process, the content of OE in olive leaf extract and enzyme are key factors that affect the yield of HT. A selective enzyme was screened from among 10 enzymes with a high OE degradation rate. A single factor (pH, temperature, time, enzyme quantity optimization process and a Box-Behnken design were studied for the enzymatic hydrolysis of 81.04% OE olive leaf extract. Additionally, enzymatic hydrolysis results with different substrates (38.6% and 81.04% OE were compared and the DPPH antioxidant properties were also evaluated. The result showed that the performance of hydrolysis treatments was best using hemicellulase as a bio-catalyst, and the high purity of OE in olive extract was beneficial to biotransform OE into HT. The optimal enzymatic conditions for achieving a maximal yield of HT content obtained by the regression were as follows: pH 5, temperature 55 °C and enzyme quantity 55 mg. The experimental result was 11.31% ± 0.15%, and the degradation rate of OE was 98.54%. From the present investigation of the antioxidant activity determined by the DPPH method, the phenol content and radical scavenging effect were both decreased after enzymatic hydrolysis by hemicellulase. However, a high antioxidant activity of the ethyl acetate extract enzymatic hydrolysate (IC50 = 41.82 μg/mL was demonstated. The results presented in this work suggested that hemicellulase has promising and attractive properties for industrial production of HT, and indicated that HT might be a valuable biological component for use in pharmaceutical products and functional foods.

  14. Coated tube for immunochemical and enzymatic assays

    International Nuclear Information System (INIS)

    Brown, J.L.; Lin, W.H.-T.; Woods, J.W.

    1979-01-01

    Containers such as test tubes suitable for use in solid phase immunochemical, enzymatical and particularly radioimmunoassay procedures are described. The lower part of the tube is a polymer, coated with an inert protein to which a biologically active substance eg an antibody to triiodothyronine, thyroxine or digoxin, is attached. (U.K.)

  15. [Response surface method optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis preparation genistein].

    Science.gov (United States)

    Jin, Xin; Zhang, Zhen-Hai; Zhu, Jing; Sun, E; Yu, Dan-Hong; Chen, Xiao-Yun; Liu, Qi-Yuan; Ning, Qing; Jia, Xiao-Bin

    2012-04-01

    This article reports that nano-silica solid dispersion technology was used to raise genistein efficiency through increasing the enzymatic hydrolysis rate. Firstly, genistin-nano-silica solid dispersion was prepared by solvent method. And differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) were used to verify the formation of solid dispersion, then enzymatic hydrolysis of solid dispersion was done by snailase to get genistein. With the conversion of genistein as criteria, single factor experiments were used to study the different factors affecting enzymatic hydrolysis of genistin and its solid dispersion. And then, response surface method was used to optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis. The optimum condition to get genistein through enzymatic hydrolysis of genistin-nano-silica solid dispersion was pH 7.1, temperature 52.2 degrees C, enzyme concentration 5.0 mg x mL(-1) and reaction time 7 h. Under this condition, the conversion of genistein was (93.47 +/- 2.40)%. Comparing with that without forming the genistin-nano-silica solid dispersion, the conversion increased 2.62 fold. At the same time, the product of hydrolysis was purified to get pure genistein. The method of enzymatic hydrolysis of genistin-nano-silica solid dispersion by snailase to obtain genistein is simple, efficiency and suitable for the modern scale production.

  16. Differential regulation of BACE1 expression by oxidative and nitrosative signals

    Directory of Open Access Journals (Sweden)

    Xu Huaxi

    2011-03-01

    Full Text Available Abstract Background It is well established that both cerebral hypoperfusion/stroke and type 2 diabetes are risk factors for Alzheimer's disease (AD. Recently, the molecular link between ischemia/hypoxia and amyloid precursor protein (APP processing has begun to be established. However, the role of the key common denominator, namely nitric oxide (NO, in AD is largely unknown. In this study, we investigated redox regulation of BACE1, the rate-limiting enzyme responsible for the β-cleavage of APP to Aβ peptides. Results Herein, we studied events such as S-nitrosylation, a covalent modification of cysteine residues by NO, and H2O2-mediated oxidation. We found that NO and H2O2 differentially modulate BACE1 expression and enzymatic activity: NO at low concentrations (2O2 (1-10 μM induces BACE1 expression via transcriptional activation, resulting in increased enzymatic activity. The differential effects of NO and H2O2 on BACE1 expression and activity are also reflected in their opposing effects on Aβ generation in cultured neurons in a dose-dependent manner. Furthermore, we found that BACE1 is highly S-nitrosylated in normal aging brains while S-nitrosylation is markedly reduced in AD brains. Conclusion This study demonstrates for the first time that BACE1 is highly modified by NO via multiple mechanisms: low and high levels of NO suppress BACE1 via transcriptional and post translational regulation, in contrast with the upregulation of BACE1 by H2O2-mediated oxidation. These novel NO-mediated regulatory mechanisms likely protect BACE1 from being further oxidized by excessive oxidative stress, as from H2O2 and peroxynitrite which are known to upregulate BACE1 and activate the enzyme, resulting in excessive cleavage of APP and Aβ generation; they likely represent the crucial house-keeping mechanism for BACE1 expression/activation under physiological conditions.

  17. Bio-based alkyds by direct enzymatic bulk polymerization

    DEFF Research Database (Denmark)

    Nguyen, Hiep Dinh

    to a corresponding classical reference. In a further development of the system, it has been found possible to use the esters of pentaerythritol and stearic acid in combination with the penta-aze derivative for the preparation of pseudo alkyds containing only pentaerythritol as polyol with high degree of branching....... Bio-based alkyds prepared from a combination of glycerol, and tall oil fatty acids, and azelaic acid by enzymatic polymerization show improved hydrophobicity and lower glass transition temperatures compared to an alkyd prepared from the same raw materials by a classical boiling method. The enzymatic...... of pentaerythritol derivatized with azelaic acid (or penta-aze) was examined and tested for the production of more branched alkyd systems. A photostability test validated the concept, and the method also resulted in alkyds with improved hydrophobicity and lower glass transition temperatures compared...

  18. Process Evaluation Tools for Enzymatic Cascades Welcome Message

    DEFF Research Database (Denmark)

    Abu, Rohana

    improvement and implementation. Hence, the goal of this thesis is to evaluate the process concepts in enzymatic cascades in a systematic manner, using tools such as thermodynamic and kinetic analysis. Three relevant case studies have been used to exemplify the approach. In the first case study, thermodynamic......Biocatalysis is attracting significant attention from both academic and industrial scientists due to the excellent capability of enzyme to catalyse selective reactions. Recently, much interest has been shown in the application of enzymatic cascades as a useful tool in organic synthesis......, the kinetics can be controlled in a highly efficient way to achieve a sufficiently favourable conversion to a given target product. This is exemplified in the second case study, in the kinetic modelling of the formation of 2-ketoglutarate from glucoronate, the second case study. This cascade consists of 4...

  19. Vascular nitric oxide: Beyond eNOS

    Directory of Open Access Journals (Sweden)

    Yingzi Zhao

    2015-10-01

    Full Text Available As the first discovered gaseous signaling molecule, nitric oxide (NO affects a number of cellular processes, including those involving vascular cells. This brief review summarizes the contribution of NO to the regulation of vascular tone and its sources in the blood vessel wall. NO regulates the degree of contraction of vascular smooth muscle cells mainly by stimulating soluble guanylyl cyclase (sGC to produce cyclic guanosine monophosphate (cGMP, although cGMP-independent signaling [S-nitrosylation of target proteins, activation of sarco/endoplasmic reticulum calcium ATPase (SERCA or production of cyclic inosine monophosphate (cIMP] also can be involved. In the blood vessel wall, NO is produced mainly from l-arginine by the enzyme endothelial nitric oxide synthase (eNOS but it can also be released non-enzymatically from S-nitrosothiols or from nitrate/nitrite. Dysfunction in the production and/or the bioavailability of NO characterizes endothelial dysfunction, which is associated with cardiovascular diseases such as hypertension and atherosclerosis.

  20. Enzymatic Hydrolysis of Pretreated Fibre Pressed Oil Palm Frond by using Sacchariseb C6

    Science.gov (United States)

    Hashim, F. S.; Yussof, H. W.; Zahari, M. A. K. M.; Rahman, R. A.; Illias, R. M.

    2017-06-01

    Enzymatic hydrolysis becomes a prominent technology for conversion of cellulosic biomass to its glucose monomers that requires an action of cellulolytic enzymes in a sequential and synergistic manner. In this study, the effect of agitation speed, glucan loading, enzyme loading, temperature and reaction time on the production of glucose from fibre pressed oil palm frond (FPOPF) during enzymatic hydrolysis was screened by a half factorial design 25-1 using Response Surface Methodology (RSM). The FPOPF sample was first delignified by alkaline pretreatment at 4.42 (w/v) sodium hydroxide for an hour prior to enzymatic hydrolysis using commercial cellulase enzyme, Sacchariseb C6. The effect of enzymatic hydrolysis on the structural of FPOPF has been evaluated by Scanning Electron Microscopy (SEM) analysis. Characterization of raw FPOPF comprised of 4.5 extractives, 40.7 glucan, 26.1 xylan, 26.2 lignin and 1.8 ash, whereas for pretreated FPOPF gave 0.3 extractives, 61.4 glucan, 20.4 xylan, 13.3 lignin and 1.3 ash. From this study, it was found that the best enzymatic hydrolysis condition yielded 33.01 ± 0.73 g/L of glucose when performed at 200 rpm of agitation speed, 60 FPU/mL of enzyme loading, 4 (w/w) of glucan loading, temperature at 55 □ and 72 hours of reaction time. The model obtained was significant with p-value enzymatic hydrolysis from pretreated FPOPF produce high amount of glucose that enhances it potential for industrial application. This glucose can be further used to produce high-value products.