WorldWideScience

Sample records for enzymatic manganeseii oxidation

  1. Secretome-based Manganese(II) Oxidation by Filamentous Ascomycete Fungi

    Science.gov (United States)

    Zeiner, C. A.; Purvine, S.; Zink, E.; Paša-Tolić, L.; Chaput, D.; Wu, S.; Santelli, C. M.; Hansel, C. M.

    2017-12-01

    Manganese (Mn) oxides are among the strongest oxidants in the environment, and Mn(II) oxidation to Mn(III/IV) (hydr)oxides includes both abiotic and microbially-mediated processes. While white-rot Basidiomycete fungi oxidize Mn(II) using laccases and Mn peroxidases in association with lignocellulose degradation, the mechanisms by which filamentous Ascomycete fungi oxidize Mn(II) and a physiological role for Mn(II) oxidation in these organisms remain poorly understood. Through a combination of chemical and in-gel assays, bulk mass spectrometry, and iTRAQ proteomics, we demonstrate enzymatic Mn(II) oxidation in the secretomes of three phylogenetically diverse Ascomycetes that were isolated from Mn-laden sediments. Candidate Mn(II)-oxidizing enzymes were species-specific and included bilirubin oxidase and tyrosinase in Stagonospora sp. SRC1lsM3a, GMC oxidoreductase in Paraconiothyrium sporulosum AP3s5-JAC2a, and FAD-binding oxidoreductases in Pyrenochaeta sp. DS3sAY3a. These findings were supported by full proteomic characterization of the secretomes, which revealed a lack of Mn, lignin, and versatile peroxidases in these Ascomycetes but a substantially higher proportion of LMCOs and GMC oxidoreductases compared to wood-rot Basidiomycetes. We also identified the potential for indirect enzymatic Mn(II) oxidation by hydroxyl radical, as the secretomes were rich in diverse lignocellulose-degrading enzymes that could participate in Fenton chemistry. A link between Mn(II) oxidation and carbon oxidation analogous to white-rot Basidiomycetes remains unknown in these Ascomycetes. Interestingly, growth rates on rich medium were unaffected by the presence of Mn(II), and the production of Mn(II)-oxidizing proteins in the secretome was constitutive and not inducible by Mn(II). Thus, no physiological benefit of Mn(II) oxidation in these Ascomycetes has yet been identified, and Mn(II) oxidation appears to be a side reaction. Future work will explore the lignin-degrading capacity of

  2. The Enzymatic Oxidation of Graphene Oxide

    Science.gov (United States)

    Kotchey, Gregg P.; Allen, Brett L.; Vedala, Harindra; Yanamala, Naveena; Kapralov, Alexander A.; Tyurina, Yulia Y.; Klein-Seetharaman, Judith; Kagan, Valerian E.; Star, Alexander

    2011-01-01

    Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon – the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (~40 µM), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, UV-Vis, EPR and FT-IR spectroscopy, TEM, AFM, SDS-PAGE, and GC-MS. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Due to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors. PMID:21344859

  3. Electrochemical, Chemical and Enzymatic Oxidations of Phenothiazines

    NARCIS (Netherlands)

    Blankert, B.; Hayen, H.; van Leeuwen, S.M.; Karst, U.; Bodoki, E.; Lotrean, S.; Sandulescu, R.; Mora Diaz, N.; Dominguez, O.; Arcos, J.; Kauffmann, J.-M.

    2005-01-01

    The oxidation of several phenothiazine drugs (phenothiazine, promethazine hydrochloride, promazine hydrochloride, trimeprazine hydrochloride and ethopropazine hydrochloride) has been carried out in aqueous acidic media by electrochemical, chemical and enzymatic methods. The chemical oxidation was

  4. Kinetics and Mechanism of Paracetamol Oxidation by Chromium(VI in Absence and Presence of Manganese(II and Sodiumdodecyl Sulphate

    Directory of Open Access Journals (Sweden)

    Maqsood Ahmad Malik

    2007-11-01

    Full Text Available The kinetics of paracetamol oxidation are first order each in [paracetamol] and [HClO4]. The kinetic study shows that the oxidation proceeds in two steps. The effects of anionic micelles of sodiumdodecyl sulphate (SDS and complexing agents (ethylenediammine tetraacetic acid (EDTA and 2,2′-bipyridyl (bpy were also studied. Fast kinetic spectrophotometric method has been described for the determination of paracetamol. The method is based on the catalytic effect of manganese(II on the oxidation of paracetamol by chromium(VI in the presence of HClO4 (= 0.23 mol dm−3. Optimum reaction time is 4 to 6 minutes at a temperature of 30∘C. The addition of manganese(II ions largely decreased the absorbance of chromium(VI at 350 nm. This reaction can be utilized for the determination of paracetamol in drugs.

  5. Oxidation of manganese(II) with ferrate: Stoichiometry, kinetics, products and impact of organic carbon.

    Science.gov (United States)

    Goodwill, Joseph E; Mai, Xuyen; Jiang, Yanjun; Reckhow, David A; Tobiason, John E

    2016-09-01

    Manganese is a contaminant of concern for many drinking water utilities, and future regulation may be pending. An analysis of soluble manganese (Mn(II)) oxidation by ferrate (Fe(VI)) was executed at the bench-scale, in a laboratory matrix, both with and without the presence of natural organic matter (NOM) and at two different pH values, 6.2 and 7.5. In the matrix without NOM, the oxidation of Mn(II) by Fe(VI) followed a stoichiometry of 2 mol Fe(VI) to 3 mol Mn(II). The presence of NOM did not significantly affect the stoichiometry of the oxidation reaction, indicating relative selectivity of Fe(VI) for Mn(II). The size distribution of resulting particles included significant amounts of nanoparticles. Resulting manganese oxide particles were confirmed to be MnO2 via X-ray photoelectron spectroscopy. The rate of the Mn(II) oxidation reaction was fast relative to typical time scales in drinking water treatment, with an estimated second order rate constant of approximately 1 × 10(4) M(-1) s(-1) at pH 9.2 and > 9 × 10(4) M(-1) s(-1) at pH 6.2. In general, ferrate is a potential option for Mn(II) oxidation in water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. O2 Activation and Double C-H Oxidation by a Mononuclear Manganese(II) Complex.

    Science.gov (United States)

    Deville, Claire; Padamati, Sandeep K; Sundberg, Jonas; McKee, Vickie; Browne, Wesley R; McKenzie, Christine J

    2016-01-11

    A Mn(II) complex, [Mn(dpeo)2](2+) (dpeo=1,2-di(pyridin-2-yl)ethanone oxime), activates O2, with ensuing stepwise oxidation of the methylene group in the ligands providing an alkoxide and ultimately a ketone group. X-ray crystal-structure analysis of an intermediate homoleptic alkoxide Mn(III) complex shows tridentate binding of the ligand via the two pyridyl groups and the newly installed alkoxide moiety, with the oxime group no longer coordinated. The structure of a Mn(II) complex of the final ketone ligand, cis-[MnBr2(hidpe)2] (hidpe=2-(hydroxyimino)-1,2-di(pyridine-2-yl)ethanone) shows that bidentate oxime/pyridine coordination has been resumed. H2(18)O and (18)O2 labeling experiments suggest that the inserted O atoms originate from two different O2 molecules. The progress of the oxygenation was monitored through changes in the resonance-enhanced Raman bands of the oxime unit. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Enzymatic biosensors based on the use of metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Shi, Xinhao; Gu, Wei; Li, Bingyu; Chen, Ningning; Zhao, Kai; Xian, Yuezhong

    2014-01-01

    Over the past decades, various techniques have been developed to obtain materials at a nanoscale level to design biosensors with high sensitivity, selectivity and efficiency. Metal oxide nanoparticles (MONPs) are of particular interests and have received much attention because of their unique physical, chemical and catalytic properties. This review summarizes the progress made in enzymatic biosensors based on the use of MONPs. Synthetic methods, strategies for immobilization, and the functions of MONPs in enzymatic biosensing systems are reviewed and discussed. The article is subdivided into sections on enzymatic biosensors based on (a) zinc oxide nanoparticles, (b) titanium oxide nanoparticles, (c) iron oxide nanoparticles, and (d) other metal oxide nanoparticles. While substantial advances have been made in MONPs-based enzymatic biosensors, their applications to real samples still lie ahead because issues such as reproducibility and sensor stability have to be solved. (author)

  8. Kinetic, mechanistic, and spectroscopic studies of permanganate oxidation of azinylformamidines in acidic medium, with autocatalytic behavior of manganese(II

    Directory of Open Access Journals (Sweden)

    Basim H. Asghar

    2016-09-01

    Full Text Available The kinetics of permanganate oxidation of two substituted azinylformamidines (Azn-Fs, namely N,N-dimethyl-N′-(pyridin-2-ylformamidine (Py and N,N-dimethyl-N′-(pyrimidin-2-ylformamidine (Pym, in sulfuric acid were investigated using conventional spectrophotometry. Kinetic evidence for the formation of 1:1 intermediate complexes between the oxidant and substrates was obtained. The reactions of both substrates with permanganate showed similar kinetics, i.e. first order in [MnO4−]0 and fractional-first-order with respect to both [Azn-F]0 and [H+]. The initial product, Mn2+, was found to autocatalyze the oxidation process. Changes in the ionic strength and dielectric constant of the medium had no significant effect on the rate. The final oxidation products of Py and Pym were identified as 2-aminopyridine and 2-aminopyrimidine, respectively, in addition to dimethylamine and carbon dioxide. A plausible reaction mechanism is suggested and the reaction constants involved in the mechanism were evaluated.

  9. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood

    DEFF Research Database (Denmark)

    Palonen, H.; Thomsen, A.B.; Tenkanen, M.

    2004-01-01

    The wet oxidation pretreatment (water, oxygen, elevated temperature, and pressure) of softwood (Picea abies) was investigated for enhancing enzymatic hydrolysis. The pretreatment was preliminarily optimized. Six different combinations of reaction time, temperature, and pH were applied......, and the compositions of solid and liquid fractions were analyzed. The solid fraction after wet oxidation contained 58-64% cellulose, 2-16% hemicellulose, and 24-30% lignin. The pretreatment series gave information about the roles of lignin and hemicellulose in the enzymatic hydrolysis. The temperature...

  10. Enzymatic oxidation of mercury vapor by erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Halbach, S; Clarkson, T W

    1978-01-01

    The formation of glutathione radicals, the evolution of nascent oxygen or the peroxidatic reaction with catalase complex I are considered as possible mechanisms for the oxidation of mercury vapor by red blood cells. To select among these, the uptake of atomic mercury by erythrocytes from different species was studied and related to their various activities of catalase (hydrogen-peroxide:hydrogen-peroxide oxidoreductase, EC 1.11.1.6) and glutathione peroxidase (glutathione:hydrogen-peroxide oxidoreductase, EC 1.11.1.9). A slow and continuouus infusion of diluted H/sub 2/O/sub 2/ was used to maintain steady concentrations of complex I. 1% red cell suspensions were found most suitable showing high rates of Hg uptake and yielding still enough cells for subsequent determinations. The results indicate that the oxidation of mercury depends upon the H/sub 2/O/sub 2/-generation rate and upon the specific acticity of red-cell catalase. The oxidation occurred in a range of the catalase-H/sub 2/O/sub 2/ reaction where the evolution of oxygen could be excluded. Compounds reacting with complex I were shown to be effective inhibitors of the mercury uptake. GSH-peroxidase did not participate in the oxidation but rather, was found to inhibit it by competing with catalase for hydrogen peroxide. These findings support the view that elemental mercury is oxidized in erythrocytes by a peroxidatic reaction with complex I only.

  11. Manganese(II) chelate contrast media

    International Nuclear Information System (INIS)

    Rocklage, S.M.; Quay, S.C.

    1994-01-01

    New chelate forming compounds for use as contrast media in NMR imaging are described. Especially mentioned are manganese(II) ion chelates of N,N' dipyridoxaldiamine, N,N' diacetic acid, and salts and esters thereof. 1 fig

  12. Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, Irina I. [Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219 (United States); Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow 119453 (Russian Federation); Kapralov, Alexandr A. [Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219 (United States); Michael, Zachary P.; Burkert, Seth C. [Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Shurin, Michael R. [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261 (United States); Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261 (United States); Star, Alexander [Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Shvedova, Anna A., E-mail: ats@cdc.gov [Pathology and Physiology Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH) and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26505 (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219 (United States); Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Departments of Pharmacology and Chemical Biology and Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2016-05-15

    Biopersistence of carbon nanotubes, graphene oxide (GO) and several other types of carbonaceous nanomaterials is an essential determinant of their health effects. Successful biodegradation is one of the major factors defining the life span and biological responses to nanoparticles. Here, we review the role and contribution of different oxidative enzymes of inflammatory cells – myeloperoxidase, eosinophil peroxidase, lactoperoxidase, hemoglobin, and xanthine oxidase – to the reactions of nanoparticle biodegradation. We further focus on interactions of nanomaterials with hemoproteins dependent on the specific features of their physico-chemical and structural characteristics. Mechanistically, we highlight the significance of immobilized peroxidase reactive intermediates vs diffusible small molecule oxidants (hypochlorous and hypobromous acids) for the overall oxidative biodegradation process in neutrophils and eosinophils. We also accentuate the importance of peroxynitrite-driven pathways realized in macrophages via the engagement of NADPH oxidase- and NO synthase-triggered oxidative mechanisms. We consider possible involvement of oxidative machinery of other professional phagocytes such as microglial cells, myeloid-derived suppressor cells, in the context of biodegradation relevant to targeted drug delivery. We evaluate the importance of genetic factors and their manipulations for the enzymatic biodegradation in vivo. Finally, we emphasize a novel type of biodegradation realized via the activation of the “dormant” peroxidase activity of hemoproteins by the nano-surface. This is exemplified by the binding of GO to cyt c causing the unfolding and ‘unmasking’ of the peroxidase activity of the latter. We conclude with the strategies leading to safe by design carbonaceous nanoparticles with optimized characteristics for mechanism-based targeted delivery and regulatable life-span of drugs in circulation. - Highlights: • Nanoparticles can be degraded by

  13. Oxidative enzymatic gelation of sugar beet pectin for emulsion stabilization

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Meyer, Anne S.

    2013-01-01

    Pectin from sugar beet is derived from the sugar beet pulp residue which results when sugar beets are processed for sucrose extraction. The sugar beet pectin has poor gelationability by the classic divalentcation molecular mechanism because of a relatively high acetylation degree and short...... polygalacturonate backbone chain length. However, due to the feruloyl-substitutions on the side chains, the sugar beet pectic polysaccharides can be cross-linked via enzyme catalyzed oxidation. The enzyme kinetics and functionality of such oxidativelycross-linked sugar beet pectin, in relation to stabilizing...... emulsions has recently been investigated in model food emulsions. This paper reviews the pectin chemistry, enzymatic oxidative gelation mechanisms, interaction mechanisms of the sugar beet pectin with the emulsion droplets and explores how the gelation affects the rheology and stability of emulsion systems...

  14. Structural information on the coordination compounds formed by manganese(II), cobalt(II), nickel(II), zinc(II), cadmium(II) and mercury(II) thiocyanates with 4-cyanopyridine N-oxide from their magnetic moments, electronic and infrared spectra

    Science.gov (United States)

    Ahuja, I. S.; Yadava, C. L.; Singh, Raghuvir

    1982-05-01

    Coordination compounds formed by the interaction of 4-cyanopyridine. N-oxide (4-CPO), a potentially bidentate ligand, with manganese(II), cobalt(II), nickel(II), zinc(II), cadmium(II) and rnercury(II) thiocyanates have been prepared and characterized from their elemental analyses, magnetic susceptibilities, electronic and infrared spectral studies down to 200 cm -1 in the solid state. The compounds isolated are: Mn(4-CPO) 2(NCS) 2, Co(4-CPO) 2(NCS) 2,Ni(4-CPO) 2(NCS) 2,Zn(4-CPO) 2(NCS) 2, Cd(4-CPO)(NCS) 2 and Hg(4-CPO) 2(SCN) 2. It is shown that 4-CPO acts as a terminal N-oxide oxygen bonded monodentate ligand in all the metal(II) thiocyanate complexes studied. Tentative stereochemistries of the complexes in the solid state are discussed. The ligand field parameters 10 Dq, B, β and λ calculated for the manganese(II), cobalt(II) and nickel(II) complexes are consistent with their proposed stereochemistries.

  15. Enzymatically and chemically oxidized lignin nanoparticles for biomaterial applications.

    Science.gov (United States)

    Mattinen, Maija-Liisa; Valle-Delgado, Juan José; Leskinen, Timo; Anttila, Tuomas; Riviere, Guillaume; Sipponen, Mika; Paananen, Arja; Lintinen, Kalle; Kostiainen, Mauri; Österberg, Monika

    2018-04-01

    Cross-linked and decolorized lignin nanoparticles (LNPs) were prepared enzymatically and chemically from softwood Kraft lignin. Colloidal lignin particles (CLPs, ca. 200 nm) in a non-malodorous aqueous dispersion could be dried and redispersed in tetrahydrofuran (THF) or in water retaining their stability i.e. spherical shape and size. Two fungal laccases, Trametes hirsuta (ThL) and Melanocarpus albomyces (MaL) were used in the cross-linking reactions. Reactivity of ThL and MaL on Lignoboost™ lignin and LNPs was confirmed by high performance size exclusion chromatography (HPSEC) and oxygen consumption measurements with simultaneous detection of red-brown color due to the formation of quinones. Zeta potential measurements verified oxidation of LNPs via formation of surface-oriented carboxylic acid groups. Dynamic light scattering (DLS) revealed minor changes in the particle size distributions of LNPs after laccase catalyzed radicalization, indicating preferably covalent intraparticular cross-linking over polymerization. Changes in the surface morphology of laccase treated LNPs were imaged by atomic force (AFM) and transmission emission (TEM) microscopy. Furthermore, decolorization of LNPs without degradation was obtained using ultrasonication with H 2 O 2 in alkaline reaction conditions. The research results have high impact for the utilization of Kraft lignin as nanosized colloidal particles in advanced bionanomaterial applications in medicine, foods and cosmetics including different sectors from chemical industry. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Simultaneous iridium catalysed oxidation and enzymatic reduction employing orthogonal reagents

    NARCIS (Netherlands)

    Mutti, Francesco G.; Orthaber, Andreas; Schrittwieser, Joerg H.; Vries, Johannes G. de; Pietschnig, Rudolf; Kroutil, Wolfgang

    2010-01-01

    An iridium catalysed oxidation was coupled concurrently to an asymmetric biocatalytic reduction in one-pot; thus it was shown for the first time that iridium- and alcohol dehydrogenase-catalysed redox reactions are compatible. As a model system racemic chlorohydrins were transformed to

  17. Comparison between wet oxidation and steam explosion as pretreatment methods for enzymatic hydrolysis of sugarcane bagasse

    DEFF Research Database (Denmark)

    Medina, Carlos Martín; Marcet, M.; Thomsen, Anne Belinda

    2008-01-01

    , and to a two-fold increase of cellulose content in the pretreated solids, while steam explosion solubilised only 60% of xylan and 35% of lignin and increased cellulose content in the solid material by one third. Wet oxidation formed more aliphatic acids and phenolics, and less furan aldehydes in the liquid......Alkaline wet oxidation and steam explosion pretreatments of sugarcane bagasse were compared with regard to biomass fractionation, formation of by-products, and enzymatic convertibility of the pretreated material. Wet oxidation led to the solubilisation of 82% of xylan and 50% of lignin...... fraction than steam explosion did. A better enzymatic convertibility of cellulose was achieved for the wet-oxidised material (57.4 %) than for the steam-exploded material (48.9 %). Cellulose convertibility was lower for the whole slurry than for the washed solids in both pretreatments, but more...

  18. Enzymatic oxidations of alcohols in biosynthesis of bumblebee pheromones

    OpenAIRE

    Bártová, Adéla

    2016-01-01

    Secretion of cephalic labial gland of Buff-tailed bumblebee males (Bombus terrestris) contains a mixture of terpene alcohols, aliphatic alcohols, esters and alkanes with small amount of aldehydes potentially biosynthetized of (S)-2,3-dihydrofarnesol and geranylcitronellol (major alcoholic compounds). This secretion acts as a marking and luring pheromone during patrolling. This study is focused on oxidation of terpene alcohols using enzymes of cephalic labial gland of a bumblebee. In vitro inc...

  19. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B; Wanscher, B

    2004-01-01

    We used post-mortem magnetic resonance imaging (MRI) guidance to obtain paired biopsies from the brains of four patients with clinical definite multiple sclerosis (MS). Samples were analyzed for the immunoreactivity (IR) of the three nitric oxide (NO) synthase isoforms [inducible, neuronal......NOS expressing cells in active lesions. NOS IR expressing cells were widely distributed in plaques, in white and gray matter that appeared normal macroscopically, and on MR. Endothelial NOS (eNOS) was highly expressed in intraparenchymal vascular endothelial cells of MS patients. A control group matched for age...

  20. Single-molecule study of oxidative enzymatic deconstruction of cellulose.

    Science.gov (United States)

    Eibinger, Manuel; Sattelkow, Jürgen; Ganner, Thomas; Plank, Harald; Nidetzky, Bernd

    2017-10-12

    LPMO (lytic polysaccharide monooxygenase) represents a unique paradigm of cellulosic biomass degradation by an oxidative mechanism. Understanding the role of LPMO in deconstructing crystalline cellulose is fundamental to the enzyme's biological function and will help to specify the use of LPMO in biorefinery applications. Here we show with real-time atomic force microscopy that C1 and C4 oxidizing types of LPMO from Neurospora crassa (NcLPMO9F, NcLPMO9C) bind to nanocrystalline cellulose with high preference for the very same substrate surfaces that are also used by a processive cellulase (Trichoderma reesei CBH I) to move along during hydrolytic cellulose degradation. The bound LPMOs, however, are immobile during their adsorbed residence time ( ~ 1.0 min for NcLPMO9F) on cellulose. Treatment with LPMO resulted in fibrillation of crystalline cellulose and strongly ( ≥ 2-fold) enhanced the cellulase adsorption. It also increased enzyme turnover on the cellulose surface, thus boosting the hydrolytic conversion.Understanding the role of enzymes in biomass depolymerization is essential for the development of more efficient biorefineries. Here, the authors show by atomic force microscopy the real-time mechanism of cellulose deconstruction by lytic polysaccharide monooxygenases.

  1. Blood parameters and enzymatic and oxidative activity in the liver of chickens fed with calcium anacardate

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Braga Cruz

    Full Text Available ABSTRACT The aim of this research was to evaluate the inclusion of calcium anacardate (CAC as a source of anacardic acid in the diet of broiler chickens on blood parameters, and enzymatic and oxidative activity in the liver. A total of 840 male chicks, one day old, were kept in a completely randomised experimental design, with six treatments and seven replications of 20 birds, totalling 140 birds per treatment. The treatments consisted of feed without the addition of growth promoter (GP, feed with GP, and feed with no GP and the addition of CAC at levels of 0.25, 0.50, 0.75 and 1%. The biochemical blood variables to be analysed were uric acid, total cholesterol, HDL, LDL, creatinine, AST, ALT, triglycerides, total erythrocytes, haemoglobin, haematocrit, mean corpuscular volume, corpuscular haemoglobin concentration, total plasma protein, total leukocytes, heterophils, lymphocytes, platelets and heterophil/lymphocyte ratio. The concentrations of superoxide dismutase, glutathione peroxidase and malondialdehyde were analysed for the enzymatic and oxidative parameters in the liver. There were no significant differences between treatments in the blood parameters or the enzymatic and oxidative activity in the liver of the chickens, demonstrating that the use of calcium anacardate as a source of anacardic acid is non-toxic, and does not affect these parameters.

  2. Lignocellulose pretreatment technologies affect the level of enzymatic cellulose oxidation by LPMO

    DEFF Research Database (Denmark)

    Rodríguez-Zúñiga, Ursula Fabiola; Cannella, David; de Campos Giordano, Roberto

    2015-01-01

    of the cellulose oxidizing enzyme lytic polysaccharide monooxygenase (LPMO). The highest activity of LPMO was observed for the hydrothermally pretreated biomasses, which also contained the highest level of lignin. All hydrolysis were done at high dry matter levels, using a commercial enzyme preparation containing......Sugarcane bagasse, corn stover, and wheat straw are among the most available resources for production of cellulosic ethanol. For these biomasses we study the influence of pre-treatment methods on the chemical composition, as well as on the subsequent reactions of enzymatic hydrolysis and oxidation...

  3. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility.

    Science.gov (United States)

    Varga, Eniko; Schmidt, Anette S; Réczey, Kati; Thomsen, Anne Belinda

    2003-01-01

    Corn stover is an abundant, promising raw material for fuel ethanol production. Although it has a high cellulose content, without pretreatment it resists enzymatic hydrolysis, like most lignocellulosic materials. Wet oxidation (water, oxygen, mild alkali or acid, elevated temperature and pressure) was investigated to enhance the enzymatic digestibility of corn stover. Six different combinations of reaction temperature, time, and pH were applied. The best conditions (60 g/L of corn stover, 195 degrees C, 15 min, 12 bar O2, 2 g/L of Na2CO3) increased the enzymatic conversion of corn stover four times, compared to untreated material. Under these conditions 60% of hemicellulose and 30% of lignin were solubilized, whereas 90% of cellulose remained in the solid fraction. After 24-h hydrolysis at 50 degrees C using 25 filter paper units (FPU)/g of drymatter (DM) biomass, the achieved conversion of cellulose to glucose was about 85%. Decreasing the hydrolysis temperature to 40 degrees C increased hydrolysis time from 24 to 72 h. Decreasing the enzyme loading to 5 FPU/g of DM biomass slightly decreased the enzymatic conversion from 83.4 to 71%. Thus, enzyme loading can be reduced without significantly affecting the efficiency of hydrolysis, an important economical aspect.

  4. Nickel-functionalized reduced graphene oxide with polyaniline for non-enzymatic glucose sensing

    International Nuclear Information System (INIS)

    Zhang, Bing; He, Yu; Liu, Bingqian; Tang, Dianping

    2015-01-01

    We have developed a new class of organic–inorganic hybrid nanostructures based on the use of reduced graphene oxide (rGO), polyaniline, and a nickel metal nanostructure. It was applied to efficient non-enzymatic sensing of glucose based on its electrocatalytic oxidation. Scanning electron microscopy and energy-dispersive X-Ray were employed to characterize the material. It is shown that the doped polyaniline plays an important role in the formation of the hybrid nanostructures. Improved analytical performance is found when the hybrid nanostructures were placed on a glassy carbon electrode and used for non-enzymatic sensing of glucose at a typical working potential of +450 mV and a pH value of 13. Features include a fast response (∼2 s), high sensitivity (6,050 μA mM −1 cm −2 ), a linear range from 0.1 μM to 1.0 mM, and a low detection limit (0.08 μM). The response to glucose follows a Michaelis-Menten kinetic behavior, and the K M value was determined to be 0.241 μM. Reproducibility and specificity are acceptable. Fructose and maltose do not interfere significantly. Importantly, the methodology was validated and evaluated for the analysis of 15 spiked human serum specimens, receiving in a good accordance with the results obtained by the non-enzymatic glucose sensing and the commercialized personal glucose meter. (author)

  5. Enzymatic lipid oxidation by eosinophils propagates coagulation, hemostasis, and thrombotic disease

    Science.gov (United States)

    Uderhardt, Stefan; Ackermann, Jochen A.; Fillep, Tobias; Hammond, Victoria J.; Willeit, Johann; Stark, Konstantin; Rossaint, Jan; Schubert, Irene; Mielenz, Dirk; Dietel, Barbara; Raaz-Schrauder, Dorette; Ay, Cihan; Thaler, Johannes; Heim, Christian; Collins, Peter W.; Schabbauer, Gernot; Mackman, Nigel; Voehringer, David; Nadler, Jerry L.; Lee, James J.; Massberg, Steffen; Rauh, Manfred; O’Donnell, Valerie B.

    2017-01-01

    Blood coagulation is essential for physiological hemostasis but simultaneously contributes to thrombotic disease. However, molecular and cellular events controlling initiation and propagation of coagulation are still incompletely understood. In this study, we demonstrate an unexpected role of eosinophils during plasmatic coagulation, hemostasis, and thrombosis. Using a large-scale epidemiological approach, we identified eosinophil cationic protein as an independent and predictive risk factor for thrombotic events in humans. Concurrent experiments showed that eosinophils contributed to intravascular thrombosis by exhibiting a strong endogenous thrombin-generation capacity that relied on the enzymatic generation and active provision of a procoagulant phospholipid surface enriched in 12/15-lipoxygenase–derived hydroxyeicosatetraenoic acid–phosphatidylethanolamines. Our findings reveal a previously unrecognized role of eosinophils and enzymatic lipid oxidation as regulatory elements that facilitate both hemostasis and thrombosis in response to vascular injury, thus identifying promising new targets for the treatment of thrombotic disease. PMID:28566277

  6. Enzymatic biomarkers can portray nanoCuO-induced oxidative and neuronal stress in freshwater shredders.

    Science.gov (United States)

    Pradhan, Arunava; Silva, Carla O; Silva, Carlos; Pascoal, Cláudia; Cássio, Fernanda

    2016-11-01

    Commercial applications of nanometal oxides have increased concern about their release into natural waters and consequent risks to aquatic biota and the processes they drive. In forest streams, the invertebrate shredder Allogamus ligonifer plays a key role in detritus food webs by transferring carbon and energy from plant litter to higher trophic levels. We assessed the response profiles of oxidative and neuronal stress enzymatic biomarkers in A. ligonifer after 96h exposure to nanoCuO at concentration ranges stress, Cu 2+ released from nanoCuO was quantified and the enzymatic responses to Cu 2+ exposure at similar effective concentrations were compared. The highest activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) were observed at concentrations stress at low concentrations (released ionic copper on enzyme activities were concentration-dependent, and led to oxidative stress and even to animal death. The activity of acetylcholinesterase (AChE) was strongly inhibited even at concentrations stress in A. ligonifer. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs).

    Science.gov (United States)

    Yu, Shann S; Scherer, Randy L; Ortega, Ryan A; Bell, Charleson S; O'Neil, Conlin P; Hubbell, Jeffrey A; Giorgio, Todd D

    2011-02-27

    Drug and contrast agent delivery systems that achieve controlled release in the presence of enzymatic activity are becoming increasingly important, as enzymatic activity is a hallmark of a wide array of diseases, including cancer and atherosclerosis. Here, we have synthesized clusters of ultrasmall superparamagnetic iron oxides (USPIOs) that sense enzymatic activity for applications in magnetic resonance imaging (MRI). To achieve this goal, we utilize amphiphilic poly(propylene sulfide)-bl-poly(ethylene glycol) (PPS-b-PEG) copolymers, which are known to have excellent properties for smart delivery of drug and siRNA. Monodisperse PPS polymers were synthesized by anionic ring opening polymerization of propylene sulfide, and were sequentially reacted with commercially available heterobifunctional PEG reagents and then ssDNA sequences to fashion biofunctional PPS-bl-PEG copolymers. They were then combined with hydrophobic 12 nm USPIO cores in the thin-film hydration method to produce ssDNA-displaying USPIO micelles. Micelle populations displaying complementary ssDNA sequences were mixed to induce crosslinking of the USPIO micelles. By design, these crosslinking sequences contained an EcoRV cleavage site. Treatment of the clusters with EcoRV results in a loss of R2 negative contrast in the system. Further, the USPIO clusters demonstrate temperature sensitivity as evidenced by their reversible dispersion at ~75°C and re-clustering following return to room temperature. This work demonstrates proof of concept of an enzymatically-actuatable and thermoresponsive system for dynamic biosensing applications. The platform exhibits controlled release of nanoparticles leading to changes in magnetic relaxation, enabling detection of enzymatic activity. Further, the presented functionalization scheme extends the scope of potential applications for PPS-b-PEG. Combined with previous findings using this polymer platform that demonstrate controlled drug release in oxidative

  8. Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs

    Directory of Open Access Journals (Sweden)

    Ortega Ryan A

    2011-02-01

    Full Text Available Abstract Background Drug and contrast agent delivery systems that achieve controlled release in the presence of enzymatic activity are becoming increasingly important, as enzymatic activity is a hallmark of a wide array of diseases, including cancer and atherosclerosis. Here, we have synthesized clusters of ultrasmall superparamagnetic iron oxides (USPIOs that sense enzymatic activity for applications in magnetic resonance imaging (MRI. To achieve this goal, we utilize amphiphilic poly(propylene sulfide-bl-poly(ethylene glycol (PPS-b-PEG copolymers, which are known to have excellent properties for smart delivery of drug and siRNA. Results Monodisperse PPS polymers were synthesized by anionic ring opening polymerization of propylene sulfide, and were sequentially reacted with commercially available heterobifunctional PEG reagents and then ssDNA sequences to fashion biofunctional PPS-bl-PEG copolymers. They were then combined with hydrophobic 12 nm USPIO cores in the thin-film hydration method to produce ssDNA-displaying USPIO micelles. Micelle populations displaying complementary ssDNA sequences were mixed to induce crosslinking of the USPIO micelles. By design, these crosslinking sequences contained an EcoRV cleavage site. Treatment of the clusters with EcoRV results in a loss of R2 negative contrast in the system. Further, the USPIO clusters demonstrate temperature sensitivity as evidenced by their reversible dispersion at ~75°C and re-clustering following return to room temperature. Conclusions This work demonstrates proof of concept of an enzymatically-actuatable and thermoresponsive system for dynamic biosensing applications. The platform exhibits controlled release of nanoparticles leading to changes in magnetic relaxation, enabling detection of enzymatic activity. Further, the presented functionalization scheme extends the scope of potential applications for PPS-b-PEG. Combined with previous findings using this polymer platform that

  9. Investigation of lipid oxidation and non-enzymatic browning reactions in marine PL emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    Marine phospholipids (PL) have received much attention recently due to their numerous advantages. One of these advantages is their better resistance towards oxidation as compared to fish oil. In addition to the antioxidative properties of α-tocopherol and phospholipids, the better oxidative...... stability of marine PL might be attributed to antioxidative properties of pyrroles formed between oxidised lipids with amine groups from phosphatidylethanolamine (PE) or residues amino acids that are present in marine PL. The main objective of this study was to investigate if the presence of amine group...... of amino acids (leucine, methionine and lysine) from 2 authentic standards (PC and PE) and 2 purified marine PL (LC and MPL) through sonication method. Emulsions were incubated at 60 ºC for 0, 2, 4 and 6 days. Non-enzymatic browning reactions were investigated through measurement of i) Strecker aldehydes...

  10. In Vitro Enzymatic Reduction Kinetics of Mineral Oxides by Membrane Fractions from Shewanella oneidensis MR-1

    International Nuclear Information System (INIS)

    Ruebush, S.; Icopini, G.; Brantley, S.; Tien, M.

    2006-01-01

    This study documents the first example of in vitro solid-phase mineral oxide reduction by enzyme-containing membrane fractions. Previous in vitro studies have only reported the reduction of aqueous ions. Total membrane (TM) fractions from iron-grown cultures of Shewanella oneidensis MR-1 were isolated and shown to catalyze the reduction of goethite, hematite, birnessite, and ramsdellite/pyrolusite using formate. In contrast, nicotinamide adenine dinucleotide (NADH) and succinate cannot function as electron donors. The significant implications of observations related to this cell-free system are: (i) both iron and manganese mineral oxides are reduced by the TM fraction, but aqueous U(VI) is not; (ii) TM fractions from anaerobically grown, but not aerobically grown, cells can reduce the mineral oxides; (iii) electron shuttles and iron chelators are not needed for this in vitro reduction, documenting conclusively that reduction can occur by direct contact with the mineral oxide; (iv) electron shuttles and EDTA stimulate the in vitro Fe(III) reduction, documenting that exogenous molecules can enhance rates of enzymatic mineral reduction; and (v) multiple membrane components are involved in solid-phase oxide reduction. The membrane fractions, consisting of liposomes of cytoplasmic and outer membrane segments, contain at least 100 proteins including the enzyme that oxidizes formate, formate dehydrogenase. Mineral oxide reduction was inhibited by the addition of detergent Triton X-100, which solubilizes membranes and their associated proteins, consistent with the involvement of multiple electron carriers that are disrupted by detergent addition. In contrast, formate dehydrogenase activity was not inhibited by Triton X-100. The addition of anthraquinone-2,6-disulfonate (AQDS) and menaquinone-4 was unable to restore activity; however, menadione (MD) restored 33% of the activity. The addition of AQDS and MD to reactions without added detergent increased the rate of goethite

  11. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    Science.gov (United States)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P pulmonary hypertension.

  12. Effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Bruheim, I.; Haugsgjerd, B.O.

    2014-01-01

    was assessed by peroxide value and anisidine value, measurement of lipid derived volatiles, lipid classes and antioxidants. The non-enzymatic browning reactions were assessed through the measurement of pyrroles, free amino acids content and Strecker-derived volatiles. The increase of incubation temperature......The main objective of this study was to investigate the effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage. Krill oil was incubated at two different temperatures (20 and 40°C) for 28 or 42 days. The oxidative stability of krill oil...

  13. Non-Enzymatic Glucose Sensor Composed of Carbon-Coated Nano-Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Ren-Jei Chung

    2017-02-01

    Full Text Available Nowadays glucose detection is of great importance in the fields of biological, environmental, and clinical analyzes. In this research, we report a zinc oxide (ZnO nanorod powder surface-coated with carbon material for non-enzymatic glucose sensor applications through a hydrothermal process and chemical vapor deposition method. A series of tests, including crystallinity analysis, microstructure observation, and electrochemical property investigations were carried out. For the cyclic voltammetric (CV glucose detection, the low detection limit of 1 mM with a linear range from 0.1 mM to 10 mM was attained. The sensitivity was 2.97 μA/cm2mM, which is the most optimized ever reported. With such good analytical performance from a simple process, it is believed that the nanocomposites composed of ZnO nanorod powder surface-coated with carbon material are promising for the development of cost-effective non-enzymatic electrochemical glucose biosensors with high sensitivity.

  14. Evaluation of peroxidases from roots of Cyperus hermaphroditus as enzymatic mechanisms in phenanthrene oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero Zuniga, A. [Inst. Mexicano del Petroleo, Mexico City (Mexico). Environmental Protection Management Office; Rodriguez Dorantes, A.M. [Lab. Fisiologia Vegetal, Escuela Nacional de Ciencias Biologicas, Mexico City (Mexico). Depto Botanica

    2006-07-01

    Although phenanthrene is not mutagenic or carcinogenic, it has been shown to be toxic to aquatic organisms. This study evaluated in-vitro phenanthrene oxidation by peroxidases from radical extracts of Cyperus hermaphroditus plants. The characterization of oxidation products of phenanthrene related to the induction of root peroxidases was also examined. Concentrated ethanol stock of phenanthrene solution was added to the mineral solution of each plant container. The total radical biomass was placed in 4.5 ml of an ionic solution to analyze the enzymatic activity of the extracellular peroxidases. The total protein for each experiment was quantified by the Bradford method. Extracellular peroxidases activity was measured using the spectrophotometric method. The amount of radical biomass was quantified as high in the 80 and 120 ppm phenanthrene treatments relative to the control plants. It was suggested that the nature of the Cyperaceae roots combined with the high-octanol water coefficient and a low water solubility for phenanthrene may have facilitated the stabilization of the contaminant towards the roots. The ability of Cyperus hermaphroditus to immobilize phenanthrene through its adhesion was encouraged by the conditions of the hydroponic culture system. The adsorption of phenanthrene was increased with the time of exposure to the contaminant due to the greater total root mass. The study also showed the transformation of phenanthrene by radical extracts of Cyperus hermaphroditus containing guaiacol peroxidases with 12 per cent residual phenanthrene in the in vitro assays. The spectrophotometric analysis confirmed that the enzymatic systems are responsible for the phytotransformation of the pollutant. 9 refs., 2 tabs., 5 figs.

  15. MWCNT-ruthenium oxide composite paste electrode as non-enzymatic glucose sensor.

    Science.gov (United States)

    Tehrani, Ramin M A; Ab Ghani, Sulaiman

    2012-01-01

    A non-enzymatic glucose sensor of multi-walled carbon nanotube-ruthenium oxide/composite paste electrode (MWCNT-RuO(2)/CPE) was developed. The electrode was characterized by using XRD, SEM, TEM and EIS. Meanwhile, cyclic voltammetry and amperometry were used to check on the performances of the MWCNT-RuO(2)/CPE towards glucose. The proposed electrode has displayed a synergistic effect of RuO(2) and MWCNT on the electrocatalytic oxidation of glucose in 3M NaOH. This was possible via the formation of transitions of two redox pairs, viz. Ru(VI)/Ru(IV) and Ru(VII)/Ru(VI). A linear range of 0.5-50mM glucose and a limit of detection of 33 μM glucose (S/N=3) were observed. There was no significant interference observable from the traditional interferences, viz. ascorbic acid and uric acid. Indeed, results so obtained have indicated that the developed MWCNT-RuO(2)/CPE would pave the way for a better future to glucose sensor development as its fabrication was without the use of any enzyme. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Processing surface sizing starch using oxidation, enzymatic hydrolysis and ultrasonic treatment methods--Preparation and application.

    Science.gov (United States)

    Brenner, Tobias; Kiessler, Birgit; Radosta, Sylvia; Arndt, Tiemo

    2016-03-15

    The surface application of starch is a well-established method for increasing paper strength. In surface sizing, a solution of degraded starch is applied to the paper. Two procedures have proved valuable for starch degradation in the paper mill: enzymatic and thermo-oxidative degradation. The objective of this study was to determine achievable efficiencies of cavitation in preparing degraded starch for surface application on paper. It was found that ultrasonic-assisted starch degradation can provide a starch solution that is suitable for surface sizing. The molecular composition of starch solutions prepared by ultrasonic treatment differed from that of starch solutions degraded by enzymes or by thermo-oxidation. Compared to commercial degradation processes, this resulted in intensified film formation and in greater penetration during surface sizing and ultimately in a higher starch content of the paper. Paper sized with ultrasonically treated starch solutions show the same strength properties compared to commercially sized paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Non-Enzymatic Glucose Sensing Using Carbon Quantum Dots Decorated with Copper Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Houcem Maaoui

    2016-10-01

    Full Text Available Perturbations in glucose homeostasis is critical for human health, as hyperglycemia (defining diabetes leads to premature death caused by macrovascular and microvascular complications. However, the simple and accurate detection of glucose in the blood at low cost remains a challenging task, although it is of great importance for the diagnosis and therapy of diabetic patients. In this work, carbon quantum dots decorated with copper oxide nanostructures (CQDs/Cu2O are prepared by a simple hydrothermal approach, and their potential for electrochemical non-enzymatic glucose sensing is evaluated. The proposed sensor exhibits excellent electrocatalytic activity towards glucose oxidation in alkaline solutions. The glucose sensor is characterized by a wide concentration range from 6 µM to 6 mM, a sensitivity of 2.9 ± 0.2 µA·µM−1·cm−2, and a detection limit of 6 µM at a signal-to-noise ratio S/N = 3. The sensors are successfully applied for glucose determination in human serum samples, demonstrating that the CQDs/Cu2O-based glucose sensor satisfies the requirements of complex sample detection with adapted potential for therapeutic diagnostics.

  18. Anodically generated manganese(III) sulphate for the oxidation of ...

    Indian Academy of Sciences (India)

    Unknown

    oxidation of dipeptides in aqueous sulphuric acid medium: A kinetic study ... acetic acid (TFA) and N-methylmorpholine (NMM) were purchased ... and chloroform–methanol– acetic acid .... tion), manganese(II) sulphate and water (to keep the.

  19. Improvement of enzymatic hydrolysis and ethanol production from corn stalk by alkali and N-methylmorpholine-N-oxide pretreatments.

    Science.gov (United States)

    Cai, Ling-Yan; Ma, Yu-Long; Ma, Xiao-Xia; Lv, Jun-Min

    2016-07-01

    A combinative technology of alkali and N-methylmorpholine-N-oxide (NMMO) was used to pretreat corn stalk (CS) for improving the efficiencies of subsequent enzymatic hydrolysis and ethanol fermentation. The results showed that this strategy could not only remove hemicellulose and lignin but also decrease the crystallinity of cellulose. About 98.0% of enzymatic hydrolysis yield was obtained from the pretreated CS as compared with 46.9% from the untreated sample. The yield for corresponding ethanol yield was 64.6% while untreated CS was only 18.8%. Besides, xylose yield obtained from the untreated CS was only 11.1%, while this value was 93.8% for alkali with NMMO pretreated sample. These results suggest that a combination of alkali with 50% (wt/wt) NMMO solution may be a promising alternative for pretreatment of lignocellulose, which can increase the productions of subsequent enzymatic hydrolysis and ethanol fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment.

    Science.gov (United States)

    Li, Hailong; Xiong, Lian; Chen, Xuefang; Wang, Can; Qi, Gaoxiang; Huang, Chao; Luo, Mutan; Chen, Xinde

    2017-03-01

    This study aims to propose a biorefinery pretreatment technology for the bioconversion of sugarcane bagasse (SB) into biofuels and N-fertilizers. Performance of diluted acid (DA), aqueous ammonia (AA), oxidate ammonolysis (OA) and the combined DA with AA or OA were compared in SB pretreatment by enzymatic hydrolysis, structural characterization and acetone-butanol-ethanol (ABE) fermentation. Results indicated that DA-OA pretreatment improves the digestibility of SB by sufficiently hydrolyzing hemicellulose into fermentable monosaccharides and oxidating lignin into soluble N-fertilizer with high nitrogen content (11.25%) and low C/N ratio (3.39). The enzymatic hydrolysates from DA-OA pretreated SB mainly composed of glucose was more suitable for the production of ABE solvents than the enzymatic hydrolysates from OA pretreated SB containing high ratio of xylose. The fermentation of enzymatic hydrolysates from DA-OA pretreated SB produced 12.12g/L ABE in 120h. These results suggested that SB could be utilized efficient, economic, and environmental by DA-OA pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Optimization of a Liquid Crystal-based Sensory Platform for Monitoring Enzymatic Glucose Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yibin; Jang, Chang-Hyun [Gachon University, Seongnam (Korea, Republic of)

    2016-05-15

    Managing glucose levels in human blood is extremely important for the treatment of diabetes. Here, an innovative sensory strategy has been developed to monitor the enzymatic activities of glucose and glucose oxidase by using confined liquid crystal (LC) birefringent droplet patterns. Acidic products released during the glucose oxidation process lead to a slight decrease in the pH of aqueous systems that can be monitored by pH-sensitive LC materials. Of the existing pH-sensitive LC materials, dodecanoic acid-doped 4-cyano-4'-pentylbiphenyl is inexpensive and easily adjusted to satisfy the 7.4 ± 0.05 pH requirement of human blood. Moreover, the orientational alignment of capillary-confined pH-responsive LCs can be disrupted at the aqueous/LC interface following a slight decrease in the critical pH of aqueous reaction systems, which results in an optical signal that can be observed with the naked eye by using polarizing optical microscopy. Based on the stable LC droplet patterns generated by the cylindrical confinement system, the functionalized LCs can selectively detect glucose at concentrations as low as 0.1 pM. This study further advances the previously reported LC-based glucose monitoring systems by reducing production costs and instituting a smarter LC sensory design. This improved system shows potential for the use in clinical bioassay applications.

  2. Enzymatic hydrolysis of cellulose dissolved in N-methyl morpholine oxide/water solutions.

    Science.gov (United States)

    Ramakrishnan, S; Collier, J; Oyetunji, R; Stutts, B; Burnett, R

    2010-07-01

    In situ hydrolysis of cellulose (dissolving pulp) in N-methyl morpholine oxide (NMMO) solutions by commercially available Accellerase1000 is carried out. The yield of reducing sugars is followed as a function of time at three different temperatures and four different enzyme loadings to study the effect of system parameters on enzymatic hydrolysis. Initial results show that rates of hydrolysis of cellulose and yields of reducing sugars in the presence of NMMO-water is superior initially (ratio of initial reaction rates approximately 4) and comparable to that of regenerated cellulose (for times greater than 5h) when suspended in aqueous solutions. The usage of Accellerase1000 results predominantly in the formation of glucose with minimal amounts of cellobiose. This study proves the ability of cellulases to remain active in NMMO to carry out an in situ saccharification of cellulose thus eliminating the need to recover regenerated cellulose. Thus this work will form the basis for developing a continuous process for conversion of biomass to hydrogen, ethanol and other hydrocarbons. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Non-enzymatic glucose sensing platform using self assembled cobalt oxide/graphene nanocomposites immobilized graphite modified electrode

    DEFF Research Database (Denmark)

    Vivekananth, R.; Babu, R. Suresh; Prasanna, K.

    2018-01-01

    A new strategy to prepare the densely packed cobalt oxide (Co3O4)/graphene nanocomposites by a self-assembly method were adopted in this work. A new non-enzymatic glucose determination has been fabricated by using Co3O4/graphene nanocomposites modified electrode as a sensing material. The nanocom...... of the modified electrode for glucose determination has been evaluated in urine samples....

  4. Vertically grown zinc oxide nanorods functionalized with ferric oxide for in vivo and non-enzymatic glucose detection

    Science.gov (United States)

    Marie, Mohammed; Manoharan, Anishkumar; Kuchuk, Andrian; Ang, Simon; Manasreh, M. O.

    2018-03-01

    An enzyme-free glucose sensor based on vertically grown zinc oxide nanorods (NRs) functionalized with ferric oxide (Fe2O3) is investigated. The well-aligned and high density ZnO NRs were synthesized on an FTO/glass substrate by a sol-gel and hydrothermal growth method. A dip-coating technique was utilized to modify the surface of the as-grown ZnO NRs with Fe2O3. The immobilized surface was coated with a layer of nafion membrane. The fabricated glucose sensor was characterized amperometrically at room temperature using three electrodes stationed in the phosphate buffer solution, where ZnO NRs/Fe2O3/nafion membrane was the sensing or working electrode, and platinum plate and silver/silver chloride were used as the counter and reference electrodes, respectively. The proposed non-enzymatic and modified glucose sensor exhibited a high sensitivity in the order of 0.052 μA cm-2 (mg/dL)-1, a lower detection limit of around 0.95 mmol L-1, a sharp and fast response time of ˜1 s, and a linear response to changes in glucose concentrations from 100-400 mg dL-1. The linear amperometric response of the sensor covers the physiological and clinical interest of glucose levels for diabetic patients. The device continues to function accurately after multiple measurements with a good reproducibility. The proposed glucose sensor is expected to be used clinically for in vivo monitoring of glucose.

  5. Preparation of electrochromic thin films by transformation of manganese(II) carbonate

    Science.gov (United States)

    Stojkovikj, Sasho; Najdoski, Metodija; Koleva, Violeta; Demiri, Sani

    2013-10-01

    A new chemical bath method for deposition of manganese(II) carbonate thin film on electroconductive FTO glass substrates is designed. The homogeneous thin films with thickness in the range of 70 to 500 nm are deposited at about 98 °C from aqueous solution containing urea and MnCl2. The chemical process is based on a low temperature hydrolysis of the manganese complexes with urea. Three types of films are under consideration: as-deposited, annealed and electrochemically transformed thin films. The structure of the films is studied by XRD, IR and Raman spectroscopy. Electrochemical and optical properties are examined in eight different electrolytes (neutral and alkaline) and the best results are achieved in two component aqueous solution of 0.1 M KNO3 and 0.01 M KOH. It is established that the as-deposited MnCO3 film undergoes electrochemically transformation into birnessite-type manganese(IV) oxide films, which exhibit electrochromic color changes (from bright brown to pale yellow and vice versa) with 30% difference in the transmittance of the colored and bleached state at 400 nm.

  6. Effect of Thermal Processing towards Lipid Oxidation and Non-enzymatic Browning Reactions of Antartic Krill (Euphausia superba) Meal.

    Science.gov (United States)

    Liu, Yanzi; Cong, Peixu; Li, Beijia; Song, Yu; Liu, Yanjun; Xu, Jie; Xue, Changhu

    2018-04-13

    Antarctic krill is a huge source of biomass and prospective high-quality lipid source. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), nutritionally important lipid components with poor oxidative stability, were used as markers of oxidation during thermal processing of Antarctic krill (Euphausia superba) meal by evaluating the lipolysis, lipid oxidation, and non-enzymatic browning reactions. Liquid chromatography-mass spectrometry of the phospholipids (PLs) and the main oxidation products of free fatty acids (FFAs) and phosphatidylcholine (PC) was effective for evaluating the oxidation of EPA and DHA. During boiling, oxidation of EPA and DHA in the FFA and PC fractions and hydrolysis of the fatty acids at the sn-2 position of the PLs were predominant. The changes in PC during drying were mainly attributed to the oxidation of EPA and DHA. Heat treatment increased the oxidation products and concentration of hydrophobic pyrrole owing to pyrrolization between phosphatidylethanolamine (PE) and the lipid oxidation products. The lipid oxidation level of Antarctic krill increased after drying, owing to prolonged heating under the severe conditions. This article is protected by copyright. All rights reserved.

  7. Catalase-like activity studies of the manganese(II) adsorbed zeolites

    Science.gov (United States)

    Ćiçek, Ekrem; Dede, Bülent

    2013-12-01

    Preparation of manganese(II) adsorbed on zeolite 3A, 4A, 5A. AW-300, ammonium Y zeolite, organophilic, molecular sieve and catalase-like enzyme activity of manganese(II) adsorbed zeolites are reported herein. Firstly zeolites are activated at 873 K for two hours before contact manganese(II) ions. In order to observe amount of adsorption, filtration process applied for the solution. The pure zeolites and manganese(II) adsorbed zeolites were analysed by FT-IR. As a result according to the FT-IR spectra, the incorporation of manganese(II) cation into the zeolite structure causes changes in the spectra. These changes are expected particularly in the pseudolattice bands connected with the presence of alumino and silicooxygen tetrahedral rings in the zeolite structure. Furthermore, the catalytic activities of the Mn(II) adsorbed zeolites for the disproportionation of hydrogen peroxide were investigated in the presence of imidazole. The Mn(II) adsorbed zeolites display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen in catalase-like activity.

  8. Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds.

    Science.gov (United States)

    Ndiaye, Fatou; Vuong, Tri; Duarte, Jairo; Aluko, Rotimi E; Matar, Chantal

    2012-02-01

    Enzymatic protein hydrolysates of yellow pea seed have been shown to possess high anti-oxidant and anti-bacterial activities. The aim of this work was to confirm the anti-oxidant, anti-inflammatory and immunomodulating activities of an enzymatic protein hydrolysate of yellow field pea seeds. The anti-oxidant and anti-inflammatory properties of peptides from yellow field pea proteins (Pisum sativum L.) were investigated in LPS/IFN-γ-activated RAW 264.7 NO⁻ macrophages. The immunomodulating potential of pea protein hydrolysate (PPH) was then studied in a murine model. Pea protein hydrolysate, after a 12 h pre-treatment, showed significant inhibition of NO production by activated macrophages up to 20%. Moreover, PPH significantly inhibited their secretion of pro-inflammatory cytokines, TNF-α- and IL-6, up to 35 and 80%, respectively. Oral administration of PPH in mice enhanced the phagocytic activity of their peritoneal macrophages and stimulated the gut mucosa immune response. The number of IgA+ cells was elevated in the small intestine lamina propria, accompanied by an increase in the number of IL-4+, IL-10+ and IFN-γ+ cells. This was correlated to up-regulation of IL-6 secretion by small intestine epithelial cells (IEC), probably responsible for B-cell terminal differentiation to IgA-secreting cells. Moreover, PPH might have increased IL-6 production in IECs via the stimulation of toll-like receptors (TLRs) family, especially TLR2 and TLR4 since either anti-TLR2 or anti-TLR4 was able to completely abolish PPH-induced IL-6 secretion. Enzymatic protein degradation confers anti-oxidant, anti-inflammatory and immunomodulating potentials to pea proteins, and the resulted peptides could be used as an alternative therapy for the prevention of inflammatory-related diseases.

  9. Effect of Cadmium Stress on Non-enzymatic Antioxidant and Nitric Oxide Levels in Two Varieties of Maize (Zea mays).

    Science.gov (United States)

    Akinyemi, Ayodele Jacob; Faboya, Oluwabamise Lekan; Olayide, Israel; Faboya, Opeyemi Ayodeji; Ijabadeniyi, Tosin

    2017-06-01

    Cadmium (Cd) is one of the most toxic heavy metals that inhibit physiological processes of plants. Hence, the present study sought to investigate the effect of cadmium-contaminated seeds from two varieties of maize (Zea mays) on non-enzymatic antioxidant and nitric oxide levels. Seeds of yellow and white maize were exposed to different concentrations of Cd (0, 1, 3 and 5 ppm) for two weeks. The results from this study revealed that both varieties of maize bio-accumulate Cd in leaves in a dose-dependent manner. In addition, Cd exposure caused a significant (p < 0.05) decrease in total phenolic, GSH and nitric oxide (NO) levels at the highest concentration tested when compared with control. Therefore, the observed decrease in NO and endogenous antioxidant status by Cd treatment in maize plants could suggest some possible mechanism of action for Cd-induced oxidative stress and counteracting effect of the plants against Cd toxicity.

  10. A reagentless non-enzymatic hydrogen peroxide sensor presented using electrochemically reduced graphene oxide modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Mutyala, Sankararao; Mathiyarasu, Jayaraman

    2016-01-01

    Herein, we report a simple, facile and reproducible non-enzymatic hydrogen peroxide (H 2 O 2 ) sensor using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The modified electrode was characterized by Fourier transform infrared (FT-IR), UV–Visible, scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Cyclic voltammetric (CV) analysis revealed that ERGO/GCE exhibited virtuous charge transfer properties for a standard redox systems and showed excellent performance towards electroreduction of H 2 O 2 . Amperometric study using ERGO/GCE showed high sensitivity (0.3 μA/μM) and faster response upon the addition of H 2 O 2 at an applied potential of − 0.25 V vs. Ag/AgCl. The detection limit is assessed to be 0.7 μM (S/N = 3) and the time to reach a stable study state current is < 3 s for a linear range of H 2 O 2 concentration (1–16 μM). In addition, the modified electrode exhibited good reproducibility and long-term stability. - Graphical abstract: We presented a reagentless non-enzymatic hydrogen peroxide sensor using electrochemically reduced graphene oxide material. - Highlights: • A facile green procedure proposed for high quality graphene synthesis using electrochemical reduction of graphene oxide • A simple, facile and reagentless non-enzymatic hydrogen peroxide sensor developed using ERGO/GCE. • ERGO/GCE exhibited high sensitivity, selectivity and finite limit of detection for H 2 O 2 sensing at low overpotential. • ERGO/GCE exhibited long term stability and good reproducibility.

  11. A reagentless non-enzymatic hydrogen peroxide sensor presented using electrochemically reduced graphene oxide modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mutyala, Sankararao; Mathiyarasu, Jayaraman, E-mail: al_mathi@yahoo.com

    2016-12-01

    Herein, we report a simple, facile and reproducible non-enzymatic hydrogen peroxide (H{sub 2}O{sub 2}) sensor using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The modified electrode was characterized by Fourier transform infrared (FT-IR), UV–Visible, scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Cyclic voltammetric (CV) analysis revealed that ERGO/GCE exhibited virtuous charge transfer properties for a standard redox systems and showed excellent performance towards electroreduction of H{sub 2}O{sub 2}. Amperometric study using ERGO/GCE showed high sensitivity (0.3 μA/μM) and faster response upon the addition of H{sub 2}O{sub 2} at an applied potential of − 0.25 V vs. Ag/AgCl. The detection limit is assessed to be 0.7 μM (S/N = 3) and the time to reach a stable study state current is < 3 s for a linear range of H{sub 2}O{sub 2} concentration (1–16 μM). In addition, the modified electrode exhibited good reproducibility and long-term stability. - Graphical abstract: We presented a reagentless non-enzymatic hydrogen peroxide sensor using electrochemically reduced graphene oxide material. - Highlights: • A facile green procedure proposed for high quality graphene synthesis using electrochemical reduction of graphene oxide • A simple, facile and reagentless non-enzymatic hydrogen peroxide sensor developed using ERGO/GCE. • ERGO/GCE exhibited high sensitivity, selectivity and finite limit of detection for H{sub 2}O{sub 2} sensing at low overpotential. • ERGO/GCE exhibited long term stability and good reproducibility.

  12. Enzymatic oxidation of rutin by horseradish peroxidase: kinetic mechanism and identification of a dimeric product by LC-Orbitrap mass spectrometry.

    Science.gov (United States)

    Savic, Sasa; Vojinovic, Katarina; Milenkovic, Sanja; Smelcerovic, Andrija; Lamshoeft, Marc; Petronijevic, Zivomir

    2013-12-15

    Flavonoid oxidation is important issue in food processing and quality. The kinetic mechanism of enzymatic oxidation of rutin by horseradish peroxidase (HRP) was studied. Rutin oxidation reaction was followed by recording of spectral changes over the time at 360 nm. The studied oxidation is mostly enzymatic and less part non-enzymatic. The reaction with HRP has a higher rate compared with the reaction without of HRP, whereby is part of non-enzymatic reaction about 10% of the total reaction. Kinetic parameters were determined from graphics of linear Michaelis-Menten equation, and it was found that investigated reactions of rutin oxidation by HRP take place in a ping-pong kinetic mechanism. High resolution HPLC-MS analysis of the mixture of oxidized products of rutin revealed the presence of rutin dimer. Because of widely distribution of rutin as well as presence of peroxidases and hydrogen peroxide in fresh foods identification of this enzymatic modification product can be beneficial for foods quality and safety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Enzymatic halogenation and oxidation using an alcohol oxidase-vanadium chloroperoxidase cascade

    NARCIS (Netherlands)

    But, Andrada; Noord, Van Aster; Poletto, Francesca; Sanders, Johan P.M.; Franssen, Maurice C.R.; Scott, Elinor L.

    2017-01-01

    The chemo-enzymatic cascade which combines alcohol oxidase from Hansenula polymorpha (AOXHp) with vanadium chloroperoxidase (VCPO), for the production of biobased nitriles from amino acids was investigated. In the first reaction H2O2 (and acetaldehyde) are generated from ethanol and oxygen by AOXHp.

  14. Computational study on a puzzle in the biosynthetic pathway of anthocyanin: Why is an enzymatic oxidation/ reduction process required for a simple tautomerization?

    Science.gov (United States)

    Sato, Hajime; Wang, Chao; Yamazaki, Mami; Saito, Kazuki; Uchiyama, Masanobu

    2018-01-01

    In the late stage of anthocyanin biosynthesis, dihydroflavonol reductase (DFR) and anthocyanidin synthase (ANS) mediate a formal tautomerization. However, such oxidation/reduction process requires high energy and appears to be unnecessary, as the oxidation state does not change during the transformation. Thus, a non-enzymatic pathway of tautomerization has also been proposed. To resolve the long-standing issue of whether this non-enzymatic pathway is the main contributor for the biosynthesis, we carried out density functional theory (DFT) calculations to examine this non-enzymatic pathway from dihydroflavonol to anthocyanidin. We show here that the activation barriers for the proposed non-enzymatic tautomerization are too high to enable the reaction to proceed under normal aqueous conditions in plants. The calculations also explain the experimentally observed requirement for acidic conditions during the final step of conversion of 2-flaven-3,4-diol to anthocyanidin; a thermodynamically and kinetically favorable concerted pathway can operate under these conditions.

  15. Magnetophoretic velocimetry of manganese(II) in a single microdroplet in a flow system under a high gradient magnetic field generated with a superconducting magnet.

    Science.gov (United States)

    Suwa, Masayori; Watarai, Hitoshi

    2002-10-01

    An experimental system for magnetophoretic velocimetry, which could determine the volume magnetic susceptibility of a single particle dispersed in a liquid phase from a magnetophoretic velocity, has been developed. A micrometer-sized high-gradient magnetic field could be generated in a capillary by a pair of iron pole pieces in a superconducting magnet (10 T). The magnetophoretic behavior of a single particle in a capillary flow system was investigated under the inhomogeneous magnetic field. From the magnetophoretic velocity of a polystyrene latex particle dispersed in a MnCl2 aqueous solution, the product of the magnetic flux density and the gradient, B(dB/dx), was determined as a function of the position along the capillary. The maximum value of B(dB/dx) was 4.7 x 10(4) T2 m(-1), which was approximately 100 times higher than that obtained by two Nd-Fe-B permanent magnets (0.4 T). Organic droplets extracting manganese(II) with 2-thenoyltrifluoroacetone and tri-n-octylphosphine oxide from MnCl2 solution were used as test samples. The difference of the volume magnetic susceptibility between the droplet and the medium could be determined from the magnetophoretic velocity. This method allowed us to continuously measure a volume magnetic susceptibility of 10-6 level for a picoliter droplet and to determine manganese(II) in the single droplet at the attomole level.

  16. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility

    DEFF Research Database (Denmark)

    Varga, E.; Schmidt, A.S.; Reczey, K.

    2003-01-01

    was about 85%. Decreasing the hydrolysis temperature to 40degreesC increased hydrolysis time from 24 to 72 h. Decreasing the enzyme loading to 5 FPU/g of DM biomass slightly decreased the enzymatic conversion from 83.4 to 71%. Thus, enzyme loading can be reduced without significantly affecting......) was investigated to enhance the enzymatic digestibility of corn stover. Six different combinations of reaction temperature, time, and pH were applied. The best conditions (60 g/L of corn stover, 195degreesC, 15 min, 12 bar O-2, 2 g/L of Na2CO) increased the enzymatic conversion of corn stover four times, compared...... to untreated material. Under these conditions 60% of hemicellulose and 30% of lignin were solubilized, whereas 90% of cellulose remained in the solid fraction. After 24-h hydrolysis at 50degreesC using 25 filter paper units (FPU)/g of drymatter (DM) biomass, the achieved conversion of cellulose to glucose...

  17. Anticancer system created by acrolein and hydroxyl radical generated in enzymatic oxidation of spermine and other biochemical reactions.

    Science.gov (United States)

    Alarcon, R A

    2012-10-01

    A hypothesis suggesting the existence of a ubiquitous physiological anticancer system created by two highly reactive oxidative stress inducers with anticancer properties, acrolein and hydroxyl radical, is reported in this communication. Both components can originate separately or together in several biochemical interactions, among them, the enzymatic oxidation of the polyamine spermine, which appear to be their main source. The foundations of this hypothesis encompass our initial search for growth-inhibitors or anticancer compounds in biological material leading to the isolation of spermine, a polyamine that became highly cytotoxic through the generation of acrolein, when enzymatically oxidized. Findings complemented with pertinent literature data by other workers and observed anticancer activities by sources capable of producing acrolein and hydroxyl radical. This hypothesis obvious implication: spermine enzymatic oxidations or other biochemical interactions that would co-generate acrolein and hydroxyl radical, the anticancer system components, should be tried as treatments for any given cancer. The biochemical generation of acrolein observed was totally unexpected, since this aldehyde was known; as a very toxic and highly reactive xenobiotic chemical produced in the pyrolysis of fats and other organic material, found as an atmospheric pollutant, in tobacco smoke and car emissions, and mainly used as a pesticide or aquatic herbicide. Numerous studies on acrolein, considered after our work a biological product, as well, followed. In them, acrolein widespread presence, its effects on diverse cellular proteins, such as, growth factors, and its anticancer activities, were additionally reported. Regarding hydroxyl radical, the second component of the proposed anticancer system, and another cytotoxic product in normal cell metabolism, it co-generates with acrolein in several biochemical interactions, occurrences suggesting that these products might jointly fulfill some

  18. Enzymatic Baeyer-Villiger Oxidation of Benzo-Fused Ketones : Formation of Regiocomplementary Lactones

    NARCIS (Netherlands)

    Rioz-Martinez, Ana; de Gonzalo, Gonzalo; Pazmino, Daniel E. Torres; Fraaije, Marco W.; Gotor, Vicente

    Baeyer-Villiger monooxygenases (BVMOs) are enzymes that are known to catalyse the Baeyer-Villiger oxidation of ketones in aqueous media using O(2) as oxidant. Herein, we describe the oxidation of a set of diverse benzo-fused ketones by three different BVMOs in both aqueous and non-conventional

  19. Non-enzymatic lipid oxidation products in biological systems: assessment of the metabolites from polyunsaturated fatty acids.

    Science.gov (United States)

    Vigor, Claire; Bertrand-Michel, Justine; Pinot, Edith; Oger, Camille; Vercauteren, Joseph; Le Faouder, Pauline; Galano, Jean-Marie; Lee, Jetty Chung-Yung; Durand, Thierry

    2014-08-01

    Metabolites of non-enzymatic lipid peroxidation of polyunsaturated fatty acids notably omega-3 and omega-6 fatty acids have become important biomarkers of lipid products. Especially the arachidonic acid-derived F2-isoprostanes are the classic in vivo biomarker for oxidative stress in biological systems. In recent years other isoprostanes from eicosapentaenoic, docosahexaenoic, adrenic and α-linolenic acids have been evaluated, namely F3-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes and F1-phytoprostanes, respectively. These have been gaining interest as complementary specific biomarkers in human diseases. Refined extraction methods, robust analysis and elucidation of chemical structures have improved the sensitivity of detection in biological tissues and fluids. Previously the main reliable instrumentation for measurement was gas chromatography-mass spectrometry (GC-MS), but now the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunological techniques is gaining much attention. In this review, the types of prostanoids generated from non-enzymatic lipid peroxidation of some important omega-3 and omega-6 fatty acids and biological samples that have been determined by GC-MS and LC-MS/MS are discussed. Copyright © 2014. Published by Elsevier B.V.

  20. Investigation of oxidative degradation and non‐enzymatic browning reactions in krill and fish oils

    DEFF Research Database (Denmark)

    Thomsen, Birgitte Raagaard; Haugsgjerd, Bjørn Ole; Griinari, Mikko

    2013-01-01

    conditions using the Oxipres™ at 90°C. The results from analysis of PV, AV, TBARS, conjugated dienes and trienes, and the antioxidant content suggested that krill oil was more oxidatively stable than fish oil. However, the color or other constituents of the krill oil might affect the result......The aim of this research was to investigate the oxidation progress and pathways of krill and fish oil during 21 days of incubation at 40°C. The oxidative stability of the oils was investigated through: (i) classical methods such as peroxide value (PV), anisidine value (AV), thiobarbituric reactive...... substance (TBARS), conjugated dienes and trienes, and antioxidant content, and (ii) advanced methods such as determination of volatiles content by dynamic headspace (DHS)‐GC/MS, lipid classes, and pyrrole content. In addition, the oxidative stability of the oils was evaluated under accelerated oxidation...

  1. Immobilization of enzymatic extracts of Portulaca oleracea cv. roots for oxidizing aqueous bisphenol A.

    Science.gov (United States)

    Matsushima, Kazuki; Kaneda, Hirokazu; Harada, Kazuo; Matsuura, Hideyuki; Hirata, Kazumasa

    2015-05-01

    Water pollution from the release of industrial wastewater is a serious problem for almost every industry. Enzymes from portulaca, Portulaca oleracea cv., have been investigated for their ability to degrade bisphenol A (BPA), one of the well-known estrogenic pollutants. Enzymatic crude extracts from P. oleracea cv. roots were immobilized on aminopropyl-modified glass beads. They maintained BPA metabolic activity over a broad range of pH values and temperatures. The immobilized enzyme was reusable with more than 50 % of its initial activity retained after 12 batch reactions and no loss of activity after storage for 1 month at -30 °C. Thus, the immobilization of extracts from P. oleracea cv. roots is a useful method for removing BPA from industrial wastewater.

  2. Chemo-enzymatic Baeyer-Villiger oxidation of 4-methylcyclohexanone via kinetic resolution of racemic carboxylic acids: direct access to enantioenriched lactone.

    Science.gov (United States)

    Drożdż, Agnieszka; Chrobok, Anna

    2016-01-21

    A new method for the asymmetric chemo-enzymatic Baeyer-Villiger oxidation of prochiral 4-methylcyclohexanone to (R)-4-methylcaprolactone in the presence of (±)-4-methyloctanoic acid, Candida Antarctica lipase B and 30% aq. H2O2 has been developed. A mechanism for the asymmetric induction based on kinetic resolution of racemic carboxylic acids is proposed.

  3. Physical and oxidative stability of fish oil-in-water emulsions fortified with enzymatic hydrolysates from common carp (Cyprinus carpio) roe

    DEFF Research Database (Denmark)

    Ghelichi, Sakhi; Sørensen, Ann-Dorit Moltke; García Moreno, Pedro Jesús

    2017-01-01

    Physical and oxidative stability of 5% (by weight) cod liver oil-in-water emulsions fortified with common carp (C. carpio) roe protein hydrolysate (CRPH) were examined. CRPH was obtained by enzymatic hydrolysis of discarded roe by using Alcalase 2.4 L for 30, 60, 90, and 120 min to yield different...

  4. 3D-copper oxide and copper oxide/few-layer graphene with screen printed nanosheet assembly for ultrasensitive non-enzymatic glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhimei [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Advanced Materials and Printed Electronics Center, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Pan, Peng, E-mail: panpeny@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Advanced Materials and Printed Electronics Center, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Liu, Xuewen [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Advanced Materials and Printed Electronics Center, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Yang, Zhengchun; Wei, Jun [Advanced Materials and Printed Electronics Center, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Wei, Zhen, E-mail: weizhenxinxi@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Advanced Materials and Printed Electronics Center, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China)

    2017-02-01

    Screen-printed copper oxide (CuO) and CuO/few-layer graphene on graphite electrodes were used to fabricate the ultrasensitive nonenzymatic glucose biosensors. Flower-like CuO and flower-like CuO/few-layer graphene composites were prepared by screen-printing method and characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HETEM). On the basis of their cyclic voltammetry (CV) and chronoamperometry results, it was concluded that the addition of graphene to CuO significantly improved the performance of the fabricated glucose sensors, exhibiting high and reproducible sensitivity of 3120 μAmM{sup −1} cm{sup −2} with three linear ranges from 4 μM to 13.5 mM and the detection limit of 4 μM (S/N = 3) in a fast response time of 2 s. In addition, the fabricated sensors could effectively avoid the disturbance by interferents, such as Ascorbic Acid (AA), Uric Acid (UA), and Dopamine (DA). Most importantly, the testing results of real blood serum samples demonstrated that the electrodes were applicable and acceptable for the determination of glucose concentrations in human serum. The efficiencies of two non-enzymatic glucose biosensors for glucose determination were comparable with that of a commercial enzymatic sensor. - Highlights: • The method 2D nanosheet turns to 3D microflower by using screen printing was proposed. • Few-layer graphene added improved the sensor’s performance on base of CuO functional material. • Two ultrasensitive non-enzymatic glucose sensors were successfully fabricated. • The proposed sensor shows a high sensitivity of 3120 μA mM{sup −1} cm{sup −2}.

  5. Development of an enzymatic microreactor based on microencapsulated laccase with off-line capillary electrophoresis for measurement of oxidation reactions.

    Science.gov (United States)

    Roman-Gusetu, Georgiana; Waldron, Karen C; Rochefort, Dominic

    2009-11-20

    Microencapsulation is used here as a new technique to immobilize enzymes in a microreactor coupled off-line to capillary electrophoresis (CE), allowing the determination of enzymatic reaction products. The redox enzyme laccase was encapsulated using the method of interfacial cross-linking of poly(ethyleneimine) (PEI). The 50 microm diameter capsules were slurry packed from a suspension into a capillary-sized reactor made easily and quickly from a short length of 530 microm diameter fused-silica tubing. The volume of the bed of laccase microcapsules in the microreactor was in the order of 1.1 microL through which 50 microL of the substrate o-phenylenediamine (OPD) was flowed. The oxidation product 2,3-diaminophenazine (DAP) and the remaining OPD were quantified by CE in a pH 2.5 phosphate buffer. Peak migration time reproducibility was in the order of 0.4% RSD and peak area reproducibility was less than 1.7% RSD within the same day. Using the OPD peak area calibration curve, a conversion efficiency of 48% was achieved for a 2-min oxidation reaction in the microreactor.

  6. Adsorption of manganese(II) ions by EDTA-treated activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A.Y.; Mazyck, D.W. [Jones Edmunds & Associates, Gainesville, FL (United States)

    2009-07-01

    The adsorption of manganese(II) ions from aqueous solution onto three different granular activated carbons treated with ethylenediamine tetraacetic acid (EDTA) and its sodium salt was investigated. Characterization of the chelate-treated carbons showed that EDTA altered the physical and chemical properties of the sorbents relative to their untreated counterparts. Furthermore, the modified sorbents exhibited a heightened capacity towards the adsorption of Mn(II) ions from aqueous media. Manganese(II) ion removal increased from 0 to 6.5 mg/g for the lignite coal-based sorbent, from 3.5 to 14.7 mg/g for the wood-based sorbent and from 1.3 to 7.9 mg/g for the bituminous coal-based sorbent. The increased removal is attributed, in part, to the creation of Lewis base sites that participate in covalent interactions and hydrolysis reactions.

  7. Direct electrocatalytic reduction of coenzyme NAD{sup +} to enzymatically-active 1,4-NADH employing an iridium/ruthenium-oxide electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Nehar, E-mail: nehar.ullah@mail.mcgill.ca; Ali, Irshad; Omanovic, Sasha

    2015-01-15

    A thermally prepared iridium/ruthenium-oxide coating (Ir{sub 0.8}Ru{sub 0.2}-oxide) formed on a titanium substrate was investigated as a possible electrode for direct electrochemical regeneration of enzymatically-active 1,4-NADH from its oxidized form NAD{sup +}, at various electrode potentials, in a batch electrochemical reactor. The coating surface was characterized by ‘cracked mud’ morphology, yielding a high surface roughness. The NADH regeneration results showed that the percentage of enzymatically-active 1,4-NADH present in the product mixture (i.e. recovery) is strongly dependent on the electrode potential, reaching a maximum (88%) at −1.70 V vs. MSE. The relatively high recovery was explained on the basis of availability of adsorbed ‘active’ hydrogen (H{sub ads}) on the Ir/Ru-oxide surface, i.e. on the basis of electrochemical hydrogenation. - Highlights: • Ir{sub 0.8}Ru{sub 0.2}-oxide coating was formed thermally on a Ti substrate. • Electrochemical regeneration of enzymatically-active 1,4-NADH was investigated. • The 1,4-NADH recovery percentage is strongly dependent on the electrode potential. • A highest recovery, 88%, was obtained at −1.70 V vs. MSE. • The NADH regeneration process involved electrochemical hydrogenation.

  8. Human milk fat substitute from butterfat: production by enzymatic interesterification and evaluation of oxidative stability

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Xu, Xuebing; Zhang, Long

    2010-01-01

    Recent data have suggested that the fatty acid composition and molecular structure of fats in infant formulas should be as similar to human milk fat as possible to obtain optimal fat and calcium absorption from the infant formula. This work investigated the possibilities of using enzyme technology...... and butterfat as a material to produce a fat similar to human milk fat with respect to the above parameters. Moreover, the oxidative stability of the enzyme modified human milk fat substitute (HMFS) was compared to the fat blend used for the production of HMFS. Using a combination of enzyme technology......, fractionation and batch deodorization and with butterfat in combination with soybean oil and rapeseed oil as raw materials it was possible to produce HMFS with a molecular structure and fatty acid composition that was very similar to that of human milk fat. The oxidative stability of the HMFS oil was lower than...

  9. Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement

    Science.gov (United States)

    Louie, Gordon; Noel, Joseph P.; Baran, Phil S.; Palfey, Bruce; Moore, Bradley S.

    2013-01-01

    Flavoproteins catalyze a diversity of fundamental redox reactions and are one of the most studied enzyme families1,2. As monooxygenases, they are universally thought to control oxygenation by means of a peroxyflavin species that transfers a single atom of molecular oxygen to an organic substrate1,3,4. Here we report that the bacterial flavoenzyme EncM5,6 catalyzes the peroxyflavin-independent oxygenation-dehydrogenation dual oxidation of a highly reactive poly(β-carbonyl). The crystal structure of EncM with bound substrate mimics coupled with isotope labeling studies reveal previously unknown flavin redox biochemistry. We show that EncM maintains an unanticipated stable flavin oxygenating species, proposed to be a flavin-N5-oxide, to promote substrate oxidation and trigger a rare Favorskii-type rearrangement that is central to the biosynthesis of the antibiotic enterocin. This work provides new insight into the fine-tuning of the flavin cofactor in offsetting the innate reactivity of a polyketide substrate to direct its efficient electrocyclization. PMID:24162851

  10. Role of enzymatic free radical scavengers in management of oxidative stress in autoimmune disorders.

    Science.gov (United States)

    Srivastava, Shikha; Singh, Deependra; Patel, Satish; Singh, Manju R

    2017-08-01

    Autoimmune disorders are distinct with over production and accumulation of free radicals due to its undisclosed genesis. The cause of numerous disorders as cancer, arthritis, psoriasis, diabetes, alzheimer's, cardiovascular disease, Parkinson's, respiratory distress syndrome, colitis, crohn's, pulmonary fibrosis, obesity and ageing have been associated with immune dysfunction and oxidative stress. In an oxidative stress, reactive oxygen species generally provoke the series of oxidation at cellular level. The buildup of free radicals in turn triggers various inflammatory cells causing release of various inflammatory interleukins, cytokines, chemokines, and tumor necrosis factors which mediate signal transduction and transcription pathways as nuclear factor- kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1 (HIF-1α) and nuclear factor-erythroid 2-related factor (Nrf2). The imbalance could only be combat by supplementing natural defensive antioxidant enzymes such as superoxide dismutase and catalase. The efficiency of these enzymes is enhanced by use of colloidal carriers which include cellular carriers, vesicular and particulate systems like erythrocytes, leukocytes, platelets, liposomes, transferosomes, solid lipid nanoparticles, microspheres, emulsions. Thus this review provides a platform for understanding importance of antioxidant enzymes and its therapeutic applications in treatment of various autoimmune disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Enzymatic Upgrading of Heavy Crudes via Partial Oxidation or Conversion of PAHs

    Energy Technology Data Exchange (ETDEWEB)

    Borole, A P; Davison, B H; Kuritz, T

    2002-07-01

    The objective of this program was to investigate new enzyme-based technologies for upgrading of heavy oils. Enzymes were selected for screening from those capable of conversion of polyaromatic hydrocarbons (PAHs) reported in the literature. Oxidative reactions of PAHs using hydrogen peroxide as an oxidant with conversion to partially oxidized products were used. The enzymes (lignin peroxidase, cytochrome c) were tested in various organic solvents and found to loose activity in pure organic solvents. A thermodynamic analysis revealed lack of effective interaction between the substrate and enzyme as the cause for low activity. The protein cytochrome c was modified to work in organic media by chemical hydrophobic group attachment. Two different modifications were made: attachment of polyethylene glycol (PEG) and alkyl groups. Alkyl groups, being small could be attached at interior locations within the core of the enzyme and possibly near the active site. Increase in the threshold solvent concentration where maximum enzyme activity occurred indicated potential of this strategy for effective enzyme-substrate interaction. Further improvements in enzyme activity called for other diverse methods due to the unavailability of sufficient chemical modification sites. Genetic techniques were therefore explored for further improvements. These experiments focused on cloning of a gene for the fungal enzyme lignin peroxidase (lip) into yeast Pichia pastoris, which would allow easy manipulation of the gene. However, differences in the fungal and yeast cellular machinery impeded significant expression of the fungal enzyme. Several strategies were explored to allow higher-level expression of the enzyme, which was required for enzyme improvement. The strategies used in this investigation are described in the report. Industrial in-kind support was available throughout the project period. review of the research results was carried out on a regular basis (bimonthly reports and annual

  12. Enzymatic Oxidation of Cholesterol: Properties and Functional Effects of Cholestenone in Cell Membranes

    DEFF Research Database (Denmark)

    Neuvonen, M.; Manna, M.; Mokkila, S.

    2014-01-01

    of cholestenone using simulations and cell biological experiments and assessed the functional effects of cholestenone in human cells. Atomistic simulations predicted that cholestenone reduces membrane order, undergoes faster flip-flop and desorbs more readily from membranes than cholesterol. In primary human...... fibroblasts, cholestenone was released from membranes to physiological extracellular acceptors more avidly than cholesterol, but without acceptors it remained in cells over a day. To address the functional effects of cholestenone, we studied fibroblast migration during wound healing. When cells were either...... similarly to control cells. Thus, cholesterol oxidation produces long-term functional effects in cells and these are in part due to the generated membrane active cholestenone....

  13. Rationalization and in vitro modeling of the chemical mechanisms of the enzymatic oxidation of phenolic compounds in planta: from flavonols and stilbenoids to lignins.

    Science.gov (United States)

    Cottyn, Betty; Kollmann, Albert; Waffo-Teguo, Pierre; Ducrot, Paul-Henri

    2011-06-20

    Enzymatic oxidation of phenolic compounds is a widespread phenomenon in plants. It is responsible for the formation of many oligomers and polymers, which are generally described as the result of a combinatorial coupling of the different radicals formed through oxidation of the phenol group and delocalization of the radical. We focused our interest on several phenolic compounds that are present in plants and known to form, under enzymatic oxidation, oligomers with different type of linkages between monomers. To explain this diversity of inter-monomer linkages and their variation according to the experimental procedure used for the enzymatic oxidation, we report an alternative mechanistic pathway involving dismutation of the radicals, leading to the formation of carbocations which, thereafter, react with nucleophilic species present in the medium. This alternative pathway allows the understanding of peculiar linkages between monomeric units in the oligomer and offers new insights for understanding the formation of phenolic biopolymers in plants. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A Comparative evaluation of Graphene oxide based materials for Electrochemical non-enzymatic sensing of Curcumin

    Science.gov (United States)

    Dey, Nibedita; Devasena, T.; Sivalingam, Tamilarasu

    2018-02-01

    This work reports a comparative study on the development of a sensitive voltammetric method for the assay of diferuloylmethane which is fabricated using cost-effective sensing material graphene oxide (GO modified electrode) and reduced graphene oxide (rGO modified electrode) modified on glassy carbon electrode respectively. The prepared materials were characterized using SEM, XRD, FTIR, and Raman techniques to understand the formation. Between the both modified electrodes, rGO modified electrode demonstrated a lower limit detection of 0.9 pM and good signal quality. But, the better linear dynamic range for detection was found to be 1 nm to 100 nM for GO and 0.1 nM to 10 nM for rGO modified electrodes respectively. The repeatability is checked for seven cycles and interference studies were also performed for checking the sensors’ selectivity to curcumin. rGO modified electrode and GO modified electrode both shows specific signals for Diferuloylmethane under conditions similar to physiology. But, with better properties over GO modified electrode, rGO modified electrode is suggested a better candidate for real-time usability in sensing. The detection limit reported is the lowest till date for the given plant drug using any sensing assay.

  15. Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor

    Science.gov (United States)

    Nguyen, Thu-Thuy; Huy, Bui The; Hwang, Seo-Young; Vuong, Nguyen Minh; Pham, Quoc-Thai; Nghia, Nguyen Ngoc; Kirtland, Aaron; Lee, Yong-Ill

    2018-05-01

    Cuprous oxide (Cu2O) nanostructure has been synthesized using an electrochemical method with a two-electrode system. Cu foils were used as electrodes and NH2(OH) was utilized as the reducing agent. The effects of pH and applied voltages on the morphology of the product were investigated. The morphology and optical properties of Cu2O particles were characterized using scanning electron microscopy, x-ray diffraction, and diffuse reflectance spectra. The synthesized Cu2O nanostructures that formed in the vicinity of the anode at 2 V and pH = 11 showed high uniform distribution, small size, and good electrochemical sensing. These Cu2O nanoparticles were coated on an Indium tin oxide substrate and applied to detect non-enzyme glucose as excellent biosensors. The non-enzyme glucose biosensors exhibited good performance with high response, good selectivity, wide linear detection range, and a low detection limit at 0.4 μM. Synthesized Cu2O nanostructures are potential materials for a non-enzyme glucose biosensor.

  16. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  17. Impact of primary amine group from aminophospholipids and amino acids on marine phospholipids stability: Non-enzymatic browning and lipid oxidation

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2013-01-01

    The main objective of this study was to investigate the oxidative stability and non-enzymatic browning reactions of marine PL in the presence or in the absence of primary amine group from aminophospholipids and amino acids. Marine phospholipids liposomal dispersions were prepared from two authentic......) Strecker derived volatiles, (ii) yellowness index (YI), (iii) hydrophobic and (iv) hydrophilic pyrroles content. The oxidative stability of the samples was assessed through measurement of secondary lipid derived volatile oxidation products. The result showed that the presence of PE and amino acids caused...... the formation of pyrroles, generated Strecker derived volatiles, decreased the YI development and lowered lipid oxidation. The lower degree of lipid oxidation in liposomal dispersions containing amino acids might be attributed to antioxidative properties of pyrroles or amino acids....

  18. Antioxidant and enzymatic responses to oxidative stress induced by pre-harvest water supply reduction and ripening on mango (Mangifera indica L. cv. 'Cogshall') in relation to carotenoid content

    OpenAIRE

    Rosalie , Rémy; Joas , Jacques; Deytieux-Belleau , Christelle; Vulcain , Emmanuelle; Payet , Bertrand; Dufossé , Laurent; Léchaudel , Mathieu

    2015-01-01

    International audience; The effects of a reduction in water supply during fruit development and postharvest fruit ripening on the oxidative status and the antioxidant defense system were studied in the mango fruit (Mangifera indica L.) cv. Cogshall. Changes in non-enzymatic (ascorbate) and enzymatic (SOD, CAT, APX, MDHAR, DHAR and GR) antioxidants, as well as oxidative parameters (H 2 O 2 and MDA) and major carotenoids, were measured in unripe and ripe fruits from well-irrigated and non-irrig...

  19. Dietary enzymatically treated Artemisia annua L. supplementation alleviates liver oxidative injury of broilers reared under high ambient temperature

    Science.gov (United States)

    Wan, Xiaoli; Zhang, Jingfei; He, Jintian; Bai, Kaiwen; Zhang, Lili; Wang, Tian

    2017-09-01

    Heat stress induced by high ambient temperature is a major concern in commercial broiler production. To evaluate the effects of dietary enzymatically treated Artemisia annua L. (EA) supplementation on growth performance and liver oxidative injury of broilers reared under heat stress, a total of 320 22-day-old male broilers were randomly allotted into five groups with eight replicates of eight birds each. Broilers in the control group were housed at 22 ± 1 °C and fed the basal diet. Broilers in the HS, HS-EA1, HS-EA2, and HS-EA3 groups were fed basal diet supplemented with 0, 0.75, 1.00, and 1.25 g/kg EA, respectively, and reared under cyclic high temperature (34 ± 1 °C for 8 h/day and 22 ± 1 °C for 16 h/day). Broilers fed EA diets had higher final body weight, average daily body weight gain, and average daily feed intake, as well as liver concentration of reduced glutathione, activities of antioxidant enzymes, abilities to inhibit hydroxyl radical and superoxide radical (HS-EA2 and HS-EA3), and lower liver concentrations of reactive oxygen metabolites, malondialdehyde, and protein carbonyl (HS-EA1, HS-EA2, and HS-EA3) than HS group ( P proteins 70 and 90, upregulated the mRNA levels of nuclear factor erythroid 2-related factor 2 (HS-EA1, HS-EA2, and HS-EA3) and heme oxygenase 1 (HS-EA2 and HS-EA3) in liver of heat-treated broilers ( P diet is 1.00-1.25 g/kg.

  20. Beryllium(II), manganese(II) and uranyl(VI)-salicylamide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, P L; Agarwala, B V; Dey, A K [Allahabad Univ. (India)

    1977-01-01

    The preparation, composition, general properties and i.r. absorption spectra of the solid chelates formed by salicylamide with beryllium(II), manganese(II) and uranyl(VI) are described. The complexes have been synthesized by refluxing a mixture of ethanolic solutions of the reactants (metal:ligand :: 1:2) for several hours in the presence of alkali. Attempts to isolate the complexes by the interaction of ethanolic solutions of the metal salts and the ligand in the absence of alkali did not succeed.

  1. Spectroscopic and electrochemical investigation with coordination stabilities: Mononuclear manganese(II) complexes derived from different constituents macrocyclic ligands

    Science.gov (United States)

    Kumar, Rajiv; Chnadra, S.; Mishra, Parashuram

    2007-12-01

    Since the manganese(II) complexes are known as having a high degree of stability, some of them may be able to play a very important role in biosystems. We prepared manganese(II) complexes with different chromospheres containing macrocyclic ligands bearing N, S and O like functional donor atoms in order to obtain different models of compounds. So these new manganese(II) complexes were derived from macrocyclic ligands by chelating them with metal ions. Thus, two macrocyclic ligands, L 1: 2,4-diphenyl-1,5-diaza-8,12-dioxo-6,7:13,14-dibenzocyclo tetradeca-1,4-diene[N 2O 2]ane; L 2: 2,4,9,11-tetraphenyl-6,13-dimethyl-1,5,8,12-traazacyclotertr-adeca-1,4,8,11-tetraene[N 4]ane; and two more different form first one viz.—L 3: 1,7-diaza-4-monothia-10,14-dioxo-8,9:15,16-cyclohexadecane[N 2O 2S]ane and L 4: 4,13-diaoxa-1,7,10,16-hexazacyclooctadecane[N 4O 2]ane were prepared and their capacity to retain the manganese(II) ion in solid as well as aqueous solution was determined from various physiochemical techniques viz: characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, IR, electronic, ESR spectral studies and cyclic voltammetric measurements.

  2. Polydisulfide Manganese(II) Complexes as Non-Gadolinium Biodegradable Macromolecular MRI Contrast Agents

    Science.gov (United States)

    Ye, Zhen; Jeong, Eun-Kee; Wu, Xueming; Tan, Mingqian; Yin, Shouyu; Lu, Zheng-Rong

    2011-01-01

    Purpose To develop safe and effective manganese(II) based biodegradable macromolecular MRI contrast agents. Materials and Methods In this study, we synthesized and characterized two polydisulfide manganese(II) complexes, Mn-DTPA cystamine copolymers and Mn-EDTA cystamine copolymers, as new biodegradable macromolecular MRI contrast agents. The contrast enhancement of the two manganese based contrast agents were evaluated in mice bearing MDA-MB-231 human breast carcinoma xenografts, in comparison with MnCl2. Results The T1 and T2 relaxivities were 4.74 and 10.38 mM−1s−1 per manganese at 3T for Mn-DTPA cystamine copolymers (Mn=30.50 kDa) and 6.41 and 9.72 mM−1s−1 for Mn-EDTA cystamine copolymers (Mn= 61.80 kDa). Both polydisulfide Mn(II) complexes showed significant liver, myocardium and tumor enhancement. Conclusion The manganese based polydisulfide contrast agents have a potential to be developed as alternative non-gadolinium contrast agents for MR cancer and myocardium imaging. PMID:22031457

  3. Pretreatment of sugarcane bagasse using the advanced oxidation process by electron beam for enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Ribeiro, Marcia Almeida

    2013-01-01

    The sugar cane bagasse is a renewable energy source and a raw material promise in the biofuel production, once represents about 30% of glucose contained in the plant with the potential to be hydrolyzed and then converted to ethanol. The bagasse is composed of cellulose, straight chain of glucose, of hemicellulose, an amorphous polymer consisting of xylose, arabinose, galactose, and mannose, and of lignin, a complex polymer consisting of fenilpropan units that acts as waterproof coating on the fibers, which is hard to remove due its recalcitrant nature. The aim of this work was to study the electron beam processing as a pretreatment of sugarcane bagasse to enzymatic hydrolysis of cellulose. The pretreatment of sugarcane bagasse is one of the most important steps to make this material economically viable and competitive on the energy production. As a pretreatment the electron beam processing can weak the hemicellulose and lignin structures by the action highly reactive radicals that breaks the links, reducing the degree of polymerization fibers. It was evaluated the chemical and structural modifications on fibers caused by the irradiation, the enzymatic hydrolysis of electron beam as the only pretreatment and combined to steam explosion. For enzymatic hydrolysis it was used the commercial enzymes from Novozymes. The radiation processing promotes changes in structure and composition of sugarcane bagasse, increasing the solubility, that is related to hemicellulose and cellulose cleavage, and also increasing the enzymatic conversion yield. In the case of exploded bagasse there is no changes in the enzymatic hydrolysis yield, however the electron beam processing promoted a 67% reduction of furfural, that is formed in the steam explosion process. (author)

  4. Dual functional rhodium oxide nanocorals enabled sensor for both non-enzymatic glucose and solid-state pH sensing.

    Science.gov (United States)

    Dong, Qiuchen; Huang, Yikun; Song, Donghui; Wu, Huixiang; Cao, Fei; Lei, Yu

    2018-07-30

    Both pH-sensitive and glucose-responsive rhodium oxide nanocorals (Rh 2 O 3 NCs) were synthesized through electrospinning followed by high-temperature calcination. The as-prepared Rh 2 O 3 NCs were systematically characterized using various advanced techniques including scanning electron microscopy, X-ray powder diffraction and Raman spectroscopy, and then employed as a dual functional nanomaterial to fabricate a dual sensor for both non-enzymatic glucose sensing and solid-state pH monitoring. The sensing performance of the Rh 2 O 3 NCs based dual sensor toward pH and glucose was evaluated using open circuit potential, cyclic voltammetry and amperometric techniques, respectively. The results show that the as-prepared Rh 2 O 3 NCs not only maintain accurate and reversible pH sensitivity of Rh 2 O 3 , but also demonstrate a good electrocatalytic activity toward glucose oxidation in alkaline medium with a sensitivity of 11.46 μA mM -1 cm -2 , a limit of detection of 3.1 μM (S/N = 3), and a reasonable selectivity against various interferents in non-enzymatic glucose detection. Its accuracy in determining glucose in human serum samples was further demonstrated. These features indicate that the as-prepared Rh 2 O 3 NCs hold great promise as a dual-functional sensing material in the development of a high-performance sensor forManjakkal both solid-state pH and non-enzymatic glucose sensing. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Reinterpreting the best biomarker of oxidative stress: The 8-iso-PGF(2α)/PGF(2α) ratio distinguishes chemical from enzymatic lipid peroxidation.

    Science.gov (United States)

    van 't Erve, Thomas J; Lih, Fred B; Kadiiska, Maria B; Deterding, Leesa J; Eling, Thomas E; Mason, Ronald P

    2015-06-01

    The biomarker 8-iso-prostaglandin F2α (8-iso-PGF2α) is regarded as the gold standard for detection of excessive chemical lipid peroxidation in humans. However, biosynthesis of 8-iso-PGF2α via enzymatic lipid peroxidation by prostaglandin-endoperoxide synthases (PGHSs), which are significantly induced in inflammation, could lead to incorrect biomarker interpretation. To resolve the ambiguity with this biomarker, the ratio of 8-iso-PGF2α to prostaglandin F2α (PGF2α) is established as a quantitative measure to distinguish enzymatic from chemical lipid peroxidation in vitro, in animal models, and in humans. Using this method, we find that chemical lipid peroxidation contributes only 3% to the total 8-iso-PGF2α in the plasma of rats. In contrast, the 8-iso-PGF2α levels in plasma of human males are generated >99% by chemical lipid peroxidation. This establishes the potential for an alternate pathway of biomarker synthesis, and draws into question the source of increases in 8-iso-PGF2α seen in many human diseases. In conclusion, increases in 8-iso-PGF2α do not necessarily reflect increases in oxidative stress; therefore, past studies using 8-iso-PGF2α as a marker of oxidative stress may have been misinterpreted. The 8-iso-PGF2α/PGF2α ratio can be used to distinguish biomarker synthesis pathways and thus confirm the potential change in oxidative stress in the myriad of disease and chemical exposures known to induce 8-iso-PGF2α. Published by Elsevier Inc.

  6. Novel differential refractometry study of the enzymatic degradation kinetics of poly(ethylene oxide)-b-poly(epsilon-caprolactone) particles dispersed in water.

    Science.gov (United States)

    Lam, HiuFung; Gong, Xiangjun; Wu, Chi

    2007-02-22

    A poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) diblock copolymer was micronized into small micelle-like particles (approximately 80 nm) via dialysis-induced microphase inversion. The enzymatic biodegradation of the PCL portion of these particles in water was in situ investigated inside a recently developed novel differential refractometer. Using this refractometry method, we were able to monitor the real-time biodegradation via the refractive index change (Deltan) of the dispersion because Deltan is directly proportional to the particle mass concentration. We found that the degradation rate is proportional to either the polymer or enzyme concentration. Our results directly support previous speculation on the basis of the light-scattering data that the biodegradation follows the first-order kinetics for a given enzyme concentration. This study not only leads to a better understanding of the enzymatic biodegradation of PCL, but also demonstrates a novel, rapid, noninvasive, and convenient way to test the degradability of polymers.

  7. Column solid phase extraction and flame atomic absorption spectrometric determination of manganese(II) and iron(III) ions in water, food and biological samples using 3-(1-methyl-1H-pyrrol-2-yl)-1H-pyrazole-5-carboxylic acid on synthesized graphene oxide

    International Nuclear Information System (INIS)

    Pourjavid, Mohammad Reza; Sehat, Ali Akbari; Arabieh, Masoud; Yousefi, Seyed Reza; Hosseini, Majid Haji; Rezaee, Mohammad

    2014-01-01

    A modified, selective, highly sensitive and accurate procedure for the determination of trace amounts of manganese and iron ions is established in the presented work. 3-(1-Methyl-1H-pyrrol-2-yl)-1H-pyrazole-5-carboxylic acid (MPPC) and graphene oxide (GO) were used in a glass column as chelating reagent and as adsorbent respectively prior to their determination by flame atomic absorption spectrometry. The adsorption mechanism of titled metals complexes on GO was investigated by using computational chemistry approach based on PM6 semi-empirical potential energy surface (PES). The effect of some parameters including pH, flow rate and volume of sample and type, volume and concentration of eluent, as well as the adsorption capacity of matrix ions on the recovery of Mn(II) and Fe(III) was investigated. The limit of detection was 145 and 162 ng L −1 for Mn(II) and Fe(III), respectively. Calibration was linear over the range of 0.31–355 μg L −1 for Mn(II) and 0.34–380 μg L −1 for Fe(III) ions. The method was successfully applied for the determination of understudied ions in water, food and biological samples. - Highlights: • We use synthesized graphene oxide as adsorbent for SPE of Mn(II) and Fe(III) ions. • Adsorption mechanism was investigated by PM6 semi-empirical potential energy surface. • Detection limits were 145 and 162 ng L −1 for Mn and Fe, respectively. • The preconcentration factor was 325 and sample flow rate is 8 mL min −1 . • It was successfully applied to the determination of Mn and Fe ions in real samples

  8. Column solid phase extraction and flame atomic absorption spectrometric determination of manganese(II) and iron(III) ions in water, food and biological samples using 3-(1-methyl-1H-pyrrol-2-yl)-1H-pyrazole-5-carboxylic acid on synthesized graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Pourjavid, Mohammad Reza, E-mail: pourjavid@gmail.com [NFCRS, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran (Iran, Islamic Republic of); Sehat, Ali Akbari [Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran (Iran, Islamic Republic of); Arabieh, Masoud; Yousefi, Seyed Reza; Hosseini, Majid Haji; Rezaee, Mohammad [NFCRS, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran (Iran, Islamic Republic of)

    2014-02-01

    A modified, selective, highly sensitive and accurate procedure for the determination of trace amounts of manganese and iron ions is established in the presented work. 3-(1-Methyl-1H-pyrrol-2-yl)-1H-pyrazole-5-carboxylic acid (MPPC) and graphene oxide (GO) were used in a glass column as chelating reagent and as adsorbent respectively prior to their determination by flame atomic absorption spectrometry. The adsorption mechanism of titled metals complexes on GO was investigated by using computational chemistry approach based on PM6 semi-empirical potential energy surface (PES). The effect of some parameters including pH, flow rate and volume of sample and type, volume and concentration of eluent, as well as the adsorption capacity of matrix ions on the recovery of Mn(II) and Fe(III) was investigated. The limit of detection was 145 and 162 ng L{sup −1} for Mn(II) and Fe(III), respectively. Calibration was linear over the range of 0.31–355 μg L{sup −1} for Mn(II) and 0.34–380 μg L{sup −1} for Fe(III) ions. The method was successfully applied for the determination of understudied ions in water, food and biological samples. - Highlights: • We use synthesized graphene oxide as adsorbent for SPE of Mn(II) and Fe(III) ions. • Adsorption mechanism was investigated by PM6 semi-empirical potential energy surface. • Detection limits were 145 and 162 ng L{sup −1} for Mn and Fe, respectively. • The preconcentration factor was 325 and sample flow rate is 8 mL min{sup −1}. • It was successfully applied to the determination of Mn and Fe ions in real samples.

  9. A novel reduction approach to fabricate quantum-sized SnO₂-conjugated reduced graphene oxide nanocomposites as non-enzymatic glucose sensors.

    Science.gov (United States)

    Ye, Yixing; Wang, Panpan; Dai, Enmei; Liu, Jun; Tian, Zhenfei; Liang, Changhao; Shao, Guosheng

    2014-05-21

    Quantum-sized SnO2 nanocrystals can be well dispersed on reduced graphene oxide (rGO) nanosheets through a convenient one-pot in situ reduction route without using any other chemical reagent or source. Highly reactive metastable tin oxide (SnO(x)) nanoparticles (NPs) were used as reducing agents and composite precursors derived by the laser ablation in liquid (LAL) technique. Moreover, the growth and phase transition of LAL-induced SnO(x) NPs and graphene oxide (GO) were examined by optical absorption, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and high-resolution transmission electron microscopy. Highly dispersed SnO(x) NPs can also prevent rGO from being restacked into a multilayer structure during GO reduction. Given the good electron transfer ability and unsaturated dangling bonds of rGO, as well as the ample electrocatalytic active sites of quantum-sized SnO2 NPs on unfolded rGO sheets, the fabricated SnO2-rGO nanocomposite exhibited excellent performance in the non-enzymatic electrochemical detection of glucose molecules. The use of LAL-induced reactive NPs for in situ GO reduction is also expected to be a universal and environmentally friendly approach for the formation of various rGO-based nanocomposites.

  10. Enzymatic oxidation of 2-phenylethylamine to phenylacetic acid and 2-phenylethanol with special reference to the metabolism of its intermediate phenylacetaldehyde.

    Science.gov (United States)

    Panoutsopoulos, Georgios I; Kouretas, Demetrios; Gounaris, Elias G; Beedham, Christine

    2004-12-01

    2-phenylethylamine is an endogenous constituent of the human brain and is implicated in cerebral transmission. This bioactive amine is also present in certain foodstuffs such as chocolate, cheese and wine and may cause undesirable side effects in susceptible individuals. Metabolism of 2-phenylethylamine to phenylacetaldehyde is catalysed by monoamine oxidase B but the oxidation to its acid is usually ascribed to aldehyde dehydrogenase and the contribution of aldehyde oxidase and xanthine oxidase, if any, is ignored. The objective of this study was to elucidate the role of the molybdenum hydroxylases, aldehyde oxidase and xanthine oxidase, in the metabolism of phenylacetaldehyde derived from its parent biogenic amine. Treatments of 2-phenylethylamine with monoamine oxidase were carried out for the production of phenylacetaldehyde, as well as treatments of synthetic or enzymatic-generated phenylacetaldehyde with aldehyde oxidase, xanthine oxidase and aldehyde dehydrogenase. The results indicated that phenylacetaldehyde is metabolised mainly to phenylacetic acid with lower concentrations of 2-phenylethanol by all three oxidising enzymes. Aldehyde dehydrogenase was the predominant enzyme involved in phenylacetaldehyde oxidation and thus it has a major role in 2-phenylethylamine metabolism with aldehyde oxidase playing a less prominent role. Xanthine oxidase does not contribute to the oxidation of phenylacetaldehyde due to low amounts being present in guinea pig. Thus aldehyde dehydrogenase is not the only enzyme oxidising xenobiotic and endobiotic aldehydes and the role of aldehyde oxidase in such reactions should not be ignored.

  11. Application of photocatalytic cadmium sulfide nanoparticles to detection of enzymatic activities of glucose oxidase and glutathione reductase using oxidation of 3,3′,5,5′-tetramethylbenzidine

    Energy Technology Data Exchange (ETDEWEB)

    Grinyte, Ruta; Garai-Ibabe, Gaizka; Saa, Laura; Pavlov, Valeri, E-mail: vpavlov@cicbiomagune.es

    2015-06-30

    Highlights: • The light-powered nanosensor fabricated by enzymatic reactions was reported. • The sensor use energy of photons for oxidation of chromogenic enzymatic substrates. • Enzymatic assays for glucose oxidase and glutathione reductase were developed. - Abstract: It was found out that semiconductor CdS nanoparticles (NPs) are able to catalyze photooxidation of the well known chromogenic enzymatic substrate 3,3′,5,5′-tetramethylbenzidine (TMB) by oxygen. The photocatalytical oxidation of TMB does not require hydrogen peroxide and its rate is directly proportional to the quantity of CdS NPs produced in situ through the interaction of Cd{sup 2+} and S{sup 2−} ions in an aqueous medium. This phenomenon was applied to development of colorimetric sensitive assays for glucose oxidase and glutathione reductase based on enzymatic generation of CdS NPs acting as light-powered catalysts. Sensitivity of the developed chromogenic assays was of the same order of magnitude or even better than that of relevant fluorogenic assays. The present approach opens the possibility for the design of simple and sensitive colorimetric assays for a number of enzymes using inexpensive and available TMB as a universal chromogenic compound.

  12. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  13. [Isolation and identification of hydrogen-oxidizing bacteria producing 1-aminocyclopropane-1-carboxylate deaminase and the determination of enzymatic activity].

    Science.gov (United States)

    Fu, Bo; Wang, Weiwei; Tang, Ming; Chen, Xingdu

    2009-03-01

    We used Medicago sativa rhizosphere in Shaanxi province of China to isolate and identify hydrogen-oxidizing bacteria that produced ACC (1-aminocyclopropane-1-carboxylate) deaminase, and then studied the mechanism why they can promote the growth of plants. Hydrogen-oxidizing bacteria were isolated by gas-cycle incubation system. We studied the morphological character, physiological characteristics, 16S rDNA sequence analysis and built the phylogenic tree. Thin layer chromatography was used to isolate the strain that produced ACC deaminase. Ninhydrin reaction was used to test the enzyme activity. In total 37 strains were isolated, 8 of which could oxidize H2 strongly and grow chemolithoautotrophically. We initially identified them as hydrogen-oxidizing bacteria. Only strain WMQ-7 produced ACC deaminase among these 8 strains. Morphological and physiological characteristics analysis showed that strain WMQ-7 was essentially consistent with Pseudomonas putida. The 16S rDNA sequence analysis (GenBank accession number EU807744) suggested that strain WMQ-7 was clustered together with Pseudomonas putida in phylogenetic tree, with the sequence identity of 99%. Based on all these results, strain WMQ-7 was identified as Pseudomonas putida. The enzyme activity of strain WMQ-7 was 0.671 U/microg. A strain producing ACC deaminase was identified and tested.

  14. Status of plasma nitric oxide and non-enzymatic antioxidants before and after antipsychotic treatment in Nigerian patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Ganiyu Olatubosun Arinola

    2009-02-01

    Full Text Available

    • BACKGROUND: Recently, it is proposed that oxidant-antioxidant imbalance may have a role in the pathophysiology of schizophrenia. The present study was performed to assess differences in plasma levels of nitric oxide (as oxidant, caeruloplasmin (secondary antioxidant, and antioxidant trace metals (Zn, Se, Mn, Cu and Fe in patients with schizophrenia compared with healthy controls. Our secondary aim was to further evaluate the impact of psychopharmacologic treatment on these parameters.
    • METHODS: Plasma levels of nitric oxides (NO, caeruloplasmin, zinc (Zn, selenium (Se, manganese (Mn, copper (Cu and iron (Fe in patients with schizophrenia before (n = 15 and after antipsychotic drug treatment (n = 20 were compared with those of healthy controls (n = 20. Convenient sampling method was used for the selection of subjects. NO was estimated by the use of Griess method, caeruloplasmin was estimated by the use of immunodiffusion method and antioxidant trace metals was estimated by the use of atomic absorption spectrophotometer.
    • RESULTS: The levels of Cu and caeruloplasmin were not significantly different while Fe and Se were significantly reduced in both groups of schizophrenic patients compared with the controls. Zn was significantly elevated in medicated
    • schizophrenics compared with drug-free patients or controls. NO was significantly elevated in drug free patients with schizophrenia compared with controls or treated patients.
    • CONCLUSIONS: Our findings suggest the application of management strategies that will reduce NO but will increase antioxidant trace metals in patients with schizophrenia.
    • KEYWORDS: Schizophrenia, antioxidant defense system, antioxidant status, oxidative Stress.

  15. Colorimetric detection of manganese(II) ions using gold/dopa nanoparticles.

    Science.gov (United States)

    Narayanan, Kannan Badri; Park, Hyun Ho

    2014-10-15

    We report here a one-pot, greener, eco-friendly strategy for the synthesis of gold nanoparticles using L-dopa. The as-prepared dopa-functionalized gold nanoparticles (AuNPs/dopa) can detect low concentrations of manganese(II) metal ions in aqueous solution. The binding forces between dopa and Mn(2+) ions cause dopa-functionalized gold nanoparticles to come closer together, decreasing the interparticle distance and aggregating it with a change in color of colloidal solution from red to purplish-blue. Dynamic light scattering (DLS) analysis showed a decreased surface charge on the surface of gold nanoparticles when exposed to Mn(2+) ions, which caused cross-linking aggregation. Transmission electron microscopic (TEM) images also revealed the aggregation of gold nanoparticles with the addition of Mn(2+) ions. The extinction ratio of absorbance at 700-550nm (A700/A550) was linear against the concentration of [Mn(2+)] ions. Thus, the optical absorption spectra of gold colloidal solution before and after the addition of Mn(2+) ions reveal the concentration of Mn(2+) ions in solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Synthesis, structure and some properties of a manganese(II) benzoate containing diimine

    Science.gov (United States)

    Paul, Pranajit; Roy, Subhadip; Sarkar, Sanjoy; Chowdhury, Shubhamoy; Purkayastha, R. N. Dutta; Raghavaiah, Pallepogu; McArdle, Patrick; Deb, Lokesh; Devi, Sarangthem Indira

    2015-12-01

    A new monomeric manganese(II) benzoate complex containing nitrogen donor 2,2‧-bipyridine, [Mn(OBz)2(bipy)(H2O)] (OBz = benzoate, bipy = 2,2‧-bipyridine) has been synthesized from aqueous methanol medium and characterized by analytical, spectroscopic and single crystal X-ray diffraction studies. The compound exhibits moderate to appreciable antimicrobial activity. The complex crystallizes in space group P21/n. Mn(II) atom is ligated by two N atoms of bipyridine, three O atoms from a monodentate and a bidentate benzoate ligand and a water molecule forming distorted octahedral structure. The coordinated water molecule forms intramolecular hydrogen bonds and links the monomer molecules into hydrogen bonded dimer. The hydrogen bonded dimers are involved in intermolecular C-H···O and π-π stacking interactions. Density functional theory (DFT) computation was carried out to compute the frequencies of relevant vibrational modes and electronic properties, the results are in compliance with the experimentally obtained structural and spectral data.

  17. Multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) onto natural bentonite clay.

    Science.gov (United States)

    Alexander, Jock Asanja; Surajudeen, Abdulsalam; Aliyu, El-Nafaty Usman; Omeiza, Aroke Umar; Zaini, Muhammad Abbas Ahmad

    2017-10-01

    The present work was aimed at evaluating the multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) ions onto natural bentonite. The bentonite clay adsorbent was characterized for physical and chemical properties using X-ray diffraction, X-ray fluorescence, Brunauer-Emmett-Teller surface area and cation exchange capacity. The column performance was evaluated using adsorbent bed height of 5.0 cm, with varying influent concentrations (10 mg/L and 50 mg/L) and flow rates (1.4 mL/min and 2.4 mL/min). The result shows that the breakthrough time for all metal ions ranged from 50 to 480 minutes. The maximum adsorption capacity was obtained at initial concentration of 10 mg/L and flow rate of 1.4 mL/min, with 2.22 mg/g of lead(II), 1.71 mg/g of cadmium(II) and 0.37 mg/g of manganese(II). The order of metal ions removal by natural bentonite is lead(II) > cadmium(II) > manganese(II). The sorption performance and the dynamic behaviour of the column were predicted using Adams-Bohart, Thomas, and Yoon-Nelson models. The linear regression analysis demonstrated that the Thomas and Yoon-Nelson models fitted well with the column adsorption data for all metal ions. The natural bentonite was effective for the treatment of wastewater laden with multi-metals, and the process parameters obtained from this work can be used at the industrial scale.

  18. Highly Chemo- and Stereoselective Transfer Semihydrogenation of Alkynes Catalyzed by a Stable, Well-defined Manganese(II) Complex

    KAUST Repository

    Brzozowska, Aleksandra; Azofra, Luis Miguel; Zubar, Viktoriia; Atodiresei, Iuliana; Cavallo, Luigi; Rueping, Magnus; El-Sepelgy, Osama

    2018-01-01

    The first example of manganese catalyzed semihydrogenation of internal alkynes to (Z)-alkenes using ammonia borane as a hydrogen donor is reported. The reaction is catalyzed by a pincer complex of the earth abundant manganese(II) salt in the absence of any additives, base or super hydride. The ammonia borane smoothly reduces the manganese pre-catalyst [Mn(II)-PNP][Cl]2 to the catalytically active species [Mn(I)-PNP]-hydride in the triplet spin state. This manganese hydride is highly stabilized by complexation with the alkyne substrate. Computational DFT analysis studies of the reaction mechanism rationalizes the origin of stereoselectivity towards formation of (Z)-alkenes.

  19. Highly Chemo- and Stereoselective Transfer Semihydrogenation of Alkynes Catalyzed by a Stable, Well-defined Manganese(II) Complex

    KAUST Repository

    Brzozowska, Aleksandra

    2018-03-30

    The first example of manganese catalyzed semihydrogenation of internal alkynes to (Z)-alkenes using ammonia borane as a hydrogen donor is reported. The reaction is catalyzed by a pincer complex of the earth abundant manganese(II) salt in the absence of any additives, base or super hydride. The ammonia borane smoothly reduces the manganese pre-catalyst [Mn(II)-PNP][Cl]2 to the catalytically active species [Mn(I)-PNP]-hydride in the triplet spin state. This manganese hydride is highly stabilized by complexation with the alkyne substrate. Computational DFT analysis studies of the reaction mechanism rationalizes the origin of stereoselectivity towards formation of (Z)-alkenes.

  20. A Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry and Other Voltammetry Methods and a Comparison to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Yifan Dai

    2018-01-01

    Full Text Available A cuprous oxide (Cu2O thin layer served as the base for a non-enzymatic glucose sensor in an alkaline medium, 0.1 NaOH solution, with a linear range of 50–200 mg/dL using differential pulse voltammetry (DPV measurement. An X-ray photoelectron spectroscopy (XPS study confirmed the formation of the cuprous oxide layer on the thin gold film sensor prototype. Quantitative detection of glucose in both phosphate-buffered saline (PBS and undiluted human serum was carried out. Neither ascorbic acid nor uric acid, even at a relatively high concentration level (100 mg/dL in serum, interfered with the glucose detection, demonstrating the excellent selectivity of this non-enzymatic cuprous oxide thin layer-based glucose sensor. Chronoamperometry and single potential amperometric voltammetry were used to verify the measurements obtained by DPV, and the positive results validated that the detection of glucose in a 0.1 M NaOH alkaline medium by DPV measurement was effective. Nickel, platinum, and copper are commonly used metals for non-enzymatic glucose detection. The performance of these metal-based sensors for glucose detection using DPV were also evaluated. The cuprous oxide (Cu2O thin layer-based sensor showed the best sensitivity for glucose detection among the sensors evaluated.

  1. Antioxidant and enzymatic responses to oxidative stress induced by pre-harvest water supply reduction and ripening on mango (Mangifera indica L. cv. 'Cogshall') in relation to carotenoid content.

    Science.gov (United States)

    Rosalie, Rémy; Joas, Jacques; Deytieux-Belleau, Christelle; Vulcain, Emmanuelle; Payet, Bertrand; Dufossé, Laurent; Léchaudel, Mathieu

    2015-07-20

    The effects of a reduction in water supply during fruit development and postharvest fruit ripening on the oxidative status and the antioxidant defense system were studied in the mango fruit (Mangifera indica L.) cv. Cogshall. Changes in non-enzymatic (ascorbate) and enzymatic (SOD, CAT, APX, MDHAR, DHAR and GR) antioxidants, as well as oxidative parameters (H2O2 and MDA) and major carotenoids, were measured in unripe and ripe fruits from well-irrigated and non-irrigated trees. Under non-limiting water supply conditions, ripening induced oxidation as a result of the production of ROS and decreased ascorbate content. Antioxidant enzymatic systems were activated to protect fruit tissues and to regenerate the ascorbate pool. The carotenoid pool, mainly represented by β-carotene and esterified violaxanthine isomers, accumulated naturally during mango ripening. The suppression of irrigation decreased fruit size and induced accumulation of ABA and of its storage form, ABA-GE, in fruit pulp from the earliest harvest. It also increased oxidation, which was observable by the high levels of ascorbate measured at the early stages at harvest, and by the delay in the time it took to reach the pseudo constant carotene-to-xanthophyll ratio in ripe fruits. Nevertheless, differences between the irrigation treatments on the antioxidant system in ripe fruits were not significant, mainly because of the drastic changes in this system during ripening. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Substrate specificity and copper loading of the manganese-oxidizing multicopper oxidase Mnx from Bacillus sp. PL-12.

    Science.gov (United States)

    Butterfield, Cristina N; Tebo, Bradley M

    2017-02-22

    Manganese(ii) oxidation in the environment is thought to be driven by bacteria because enzymatic catalysis is many orders of magnitude faster than the abiotic processes. The heterologously purified Mn oxidase (Mnx) from marine Bacillus sp. PL-12 is made up of the multicopper oxidase (MCO) MnxG and two small Cu and heme-binding proteins of unknown function, MnxE and MnxF. Mnx binds Cu and oxidizes both Mn(ii) and Mn(iii), generating Mn(iv) oxide minerals that resemble those found on the Bacillus spore surface. Spectroscopic techniques have illuminated details about the metallo-cofactors of Mnx, but very little is known about their requirement for catalytic activity, and even less is known about the substrate specificity of Mnx. Here we quantify the canonical MCO Cu and persistent peripheral Cu bound to Mnx, and test Mnx oxidizing ability toward different substrates at varying pH. Mn(ii) appears to be the best substrate in terms of k cat , but its oxidation does not follow Michaelis-Menten kinetics, instead showing a sigmoidal cooperative behavior. Mnx also oxidizes Fe(ii) substrate, but in a Michaelis-Menten manner and with a decreased activity, as well as organic substrates. The reduced metals are more rapidly consumed than the larger organic substrates, suggesting the hypothesis that the Mnx substrate site is small and tuned for metal oxidation. Of biological relevance is the result that Mnx has the highest catalytic efficiency for Mn(ii) at the pH of sea water, especially when the protein is loaded with greater than the requisite four MCO copper atoms, suggesting that the protein has evolved specifically for Mn oxidation.

  3. Synthesis and enzymatic evaluation of 2- and 4-aminothiazole-based inhibitors of neuronal nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Graham R. Lawton

    2009-06-01

    Full Text Available Highly potent and selective inhibitors of neuronal nitric oxide synthase (nNOS possessing a 2-aminopyridine group were recently designed and synthesized in our laboratory and were shown to have significant in vivo efficacy. In this work, analogs of our lead compound possessing 2- and 4-aminothiazole rings in place of the aminopyridine were synthesized. The less basic aminothiazole rings will be less protonated at physiological pH than the aminopyridine ring, and so the molecule will carry a lower net charge. This could lead to an increased ability to cross the blood-brain barrier thereby increasing the in vivo potency of these compounds. The 2-aminothiazole-based compound was less potent than the 2-aminopyridine-based analogue. 4-Aminothiazoles were unstable in water, undergoing tautomerization and hydrolysis to give inactive thiazolones.

  4. Bioavailability of Compounds Susceptible to Enzymatic Oxidation Enhances Growth of Shiitake Medicinal Mushroom (Lentinus edodes) in Solid-State Fermentation with Vineyard Prunings.

    Science.gov (United States)

    Cabrera, Rosina; López-Peña, Damian; Asaff, Ali; Esqueda, Martín; Valenzuela-Soto, Elisa M

    2018-01-01

    Grapes are widely produced in northwestern Mexico, generating many wood trimmings (vineyard prunings) that have no further local use. This makes vineyard prunings a very attractive alternative for the cultivation of white-rot medicinal mushrooms such as Lentinus edodes. This type of wood can also offer a model for the evaluation of oxidative enzyme production during the fermentation process. We tested the effect of wood from vineyard prunings on the vegetative growth of and production of ligninolytic enzymes in L. edodes in solid-state fermentation and with wheat straw as the control substrate. The specific growth rate of the fungus was 2-fold higher on vineyard pruning culture (μM = 0.95 day-1) than on wheat straw culture (μM = 0.47 day-1). Laccase-specific production was 4 times higher in the vineyard prunings culture than on wheat straw (0.34 and 0.08 mU · mg protein-1 · ppm CO2-1, respectively), and manganese peroxidase production was 3.7 times higher on wheat straw culture than on vineyard prunings (2.21 and 0.60 mU · mg protein-1 · ppm CO2-1, respectively). To explain accurately these differences in growth and ligninolytic enzyme activity, methanol extracts were obtained from each substrate and characterized. Resveratrol and catechins were the main compounds identified in vineyard prunings, whereas epigallocatechin was the only one detected in wheat straw. Compounds susceptible to enzymatic oxidation are more bioavailable in vineyard prunings than in wheat straw, and thus the highest L. edodes growth rate is associated with the presence of these compounds.

  5. Standardization and quality control in quantifying non-enzymatic oxidative protein modifications in relation to ageing and disease: Why is it important and why is it hard?

    DEFF Research Database (Denmark)

    Nedić, Olgica; Rogowska-Wrzesinska, Adelina; Rattan, Suresh

    2015-01-01

    Post-translational modifications (PTM) of proteins determine the activity, stability, specificity, transportability and lifespan of a protein. Some PTM are highly specific and regulated involving various enzymatic pathways, but there are other non-enzymatic PTM (nePTM), which occur stochastically...

  6. Disposable Non-Enzymatic Glucose Sensors Using Screen-Printed Nickel/Carbon Composites on Indium Tin Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Won-Yong Jeon

    2015-12-01

    Full Text Available Disposable screen-printed nickel/carbon composites on indium tin oxide (ITO electrodes (DSPNCE were developed for the detection of glucose without enzymes. The DSPNCE were prepared by screen-printing the ITO substrate with a 50 wt% nickel/carbon composite, followed by curing at 400 °C for 30 min. The redox couple of Ni(OH2/NiOOH was deposited on the surface of the electrodes via cyclic voltammetry (CV, scanning from 0–1.5 V for 30 cycles in 0.1 M NaOH solution. The DSPNCE were characterized by field-emission scanning electron microscopy (FE-SEM, X-ray photoelectron spectroscopy (XPS, and electrochemical methods. The resulting electrical currents, measured by CV and chronoamperometry at 0.65 V vs. Ag/AgCl, showed a good linear response with glucose concentrations from 1.0–10 mM. Also, the prepared electrodes showed no interference from common physiologic interferents such as uric acid (UA or ascorbic acid (AA. Therefore, this approach allowed the development of a simple, disposable glucose biosensor.

  7. Disposable Non-Enzymatic Glucose Sensors Using Screen-Printed Nickel/Carbon Composites on Indium Tin Oxide Electrodes.

    Science.gov (United States)

    Jeon, Won-Yong; Choi, Young-Bong; Kim, Hyug-Han

    2015-12-10

    Disposable screen-printed nickel/carbon composites on indium tin oxide (ITO) electrodes (DSPNCE) were developed for the detection of glucose without enzymes. The DSPNCE were prepared by screen-printing the ITO substrate with a 50 wt% nickel/carbon composite, followed by curing at 400 °C for 30 min. The redox couple of Ni(OH)₂/NiOOH was deposited on the surface of the electrodes via cyclic voltammetry (CV), scanning from 0-1.5 V for 30 cycles in 0.1 M NaOH solution. The DSPNCE were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and electrochemical methods. The resulting electrical currents, measured by CV and chronoamperometry at 0.65 V vs. Ag/AgCl, showed a good linear response with glucose concentrations from 1.0-10 mM. Also, the prepared electrodes showed no interference from common physiologic interferents such as uric acid (UA) or ascorbic acid (AA). Therefore, this approach allowed the development of a simple, disposable glucose biosensor.

  8. Non-enzymatic glycosylation of a type I collagen matrix: effects on osteoblastic development and oxidative stress

    Directory of Open Access Journals (Sweden)

    Barrio Daniel A

    2001-08-01

    Full Text Available Abstract Background The tissue accumulation of protein-bound advanced glycation endproducts (AGE may be involved in the etiology of diabetic chronic complications, including osteopenia. The aim of this study was to investigate the effect of an AGE-modified type I collagen substratum on the adhesion, spreading, proliferation and differentiation of rat osteosarcoma UMR106 and mouse non-transformed MC3T3E1 osteoblastic cells. We also studied the role of reactive oxygen species (ROS and nitric oxide synthase (NOS expression on these AGE-collagen mediated effects. Results AGE-collagen decreased the adhesion of UMR106 cells, but had no effect on the attachment of MC3T3E1 cells. In the UMR106 cell line, AGE-collagen also inhibited cellular proliferation, spreading and alkaline phosphatase (ALP activity. In preosteoblastic MC3T3E1 cells (24-hour culture, proliferation and spreading were significantly increased by AGE-collagen. After one week of culture (differentiated MC3T3E1 osteoblasts AGE-collagen inhibited ALP activity, but had no effect on cell number. In mineralizing MC3T3E1 cells (3-week culture AGE-collagen induced a decrease in the number of surviving cells and of extracellular nodules of mineralization, without modifying their ALP activity. Intracellular ROS production, measured after a 48-hour culture, was decreased by AGE-collagen in MC3T3E1 cells, but was increased by AGE-collagen in UMR106 cells. After a 24-hour culture, AGE-collagen increased the expression of endothelial and inducible NOS, in both osteoblastic cell lines. Conclusions These results suggest that the accumulation of AGE on bone extracellular matrix could regulate the proliferation and differentiation of osteoblastic cells. These effects appear to depend on the stage of osteoblastic development, and possibly involve the modulation of NOS expression and intracellular ROS pathways.

  9. A non-enzymatic hydrogen peroxide sensor based on a glassy carbon electrode modified with cuprous oxide and nitrogen-doped graphene in a nafion matrix

    International Nuclear Information System (INIS)

    Jiang, Bin-Bin; Wei, Xian-Wen; Wu, Fang-Hui; Chen, Le; Yuan, Guo-Zan; Wu, Kong-Lin; Dong, Chao; Ye, Yin

    2014-01-01

    We have modified a glassy carbon electrode (GCE) with copper(I) oxide nanoparticles (NPs), nitrogen-doped graphene (N-graphene) and Nafion to obtain a novel sensing platform for the non-enzymatic detection of hydrogen peroxide. The deposition of the Cu 2 O NPs on N-graphene was accomplished by single-step chemical reduction. The nanocomposite was characterized by using X-ray diffraction and scanning electron microscopy which revealed the successful attachment of monodispersed Cu 2 O NPs to the N-graphene. Electrochemical studies revealed that the composite possesses excellent electrocatalytic activity toward the reduction of H 2 O 2 in pH 7.4 phosphate buffer solution at a working potential of −0.60 V. Nafion obviously enhances the stability of the modified GCE and repels any negatively charged species. Compared to a conventional Cu 2 O/Nafion-modified GCE, the modified GCE presented here exhibits (a) a higher catalytic activity for the reduction of H 2 O 2 (1.94 times), (b) a wider linear range (from 5.0 μM to 3.57 mM), (c) a lower detection limit (0.8 μM at an S/N of 3), (d) higher sensitivity (26.67 μA mM −1 ) and (e) a shorter response time (2 s). Moreover, the new GCE exhibits good selectivity and stability. These properties make the new hybrid electrode a promising tool for to the development of electrochemical sensors, molecular bioelectronic devices, biosensors, and biofuel cells. (author)

  10. Graphene oxide directed in-situ synthesis of Prussian blue for non-enzymatic sensing of hydrogen peroxide released from macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Weiwei; Zhu, Qionghua; Gao, Fei; Gao, Feng [College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China); Huang, Jiafu; Pan, Yutian [College of Biological Science and Technology, Minnan Normal University, Zhangzhou 363000 (China); Wang, Qingxiang, E-mail: axiang236@126.com [College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China)

    2017-03-01

    A novel electrochemical non-enzymatic hydrogen peroxide (H{sub 2}O{sub 2}) sensor has been developed based on Prussian blue (PB) and electrochemically reduced graphene oxide (ERGO). The GO was covalently modified on glassy carbon electrode (GCE), and utilized as a directing platform for in-situ synthesis of electroactive PB. Then the GO was electrochemically treated to reduction form to improve the effective surface area and electroactivity of the sensing interface. The fabrication process was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). The results showed that the rich oxygen containing groups play a crucial role for the successful synthesis of PB, and the obtained PB layer on the covalently immobilized GO has good stability. Electrochemical sensing assay showed that the modified electrode had tremendous electrocatalytic property for the reduction of H{sub 2}O{sub 2}. The steady-state current response increased linearly with H{sub 2}O{sub 2} concentrations from 5 μM to 1 mM with a fast response time (less than 3 s). The detection limit was estimated to be 0.8 μM. When the sensor was applied for determination of H{sub 2}O{sub 2} released from living cells of macrophages, satisfactory results were achieved. - Highlights: • Covalent method was applied for immobilization of GO on glassy carbon electrode. • GO directed in-situ synthesis of electroactive PB. • PB-ERGO composite shows high electrocatalytic activity toward H{sub 2}O{sub 2}. • The modified biosensor is capable of detecting H{sub 2}O{sub 2} released from living macrophages.

  11. Oxidation mechanisms occurring in wines

    OpenAIRE

    Oliveira, Carla Maria; Ferreira, António César Silva; Freitas, Victor De; Silva, Artur M. S.

    2011-01-01

    The present review aims to show the state of the art on the oxidation mechanisms occurring in wines, as well as the methods to monitor, classify and diagnose wine oxidation. Wine oxidation can be divided in enzymatic oxidation and non-enzymatic oxidation. Enzymatic oxidation almost entirely occurs in grape must and is largely correlated with the content of hydroxycinnamates, such as caffeoyltartaric acid and paracoumaroyltartaric acid, and flavan-3-ols. Non-enzymatic oxidation, al...

  12. Synthesis and characterization of monomeric and dimeric manganese(II and zinc(II complexes of pyridine-2-carbaldoxime

    Directory of Open Access Journals (Sweden)

    Jørgen Glerup

    2000-12-01

    Full Text Available The syntheses and characterization of two complexes of manganese(II and one complex of zinc(II with the ligand pyridine-2-carbaldoxime, C6H6N2O, are described. The monomeric manganese(II complex cis-[Mn(C6H6N2O 2Cl2] (1 crystallizes in the orthorhombic space group Pbcn with 4 formula units in a cell of dimensions a = 12.479(3 Å, b = 10.348(2 Å, and c = 11. 974(2 Å. The structure has been refined to a final value of the conventional R-factor of 0.0330 based on 1513 observed independent reflections. The analogous zinc(II complex, cis-[Zn(C6H6N2O2Cl2] (2 also crystallizes in the orthorhombic space group Pbcn with 4 formula units in a cell of dimensions a = 12.215(2 Å, b = 10.383(2 Å, and c = 12. 016(2 Å. The structure has been refined to a final value of the conventional R-factor of 0.0377 based on 1117 observed independent reflections. The two complexes are isostructural, with the central metal atom lying on a crystallographic 2-fold axis. Both complexes are approximately octahedral, the coordination being provided by two trans pyridine nitrogen atoms and two cis amine nitrogen atoms from the oxime ligands, and by two cis chlorides. The dimeric manganese(II complex [(C6H6N2O(CH3OHClMnCl2MnCl(CH3OH(C6H6N2O] (3 crystallizes in the monoclinic space group P21/n with 2 formula units in a cell of dimensions a = 7.895(2 Å, b = 11.196(3 Å, and c = 12. 544(2 Å, and b = 98.39(2o. The structure has been refined to a final value of the conventional R-factor of 0.0312 based on 1568 observed independent reflections. There is a crystallographic inversion center in the middle of the dimer relating one manganese center to the other. The geometry at each manganese(II center is again roughly octahedral, coordination being provided by two nitrogen atoms from the oxime ligand, a terminal chloride ion trans to the amine nitrogen, the oxygen atom of the coordinated methanol molecule, and two bridging chlorides that link the two halves of the dimer. The Mn

  13. Inhibition of tyrosinase-mediated enzymatic browning by sulfite and natural alternatives

    NARCIS (Netherlands)

    Kuijpers, T.F.M.; Vincken, J.P.

    2013-01-01

    Although sulfite is widely used to counteract enzymatic browning, its mechanism has remained largely unknown. We describe a double inhibitory mechanism of sulfite on enzymatic browning, affecting both the enzymatic oxidation of phenols into o‑quinones, as well as the non‑enzymatic

  14. The dependence of the discharge of nitrous oxide by ordinary chernozem steppe of the Central-Chernozem Region of Russia from the content of humus, nitrogen and enzymatic activity

    Science.gov (United States)

    Avksentev, Alexey; Negrobova, Elena; Kramareva, Tatiana; Moiseeva, Evgenya

    2016-04-01

    The dependence of the discharge of nitrous oxide by ordinary chernozem steppe of the Central-Chernozem Region of Russia from the content of humus, nitrogen and enzymatic activity Alexey Avksentev, Elena Negrobova, Tatiana Kramareva, Evgenya Moiseeva 394000 Voronezh, Universitetskaya square, 1 Voronezh State University Nitrous oxide is emitted by soil as a result of microbiological processes, ranks third in the list of aggressive greenhouse gas after carbon dioxide and methane. Nitrous oxide is formed during nitrification and denitrification of ammonia that enters the soil during microbial decomposition of complex organic compounds. Denitrification can be direct and indirect. In the microbiological process of recovery of nitrates involved of the organic substance. In aerobic conditions microorganisms denitrificator behave like normal saprotrophs and oxidize organic matter in the act of breathing oxygen. Thus, they operate at different times two enzyme systems: the electron transport chain with an oxygen acceptor in aerobic and restoration of nitrates under anaerobic conditions. Investigation of the emission of nitrous oxide by ordinary Chernozem steppe of the Central-Chernozem Region showed that it depends on the type of cenosis and the content of available forms of nitrogen. Natural ecosystems emit nitrous oxide more than the soil of arable land. The dependence of the emission of nitrous oxide from the humus content shows positive trend, but the aggregation of data, significant differences are not detected. Research shows that nitrous oxide emissions are seasonal. So the autumn season is characterized by nitrous oxide emissions than spring. Enzymatic processes are an important link in the biological cycle of elements and, consequently, participate in the process of decomposition of organic matter, nitrification and other processes. Analysis of the data on enzyme activity of ordinary Chernozem and the intensity of emission of N20 shows a clear relationship between

  15. Oxidative degradation and non-enzymatic browning due to the interaction between oxidised lipids and primary amine groups in different marine PL emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2012-01-01

    investigated through the measurement of secondary volatile compounds by solid-phase microextraction (SPME) and dynamic headspace (DHS) connected to gas chromatography (GC–MS). Non-enzymatic browning reactions were investigated through the measurement of Strecker derived volatiles, colour changes and pyrrole...

  16. Strategies to inhibit the lipid oxidation in the enzymatic synthesis of monoglycerides by glycerolysis of Babassu oil - doi: 10.4025/actascitechnol.v35i3.14187

    Directory of Open Access Journals (Sweden)

    Larissa Freitas

    2013-06-01

    Full Text Available Different strategies to avoid the lipid feedstock oxidation in the enzymatic synthesis of monoglycerides (MAG from glycerolysis of babassu oil were tested. The reactions were catalyzed by Burkholderia cepacia lipase immobilized on SiO2-PVA and the tests carried out in batchwise. The best strategy was tested in a continuous packed-bed reactor. Different antioxidants and emulsifiers were used, including: Buthyl-hydroxy-toluene (BHT, tocopherol, soy lecithin and Triton X-100. The influence of inert atmosphere (N2 on the MAG production was also investigated. Results were compared with those attaining in the control reaction. The best performance was obtained using N2 in the reaction medium, preventing the oxidation of babassu oil. MAG concentrations were 60 and 24% in batch and continuous mode, respectively. Among the tested antioxidant and emulsifying agents, only soy lecithin was found to be efficient but its application showed limit performance to be used in continuous runs.  

  17. Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line.

    Science.gov (United States)

    Senevirathne, Mahinda; Kim, Soo-Hyun; Jeon, You-Jin

    2010-06-01

    Blueberry was enzymatically hydrolyzed using selected commercial food grade carbohydrases (AMG, Celluclast, Termamyl, Ultraflo and Viscozyme) and proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to obtain water soluble compounds, and their protective effect was investigated against H(2)O(2)-induced damage in Chinese hamster lung fibroblast cell line (V79-4) via various published methods. Both AMG and Alcalase hydrolysates showed higher total phenolic content as well as higher cell viability and ROS scavenging activities, and hence, selected for further antioxidant assays. Both AMG and Alcalase hydrolysates also showed higher protective effects against lipid peroxidation, DNA damage and apoptotic body formation in a dose-dependent fashion. Thus, the results indicated that water soluble compounds obtained by enzymatic hydrolysis of blueberry possess good antioxidant activity against H(2)O(2)-induced cell damage in vitro.

  18. Enzymatic network for production of ether amines from alcohols

    NARCIS (Netherlands)

    Palacio, Cyntia M.; Crismaru, Gica Ciprian; Bartsch, Sebastian; Navickas, Vaidotas; Ditrich, Klaus; Breuer, Michael; Abu, Rohana; Woodley, John; Baldenius, Kai-Uwe; Wu, Bian; Janssen, Dick

    We constructed an enzymatic network composed of three different enzymes for the synthesis of valuable ether amines. The enzymatic reactions are interconnected to catalyze the oxidation and subsequent transamination of the substrate and to provide cofactor recycling. This allows production of the

  19. Elucidation of the regio- and chemoselectivity of enzymatic allylic oxidations with Pleurotus sapidus – conversion of selected spirocyclic terpenoids and computational analysis

    Directory of Open Access Journals (Sweden)

    Verena Weidmann

    2013-10-01

    Full Text Available Allylic oxidations of olefins to enones allow the efficient synthesis of value-added products from simple olefinic precursors like terpenes or terpenoids. Biocatalytic variants have a large potential for industrial applications, particularly in the pharmaceutical and food industry. Herein we report efficient biocatalytic allylic oxidations of spirocyclic terpenoids by a lyophilisate of the edible fungus Pleurotus sapidus. This ‘’mushroom catalysis’’ is operationally simple and allows the conversion of various unsaturated spirocyclic terpenoids. A number of new spirocyclic enones have thus been obtained with good regio- and chemoselectivity and chiral separation protocols for enantiomeric mixtures have been developed. The oxidations follow a radical mechanism and the regioselectivity of the reaction is mainly determined by bond-dissociation energies of the available allylic CH-bonds and steric accessibility of the oxidation site.

  20. Enzymatic approaches to rare sugar production.

    Science.gov (United States)

    Zhang, Wenli; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    Rare sugars have recently attracted much attention because of their potential applications in the food, nutraceutical, and pharmaceutical industries. A systematic strategy for enzymatic production of rare sugars, named Izumoring, was developed >10years ago. The strategy consists of aldose-ketose isomerization, ketose C-3 epimerization, and monosaccharide oxidation-reduction. Recent development of the Izumoring strategy is reviewed herein, especially the genetic approaches to the improvement of rare sugar-producing enzymes and the applications of target-oriented bioconversion. In addition, novel non-Izumoring enzymatic approaches are also summarized, including enzymatic condensation, phosphorylation-dephosphorylation cascade reaction, aldose epimerization, ulosonic acid decarboxylation, and biosynthesis of rare disaccharides. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The dipteran parasitoid Exorista bombycis induces pro- and anti-oxidative reactions in the silkworm Bombyx mori: Enzymatic and genetic analysis.

    Science.gov (United States)

    Makwana, Pooja; Pradeep, Appukuttan Nair R; Hungund, Shambhavi P; Ponnuvel, Kangayam M; Trivedy, Kanika

    2017-02-01

    Hymenopteran parasitoids inject various factors including polydnaviruses along with their eggs into their host insects that suppress host immunity reactions to the eggs and larvae. Less is known about the mechanisms evolved in dipteran parasitoids that suppress host immunity. Here we report that the dipteran, Exorista bombycis, parasitization leads to pro-oxidative reactions and activation of anti-oxidative enzymes in the silkworm Bombyx mori larva. We recorded increased activity of oxidase, superoxide dismutase, thioredoxin peroxidase, catalase, glutathione-S-transferase (GST), and peroxidases in the hemolymph plasma, hemocytes, and fat body collected from B. mori after E. bombycis parasitization. Microarray and qPCR showed differential expression of genes encoding pro- and anti-oxidant enzymes in the hemocytes. The significance of this work lies in increased understanding of dipteran parasitoid biology. © 2017 Wiley Periodicals, Inc.

  2. Phenolics as Mediators to Accelerate the Enzymatically Initialized Oxidation of Laccase-Mediator-Systems for the Production of Medium Density Fiberboards

    Directory of Open Access Journals (Sweden)

    Alexander Kirsch

    2016-07-01

    Full Text Available Crude oil as a non-renewable resource is creating new challenges in many industrial sectors. Unsteady costs of crude oil at present and expected increases in the future are due to its limited availability as a finite resource, and these costs negatively impact the industry for wood-based panels, which use petrochemical resins in binding agents. Furthermore, wood panels that are conventionally bonded using urea formaldehyde diffuse formaldehyde into the surrounding air. To achieve independence from petrochemical products and harmful formaldehyde emissions, alternatives for their substitution are in demand. An alternative approach is the enzymatic activation of lignin located on the surface of thermomechanical pulp (TMP fibers. The present study shows the results of internal bond strength (DIN EN 319 1993, modulus of rupture (DIN EN 310 1993, and thickness swelling (EN 317 2003 of medium-density fiberboards (MDF bonded with laccase-mediator-system (LMS. Caffeic acid (CA, 4-hydoxy benzoic acid (HBA, and vanillic alcohol (VAl were used as mediators. The physical and technological properties of MDF, such as internal bond strength, modulus of rupture, and thickness swelling, mostly fulfilled the European standards.

  3. Poly(ethylene oxide monomethyl ether)- block-poly(propylene succinate) Nanoparticles: Synthesis and Characterization, Enzymatic and Cellular Degradation, Micellar Solubilization of Paclitaxel, and in Vitro and in Vivo Evaluation.

    Science.gov (United States)

    Jäger, Alessandro; Jäger, Eliézer; Syrová, Zdeňka; Mazel, Tomas; Kováčik, Lubomír; Raška, Ivan; Höcherl, Anita; Kučka, Jan; Konefal, Rafal; Humajova, Jana; Poučková, Pavla; Štěpánek, Petr; Hrubý, Martin

    2018-04-11

    Polyester-based nanostructures are widely studied as drug-delivery systems due to their biocompatibility and biodegradability. They are already used in the clinic. In this work, we describe a new and simple biodegradable and biocompatible system as the Food and Drug Administration approved polyesters (poly-ε-caprolactone, polylactic acid, and poly(lactic- co-glycolic acid)) for the delivery of the anticancer drug paclitaxel (PTX) as a model drug. A hydrophobic polyester, poly(propylene succinate) (PPS), was prepared from a nontoxic alcohol (propylene glycol) and monomer from the Krebs's cycle (succinic acid) in two steps via esterification and melt polycondensation. Furthermore, their amphiphilic block copolyester, poly(ethylene oxide monomethyl ether)- block-poly(propylene succinate) (mPEO- b-PPS), was prepared by three steps via esterification followed by melt polycondensation and the addition of mPEO to the PPS macromolecules. Analysis of the in vitro cellular behavior of the prepared nanoparticle carriers (NPs) (enzymatic degradation, uptake, localization, and fluorescence resonance energy-transfer pair degradation studies) was performed by fluorescence studies. PTX was loaded to the NPs of variable sizes (30, 70, and 150 nm), and their in vitro release was evaluated in different cell models and compared with commercial PTX formulations. The mPEO- b-PPS copolymer analysis displays glass transition temperature hydrolysis during transport in bloodstream, and simultaneous enzymatic degradability after uptake into the cells. The detailed cytotoxicity in vitro and in vivo tumor efficacy studies have shown the superior efficacy of the NPs compared with PTX and PTX commercial formulations.

  4. Photoelectrochemical enzymatic biosensors.

    Science.gov (United States)

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-06-15

    Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Physico-chemical properties, oxidative stability and non-enzymatic browning in marine phospholipid emulsions and their use in food applications

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng

    Marine phospholipids (PL) contain a high level of eicosapentaenoic acids (EPA) and docosahexaenoic acids (DHA), which have documented beneficial effect on human health. In addition, marine PL are more advantageous than crude or refined fish oils. Marine PL are more resistant to oxidation, provide...... of current marine PL that was used for emulsion preparation and food application. In addition, the oxidative stability and sensory quality of marine PL fortified products varied depending on the quality and source of marine PL used for fortification. Although the attempts to incorporate marine PL into food...... better bioavailability and ability to form liposomes. All these unique properties of marine PL make them an attractive choice as ingredients for food fortification. Nowadays, a wide range of food products fortified with n-3 triglycerides (TAG) are available worldwide. However, the feasibility of using...

  6. Enzymatic recognition of DNA damage induced by UVB-photosensitized titanium dioxide and biological consequences in Saccharomyces cerevisiae: evidence for oxidatively DNA damage generation.

    Science.gov (United States)

    Pinto, A Viviana; Deodato, Elder L; Cardoso, Janine S; Oliveira, Eliza F; Machado, Sérgio L; Toma, Helena K; Leitão, Alvaro C; de Pádula, Marcelo

    2010-06-01

    Although titanium dioxide (TiO(2)) has been considered to be biologically inert, finding use in cosmetics, paints and food colorants, recent reports have demonstrated that when TiO(2) is attained by UVA radiation oxidative genotoxic and cytotoxic effects are observed in living cells. However, data concerning TiO(2)-UVB association is poor, even if UVB radiation represents a major environmental carcinogen. Herein, we investigated DNA damage, repair and mutagenesis induced by TiO(2) associated with UVB irradiation in vitro and in vivo using Saccharomyces cerevisiae model. It was found that TiO(2) plus UVB treatment in plasmid pUC18 generated, in addition to cyclobutane pyrimidine dimers (CPDs), specific damage to guanine residues, such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), which are characteristic oxidatively generated lesions. In vivo experiments showed that, although the presence of TiO(2) protects yeast cells from UVB cytotoxicity, high mutation frequencies are observed in the wild-type (WT) and in an ogg1 strain (deficient in 8-oxoG and FapyG repair). Indeed, after TiO(2) plus UVB treatment, induced mutagenesis was drastically enhanced in ogg1 cells, indicating that mutagenic DNA lesions are repaired by the Ogg1 protein. This effect could be attenuated by the presence of metallic ion chelators: neocuproine or dipyridyl, which partially block oxidatively generated damage occurring via Fenton reactions. Altogether, the results indicate that TiO(2) plus UVB potentates UVB oxidatively generated damage to DNA, possibly via Fenton reactions involving the production of DNA base damage, such as 8-oxo-7,8-dihydroguanine. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Enzymatic recognition of DNA damage induced by UVB-photosensitized titanium dioxide and biological consequences in Saccharomyces cerevisiae: Evidence for oxidatively DNA damage generation

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, A. Viviana, E-mail: alicia.pinto@incqs.fiocruz.br [Laboratorio de Diagnostico Molecular e Hematologia, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21941-540, Rio de Janeiro (Brazil); Laboratorio de Radiobiologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21949-900, Rio de Janeiro (Brazil); Deodato, Elder L. [Laboratorio de Diagnostico Molecular e Hematologia, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21941-540, Rio de Janeiro (Brazil); Laboratorio de Radiobiologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21949-900, Rio de Janeiro (Brazil); Cardoso, Janine S. [Laboratorio de Radiobiologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21949-900, Rio de Janeiro (Brazil); Oliveira, Eliza F.; Machado, Sergio L.; Toma, Helena K. [Laboratorio de Diagnostico Molecular e Hematologia, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21941-540, Rio de Janeiro (Brazil); Leitao, Alvaro C. [Laboratorio de Radiobiologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21949-900, Rio de Janeiro (Brazil); Padula, Marcelo de [Laboratorio de Diagnostico Molecular e Hematologia, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21941-540, Rio de Janeiro (Brazil)

    2010-06-01

    Although titanium dioxide (TiO{sub 2}) has been considered to be biologically inert, finding use in cosmetics, paints and food colorants, recent reports have demonstrated that when TiO{sub 2} is attained by UVA radiation oxidative genotoxic and cytotoxic effects are observed in living cells. However, data concerning TiO{sub 2}-UVB association is poor, even if UVB radiation represents a major environmental carcinogen. Herein, we investigated DNA damage, repair and mutagenesis induced by TiO{sub 2} associated with UVB irradiation in vitro and in vivo using Saccharomyces cerevisiae model. It was found that TiO{sub 2} plus UVB treatment in plasmid pUC18 generated, in addition to cyclobutane pyrimidine dimers (CPDs), specific damage to guanine residues, such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), which are characteristic oxidatively generated lesions. In vivo experiments showed that, although the presence of TiO{sub 2} protects yeast cells from UVB cytotoxicity, high mutation frequencies are observed in the wild-type (WT) and in an ogg1 strain (deficient in 8-oxoG and FapyG repair). Indeed, after TiO{sub 2} plus UVB treatment, induced mutagenesis was drastically enhanced in ogg1 cells, indicating that mutagenic DNA lesions are repaired by the Ogg1 protein. This effect could be attenuated by the presence of metallic ion chelators: neocuproine or dipyridyl, which partially block oxidatively generated damage occurring via Fenton reactions. Altogether, the results indicate that TiO{sub 2} plus UVB potentates UVB oxidatively generated damage to DNA, possibly via Fenton reactions involving the production of DNA base damage, such as 8-oxo-7,8-dihydroguanine.

  8. Enzymatic recognition of DNA damage induced by UVB-photosensitized titanium dioxide and biological consequences in Saccharomyces cerevisiae: Evidence for oxidatively DNA damage generation

    International Nuclear Information System (INIS)

    Pinto, A. Viviana; Deodato, Elder L.; Cardoso, Janine S.; Oliveira, Eliza F.; Machado, Sergio L.; Toma, Helena K.; Leitao, Alvaro C.; Padula, Marcelo de

    2010-01-01

    Although titanium dioxide (TiO 2 ) has been considered to be biologically inert, finding use in cosmetics, paints and food colorants, recent reports have demonstrated that when TiO 2 is attained by UVA radiation oxidative genotoxic and cytotoxic effects are observed in living cells. However, data concerning TiO 2 -UVB association is poor, even if UVB radiation represents a major environmental carcinogen. Herein, we investigated DNA damage, repair and mutagenesis induced by TiO 2 associated with UVB irradiation in vitro and in vivo using Saccharomyces cerevisiae model. It was found that TiO 2 plus UVB treatment in plasmid pUC18 generated, in addition to cyclobutane pyrimidine dimers (CPDs), specific damage to guanine residues, such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), which are characteristic oxidatively generated lesions. In vivo experiments showed that, although the presence of TiO 2 protects yeast cells from UVB cytotoxicity, high mutation frequencies are observed in the wild-type (WT) and in an ogg1 strain (deficient in 8-oxoG and FapyG repair). Indeed, after TiO 2 plus UVB treatment, induced mutagenesis was drastically enhanced in ogg1 cells, indicating that mutagenic DNA lesions are repaired by the Ogg1 protein. This effect could be attenuated by the presence of metallic ion chelators: neocuproine or dipyridyl, which partially block oxidatively generated damage occurring via Fenton reactions. Altogether, the results indicate that TiO 2 plus UVB potentates UVB oxidatively generated damage to DNA, possibly via Fenton reactions involving the production of DNA base damage, such as 8-oxo-7,8-dihydroguanine.

  9. A novel non-enzymatic H{sub 2}O{sub 2} sensor based on polypyrrole nanofibers–silver nanoparticles decorated reduced graphene oxide nano composites

    Energy Technology Data Exchange (ETDEWEB)

    Moozarm Nia, Pooria, E-mail: pooriamn@yahoo.com; Lorestani, Farnaz, E-mail: farnaz.lorestani@siswa.um.edu.my; Meng, Woi Pei, E-mail: pmwoi@um.edu.my; Alias, Y., E-mail: yatimah70@um.edu.my

    2015-03-30

    Graphical abstract: - Highlights: • Decorating silver nanoparticles on the surface of graphene oxide nanocomposites. • Using and comparing two different electrochemical methods for reducing graphene oxide. • Investigating the effect of cyclic voltammetry and amperometry on electropolymerization of polypyrrole nanofibers. • The senor shows superior performances (LOD, LOQ, selectivity, repeatability, reproducibility and stability) towards H{sub 2}O{sub 2}. - Abstract: Graphene oxide (GO) decorated with silver nanoparticles (AgNPs), was electrochemically reduced on glassy carbon electrode (GCE) by an amperometry method (AMP-AgNPs-rGO/GCE). Then, Pyrrole was electropolymerized on the surface of the modified electrode through amperometry process in order to obtain nanofibers of polypyrrole (AMP-PpyNFs-AgNPs-rGO). Fourier-transform infrared transmission spectroscopy and X-ray diffraction approved that during the amperometry process, the GO and Ppy nanofibers were reduced and polymerized respectively and the silver nanoparticles were formed. Field emission scanning electron microscope images indicated that the silver nanoparticles were homogeneously distributed on the rGO surface with a narrow nano size distribution and polypyrrole synthesized in the form of nanofibers with diameter around 100 nm. The first linear section was in the range of 0.1–5 mM with a limit of detection of 1.099 and the second linear section raised to 90 mM with a correlation factor of 0.085 (S/N of 3)

  10. A novel non-enzymatic H2O2 sensor based on polypyrrole nanofibers–silver nanoparticles decorated reduced graphene oxide nano composites

    International Nuclear Information System (INIS)

    Moozarm Nia, Pooria; Lorestani, Farnaz; Meng, Woi Pei; Alias, Y.

    2015-01-01

    Graphical abstract: - Highlights: • Decorating silver nanoparticles on the surface of graphene oxide nanocomposites. • Using and comparing two different electrochemical methods for reducing graphene oxide. • Investigating the effect of cyclic voltammetry and amperometry on electropolymerization of polypyrrole nanofibers. • The senor shows superior performances (LOD, LOQ, selectivity, repeatability, reproducibility and stability) towards H 2 O 2 . - Abstract: Graphene oxide (GO) decorated with silver nanoparticles (AgNPs), was electrochemically reduced on glassy carbon electrode (GCE) by an amperometry method (AMP-AgNPs-rGO/GCE). Then, Pyrrole was electropolymerized on the surface of the modified electrode through amperometry process in order to obtain nanofibers of polypyrrole (AMP-PpyNFs-AgNPs-rGO). Fourier-transform infrared transmission spectroscopy and X-ray diffraction approved that during the amperometry process, the GO and Ppy nanofibers were reduced and polymerized respectively and the silver nanoparticles were formed. Field emission scanning electron microscope images indicated that the silver nanoparticles were homogeneously distributed on the rGO surface with a narrow nano size distribution and polypyrrole synthesized in the form of nanofibers with diameter around 100 nm. The first linear section was in the range of 0.1–5 mM with a limit of detection of 1.099 and the second linear section raised to 90 mM with a correlation factor of 0.085 (S/N of 3)

  11. An in vitro evaluation of anti-aging effect of guluronic acid (G2013) based on enzymatic oxidative stress gene expression using healthy individuals PBMCs.

    Science.gov (United States)

    Taeb, Mahsa; Mortazavi-Jahromi, Seyed Shahabeddin; Jafarzadeh, Abdollah; Mirzaei, Mohammad Reza; Mirshafiey, Abbas

    2017-06-01

    Aging is usually associated with increased levels of oxidants, and may result in damages caused by oxidative stress. There is a direct relationship between aging and increased incidence of inflammatory diseases. The present research intended to study the anti-aging and anti-inflammatory effects of the drug G2013 (guluronic acid) at low and high doses on the genes expression of a number of enzymes involved in oxidative stress (including SOD2, GPX1, CAT, GST, iNOS, and MPO) in peripheral blood mononuclear cells (PBMCs) of healthy individuals under in vitro conditions. Venous blood samples were taken from 20 healthy individuals, the PBMCs were isolated and their RNAs extracted and their cDNAs were synthesized, and the genes expression levels were measured using the qRT-PCR technique. Our results indicated that this drug could, at both low and high doses, significantly reduce the expression of the genes for SOD2, GPX1, CAT, and GST compared to the LPS group (phealthy gene expression, and possibly it might reduce the pathological process of aging and age-related inflammatory diseases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. PhnY and PhnZ comprise a new oxidative pathway for enzymatic cleavage of a carbon-phosphorus bond

    DEFF Research Database (Denmark)

    McSorley, Fern R.; Wyatt, Peter W.; Martinez, Ascuncion

    2012-01-01

    The sequential activities of PhnY, an α-ketoglutarate/Fe(II)-dependent dioxygenase, and PhnZ, a Fe(II)-dependent enzyme of the histidine-aspartate motif hydrolase family, cleave the carbon-phosphorus bond of the organophosphonate natural product 2-aminoethylphosphonic acid. PhnY adds a hydroxyl...... group to the α-carbon, yielding 2-amino-1-hydroxyethylphosphonic acid, which is oxidatively converted by PhnZ to inorganic phosphate and glycine. The PhnZ reaction represents a new enzyme mechanism for metabolic cleavage of a carbon-phosphorus bond....

  13. Enzymatic synthesis of vanillin

    NARCIS (Netherlands)

    van den Heuvel, RHH; Fraaije, MW; Laane, C; van Berkel, WJH; Heuvel, Robert H.H. van den; Berkel, Willem J.H. van

    Due to increasing interest in natural vanillin, two enzymatic routes for the synthesis of vanillin were developed. The flavoprotein vanillyl alcohol oxidase (VAO) acts on a wide range of phenolic compounds and converts both creosol and vanillylamine to vanillin with high yield. The VAO-mediated

  14. Enzymatic synthesis of vanillin

    NARCIS (Netherlands)

    Heuvel, van den R.H.H.; Fraaije, M.W.; Laane, C.; Berkel, van W.J.H.

    2001-01-01

    Due to increasing interest in natural vanillin, two enzymatic routes for the synthesis of vanillin were developed. The flavoprotein vanillyl alcohol oxidase (VAO) acts on a wide range of phenolic compounds and converts both creosol and vanillylamine to vanillin with high yield. The VAO-mediated

  15. Oxidative stress and enzymatic scavenging of superoxide radicals induced by solar UV-B radiation in Ulva canopies from southern Spain

    Directory of Open Access Journals (Sweden)

    Kai Bischof

    2003-09-01

    Full Text Available The generation of reactive oxygen species (ROS and scavenging of the superoxide radical by superoxide dismutase (SOD was studied in mat-like canopies of the green macroalga Ulva rotundata Bliding in a tidal brine pond system in southern Spain. Artificial canopies were covered with different cut-off filters, generating different radiation conditions. ROS and SOD were assessed after three days of exposure. ROS induced lipid peroxidation depended on the position of individual thalli within the canopy and on radiation conditions. Samples exposed to the full solar spectrum were most affected, whereas samples either exposed to photosynthetically active radiation (PAR alone or UV radiation without PAR exhibited fewer peroxidation products. The activity of SOD appeared to be controlled by the impinging UV-A and UV-B radiation and also increased in response to oxidative stress. The results provide evidence for additive effects of high PAR and UV-B under field conditions and support the previously proposed hypothesis that UV-B effects are mediated by an inhibition of the xanthophyll cycle, which increases ROS production and, consequently, causes oxidative damage to components of the photosynthetic machinery, such as proteins and pigments.

  16. Determination of the oxidizing capacity of manganese ores.

    Science.gov (United States)

    Prasad, R

    1974-09-01

    An accurate method is described for determining the amount of active oxygen in manganese ores, based on the oxidation-reduction reaction between the ore and arsenic(III) in presence of ammonium molybdate, followed by the back-titration of excess of arsenic(III) with cerium(IV), using osmium tetroxide as catalyst and Disulphine Blue V as indicator. A survey has been made of the applicability of this method to various pyrolusite ores containing less than 0.2% phosphorus. Aluminium(III), copper(II), iron(III), manganese(II), and molybdenum(VI) do not interfere. Up to 30% phosphorus(V) causes no interference.

  17. Enzymatic sensing of glucose in artificial saliva using a flat electrode consisting of a nanocomposite prepared from reduced graphene oxide, chitosan, nafion and glucose oxidase

    International Nuclear Information System (INIS)

    Rabti, Amal; Argoubi, Wicem; Raouafi, Noureddine

    2016-01-01

    We report on the preparation of a nanoporous flat electrode by drop casting a nanocomposite consisting of reduced graphene oxide (rGO) and chitosan onto a polyester substrate. An underlying conductive surface is not required. The nanocomposite was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. The 3D network of the composite was used as a scaffold for the immobilization of glucose oxidase (GOx). A well-defined signal related to direct GOx electrochemistry was registered and used to monitor levels of glucose. The resulting biosensor displays a linear response to glucose with a detection limit of 5 μM (at an S/N ratio of 3) and a sensitivity of 41.7 μA⋅mM"−"1∙cm"−"2. The sensor was applied to the determination of glucose in artificial saliva. (author)

  18. Using aquatic fungi for pharmaceutical bioremediation: Uptake of acetaminophen by Mucor hiemalis does not result in an enzymatic oxidative stress response.

    Science.gov (United States)

    Esterhuizen-Londt, Maranda; Schwartz, Katrin; Pflugmacher, Stephan

    2016-10-01

    The increasing anthropogenic pollution of aquatic environments and fresh water scarcity worldwide have prompted the development of low-cost and effective water treatment alternatives. One example of a highly released anthropogenic xenobiotics is acetaminophen (APAP), which has been detected in surface waters at concentrations as high as 5 μg L(-1). To date, traditional water treatment plants were unable to remove all pharmaceutical xenobiotics and as in the case with APAP, the breakdown products are toxic. Phytoremediation has proved to remove xenobiotics efficiently producing no toxic breakdown products, however, they are often restrained in their application range. Therefore, it was necessary to find alternate remediation tools to extend and complement the application ranges of existing bioremediation techniques. With the success of mycoremediation as well as the adaptability of fungi, Mucor hiemalis was investigated in terms of its APAP uptake capabilities. The investigation included the examination of concentration- and time-dependent uptake studies to examine the effects of each of these parameters independently. Additionally, the extracellular peroxidase activity of M. hiemalis was measured with exposure to APAP to evaluate possible breakdown and the antioxidative stress enzymes, catalase, glutathione peroxidase, and glutathione reductase, were assayed to investigate whether APAP caused oxidative stress. The results showed that M. hiemalis was able to internalize between 1 and 2 μg APAP per g dried fungal biomass when exposed to 5, 10, 50 and 100 ng mL(-1) APAP for 24-48 h, but not beyond this time frame. Further, exposure to APAP did not result in elevated extracellular peroxidase activity or oxidative stress. The findings led to the conclusion that M. hiemalis could be integrated in bioremediation systems, for short-term degradation at low concentrations of APAP with effective management. Copyright © 2016 British Mycological Society. Published by

  19. A novel non-enzymatic H2O2 sensor based on polypyrrole nanofibers-silver nanoparticles decorated reduced graphene oxide nano composites

    Science.gov (United States)

    Moozarm Nia, Pooria; Lorestani, Farnaz; Meng, Woi Pei; Alias, Y.

    2015-03-01

    Graphene oxide (GO) decorated with silver nanoparticles (AgNPs), was electrochemically reduced on glassy carbon electrode (GCE) by an amperometry method (AMP-AgNPs-rGO/GCE). Then, Pyrrole was electropolymerized on the surface of the modified electrode through amperometry process in order to obtain nanofibers of polypyrrole (AMP-PpyNFs-AgNPs-rGO). Fourier-transform infrared transmission spectroscopy and X-ray diffraction approved that during the amperometry process, the GO and Ppy nanofibers were reduced and polymerized respectively and the silver nanoparticles were formed. Field emission scanning electron microscope images indicated that the silver nanoparticles were homogeneously distributed on the rGO surface with a narrow nano size distribution and polypyrrole synthesized in the form of nanofibers with diameter around 100 nm. The first linear section was in the range of 0.1-5 mM with a limit of detection of 1.099 and the second linear section raised to 90 mM with a correlation factor of 0.085 (S/N of 3)

  20. A graphene oxide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of botulinum neurotoxin A (BoNT/A) enzymatic activity.

    Science.gov (United States)

    Shi, Jingyu; Guo, Jiubiao; Bai, Gongxun; Chan, Chunyu; Liu, Xuan; Ye, Weiwei; Hao, Jianhua; Chen, Sheng; Yang, Mo

    2015-03-15

    Botulinum neurotoxins (BoNTs) are among the most potent toxic bacterial proteins for humans, which make them potential agents for bioterrorism. Therefore, an ultrasensitive detection of BoNTs and their active states is in great need as field-deployable systems for anti-terrorism applications. We report the construction of a novel graphene oxide (GO)-peptide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of the BoNT serotype A light chain (BoNT-LcA) protease activity. A green fluorescence protein (GFP) modified SNAP-25 peptide substrate (SNAP-25-GFP) was optimally designed and synthesized with the centralized recognition/cleavage sites. This FRET platform was constructed by covalent immobilization of peptide substrate on GO with BSA passivation which have advantages of low non-specific adsorption and high stability in protein abundant solution. BoNT-LcA can specifically cleave SNAP-25-GFP substrate covalently immobilized on GO to release the fragment with GFP. Based on fluorescence signal recovery measurement, the target BoNT-LcA was detected sensitively and selectively with the linear detection range from 1fg/mL to 1pg/mL. The limit of detection (LOD) for BoNT-LcA is around 1fg/mL. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Enzymatic Synthesis of Psilocybin.

    Science.gov (United States)

    Fricke, Janis; Blei, Felix; Hoffmeister, Dirk

    2017-09-25

    Psilocybin is the psychotropic tryptamine-derived natural product of Psilocybe carpophores, the so-called "magic mushrooms". Although its structure has been known for 60 years, the enzymatic basis of its biosynthesis has remained obscure. We characterized four psilocybin biosynthesis enzymes, namely i) PsiD, which represents a new class of fungal l-tryptophan decarboxylases, ii) PsiK, which catalyzes the phosphotransfer step, iii) the methyltransferase PsiM, catalyzing iterative N-methyl transfer as the terminal biosynthetic step, and iv) PsiH, a monooxygenase. In a combined PsiD/PsiK/PsiM reaction, psilocybin was synthesized enzymatically in a step-economic route from 4-hydroxy-l-tryptophan. Given the renewed pharmaceutical interest in psilocybin, our results may lay the foundation for its biotechnological production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Bioelectrocatalytic NAD+/NADH inter-conversion: transformation of an enzymatic fuel cell into an enzymatic redox flow battery.

    Science.gov (United States)

    Quah, Timothy; Milton, Ross D; Abdellaoui, Sofiene; Minteer, Shelley D

    2017-07-25

    Diaphorase and a benzylpropylviologen redox polymer were combined to create a bioelectrode that can both oxidize NADH and reduce NAD + . We demonstrate how bioelectrocatalytic NAD + /NADH inter-conversion can transform a glucose/O 2 enzymatic fuel cell (EFC) with an open circuit potential (OCP) of 1.1 V into an enzymatic redox flow battery (ERFB), which can be rapidly recharged by operation as an EFC.

  3. A glassy carbon electrode modified with a composite consisting of reduced graphene oxide, zinc oxide and silver nanoparticles in a chitosan matrix for studying the direct electron transfer of glucose oxidase and for enzymatic sensing of glucose

    International Nuclear Information System (INIS)

    Li, Zhenjiang; Sheng, Liying; Xie, Cuicui; Meng, Alan; Zhao, Kun

    2016-01-01

    The authors describe the fabrication of a nanocomposite consisting of reduced graphene oxide, zinc oxide and silver nanoparticles by microwave-assisted synthesis. The composite was further reduced in-situ with hydrazine hydrate and then placed, along with the enzyme glucose oxidase, on a glassy carbon electrode. The synergistic effect of the materials employed in the nanocomposite result in excellent electrocatalytic activity. The Michaelis-Menten constant of the adsorbed GOx is 0.25 mM, implying a remarkable affinity of the GOx for glucose. The amperometric response of the modified GCE is linearly proportional to the concentration of glucose in 0.1 to 12.0 mM concentration range, and the detection limit is 10.6 µM. The biosensor is highly selective, well reproducible and stable. (author)

  4. Enzymatic Modification of Sphingomyelin

    DEFF Research Database (Denmark)

    Due to its major role in maintaining the water-retaining properties of the epidermis, ceramide is of great commercial potential in cosmetic and pharmaceuticals such as hair and skin care products. Currently, chemical synthesis of ceramide is a costly process, and developments of alternative cost......-efficient, high yield production methods are of great interest. In the present study, the potential of producing ceramide through the enzymatic hydrolysis of sphingomyelin have been studied. sphingomyelin is a ubiquitous membrane-lipid and rich in dairy products or by-products. It has been verified...... that sphingomyelin modification gives a feasible approach to the potential production of ceramide. The reaction system has been improved through system evaluation and the optimization of several important factors, and phospholipase C from Clostridium perfringens shows higher activity towards the hydrolysis reaction...

  5. Enzymatic modification of starch

    DEFF Research Database (Denmark)

    Jensen, Susanne Langgård

    In the food industry approaches for using bioengineering are investigated as alternatives to conventional chemical and physical starch modification techniques in development of starches with specific properties. Enzyme-assisted post-harvest modification is an interesting approach to this, since...... it is considered a clean and energy saving technology. This thesis aimed to investigate the effect of using reaction conditions, simulating an industrial process, for enzymatic treatment of starch with branching enzyme (BE) from Rhodothermus obamensis. Thus treatements were conducted at 70°C using very high...... substrate concentration (30-40% dry matter (DM)) and high enzyme activity (750-2250 BE units (BEU)/g sample). Starches from various botanical sources, representing a broad range of properties, were used as substrates. The effects of the used conditions on the BE-reaction were evaluated by characterization...

  6. Manganese(II chelates of bioinorganic and medicinal relevance: Synthesis, characterization, antibacterial activity and 3D-molecular modeling of some penta-coordinated manganese(II chelates in O,N-donor coordination matrix of β-diketoenolates and picolinate

    Directory of Open Access Journals (Sweden)

    R.C. Maurya

    2016-09-01

    Full Text Available Four new mixed-ligand complexes of manganese(II of the composition [Mn(pa(L(H2O], where paH = picolinic acid and LH = acetoacetanilide (aaH, o-acetoacetanisidide (o-aansH, o-acetoacetotoluidide (o-aatdH or ethylacetoacetate (eacacH, have been synthesized by the interaction of MnCl2·4H2O with the said ligands in aqueous-ethanol medium. The complexes so obtained have been characterized on the basis of elemental analyses, molar conductance and magnetic measurements, thermogravimetric analyses, mass, EPR, infrared and electronic spectral studies. Synthesized complexes have shown significantly greater antibacterial activity against Escherichia coli and Vibrio cholera than ligands. The 3D-molecular modeling and analysis for bond lengths and bond angles have also been carried out for one of the representative compound [Mn(pa(aa(H2O] (1 to substantiate the proposed structures.

  7. Exchange interactions in a dinuclear manganese (II) complex with cyanopyridine-N-oxide bridging ligands

    Energy Technology Data Exchange (ETDEWEB)

    Markosyan, A.S. [Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Department of Applied Physics, Stanford University (United States); Gaidukova, I.Yu.; Ruchkin, A.V. [Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Anokhin, A.O. [Institute of Metal Physics, Ural Division of the Russian, Ekaterinburg (Russian Federation); Irkhin, V.Yu., E-mail: valentin.irkhin@imp.uran.ru [Institute of Metal Physics, Ural Division of the Russian, Ekaterinburg (Russian Federation); Ryazanov, M.V.; Kuz’mina, N.P. [Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Nikiforov, V.N. [Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation)

    2014-01-01

    The magnetic properties of dinuclear manganese(II) complex [Mn(hfa){sub 2}cpo]{sub 2} (where hfa is hexafluoroacetylacetonate anion and cpo is 4-cyanopyridine-N-oxide) are presented. The non-monotonous dependence of magnetic susceptibility is explained in terms of the hierarchy of exchange parameters by using exact diagonalization. The thermodynamic behavior of pure cpo and [Mn(hfa){sub 2}(cpo)]{sub 2} is simulated numerically by an extrapolation to spin S=5/2. The Mn–Mn exchange integral is evaluated.

  8. Graphene paper based bioelectrodes for enzymatic biofuel cells

    DEFF Research Database (Denmark)

    Werchmeister, Rebecka Maria Larsen; Shen, Fei; Zhang, Jingdong

    We aim at developing bioelectrodes for enzymatic biofuel cells, where sustainable and renewable enzymes are used for catalyzing the oxidation and reduction of fuel molecules. Here glucose is chosen as fuel molecule and glucose oxidase (GOx) is target enzyme which catalyzes the oxidation of glucose...... of glucose. This indicates that the enzyme has been successfully immobilized and is actively consuming glucose while transferring electrons to the graphene paper-GOx bioanode. Stability and efficiency of the bioelectrodes are under investigation....

  9. Pretreatment of sugarcane bagasse using the advanced oxidation process by electron beam for enzymatic hydrolysis of cellulose; Pre-tratamento do bagaco de cana utilizando o processo de oxidacao avancada por feixe de eletrons para hidrolise enzimatica da celulose

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Marcia Almeida

    2013-07-01

    The sugar cane bagasse is a renewable energy source and a raw material promise in the biofuel production, once represents about 30% of glucose contained in the plant with the potential to be hydrolyzed and then converted to ethanol. The bagasse is composed of cellulose, straight chain of glucose, of hemicellulose, an amorphous polymer consisting of xylose, arabinose, galactose, and mannose, and of lignin, a complex polymer consisting of fenilpropan units that acts as waterproof coating on the fibers, which is hard to remove due its recalcitrant nature. The aim of this work was to study the electron beam processing as a pretreatment of sugarcane bagasse to enzymatic hydrolysis of cellulose. The pretreatment of sugarcane bagasse is one of the most important steps to make this material economically viable and competitive on the energy production. As a pretreatment the electron beam processing can weak the hemicellulose and lignin structures by the action highly reactive radicals that breaks the links, reducing the degree of polymerization fibers. It was evaluated the chemical and structural modifications on fibers caused by the irradiation, the enzymatic hydrolysis of electron beam as the only pretreatment and combined to steam explosion. For enzymatic hydrolysis it was used the commercial enzymes from Novozymes. The radiation processing promotes changes in structure and composition of sugarcane bagasse, increasing the solubility, that is related to hemicellulose and cellulose cleavage, and also increasing the enzymatic conversion yield. In the case of exploded bagasse there is no changes in the enzymatic hydrolysis yield, however the electron beam processing promoted a 67% reduction of furfural, that is formed in the steam explosion process. (author)

  10. Electrochemical non-enzymatic glucose sensors

    International Nuclear Information System (INIS)

    Park, Sejin; Boo, Hankil; Chung, Taek Dong

    2006-01-01

    The electrochemical determination of glucose concentration without using enzyme is one of the dreams that many researchers have been trying to make come true. As new materials have been reported and more knowledge on detailed mechanism of glucose oxidation has been unveiled, the non-enzymatic glucose sensor keeps coming closer to practical applications. Recent reports strongly imply that this progress will be accelerated in 'nanoera'. This article reviews the history of unraveling the mechanism of direct electrochemical oxidation of glucose and making attempts to develop successful electrochemical glucose sensors. The electrochemical oxidation of glucose molecules involves complex processes of adsorption, electron transfer, and subsequent chemical rearrangement, which are combined with the surface reactions on the metal surfaces. The information about the direct oxidation of glucose on solid-state surfaces as well as new electrode materials will lead us to possible breakthroughs in designing the enzymeless glucose sensing devices that realize innovative and powerful detection. An example of those is to introduce nanoporous platinum as an electrode, on which glucose is oxidized electrochemically with remarkable sensitivity and selectivity. Better model of such glucose sensors is sought by summarizing and revisiting the previous reports on the electrochemistry of glucose itself and new electrode materials

  11. Adhesion improvement of lignocellulosic products by enzymatic pre-treatment.

    Science.gov (United States)

    Widsten, Petri; Kandelbauer, Andreas

    2008-01-01

    Enzymatic bonding methods, based on laccase or peroxidase enzymes, for lignocellulosic products such as medium-density fiberboard and particleboard are discussed with reference to the increasing costs of presently used petroleum-based adhesives and the health concerns associated with formaldehyde emissions from current composite products. One approach is to improve the self-bonding properties of the particles by oxidation of their surface lignin before they are fabricated into boards. Another method involves using enzymatically pre-treated lignins as adhesives for boards and laminates. The application of this technology to achieve wet strength characteristics in paper is also reviewed.

  12. Characterizing Enzymatic Deposition for Microelectrode Neurotransmitter Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hosein, W. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yorita, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tolosa, V. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-12

    The enzyme immobilization process, one step in creating an enzymatic biosensor, was characterized and analyzed as a function of its physical properties. The neural glutamic biosensor is a flexible device, effectively minimizing trauma to the area of implantation. The Multielectrode Array (MEA) is composed primarily of a proprietary polymer which has been successfully implanted into human subjects in recent years. This polymer allows the device the pliability that other devices normally lack, though this poses some challenges to implantation. The electrodes are made of Platinum (Pt), and can range in number from eight to thirty two electrodes per device. These electrodes are electroplated with a semipermeable polymer layer to improve selectivity of the electrode to the neurotransmitter of interest, in this case glutamate. A signal is created from the interaction of glutamate in the brain with the glutamate oxidase (GluOx) which is immobilized on the surface of the electrode by using crosslinking chemistry in conjunction with glutaraldehyde and Bovine Serum Albumin (BSA). The glutamate is oxidized by glutamate oxidase, producing α-ketoglutarate and hydrogen peroxide (H2O2) as a by-product. The production of H2O2 is crucial for detection of the presence of the glutamate within the enzymatic coating, as it diffuses through the enzyme layer and oxidizes at the surface of the electrode. This oxidation is detectable by measurable change in the current using amperometry. Hence, the MEA allows for in vivo monitoring of neurotransmitter activity in real time. The sensitivity of the sensor to these neurotransmitters is dependent on the thickness of the layer, which is investigated in these experiments in order to optimize the efficacy of the device to detecting the substrate, once implanted.

  13. Enzymatic Browning: a practical class

    Directory of Open Access Journals (Sweden)

    Maria Teresa Pedrosa Silva Clerici

    2014-10-01

    Full Text Available This paper presents a practical class about the enzymes polyphenol oxidases, which have been shown to be responsible for the enzymatic browning of fruits and vegetables. Vegetables samples were submitted to enzymatic inactivation process with chemical reagents, as well as by bleaching methods of applying heat by conventional oven and microwave oven. Process efficiency was assessed qualitatively by both observing the guaiacol peroxidase activity and after the storage period under refrigeration or freezing. The practical results obtained in this class allow exploring multidisciplinary knowledge in food science, with practical applications in everyday life.

  14. Rapid enzymatic analysis of plasma for tyrosine.

    Science.gov (United States)

    Shimizu, H; Taniguchi, K; Sugiyama, M; Kanno, T

    1990-01-01

    In this rapid, simple, and convenient enzymatic method for measurement of tyrosine in plasma, tyrosine is converted to tyramine by action of tyrosine decarboxylase (EC 4.1.1.25) and the tyramine produced is oxidized to p-hydroxybenzyl aldehyde and hydrogen peroxide by action of tyramine oxidase (EC 1.4.3.9). The hydrogen peroxide is reacted with 4-aminoantipyrine and N-ethyl-N-(2-hydroxy-3-sulfopropyl)-m-toluidine in the presence of peroxidase (EC 1.11.1.7) to obtain quinoneimine dye, the absorbance of which is measured at 570 nm. Thus tyrosine is measured in the visible range. The CV was 4.6% or less, and the measurement was unaffected by other amino acids, except for phenylalanine. The values obtained (y) correlated well with those obtained with an amino acid analyzer (x): y = 0.902x + 3.92 mumol/L (Syx = 12.3; r = 0.985; n = 54).

  15. PRELIMINARY HIGH PERFORMANCE CAPILLARY ELECTROPHORESIS (HPCE) STUDIES OF ENZYMATIC DEGRADATION OF HYALURONIC ACID BY HYALURONIDASE IN THE PRESENCE OF POLYVALENT METAL IONS.

    Science.gov (United States)

    Urbaniak, Bartosz; Plewa, Szymon; Kokot, Zenon Jozef

    2017-01-01

    The aim of this study was, at first, to examine the influence of metal ions on digestion process of hyaluronic acid by hyaluronidase (HAse) using high performance capillary electrophoresis (HPCE) method. The influence of copper(H), zinc(Il), manganese(II) ions on enzymatic degradation of HA by hyaluronidase enzyme (HA-se) were investigated. Secondly, the kinetic parameters, V(max), K(m), k(cat), and k (cat),/K(m) were determined to estimate the impact of these metal ions (Me) on digestion process of hyaluronic acid (HA). The two different HA-Me mole ratios were analyzed. The examined data were always compared to the digestion process of pure HA solution by hyaluronidase, to exhibit the differences in the digestion process of pure hyaluronan as well as the hyaluronan in the presence of metal ions. It was observed that all of the investigated metal ions have influenced the hyaluronic acid degradation process. The most important conclusion was a decrease of the kinetic parameters both K,, and V,. In the result, it can be assumed that in all of the studied samples with metal ions addition, the uncompetitive mechanism of enzyme inhibition occurred. The results of this study may give new insight into foregoing knowledge about hyaluronic acid behavior. Due to the fact that our study was carried out only for three different metal ions in two concentrations, it is necessary to continue further research comprising wider range of metal ions and their concentrations.

  16. ENZYMATIC AND NON-ENZYMATIC ANTIOXIDANT DEFENSE WITH ALZHEIMER DISEASE1

    Directory of Open Access Journals (Sweden)

    A. Vaisi-Raygani

    2007-07-01

    Full Text Available The etiopathogenesis of Alzheimer's disease (AD is still unclear.  However, long-term oxidative stress is believed to be one of the major contributing factors in progression of neuronal degeneration and decline of cognitive function in AD. In order to assess the presence of oxidative stress in AD, we examined the enzymatic activities of the erythrocyte Cu-Zn superoxide dismutase (Cu-Zn SOD, glutathione peroxidase (GSH-Px, catalase (CAT, and plasma level of total antioxidant status (TAS in AD and control groups (age and sex-matched. The results showed that the Cu-Zn SOD activity was significantly higher and the level of GSH-Px and TAS activities were significantly lower in AD subjects than that in the control group (2111 ± 324 U/grHb, 43.7 ± 11.6 U/grHb, and 1.17 ± 0.23 mmol/l compared with 1371 ± 211 U/grHb; t= -2.17, P = 0.036, 56.3 ± 9.5 U/grHb; t=3.8, P = 0.014, and 1.54±0.2 mmol/l; t=11.18, P < 0.001, respectively.  While, the erythrocyte CAT activity was lower in AD subjects compared to the control group, the difference was not statistically significant (t = 1.3, P = 0.15. These findings support the idea that the oxidative stress plays an important role in the pathogenesis underlying AD neurodegeneration. In addition, the enzymatic activity of the erythrocyte Cu-Zn SOD and GSH-Px and the plasma level of TAS can be used as a measure of the oxidative stress and a marker for pathological changes in the brain of patients with AD. 

  17. ASSOCIATION BETWEEN ENZYMATIC AND NON-ENZYMATIC ANTIOXIDANT DEFENSE WITH ALZHEIMER DISEASE

    Directory of Open Access Journals (Sweden)

    A. Vaisi-Raygani

    2008-04-01

    Full Text Available The etiopathogenesis of dementia in Alzheimer's disease (AD is still unclear. However, long-term oxidative stress is believed to be one of the major contributing factors in progression of neuronal degeneration and decline of cognitive function in AD. In order to assess the presence of oxidative stress in AD, we examined the enzymatic activities of the erythrocyte Cu-Zn superoxide dismutase (Cu-Zn SOD, glutathione peroxidase (GSH-Px, catalase (CAT, and plasma level of total antioxidant status (TAS in AD and control groups (age and sex-matched. The results showed that the Cu-Zn SOD activity was significantly higher and the level of GSH-Px and TAS activities were significantly lower in AD subjects than that in the control group (2111±324 U/grHb, 43.7±11.6 U/grHb, and 1.17 ±0.23 mmol/L compared with 1371±211 U/gHb; t= -2.17, p=0.036, 56.3±9.5 U/gHb; t=3.8, p=0.014, and 1.54±0.2 mmol/L; t=11.18, P<0.001, respectively. While, the erythrocyte CAT activity was lower in AD subjects compared to the control group, the difference was not statistically significant (t=1.3, P=0.15. These findings support the idea that the oxidative stress plays an important role in the pathogenesis underlying AD neurodegeneration. In addition, the enzymatic activity of the erythrocyte Cu-Zn SOD and GSH-Px and the plasma level of TAS can be used as a measure of the oxidative stress and a marker for pathological changes in the brain of patients with AD.

  18. Kinetic modelling of enzymatic starch hydrolysis

    NARCIS (Netherlands)

    Bednarska, K.A.

    2015-01-01

    Kinetic modelling of enzymatic starch hydrolysis – a summary

    K.A. Bednarska

    The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch.

  19. Preparation and properties of a calcium(II)-based molecular chain decorated with manganese(II) butterfly-like complexes.

    Science.gov (United States)

    Benniston, A C; Melnic, S; Turta, C; Arauzo, A B; Bartolomé, J; Bartolomé, E; Harrington, R W; Probert, M R

    2014-09-21

    The room temperature reaction of [Mn2O2(bipy)4](ClO4)3 (bipy = 2,2'-bipyridine) with Ca(CHCl2COO)2 in methanol produced a yellow crystalline material. The X-ray determined structure comprises of a multiple calcium(II) carboxylate bridged chain-like structure which is decorated with [Mn(bipy)2(OH2)](2+) subunits. The redox behaviour for the complex in H2O and MeCN is reported. In the latter solvent the oxidation of the manganese ions appears to be facilitated by the presence of the calcium ions. Magnetic susceptibility and low temperature magnetization measurements show that the Mn moment is isotropic, with g = 1.99(1) and S = 5/2, confirming it is in the 2+ oxidation state. A very weak antiferromagnetic interaction is also detected. Frequency-dependent ac measurements evidence slow magnetic relaxation of the Mn(bipy)2 units. Two relaxation mechanisms are identified: a very slow direct process and a faster one caused by the Resonant Phonon Trapping mechanism. This is the first example of field-induced single ion magnet (SIM) behavior in a mononuclear Mn(II) complex.

  20. Enzymatic Processes in Marine Biotechnology.

    Science.gov (United States)

    Trincone, Antonio

    2017-03-25

    In previous review articles the attention of the biocatalytically oriented scientific community towards the marine environment as a source of biocatalysts focused on the habitat-related properties of marine enzymes. Updates have already appeared in the literature, including marine examples of oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases ready for food and pharmaceutical applications. Here a new approach for searching the literature and presenting a more refined analysis is adopted with respect to previous surveys, centering the attention on the enzymatic process rather than on a single novel activity. Fields of applications are easily individuated: (i) the biorefinery value-chain, where the provision of biomass is one of the most important aspects, with aquaculture as the prominent sector; (ii) the food industry, where the interest in the marine domain is similarly developed to deal with the enzymatic procedures adopted in food manipulation; (iii) the selective and easy extraction/modification of structurally complex marine molecules, where enzymatic treatments are a recognized tool to improve efficiency and selectivity; and (iv) marine biomarkers and derived applications (bioremediation) in pollution monitoring are also included in that these studies could be of high significance for the appreciation of marine bioprocesses.

  1. Method for the enzymatic production of hydrogen

    Science.gov (United States)

    Woodward, J.; Mattingly, S.M.

    1999-08-24

    The present invention is an enzymatic method for producing hydrogen comprising the steps of: (a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch; the reaction mixture also comprising an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; (b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and (c) detecting the hydrogen produced from the reaction mixture. 8 figs.

  2. Analysis of monoamine oxidase (MAO) enzymatic activity by high-performance liquid chromatography-diode array detection combined with an assay of oxidation with a peroxidase and its application to MAO inhibitors from foods and plants.

    Science.gov (United States)

    Herraiz, Tomás; Flores, Andrea; Fernández, Lidia

    2018-01-15

    Monoamine oxidase (MAO) enzymes catalyze the oxidative deamination of biogenic amines and neurotransmitters and produce ammonia, aldehydes, and hydrogen peroxide which is involved in oxidative processes. Inhibitors of MAO-A and -B isozymes are useful as antidepressants and neuroprotectants. The assays of MAO usually measure amine oxidation products or hydrogen peroxide by spectrophotometric techniques. Those assays are often compromised by interfering compounds resulting in poor results. This research describes a new method that combines in the same assay the oxidative deamination of kynuramine to 4-hydroxyquinoline analyzed by HPLC-DAD with the oxidation of tetramethylbenzidine (TMB) (or Amplex Rex) by horseradish peroxidase (HRP) in presence of hydrogen peroxide. The new method was applied to study the inhibition of human MAO-A and -B by bioactive compounds including β-carboline alkaloids and flavonoids occurring in foods and plants. As determined by HPLC-DAD, β-carbolines, methylene blue, kaempferol and clorgyline inhibited MAO-A and methylene blue, 5-nitroindazole, norharman and deprenyl inhibited MAO-B, and all of them inhibited the oxidation of TMB in the same extent. The flavonoids catechin and cyanidin were not inhibitors of MAO by HPLC-DAD but highly inhibited the oxidation of TMB (or Amplex Red) by peroxidase whereas quercetin and resveratrol were moderate inhibitors of MAO-A by HPLC-DAD, but inhibited the peroxidase assay in a higher level. For some phenolic compounds, using the peroxidase-coupled assay to measure MAO activity led to mistaken results. The new method permits to discern between true inhibitors of MAO from those that are antioxidants and which interfere with peroxidase assays but do not inhibit MAO. For true inhibitors of MAO, inhibition as determined by HPLC-DAD correlated well with inhibition of the oxidation of TMB and this approach can be used to assess the in vitro antioxidant activity (less hydrogen peroxide production) resulting

  3. Characterization of manganese oxide precipitates from Appalachian coal mine drainage treatment systems

    International Nuclear Information System (INIS)

    Tan Hui; Zhang Gengxin; Heaney, Peter J.; Webb, Samuel M.; Burgos, William D.

    2010-01-01

    The removal of Mn(II) from coal mine drainage (CMD) by chemical addition/active treatment can significantly increase treatment costs. Passive treatment for Mn removal involves promotion of biological oxidative precipitation of manganese oxides (MnO x ). Manganese(II) removal was studied in three passive treatment systems in western Pennsylvania that differed based on their influent Mn(II) concentrations (20-150 mg/L), system construction (±inoculation with patented Mn(II)-oxidizing bacteria), and bed materials (limestone vs. sandstone). Manganese(II) removal occurred at pH values as low as 5.0 and temperatures as low as 2 deg. C, but was enhanced at circumneutral pH and warmer temperatures. Trace metals such as Zn, Ni and Co were removed effectively, in most cases preferentially, into the MnO x precipitates. Based on synchrotron radiation X-ray diffraction and Mn K-edge extended X-ray absorption fine structure spectroscopy, the predominant Mn oxides at all sites were poorly crystalline hexagonal birnessite, triclinic birnessite and todorokite. The surface morphology of the MnO x precipitates from all sites was coarse and 'sponge-like' composed of nm-sized lathes and thin sheets. Based on scanning electron microscopy (SEM), MnO x precipitates were found in close proximity to both prokaryotic and eukaryotic organisms. The greatest removal efficiency of Mn(II) occurred at the one site with a higher pH in the bed and a higher influent total organic C (TOC) concentration (provided by an upstream wetland). Biological oxidation of Mn(II) driven by heterotrophic activity was most likely the predominant Mn removal mechanism in these systems. Influent water chemistry and Mn(II) oxidation kinetics affected the relative distribution of MnO x mineral assemblages in CMD treatment systems.

  4. On-chip enzymatic microbiofuel cell-powered integrated circuits.

    Science.gov (United States)

    Mark, Andrew G; Suraniti, Emmanuel; Roche, Jérôme; Richter, Harald; Kuhn, Alexander; Mano, Nicolas; Fischer, Peer

    2017-05-16

    A variety of diagnostic and therapeutic medical technologies rely on long term implantation of an electronic device to monitor or regulate a patient's condition. One proposed approach to powering these devices is to use a biofuel cell to convert the chemical energy from blood nutrients into electrical current to supply the electronics. We present here an enzymatic microbiofuel cell whose electrodes are directly integrated into a digital electronic circuit. Glucose oxidizing and oxygen reducing enzymes are immobilized on microelectrodes of an application specific integrated circuit (ASIC) using redox hydrogels to produce an enzymatic biofuel cell, capable of harvesting electrical power from just a single droplet of 5 mM glucose solution. Optimisation of the fuel cell voltage and power to match the requirements of the electronics allow self-powered operation of the on-board digital circuitry. This study represents a step towards implantable self-powered electronic devices that gather their energy from physiological fluids.

  5. Enzymatic reduction of U(VI) in groundwaters

    International Nuclear Information System (INIS)

    Addelouas, A.; Gong, W.; Lutze, W.; Nuttall, E.; Fritz, B.; Crovisier, J.L.

    1999-01-01

    The use of enzymatic reduction of U(VI) in remediation of groundwater contaminated with U(VI) is receiving considerable attention. Certain strains of bacteria can combine the oxidation of an organic compound to the reduction of U(VI) to U(IV), which precipitates as uraninite. In the present study, we tested the reduction of U(VI) in groundwaters with various origins and compositions. In all groundwaters u(VI) was reduced by sulfate reducing bacteria that had been activated by ethanol and tri-metaphosphate. The reduction rate of U(VI) depends on sulfate concentration in water and the abundance of bacteria in the system. This work shows that bacteria capable of U(VI) reduction are ubiquitous in nature, and suggests the possibility of a large application of the enzymatic reduction of U(VI) for in situ clean up of groundwaters contaminated with uranium. (authors)

  6. Enzymatic network for production of ether amines from alcohols

    DEFF Research Database (Denmark)

    Palacio, Cyntia M.; Crismaru, Ciprian G.; Bartsch, Sebastian

    2016-01-01

    We constructed an enzymatic network composed of three different enzymes for the synthesis of valuable ether amines. The enzymatic reactions are interconnected to catalyze the oxidation and subsequent transamination of the substrate and to provide cofactor recycling. This allows production...... of the desired ether amines from the corresponding ether alcohols with inorganic ammonium as the only additional substrate. To examine conversion, individual and overall reaction equilibria were established. Using these data, it was found that the experimentally observed conversions of up to 60% observed...... for reactions containing 10mM alcohol and up to 280mM ammonia corresponded well to predicted conversions. The results indicate that efficient amination can be driven by high concentrations of ammonia and may require improving enzyme robustness for scale-up....

  7. THEORY DEVELOPMENT OF ENZYMATIC AROMA RECOVERY

    Directory of Open Access Journals (Sweden)

    G. E. Dubova

    2014-01-01

    Full Text Available Summary. The fruit and vegetable pretreatment conditions and subsequent environment in which enzymatic reactions take place can be considered as potential factors in the formation of fresh flavors. The synthesis of aromatic components of fresh grass and green leaves occurs involving vegetable lipoxygenases. The molecules of a precursor-compound can withstand the processing modes, while enzymes and aromatic compounds break down frequently. Vegetable homogenates are potential sources of enzymes which produce natural aromatic substances. Formation of fresh favors is the most perceptible when it occurs as the result of the reaction between poliunsaturated fatty acids of cytoplasmic membranes and lipoxygenases and hydroperoxide lyase of plant material. Pre-treatment of samples positively influences binding energy in the complex of enzyme-substrate. The change of iodine number in treated homogenates, as compared to fresh ones, shows isomerization of flavor precursors. The minimal quantity of homogenates introduced (up to 20 g and the duration of aroma-restoring reaction (from 5 to 7 minutes were defined. Pre-cooling of homogenates activates enzymes, strengthens oxidability of the PUFA, and results in recovery of fresh aroma of plant material. Under conditions of enzyme inactivation, the synthesis of aromas is not possible. Conversely, production of aroma in food glazes and foams is possible in case of interphase activation between a substrate and enzymes.

  8. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    Science.gov (United States)

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1oxidizing agent. Photocatalytic water oxidation in the presence of [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine) as a sensitizer and peroxodisulfate as an electron acceptor was carried out for all three manganese oxides including the newly formed amorphous MnOx . Both Mn2 O3 and the amorphous MnOx exhibit tremendous enhancement in oxygen evolution during photocatalysis and are much higher in comparison to so far known bioinspired manganese oxides and calcium-manganese oxides. Also, for the first time, a new approach for the representation of activities of water oxidation catalysts has been proposed by determining the amount of accessible manganese centers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Enzymatic determination of cadmium, zinc, and lead in plant materials

    International Nuclear Information System (INIS)

    Muginova, S.V.; Veselova, I.A.; Parova, L.M.; Shekhovtseva, T.N.

    2008-01-01

    Prospects are outlined for using the following enzymes (native and immobilized on polyurethane foam) in the rapid and highly sensitive determination of cadmium, zinc, and lead ions in plant materials (wild grass, fresh pea, and grape): horseradish peroxidase and alkaline phosphatases isolated from chicken intestine and Greenland seal small intestine. The analytical ranges of the above metals are 1x10 -3 -25; 7x10 -3 -250, and 3x10 -2 -67 mg/kg dry matter, respectively. The enzymatic determination procedures developed are based on the inhibiting effect of metal ions on the catalytic activity of peroxidase in the oxidation of o-dianisidine with hydrogen peroxide and alkaline phosphatases in the hydrolysis of p-nitrophenyl phosphate. The rates of enzymatic reactions were monitored spectrophotometrically or visually. In the analysis of plant extracts, their high acidity was diminished by choosing optimum dilution factors and pH values for test samples and the nature and concentration of a buffer solution. The interference of iron(III) was removed by introducing a 0.1 M tartaric acid solution into the indicator reaction. The accuracy of the results of the enzymatic determination of cadmium, zinc, and lead in plant materials was supported by atomic absorption spectrometry and anodic stripping voltammetry [ru

  10. Sequential enzymatic epoxidation involved in polyether lasalocid biosynthesis.

    Science.gov (United States)

    Minami, Atsushi; Shimaya, Mayu; Suzuki, Gaku; Migita, Akira; Shinde, Sandip S; Sato, Kyohei; Watanabe, Kenji; Tamura, Tomohiro; Oguri, Hiroki; Oikawa, Hideaki

    2012-05-02

    Enantioselective epoxidation followed by regioselective epoxide opening reaction are the key processes in construction of the polyether skeleton. Recent genetic analysis of ionophore polyether biosynthetic gene clusters suggested that flavin-containing monooxygenases (FMOs) could be involved in the oxidation steps. In vivo and in vitro analyses of Lsd18, an FMO involved in the biosynthesis of polyether lasalocid, using simple olefin or truncated diene of a putative substrate as substrate mimics demonstrated that enantioselective epoxidation affords natural type mono- or bis-epoxide in a stepwise manner. These findings allow us to figure out enzymatic polyether construction in lasalocid biosynthesis. © 2012 American Chemical Society

  11. Immobilization of alcohol dehydrogenase on ceramic silicon carbide membranes for enzymatic CH3 OH production

    DEFF Research Database (Denmark)

    Zeuner, Birgitte; Ma, Nicolaj; Berendt, Kasper

    2018-01-01

    BACKGROUND Alcohol dehydrogenase (ADH; EC 1.1.1.1) catalyzes oxidation of CH3OH to CHOH during NAD+ reduction to NADH. ADH can also accelerate the reverse reaction, which is studied as part of cascadic enzymatic conversion of CO2 to CH3OH. In the present study, immobilization of ADH onto macropor......BACKGROUND Alcohol dehydrogenase (ADH; EC 1.1.1.1) catalyzes oxidation of CH3OH to CHOH during NAD+ reduction to NADH. ADH can also accelerate the reverse reaction, which is studied as part of cascadic enzymatic conversion of CO2 to CH3OH. In the present study, immobilization of ADH onto......‐of‐concept for the use of NaOH‐treated SiC membranes for covalent enzyme immobilization and biocatalytic efficiency improvement of ADH during multiple reaction cycles. These data have implications for the development of robust extended enzymatic reactions....

  12. Marine Bacillus spores as catalysts for oxidative precipitation and sorption of metals.

    Science.gov (United States)

    Francis, C A; Tebo, B M

    1999-08-01

    The oxidation of soluble manganese(II) to insoluble Mn(III,IV) oxide precipitates plays an important role in the environment. These Mn oxides are known to oxidize numerous organic and inorganic compounds, scavenge a variety of other metals on their highly charged surfaces, and serve as electron acceptors for anaerobic respiration. Although the oxidation of Mn(II) in most environments is believed to be bacterially-mediated, the underlying mechanisms of catalysis are not well understood. In recent years, however, the application of molecular biological approaches has provided new insights into these mechanisms. Genes involved in Mn oxidation were first identified in our model organism, the marine Bacillus sp. strain SG-1, and subsequently have been identified in two other phylogenetically distinct organisms, Leptothrix discophora and Pseudomonas putida. In all three cases, enzymes related to multicopper oxidases appear to be involved, suggesting that copper may play a universal role in Mn(II) oxidation. In addition to catalyzing an environmentally important process, organisms capable of Mn(II) oxidation are potential candidates for the removal, detoxification, and recovery of metals from the environment. The Mn(II)-oxidizing spores of the marine Bacillus sp. strain SG-1 show particular promise, due to their inherent physically tough nature and unique capacity to bind and oxidatively precipitate metals without having to sustain growth.

  13. Effects of Polyelectrolyte Complex Micelles and Their Components on the Enzymatic Activity of Lipase

    NARCIS (Netherlands)

    Lindhoud, Saskia; Norde, Willem; Cohen Stuart, Martinus Abraham

    2010-01-01

    The enzymatic activity of Hl-lipase embedded in complexes of poly-2-methylvinylpyridinium-co-poly(ethylene oxide) (P2MVP41−PEO205) and poly(acrylic acid)(PAA139) is studied as a function of the PAA139 + P2MVP41−PEO205 complex composition. The measurements revealed that there are several factors that

  14. Effects of Polyelectrolyte Complex Micelles and Their Components on the Enzymatic Activity of Lipase

    NARCIS (Netherlands)

    Lindhoud, Saskia; Norde, Willem; Stuart, Martien Cohen

    2010-01-01

    The enzymatic activity of Hi-lipase embedded in complexes of poly-2-methylvinylpyridinium-co-poly(ethylene oxide) (P2MVP(41)-PEG(205)) and poly(acrylic acid)(PAA(139)) is studied as a function of the PAA(139) + P2MVP(41) - PEO(205) complex composition. The measurements revealed that there are

  15. Radiolytic and enzymatic dimerization of tyrosyl residues in insulin, ribonuclease, papain and collagen

    Energy Technology Data Exchange (ETDEWEB)

    Boguta, G; Dancewicz, A M [Institute of Nuclear Research, Warsaw (Poland)

    1983-03-01

    Insulin ribonuclease, papain and collagen solutions saturated with nitrogen, N/sub 2/O or air were irradiated with doses of 10 to 640 Gy of gamma rays. Protein solutions were also oxidized enzymatically in a system of horse-radish peroxidase: hydrogen peroxide. Column chromatography (Sephadex G-75 or Sephacryl S-200) of treated protein solutions revealed that they contain protein molecular aggregates. Nitrogen saturation of solution before irradiation was most favourable for radiation-induced aggregation of proteins. Fluorescence analysis of protein solutions resulted in detection of dityrosyl structures in irradiated as well as in enzymatically oxidized proteins. Concentration of dityrosine in proteins studied was determined fluorimetrically in their hydrolysates separated on BioGel P-2 column. In irradiated proteins, dityrosine was present almost exclusively in their aggregated forms. In proteins oxidized enzymatically, dityrosine was also present in fractions containing apparently unchanged protein. Mechanisms which could account for differences in the yield of dityrosine formation in radiolysis and in enzymatic oxidation of proteins are suggested.

  16. Radiolytic and enzymatic dimerization of tyrosyl residues in insulin, ribonuclease, papain and collagen

    International Nuclear Information System (INIS)

    Boguta, G.; Dancewicz, A.M.

    1983-01-01

    Insulin ribonuclease, papain and collagen solutions saturated with nitrogen, N 2 O or air were irradiated with doses of 10 to 640 Gy of gamma rays. Protein solutions were also oxidized enzymatically in a system of horse-radish peroxidase: hydrogen peroxide. Column chromatography (Sephadex G-75 or Sephacryl S-200) of treated protein solutions revealed that they contain protein molecular aggregates. Nitrogen saturation of solution before irradiation was most favourable for radiation-induced aggregation of proteins. Fluorescence analysis of protein solutions resulted in detection of dityrosyl structures in irradiated as well as in enzymatically oxidized proteins. Concentration of dityrosine in proteins studied was determined fluorimetrically in their hydrolysates separated on BioGel P-2 column. In irradiated proteins, dityrosine was present almost exclusively in their aggregated forms. In proteins oxidized enzymatically, dityrosine was also present in fractions containing apparently unchanged protein. Mechanisms which could account for differences in the yield of dityrosine formation in radiolysis and in enzymatic oxidation of proteins are suggested. (author)

  17. The effects of xylitol and sorbitol on lysozyme- and peroxidase-related enzymatic and candidacidal activities.

    Science.gov (United States)

    Kim, Bum-Soo; Chang, Ji-Youn; Kim, Yoon-Young; Kho, Hong-Seop

    2015-07-01

    To investigate whether xylitol and sorbitol affect enzymatic and candidacidal activities of lysozyme, the peroxidase system, and the glucose oxidase-mediated peroxidase system. Xylitol and sorbitol were added to hen egg-white lysozyme, bovine lactoperoxidase, glucose oxidase-mediated peroxidase, and whole saliva in solution and on hydroxyapatite surfaces. The enzymatic activities of lysozyme, peroxidase, and glucose oxidase-mediated peroxidase were determined by the turbidimetric method, the NbsSCN assay, and production of oxidized o-dianisidine, respectively. Candidacidal activities were determined by comparing colony forming units using Candida albicans ATCC strains 10231, 11006, and 18804. While xylitol and sorbitol did not affect the enzymatic activity of hen egg-white lysozyme both in solution and on hydroxyapatite surfaces, they did inhibit the enzymatic activity of salivary lysozyme significantly in solution, but not on the surfaces. Xylitol and sorbitol enhanced the enzymatic activities of both bovine lactoperoxidase and salivary peroxidase significantly in a dose-dependent manner in solution, but not on the surfaces. Sorbitol, but not xylitol, inhibited the enzymatic activity of glucose oxidase-mediated peroxidase significantly. Both xylitol and sorbitol did not affect candidacidal activities of hen egg-white lysozyme, the bovine lactoperoxidase system, or the glucose oxidase-mediated bovine lactoperoxidase system. Xylitol and sorbitol inhibited salivary lysozyme activity, but enhanced both bovine lactoperoxidase and salivary peroxidase activities significantly in solution. Xylitol and sorbitol did not augment lysozyme- and peroxidase-related candidacidal activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Condições de secagem de uma pasta de anchoita modificada enzimaticamente na oxidação lipídica, lisina disponível e atividade antioxidante do produto Drying conditions of an enzymatic modified paste of anchovy in the lipid oxidation, available lisina and antioxidant activity of the product

    Directory of Open Access Journals (Sweden)

    Kelly de Moraes

    2013-03-01

    Full Text Available O objetivo do trabalho foi analisar as condições da secagem convectiva de uma pasta de anchoita (Engraulis anchoita modificada enzimaticamente, através da metodologia de superfícies de resposta, sendo as respostas consideradas: a oxidação lipídica (TBA, a redução da lisina disponível e a perda da atividade antioxidante específica. A pasta de anchoita modificada foi obtida por hidrólise enzimática da fração muscular (filés do pescado por Neutrase®. Foram avaliadas na operação de secagem, a temperatura do ar (60, 70 e 80°C e a espessura das amostras (1,5; 2,5 e 3,5mm. A análise estatística da secagem mostrou efeitos significativos da temperatura do ar e da espessura das amostras (PThe aim of the work was to analyze the conditions of the convective drying of an enzymatic modified paste of anchovy (Engraulis anchoita through the response surfaces methodology, and the responses were the lipid oxidation (TBA, reduction of the available lisina and loss of the specific antioxidant activity. The modified paste of anchovy was obtained through enzymatic hydrolysis of the fish muscular fraction (fillets by Neutrase®. In drying operation the air temperature (60, 70 and 80°C and the samples thickness (1.5, 2.5 and 3.5mm were studied. The statistical analysis of the drying showed significant effects of the air temperature and samples thickness (P<0.05. The best drying condition was obtained in the air temperature of 60°C and samples thickness of 2.5mm. In this condition the TBA index was of 0.93mgMDA kg-1, available lisina reduction of 16% and loss of the specific antioxidant activity of 20.2%.

  19. Catalytic behaviors of Co{sup II} and Mn{sup II} compounds bearing α-Diimine ligands for oxidative polymerization or drying oils

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Gilvan E.S.; Nunes, Everton V.; Dantas, Roberta C.; Meneghetti, Mario R.; Meneghetti, Simoni M.P., E-mail: simoni.plentz@gmail.com [Universidade Federal de Alagoas (UFAL), Maceió, AL (Brazil). Grupo de Catálise e Reatividade Química; Simone, Carlos A. de [Universidade de Sao Paulo (USP), São Carlos, USP, SP (Brazil). Instituto de Física

    2018-05-01

    The oxidative polymerization of linseed oil was investigated comparing the classical catalysts cobalt(II) 2-ethylhexanoate and manganese(II) 2-ethylhexanoate and their derivatives modified by the presence of chelating nitrogen ligands, i.e., 2,2’-bipyridyl, 2-(acetyl-2,6-diisopropylphenylimine)- pyridine and [N-(2,6-diisopropylphenyl)imine]acenaphthoquinone. The suitable stoichiometries between the two precursor complexes with the three ligands were determined by UV-visible spectroscopy. All complexes were characterized by infrared spectroscopy, and one complex was characterized also by X-ray diffraction. The apparent kinetic constants of oxidative polymerization of linseed oil was determined, for each catalytic system, via the periodic measurements of the oil viscosity during the oxidation reaction. The results indicated that the modifications of the classical two complexes with the chelating nitrogen ligands improved the catalytic efficiency at least to the manganese complex. (author)

  20. Recent Advances in Carbon Nanotube-Based Enzymatic Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Cosnier, Serge, E-mail: serge.cosnier@ujf-grenoble.fr; Holzinger, Michael; Le Goff, Alan [Département de Chimie Moléculaire (DCM) UMR 5250, Université Grenoble Alpes, Grenoble (France); Département de Chimie Moléculaire (DCM) UMR 5250, CNRS, Grenoble (France)

    2014-10-24

    This review summarizes recent trends in the field of enzymatic fuel cells. Thanks to the high specificity of enzymes, biofuel cells can generate electrical energy by oxidation of a targeted fuel (sugars, alcohols, or hydrogen) at the anode and reduction of oxidants (O{sub 2}, H{sub 2}O{sub 2}) at the cathode in complex media. The combination of carbon nanotubes (CNT), enzymes and redox mediators was widely exploited to develop biofuel cells since the electrons involved in the bio-electrocatalytic processes can be efficiently transferred from or to an external circuit. Original approaches to construct electron transfer based CNT-bioelectrodes and impressive biofuel cell performances are reported as well as biomedical applications.

  1. Enzymatic synthesis of C-11 formaldehyde: concise communication

    International Nuclear Information System (INIS)

    Slegers, G.; Lambrecht, R.H.D.; Vandewalle, T.; Meulewaeter, L.; Vandecasteele, C.

    1984-01-01

    An enzymatic synthesis of C-11 formaldehyde from C-11 methanol is presented, with immobilized alcohol oxidase and catalase: a rapid, simple procedure, with a high and reproducible yield. Carbon-11 methanol is oxidized to C-11 formaldehyde by passage over a column on which the enzymes alcohol oxidase and catalase are immobilized. The catalase increases reaction velocity by recycling the oxygen, and prevents destruction of the alcohol oxidase by eliminating the excess of hydrogen peroxide. The yield of the enzyme-catalyzed oxidation was 80-95%. A specific activity of 400-450 mCi/μmole was obtained at EOB + 20 min. Various immobilization techniques and the optimal reaction conditions of the immobilized enzymes are investigated

  2. Enzymatic gelation of sugar beet pectin in food products

    DEFF Research Database (Denmark)

    Bergsøe, Merete Norsker; Jensen, Mette; Adler-Nissen, Jens

    2000-01-01

    Sugar beet pectin is a food ingredient with specific functional properties. It may form gels by an oxidative cross-linking of ferulic acid. In the present study, the gel forming properties of three oxidative enzymes were examined in different food relevant conditions. The enzymes chosen were two...... laccases and one peroxidase. The textural properties of the produced gels were measured on a texture analyser. The influence of sugar, salt and protein were analysed. Finally, the enzymatic gelation was studied in three food products with added sugar beet pectin. These were black currant juice, milk...... and chopped heat-treated meat emulsion. The addition of salt resulted in softer, less stiff and chewy, and less adhesive gels. Generally speaking, sugar addition increased the hardness but at high concentration the gels were very brittle. However, Young's modulus was lower in gels containing sugar than...

  3. Analysis of Chlorogenic Acid Oxidation Pathway in Simulated ...

    African Journals Online (AJOL)

    Keywords: Honeysuckle, Chlorogenic acid, Enzymatic browning, Mimic system, Oxidation pathway, ... enzymatic oxidation of CA is the major cause of ..... to the concentration of catechol, o-quinone and current at PPO-modified microcylinder biosensor for diffusion- kinetic model. J Electroanal Chem 2011; 660: 200-208.

  4. Detection of extracellular enzymatic activity in microorganisms ...

    African Journals Online (AJOL)

    sunny t

    2015-09-18

    Sep 18, 2015 ... microorganisms with all three enzymatic activities, thereby establishing these techniques as ... supplemented at 1% with vegetable oils, including olive (OLI) ..... cepacia lipase for biodiesel fuel production from soybean oil.

  5. Detection of extracellular enzymatic activity in microorganisms ...

    African Journals Online (AJOL)

    Detection of extracellular enzymatic activity in microorganisms isolated from waste vegetable oil contaminated soil using plate methodologies. Eugenia G. Ortiz Lechuga, Isela Quintero Zapata, Katiushka Arévalo Niño ...

  6. Development of a simple and efficient method for assaying cytidine monophosphate sialic acid synthetase activity using an enzymatic reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide converting system.

    Science.gov (United States)

    Fujita, Akiko; Sato, Chihiro; Münster-Kühnel, Anja-K; Gerardy-Schahn, Rita; Kitajima, Ken

    2005-02-01

    A new reliable method to assay the activity of cytidine monophosphate sialic acid (CMP-Sia) synthetase (CSS) has been developed. The activation of sialic acids (Sia) to CMP-Sia is a prerequisite for the de novo synthesis of sialoglycoconjugates. In vertebrates, CSS has been cloned from human, mouse, and rainbow trout, and the crystal structure has been resolved for the mouse enzyme. The mouse and rainbow trout enzyme have been compared with respect to substrate specificity, demonstrating that the mouse enzyme exhibits a pronounced specificity for N-acetylneuraminic acid (Neu5Ac), while the rainbow trout CSS is equally active with either of three Sia species, Neu5Ac, N-glycolylneuraminic acid (Neu5Gc), and deaminoneuraminic acid (KDN). However, molecular details that explain the pronounced substrate specificities are unknown. Understanding the catalytic mechanisms of these enzymes is of major importance, since CSSs play crucial roles in cellular sialylation patterns and thus are potential drug targets in a number of pathophysiological situations. The availability of the cDNAs and the obtained structural data enable rational approaches; however, these efforts are limited by the lack of a reliable high-throughput assay system. Here we describe a new assay system that allows product quantification in a reduced nicotinamide adenine dinucleotide (NADH)-dependent color reaction. The activation reaction catalyzed by CSS, CTP+Sia-->CMP-Sia+pyrophosphate, was evaluated by a consumption of Sia, which corresponds to that of NADH on the following two successive reactions: (i) Sia-->pyruvate+ManNAc (or Man), catalyzed by a sialic acid lyase (SAL), and (ii) pyruvate+NADH-->lactate+oxidized nicotinamide adenine dinucleotide (NAD+), catalyzed by a lactate dehydrogenase (LDH). Consumption of NADH can be photometrically monitored on a microtiter plate reader for a number of test samples at the same time. Furthermore, based on the quantification of CSS used in the SAL/LDH assay

  7. Enzymatic hydrolysis of plant extracts containing inulin

    Energy Technology Data Exchange (ETDEWEB)

    Guiraud, J.P.; Galzy, P.

    1981-10-01

    Inulin-rich extracts of chicory and Jerusalem artichoke are a good potential source of fructose. Total enzymatic hydrolysis of these extracts can be effected by yeast inulinases (EC 3.2.1.7). Chemical prehydrolysis is unfavourable. Enzymatic hydrolysis has advantages over chemical hydrolysis: it does not produce a dark-coloured fraction or secondary substances. It is possible to envisage the preparation of high fructose syrups using this process. (Refs. 42).

  8. Kinetics of enzymatic hydrolysis of methyl ricinoleate

    OpenAIRE

    Neeharika, T. S.V.R.; Lokesh, P.; Prasanna Rani, K. N.; Prathap Kumar, T.; Prasad, R. B.N.

    2015-01-01

    Ricinoleic acid is an unsaturated hydroxy fatty acid that naturally occurs in castor oil in proportions of up to 85–90%. Ricinoleic acid is a potential raw material and finds several applications in coatings, lubricant formulations and pharmaceutical areas. Enzymatic hydrolysis of castor oil is preferred over conventional hydrolysis for the preparation of ricinoleic acid to avoid estolide formation. A kinetics analysis of the enzymatic hydrolysis of Methyl Ricinoleate in the presence of Candi...

  9. Impact of lignins isolated from pretreated lignocelluloses on enzymatic cellulose saccharification

    DEFF Research Database (Denmark)

    Barsberg, Søren Talbro; Selig, Michael Joseph; Felby, Claus

    2013-01-01

    and cellulose-lignin systems. Consequently, the presence of the lignins had minimal effect, if any, on enzymatic cellulose conversion. Furthermore, this result, coupled with significant calcium levels in the isolated lignins, supports previous work suggesting lignin-calcium complexes reduce enzyme......Lignins were enzymatically isolated from corn stover and wheat straw samples and subjected to hydrothermal or wet oxidation pretreatments for enzyme adsorption experimentations. Lignin contents of the isolates ranged from 26 to 71 % (w/w); cellulose ranged from 3 to 22 % (w/w); xylan from 0.7 to 6...

  10. Coprecipitation of gold(III) complex ions with manganese(II) hydroxide and their stoichiometric reduction to atomic gold (Au(0)): analysis by Mössbauer spectroscopy and XPS.

    Science.gov (United States)

    Yamashita, Mamiko; Ohashi, Hironori; Kobayashi, Yasuhiro; Okaue, Yoshihiro; Kurisaki, Tsutomu; Wakita, Hisanobu; Yokoyama, Takushi

    2008-03-01

    To elucidate the formation process of precursor of gold-supported manganese dioxide (MnO2), the coprecipitation behavior of [AuCl4-n(OH)n](-) (n=0-4) (Au(III)) complex ions with manganese(II) hydroxide (Mn(OH)2 and the change in their chemical state were examined. The Au(III) complex ions were rapidly and effectively coprecipitated with Mn(OH)(2) at pH 9. According to the Mössbauer spectra for gold (Au) coprecipitated with Mn(OH)2, below an Au content of 60 wt% in the coprecipitates, all of the coprecipitated Au existed in the atomic state (Au(0)), while, above an Au content of 65 wt%, part of the gold existed in the Au(III) state, and the proportion increased with increasing coprecipitated Au content. Based on the results of X-ray photoelectron spectroscopy, Mn(II) in Mn(OH)2 converted to Mn(IV) in conjunction with coprecipitation of Au(III) complex ions. These results indicate that the rapid stoichiometric reduction of Au(III) to Au(0) is caused by electron transfer from Mn(II) in Mn(OH)2 to the Au(III) complex ion through an Mn-O-Au bond.

  11. Radical-Mediated Enzymatic Polymerizations

    Science.gov (United States)

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  12. Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst.

    Science.gov (United States)

    Wang, Huan; Gu, Hongcheng; Chen, Zhuoyue; Shang, Luoran; Zhao, Ze; Gu, Zhongze; Zhao, Yuanjin

    2017-04-19

    Enzymatic carriers have a demonstrated value for chemical reactions and industrial applications. Here, we present a novel kind of inverse opal hydrogel particles as the enzymatic carriers. The particles were negatively replicated from spherical colloidal crystal templates by using magnetic nanoparticles tagged acrylamide hydrogel. Thus, they were endowed with the features of monodispersity, small volume, complete penetrating structure, and controllable motion, which are all beneficial for improving the efficiency of biocatalysis. In addition, due to the ordered porous nanostructure, the inverse opal hydrogel particles were imparted with unique photonic band gaps (PBGs) and vivid structural colors for encoding varieties of immobilized enzymes and for constructing a multienzymes biocatalysis system. These features of the inverse opal hydrogel particles indicate that they are ideal enzymatic carriers for biocatalysis.

  13. Enzymatic biodiesel production: Technical and economical considerations

    DEFF Research Database (Denmark)

    Munk Nielsen, Per; Brask, Jesper; Fjerbæk, Lene

    2008-01-01

    It is well documented in the literature that enzymatic processing of oils and fats for biodiesel is technically feasible. However, with very few exceptions, enzyme technology is not currently used in commercial-scale biodiesel production. This is mainly due to non-optimized process design...... and a lack of available costeffective enzymes. The technology to re-use enzymes has typically proven insufficient for the processes to be competitive. However, literature data documenting the productivity of enzymatic biodiesel together with the development of new immobilization technology indicates...... that enzyme catalysts can become cost effective compared to chemical processing. This work reviews the enzymatic processing of oils and fats into biodiesel with focus on process design and economy....

  14. Operation and Control of Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Huusom, Jakob Kjøbsted; Nordblad, Mathias

    This work explores the control of biodiesel production via an enzymatic catalyst. The process involves the transesterification of oils/fats with an alcohol (usually methanol or ethanol), using enzymatic catalysts to generate mono-alkyl esters (the basis of biodiesel) and glycerol as by......-product. Current literature indicates that enzymatic processing of oils and fats to produce biodiesel is technically feasible and developments in immobilization technology indicate that enzyme catalysts can become cost effective compared to chemical processing. However, with very few exceptions, enzyme technology...... is not currently used in commercial-scale biodiesel production. This is mainly due to non-optimized process designs, which do not use the full potential of the catalysts in a cost-efficient way. Furthermore is it unclear what process variables need to be monitored and controlled to ensure optimal economics...

  15. Increased saccharification yields from aspen biomass upon treatment with enzymatically generated peracetic acid.

    Science.gov (United States)

    Duncan, Shona; Jing, Qing; Katona, Adrian; Kazlauskas, Romas J; Schilling, Jonathan; Tschirner, Ulrike; Aldajani, Waleed Wafa

    2010-03-01

    The recalcitrance of lignocellulosic biomass to enzymatic release of sugars (saccharification) currently limits its use as feedstock for biofuels. Enzymatic hydrolysis of untreated aspen wood releases only 21.8% of the available sugars due primarily to the lignin barrier. Nature uses oxidative enzymes to selectively degrade lignin in lignocellulosic biomass, but thus far, natural enzymes have been too slow for industrial use. In this study, oxidative pretreatment with commercial peracetic acid (470 mM) removed 40% of the lignin (from 19.9 to 12.0 wt.% lignin) from aspen and enhanced the sugar yields in subsequent enzymatic hydrolysis to about 90%. Increasing the amount of lignin removed correlated with increasing yields of sugar release. Unfortunately, peracetic acid is expensive, and concentrated forms can be hazardous. To reduce costs and hazards associated with using commercial peracetic acid, we used a hydrolase to catalyze the perhydrolysis of ethyl acetate generating 60-70 mM peracetic acid in situ as a pretreatment to remove lignin from aspen wood. A single pretreatment was insufficient, but multiple cycles (up to eight) removed up to 61.7% of the lignin enabling release of >90% of the sugars during saccharification. This value corresponds to a predicted 581 g of fermentable sugars from 1 kg of aspen wood. Improvements in the enzyme stability are needed before the enzymatically generated peracetic acid is a commercially viable alternative.

  16. Enzymatic activity of the cellulolytic complex produced by trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Alfonsel Jaen, M.; Negro, M.J.; Saez, R.; Martin Moreno, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reese QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass from Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars productions, have been selected. Previous studies on enzymatic hydrolysis of O. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (author). 10 figs.; 10 refs

  17. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Alfonsel J, M.; Negro A, M. J.; Saez A, R.; Martin M, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs

  18. Magnetic Fe3S4 nanoparticles with peroxidase-like activity, and their use in a photometric enzymatic glucose assay

    International Nuclear Information System (INIS)

    Ding, Caiping; Yan, Yinghan; Zhang, Cuiling; Xian, Yuezhong; Xiang, Dongshan

    2016-01-01

    Greigite magnetic nanoparticles (Fe 3 S 4 -MNPs) were prepared and reveal a peroxidase-like activity. Kinetic studies revealed a pseudo-enzymatic activity that is much higher than that of other magnetic nanomaterial-based enzyme mimetics. This finding was exploited to design a photometric enzymatic glucose assay based on the formation of H 2 O 2 during enzymatic oxidation of glucose by glucose oxidase, and the formation of a blue product from an enzyme substrate that is catalytically oxidized by H 2 O 2 in the presence of Fe 3 S 4 -MNPs. Glucose can be detected in the 2 to 100 μM concentration range, and the low detection limit is 0.16 μM. The method was applied to quantify glucose in human serum. In our perception, this enzyme mimetic has a large potential in that it may be used in other oxidase based assays, but also in ELISAs. (author)

  19. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment

    DEFF Research Database (Denmark)

    Sørensen, Annette; Teller, Philip Johan; Hilstrøm, Troels

    2008-01-01

    xylose prior to wet explosion. The acid presoaking extracted 63.2% xylose and 5.2% glucose. Direct enzymatic hydrolysis of the presoaked biomass was found to give only low sugar yields of 24-26% glucose. Wet explosion is a pre-treatment method that combines wet-oxidation and steam explosion. The effect...... of wet explosion on non-presoaked and presoaked Miscanthus was investigated using both atmospheric air and hydrogen peroxide as the oxidizing agent. All wet explosion pre-treatments showed to have a disrupting effect on the lignocellulosic biomass, making the sugars accessible for enzymatic hydrolysis......Miscanthus is a high yielding bioenergy crop. In this study we used acid presoaking, wet explosion, and enzymatic hydrolysis to evaluate the combination of the different pre-treatment methods for bioethanol production with Miscanthus. Acid presoaking is primarily carried out in order to remove...

  20. Effect of ozonation on the reactivity of lignocellulose substrates in enzymatic hydrolyses to sugars

    Science.gov (United States)

    Ben'ko, E. M.; Manisova, O. R.; Lunin, V. V.

    2013-07-01

    The efficiency of pre-treatment of aspen wood with ozone for subsequent enzymatic hydrolysis into sugars is determined by the amount of absorbed ozone. The ozone absorption rate depended on the water content in the sample being ozonized and was maximum at a relative humidity of wood of ˜40%. As a result of ozone pre-treatment, the initial rate of the enzymatic hydrolysis of wood under the action of a cellulase complex increased eightfold, and the maximum yield of sugars increased tenfold depending on the ozone dose. The ozonation at ozone doses of more than 3 mol/PPU (phenylpropane structural unit of lignin) led to a decrease in the yield of sugars because of the oxidative destruction of cellulose and hemicellulose. The alkaline ozonation in 2 and 12% NaOH was inefficient because of the accompanying oxidation of carbohydrates and considerably decreased the yield of sugars.

  1. Tandem and sequential multi-enzymatic syntheses

    NARCIS (Netherlands)

    Kim, B.G.; Ahn, J.H.; Sello, G.; Di Gennaro, P.; van Herk, T.; Hartog, A.F.; Wever, R.; Oroz-Guinea, I.; Sánchez-Moreno, I.; García-Junceda, E.; Wu, B.; Szymanski, W.; Feringa, B.L.; Janssen, D.B.; Villo, L.; Kreen, M.; Kudryashova, M.; Metsala, A.; Tamp, S.; Lille, ü.; Pehk, T.; Parve, O.; McClean, K.; Eddowes, P.; Whittall, J.; Sutton, P.W.

    2012-01-01

    This chapter contains sections titled: Production of Isorhamnetin 3-O-Glucoside in Escherichia coli Using Engineered Glycosyltransferase Multienzymatic Preparation of (−)-3-(Oxiran-2-yl)Benzoic Acid Enzymatic Synthesis of Carbohydrates from Dihydroxyacetone and Aldehydes by a One Pot Enzyme Cascade

  2. Enzymatic assay for methotrexate in erythrocytes

    DEFF Research Database (Denmark)

    Schrøder, H; Heinsvig, E M

    1985-01-01

    Methotrexate (MTX) accumulates in erythrocytes in MTX-treated patients. We present a modified enzymatic assay measuring MTX concentrations between 10 and 60 nmol/l in erythrocytes, adapted for a centrifugal analyser (Cobas Bio). About 40 patient's samples could be analysed within 1 h. The detection...

  3. Enzymatic hydrolysis of pretreated soybean straw

    International Nuclear Information System (INIS)

    Xu Zhong; Wang Qunhui; Jiang Zhaohua; Yang Xuexin; Ji Yongzhen

    2007-01-01

    In order to produce lactic acid, from agricultural residues such as soybean straw, which is a raw material for biodegradable plastic production, it is necessary to decompose the soybean straw into soluble sugars. Enzymatic hydrolysis is one of the methods in common use, while pretreatment is the effective way to increase the hydrolysis rate. The optimal conditions of pretreatment using ammonia and enzymatic hydrolysis of soybean straw were determined. Compared with the untreated straw, cellulose in straw pretreated by ammonia liquor (10%) soaking for 24 h at room temperature increased 70.27%, whereas hemicellulose and lignin in pretreated straw decreased to 41.45% and 30.16%, respectively. The results of infrared spectra (IR), scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis also showed that the structure and the surface of the straw were changed through pretreatment that is in favor of the following enzymatic hydrolysis. maximum enzymatic hydrolysis rate of 51.22% was achieved at a substrate concentration of 5% (w/v) at 50 deg. C and pH 4.8 using cellulase (50 fpu/g of substrate) for 36 h

  4. Starch: chemistry, microstructure, processing and enzymatic degradation

    Science.gov (United States)

    Starch is recognized as one of the most abundant and important commodities containing value added attributes for a vast number of industrial applications. Its chemistry, structure, property and susceptibility to various chemical, physical and enzymatic modifications offer a high technological value ...

  5. Coated tube for immunochemical and enzymatic assays

    International Nuclear Information System (INIS)

    Brown, J.L.; Lin, W.H.-T.; Woods, J.W.

    1979-01-01

    Containers such as test tubes suitable for use in solid phase immunochemical, enzymatical and particularly radioimmunoassay procedures are described. The lower part of the tube is a polymer, coated with an inert protein to which a biologically active substance eg an antibody to triiodothyronine, thyroxine or digoxin, is attached. (U.K.)

  6. Starch facilitates enzymatic wheat gluten hydrolysis

    NARCIS (Netherlands)

    Hardt, N.A.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Wheat gluten can be hydrolyzed by either using (vital) wheat gluten or directly from wheat flour. This study investigates the influence of the presence of starch, the main component of wheat, on enzymatic wheat gluten hydrolysis. Wheat gluten present in wheat flour (WFG) and vital wheat gluten (VWG)

  7. Enzymatic conversion of lignocellulose into fermentable sugars

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Kristensen, Jan Bach; Felby, Claus

    2007-01-01

    and hemicelluloses but these are not readily accessible to enzymatic hydrolysis and require a pretreatment, which causes an extensive modification of the lignocellulosic structure. A number of pretreatment technologies are under development and being tested in pilot scale. Hydrolysis of lignocellulose carbohydrates...

  8. Enzymatic production of polysaccharides from gum tragacanth

    DEFF Research Database (Denmark)

    2014-01-01

    Plant polysaccharides, relating to the field of natural probiotic components, can comprise structures similar to human milk oligosaccharides. A method for enzymatic hydrolysis of gum tragacanth from the bush-like legumes of the genus Astragalus, using a combination of pectin hydrolases...

  9. Synthesis and characterization of nickel(II), cobalt(II), copper(II), manganese(II), zinc(II), zirconium(IV), dioxouranium(VI) and dioxomolybdenum(VI) complexes of a new Schiff base derived from salicylaldehyde and 5-methylpyrazole-3-carbohydrazide

    International Nuclear Information System (INIS)

    Syamal, A.; Maurya, M.R.

    1986-01-01

    Synthesis of a new Schiff base derived from salicylaldehyde and 5-methylpyrazole-3-carbohydrazide, and its coordination compounds with nickel(II), cobalt(II), copper(II), manganese(II), zinc(II), zirconium(IV), dioxouranium(VI) and dioxomolybdenum(VI) are described. The ligand and the complexes have been characterized on the basis of analytical, conductance, molecular weight, i.r., electronic and n.m.r. spectra and magnetic susceptibility measurements. The stoichiometries of the complexes are represented as NiL . 3H 2 O, CoL . 2H 2 O, CuL, MnL . 2H 2 O, ZnL . H 2 O, Zr(OH) 2 (LH) 2 , Zr(OH) 2 L . 2MeOH, UO 2 L . MeOH and MoO 2 L . MeOH (where LH 2 =Schiff base). The copper(II) complex shows a subnormal magnetic moment due to antiferromagnetic exchange interaction while the nickel(II), cobalt(II) and manganese(II) complexes show normal magnetic moments at room temperature. The i.r. and n.m.r. spectral studies show that the Schiff base behaves as a dibasic and tridentate ligand coordinating through the deprotonated phenolic oxygen, enolic oxygen and azomethine nitrogen. (orig.)

  10. Enzymatic synthesis of bioactive compounds with high potential for cosmeceutical application

    OpenAIRE

    Antonopoulou, Io; Varriale, Simona; Topakas, Evangelos; Rova, Ulrika; Christakopoulos, Paul; Faraco, Vincenza

    2016-01-01

    Cosmeceuticals are cosmetic products containing biologically active ingredients purporting to offer a pharmaceutical therapeutic benefit. The active ingredients can be extracted and purified from natural sources (botanicals, herbal extracts, or animals) but can also be obtained biotechnologically by fermentation and cell cultures or by enzymatic synthesis and modification of natural compounds. A cosmeceutical ingredient should possess an attractive property such as anti-oxidant, anti-inflamma...

  11. Improved enzymatic production of phenolated glycerides through alkyl phenolate intermediate

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Feddern, Vivian; Glasius, Marianne

    2011-01-01

    This work reported a novel approach for synthesis of dihydrocaffoylated glycerides, consisting of 2 steps: enzymatic synthesis of octyl dihydrocaffeate (as a synthetic intermediate) from octanol and dihydrocaffeic acid (DHCA), and enzymatic interesterification of triglycerides with octyl dihydroc......This work reported a novel approach for synthesis of dihydrocaffoylated glycerides, consisting of 2 steps: enzymatic synthesis of octyl dihydrocaffeate (as a synthetic intermediate) from octanol and dihydrocaffeic acid (DHCA), and enzymatic interesterification of triglycerides with octyl...

  12. Mechano-Enzymatic Deconstruction with a New Enzymatic Cocktail to Enhance Enzymatic Hydrolysis and Bioethanol Fermentation of Two Macroalgae Species

    Directory of Open Access Journals (Sweden)

    Sameh Amamou

    2018-01-01

    Full Text Available The aim of this study was to explore the efficiency of a mechano-enzymatic deconstruction of two macroalgae species for sugars and bioethanol production, by using a new enzymatic cocktail (Haliatase and two types of milling modes (vibro-ball: VBM and centrifugal milling: CM. By increasing the enzymatic concentration from 3.4 to 30 g/L, the total sugars released after 72 h of hydrolysis increased (from 6.7 to 13.1 g/100 g TS and from 7.95 to 10.8 g/100 g TS for the green algae U. lactuca and the red algae G. sesquipedale, respectively. Conversely, total sugars released from G. sesquipedale increased (up to 126% and 129% after VBM and CM, respectively. The best bioethanol yield (6 geth/100 g TS was reached after 72 h of fermentation of U. lactuca and no increase was obtained after centrifugal milling. The latter led to an enhancement of the ethanol yield of G. sesquipedale (from 2 to 4 g/100 g TS.

  13. A comparative genomic analysis of the oxidative enzymes potentially involved in lignin degradation by Agaricus bisporus

    Science.gov (United States)

    Harshavardhan Doddapaneni; Venkataramanan Subramanian; Bolei Fu; Dan Cullen

    2013-01-01

    The oxidative enzymatic machinery for degradation of organic substrates in Agaricus bisporus (Ab) is at the core of the carbon recycling mechanisms in this fungus. To date, 156 genes have been tentatively identified as part of this oxidative enzymatic machinery, which includes 26 peroxidase encoding genes, nine copper radical oxidase [including three...

  14. Enzymatic degradation of polycaprolactone–gelatin blend

    International Nuclear Information System (INIS)

    Banerjee, Aditi; Chatterjee, Kaushik; Madras, Giridhar

    2015-01-01

    Blends of polycaprolactone (PCL), a synthetic polymer and gelatin, natural polymer offer a optimal combination of strength, water wettability and cytocompatibility for use as a resorbable biomaterial. The enzymatic degradation of PCL, gelatin and PCL–gelatin blended films was studied in the presence of lipase (Novozym 435, immobilized) and lysozyme. Novozym 435 degraded the PCL films whereas lysozyme degraded the gelatin. Though Novozym 435 and lysozyme individually could degrade PCL–gelatin blended films, the combination of these enzymes showed the highest degradation of these blended films. Moreover, the enzymatic degradation was much faster when fresh enzymes were added at regular intervals. The changes in physico-chemical properties of polymer films due to degradation were studied by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. These results have important implications for designing resorbable biomedical implants. (paper)

  15. A singular enzymatic megacomplex from Bacillus subtilis.

    Science.gov (United States)

    Straight, Paul D; Fischbach, Michael A; Walsh, Christopher T; Rudner, David Z; Kolter, Roberto

    2007-01-02

    Nonribosomal peptide synthetases (NRPS), polyketide synthases (PKS), and hybrid NRPS/PKS are of particular interest, because they produce numerous therapeutic agents, have great potential for engineering novel compounds, and are the largest enzymes known. The predicted masses of known enzymatic assembly lines can reach almost 5 megadaltons, dwarfing even the ribosome (approximately 2.6 megadaltons). Despite their uniqueness and importance, little is known about the organization of these enzymes within the native producer cells. Here we report that an 80-kb gene cluster, which occupies approximately 2% of the Bacillus subtilis genome, encodes the subunits of approximately 2.5 megadalton active hybrid NRPS/PKS. Many copies of the NRPS/PKS assemble into a single organelle-like membrane-associated complex of tens to hundreds of megadaltons. Such an enzymatic megacomplex is unprecedented in bacterial subcellular organization and has important implications for engineering novel NRPS/PKSs.

  16. A Networks Approach to Modeling Enzymatic Reactions.

    Science.gov (United States)

    Imhof, P

    2016-01-01

    Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes. © 2016 Elsevier Inc. All rights reserved.

  17. Production of MAG via enzymatic glycerolysis

    Science.gov (United States)

    Jamlus, Norul Naziraa Ahmad; Derawi, Darfizzi; Salimon, Jumat

    2015-09-01

    Enzymatic glycerolysis of a medium chain methyl ester, methyl laurate was performed using lipase Candida antarctica (Novozyme 435) for 6 hours at 55°C. The percentage of components mixture of product were determined by using gas chromatography technique. The enzymatic reaction was successfully produced monolaurin (45.9 %), dilaurin (47.1 %) and trilaurin (7.0 %) respectively. Thin layer chromatography (TLC) plate also showed a good separation of component spots. Fourier transformation infra-red (FTIR) spectrum showed the presence of ester carbonyl at wavenumber 1739.99 cm-1 and hydrogen bonded O-H at 3512.03 cm-1. The product is potentially to be used as emulsifier and additive in food industry, pharmaceutical, as well as antibacterial.

  18. Heavy metal pollution and soil enzymatic activity

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, G

    1974-01-01

    The activity of hydrolytic soil enzymes was studied on spruce mor, polluted with Cu and Zn from a brass foundry in Sweden. Approximately straight regression lines were obtained between enzymatic activity or respiration rate and log Cu + Zn concentration, with highly significant negative regression coefficients for urease and acid phosphatase activity as well as respiration rate, whereas US -glucosidase activity was not measurably lower at high concentrations of Cu + Zn. 17 references, 5 figures.

  19. Enzymatic Activity Detection via Electrochemistry for Enceladus

    Science.gov (United States)

    Studemeister, Lucy; Koehne, Jessica; Quinn, Richard

    2017-01-01

    Electrochemical detection of biological molecules is a pertinent topic and application in many fields such as medicine, environmental spills, and life detection in space. Proteases, a class of molecules of interest in the search for life, catalyze the hydrolysis of peptides. Trypsin, a specific protease, was chosen to investigate an optimized enzyme detection system using electrochemistry. This study aims at providing the ideal functionalization of an electrode that can reliably detect a signal indicative of an enzymatic reaction from an Enceladus sample.

  20. Inhibition of Lipid Peroxidation by Enzymatic Hydrolysates from Wheat Bran

    Directory of Open Access Journals (Sweden)

    Yanping Cao

    2011-01-01

    Full Text Available Wheat bran, an important by-product of the cereal industry, is rich in potentially health-promoting phenolic compounds. The phenolics are mainly esterified to the cell wall polysaccharides. In our previous paper, wheat bran was destarched and deproteinated by α-amylase, protease and amyloglucosidase successively and further hydrolyzed using Bacillus subtilis xylanases, and the enzymatic hydrolysates from wheat bran (EHWB showed good scavenging activity in vitro. The aim of this study is to further characterize the antioxidant potential of EHWB against various systems, both ex vivo and in vivo, namely, rat liver microsomal lipid peroxidation systems induced by Fe2+/H2O2 and Fe3+-adenosine diphosphate (ADP/dihydronicotinamide adenine dinucleotide phosphate (NADPH, copper- and 2,2’-azo-bis(2-amidinopropane dihydrochloride (AAPH-induced human low-density lipoprotein (LDL oxidation systems, and alloxan-induced in vivo lipid peroxidation in mice. EHWB inhibited lipid peroxidation in rat liver microsomes induced by Fe2+/H2O2 and Fe3+-ADP/NADPH in a concentration-dependent manner with 90.3 and 87 % inhibition of lipid peroxidation at 50 mg/L, respectively, which were similar to that of butylated hydroxytoluene (BHT at 20 mg/L. The antioxidant potential of EHWB at a concentration ranging from 10 to 20 mg/L in the nonenzymatic system was more effective than in the enzymatic system. EHWB strongly inhibited in vitro copper- and AAPH-mediated oxidation of LDL in a concentration- and time-dependent manner with 52.41 and 63.03 % inhibition at 20 mg/L, respectively, which were similar to that of ascorbate at 10 mg/L. EHWB significantly decreased the level of thiobarbituric acid reactive substances (TBARS and increased the activities of glutathione peroxidase (GSH-Px, catalase (CAT and superoxide dismutase (SOD in serum and liver of alloxan-treated mice compared with the control. These results demonstrated that EHWB might be efficient in the protection of

  1. Enzymatic Synthesis of Biobased Polyesters and Polyamides

    Directory of Open Access Journals (Sweden)

    Yi Jiang

    2016-06-01

    Full Text Available Nowadays, “green” is a hot topic almost everywhere, from retailers to universities to industries; and achieving a green status has become a universal aim. However, polymers are commonly considered not to be “green”, being associated with massive energy consumption and severe pollution problems (for example, the “Plastic Soup” as a public stereotype. To achieve green polymers, three elements should be entailed: (1 green raw materials, catalysts and solvents; (2 eco-friendly synthesis processes; and (3 sustainable polymers with a low carbon footprint, for example, (biodegradable polymers or polymers which can be recycled or disposed with a gentle environmental impact. By utilizing biobased monomers in enzymatic polymerizations, many advantageous green aspects can be fulfilled. For example, biobased monomers and enzyme catalysts are renewable materials that are derived from biomass feedstocks; enzymatic polymerizations are clean and energy saving processes; and no toxic residuals contaminate the final products. Therefore, synthesis of renewable polymers via enzymatic polymerizations of biobased monomers provides an opportunity for achieving green polymers and a future sustainable polymer industry, which will eventually play an essential role for realizing and maintaining a biobased and sustainable society.

  2. Enzymatic transformation of nonfood biomass to starch

    Science.gov (United States)

    You, Chun; Chen, Hongge; Myung, Suwan; Sathitsuksanoh, Noppadon; Ma, Hui; Zhang, Xiao-Zhou; Li, Jianyong; Zhang, Y.-H. Percival

    2013-01-01

    The global demand for food could double in another 40 y owing to growth in the population and food consumption per capita. To meet the world’s future food and sustainability needs for biofuels and renewable materials, the production of starch-rich cereals and cellulose-rich bioenergy plants must grow substantially while minimizing agriculture’s environmental footprint and conserving biodiversity. Here we demonstrate one-pot enzymatic conversion of pretreated biomass to starch through a nonnatural synthetic enzymatic pathway composed of endoglucanase, cellobiohydrolyase, cellobiose phosphorylase, and alpha-glucan phosphorylase originating from bacterial, fungal, and plant sources. A special polypeptide cap in potato alpha-glucan phosphorylase was essential to push a partially hydrolyzed intermediate of cellulose forward to the synthesis of amylose. Up to 30% of the anhydroglucose units in cellulose were converted to starch; the remaining cellulose was hydrolyzed to glucose suitable for ethanol production by yeast in the same bioreactor. Next-generation biorefineries based on simultaneous enzymatic biotransformation and microbial fermentation could address the food, biofuels, and environment trilemma. PMID:23589840

  3. Microbial Enzymatic Degradation of Biodegradable Plastics.

    Science.gov (United States)

    Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch

    2017-01-01

    The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. A Sequential Combination of Laccase Pretreatment and Enzymatic Hydrolysis for Glucose Production from Furfural Residues

    Directory of Open Access Journals (Sweden)

    Hailong Yu

    2014-06-01

    Full Text Available Furfural residues (FRs were pretreated with laccase or a laccase-mediator (1-hydroxybenzotriazole, HBT system to produce fermentable sugar for bioethanol production. Compared to laccase-only pretreatment, laccase-mediator pretreatment dissolved more lignin. Approximately 10.5% of the initially present lignin was removed when FRs were treated with a laccase loading of 100 U/g of dry substrate in 1% (w/w HBT at 48 °C for 24 h in an acetate buffer (pH 4.8. The enzymatic saccharification process was carried out by a combined laccase or laccase-mediator pretreatment without washing of the treated solids. The results showed that active laccase had a negative effect on the rate and yield of enzymatic hydrolysis. Laccase-oxidized HBT seriously reduced glucose yield. However, non-oxidized HBT increased glucose yield when laccase was deactivated at 121 °C for 20 min prior to enzymatic hydrolysis. The highest glucose yield, 80.9%, was obtained from the substrate pretreated with 100 U/g of dry substrate laccase and 1% (w/w HBT at 48 °C for 24 h in an acetate buffer (pH 4.8. Furthermore, the structures of FRs before and after laccase-mediator pretreatment were characterized by scanning electron microscopy (SEM and Fourier Transform Infrared spectroscopy (FT-IR.

  5. Fabrication of Nickel/nanodiamond/boron-doped diamond electrode for non-enzymatic glucose biosensor

    International Nuclear Information System (INIS)

    Dai, Wei; Li, Mingji; Gao, Sumei; Li, Hongji; Li, Cuiping; Xu, Sheng; Wu, Xiaoguo; Yang, Baohe

    2016-01-01

    Highlights: • Nanodiamonds (NDs) were electrophoretically deposited on the BDD film. • The NDs significantly extended the potential window. • Ni/NDs/BDD electrode was prepared by electrodeposition. • The electrode shows good catalytic activity for glucose oxidation. - Abstract: A stable and sensitive non-enzymatic glucose sensor was prepared by modifying a boron-doped diamond (BDD) electrode with nickel (Ni) nanosheets and nanodiamonds (NDs). The NDs were electrophoretically deposited on the BDD surface, and acted as nucleation sites for the subsequent electrodeposition of Ni. The morphology and composition of the modified BDD electrodes were characterized by field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The Ni nanosheet-ND modified BDD electrode exhibited good current response towards the non-enzymatic oxidation of glucose in alkaline media. The NDs significantly extended the potential window. The response to glucose was linear over the 0.2–1055.4-μM range. The limit of detection was 0.05 μM, at a signal-to-noise ratio of 3. The Ni nanosheet-ND/BDD electrode exhibited good selectivity, reproducibility and stability. Its electrochemical performance, low cost and simple preparation make it a promising non-enzymatic glucose sensor.

  6. Impact of lignins isolated from pretreated lignocelluloses on enzymatic cellulose saccharification.

    Science.gov (United States)

    Barsberg, Søren; Selig, Michael Joseph; Felby, Claus

    2013-02-01

    Lignins were enzymatically isolated from corn stover and wheat straw samples and subjected to hydrothermal or wet oxidation pretreatments for enzyme adsorption experimentations. Lignin contents of the isolates ranged from 26 to 71 % (w/w); cellulose ranged from 3 to 22 % (w/w); xylan from 0.7 to 6 % (w/w) and ash was from 5.8 to 30 % (w/w). ATR-IR analyses indicated significant and similar levels of calcium in all lignin isolates. Commercial cellulase adsorption studies showed that the presence of these lignins had no significant impact on the total amount of adsorbed enzyme in cellulose and cellulose-lignin systems. Consequently, the presence of the lignins had minimal effect, if any, on enzymatic cellulose conversion. Furthermore, this result, coupled with significant calcium levels in the isolated lignins, supports previous work suggesting lignin-calcium complexes reduce enzyme-lignin interactions.

  7. Fabrication of high surface area graphene electrodes with high performance towards enzymatic oxygen reduction

    International Nuclear Information System (INIS)

    Di Bari, Chiara; Goñi-Urtiaga, Asier; Pita, Marcos; Shleev, Sergey; Toscano, Miguel D.; Sainz, Raquel; De Lacey, Antonio L.

    2016-01-01

    High surface area graphene electrodes were prepared by simultaneous electrodeposition and electroreduction of graphene oxide. The electrodeposition process was optimized in terms of pH and conductivity of the solution and the obtained graphene electrodes were characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy and electrochemical methods (cyclic voltammetry and impedance spectroscopy). Electrodeposited electrodes were further functionalized to carry out covalent immobilization of two oxygen-reducing multicopper oxidases: laccase and bilirubin oxidase. The enzymatic electrodes were tested as direct electron transfer based biocathodes and catalytic currents as high as 1 mA/cm 2 were obtained. Finally, the mechanism of the enzymatic oxygen reduction reaction was studied for both enzymes calculating the Tafel slopes and transfer coefficients.

  8. A combined chemical + enzymatic method to remove selected aromatics from aqueous streams

    International Nuclear Information System (INIS)

    Xu, X.; John, V.

    1993-01-01

    Aromatics are major pollutants found in aqueous environments and in sediments. While there are many chemical and biochemical processes to remove and/or destroy these contaminants, they have to be considered in light of the economics and the time-scales for treatment. We describe our initial work on a hybrid chemical + enzymatic technique to remove aromatics from aqueous stream. The aromatic is first converted to the corresponding phenol through classical Fenton type chemistry involving catalysis by Fe(II). The phenol is subsequently polymerized through an enzymatic mechanism, using horseradish peroxidase as the oxidative enzyme. The polymer is insoluble in water and can be easily recovered. In addition, such phenolic polymers are useful products with varied applications in coatings and resin technologies. Thus, the pollutants can be eventually converted to useful products

  9. Enzymatic Hydrolysis of Alkaline Pretreated Coconut Coir

    Directory of Open Access Journals (Sweden)

    Akbarningrum Fatmawati

    2013-06-01

    Full Text Available The purpose of this research is to study the effect of concentration and temperature on the cellulose and lignin content, and the reducing sugars produced in the enzymatic hydrolysis of coconut coir. In this research, the coconut coir is pretreated using 3%, 7%, and 11% NaOH solution at 60oC, 80oC, and 100oC. The pretreated coir were assayed by measuring the amount of cellulose and lignin and then hydrolysed using Celluclast and Novozyme 188 under various temperature (30oC, 40oC, 50oC and pH (3, 4, 5. The hydrolysis results were assayed for the reducing sugar content. The results showed that the alkaline delignification was effective to reduce lignin and to increase the cellulose content of the coir. The best delignification condition was observed at 11% NaOH solution and 100oC which removed 14,53% of lignin and increased the cellulose content up to 50,23%. The best condition of the enzymatic hydrolysis was obtained at 50oC and pH 4 which produced 7,57 gr/L reducing sugar. © 2013 BCREC UNDIP. All rights reservedReceived: 2nd October 2012; Revised: 31st January 2013; Accepted: 6th February 2013[How to Cite: Fatmawati, A., Agustriyanto, R., Liasari, Y. (2013. Enzymatic Hydrolysis of Alkaline Pre-treated Coconut Coir. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 34-39 (doi:10.9767/bcrec.8.1.4048.34-39[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4048.34-39] | View in  |

  10. The oxidative hypothesis of senescence

    Directory of Open Access Journals (Sweden)

    Gilca M

    2007-01-01

    Full Text Available The oxidative hypothesis of senescence, since its origin in 1956, has garnered significant evidence and growing support among scientists for the notion that free radicals play an important role in ageing, either as "damaging" molecules or as signaling molecules. Age-increasing oxidative injuries induced by free radicals, higher susceptibility to oxidative stress in short-lived organisms, genetic manipulations that alter both oxidative resistance and longevity and the anti-ageing effect of caloric restriction and intermittent fasting are a few examples of accepted scientific facts that support the oxidative theory of senescence. Though not completely understood due to the complex "network" of redox regulatory systems, the implication of oxidative stress in the ageing process is now well documented. Moreover, it is compatible with other current ageing theories (e.g., those implicating the mitochondrial damage/mitochondrial-lysosomal axis, stress-induced premature senescence, biological "garbage" accumulation, etc. This review is intended to summarize and critically discuss the redox mechanisms involved during the ageing process: sources of oxidant agents in ageing (mitochondrial -electron transport chain, nitric oxide synthase reaction- and non-mitochondrial- Fenton reaction, microsomal cytochrome P450 enzymes, peroxisomal β -oxidation and respiratory burst of phagocytic cells, antioxidant changes in ageing (enzymatic- superoxide dismutase, glutathione-reductase, glutathion peroxidase, catalase- and non-enzymatic glutathione, ascorbate, urate, bilirubine, melatonin, tocopherols, carotenoids, ubiquinol, alteration of oxidative damage repairing mechanisms and the role of free radicals as signaling molecules in ageing.

  11. Isothermal calorimetry of enzymatic biodiesel reaction

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Westh, Peter; Christensen, Knud Villy

    2010-01-01

      Isothermal calorimetry ITC has been used to investigate enzymatic biodiesel production. The transesterification of rapeseed oil with methanol and ethanol was catalyzed by the immobilized lipase Novozym 435 at 40°C. The ITC-experiments clearly demonstrate the possibilities of investigating complex...... and composition change in the system, the heat of reaction at 40°C for the two systems has been determined to -9.8 ± 0.9 kJ/mole biodiesel formed from rapeseed oil and methanol, and - 9.3 ± 0.7 kJ/mole when rapeseed oil and ethanol is used....

  12. Enzymatic deconstruction of xylan for biofuel production

    Science.gov (United States)

    DODD, DYLAN; CANN, ISAAC K. O.

    2010-01-01

    The combustion of fossil-derived fuels has a significant impact on atmospheric carbon dioxide (CO2) levels and correspondingly is an important contributor to anthropogenic global climate change. Plants have evolved photosynthetic mechanisms in which solar energy is used to fix CO2 into carbohydrates. Thus, combustion of biofuels, derived from plant biomass, can be considered a potentially carbon neutral process. One of the major limitations for efficient conversion of plant biomass to biofuels is the recalcitrant nature of the plant cell wall, which is composed mostly of lignocellulosic materials (lignin, cellulose, and hemicellulose). The heteropolymer xylan represents the most abundant hemicellulosic polysaccharide and is composed primarily of xylose, arabinose, and glucuronic acid. Microbes have evolved a plethora of enzymatic strategies for hydrolyzing xylan into its constituent sugars for subsequent fermentation to biofuels. Therefore, microorganisms are considered an important source of biocatalysts in the emerging biofuel industry. To produce an optimized enzymatic cocktail for xylan deconstruction, it will be valuable to gain insight at the molecular level of the chemical linkages and the mechanisms by which these enzymes recognize their substrates and catalyze their reactions. Recent advances in genomics, proteomics, and structural biology have revolutionized our understanding of the microbial xylanolytic enzymes. This review focuses on current understanding of the molecular basis for substrate specificity and catalysis by enzymes involved in xylan deconstruction. PMID:20431716

  13. Enzymatically crosslinked silk-hyaluronic acid hydrogels.

    Science.gov (United States)

    Raia, Nicole R; Partlow, Benjamin P; McGill, Meghan; Kimmerling, Erica Palma; Ghezzi, Chiara E; Kaplan, David L

    2017-07-01

    In this study, silk fibroin and hyaluronic acid (HA) were enzymatically crosslinked to form biocompatible composite hydrogels with tunable mechanical properties similar to that of native tissues. The formation of di-tyrosine crosslinks between silk fibroin proteins via horseradish peroxidase has resulted in a highly elastic hydrogel but exhibits time-dependent stiffening related to silk self-assembly and crystallization. Utilizing the same method of crosslinking, tyramine-substituted HA forms hydrophilic and bioactive hydrogels that tend to have limited mechanics and degrade rapidly. To address the limitations of these singular component scaffolds, HA was covalently crosslinked with silk, forming a composite hydrogel that exhibited both mechanical integrity and hydrophilicity. The composite hydrogels were assessed using unconfined compression and infrared spectroscopy to reveal of the physical properties over time in relation to polymer concentration. In addition, the hydrogels were characterized by enzymatic degradation and for cytotoxicity. Results showed that increasing HA concentration, decreased gelation time, increased degradation rate, and reduced changes that were observed over time in mechanics, water retention, and crystallization. These hydrogel composites provide a biologically relevant system with controllable temporal stiffening and elasticity, thus offering enhanced tunable scaffolds for short or long term applications in tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Enzymatic activity of fungi isolated from crops

    Directory of Open Access Journals (Sweden)

    Wioletta A. Żukiewicz-Sobczak

    2016-12-01

    Full Text Available Aim: To detect and assess the activity of extracellular hydrolytic enzymes and to find differences in enzymograms between fungi isolated from wheat and rye samples and grown on Czapek-Dox Broth and Sabouraud Dextrose Broth enriched with cereal (wheat or rye. Isolated strains were also classified in the scale of biosafety levels (BSL. Material and methods: The study used 23 strains of fungi cultured from samples of wheat and rye (grain, grain dust obtained during threshing and soil collected in the Lublin region (eastern Poland. API ZYM test (bioMérieux was carried out according to the manufacturer’s instructions. Classification of BSL (Biosafety levels was based on the current literature. Results : High enzymatic activity was found in strains cultured in media containing 1% of wheat grain ( Bipolaris holmi, Penicillium decumbens and with an addition of 1% of rye grain ( Cladosporium herbarum, Aspergillus versicolor, Alternaria alternata . The total number of enzymes varied depending on the type of media, and in most cases it was higher in the culture where an addition of cereal grains was used. Conclusions : Isolated strains of fungi reveal differences in the profiles of the enzyme assay. It can be assumed that the substrate enriched in grains stimulate the higher activity of mold enzymes. Key words: enzymatic activity, mold fungi, zymogram, biohazards.

  15. Enzymatic hydrolysis of lactose of whey permeate

    Directory of Open Access Journals (Sweden)

    Karina Nascimento de Almeida

    2015-09-01

    Full Text Available The whey permeate is the residual of the concentration process of the whey proteins by ultrafiltration method. It contains important nutrients such as lactose, minerals and some proteins and lipids. It is without an ending industrial waste that causes serious damage to the environment. For its full use the lactose must be hydrolyzed to enable its consumption by intolerant people. The enzymatic hydrolysis by lactase (β-galactosidase of Kluyveromyces lactis yeast is a safe method that does not compromise the integrity of other nutrients, enabling further use of the permeate as a raw material. This study aimed to perform tests of enzymatic hydrolysis of lactose in whey permeate formulations in a concentration of 0.2%, 0.7% and 1% at 30, 60 and 90 minutes with pH 6.3 medium and 37 °C. The reactions were monitored by high performance liquid chromatography which showed that the enzyme concentration of 0.7% at time 30 minutes formulations became safe for consumption by lactose intolerant people, according to minimum levels established by law.

  16. Lactose hydrolysis in an enzymatic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, B; Huyghebaert, A

    1987-10-01

    The enzymatic hydrolysis of lactose in whey permeate with subsequent recuperation of Saccharomyces lactis lactase by means of ultrafiltration was investigated. In whey permeate, S. lactis lactase shows maximal activity at pH 6.5; the optimal temperature was found to be 45/sup 0/C and is limited by strong thermal inactivation beyond this temperature. High activity combined with acceptable thermal inactivation (< 10% after 5 h incubation) was established at 30/sup 0/C. S. lactis lactase also displays considerable activity at low temperature (5/sup 0/C). Enzyme stability is reduced drastically by demineralisation: addition of low concentrations of manganese ions (10/sup -3/ M) considerably enhances stability. Using a DDS Lab-Unit 35 fitted with GR61PP polysulphon membranes (cut-off: 20.000), pilot scale experiments were carried out (pH 6.5; 30/sup 0/C) in which whey permeate was hydrolyzed to a degree of hydrolysis of 82% minimum. Enzyme recuperation amounted to 96.5% per batch, all enzyme activity loss being due to thermal inactivation. Microbiological examination of the enzymatic membrane reactor showed that growth of mcicroorganisms can largely be suppressed by working at lower temperature (5/sup 0/C). Eventually, 50 ppm H/sub 2/O/sub 2/ or sterile filtration will adequately solve microbiological problems without affecting enzyme activity.

  17. Enzymatic hydrolsis of pretreated rice straw

    Energy Technology Data Exchange (ETDEWEB)

    Vlasenko, E.Y.; Shoemaker, S.P. [California Inst. of Food and Agricultural Research, Davis, CA (United States); Ding, H. [California Univ., Davis (Canada). Dept. of Food Science and Technology; Labavitch, J.M. [California Univ., Davis, CA (United States). Dept. of Pomology

    1997-02-01

    California rice straw is being evaluated as a feedstock for production of power and fuel. This paper examines the initial steps in the process: pretreatment of rice straw and enzymatic hydrolysis of the polysaccharides in the pretreated material to soluble sugars. Rice straw was subjected to three distinct pretreatment procedures: acid-catalyzed steam explosion (Swan Biomass Company), acid hydrolysis (U.S. DOE National Renewable Energy Laboratory), and ammonia fiber explosion or AFEX (Texas A and M University). Standard conditions for each pretreatment were used, but none was optimized for rice straw specifically. Six commercial cellulases, products of Genencor International (USA), Novo (Denmark), Iogen (Canada) and Fermtech (Russia) were used for hydrolysis. The Swan- and the acid-pretreatments effectively removed hemicellulose from rice straw, providing high yields of fermentable sugars. The AFEX-pretreatment was distinctly different from other pretreatments in that it did not significantly solubilize hemicellulose. All three pretreatment procedures substantially increased enzymatic digestibility of rice straw. Three commercial Trichoderma-reesei-derived enzyme preparations: Cellulase 100L (Iogen), Spezyme CP (Genencor), and Al (Fermtech), were more active on pretreated rice straw compared than others tested. Conditions for hydrolysis of rice straw using Cellulase 100L were evaluated. The supplementation of this enzyme preparation with cellobiase (Novozyme 188) significantly improved the parameters of hydrolysis for the Swan- and the acid-pretreated materials, but did not affect the hydrolysis of the AFEX-pretreated rice straw. (Author)

  18. Enzymatic transesterification of used frying oils

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, S.; Hancsok, J. (Univ. of Pannonia, Veszprem (HU)), Email: hancsokj@almos.uni-pannon.hu

    2009-07-01

    The research of converting used frying oils to less harmful products with much higher value was forced by environmental, human biological and economical reasons. One possible pathway of the transformation is the enzymatic transesterification. Through the research work used frying oils (UFO) and sunflower oils (SO) from different origins were first properly pre-treated. Then the previously mentioned feeds and different mixtures of them were transesterified in the presence of Novozym 435 enzyme catalyst under different process conditions. Characteristics of the produced methyl esters were evaluated according to the requirements of EN 14214:2009 standard. We determined that the transesterification of used frying oils is not expediential in the presence of enzyme catalyst because the significant decreasing of catalyst activity. We have found proper UFO and SO mixtures and combination of process conditions (pressure: atmospheric, temperature: 54 +-1 deg C; methanol to triglyceride molar ratio: 4:1; reaction time: 16 hours) resulting in high (>90 %) yield of monoesters. We clearly established that the best results through the enzymatic transesterification were obtained with the improved sunflower oils containing the highest amount (>88 %) of oleic acid and the used frying oils originated from this source. (orig.)

  19. Study and optimisation of manganese oxide-based electrodes for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Staiti, P.; Lufrano, F. [CNR-ITAE, Istituto di Tecnologie Avanzate per l' Energia ' ' Nicola Giordano' ' , Via Salita S. Lucia n. 5, 98126 S. Lucia, Messina (Italy)

    2009-02-01

    A manganese oxide material was synthesised by an easy precipitation method based on reduction of potassium permanganate(VII) with a manganese(II) salt. The material was treated at different temperatures to study the effect of thermal treatment on capacitive property. The best capacitive performance was obtained with the material treated at 200 C. This material was used to prepare electrodes with different amounts of polymer binder, carbon black and graphite fibres to individuate the optimal composition that gave the best electrochemical performances. It was found that graphite fibres improve the electrochemical performance of electrodes. The highest specific capacitance (267 F g{sup -1} MnO{sub x}) was obtained with an electrode containing 70% of MnO{sub x}, 15% of carbon black, 10% of graphite fibres and 5% of PVDF. This electrode, with CB/GF ratio of 1.5, showed a higher utilization of manganese oxide. The results reported in the present paper further confirmed that manganese oxide is a very interesting material for supercapacitor application. (author)

  20. Unraveling the mechanism responsible for the contrasting tolerance of Synechocystis and Synechococcus to Cr(VI): Enzymatic and non-enzymatic antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Alka [Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Ballal, Anand, E-mail: aballal@barc.gov.in [Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 40085 (India)

    2015-07-15

    Highlights: • Cr(VI) accumulation generates higher ROS in Synechocystis than in Synechococcus. • Synechococcus exhibits better photosynthetic activity in response to Cr(VI). • Synechococcus has higher enzymatic/non-enzymatic antioxidants than Synechocystis. • Synechococcus shows better tolerance to other oxidative stresses than Synechocystis. • Differential detoxification of ROS is responsible for the contrasting tolerance to Cr(VI) - Abstract: Two unicellular cyanobacteria, Synechocystis and Synechococcus, showed contrasting tolerance to Cr(VI); with Synechococcus being 12-fold more tolerant than Synechocystis to potassium dichromate. The mechanism responsible for this differential sensitivity to Cr(VI) was explored in this study. Total content of photosynthetic pigments as well as photosynthetic activity decreased at lower concentration of Cr(VI) in Synechocystis as compared to Synechococcus. Experiments with {sup 51}Cr showed Cr to accumulate intracellularly in both the cyanobacteria. At lower concentrations, Cr(VI) caused excessive ROS generation in Synechocystis as compared to that observed in Synechococcus. Intrinsic levels of enzymatic antioxidants, i.e., superoxide dismutase, catalase and 2-Cys-peroxiredoxin were considerably higher in Synechococcus than Synechocystis. Content of total thiols (both protein as well as non-protein) and reduced glutathione (GSH) was also higher in Synechococcus as compared to Synechocystis. This correlated well with higher content of carbonylated proteins observed in Synechocystis than Synechococcus. Additionally, in contrast to Synechocystis, Synechococcus exhibited better tolerance to other oxidative stresses like high intensity light and H{sub 2}O{sub 2}. The data indicate that the disparity in the ability to detoxify ROS could be the primary mechanism responsible for the differential tolerance of these cyanobacteria to Cr(VI)

  1. Inhibiting mitochondrial β-oxidation selectively reduces levels of nonenzymatic oxidative polyunsaturated fatty acid metabolites in the brain.

    Science.gov (United States)

    Chen, Chuck T; Trépanier, Marc-Olivier; Hopperton, Kathryn E; Domenichiello, Anthony F; Masoodi, Mojgan; Bazinet, Richard P

    2014-03-01

    Schönfeld and Reiser recently hypothesized that fatty acid β-oxidation is a source of oxidative stress in the brain. To test this hypothesis, we inhibited brain mitochondrial β-oxidation with methyl palmoxirate (MEP) and measured oxidative polyunsaturated fatty acid (PUFA) metabolites in the rat brain. Upon MEP treatment, levels of several nonenzymatic auto-oxidative PUFA metabolites were reduced with few effects on enzymatically derived metabolites. Our finding confirms the hypothesis that reduced fatty acid β-oxidation decreases oxidative stress in the brain and β-oxidation inhibitors may be a novel therapeutic approach for brain disorders associated with oxidative stress.

  2. Comparison of the role that entropy has played in processes of non-enzymatic and enzymatic catalysis

    International Nuclear Information System (INIS)

    Dixon Pineda, Manuel Tomas

    2012-01-01

    The function that entropy has played is compared in processes of non-enzymatic and enzymatic catalysis. The processes followed are showed: the kinetics of the acid hydrolysis of 3-pentyl acetate and cyclopentyl acetate catalyzed by hydrochloric acid and enzymatic hydrolysis of ethyl acetate and γ-butyrolactone catalyzed by pig liver esterase. The activation parameters of Eyring were determined for each process and interpreted the contribution of the entropy of activation for catalysis in this type of model reactions. (author) [es

  3. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse.

    Science.gov (United States)

    Agarwal, Vinayak; Miles, Zachary D; Winter, Jaclyn M; Eustáquio, Alessandra S; El Gamal, Abrahim A; Moore, Bradley S

    2017-04-26

    Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.

  4. As(III) oxidation by MnO2 during groundwater treatment.

    Science.gov (United States)

    Gude, J C J; Rietveld, L C; van Halem, D

    2017-03-15

    The top layer of natural rapid sand filtration was found to effectively oxidise arsenite (As(III)) in groundwater treatment. However, the oxidation pathway has not yet been identified. The aim of this study was to investigate whether naturally formed manganese oxide (MnO 2 ), present on filter grains, could abiotically be responsible for As(III) oxidation in the top of a rapid sand filter. For this purpose As(III) oxidation with two MnO 2 containing powders was investigated in aerobic water containing manganese(II) (Mn(II)), iron(II) (Fe(II)) and/or iron(III) (Fe(III)). The first MnO 2 powder was a very pure - commercially available - natural MnO 2 powder. The second originated from a filter sand coating, produced over 22 years in a rapid filter during aeration and filtration. Jar test experiments showed that both powders oxidised As(III). However, when applying the MnO 2 in aerated, raw groundwater, As(III) removal was not enhanced compared to aeration alone. It was found that the presence of Fe(II)) and Mn(II) inhibited As(III) oxidation, as Fe(II) and Mn(II) adsorption and oxidation were preferred over As(III) on the MnO 2 surface (at pH 7). Therefore it is concluded that just because MnO 2 is present in a filter bed, it does not necessarily mean that MnO 2 will be available to oxidise As(III). However, unlike Fe(II), the addition of Fe(III) did not hinder As(III) oxidation on the MnO 2 surface; resulting in subsequent effective As(V) removal by the flocculating hydrous ferric oxides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass

    Science.gov (United States)

    Corredor, Deisy Y.

    The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (≈50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis

  6. Shape and topology optimization of enzymatic microreactors

    DEFF Research Database (Denmark)

    Pereira Rosinha, Ines

    for effective and cost efficient reactors for pharmaceutical processes forces the industry to search for better technologies. In biochemical engineering, the used reactor design in a given process is usually limited to a range of well-established configurations and layouts. Usually the implemented reactors...... in a chemical process do not always yield in the best reaction conditions.This thesis develops an innovative application of topology and shape optimization methods to achemical engineering problem. The main goal is to design a reactor according to the limitations of the reaction system by modifying the reactor...... configuration. In this thesis structural optimization methods were exclusively applied to enzymatic microreactors. The case studies were chosen such that they can be experimentally tested afterwards. In this way, the design of the reactor is customized to the reaction system and itcontributes to the reduction...

  7. PRETREATMENT OF LIGNOCELLULOSIC BIOMASS FOR ENZYMATIC HYDROLYSIS

    Directory of Open Access Journals (Sweden)

    Doan Thai Hoa

    2017-11-01

    Full Text Available The cost of raw materials continues to be a limiting factor in the production of bio-ethanol from traditional raw materials, such as sugar and starch. At the same time, there are large amount of agricultural residues as well as industrial wastes that are of low or negative value (due to costs of current effluent disposal methods. Dilute sulfuric acid pretreatment of elephant grass and wood residues for the enzymatic hydrolysis of cellulose has been investigated in this study.    Elephant grass (agricultural residue and sawdust (Pulp and Paper Industry waste with a small particulate size were treated using different dilute sulfuric acid concentrations at a temperature  of 140-170°C within 0.5-3 hours. The appropriate pretreatment conditions give the highest yield of soluble saccharides and total reducing sugars.

  8. Structure of the enzymatically synthesized fructan inulin

    International Nuclear Information System (INIS)

    Heyer, A.G.; Schroeer, B.; Radosta, S.; Wolff, D.; Czapla, S.; Springer, J.

    1998-01-01

    Construction, purification and characterization of a fusion protein of maltose-binding protein of Escherichia coli and the fructosyltransferase of Streptococcus mutans is described. With the purified protein, in vitro synthesis of inulin was performed. The obtained polysaccharide was characterized by high-performance size-exclusion chromatography (HPSEC) and static light scattering (SLS) in dilute aqueous and dimethyl sulfoxide solution. For all samples very high molecular weights between 60x10 6 and 90x10 6 g/mol and a remarkable small polydispersity index of 1.1 have been determined. Small root-mean-square radii of gyration point to a compact conformation in dilute solution. No difference between native and enzymatically synthesized inulin was observed by X-ray powder diffraction and thermoanalysis of solid samples. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Structure of the enzymatically synthesized fructan inulin

    Energy Technology Data Exchange (ETDEWEB)

    Heyer, A.G.; Schroeer, B. [Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Karl-Liebknecht-Str. 25, 14476 Golm (Germany); Radosta, S. [Fraunhofer-Institut fuer Angewandte Polymerforschung, Postfach 126, 14504 Teltow (Germany); Wolff, D.; Czapla, S.; Springer, J. [Technische Universitaet Berlin, FG Makromolekulare Chemie, Str. des 17. Juni 135, 10623 Berlin (Germany)

    1998-12-15

    Construction, purification and characterization of a fusion protein of maltose-binding protein of Escherichia coli and the fructosyltransferase of Streptococcus mutans is described. With the purified protein, in vitro synthesis of inulin was performed. The obtained polysaccharide was characterized by high-performance size-exclusion chromatography (HPSEC) and static light scattering (SLS) in dilute aqueous and dimethyl sulfoxide solution. For all samples very high molecular weights between 60x10{sup 6} and 90x10{sup 6} g/mol and a remarkable small polydispersity index of 1.1 have been determined. Small root-mean-square radii of gyration point to a compact conformation in dilute solution. No difference between native and enzymatically synthesized inulin was observed by X-ray powder diffraction and thermoanalysis of solid samples. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Enzymatic hydrolysis of corn bran arabinoxylan

    DEFF Research Database (Denmark)

    Agger, Jane

    as a model substrate because it represents a readily available agroindustrial side product with upgrading potentials. Corn bran originates from the wet-milling process in corn starch processing, is the outmost layers of the corn kernel and is particularly rich in pentose monosaccharides comprising the major...... in a complex and ridig cell wall structure. This thesis contains a thorough examination of the monosaccharide and structural composition of corn bran, which is used to assess and apply the relevant mono component enzyme preparations. In this way, the aim is to obtain the most effective minimal enzymatic......, especially with respect to xylose and glucose release, but vast amounts of the valuable monosaccharides are lost during this pretreatment and this is especially evident for arabinose. From a scientific point of view acid catalysed pretreatment renders the substrate in a state of disruption where assessment...

  11. Enzymatic production of ceramide from sphingomyelin

    DEFF Research Database (Denmark)

    Zhang, Long; Hellgren, Lars; Xu, Xuebing

    Ceramide is the key intermediate in the biosynthesis of all complex sphingolipids. Due to its major role in maintaining the water-retaining properties of the epidermis, ceramide is of great commercial potential in cosmetic and pharmaceuticals such as hair and skin care products. Currently, chemical...... contains a ceramide moiety, is a ubiquitous component of animal cell membranes, and dairy products or by-products is a rich source of sphingomyelin. It has been verified that enzymatic modification of sphingomyelin is a feasible approach for production of ceramide. The reaction system has been optimized...... through system evaluation and the optimization of several important factors. Sphingomyelin hydrolysis proved to be more efficient in two-phase (water: organic solvent) system than in one-phase (water-saturated organic solvent) system. Phospholipase C from Clostridium perfringens is the tested enzyme which...

  12. Direct electron transfer based enzymatic fuel cells

    International Nuclear Information System (INIS)

    Falk, Magnus; Blum, Zoltan; Shleev, Sergey

    2012-01-01

    In this mini-review we briefly describe some historical developments made in the field of enzymatic fuel cells (FCs), discussing important design considerations taken when constructing mediator-, cofactor-, and membrane-less biological FCs (BFCs). Since the topic is rather extensive, only BFCs utilizing direct electron transfer (DET) reactions on both the anodic and cathodic sides are considered. Moreover, the performance of mostly glucose/oxygen biodevices is analyzed and compared. We also present some unpublished results on mediator-, cofactor-, and membrane-less glucose/oxygen BFCs recently designed in our group and tested in different human physiological fluids, such as blood, plasma, saliva, and tears. Finally, further perspectives for BFC applications are highlighted.

  13. Isothermal calorimetry on enzymatic biodiesel production

    DEFF Research Database (Denmark)

    Fjerbæk, Lene

    2008-01-01

    information about effects taking place when using lipases immobilized on an inert carrier for transesterification of a triglyceride and an alcohol as for biodiesel production. The biodiesel is produced by rapeseed oil and methanol as well as ethanol and a commercial biocatalyst Novozym 435 from Novozymes...... containing a Candida Antarctica B lipase immobilized on an acrylic resin. The reaction investigated is characterized by immiscible liquids (oil, methanol, glycerol and biodiesel) and enzymes imm. on an inert carrier during reaction, which allows several effects to take place that during normal reaction...... conditions can not be elucidated. These effects have been observed with isothermal calorimetry bringing forth new information about the reaction of enzymes catalyzing transesterification. Enzymatic biodiesel production has until now not been investigated with isothermal microcalorimetry, but the results...

  14. Cascade enzymatic reactions for efficient carbon sequestration.

    Science.gov (United States)

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping

    2015-04-01

    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Radiation degradation and the subsequent enzymatic hydrolysis of waste paper

    International Nuclear Information System (INIS)

    Kamakura, M.; Kaetsu, I.

    1982-01-01

    Various studies have been carried out to find methods for the pretreatment of waste cellulosic materials to make them more susceptible to enzymatic hydrolysis. In the work reported here, the effects of preirradiating waste papers on subsequent enzymatic hydrolysis have been studied

  16. Blocked Enzymatic Etching of Gold Nanorods: Application to Colorimetric Detection of Acetylcholinesterase Activity and Its Inhibitors.

    Science.gov (United States)

    Saa, Laura; Grinyte, Ruta; Sánchez-Iglesias, Ana; Liz-Marzán, Luis M; Pavlov, Valeri

    2016-05-04

    The anisotropic morphology of gold nanorods (AuNRs) has been shown to lead to nonuniform ligand distribution and preferential etching through their tips. We have recently demonstrated that this effect can be achieved by biocatalytic oxidation with hydrogen peroxide, catalyzed by the enzyme horseradish peroxidase (HRP). We report here that modification of AuNRs with thiol-containing organic molecules such as glutathione and thiocholine hinders enzymatic AuNR etching. Higher concentrations of thiol-containing molecules in the reaction mixture gradually decrease the rate of enzymatic etching, which can be monitored by UV-vis spectroscopy through changes in the AuNR longitudinal plasmon band. This effect can be applied to develop novel optical assays for acetylcholinesterase (AChE) activity. The biocatalytic hydrolysis of acetylthiocholine by AChE yields thiocholine, which prevents enzymatic AuNR etching in the presence of HRP. Additionally, the same bioassay can be used for the detection of nanomolar concentrations of AChE inhibitors such as paraoxon and galanthamine.

  17. Next-Generation Catalysis for Renewables: Combining Enzymatic with Inorganic Heterogeneous Catalysis for Bulk Chemical Production

    DEFF Research Database (Denmark)

    Vennestrøm, Peter Nicolai Ravnborg; Christensen, C.H.; Pedersen, S.

    2010-01-01

    chemical platform under different conditions than those conventionally employed. Indeed, new process and catalyst concepts need to be established. Both enzymatic catalysis (biocatalysis) and heterogeneous inorganic catalysis are likely to play a major role and, potentially, be combined. One type...... of combination involves one-pot cascade catalysis with active sites from bio- and inorganic catalysts. In this article the emphasis is placed specifically on oxidase systems involving the coproduction of hydrogen peroxide, which can be used to create new in situ collaborative oxidation reactions for bulk...

  18. Enzymatic interesterification of vegetable oil/ fish oil blend for margarine production

    DEFF Research Database (Denmark)

    Ibrahim, Nuzul Amri Bin; Xu, Xuebing

    the desired properties. In this study, palm stearin (PS), palm kernel oil (PKO) and fish oil (FO) are blended and modified by enzymatic interesterification. PS functioned as the hard stock, PKO as the soft oil and FO as a source for eicosapentaenoic acid (EPA)/ docosahexaenoic acid (DHA). The purpose...... cause the product to be susceptible to oxidation due to the presence of high content of polyunsaturated fatty acids. Furthermore, FO could also influence the melting properties of the product. Therefore, in addition to determining the fatty acid position on the glycerol backbone, it is also pertinent...

  19. Biomonitoring of carcinogenic substances: enzymatic digestion of globin for detecting alkylated amino acids

    Science.gov (United States)

    Bader, Michael; Rauscher, Dankwart; Geibel, Kurt; Angerer, Juergen

    1993-03-01

    We report the application of proteases for the total hydrolysis of globin with subsequent determination of amino acids. Optimization of the proteolysis was made with respect to enzyme concentration, time of incubation and type of protease. Ethylene oxide modified globin was used to compare the results of the analysis of the N-terminal amino acid valine after enzymatic cleavage to those obtained from the widely used modified Edman procedure. It is shown that the cleavage is of good reproducibility and yields more alkylated amino acid than the Edman procedure.

  20. Enzymatic hydrolysis of biomimetic bacterial cellulose-hemicellulose composites.

    Science.gov (United States)

    Penttilä, Paavo A; Imai, Tomoya; Hemming, Jarl; Willför, Stefan; Sugiyama, Junji

    2018-06-15

    The production of biofuels and other chemicals from lignocellulosic biomass is limited by the inefficiency of enzymatic hydrolysis. Here a biomimetic composite material consisting of bacterial cellulose and wood-based hemicelluloses was used to study the effects of hemicelluloses on the enzymatic hydrolysis with a commercial cellulase mixture. Bacterial cellulose synthesized in the presence of hemicelluloses, especially xylan, was found to be more susceptible to enzymatic hydrolysis than hemicellulose-free bacterial cellulose. The reason for the easier hydrolysis could be related to the nanoscale structure of the substrate, particularly the packing of cellulose microfibrils into ribbons or bundles. In addition, small-angle X-ray scattering was used to show that the average nanoscale morphology of bacterial cellulose remained unchanged during the enzymatic hydrolysis. The reported easier enzymatic hydrolysis of bacterial cellulose produced in the presence of wood-based xylan offers new insights to overcome biomass recalcitrance through genetic engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Binderless solution processed Zn doped Co3O4 film on FTO for rapid and selective non-enzymatic glucose detection

    CSIR Research Space (South Africa)

    Chowdhury, M

    2016-09-01

    Full Text Available A simple solution based deposition process has been used to fabricate Zn doped Co(sub3)O(sub4) electrode as an electrocatalyst for non-enzymatic oxidation of glucose. XRD, HRTEM, SEM, EELS, AFM, EIS was used to characterise the electrode...

  2. A novel enzymatic system against oxidative stress in the thermophilic hydrogen-oxidizing bacterium Hydrogenobacter thermophilus.

    Directory of Open Access Journals (Sweden)

    Yuya Sato

    Full Text Available Rubrerythrin (Rbr is a non-heme iron protein composed of two distinctive domains and functions as a peroxidase in anaerobic organisms. A novel Rbr-like protein, ferriperoxin (Fpx, was identified in Hydrogenobacter thermophilus and was found not to possess the rubredoxin-like domain that is present in typical Rbrs. Although this protein is widely distributed among aerobic organisms, its function remains unknown. In this study, Fpx exhibited ferredoxin:NADPH oxidoreductase (FNR-dependent peroxidase activity and reduced both hydrogen peroxide (H(2O(2 and organic hydroperoxide in the presence of NADPH and FNR as electron donors. The calculated K(m and V(max values of Fpx for organic hydroperoxides were comparable to that for H(2O(2, demonstrating a multiple reactivity of Fpx towards hydroperoxides. An fpx gene disruptant was unable to grow under aerobic conditions, whereas its growth profiles were comparable to those of the wild-type strain under anaerobic and microaerobic conditions, clearly indicating the indispensability of Fpx as an antioxidant of H. thermophilus in aerobic environments. Structural analysis suggested that domain-swapping occurs in Fpx, and this domain-swapped structure is well conserved among thermophiles, implying the importance of structural stability of domain-swapped conformation for thermal environments. In addition, Fpx was located on a deep branch of the phylogenetic tree of Rbr and Rbr-like proteins. This finding, taken together with the wide distribution of Fpx among Bacteria and Archaea, suggests that Fpx is an ancestral type of Rbr homolog that functions as an essential antioxidant and may be part of an ancestral peroxide-detoxification system.

  3. Adsorption of arsenite and selenite using an inorganic ion exchanger based on Fe–Mn hydrous oxide

    KAUST Repository

    Szlachta, Małgorzata; Gerda, Vasyl; Chubar, Natalia

    2012-01-01

    The adsorption behaviour and mechanism of As(III) and Se(IV) oxyanion uptake using a mixed inorganic adsorbent were studied. The novel adsorbent, based on Fe(III)-Mn(III) hydrous oxides and manganese(II) carbonate, was synthesised using a hydrothermal precipitation approach in the presence of urea. The inorganic ion exchanger exhibited a high selectivity and adsorptive capacity towards As(III) (up to 47.6mg/g) and Se(IV) (up to 29.0mg/g), even at low equilibrium concentration. Although pH effects were typical for anionic species (i.e., the adsorption decreased upon pH increase), Se(IV) was more sensitive to pH changes than As(III). The rates of adsorption of both oxyanions were high. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) studies showed that the ion exchange adsorption of both anions took place via OH - groups, mainly from Fe(III) but also Mn(III) hydrous oxides. MnCO 3 did not contribute directly to As(III) and Se(IV) removal. A higher adsorptive capacity of the developed material towards As(III) was partly due to partial As(III) oxidation during adsorption. © 2011 Elsevier Inc.

  4. Application of extended Kalman filter to identification of enzymatic deactivation.

    Science.gov (United States)

    Caminal, G; Lafuente, J; López-Santín, J; Poch, M; Solà, C

    1987-02-01

    A recursive estimation scheme, the Extended Kalman Filter (EKF) technique, was applied to study enzymatic deactivation in the enzymatic hydrolysis of pretreated cellulose using a model previously developed by the authors. When no deactivation model was assumed, the results showed no variation with time for all the model parameters except for the maximum rate of cellobiose-to-glucose conversion (r'(m)).The r'(m) variation occurred in two zones with a grace period. A new model of enzymatic hydrolysis of pretreated cellulose deactivation was proposed and validated showing better behavior than the old deactivation model. This approach allows one to study enzyme deactivation without additional experiments and within operational conditions.

  5. In Situ Enzymatically Generated Photoswitchable Oxidase Mimetics and Their Application for Colorimetric Detection of Glucose Oxidase.

    Science.gov (United States)

    Cao, Gen-Xia; Wu, Xiu-Ming; Dong, Yu-Ming; Li, Zai-Jun; Wang, Guang-Li

    2016-07-09

    In this study, a simple and amplified colorimetric assay is developed for the detection of the enzymatic activity of glucose oxidase (GOx) based on in situ formation of a photoswitchable oxidase mimetic of PO₄(3-)-capped CdS quantum dots (QDs). GOx catalyzes the oxidation of 1-thio-β-d-glucose to give 1-thio-β-d-gluconic acid which spontaneously hydrolyzes to β-d-gluconic acid and H₂S; the generated H₂S instantly reacts with Cd(2+) in the presence of Na₃PO₄ to give PO₄(3-)-stabilized CdS QDs in situ. Under visible-light (λ ≥ 400 nm) stimulation, the PO₄(3-)-capped CdS QDs are a new style of oxidase mimic derived by producing some active species, such as h⁺, (•)OH, O₂(•-) and a little H₂O₂, which can oxidize the typical substrate (3,3,5,5-tetramethylbenzydine (TMB)) with a color change. Based on the GOx-triggered growth of the oxidase mimetics of PO₄(3-)-capped CdS QDs in situ, we developed a simple and amplified colorimetric assay to probe the enzymatic activity of GOx. The proposed method allowed the detection of the enzymatic activity of GOx over the range from 25 μg/L to 50 mg/L with a low detection limit of 6.6 μg/L. We believe the PO₄(3-)-capped CdS QDs generated in situ with photo-stimulated enzyme-mimicking activity may find wide potential applications in biosensors.

  6. Aqueous enzymatic extraction of Moringa oleifera oil.

    Science.gov (United States)

    Mat Yusoff, Masni; Gordon, Michael H; Ezeh, Onyinye; Niranjan, Keshavan

    2016-11-15

    This paper reports on the extraction of Moringa oleifera (MO) oil by using aqueous enzymatic extraction (AEE) method. The effect of different process parameters on the oil recovery was discovered by using statistical optimization, besides the effect of selected parameters on the formation of its oil-in-water cream emulsions. Within the pre-determined ranges, the use of pH 4.5, moisture/kernel ratio of 8:1 (w/w), and 300stroke/min shaking speed at 40°C for 1h incubation time resulted in highest oil recovery of approximately 70% (goil/g solvent-extracted oil). These optimized parameters also result in a very thin emulsion layer, indicating minute amount of emulsion formed. Zero oil recovery with thick emulsion were observed when the used aqueous phase was re-utilized for another AEE process. The findings suggest that the critical selection of AEE parameters is key to high oil recovery with minimum emulsion formation thereby lowering the load on the de-emulsification step. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Enzymatic Systems for Cellulose Acetate Degradation

    Directory of Open Access Journals (Sweden)

    Oskar Haske-Cornelius

    2017-09-01

    Full Text Available Cellulose acetate (CA-based materials, like cigarette filters, contribute to landscape pollution challenging municipal authorities and manufacturers. This study investigates the potential of enzymes to degrade CA and to be potentially incorporated into the respective materials, enhancing biodegradation. Deacetylation studies based on Liquid Chromatography-Mass Spectrometry-Time of Flight (LC-MS-TOF, High Performance Liquid Chromatography (HPLC, and spectrophotometric analysis showed that the tested esterases were able to deacetylate the plasticizer triacetin (glycerol triacetate and glucose pentaacetate (cellulose acetate model compound. The most effective esterases for deacetylation belong to the enzyme family 2 (AXE55, AXE 53, GAE, they deacetylated CA with a degree of acetylation of up to 1.8. A combination of esterases and cellulases showed synergistic effects, the absolute glucose recovery for CA 1.8 was increased from 15% to 28% when an enzymatic deacetylation was performed. Lytic polysaccharide monooxygenase (LPMO, and cellobiohydrolase were able to cleave cellulose acetates with a degree of acetylation of up to 1.4, whereas chitinase showed no activity. In general, the degree of substitution, chain length, and acetyl group distribution were found to affect CA degradation. This study shows that, for a successful enzyme-based deacetylation system, a cocktail of enzymes, which will randomly cleave and generate shorter CA fragments, is the most suitable.

  8. Non-enzymatic U(VI) interactions with biogenic mackinawite

    Science.gov (United States)

    Veeramani, H.; Qafoku, N. P.; Kukkadapu, R. K.; Murayama, M.; Hochella, M. F.

    2011-12-01

    Reductive immobilization of hexavalent uranium [U(VI)] by stimulation of dissimilatory metal and/or sulfate reducing bacteria (DMRB or DSRB) has been extensively researched as a remediation strategy for subsurface U(VI) contamination. These bacteria derive energy by reducing oxidized metals as terminal electron acceptors, often utilizing organic substrates as electron donors. Thus, when evaluating the potential for in-situ uranium remediation in heterogeneous subsurface media, it is important to understand how the presence of alternative electron acceptors such as Fe(III) and sulfate affect U(VI) remediation and the long term behavior and reactivity of reduced uranium. Iron, an abundant subsurface element, represents a substantial sink for electrons from DMRB, and the reduction of Fe(III) leads to the formation of dissolved Fe(II) or to reactive biogenic Fe(II)- and mixed Fe(II)/Fe(III)- mineral phases. Consequently, abiotic U(VI) reduction by reactive forms of biogenic Fe(II) minerals could be a potentially important process for uranium immobilization. In our study, the DMRB Shewanella putrefaciens CN32 was used to synthesize a biogenic Fe(II)-bearing sulfide mineral: mackinawite, that has been characterized by XRD, SEM, HRTEM and Mössbauer spectroscopy. Batch experiments involving treated biogenic mackinawite and uranium (50:1 molar ratio) were carried out at room temperature under strict anoxic conditions. Following complete removal of uranium from solution, the biogenic mackinawite was analyzed by a suite of analytical techniques including XAS, HRTEM and Mössbauer spectroscopy to determine the speciation of uranium and investigate concomitant Fe(II)-phase transformation. Determining the speciation of uranium is critical to success of a remediation strategy. The present work elucidates non-enzymatic/abiotic molecular scale redox interactions between biogenic mackinawite and uranium.

  9. Enzymatic polymerization of aniline in the presence of different inorganic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Loyola, E. [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna No. 140, CP 25100 Saltillo, Coah (Mexico); Escuela de Ciencias Biologicas, UA de C. Carr. Torreon-Matamoros Km 7.5, Ciudad Universitaria, CP 27400 Torreon, Coah. (Mexico)], E-mail: erika-flores@mail.uadec.mx; Cruz-Silva, R. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, UAEM. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca Mor. (Mexico); Romero-Garcia, J.; Angulo-Sanchez, J.L. [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna No. 140, CP 25100 Saltillo, Coah (Mexico); Castillon, F.F.; Farias, M.H. [Centro de Ciencias de la Materia Condensada de la UNAM, Apdo. Postal 2681, CP 22800 Ensenada, B.C. (Mexico)

    2007-09-15

    The effect of different inorganic substrates in the structure of polyaniline synthesized by enzymatic oxidation was studied. The polymer characterization was done by electronic absorption and X-ray photoelectron spectroscopy. The substrates studied were: controlled pore glass, mordenite, zeolite Y, zeolite MCM-41, Wollastonite, silica gel, fuming silica and short glass fibers type E. Polyaniline was synthesized in the presence of the substrates under acidic aqueous conditions, using hydrogen peroxide as oxidizer and HRP or SBP enzymes as catalyst. The composition of the substrates strongly affected the degree of electronic conjugation of the synthesized polyaniline, whereas the pore size and the enzyme type apparently had no effect. The chemical structure of polyaniline enzymatically synthesized was more sensitive to the substrate composition than that chemically synthesized. Apparently substrates containing alkaline ions, such as sodium and calcium, promoted the formation of the branched, non-conductive polyaniline form. The effect of the substrates on the polyaniline structure can be explained considering the local pH effect of the templates surface on the coupling reaction of aniline radicals.

  10. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene.

    Science.gov (United States)

    Jiang, Ding; Liu, Qian; Wang, Kun; Qian, Jing; Dong, Xiaoya; Yang, Zhenting; Du, Xiaojiao; Qiu, Baijing

    2014-04-15

    Copper nanoparticles (NPs) decorated nitrogen-doped graphene (Cu-N-G) was prepared by a facile thermal treatment, and further employed as a novel sensing material for fabricating the sensitive non-enzymatic glucose sensor. Compared with pure Cu NPs, the Cu-N-G showed enhanced electrocatalytic activity to glucose oxidation due to the integration of N-G, which exhibited the oxidation peak current of glucose ca. 23-fold higher than that of pure Cu NPs. The presented sensor showed excellent performances for glucose detection including wide linear range of 0.004-4.5 mM, low detection limit (1.3 μM, S/N=3), high sensitivity (48.13 μA mM(-1)), fast response time (doped graphene as enhanced materials in fabricating sensors for chemical and biochemical analysis. © 2013 Published by Elsevier B.V.

  11. Non-Enzymatic Glucose Biosensor Based on CuO-Decorated CeO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Panpan Guan

    2016-08-01

    Full Text Available Copper oxide (CuO-decorated cerium oxide (CeO2 nanoparticles were synthesized and used to detect glucose non-enzymatically. The morphological characteristics and structure of the nanoparticles were characterized through transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The sensor responses of electrodes to glucose were investigated via an electrochemical method. The CuO/CeO2 nanocomposite exhibited a reasonably good sensitivity of 2.77 μA mM−1cm−2, an estimated detection limit of 10 μA, and a good anti-interference ability. The sensor was also fairly stable under ambient conditions.

  12. Laboratory scale production of glucose syrup by the enzymatic ...

    African Journals Online (AJOL)

    Jen

    Laboratory scale production of glucose syrup by the enzymatic ... The industrial processing of starch to glucose, maltose and dextrin involves gelatinization, ... due to non-availability of appropriate technology and industry to harness these into.

  13. [Methods for enzymatic determination of triglycerides in liver homogenates].

    Science.gov (United States)

    Höhn, H; Gartzke, J; Burck, D

    1987-10-01

    An enzymatic method is described for the determination of triacylglycerols in liver homogenate. In contrast to usual methods, higher reliability and selectivity are achieved by omitting the extraction step.

  14. Recent insights in enzymatic synthesis of fructooligosaccharides from inulin.

    Science.gov (United States)

    Singh, Ram Sarup; Singh, Rupinder Pal; Kennedy, John F

    2016-04-01

    In the past few years, people are paying more attention to their dietary habits, and functional foods are playing a key role in maintaining the health of man. Prebiotics are considered as a main component of the functional foods which are usually composed of short chains of carbohydrates. Fructooligosaccharides (FOSs) are considered as one of the main group of prebiotics which have recognisable bifidogenic properties. FOSs are obtained either by extraction from various plant materials or by enzymatic synthesis from different substrates. Enzymatically, these can be obtained either from sucrose using fructosyltransferase or from inulin by endoinulinase. Inulin is a potent substrate for the enzymatic production of FOSs. This review article will provide an overview on the inulin as potent substrate, microbial sources of endoinulinases, enzymatic synthesis of FOSs from inulin, commercial status of FOSs, and their future perspectives. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Process technology for multi-enzymatic reaction systems

    DEFF Research Database (Denmark)

    Xue, Rui; Woodley, John M.

    2012-01-01

    In recent years, biocatalysis has started to provide an important green tool in synthetic organic chemistry. Currently, the idea of using multi-enzymatic systems for industrial production of chemical compounds becomes increasingly attractive. Recent examples demonstrate the potential of enzymatic...... synthesis and fermentation as an alternative to chemical-catalysis for the production of pharmaceuticals and fine chemicals. In particular, the use of multiple enzymes is of special interest. However, many challenges remain in the scale-up of a multi-enzymatic system. This review summarizes and discusses...... the technology options and strategies that are available for the development of multi-enzymatic processes. Some engineering tools, including kinetic models and operating windows, for developing and evaluating such processes are also introduced....

  16. Biosensing strategies based on enzymatic reactions and nanoparticles.

    Science.gov (United States)

    Díez-Buitrago, Beatriz; Briz, Nerea; Liz-Marzán, Luis M; Pavlov, Valeri

    2018-04-16

    Enzymes are pivotal elements in bioanalysis due to their specificity and extremely high catalytic activity. The sensitivity of bioanalytical assays depends mainly on the capacity of an observer to detect the product(s) of a biocatalytic reaction. Both natural and artificial compounds have been traditionally used to evaluate enzymatic activities. The drawbacks of chromogenic and fluorogenic organic enzymatic substrates are their high cost and low stability, resulting in high background signals. We review here state of the art assays in the detection of enzymatic activities using recent advances in nanoscience. Novel methods based on the use of nanoparticles lead to increased sensitivity and decreased costs for bioanalysis based on enzymes as recognition elements and signal amplifiers in Enzyme-Linked Immunosorbent Assays (ELISA). Novel approaches toward the detection of enzymatic activities are based on biocatalytic synthesis, modulation, etching, and aggregation of nanoparticles under physiological conditions.

  17. Modelling of the enzymatic kinetically controlled synthesis of cephalexin

    NARCIS (Netherlands)

    Schroën, C.G.P.H.; Fretz, C.B.; Bruin, de V.H.; Berendsen, W.; Moody, H.M.; Roos, E.C.; Roon, van J.L.; Kroon, P.J.; Strubel, M.; Janssen, A.E.M.; Tramper, J.

    2002-01-01

    In this study the influence of diffusion limitation on enzymatic kinetically controlled cephalexin synthesis from phenylglycine amide and 7-aminodeacetoxycephalosporinic acid (7-ADCA) was investigated systematically. It was found that if diffusion limitation occurred, both the synthesis/hydrolysis

  18. Factors of enzymatic biodiesel production from sludge palm oil (SPO ...

    African Journals Online (AJOL)

    ika

    2013-07-31

    Jul 31, 2013 ... Biodiesel is a non-toxic, renewable and environmental friendly fuel. This study ... of biodiesel from sludge palm oil (SPO), a low-cost waste oil via enzymatic catalysis. ... Increasing energy crisis and environmental concerns by.

  19. Enzymatic labelling of. gamma. -globulin and insulin with iodine-125

    Energy Technology Data Exchange (ETDEWEB)

    Lucka, B; Russin, K [Institute of Nuclear Physics, Krakow (Poland)

    1979-01-01

    The parameters of enzymatic labelling of proteins with iodine 125 were examined. The manner and sequence of reagent addition, the effects of reagent concentration, reaction time and total Na/sup 125/I activity on the labelling yield were determined.

  20. Kinetics of enzymatic hydrolysis of methyl ricinoleate

    Directory of Open Access Journals (Sweden)

    Neeharika, T. S.V.R.

    2015-12-01

    Full Text Available Ricinoleic acid is an unsaturated hydroxy fatty acid that naturally occurs in castor oil in proportions of up to 85–90%. Ricinoleic acid is a potential raw material and finds several applications in coatings, lubricant formulations and pharmaceutical areas. Enzymatic hydrolysis of castor oil is preferred over conventional hydrolysis for the preparation of ricinoleic acid to avoid estolide formation. A kinetics analysis of the enzymatic hydrolysis of Methyl Ricinoleate in the presence of Candida antarctica Lipase B was carried out in this study by varying reaction temperature (40–60 °C and enzyme concentration (2–5%. The optimal conditions were found to be 6 h reaction time, temperature 60°C, buffer to methyl ricinoleate ratio 2:1(v/w and 4% enzyme concentration to achieve a maximum conversion of 98.5%. A first order reversible reaction kinetic model was proposed to describe this reaction and a good agreement was observed between the experimental data and the model values. The effect of temperature on the forward reaction rate constant was determined by fitting data to the Arrhenius equation. The activation energy for forward reaction was found to be 14.69 KJ·mol−1.El ácido ricinoleico es un hidroxiácido insaturado que se produce naturalmente en el aceite de ricino en proporciones de hasta el 85–90%. El ácido ricinoleico es una materia prima con gran potencial y tiene aplicaciones en revestimientos, formulaciones lubricantes y en áreas farmacéuticas. Para la preparación del ácido ricinoleico se prefiere la hidrólisis enzimática del aceite de ricino a la hidrólisis convencional, para evitar la formación de estólidos. En este estudio se llevó a cabo la cinética de la hidrólisis enzimática del ricinoleato de metilo en presencia de lipasa de Candida antarctica B mediante la variación de la temperatura de reacción (40–60 °C y la concentración de la enzima (2–5%. Las condiciones óptimas de la reacción para

  1. Nanocrystal Bioassembly: Asymmetry, Proximity, and Enzymatic Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Claridge, Shelley A. [Univ. of California, Berkeley, CA (United States)

    2008-05-01

    Research at the interface between biomolecules and inorganic nanocrystals has resulted in a great number of new discoveries. In part this arises from the synergistic duality of the system: biomolecules may act as self-assembly agents for organizing inorganic nanocrystals into functional materials; alternatively, nanocrystals may act as microscopic or spectroscopic labels for elucidating the behavior of complex biomolecular systems. However, success in either of these functions relies heavily uponthe ability to control the conjugation and assembly processes.In the work presented here, we first design a branched DNA scaffold which allows hybridization of DNA-nanocrystal monoconjugates to form discrete assemblies. Importantly, the asymmetry of the branched scaffold allows the formation of asymmetric2assemblies of nanocrystals. In the context of a self-assembled device, this can be considered a step toward the ability to engineer functionally distinct inputs and outputs.Next we develop an anion-exchange high performance liquid chromatography purification method which allows large gold nanocrystals attached to single strands of very short DNA to be purified. When two such complementary conjugates are hybridized, the large nanocrystals are brought into close proximity, allowing their plasmon resonances to couple. Such plasmon-coupled constructs are of interest both as optical interconnects for nanoscale devices and as `plasmon ruler? biomolecular probes.We then present an enzymatic ligation strategy for creating multi-nanoparticle building blocks for self-assembly. In constructing a nanoscale device, such a strategy would allow pre-assembly and purification of components; these constructs can also act as multi-label probes of single-stranded DNA conformational dynamics. Finally we demonstrate a simple proof-of-concept of a nanoparticle analog of the polymerase chain reaction.

  2. The enzymatic and antioxidative stress response of Lemna minor to copper and a chloroacetamide herbicide.

    Science.gov (United States)

    Obermeier, Michael; Schröder, Christian A; Helmreich, Brigitte; Schröder, Peter

    2015-12-01

    Lemna minor L., a widely used model plant for toxicity tests has raised interest for its application to phytoremediation due to its rapid growth and ubiquitous occurrence. In rural areas, the pollution of water bodies with heavy metals and agrochemicals poses a problem to surface water quality. Among problematic compounds, heavy metals (copper) and pesticides are frequently found in water bodies. To establish duckweed as a potential plant for phytoremediation, enzymatic and antioxidative stress responses of Lemna minor during exposure to copper and a chloroacetamide herbicide were investigated in laboratory studies. The present study aimed at evaluating growth and the antioxidative and glutathione-dependent enzyme activity of Lemna plants and its performance in a scenario for phytoremediation of copper and a chloroacetamide herbicide. Lemna minor was grown in Steinberg medium under controlled conditions. Plants were treated with CuSO4 (ion conc. 50 and 100 μg/L) and pethoxamide (1.25 and 2.5 μg/L). Measurements following published methods focused on plant growth, oxidative stress, and basic detoxification enzymes. Duckweed proved to survive treatment with the respective concentrations of both pollutants very well. Its growth was inhibited scarcely, and no visible symptoms occurred. On the cellular basis, accumulation of O2(-) and H2O2 were detected, as well as stress reactions of antioxidative enzymes. Duckweed detoxification potential for organic pollutants was high and increased significantly with incubation. Pethoxamide was found to be conjugated with glutathione. Copper was accumulated in the fronds at high levels, and transient oxidative defense reactions were triggered. This work confirms the significance of L. minor for the removal of copper from water and the conjugation of the selective herbicide pethoxamide. Both organic and inorganic xenobiotics induced different trends of enzymatic and antioxidative stress response. The strong increase of stress

  3. CuO nanoparticles supported on nitrogen and sulfur co-doped graphene nanocomposites for non-enzymatic glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meixia [Hebei University of Engineering, Faculty of Material Science and Engineering (China); Guo, Qingbin, E-mail: guoqingbinhue@163.com [Hebei University of Engineering, Academic Affairs office (China); Xie, Juan; Li, Yongde; Feng, Yapeng [Hebei University of Engineering, Faculty of Material Science and Engineering (China)

    2017-01-15

    Developing highly active catalysts to promote the electrocatalytic glucose oxidation (EGO) is a crucial demand for non-enzymatic glucose sensing. Herein, we reported the use of nitrogen and sulfur co-doped graphene (NSG) as a novel support material for anchoring CuO nanoparticles and obtained CuO/NSG was employed as an efficient EGO catalyst for non-enzymatic glucose sensing. The results showed that the NSG endowed the CuO/NSG with large surface area, increased structural defects, improved conductivity, and strong covalent coupling between NSG and CuO. Owing to the significant contribution of NSG and the synergistic effect of NSG and CuO, the CuO/NSG exhibited a remarkably higher EGO activity than CuO and CuO/reduced graphene oxide. The CuO/NSG-based sensor displayed excellent glucose sensing performances with a considerably low detection limit of 0.07 μM. These findings elucidate that the NSG is a promising support material for non-enzymatic glucose detection.

  4. ENZYMATIC CHANGES IN SNAKE ENVENOMATION- AN OBSERVATIONAL STUDY

    Directory of Open Access Journals (Sweden)

    Sidharth Kapoor

    2017-06-01

    levels were reduced to 3.27 mmol/L. CONCLUSION It was found that the mean rise in AST level was higher in neurotoxic cases than in haemotoxic cases on day 0, but on day 4, haemotoxic cases had still higher levels, but the value of AST had trend towards normalisation in neurotoxic cases. Since the mortality figures were too low to perform statistical analysis, the prognostic value of these changes could not be determined, hence, a larger study will be more informative. Since there is only one study available in literature in which effect of viperine venom enzymatic changes on male albino rats was studied, no definite conclusions could be drawn on the clinical studied, no definite conclusions could be drawn on the clinical implications of such changes in enzymatic assay after snake envenomation in human beings. Secondly, it is still not clear whether the oxidative stress after snake envenomation is because of effect on venom or is just on epiphenomenon, therefore, further work of similar nature is required before drawing definite conclusion.

  5. Enzymatic reduction of U(VI) in groundwaters; Reduction enzymatique de U(VI) dans des eaux souterraines

    Energy Technology Data Exchange (ETDEWEB)

    Addelouas, A.; Gong, W. [Center for Radioactive Waste Management, Advanced Materials Laboratory, 1001 University, Albuquerque (United States); Lutze, W.; Nuttall, E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Fritz, B.; Crovisier, J.L. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Centre de Sedimentologie et Geochimie de la Surface

    1999-03-01

    The use of enzymatic reduction of U(VI) in remediation of groundwater contaminated with U(VI) is receiving considerable attention. Certain strains of bacteria can combine the oxidation of an organic compound to the reduction of U(VI) to U(IV), which precipitates as uraninite. In the present study, we tested the reduction of U(VI) in groundwaters with various origins and compositions. In all groundwaters u(VI) was reduced by sulfate reducing bacteria that had been activated by ethanol and tri-metaphosphate. The reduction rate of U(VI) depends on sulfate concentration in water and the abundance of bacteria in the system. This work shows that bacteria capable of U(VI) reduction are ubiquitous in nature, and suggests the possibility of a large application of the enzymatic reduction of U(VI) for in situ clean up of groundwaters contaminated with uranium. (authors) 12 refs.

  6. Role of enzymatic and non enzymatic antioxidant in ameliorating salinity induced damage in nostoc muscorum

    International Nuclear Information System (INIS)

    Hend, A.; Abeer, A.; Allah, A.

    2015-01-01

    Presence of high salt concentration in the growth medium adversely affected the plant growth and productivity by altering its metabolic activities. Experiments were conducted on cyanobacteriaum Nostoc muscorum grown in nitrogen free medium supplemented with 250 mM NaCl to evaluate the salt stress induced changes in growth, antioxidants and lipid composition. Salt stress significantly reduced the growth and physio-biochemical attributes. Salt stress increased malonaldehyde content thereby causing alterations in the lipid fraction. Significant reduction in polyunsaturated fatty acids including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI) and phosphatidylserine (PS) was observed. Where as diacylglycerol, sterol ester and non-esterified fatty acids were increased. Activities of antioxidant enzymes and contents of non-enzymatic antioxidants including glutathione enhanced due to salt stress. An increase in accumulation of proline was also observed. Hence increased activity of antioxidants and altered fatty acid composition was observed in salt stressed Nostoc muscorum. (author)

  7. Synthesis and characterization of iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes of salicylidene-N-anilinoacetohydrazone (H2L1) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H2L2).

    Science.gov (United States)

    AbouEl-Enein, S A; El-Saied, F A; Kasher, T I; El-Wardany, A H

    2007-07-01

    Salicylidene-N-anilinoacetohydrazone (H(2)L(1)) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H(2)L(2)) and their iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes have been synthesized and characterized by IR, electronic spectra, molar conductivities, magnetic susceptibilities and ESR. Mononuclear complexes are formed with molar ratios of 1:1, 1:2 and 1:3 (M:L). The IR studies reveal various modes of chelation. The electronic absorption spectra and magnetic susceptibility measurements show that the iron(III), nickel(II) and cobalt(II) complexes of H(2)L(1) have octahedral geometry. While the cobalt(II) complexes of H(2)L(2) were separated as tetrahedral structure. The copper(II) complexes have square planar stereochemistry. The ESR parameters of the copper(II) complexes at room temperature were calculated. The g values for copper(II) complexes proved that the Cu-O and Cu-N bonds are of high covalency.

  8. Seawater operating bio-photovoltaic cells coupling semiconductor photoanodes and enzymatic biocathodes

    DEFF Research Database (Denmark)

    Zhang, Lingling; Alvarez-Martos, Isabel; Vakurov, Alexander

    2017-01-01

    and inexpensive way. Here, we report clean and sustainable conversion of solar energy into electricity by photo-and bio-electrocatalytic recycling of the H2O/O-2 redox couple in a hybrid bio-photovoltaic (BPV) membraneless cell comprising a sunlight-illuminated water-oxidizing semiconductor anode (either Zn......-doped hematite or TiO2) and an oxygen-reducing enzymatic biocathode, in such environmental media as seawater. Upon simulated solar light illumination (AM 1.5G, 100 mW cm(-2)), the maximum power density (P-max) generated by the cell was 236 and 21.4 mu W cm(-2) in 1 M Tris-HCl and seawater, both at pH 8...... thermodynamically feasible coupling of cost-effective photoactive materials such as TiO2 or hematite semiconductors and enzymatic counterparts in seawater media opens a prospective clean and sustainable way of transformation of the most abundant, clean and renewable source of energy - solar light - and the Earth...

  9. A Highly Sensitive Electrochemical Glucose Sensor By Nickel-Epoxy Electrode With Non-Enzymatic Sensor

    Directory of Open Access Journals (Sweden)

    Riyanto Riyanto

    2016-03-01

    Full Text Available The preparation of new sensor for glucose was based on the fact that glucose can be determined by non-enzymatic glucose oxidase. The Ni metals (99.98% purity, 0.5 mm thick, Aldrich Chemical Company was used to prepare Ni-Epoxy electrode. The Ni-epoxy electrodes were prepared in square cut of 1 cm and 1 mm by length and wide respectively. The Ni metal electrodes were connected to silver wire with silver conducting paint prior covered with epoxy gum. The prepared of nickel-epoxy modified electrode showed outstanding electro catalytic activity toward the oxidation of glucose in alkaline solution. The result from this research are correlation of determination using Nickel-Epoxyelectrode for electroanalysis of glucose in NaOH was R2 = 0.9984. LOQ, LOD and recovery of the Nickel-Epoxy electrode towards glucose were found to be 4.4 μM, 1.48 μM and 98.19%, respectively. The Nickel-Epoxy wire based electrochemical glucose sensor demonstrates good sensitivity, wide linear range, outstanding detection limit, attractive selectivity, good reproducibility, high stability as well as prominent feasibility use of non-enzymatic sensor for monitoring glucose in human urine owing to its advantages of low cost, simple preparation and excellent properties for glucose detection.

  10. Colorimetric method for enzymatic screening assay of ATP using Fe(III)-xylenol orange complex formation.

    Science.gov (United States)

    Ishida, Akihiko; Yamada, Yasuko; Kamidate, Tamio

    2008-11-01

    In hygiene management, recently there has been a significant need for screening methods for microbial contamination by visual observation or with commonly used colorimetric apparatus. The amount of adenosine triphosphate (ATP) can serve as the index of a microorganism. This paper describes the development of a colorimetric method for the assay of ATP, using enzymatic cycling and Fe(III)-xylenol orange (XO) complex formation. The color characteristics of the Fe(III)-XO complexes, which show a distinct color change from yellow to purple, assist the visual observation in screening work. In this method, a trace amount of ATP was converted to pyruvate, which was further amplified exponentially with coupled enzymatic reactions. Eventually, pyruvate was converted to the Fe(III)-XO complexes through pyruvate oxidase reaction and Fe(II) oxidation. As the assay result, yellow or purple color was observed: A yellow color indicates that the ATP concentration is lower than the criterion of the test, and a purple color indicates that the ATP concentration is higher than the criterion. The method was applied to the assay of ATP extracted from Escherichia coli cells added to cow milk.

  11. Thermal stability and degradation kinetics of polyphenols and polyphenylenediamines enzymatically synthesized by horseradish peroxidase

    International Nuclear Information System (INIS)

    Park, Hansol; Ryu, Keungarp; Kwon, Oyul

    2015-01-01

    Various substituted phenols and phenylenediamines were enzymatically polymerized by horseradish peroxidase in 80% (v/v) organic solvents-aqueous buffer (100 mM sodium acetate, pH 5) mixtures with H 2 O 2 as the oxidant. The thermal stability of the polymers was investigated by thermogravimetric analysis (TGA) and represented by the char yield (wt% of the initial polymer mass) after being heated at 800 .deg. C. Poly(p-phenylphenol) had the highest thermal stability among the synthesized polymers with a char yield of 47 wt%. The polymers containing amino groups such as poly(p-aminophenol) and polyphenylenediamines were also shown to possess high thermal stabilities. The activation energies for the thermal degradation of the polymers determined by derivative thermogravimetric analysis (DTG) using Horowitz-Metzger's pseudo-first-order kinetics were in the range between 23-65 kJ/mol and comparable to those of the chemically synthesized polymers. Dynamic structural changes of the enzymatically synthesized polymers upon heating were studied by differential scanning calorimetry (DSC). The DSC curves of poly(p-phenylphenol) showed a broad exothermic peaks between 150-250 .deg. C, indicating that the polymer undergoes complex structural transitions in the temperature range. On the other hand, the DSC curves of the poly(p-aminophenol) and the poly(p-phenylenediamine) which contain amino groups showed strong sharp endothermic peaks near 150 .deg. C, implying that these polymers possess homogeneous oriented structures which undergo a concerted structural disintegration upon heating.

  12. Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling

    Directory of Open Access Journals (Sweden)

    Ivan Ivanov

    2010-04-01

    Full Text Available Enzymatic fuel cells convert the chemical energy of biofuels into electrical energy. Unlike traditional fuel cell types, which are mainly based on metal catalysts, the enzymatic fuel cells employ enzymes as catalysts. This fuel cell type can be used as an implantable power source for a variety of medical devices used in modern medicine to administer drugs, treat ailments and monitor bodily functions. Some advantages in comparison to conventional fuel cells include a simple fuel cell design and lower cost of the main fuel cell components, however they suffer from severe kinetic limitations mainly due to inefficiency in electron transfer between the enzyme and the electrode surface. In this review article, the major research activities concerned with the enzymatic fuel cells (anode and cathode development, system design, modeling by highlighting the current problems (low cell voltage, low current density, stability will be presented.

  13. Enzymatic saccharification of brown seaweed for production of fermentable sugars.

    Science.gov (United States)

    Sharma, Sandeep; Horn, Svein Jarle

    2016-08-01

    This study shows that high drying temperatures negatively affect the enzymatic saccharification yield of the brown seaweed Saccharina latissima. The optimal drying temperature of the seaweed in terms of enzymatic sugar release was found to be 30°C. The enzymatic saccharification process was optimized by investigating factors such as kinetics of sugar release, enzyme dose, solid loading and different blend ratios of cellulases and an alginate lyase. It was found that the seaweed biomass could be efficiently hydrolysed to fermentable sugars using a commercial cellulase cocktail. The inclusion of a mono-component alginate lyase was shown to improve the performance of the enzyme blend, in particular at high solid loadings. At 25% dry matter loading a combined glucose and mannitol concentration of 74g/L was achieved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. High volumetric power density, non-enzymatic, glucose fuel cells.

    Science.gov (United States)

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.

  15. Biocolloids with ordered urease multilayer shells as enzymatic reactors.

    Science.gov (United States)

    Lvov, Y; Caruso, F

    2001-09-01

    The preparation of biocolloids with organized enzyme-containing multilayer shells for exploitation as colloidal enzymatic nanoreactors is described. Urease multilayers were assembled onto submicrometer-sized polystyrene spheres by the sequential adsorption of urease and polyelectrolyte, in a predetermined order, utilizing electrostatic interactions for layer growth. The catalytic activity of the biocolloids increased proportionally with the number of urease layers deposited on the particles, demonstrating that biocolloid particles with tailored enzymatic activities can be produced. It was further found that precoating the latex spheres with nanoparticles (40-nm silica or 12-nm magnetite) enhanced both the stability (with respect to adsorption) and enzymatic activity of the urease multilayers. The presence of the magnetite nanoparticle coating also provided a magnetic function that allowed the biocolloids to be easily and rapidly separated with a permanent magnet. The fabrication of such colloids opens new avenues for the application of bioparticles and represents a promising route for the creation of complex catalytic particles.

  16. Multiple enzymatic profiles of Vibrio parahaemolyticus strains isolated from oysters

    Directory of Open Access Journals (Sweden)

    Renata Albuquerque Costa

    Full Text Available The enzymatic characterization of vibrios has been used as a virulence indicator of sanitary interest. The objective of this study was to determine the enzymatic profile of Vibrio parahaemolyticus strains (n = 70 isolated from Crassostrea rhizophorae oysters. The strains were examined for the presence of gelatinase (GEL, caseinase (CAS, elastase (ELAS, phospholipase (PHOS, lipase (LIP, amilase (AML and DNase. All enzymes, except elastase, were detected in more than 60% of the strains. The most recurrent enzymatic profiles were AML + DNase + PHOS + GEL + LIP (n = 16; 22.9% and AML + CAS + DNase + PHOS + GEL + LIP (n = 21; 30%. Considering the fact that exoenzyme production by vibrios is closely related to virulence, one must be aware of the bacteriological risk posed to human health by the consumption of raw or undercooked oysters.

  17. Enzymatic radioiodination of insulin for radioimmunoassay use

    Energy Technology Data Exchange (ETDEWEB)

    Awh, O D; Kim, J R [Korea Atomic Energy Research Inst., Seoul (Republic of Korea)

    1980-06-01

    Insulin was labelled with /sup 125/I using lactoperoxidase as an oxidizing agent. The reaction product was purified via two stages; a starch gel electrophoresis(SGE) and a Sephadex gel filtration(SF). Upon comparison of the labelling yields and the bindabilities of the labelled insulin to its antibody, it has been found that the enzyme method shows higher yields (50%) and the better bindability to its antibody than the conventional chloramine-T method (35%). By checking the insulin blank labelling mixture with a SGE, a paper chromatography, and a radioautography technique, a by-product in the lactoperoxidase method has been identified. The separated fractions in SGE and SF were also analyzed and discussed.

  18. Therapeutic effectiveness of a new enzymatic bleaching dentifrice.

    Science.gov (United States)

    Forner, Leopaldo; Amengual, José; Liena, Carmen; Riutord, Pere

    2012-01-01

    Research into bleaching focuses on new products in order to minimize undesirable effects. This study evaluated the bleaching effectiveness of a new enzymatic-activated dentifrice. A total of 20 volunteers were bleached with a dentifrice containing 5% lactoperoxidase and 3% carbamide peroxide applied three times a day for two minutes over 21 days. Color was recorded before and after the treatment using a spectrophotometer. CIELAB differences were calculated before and after treatment using the paired t test (P whitening teeth. Enzymatic dental bleaching is able to increase the efficiency of low concentration peroxides, reducing the potential risk of peroxides on oral tissues.

  19. Optimization of Substrate Feeding for Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Huusom, Jakob Kjøbsted; Nordblad, Mathias

    2013-01-01

    to be effective in mitigating the effects of substrate inhibition. Using enzymatic biodiesel production as a case study, the volumetric productivity of the reactor is increased while minimizing inactivation of the enzyme due to the alcohol. This is done by using a simple optimization routine where the substrate...... (both the vegetable oil and alcohol) feed rate/concentration is manipulated simultaneously. The results of the simulation were tested in the laboratory and are sufficiently positive to suggest the implementation of a feeding strategy for large scale enzymatic biodiesel production...

  20. Moving towards a Competitive Fully Enzymatic Biodiesel Process

    Directory of Open Access Journals (Sweden)

    Silvia Cesarini

    2015-06-01

    Full Text Available Enzymatic biodiesel synthesis can solve several problems posed by the alkaline-catalyzed transesterification but it has the drawback of being too expensive to be considered competitive. Costs can be reduced by lipase improvement, use of unrefined oils, evaluation of soluble/immobilized lipase preparations, and by combination of phospholipases with a soluble lipase for biodiesel production in a single step. As shown here, convenient natural tools have been developed that allow synthesis of high quality FAMEs (EN14214 from unrefined oils in a completely enzymatic single-step process, making it fully competitive.

  1. Chemistry of phospholipid oxidation.

    Science.gov (United States)

    Reis, Ana; Spickett, Corinne M

    2012-10-01

    The oxidation of lipids has long been a topic of interest in biological and food sciences, and the fundamental principles of non-enzymatic free radical attack on phospholipids are well established, although questions about detail of the mechanisms remain. The number of end products that are formed following the initiation of phospholipid peroxidation is large, and is continually growing as new structures of oxidized phospholipids are elucidated. Common products are phospholipids with esterified isoprostane-like structures and chain-shortened products containing hydroxy, carbonyl or carboxylic acid groups; the carbonyl-containing compounds are reactive and readily form adducts with proteins and other biomolecules. Phospholipids can also be attacked by reactive nitrogen and chlorine species, further expanding the range of products to nitrated and chlorinated phospholipids. Key to understanding the mechanisms of oxidation is the development of advanced and sensitive technologies that enable structural elucidation. Tandem mass spectrometry has proved invaluable in this respect and is generally the method of choice for structural work. A number of studies have investigated whether individual oxidized phospholipid products occur in vivo, and mass spectrometry techniques have been instrumental in detecting a variety of oxidation products in biological samples such as atherosclerotic plaque material, brain tissue, intestinal tissue and plasma, although relatively few have achieved an absolute quantitative analysis. The levels of oxidized phospholipids in vivo is a critical question, as there is now substantial evidence that many of these compounds are bioactive and could contribute to pathology. The challenges for the future will be to adopt lipidomic approaches to map the profile of oxidized phospholipid formation in different biological conditions, and relate this to their effects in vivo. This article is part of a Special Issue entitled: Oxidized phospholipids

  2. Chemical interaction of disulfiram with nitrosodimethylamine after in vitro enzymatic activation

    International Nuclear Information System (INIS)

    Tacchi, A.M.; Bertram, B.; Wiessler, M.

    1984-01-01

    The in vitro reaction between disulfiram (DSF) and N-nitroso[ 14 C]dimethylamine [( 14 C]NDMA) was studied. Incubations of DSF with [ 14 C]NDMA were carried out in the presence of rat liver microsomes, control 9000 g (S9) supernatant fraction and phenobarbital-induced S9 fraction. HPLC analysis and liquid scintillation measurement provided evidence for the formation of methyldiethyldithiocarbamate (MeDDTC) as a product of the reaction between diethyldithiocarbamate (DDTC), the main active metabolite of DSF and the 'methyl-cation' released by NDMA after enzymatic activation. The amount of MeDDTC found here was consistent with the rate of oxidation of NDMA to formaldehyde. Scintillation counting confirmed that other radioactive peaks, not due to MeDDTC, were unrelated to the methylation of L-cysteine by [ 14 C]NDMA

  3. Non-Enzymatic Wearable Sensor for Electrochemical Analysis of Perspiration Glucose.

    Science.gov (United States)

    Zhu, Xiaofei; Ju, Yinhui; Chen, Jian; Liu, Deye; Liu, Hong

    2018-05-16

    We report a non-enzymatic wearable sensor for electrochemical analysis of perspiration glucose. Multi-potential steps are applied on a Au electrode, including a high negative pretreatment potential step for proton reduction which produc-es a localized alkaline condition, a moderate potential step for electrocatalytic oxidation of glucose under the alkaline condi-tion, and a positive potential step to clean and reactivate the electrode surface for the next detection. Fluorocarbon-based materials were coated on the Au electrode for improving the selectivity and robustness of the sensor. A fully integrated wrist-band is developed for continuous real-time monitoring of perspiration glucose during physical activities, and uploading the test result to a Smartphone App via Bluetooth.

  4. Efficient Enzymatic Synthesis of Phenolic Ester by Increasing Solubility of Phenolic Acids in Ionic Liquids

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Guo, Zheng; Xu, Xuebing

    Compounds from phenolic acid family are well known natural antioxidants, but the application of phenolic acids as antioxidants in industry is limited due to the relatively low solubility in oil-based media. The properties of phenolic acids can be modified through enzymatic lipophilization...... and modified phenolic acids will have amphiphilic property, therefore they can be localized at oil-water or water-oil phase where oxidation is considered to occur frequently. It had been reported that immobilized Candida Antarctica lipase B was the most effective biocatalyst for the various esterification...... reactions, and it had been widely used for esterification of various phenolic acids with fatty alcohol or triglycerides. However, the conversion of phenolic acids is low due to low solubility in hydrophobic solvents and hindrance effect of unsaturated side chain towards the enzyme. Our studies show...

  5. Enzymatic synthesis of arbutin undecylenic acid ester and its inhibitory effect on mushroom tyrosinase.

    Science.gov (United States)

    Tokiwa, Y; Kitagawa, M; Raku, T

    2007-03-01

    A novel tyrosinase inhibitor, an arbutin derivative having undecylenic acid at the 6-position of its glucose moiety, was enzymatically synthesized. Its inhibitory activity was studied in vitro by using catechol and phenol as substrates. The IC(50) value of the arbutin ester on tyrosinase using catechol (4 x 10(-4) M) was 1% of that when arbutin (4 x 10(-2) M) was used. Using phenol, IC(50) of the arbutin ester (3 x 10(-4) M) as substrate was 10% of that of arbutin (3 x 10(-3) M). These results suggest that the arbutin ester inhibits the latter part of the tyrosinase reaction, which consists of hydroxylation and oxidation.

  6. Destruction of enzymatic activities of corn and soybean leaves exposed to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Leffler, H R; Cherry, J H

    1974-01-01

    Experiments were conducted to determine the effects of a single ozone exposure on selected enzymatic activities and chlorophyll contents of corn and soybean seedlings. Both nitrite reductase activity and chlorophyll content of the seedlings were found to be quite sensitive to ozonation and were seen to decrease as much as 50% after exposure to 80 parts per hundred million (pphm) ozone. After exposure to lower levels of ozone, less-pronounced decreases were observed. Nitrate reductase activity was reduced only after exposure to seedling leaf tissues to high concentrations of ozone. These results are discussed in relation to the concept of a two-phase response to oxidant exposure. The first phase is at the chloroplast level and is quite sensitive to the low as well as the high concentrations of ozone; the second is at the cellular level and is relatively resistant to all but the highest ozone concentrations. 27 references, 2 tables.

  7. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    Science.gov (United States)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  8. Enzyme-immobilized SiO2-Si electrode: Fast interfacial electron transfer with preserved enzymatic activity

    Science.gov (United States)

    Wang, Gang; Yau, Siu-Tung

    2005-12-01

    The enzyme, glucose oxidase (GOx), is immobilized using electrostatic interaction on the native oxide of heavily doped n-type silicon. Voltammetric measurement shows that the immobilized GOx gives rise to a very fast enzyme-silicon interfacial electron transfer rate constant of 7.9s-1. The measurement also suggests that the enzyme retains its native conformation when immobilized on the silicon surface. The preserved native conformation of GOx is further confirmed by testing the enzymatic activity of the immobilized GOx using glucose. The GOx-immobilized silicon is shown to behave as a glucose sensor that detects glucose with concentrations as low as 50μM.

  9. Enzymatic and free radical formation of cis- and trans- epoxyeicosatrienoic acids in vitro and in vivo.

    Science.gov (United States)

    Aliwarga, Theresa; Raccor, Brianne S; Lemaitre, Rozenn N; Sotoodehnia, Nona; Gharib, Sina A; Xu, Libin; Totah, Rheem A

    2017-11-01

    Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid (AA) oxidation that have important cardioprotective and signaling properties. AA is an ω-6 polyunsaturated fatty acid (PUFA) that is prone to autoxidation. Although hydroperoxides and isoprostanes are major autoxidation products of AA, EETs are also formed from the largely overlooked peroxyl radical addition mechanism. While autoxidation yields both cis- and trans-EETs, cytochrome P450 (CYP) epoxygenases have been shown to exclusively catalyze the formation of all regioisomer cis-EETs, on each of the double bonds. In plasma and red blood cell (RBC) membranes, cis- and trans-EETs have been observed, and both have multiple physiological functions. We developed a sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay that separates cis- and trans- isomers of EETs and applied it to determine the relative distribution of cis- vs. trans-EETs in reaction mixtures of AA subjected to free radical oxidation in benzene and liposomes in vitro. We also determined the in vivo distribution of EETs in several tissues, including human and mouse heart, and RBC membranes. We then measured EET levels in heart and RBC of young mice compared to old. Formation of EETs in free radical reactions of AA in benzene and in liposomes exhibited time- and AA concentration-dependent increase and trans-EET levels were higher than cis-EETs under both conditions. In contrast, cis-EET levels were overall higher in biological samples. In general, trans-EETs increased with mouse age more than cis-EETs. We propose a mechanism for the non-enzymatic formation of cis- and trans-EETs involving addition of the peroxyl radical to one of AA's double bonds followed by bond rotation and intramolecular homolytic substitution (S H i). Enzymatic formation of cis-EETs by cytochrome P450 most likely occurs via a one-step concerted mechanism that does not allow bond rotation. The ability to accurately measure

  10. Enzymatic generation of hydrogen peroxide shows promising antifouling effect

    DEFF Research Database (Denmark)

    Kristensen, J.B.; Olsen, Stefan Møller; Laursen, B.S.

    2010-01-01

    Proteobacteria, tested in microtiter plates. However, enzymatically produced H2O2 released from a coating did not impede biofilm formation by bacteria in natural seawater tested in a biofilm reactor. A field trial revealed a noticeable effect of the enzyme system: after immersion in the North Sea for 97 days...

  11. Reversible sol-gel-sol medium for enzymatic optical biosensors

    NARCIS (Netherlands)

    Safaryan, S.; Yakovlev, A.; Pidko, E.A.; Vinogradov, A.; Vinogradov, V.

    2017-01-01

    In this paper we for the first time report a reversible sol-gel-sol approach to obtain optical enzymatic biosensors with improved enzyme stability and good sensitivity by using desktop inkjet printing. The developed technique is based on the bio-inorganic inks allowing for a sol-gel-sol transition

  12. The properties of main oxidases associated with enzymatic ...

    African Journals Online (AJOL)

    Lenovo User

    2012-07-03

    Jul 3, 2012 ... 1College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018,. People's Republic of China. 2The Central Hospital of Taian, Taian, Shandong ... pear vinegar, preserved pear and canned pear. However, enzymatic browning during processing impairs sensory.

  13. Enzymatic Browning in Sugar Beet Leaves (Beta vulgaris L.)

    NARCIS (Netherlands)

    Vissers, Anne; Kiskini, Alexandra; Hilgers, Roelant; Marinea, Marina; Wierenga, Peter Alexander; Gruppen, Harry; Vincken, Jean Paul

    2017-01-01

    Sugar beet (Beta vulgaris L.) leaves of 8 month (8m) plants showed more enzymatic browning than those of 3 month (3m). Total phenolic content increased from 4.6 to 9.4 mg/g FW in 3m and 8m, respectively, quantitated by

  14. Malondialdehyde level and some enzymatic activities in subclinical ...

    African Journals Online (AJOL)

    The purpose of this study was to evaluate the changes occurring in milk malondialdehyde (MDA) level and some enzymatic activities as a result of subclinical mastitis (SCM) in dairy cows. A total of 124 milk samples were collected from 124 lactating cows from the same herd in the period between the 2nd week after calving ...

  15. Enzymatic epoxidation of biodiesel optimized by response surface ...

    African Journals Online (AJOL)

    During the enzymatic epoxidation of biodiesel, stearic acid was selected as oxygen carrier. Enzyme screening and the load of stearic acid were investigated. The effects of four main reaction conditions including reaction time, temperature, enzyme load, and mole ratio of H2O2/C=C-bonds on the epoxy oxygen group content ...

  16. Enzymatic biodiesel production from sludge palm oil (SPO) using ...

    African Journals Online (AJOL)

    Biodiesel is a non-toxic, renewable and environmental friendly fuel. This study involved the production of biodiesel from sludge palm oil (SPO), a low-cost waste oil via enzymatic catalysis. The enzyme catalyst was a Candida cylindracea lipase, locally-produced using palm oil mill effluent as the low cost based medium.

  17. Short-time ultrasonication treatment in enzymatic hydrolysis of biomass

    Science.gov (United States)

    Zengqian Shi; Zhiyong Cai; Siqun Wang; Qixin Zhong; Joseph J. Bozell

    2013-01-01

    To improve the conversion of enzymatic hydrolysis of biomass in an energy-efficient manner, two shorttime ultrasonication strategies were applied on six types of biomass with different structures and components. The strategies include pre-sonication before the hydrolysis and intermittent sonication during the ongoing hydrolysis. The microstructures of each type of...

  18. Enzymatic modification of phospholipids forfunctional applications and human nutrition

    DEFF Research Database (Denmark)

    Guo, Zheng; Vikbjerg, Anders / Falk; Xu, Xuebing

    2005-01-01

    analogs based on the latest understanding of pivotal role of phospholipids in manifold biological processes, exploration of remarkable application potentials of phospholipids in meliorating human health, as well as development of new chemical and biotechnological approaches applied to the modification...... design. This will of course provide fundamental bases also for the development of enzymatic technology to produce structured or modified phospholipids....

  19. Functional palm oil-based margarine by enzymatic interesterification

    DEFF Research Database (Denmark)

    Ibrahim, Nuzul Amri Bin; Xu, Xuebing

    Palm stearin, palm kernel and fish oils were blended to a various composition ratios and enzymatically interesterified by Lipozyme TL IM lipase (Thermomyces lanuginosa) using a continuous packed bed reactor. The ratio of the oils ranged from 60-90%, 10-40% and 0-10% respectively. The enzyme was a...

  20. Enzymatic activities of Azotobacter chroococcum and survival in ...

    African Journals Online (AJOL)

    Enzymatic activities of Azotobacter chroococcum and survival in schloropyrifos amended sterile and non-sterile. M Shukla, V Kumar, RL Thakur, N Narula. Abstract. No Abstract. Cameroon Journal of Experimental Biology Vol. 2 (2) 2006: pp. 88-94. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for ...

  1. ETHANOL ORGANOSOLV PRETREATMENT OF BAMBOO FOR EFFICIENT ENZYMATIC SACCHARIFICATION

    Directory of Open Access Journals (Sweden)

    Zhiqiang Li,

    2012-06-01

    Full Text Available Bamboo is a potential lignocellulosic biomass for the production of bioethanol because of its high cellulose and hemicelluloses content. In this research, ethanol organosolv pretreatment with dilute sulfuric acid as the catalyst was studied in order to enhance enzymatic saccharification of moso bamboo. The addition of 2% (w/w bamboo dilute sulfuric acid in 75% ethanol had a particularly strong effect on fractionation of bamboo. It yielded a solids fraction containing 83.4% cellulose in the treated substrate. The cellulose conversion to glucose yield reached 77.1 to 83.4% after enzymatic hydrolysis of the solids fraction for 48 h at an enzyme loading of 15 FPU cellulase/g cellulose and 30 IU β-glucosidase/g cellulose. The enzymatic hydrolysis rate was significantly accelerated as the ethanol organosolv pretreatment time increased, reaching the highest enzymatic glucose yield of 83.4% after 48 h at 50 °C. The concentrations of fermentation inhibitors such as HMF (5-hydroxy-2-methyl furfural and furfural were 0.96 g/L and 4.38 g/L in the spent liquor after the ethanol organosolv pretreatment, which were slightly lower than the concentrations quantified during H2SO4-water treatment. Spent liquor was diluted with water, and more than 87.2% of lignin in raw bamboo was recovered as ethanol organosolv lignin through the filtration process.

  2. Enzymatic cell disruption of microalgae biomass in biorefinery processes.

    Science.gov (United States)

    Demuez, Marie; Mahdy, Ahmed; Tomás-Pejó, Elia; González-Fernández, Cristina; Ballesteros, Mercedes

    2015-10-01

    When employing biotechnological processes for the procurement of biofuels and bio-products from microalgae, one of the most critical steps affecting economy and yields is the "cell disruption" stage. Currently, enzymatic cell disruption has delivered effective and cost competitive results when compared to mechanical and chemical cell disruption methods. However, the introduction of enzymes implies additional associated cost within the overall process. In order to reduce this cost, autolysis of microalgae is proposed as alternative enzymatic cell disruption method. This review aims to provide the state of the art of enzymatic cell disruption treatments employed in biorefinery processes and highlights the use of endopeptidases. During the enzymatic processes of microalgae life cycle, some lytic enzymes involved in cell division and programmed cell death have been proven useful in performing cell lysis. In this context, the role of endopeptidases is emphasized. Mirroring these natural events, an alternative cell disruption approach is proposed and described with the potential to induce the autolysis process using intrinsic cell enzymes. Integrating induced autolysis within biofuel production processes offers a promising approach to reduce overall global costs and energetic input associated with those of current cell disruption methods. A number of options for further inquiry are also discussed. © 2015 Wiley Periodicals, Inc.

  3. Wet explosion pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Biswas, Rajib; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2014-01-01

    .7% of the theoretical maximum value. Pretreatment at 200 C with oxygen exhibited enhanced enzymatic efficiency but lower xylose recovery and formation of the degradation products such as acetate, furfural and HMF of 7.6, 3.3 and 1.0 g/L, respectively. In the hydrolysis, the total sugars (glucose + xylose) yielded...

  4. Clinical evaluation of chemokine and enzymatic biomarkers of Gaucher disease

    NARCIS (Netherlands)

    Deegan, Patrick B.; Moran, Mary Teresa; McFarlane, Ian; Schofield, J. Paul; Boot, Rolf G.; Aerts, Johannes M. F. G.; Cox, Timothy M.

    2005-01-01

    Purpose: Gaucher disease is an exemplary orphan disorder. Enzyme replacement therapy with imiglucerase is effective, but very expensive. To improve the assessment of severity of disease and responses to this costly treatment, we have evaluated several enzymatic biomarkers and a newly-described

  5. Recombinant EXLX1 from Bacillus subtilis for enhancing enzymatic ...

    African Journals Online (AJOL)

    AJL

    2012-06-21

    Jun 21, 2012 ... enhancing enzymatic hydrolysis of corn stover with low cellulase loadings. Zhang Yan1, He Ming-Xiong2,3*, Wu Bo1, ... University, Chengdu 610064, China. 2Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renming Nanlu,. Chengdu 610041, China.

  6. Changes in Non-Enzymatic Antioxidants in the Blood Following Anaerobic Exercise in Men and Women

    Science.gov (United States)

    Wiecek, Magdalena; Kantorowicz, Malgorzata

    2015-01-01

    Purpose The aim of this study was to compare changes in total oxidative status (TOS), total antioxidative capacity (TAC) and the concentration of VitA, VitE, VitC, uric acid (UA), reduced (GSH) and oxidized glutathione (GSSG) in blood within 24 hours following anaerobic exercise (AnEx) among men and women. Methods 10 women and 10 men performed a 20-second bicycle sprint (AnEx). Concentrations of oxidative stress indicators were measured before AnEx and 3, 15 and 30 minutes and 1 hour afterwards. UA, GSH and GSSH were also measured 24 hours after AnEx. Lactate and H+ concentrations were measured before and 3 minutes after AnEx. Results The increase in lactate and H+ concentrations following AnEx was similar in both sexes. Changes in the concentrations of all oxidative stress indicators were significant and did not differ between men and women. In both sexes, TOS, TAC, TOS/TAC and VitA and VitE concentrations were the highest 3 minutes, VitC concentration was the highest 30 minutes, and UA concentration was the highest 1 hour after AnEx. GSH concentration was significantly lower than the initial concentration from 15 minutes to 24 hour after AnEx. GSSG concentration was significantly higher, while the GSH/GSSG ratio was significantly lower than the initial values 1 hour and 24 hour after AnEx. Conclusions With similar changes in lactate and H+ concentrations, AnEx induces the same changes in TAC, TOS, TOS/TAC and non-enzymatic antioxidants of low molecular weight in men and women. Oxidative stress lasted at least 24 hours after AnEx. PMID:26600020

  7. Oxidative stress signaling to chromatin in health and disease

    KAUST Repository

    Kreuz, Sarah

    2016-06-20

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.

  8. Dynamic Simulation, Sensitivity and Uncertainty Analysis of a Demonstration Scale Lignocellulosic Enzymatic Hydrolysis Process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Sin, Gürkan

    2014-01-01

    This study presents the uncertainty and sensitivity analysis of a lignocellulosic enzymatic hydrolysis model considering both model and feed parameters as sources of uncertainty. The dynamic model is parametrized for accommodating various types of biomass, and different enzymatic complexes...

  9. Enzymatic biosensor of horseradish peroxidase immobilized on Au-Pt nanotube/Au-graphene for the simultaneous determination of antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Long; Yin, Wenmin; Tang, Kun; Li, Dian; Shao, Kang; Zuo, Yunpeng; Ma, Jing; Liu, Jiawei; Han, Heyou, E-mail: hyhan@mail.hzau.edu.cn

    2016-08-24

    A new electrochemical method has been proposed for the simultaneous determination of butylated hydroxyanisole (BHA) and propyl gallate (PG) in food matrices based on enzymatic biosensors. Spiny Au-Pt nanotubes (SAP NTs) was first synthesized and demonstrated to exhibit intrinsic peroxidase and catalase-like activity. The structure of SAP NTs provides large surface area and favorable medium for electron transfer, on which HRP were immobilized and acted as enzymatic biosensor for the simultaneous detection of BHA and PG. The results revealed that BHA and PG both have well-defined oxidation waves with peak potentials of 624 and 655 mV, respectively. Under the optimal conditions, the method behaved satisfactory analytical performance towards BHA and PG with a wide linear range of 0.3–50 mg L{sup −1} and 0.1–100 mg L{sup −1}, as well as a detection limit of 0.046 mg L{sup −1} and 0.024 mg L{sup −1} (3σ/slope), respectively. Besides, the proposed method exhibits good sensitivity, stability and reproducibility, providing an alternative to fabricate electrode and construct sensitive biosensors. - Highlights: • SAP NTs was synthesized and demonstrated to exhibit intrinsic peroxidase and catalase-like activity. • The structure of SAP NTs provides larger surface area and more favorable medium for electron transfer. • Horseradish peroxidase immobilized on Au-Pt nanotube/Au-graphene acted as enzymatic biosensor. • The simultaneous detection of BHA and PG in food matrices was achieved based on enzymatic biosensors.

  10. Enzymatic detection of formalin-fixed museum specimens for DNA analysis and enzymatic maceration of formalin-fixed specimens

    DEFF Research Database (Denmark)

    Sørensen, Margrethe; Redsted Rasmussen, Arne; Simonsen, Kim Pilkjær

    2016-01-01

    % ethanol. The method was subsequently tested on wild-living preserved specimens and an archived specimen. The protease enzyme used was SavinaseH 16 L, Type EX from Novozymes A/S. The enzymatic screening test demands only simple laboratory equipment. The method is useful for natural history collections...

  11. Evaluation of physical structural features on influencing enzymatic hydrolysis efficiency of micronized wood

    Science.gov (United States)

    Jinxue Jiang; Jinwu Wang; Xiao Zhang; Michael Wolcott

    2016-01-01

    Enzymatic hydrolysis of lignocellulosic biomass is highly dependent on the changes in structural features after pretreatment. Mechanical milling pretreatment is an effective approach to alter the physical structure of biomass and thus improve enzymatic hydrolysis. This study examined the influence of structural characteristics on the enzymatic hydrolysis of micronized...

  12. Resveratrol and Endothelial Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-10-01

    Full Text Available Nitric oxide (NO derived from the endothelial NO synthase (eNOS has antihypertensive, antithrombotic, anti-atherosclerotic and antiobesogenic properties. Resveratrol is a polyphenol phytoalexin with multiple cardiovascular and metabolic effects. Part of the beneficial effects of resveratrol are mediated by eNOS. Resveratrol stimulates NO production from eNOS by a number of mechanisms, including upregulation of eNOS expression, stimulation of eNOS enzymatic activity and reversal of eNOS uncoupling. In addition, by reducing oxidative stress, resveratrol prevents oxidative NO inactivation by superoxide thereby enhancing NO bioavailability. Molecular pathways underlying these effects of resveratrol involve SIRT1, AMPK, Nrf2 and estrogen receptors.

  13. CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  14. Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose

    Science.gov (United States)

    Meher, Sumanta Kumar; Rao, G. Ranga

    2013-02-01

    In the quest to enhance the selectivity and sensitivity of novel structured metal oxides for electrochemical non-enzymatic sensing of glucose, we report here a green synthesis of unique sandwich-structured CuO on a large scale under microwave mediated homogeneous precipitation conditions. The physicochemical studies carried out by XRD and BET methods show that the monoclinic CuO formed via thermal decomposition of Cu2(OH)2CO3 possesses monomodal channel-type pores with largely improved surface area (~43 m2 g-1) and pore volume (0.163 cm3 g-1). The fascinating surface morphology and pore structure of CuO is formulated due to homogeneous crystallization and microwave induced self assembly during synthesis. The cyclic voltammetry and chronoamperometry studies show diffusion controlled glucose oxidation at ~0.6 V (vs. Ag/AgCl) with extremely high sensitivity of 5342.8 μA mM-1 cm-2 and respective detection limit and response time of ~1 μM and ~0.7 s, under a wide dynamic concentration range of glucose. The chronoamperometry measurements demonstrate that the sensitivity of CuO to glucose is unaffected by the absence of dissolved oxygen and presence of poisoning chloride ions in the reaction medium, which essentially implies high poison resistance activity of the sandwich-structured CuO. The sandwich-structured CuO also shows insignificant interference/significant selectivity to glucose, even in the presence of high concentrations of other sugars as well as reducing species. In addition, the sandwich-structured CuO shows excellent reproducibility (relative standard deviation of ~2.4% over ten identically fabricated electrodes) and outstanding long term stability (only ~1.3% loss in sensitivity over a period of one month) during non-enzymatic electrochemical sensing of glucose. The unique microstructure and suitable channel-type pore architecture provide structural stability and maximum accessible electroactive surface for unimpeded mobility of glucose as well as the

  15. Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus

    International Nuclear Information System (INIS)

    Dewez, David; Geoffroy, Laure; Vernet, Guy; Popovic, Radovan

    2005-01-01

    Modulated PAM fluorometry and Plant Efficiency Analyser methods were used to investigate photosynthetic fluorescence parameters of alga Scenedesmus obliquus exposed to inhibitory effect of fungicides copper sulphate and fludioxonil (N-(4-nitrophenyl)-N'-propyl-uree). The change of those parameters were studied when alga S. obliquus have been exposed during 48 h to different concentrations of fungicides (1, 2 and 3 mg l -1 ). Under the same condition, enzymatic activities of catalase, ascorbate peroxidase, glutathione reductase and glutathione S-transferase were investigated to evaluate antioxidative response to fungicides effects. The change of sensitivity of those parameters was dependent to the mode of fungicide action, their concentration and time of exposure. For copper effects, the most indicative photosynthetic biomarkers were parameters Q N as non-photochemical fluorescence quenching, Q Emax as the proton induced fluorescence quenching and ABS/RC as the antenna size per photosystem II reaction center. Copper induced oxidative stress was indicated by increased activity of catalase serving as the most sensitive and valuable enzymatic biomarker. On the other hand, fludioxonil effect on photosynthetic parameters was very negligible and consequently not very useful as biomarkers. However, fludioxonil induced strong antioxidative activities associated with cytosol enzymes, as we found for catalase, ascorbate peroxidase and glutathione S-transferase activities. By obtained results, we may suggest for the activation of those enzymes to be sensitive and valuable biomarkers of oxidative stress induced by fludioxonil. Determination of biomarkers sensitivity may offer advantages in providing real criteria to use them for ecotoxicological diagnostic studies

  16. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil-lead-rice (Oryza sativa L.) system.

    Science.gov (United States)

    Zeng, Lu S; Liao, Min; Chen, Cheng L; Huang, Chang Y

    2007-05-01

    The effect of lead (Pb) treatment on the soil enzymatic activities, soil microbial biomass, rice physiological indices and rice biomass were studied in a greenhouse pot experiment. Six levels of Pb viz. 0(CK), 100, 300, 500, 700, 900 mg/kg soil were applied in two types of paddy soils. The results showed that Pb treatment had a stimulating effect on soil enzymatic activities and microbial biomass carbon (Cmic) at low concentration and an inhibitory influence at higher concentration. The degree of influence on enzymatic activities and Cmic by Pb was related to the clay and organic matter contents of the soils. When the Pb treatment was raised to the level of 500 mg/kg, ecological risk appeared both to soil microorganisms and plants. The results also revealed a consistent trend of increased chlorophyll contents and rice biomass initially, maximum at a certain Pb treatment, and then decreased gradually with the increase in Pb concentration. Pb was effective in inducing proline accumulation and its toxicity causes oxidative stress in rice plants. Therefore, it was concluded that soil enzymatic activities, Cmic and rice physiological indices, could be sensitive indicators to reflect environmental stress in soil-lead-rice system.

  17. Bio-based alkyds by direct enzymatic bulk polymerization

    DEFF Research Database (Denmark)

    Nguyen, Hiep Dinh

    to a corresponding classical reference. In a further development of the system, it has been found possible to use the esters of pentaerythritol and stearic acid in combination with the penta-aze derivative for the preparation of pseudo alkyds containing only pentaerythritol as polyol with high degree of branching....... Bio-based alkyds prepared from a combination of glycerol, and tall oil fatty acids, and azelaic acid by enzymatic polymerization show improved hydrophobicity and lower glass transition temperatures compared to an alkyd prepared from the same raw materials by a classical boiling method. The enzymatic...... of pentaerythritol derivatized with azelaic acid (or penta-aze) was examined and tested for the production of more branched alkyd systems. A photostability test validated the concept, and the method also resulted in alkyds with improved hydrophobicity and lower glass transition temperatures compared...

  18. Perspectives for the industrial enzymatic production of glycosides.

    Science.gov (United States)

    de Roode, B Mattheus; Franssen, Maurice C R; van der Padt, Albert; Boom, Remko M

    2003-01-01

    Glycosides are of commercial interest for industry in general and specifically for the pharmaceutical and food industry. Currently chemical preparation of glycosides will not meet EC food regulations, and therefore chemical preparation of glycosides is not applicable in the food industry. Thus, enzyme-catalyzed reactions are a good alternative. However, until now the low yields obtained by enzymatic methods prevent the production of glycosides on a commercial scale. Therefore, high yields should be established by a combination of optimum reaction conditions and continuous removal of the product. Unfortunately, a bioreactor for the commercial scale production of glycosides is not available. The aim of this article is to discuss the literature with respect to enzymatic production of glycosides and the design of an industrially viable bioreactor system.

  19. EFFECT OF LIGNIN CONTENT ON ENZYMATIC HYDROLYSIS OF FURFURAL RESIDUES

    Directory of Open Access Journals (Sweden)

    Jianxin Jiang

    2011-02-01

    Full Text Available The enzymatic saccharification of pretreated furfural residues with different lignin content was studied to verify the effect of lignin removal in the hydrolysis process. The results showed that the glucose yield was improved by increasing the lignin removal. A maximum glucose yield of 96.8% was obtained when the residue with a lignin removal of 51.4% was hydrolyzed for 108 h at an enzyme loading of 25 FPU/g cellulose. However, further lignin removal did not increase the hydrolysis. The effect of enzyme loading on the enzymatic hydrolysis was also explored in this work. It was concluded that a high glucose yield of 90% was achieved when the enzyme dosage was reduced from 25 to 15 FPU/g cellulose, which was cost-effective for the sugar and ethanol production. The structures of raw material and delignified samples were further characterized by XRD and scanning electron microscopy (SEM.

  20. Dynamic modeling and validation of a lignocellulosic enzymatic hydrolysis process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Sin, Gürkan

    2013-01-01

    The enzymatic hydrolysis process is one of the key steps in second generation biofuel production. After being thermally pretreated, the lignocellulosic material is liquefied by enzymes prior to fermentation. The scope of this paper is to evaluate a dynamic model of the hydrolysis process...... on a demonstration scale reactor. The following novel features are included: the application of the Convection–Diffusion–Reaction equation to a hydrolysis reactor to assess transport and mixing effects; the extension of a competitive kinetic model with enzymatic pH dependency and hemicellulose hydrolysis......; a comprehensive pH model; and viscosity estimations during the course of reaction. The model is evaluated against real data extracted from a demonstration scale biorefinery throughout several days of operation. All measurements are within predictions uncertainty and, therefore, the model constitutes a valuable...

  1. Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal

    DEFF Research Database (Denmark)

    Ahmadi Gavlighi, Hassan; Meyer, Anne S.; Mikkelsen, Jørn Dalgaard

    2013-01-01

    Product inhibition by cellobiose decreases the rate of enzymatic cellulose degradation. The optimal reaction conditions for two Emericella (Aspergillus) nidulans-derived cellobiohydrolases I and II produced in Pichia pastoris were identified as CBHI: 52 °C, pH 4.5–6.5, and CBHII: 46 °C, pH 4.......8. The optimum in a mixture of the two was 50 °C, pH 4.9. An almost fourfold increase in enzymatic hydrolysis yield was achieved with intermittent product removal of cellobiose with membrane filtration (2 kDa cut-off): The conversion of cotton cellulose after 72 h was ~19 % by weight, whereas the conversion...

  2. Enzymatic biodiesel synthesis. Key factors affecting efficiency of the process

    Energy Technology Data Exchange (ETDEWEB)

    Szczesna Antczak, Miroslawa; Kubiak, Aneta; Antczak, Tadeusz; Bielecki, Stanislaw [Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Stefanowskiego 4/10, 90-924 Lodz (Poland)

    2009-05-15

    Chemical processes of biodiesel production are energy-consuming and generate undesirable by-products such as soaps and polymeric pigments that retard separation of pure methyl or ethyl esters of fatty acids from glycerol and di- and monoacylglycerols. Enzymatic, lipase-catalyzed biodiesel synthesis has no such drawbacks. Comprehension of the latter process and an appreciable progress in production of robust preparations of lipases may soon result in the replacement of chemical catalysts with enzymes in biodiesel synthesis. Engineering of enzymatic biodiesel synthesis processes requires optimization of such factors as: molar ratio of substrates (triacylglycerols: alcohol), temperature, type of organic solvent (if any) and water activity. All of them are correlated with properties of lipase preparation. This paper reports on the interplay between the crucial parameters of the lipase-catalyzed reactions carried out in non-aqueous systems and the yield of biodiesel synthesis. (author)

  3. Quantifying the limits of transition state theory in enzymatic catalysis.

    Science.gov (United States)

    Zinovjev, Kirill; Tuñón, Iñaki

    2017-11-21

    While being one of the most popular reaction rate theories, the applicability of transition state theory to the study of enzymatic reactions has been often challenged. The complex dynamic nature of the protein environment raised the question about the validity of the nonrecrossing hypothesis, a cornerstone in this theory. We present a computational strategy to quantify the error associated to transition state theory from the number of recrossings observed at the equicommittor, which is the best possible dividing surface. Application of a direct multidimensional transition state optimization to the hydride transfer step in human dihydrofolate reductase shows that both the participation of the protein degrees of freedom in the reaction coordinate and the error associated to the nonrecrossing hypothesis are small. Thus, the use of transition state theory, even with simplified reaction coordinates, provides a good theoretical framework for the study of enzymatic catalysis. Copyright © 2017 the Author(s). Published by PNAS.

  4. Enzymatic hydrolysis and fermentation of agricultural residues to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Mes-Hartree, M.; Hogan, C.M.; Saddler, J.N.

    1984-01-01

    A combined enzymatic hydrolysis and fermentation process was used to convert steam-treated wheat and barley straw to ethanol. Maximum conversion efficiencies were obtained when the substrates were steamed for 90 s. These substrates could yield over 0.4 g ethanol/g cellulose following a combined enzymatic hydrolysis and fermentation process procedure using culture filtrates derived from Trichoderma harzianum E58. When culture filtrates from Trichoderma reesei C30 and T. reesei QM9414 were used, the ethanol yields obtained were 0.32 and 0.12 g ethanol/g cellulose utilized, respectively. The lower ethanol yields obtained with these strains were attributed to the lower amounts of ..beta..-glucosidase detected in the T. reesei culture filtrates.

  5. Rational design of functional and tunable oscillating enzymatic networks

    Science.gov (United States)

    Semenov, Sergey N.; Wong, Albert S. Y.; van der Made, R. Martijn; Postma, Sjoerd G. J.; Groen, Joost; van Roekel, Hendrik W. H.; de Greef, Tom F. A.; Huck, Wilhelm T. S.

    2015-02-01

    Life is sustained by complex systems operating far from equilibrium and consisting of a multitude of enzymatic reaction networks. The operating principles of biology's regulatory networks are known, but the in vitro assembly of out-of-equilibrium enzymatic reaction networks has proved challenging, limiting the development of synthetic systems showing autonomous behaviour. Here, we present a strategy for the rational design of programmable functional reaction networks that exhibit dynamic behaviour. We demonstrate that a network built around autoactivation and delayed negative feedback of the enzyme trypsin is capable of producing sustained oscillating concentrations of active trypsin for over 65 h. Other functions, such as amplification, analog-to-digital conversion and periodic control over equilibrium systems, are obtained by linking multiple network modules in microfluidic flow reactors. The methodology developed here provides a general framework to construct dissipative, tunable and robust (bio)chemical reaction networks.

  6. Physiological and enzymatic analyses of pineapple subjected to ionizing radiation

    International Nuclear Information System (INIS)

    Silva, Josenilda Maria da; Silva, Juliana Pizarro; Spoto, Marta Helena Fillet

    2007-01-01

    The physiological and enzymatic post-harvest characteristics of the pineapple cultivar Smooth Cayenne were evaluated after the fruits were gamma-irradiated with doses of 100 and 150 Gy and the fruits were stored for 10, 20 and 30 days at 12 deg C (±1) and relative humidity of 85% (±5). Physiological and enzymatic analyses were made for each storage period to evaluate the alterations resulting from the application of ionizing radiation. Control specimens showed higher values of soluble pectins, total pectins, reducing sugars, sucrose and total sugars and lower values of polyphenyloxidase and polygalacturonase enzyme activities. All the analyses indicated that storage time is a significantly influencing factor. The 100 Gy dosage and 20-day storage period presented the best results from the standpoint of maturation and conservation of the fruits quality. (author)

  7. Improving biogas production from microalgae by enzymatic pretreatment.

    Science.gov (United States)

    Passos, Fabiana; Hom-Diaz, Andrea; Blanquez, Paqui; Vicent, Teresa; Ferrer, Ivet

    2016-01-01

    In this study, enzymatic pretreatment of microalgal biomass was investigated under different conditions and evaluated using biochemical methane potential (BMP) tests. Cellulase, glucohydrolase and an enzyme mix composed of cellulase, glucohydrolase and xylanase were selected based on the microalgae cell wall composition (cellulose, hemicellulose, pectin and glycoprotein). All of them increased organic matter solubilisation, obtaining high values already after 6h of pretreatment with an enzyme dose of 1% for cellulase and the enzyme mix. BMP tests with pretreated microalgae showed a methane yield increase of 8 and 15% for cellulase and the enzyme mix, respectively. Prospective research should evaluate enzymatic pretreatments in continuous anaerobic reactors so as to estimate the energy balance and economic cost of the process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. From Fed-batch to Continuous Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Nordblad, Mathias; Woodley, John M.

    2015-01-01

    In this this paper, we use mechanistic modelling to guide the development of acontinuous enzymatic process that is performed as a fed-batch operation. In this workwe use the enzymatic biodiesel process as a case study. A mechanistic model developedin our previous work was used to determine...... measured components (triglycerides, diglycerides, monoglycerides, free fatty acid and fatty acid methyl esters(biodiesel)) much better than using fed-batch data alone given the smaller residuals. We also observe a reduction in the correlation between the parameters.The model was then used to predict that 5...... reactors are required (with a combined residence time of 30 hours) to reach a final biodiesel concentration within 2 % of the95.6 mass % achieved in a fed-batch operation, for 24 hours....

  9. Novel investigation of enzymatic biodiesel reaction by isothermal calorimetry

    DEFF Research Database (Denmark)

    Søtoft, Lene Fjerbaek; Westh, Peter; Christensen, Knud V.

    2010-01-01

    Isothermal calorimetry (ITC) was used to investigate solvent-free enzymatic biodiesel production. The transesterification of rapeseed oil with methanol and ethanol was catalyzed by immobilized lipase Novozym 435 at 40 °C. The aim of the study was to determine reaction enthalpy for the enzymatic...... transesterification and to elucidate the mass transfer and energetic processes taking place. Based on the measured enthalpy and composition change in the system, the heat of reaction at 40 °C for the two systems was determined as −9.8 ± 0.9 kJ/mole biodiesel formed from rapeseed oil and methanol, and −9.3 ± 0.7 k...

  10. Structural Characterization and Enzymatic Modification of Soybean Polysaccharides

    DEFF Research Database (Denmark)

    Pierce, Brian; Wichmann, Jesper

    % galacturonic acid, 8% xylose, 3% rhamnose, and 3% fucose. Currently, the majority of this material is disposed of as waste, increasing production costs. Opportunities exist for the develop-ment of novel functional ingredients from this abundant and underutilized ma-terial; however, efforts in this area......The work in this thesis explores the structure of soybean polysaccharides, and examines approaches for the chemical and enzymatic degradation and solu-bilization of this material. Soybean polysaccharides are produced in large quantities globally as a by-product of various soy production processes...... are currently limited by the material’s insol-ubility. A central hypothesis of this work was that by obtaining a more complete understanding of the structure of this material, chemical and enzymatic ap-proaches could be developed to modify the polysaccharides, creating soluble polysaccharide fractions...

  11. Non-enzymatic palladium recovery on microbial and synthetic surfaces

    DEFF Research Database (Denmark)

    Rotaru, Amelia-Elena; Jiang, Wei; Finster, Kai

    2012-01-01

    in the presence of cells as compared to cell-free controls. We found no difference between native (untreated) and autoclaved cells, and could demonstrate that even a non-enzymatic protein (bovine serum albumin) stimulated Pd(II) reduction as efficiently as bacterial cells. Amine groups readily interact with Pd......(II), and to specifically test their role in surface-assisted Pd(II) reduction by formate, we replaced bacterial cells with polystyrene microparticles functionalized with amine or carboxyl groups. Amine-functionalized microparticles had the same effect on Pd(II) reduction as bacterial cells, and the effect could...... be hampered if the amine groups were blocked by acetylation. The interaction with amine groups was confirmed by infrared spectroscopy on whole cells and amine-functionalized microparticles. In conclusion, bio-supported Pd(II) reduction on microbial surfaces is possibly mediated by a non-enzymatic mechanism...

  12. Process Evaluation Tools for Enzymatic Cascades Welcome Message

    DEFF Research Database (Denmark)

    Abu, Rohana

    improvement and implementation. Hence, the goal of this thesis is to evaluate the process concepts in enzymatic cascades in a systematic manner, using tools such as thermodynamic and kinetic analysis. Three relevant case studies have been used to exemplify the approach. In the first case study, thermodynamic......Biocatalysis is attracting significant attention from both academic and industrial scientists due to the excellent capability of enzyme to catalyse selective reactions. Recently, much interest has been shown in the application of enzymatic cascades as a useful tool in organic synthesis......, the kinetics can be controlled in a highly efficient way to achieve a sufficiently favourable conversion to a given target product. This is exemplified in the second case study, in the kinetic modelling of the formation of 2-ketoglutarate from glucoronate, the second case study. This cascade consists of 4...

  13. Thermal and enzymatic recovering of proteins from untanned leather waste.

    Science.gov (United States)

    Bajza, Z; Vrucek, V

    2001-01-01

    The laboratory trials of a process to treat untanned leather waste to isolate valuable protein products are presented. In this comparative study, both thermal and enzymatic treatments of leather waste were performed. The enzymatic method utilizes commercially available alkaline protease at moderate temperatures and for short periods of time. The concentration of the enzyme was 500 units per gram of leather waste which makes the method cost-effective. Amino acid composition in the hydrolysate obtained by the enzyme hydrolysis of untanned leather waste is determined. Chemical and physical properties of protein powder products from untanned leather waste were evaluated by spectrophotometric and chromatographic methods and by use of electron microscope. The results of microbiological assays confirm that these products agree to food safety standards. This relatively simple treatment of untanned leather waste may provide a practical and economical solution to the disposal of potentially dangerous waste.

  14. Apple phenolics and their contribution to enzymatic browning reactions

    Directory of Open Access Journals (Sweden)

    Wiesław Oleszek

    2014-01-01

    Full Text Available Chlorogenic acid, epicatechin, procyanidin B2 and C1 were isolated from apple skin. These compounds as well as quercetine and phloretine glycosides isolated from apples were studied individually and as mixtures for their participation in the enzymatic browning reactions. The importance of quercetine glycosides and the synergistic effect of phloridzin and phloretine xyloglucoside with chlorogenic acid and flavans in the browning reaction are reported.

  15. Nanosilver: A Catalyst in Enzymatic Hydrolysis of Starch

    Directory of Open Access Journals (Sweden)

    Falkowska Marta

    2014-09-01

    Full Text Available Silver nanoparticles are widely used, because of their antimicrobial properties. In this paper, the rate of starch digestion in the presence of nanocatalyst was compared with the rate of reaction without nanosilver. The rate of enzymatic degradation of starch was found to be increased in the presence of silver nanoparticles. It is considered that α-amylase was immobilized onto the surface of nanoparticles.

  16. Recent Trends in Quantum Chemical Modeling of Enzymatic Reactions.

    Science.gov (United States)

    Himo, Fahmi

    2017-05-24

    The quantum chemical cluster approach is a powerful method for investigating enzymatic reactions. Over the past two decades, a large number of highly diverse systems have been studied and a great wealth of mechanistic insight has been developed using this technique. This Perspective reviews the current status of the methodology. The latest technical developments are highlighted, and challenges are discussed. Some recent applications are presented to illustrate the capabilities and progress of this approach, and likely future directions are outlined.

  17. Novel flavonolignan hybrid antioxidants: From enzymatic preparation to molecular rationalization

    Czech Academy of Sciences Publication Activity Database

    Vavříková, Eva; Křen, Vladimír; Ježová-Kalachová, Lubica; Biler, M.; Chantemargue, B.; Pyszková, M.; Riva, S.; Kuzma, Marek; Valentová, Kateřina; Ulrichová, J.; Vrba, J.; Trouillas, P.; Vacek, J.

    2017-01-01

    Roč. 127, FEB 15 (2017), s. 263-274 ISSN 0223-5234 R&D Projects: GA MŠk(CZ) LD14096; GA MŠk(CZ) LD15084; GA ČR(CZ) GA15-03037S Institutional support: RVO:61388971 Keywords : Silybin * Vitamin C * Enzymatic coupling Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 4.519, year: 2016

  18. Global Warming Potential Of A Waste Refinery Using Enzymatic Treatment

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2010-01-01

    and fossil resources. This is especially important with respect to the residual waste (i.e. the remains after source-separation and separate collection) which is typically incinerated or landfilled. In this paper the energy and Global Warming performance of a pilot-scale waste refinery for the enzymatic...... plants and utilization of the liquid fraction for biogas production turned out to be the best options with respect to energy and Global Warming performance....

  19. ASPECTS CONCERNING THE ENZYMATIC ACTIVITY IN SEVERAL THERMOACTINOMYCETE STRAINS

    Directory of Open Access Journals (Sweden)

    Simona Dunca

    2003-08-01

    Full Text Available In the thermoactinomycete strains subjected to examination the values of their recorded enzymatic activities (i.e. α-amy lase, protease, exo-β-1,4 – glucanase, endo -β-1,4 – glucanase and β-glucosidase were lower in the stationary cultures as compared to the stirred ones. The strain Thermomonospora fusca BB255 was found to be highly cellulase- producing and at the same time able to synthesize α-amy lases and proteases.

  20. Enzymatic determination of rare earth elements using pyrophosphatases

    International Nuclear Information System (INIS)

    Shekhovtsova, T.N.; Pirogova, S.V.; Fedorova, O.M.; Dolmanova, I.F.; Bajkov, A.A.

    1993-01-01

    A highly sensitive(determination limit 8x10 -6 -4x10 -4 μ g/m) and selective enzymatic method for determination of rare earth elements has been developed. The method is based on inhibition action of rare earths on the catalytic activity of pyrophosphates isolated from bakery geast and E.Coli. The mechanism of the rare earth element action, corresponding to competitive inhibition, has been established

  1. Enzymatic determination of rare earth elements by use of pyrophosphotases

    International Nuclear Information System (INIS)

    Shekhovtseva, T.N.; Pirogova, S.V.; Fedorova, O.M.; Dolmanova, I.F.; Bajkov, A.A.

    1993-01-01

    A highly sensitive (determination limit 8 x 10 -6 - 4 x 10 -4 μg/ml) and selective enzymatic method for determination of rare earth elements has been developed. The method is based on inhibition action of rare earths on the catalytic activity of pyrophosphates isolated from bakery geast and E. Coli. The mechanism of the rare earth element action, corresponding to competitive inhibition, has been established

  2. Enzymatic preparation and characterization of soybean lecithin-based emulsifiers

    OpenAIRE

    R. C. Reddy Jala; B. Chen; H. Li; Y. Zhang; L-Z Cheong; T. Yang; X. Xu

    2016-01-01

    Simple enzymatic methods were developed for the synthesis of lysolecithin, glycerolyzed lecithin and hydrolyzed lecithin. The products were characterized in terms of their acetone insoluble matter, hexane insoluble matter, moisture, phospholipid distribution and fatty acid composition. The HLB value ranges of different products with different acid values were detected. The efficiency of optimally hydrolyzed lecithin was examined at high calcium ion, low pH, and aqueous solutions and compared ...

  3. Bioethanol production: Pretreatment and enzymatic hydrolysis of softwood

    Energy Technology Data Exchange (ETDEWEB)

    Tengborg, Charlotte

    2000-05-01

    The enzymatic hydrolysis process can be used to produce bioethanol from softwood, which are the dominating raw material in the Northern hemisphere. This thesis deals with the development of the process focusing on the pretreatment and the enzymatic hydrolysis stages. The influence of pretreatment conditions on sugar yield, and the effect of inhibitors on the ethanol yield, were investigated for spruce and pine. The maximum yields of hemicellulose sugars and glucose were obtained under different pretreatment conditions. This indicates that two-stage pretreatment may be preferable. The added catalysts, H{sub 2}SO{sub 4} and SO{sub 2}, resulted in similar total sugar yields about 40 g/100 g dry raw material. However, the fermentability of SO{sub 2}-impregnated material was better. This pretreatment resulted in the formation of inhibitors to the subsequent process steps, e.g. sugar and lignin degradation products. The glucose yield in the enzymatic hydrolysis stage was affected by various parameters such as enzyme loading, temperature, pH, residence time, substrate concentration, and agitation. To decrease the amount of fresh water used and thereby waste water produced, the sugar-rich prehydrolysate from the pretreatment step was included in the enzymatic hydrolysis of the solid fraction, resulting in a reduction in the cellulose conversion of up to 36%. Different prehydrolysate detoxification methods, such as treatment with Ca(OH){sub 2}, laccase, and fermentation using yeast, were investigated. The latter was shown to be very efficient. The amount of fresh water used can be further reduced by recycling various process streams. This was simulated experimentally in a bench-scale process. A reduction in fresh water demand of 50% was obtained without any further negative effects on either hydrolysis or fermentation.

  4. Inhibition of peptide aggregation by means of enzymatic phosphorylation

    Directory of Open Access Journals (Sweden)

    Kristin Folmert

    2016-11-01

    Full Text Available As is the case in numerous natural processes, enzymatic phosphorylation can be used in the laboratory to influence the conformational populations of proteins. In nature, this information is used for signal transduction or energy transfer, but has also been shown to play an important role in many diseases like tauopathies or diabetes. With the goal of determining the effect of phosphorylation on amyloid fibril formation, we designed a model peptide which combines structural characteristics of α-helical coiled-coils and β-sheets in one sequence. This peptide undergoes a conformational transition from soluble structures into insoluble amyloid fibrils over time and under physiological conditions and contains a recognition motif for PKA (cAMP-dependent protein kinase that enables enzymatic phosphorylation. We have analyzed the pathway of amyloid formation and the influence of enzymatic phosphorylation on the different states along the conformational transition from random-coil to β-sheet-rich oligomers to protofilaments and on to insoluble amyloid fibrils, and we found a remarkable directing effect from β-sheet-rich structures to unfolded structures in the initial growth phase, in which small oligomers and protofilaments prevail if the peptide is phosphorylated.

  5. Metal nanostructures for non-enzymatic glucose sensing

    International Nuclear Information System (INIS)

    Tee, Si Yin; Teng, Choon Peng; Ye, Enyi

    2017-01-01

    This review covers the recent development of metal nanostructures in electrochemical non-enzymatic glucose sensing. It highlights a variety of nanostructured materials including noble metals, other transition metals, bimetallic systems, and their hybrid with carbon-based nanomaterials. Particularly, attention is devoted to numerous approaches that have been implemented for improving the sensors performance by tailoring size, shape, composition, effective surface area, adsorption capability and electron-transfer properties. The correlation of the metal nanostructures to the glucose sensing performance is addressed with respect to the linear concentration range, sensitivity and detection limit. In overall, this review provides important clues from the recent scientific achievements of glucose sensor nanomaterials which will be essentially useful in designing better and more effective electrocatalysts for future electrochemical sensing industry. - Highlights: • Overview of recent development of metal nanostructures in electrochemical non-enzymatic glucose sensing. • Special attention is focussed on noble metals, other transition metals, bimetallic systems, and their hybrid with carbon-based nanomaterials. • Merits and limitations of various metal nanostructures in electrochemical non-enzymatic glucose sensing. • Strategies to improve the glucose sensing performance of metal nanostructures as electrocatalysts.

  6. Microstructural study of pre-treated and enzymatic hydrolyzed bamboo

    Directory of Open Access Journals (Sweden)

    Funsho O. KOLAWOLE

    2016-07-01

    Full Text Available Bamboo was used as biomass feedstock which was pre-treated using dilute acid hydrolysis followed by enzymatic hydrolysis. The bamboo was mechanical ground to particle sizes 212–500µm, followed by pre-treatment with dilute sulfuric acid at a concentration of 0.5 and 1.0 (%v/v at temperatures of 25, 110, 120, 150 and 200°C with time intervals of 2 and 4 hours. Pre-hydrolyzate was later analyzed for reducing sugar using UV-Vis spectrophotometry. Under the above conditions, a maximum glucose yield of 153.1 mg/g was obtained at 200°C and acid concentrations of 1% for 4 hours. Water insoluble solids obtained were subsequently hydrolyzed with Celluclast (Trichoderma reesi and β-glucosidase (Novozyme 188 for 72 hours. Optical Microscope and ESEM images of bamboo samples were obtained at various stages of pre-treatment and enzymatic hydrolysis. Result reveals a breakdown in the ligno-cellulosic structure of the bamboo during exposure to dilute acid and enzymatic hydrolysis.

  7. Determination of myoglobin based on its enzymatic activity by stopped-flow spectrophotometry

    Science.gov (United States)

    Zheng, Qi; Liu, Zhihong; Cai, Ruxiu

    2005-04-01

    A new method has been developed for the determination of myoglobin (Mb) based on its enzymatic activity for the oxidation of o-phenylenediamine (OPDA) with hydrogen peroxide. Stopped-flow spectrophotometry was used to study the kinetic behavior of the oxidation reaction. The catalytic activity of Mb was compared to other three kinds of catalyst. The time dependent absorbance of the reaction product, 2,3-diamimophenazine (DAPN), at a wavelength of 426 nm was recorded. The initial reaction rate obtained at 40 °C was found to be proportional to the concentration of Mb in the range of 1.0 × 10 -6 to 4.0 × 10 -9 mol L -1. The detection limit of Mb was found to be 9.93 × 10 -10 mol L -1. The relative standard deviations were within 5% for the determination of different concentrations of Mb. Excess of bovine serum albumin (BSA), Ca(II), Mg(II), Cu(II), glucose, caffeine, lactose and uric acid did not interfere.

  8. Synthesis of carbon nanosheet from barley and its use as non-enzymatic glucose biosensor

    Directory of Open Access Journals (Sweden)

    Soma Das

    2014-12-01

    Full Text Available In this work, carbon nanosheet (CNS based electrode was designed for electrochemical biosensing of glucose. CNS has been obtained by the pyrolysis of barley at 600–750 °C in a muffle furnace; it was then purified and functionalized. The CNS has been characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD and Raman spectroscopic techniques. The electrochemical activity of CNS-based electrode was investigated by linear sweep voltammetry (LSV and square wave voltammetry (SWV, for the oxidation of glucose in 0.001 M H2SO4 (pH 6.0. The linear range of the sensor was found to be 10−4–10−6 M (1–100 µM within the response time of 4 s. Interestingly, its sensitivity reached as high as ~26.002±0.01 μA/μM cm2. Electrochemical experiments revealed that the proposed electrode offered an excellent electrochemical activity towards the oxidation of glucose and could be applied for the construction of non-enzymatic glucose biosensors. Keywords: Carbon nanosheet, β-d glucose, Linear sweep voltammetry, Square wave voltammetry, Pharmaceutical analysis

  9. Thermal stability and degradation kinetics of polyphenols and polyphenylenediamines enzymatically synthesized by horseradish peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hansol; Ryu, Keungarp [University of Ulsan, Ulsan (Korea, Republic of); Kwon, Oyul [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2015-09-15

    Various substituted phenols and phenylenediamines were enzymatically polymerized by horseradish peroxidase in 80% (v/v) organic solvents-aqueous buffer (100 mM sodium acetate, pH 5) mixtures with H{sub 2}O{sub 2} as the oxidant. The thermal stability of the polymers was investigated by thermogravimetric analysis (TGA) and represented by the char yield (wt% of the initial polymer mass) after being heated at 800 .deg. C. Poly(p-phenylphenol) had the highest thermal stability among the synthesized polymers with a char yield of 47 wt%. The polymers containing amino groups such as poly(p-aminophenol) and polyphenylenediamines were also shown to possess high thermal stabilities. The activation energies for the thermal degradation of the polymers determined by derivative thermogravimetric analysis (DTG) using Horowitz-Metzger's pseudo-first-order kinetics were in the range between 23-65 kJ/mol and comparable to those of the chemically synthesized polymers. Dynamic structural changes of the enzymatically synthesized polymers upon heating were studied by differential scanning calorimetry (DSC). The DSC curves of poly(p-phenylphenol) showed a broad exothermic peaks between 150-250 .deg. C, indicating that the polymer undergoes complex structural transitions in the temperature range. On the other hand, the DSC curves of the poly(p-aminophenol) and the poly(p-phenylenediamine) which contain amino groups showed strong sharp endothermic peaks near 150 .deg. C, implying that these polymers possess homogeneous oriented structures which undergo a concerted structural disintegration upon heating.

  10. Glycosylation site-targeted PEGylation of glucose oxidase retains native enzymatic activity.

    Science.gov (United States)

    Ritter, Dustin W; Roberts, Jason R; McShane, Michael J

    2013-04-10

    Targeted PEGylation of glucose oxidase at its glycosylation sites was investigated to determine the effect on enzymatic activity, as well as the bioconjugate's potential in an optical biosensing assay. Methoxy-poly(ethylene glycol)-hydrazide (4.5kDa) was covalently coupled to periodate-oxidized glycosylation sites of glucose oxidase from Aspergillus niger. The bioconjugate was characterized using gel electrophoresis, liquid chromatography, mass spectrometry, and dynamic light scattering. Gel electrophoresis data showed that the PEGylation protocol resulted in a drastic increase (ca. 100kDa) in the apparent molecular mass of the protein subunit, with complete conversion to the bioconjugate; liquid chromatography data corroborated this large increase in molecular size. Mass spectrometry data proved that the extent of PEGylation was six poly(ethylene glycol) chains per glucose oxidase dimer. Dynamic light scattering data indicated the absence of higher-order oligomers in the PEGylated GOx sample. To assess stability, enzymatic activity assays were performed in triplicate at multiple time points over the course of 29 days in the absence of glucose, as well as before and after exposure to 5% w/v glucose for 24h. At a confidence level of 95%, the bioconjugate's performance was statistically equivalent to native glucose oxidase in terms of activity retention over the 29 day time period, as well as following the 24h glucose exposure. Finally, the bioconjugate was entrapped within a poly(2-hydroxyethyl methacrylate) hydrogel containing an oxygen-sensitive phosphor, and the construct was shown to respond approximately linearly with a 220±73% signal change (n=4, 95% confidence interval) over the physiologically-relevant glucose range (i.e., 0-400mg/dL); to our knowledge, this represents the first demonstration of PEGylated glucose oxidase incorporated into an optical biosensing assay. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions.

    Science.gov (United States)

    Netto, Luis Eduardo S; de Oliveira, Marcos Antonio; Tairum, Carlos A; da Silva Neto, José Freire

    2016-01-01

    Thiol-disulfide exchange reactions are highly reversible, displaying nucleophilic substitutions mechanism (S(N)2 type). For aliphatic, low molecular thiols, these reactions are slow, but can attain million times faster rates in enzymatic processes. Thioredoxin (Trx) proteins were the first enzymes described to accelerate thiol-disulfide exchange reactions and their high reactivity is related to the high nucleophilicity of the attacking thiol. Substrate specificity in Trx is achieved by several factors, including polar, hydrophobic, and topological interactions through a groove in the active site. Glutaredoxin (Grx) enzymes also contain the Trx fold, but they do not share amino acid sequence similarity with Trx. A conserved glutathione binding site is a typical feature of Grx that can reduce substrates by two mechanisms (mono and dithiol). The high reactivity of Grx enzymes is related to the very acid pK(a) values of reactive Cys that plays roles as good leaving groups. Therefore, although distinct oxidoreductases catalyze similar thiol–disulfide exchange reactions, their enzymatic mechanisms vary. PDI and DsbA are two other oxidoreductases, but they are involved in disulfide bond formation, instead of disulfide reduction, which is related to the oxidative environment where they are found. PDI enzymes and DsbC are endowed with disulfide isomerase activity, which is related with their tetra-domain architecture. As illustrative description of specificity in thiol-disulfide exchange, redox aspects of transcription activation in bacteria, yeast, and mammals are presented in an evolutionary perspective. Therefore, thiol-disulfide exchange reactions play important roles in conferring specificity to pathways, a required feature for signaling.

  12. Enzymatic degradation behavior and cytocompatibility of silk fibroin-starch-chitosan conjugate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baran, Erkan T., E-mail: erkantur@metu.edu.tr; Tuzlakoglu, Kadriye, E-mail: kadriye@dep.uminho.pt; Mano, Joao F., E-mail: jmano@dep.uminho.pt; Reis, Rui L., E-mail: rgreis@dep.uminho.pt

    2012-08-01

    The objective of this study was to investigate the influence of silk fibroin and oxidized starch conjugation on the enzymatic degradation behavior and the cytocompatability of chitosan based biomaterials. The tensile stress of conjugate membranes, which was at 50 Megapascal (MPa) for the lowest fibroin and starch composition (10 weight percent (wt.%)), was decreased significantly with the increased content of fibroin and starch. The weight loss of conjugates in {alpha}-amylase was more notable when the starch concentration was the highest at 30 wt.%. The conjugates were resistant to the degradation by protease and lysozyme except for the conjugates with the lowest starch concentration. After 10 days of cell culture, the proliferation of osteoblast-like cells (SaOS-2) was stimulated significantly by higher fibroin compositions and the DNA synthesis on the conjugate with the highest fibroin (30 wt.%) was about two times more compared to the native chitosan. The light microscopy and the image analysis results showed that the cell area and the lengths were decreased significantly with higher fibroin/chitosan ratio. The study proved that the conjugation of fibroin and starch with the chitosan based biomaterials by the use of non-toxic reductive alkylation crosslinking significantly improved the cytocompatibility and modulated the biodegradation, respectively. - Highlights: Black-Right-Pointing-Pointer Silk fibroin, starch and chitosan conjugates were prepared by reductive alkylation. Black-Right-Pointing-Pointer The enzymatic biodegradation and the cytocompatibility of conjugates were tested. Black-Right-Pointing-Pointer The conjugate with 30% starch composition was degraded by {alpha}-amylase significantly. Black-Right-Pointing-Pointer Higher starch composition in conjugates prevented protease and lysozyme degradation. Black-Right-Pointing-Pointer Fibroin incorporation effectively increased the cell proliferation of conjugates.

  13. High Hydrostatic Pressure-Assisted Enzymatic Treatment Improves Antioxidant and Anti-inflammatory Properties of Phosvitin.

    Science.gov (United States)

    Yoo, Heejoo; Bamdad, Fatemeh; Gujral, Naiyana; Suh, Joo-Won; Sunwoo, Hoon

    2017-01-01

    Phosvitin (PV) is a highly-phosphorylated metal-binding protein in egg yolk. Phosphoserine clusters make PV resistant to enzymatic digestion, which might be nutritionally undesirable. This study was designed to determine the effects of high hydrostatic pressure and enzymatic hydrolysis (HHP-EH) on the antioxidant and anti-inflammatory properties of PV hydrolysates (PVHs). PV was hydrolyzed by alcalase, elastase, savinase, thermolysin, and trypsin at 0.1, 50, and 100 MPa pressure levels. PVHs were evaluated for degree of hydrolysis, molecular weight distribution patterns, antioxidant and anti-inflammatory properties in chemical and cellular models. The effect of PVH on gene expression of pro-inflammatory cytokines (TNF-α and IL-1β) was also evaluated using real time-PCR. The hydrolysate with most potent antioxidant and anti-inflammatory properties was subjected to LC-MS/MS analysis to identify the peptide sequence. Hydrolysates produced at 100 MPa exhibited higher degree of hydrolysis and greater reducing power and free radical scavenging activity compared to those obtained at atmospheric pressure. After adjusting the phosphate content, alcalase- and trypsin-digested PVHs showed superior iron chelation capacity (69-73%), regardless of pressure. Both alcalase- and trypsin-digested PVHs significantly inhibited nitric oxide production by RAW264.7 macrophage cells. LPS-stimulated up-regulation of proinflammatory cytokines was also suppressed by alcalase-digested PVH. The HHP-EH method could play a promising role in the production of bioactive peptides from hydrolysis-resistant proteins. HHP-assisted PVH may be useful in preparing a potential pharmaceutical with antioxidant and anti-inflammatory properties. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Effect of ascorbic and folic acids supplementation on oxidative ...

    African Journals Online (AJOL)

    An experiment was conducted on the effect of supplementation of ascorbic and folic acids on the oxidative hormones, enzymatic antioxidants, haematological and biochemical properties of layers exposed to increased heat load. A total of 72 Isa Brown laying hens at 31 weeks of age were randomly divided into four groups ...

  15. Oxidative stress and antioxidant status in sportsmen two hours after ...

    African Journals Online (AJOL)

    This study was designed to investigate the serum lipid profile and non-enzymatic antioxidants markers (serum uric acid and albumin) as well as lipid hydroperoxide (a marker of oxidative stress) in 39 sportsmen after 2 h of strenuous training exercise and also in 24 sedentary age-matched males who served as controls ...

  16. Oxidative DNA damage & repair: An introduction.

    Science.gov (United States)

    Cadet, Jean; Davies, Kelvin J A

    2017-06-01

    This introductory article should be viewed as a prologue to the Free Radical Biology & Medicine Special Issue devoted to the important topic of Oxidatively Damaged DNA and its Repair. This special issue is dedicated to Professor Tomas Lindahl, co-winner of the 2015 Nobel Prize in Chemistry for his seminal discoveries in the area repair of oxidatively damaged DNA. In the past several years it has become abundantly clear that DNA oxidation is a major consequence of life in an oxygen-rich environment. Concomitantly, survival in the presence of oxygen, with the constant threat of deleterious DNA mutations and deletions, has largely been made possible through the evolution of a vast array of DNA repair enzymes. The articles in this Oxidatively Damaged DNA & Repair special issue detail the reactions by which intracellular DNA is oxidatively damaged, and the enzymatic reactions and pathways by which living organisms survive such assaults by repair processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis

    International Nuclear Information System (INIS)

    Clark, Andrea; Zhu Aiping; Sun Kai; Petty, Howard R.

    2011-01-01

    Catalytic nanoparticles represent a potential clinical approach to replace or correct aberrant enzymatic activities in patients. Several diseases, including many blinding eye diseases, are promoted by excessive oxidant stress due to reactive oxygen species (ROS). Cerium oxide and platinum nanoparticles represent two potentially therapeutic nanoparticles that de-toxify ROS. In the present study, we directly compare these two classes of catalytic nanoparticles. Cerium oxide and platinum nanoparticles were found to be 16 ± 2.4 and 1.9 ± 0.2 nm in diameter, respectively. Using surface plasmon-enhanced microscopy, we find that these nanoparticles associate with cells. Furthermore, cerium oxide and platinum nanoparticles demonstrated superoxide dismutase catalytic activity, but did not promote hemolytic or cytolytic pathways in living cells. Importantly, both cerium oxide and platinum nanoparticles reduce oxidant-mediated apoptosis in target cells as judged by the activation of caspase 3. The ability to diminish apoptosis may contribute to maintaining healthy tissues.

  18. Oxidative stress in cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Shyamal K Goswami

    2015-01-01

    Full Text Available Oxidative stress caused by various oxygen containing free radicals and reactive species (collectively called "Reactive Oxygen Species" or ROS has long been attributed to cardiovascular diseases. In human body, major oxidizing species are super oxide, hydrogen peroxide, hydroxyl radical, peroxy nitrite etc. ROS are produced from distinct cellular sources, enzymatic and non-enzymatic; have specific physicochemical properties and often have specific cellular targets. Although early studies in nineteen sixties and seventies highlighted the deleterious effects of these species, later it was established that they also act as physiological modulators of cellular functions and diseases occur only when ROS production is deregulated. One of the major sources of cellular ROS is Nicotinamide adenine dinucleotide phosphate oxidases (Noxes that are expressed in almost all cell types. Superoxide and hydrogen peroxide generated from them under various conditions act as signal transducers. Due to their immense importance in cellular physiology, various Nox inhibitors are now being developed as therapeutics. Another free radical of importance in cardiovascular system is nitric oxide (a reactive nitrogen species generated from nitric oxide synthase(s. It plays a critical role in cardiac function and its dysregulated generation along with superoxide leads to the formation of peroxynitrite a highly deleterious agent. Despite overwhelming evidences of association between increased level of ROS and cardiovascular diseases, antioxidant therapies using vitamins and omega 3 fatty acids have largely been unsuccessful till date. Also, there are major discrepancies between studies with laboratory animals and human trials. It thus appears that the biology of ROS is far complex than anticipated before. A comprehensive understanding of the redox biology of diseases is thus needed for developing targeted therapeutics.

  19. A green synthetic strategy of nickel hexacyanoferrate nanoparticals supported on the graphene substrate and its non-enzymatic amperometric sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zhonghua, E-mail: xzh@nwnu.edu.cn [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); He, Nan [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Rao, Honghong [College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, 730070 (China); Hu, Chenxian; Wang, Xiaofen; Wang, Hui; Liu, Xiuhui [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Lu, Xiaoquan, E-mail: luxq@nwnu.edu.cn [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2017-02-28

    Highlights: • A sensitive non-enzymatic glucose sensor was explored by using a facile and green strategy. • Well dispersed and uniform NiHCF nanoparticles can be effectively produced by the introduction of electrochemical reduction graphene oxide films. • Metal hexacyanoferrate as a potential electron mediator was proposed and applied into non-enzymatic sensing. - Abstract: Rapid glucose detection is a key requirement for both diagnosis and treatment of diabetes. A facile and green strategy to achieve spherical-shaped nickel hexacyanoferrate (NiHCF) nanoparticals supported on electrochemical reduction graphene oxide by using electrochemical cyclic voltammetry is explored. As a sensing substrate, electrochemical reduction graphene oxide deposited on a glassy carbon electrode surface exhibited obvious positive effect on the electrodeposition of NiHCF nanoparticals with spherical structure and thus effectively improved the electrical conductivity and electrochemical sensing of the proposed amperometric sensor. Proof-concept experiments demonstrated that the proposed nanocomposites modified electrode exhibited excellent sensitivity toward glucose oxidation as well as with a satisfying detection limit of 0.11 μM. More importantly, we also explore that as a simple, green and facile method, electrochemical technology can be employed and provide a new strategy for developing GO and metal hexacyanoferrate based amperometric sensing platform toward glucose and other biomolecules.

  20. A green synthetic strategy of nickel hexacyanoferrate nanoparticals supported on the graphene substrate and its non-enzymatic amperometric sensing application

    International Nuclear Information System (INIS)

    Xue, Zhonghua; He, Nan; Rao, Honghong; Hu, Chenxian; Wang, Xiaofen; Wang, Hui; Liu, Xiuhui; Lu, Xiaoquan

    2017-01-01

    Highlights: • A sensitive non-enzymatic glucose sensor was explored by using a facile and green strategy. • Well dispersed and uniform NiHCF nanoparticles can be effectively produced by the introduction of electrochemical reduction graphene oxide films. • Metal hexacyanoferrate as a potential electron mediator was proposed and applied into non-enzymatic sensing. - Abstract: Rapid glucose detection is a key requirement for both diagnosis and treatment of diabetes. A facile and green strategy to achieve spherical-shaped nickel hexacyanoferrate (NiHCF) nanoparticals supported on electrochemical reduction graphene oxide by using electrochemical cyclic voltammetry is explored. As a sensing substrate, electrochemical reduction graphene oxide deposited on a glassy carbon electrode surface exhibited obvious positive effect on the electrodeposition of NiHCF nanoparticals with spherical structure and thus effectively improved the electrical conductivity and electrochemical sensing of the proposed amperometric sensor. Proof-concept experiments demonstrated that the proposed nanocomposites modified electrode exhibited excellent sensitivity toward glucose oxidation as well as with a satisfying detection limit of 0.11 μM. More importantly, we also explore that as a simple, green and facile method, electrochemical technology can be employed and provide a new strategy for developing GO and metal hexacyanoferrate based amperometric sensing platform toward glucose and other biomolecules.

  1. Pregnancy Exercise Increase Enzymatic Antioxidant In Pregnant Women

    Directory of Open Access Journals (Sweden)

    Wagey Freddy Wagey

    2012-01-01

    Full Text Available Objectives: Pregnancy is a vulnerable condition to all kinds of "stress", resulting in changes of physiological and metabolic functions. This research aims to determine effect of exercise during pregnancy in increasing enzymatic antioxidant marked by increase of superoxide dismutase (SOD, gluthation peroxidase (GSHPx, and catalase (CAT levels. Methods: Randomized pre and posttest control group design was employed in this study. A number of 66 pregnant women were recruited in this study and grouped into two groups, i.e 30 of them as control group and the rest as treatment group. Pregnancy exercise was performed to all 36 pregnant women from 20 weeks gestation on treatment group. The exercise was performed in the morning for about 30 minutes, twice a weeks. On the other hand, daily activities was sugested for control group. Student’s t-test was then applied to determine the mean different of treatment and control group with 5 % of significant value. Results: This study reveals that there were significantly higher increase of (superoxide dismutase (SOD, gluthation peroxidase (GSHPx, and catalse (CAT levels of treatment group compare to control group. These enzymatic antioxidant increase among these two group were around 1.36 mg/gHb for SOD; 1.14 IU/gHb for GSHPx; and 0.97 IU/gHb for CAT, (p < 0.05.  Clinical outcomes, such as strengten of pelvic muscle and quality of life of treatment group were significantly better compared to control group (p < 0.05. Conclusions: This means that exercise during pregnancy ages of 20 weeks increase enzymatic antioxidant levels SOD, GSHPx, and CAT higher compare to control group without exercise.  

  2. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification

    Directory of Open Access Journals (Sweden)

    Chen Ye

    2013-01-01

    Full Text Available Abstract Background Previous research on alkaline pretreatment has mainly focused on optimization of the process parameters to improve substrate digestibility. To achieve satisfactory sugar yield, extremely high chemical loading and enzyme dosages were typically used. Relatively little attention has been paid to reduction of chemical consumption and process waste management, which has proven to be an indispensable component of the bio-refineries. To indicate alkali strength, both alkali concentration in pretreatment solution (g alkali/g pretreatment liquor or g alkali/L pretreatment liquor and alkali loading based on biomass solids (g alkali/g dry biomass have been widely used. The dual approaches make it difficult to compare the chemical consumption in different process scenarios while evaluating the cost effectiveness of this pretreatment technology. The current work addresses these issues through pretreatment of corn stover at various combinations of pretreatment conditions. Enzymatic hydrolysis with different enzyme blends was subsequently performed to identify the effects of pretreatment parameters on substrate digestibility as well as process operational and capital costs. Results The results showed that sodium hydroxide loading is the most dominant variable for enzymatic digestibility. To reach 70% glucan conversion while avoiding extensive degradation of hemicellulose, approximately 0.08 g NaOH/g corn stover was required. It was also concluded that alkali loading based on total solids (g NaOH/g dry biomass governs the pretreatment efficiency. Supplementing cellulase with accessory enzymes such as α-arabinofuranosidase and β-xylosidase significantly improved the conversion of the hemicellulose by 6–17%. Conclusions The current work presents the impact of alkaline pretreatment parameters on the enzymatic hydrolysis of corn stover as well as the process operational and capital investment costs. The high chemical consumption for alkaline

  3. Pregnancy Exercise Increase Enzymatic Antioxidant In Pregnant Women

    Directory of Open Access Journals (Sweden)

    Wagey Freddy Wagey

    2012-01-01

    Full Text Available Objectives: Pregnancy is a vulnerable condition to all kinds of "stress", resulting in changes of physiological and metabolic functions. This research aims to determine effect of exercise during pregnancy in increasing enzymatic antioxidant marked by increase of superoxide dismutase (SOD, gluthation peroxidase (GSHPx, and catalase (CAT levels. Methods: Randomized pre and posttest control group design was employed in this study. A number of 66 pregnant women were recruited in this study and grouped into two groups, i.e 30 of them as control group and the rest as treatment group. Pregnancy exercise was performed to all 36 pregnant women from 20 weeks gestation on treatment group. The exercise was performed in the morning for about 30 minutes, twice a weeks. On the other hand, daily activities was sugested for control group. Student’s t-test was then applied to determine the mean different of treatment and control group with 5 % of significant value. Results: This study reveals that there were significantly higher increase of (superoxide dismutase (SOD, gluthation peroxidase (GSHPx, and catalse (CAT levels of treatment group compare to control group. These enzymatic antioxidant increase among these two group were around 1.36 mg/gHb for SOD; 1.14 IU/gHb for GSHPx; and 0.97 IU/gHb for CAT, (p < 0.05. Clinical outcomes, such as strengten of pelvic muscle and quality of life of treatment group were significantly better compared to control group (p < 0.05. Conclusions: This means that exercise during pregnancy ages of 20 weeks increase enzymatic antioxidant levels SOD, GSHPx, and CAT higher compare to control group without exercise.

  4. Pyoverdine synthesis by the Mn(II-oxidizing bacterium Pseudomonas putida GB-1

    Directory of Open Access Journals (Sweden)

    Dorothy Lundquist Parker

    2014-05-01

    Full Text Available When iron-starved, the Mn(II-oxidizing bacteria Pseudomonas putida strains GB-1 and MnB1 produce pyoverdines (PVDGB-1 and PVDMnB1, siderophores that both influence iron uptake and inhibit manganese(II oxidation by these strains. To explore the properties and genetics of a PVD that can affect manganese oxidation, LC-MS/MS and various siderotyping techniques were used to identify the peptides of PVDGB-1 and PVDMnB1 as being (for both PVDs: chromophore-Asp-Lys-OHAsp-Ser-Gly-aThr-Lys-cOHOrn, resembling a structure previously reported for P. putida CFML 90-51, which does not oxidize Mn. All three strains also produced an azotobactin and a sulfonated PVD, each with the peptide sequence above, but with unknown regulatory or metabolic effects. Bioinformatic analysis of the sequenced genome of P. putida GB-1 suggested that a particular non-ribosomal peptide synthetase, coded by the operon PputGB1_4083-4086, could produce the peptide backbone of PVDGB-1. To verify this prediction, plasmid integration disruption of PputGB1_4083 was performed and the resulting mutant failed to produce detectable PVD. In silico analysis of the modules in PputGB1_4083-4086 predicted a peptide sequence of Asp-Lys-Asp-Ser-Ala-Thr-Lsy-Orn, which closely matches the peptide determined by MS/MS. To extend these studies to other organisms, various Mn(II-oxidizing and non-oxidizing isolates of P. putida, P. fluorescens, P. marincola, P. fluorescens-syringae group, P. mendocina-resinovorans group and P. stutzerii group were screened for PVD synthesis. The PVD producers (12 out of 16 tested strains were siderotyped and placed into four sets of differing PVD structures, some corresponding to previously characterized PVDs and some to novel PVDs. These results combined with previous studies suggested that the presence of OHAsp or the flexibility of the pyoverdine polypeptide may enable efficient binding of Mn(III.

  5. Pyoverdine synthesis by the Mn(II)-oxidizing bacterium Pseudomonas putida GB-1

    Science.gov (United States)

    Parker, Dorothy L.; Lee, Sung-Woo; Geszvain, Kati; Davis, Richard E.; Gruffaz, Christelle; Meyer, Jean-Marie; Torpey, Justin W.; Tebo, Bradley M.

    2014-01-01

    When iron-starved, the Mn(II)-oxidizing bacteria Pseudomonas putida strains GB-1 and MnB1 produce pyoverdines (PVDGB-1 and PVDMnB1), siderophores that both influence iron uptake and inhibit manganese(II) oxidation by these strains. To explore the properties and genetics of a PVD that can affect manganese oxidation, LC-MS/MS, and various siderotyping techniques were used to identify the peptides of PVDGB-1 and PVDMnB1 as being (for both PVDs): chromophore-Asp-Lys-OHAsp-Ser-Gly-aThr-Lys-cOHOrn, resembling a structure previously reported for P. putida CFML 90-51, which does not oxidize Mn. All three strains also produced an azotobactin and a sulfonated PVD, each with the peptide sequence above, but with unknown regulatory or metabolic effects. Bioinformatic analysis of the sequenced genome of P. putida GB-1 suggested that a particular non-ribosomal peptide synthetase (NRPS), coded by the operon PputGB1_4083-4086, could produce the peptide backbone of PVDGB-1. To verify this prediction, plasmid integration disruption of PputGB1_4083 was performed and the resulting mutant failed to produce detectable PVD. In silico analysis of the modules in PputGB1_4083-4086 predicted a peptide sequence of Asp-Lys-Asp-Ser-Ala-Thr-Lsy-Orn, which closely matches the peptide determined by MS/MS. To extend these studies to other organisms, various Mn(II)-oxidizing and non-oxidizing isolates of P. putida, P. fluorescens, P. marincola, P. fluorescens-syringae group, P. mendocina-resinovorans group, and P. stutzerii group were screened for PVD synthesis. The PVD producers (12 out of 16 tested strains) were siderotyped and placed into four sets of differing PVD structures, some corresponding to previously characterized PVDs and some to novel PVDs. These results combined with previous studies suggested that the presence of OHAsp or the flexibility of the pyoverdine polypeptide may enable efficient binding of Mn(III). PMID:24847318

  6. Sugar ester surfactants: enzymatic synthesis and applications in food industry.

    Science.gov (United States)

    Neta, Nair S; Teixeira, José A; Rodrigues, Lígia R

    2015-01-01

    Sugar esters are non-ionic surfactants that can be synthesized in a single enzymatic reaction step using lipases. The stability and efficiency of lipases under unusual conditions and using non-conventional media can be significantly improved through immobilization and protein engineering. Also, the development of de novo enzymes has seen a significant increase lately under the scope of the new field of synthetic biology. Depending on the esterification degree and the nature of fatty acid and/or sugar, a range of sugar esters can be synthesized. Due to their surface activity and emulsifying capacity, sugar esters are promising for applications in food industry.

  7. Multicompartment Artificial Organelles Conducting Enzymatic Cascade Reactions inside Cells

    DEFF Research Database (Denmark)

    Gallardo, Maria Godoy; Labay, Cédric Pierre; Trikalitis, Vasileios

    2017-01-01

    Cell organelles are subcellular structures entrapping a set of enzymes to achieve a specific functionality. The incorporation of artificial organelles into cells is a novel medical paradigm which might contribute to the treatment of various cell disorders by replacing malfunctioning organelles....... In particular, artificial organelles are expected to be a powerful solution in the context of enzyme replacement therapy since enzymatic malfunction is the primary cause of organelle dysfunction. Although several attempts have been made to encapsulate enzymes within a carrier vehicle, only few intracellularly...

  8. Radiation degration and the subsequent enzymatic hydrolysis of waste papers

    International Nuclear Information System (INIS)

    Kamakura, M.; Kaetsu, I.

    1982-01-01

    In recent years, many methods have been proposed for the hydrolysis of waste cellulose to utilize it as a new source of alcohol. Because it is difficult to hydrolyze waste cellulosic materials effectivley with an enzyme, the effects of preirradiating waste papers on subsequent enzymatic hydrolysis was studied. Preirradiation (x rays from 60 Co) accelerated the hydrolysis rate of newspaper by cellulase and the reducing-sugar yield increased with increasing irradiation dose. It is thought that preirradiation probably contributes to loosening and releasing the compactly entangled structure of cellulose and lignin in the materials by radiation degradation

  9. Measure of enzymatic activity coincident with 2450 MHz microwave exposure

    Energy Technology Data Exchange (ETDEWEB)

    Ward, T R; Allis, J W; Elder, J A

    1975-09-01

    Enzyme preparations were exposed to microwave radiation at 2450 MHz and enzymatic activity was simultaneously monitored spectrophotometrically with a crossed-beam exposure detection system. Enzymes studied were glucose 6-phosphate dehydrogenase from human red blood cells and yeast, adenylate kinase from rat liver mitochondria and rabbit muscle, and rat liver microsomal NADPH cytochrome c reductase. No difference was found between the specific activity at 25/sup 0/C of unirradiated controls and enzyme preparations irradiated at an absorbed dose rate of 42 W/kg.

  10. Enzymatic preparation and characterization of soybean lecithin-based emulsifiers

    Directory of Open Access Journals (Sweden)

    R. C. Reddy Jala

    2016-12-01

    Full Text Available Simple enzymatic methods were developed for the synthesis of lysolecithin, glycerolyzed lecithin and hydrolyzed lecithin. The products were characterized in terms of their acetone insoluble matter, hexane insoluble matter, moisture, phospholipid distribution and fatty acid composition. The HLB value ranges of different products with different acid values were detected. The efficiency of optimally hydrolyzed lecithin was examined at high calcium ion, low pH, and aqueous solutions and compared with commercially available standard lecithin-based emulsifiers. Overall, lysolecithin powder was proven to be the best emulsifier even at strong and medium acidic conditions.

  11. Enzymatic preparation and characterization of soybean lecithin-based emulsifiers

    International Nuclear Information System (INIS)

    Reddy Jala, R.C.; Chen, B.; Li, H.; Zhang, Y.; Cheong, L.Z.; Yang, T.; Xu, X.

    2016-01-01

    Simple enzymatic methods were developed for the synthesis of lysolecithin, glycerolyzed lecithin and hydrolyzed lecithin. The products were characterized in terms of their acetone insoluble matter, hexane insoluble matter, moisture, phospholipid distribution and fatty acid composition. The HLB value ranges of different products with different acid values were detected. The efficiency of optimally hydrolyzed lecithin was examined at high calcium ion, low pH, and aqueous solutions and compared with commercially available standard lecithin-based emulsifiers. Overall, lysolecithin powder was proven to be the best emulsifier even at strong and medium acidic conditions. [es

  12. Modelling and operation of reactors for enzymatic biodiesel production

    DEFF Research Database (Denmark)

    Price, Jason Anthony

    to the production of high fructose corn syrup, upgrading of fats and oils and biodiesel production to name a few. Despite these examples of industrial enzymatic applications, it is still not “clear cut” how to implement biocatalyst in industry and how best to optimize the processes. This is because the processing...... aspects of the enzyme with reaction/reactor engineering is performed. This strategy is applied to a case study of biodiesel production catalysed by a liquid enzyme formulation. The use of enzymes for biodiesel production is still in its infancy with non-optimized process designs. Furthermore is it unclear...

  13. Fed-Batch Feeding Strategies for Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Nordblad, Mathias; Woodley, John

    2014-01-01

    of the differences in the interfacial and bulk concentrations of the enzyme. The model is then used to evaluate various feeding strategies to improve the enzymatic biodiesel production. The feeding strategies investigated, gave insight into how the methanol should be fed to potentially mitigate enzyme deactivation...... while improving the biodiesel yield. The best experimental results gave a yield of 703 .76 g FAME L-1 and a reactor productivity of 28.12 g FAME L-1 h-1. In comparison, to reach the same yield, the optimised two step feeding strategy took 6.25 hours less, which equates to an increase the reactor...

  14. Enzymatic characterization of lipid-based drug delivery systems

    DEFF Research Database (Denmark)

    Ljusberg-Wahren, Helena; Seier Nielsen, Flemming; Brogård, Mattias

    2005-01-01

    The present work introduces a simple and robust in vitro method for enzymatic characterisation of surface properties of lipid dispersions in aqueous media. The initial lipolysis rate in biorelevant media, using pancreatic lipase and a self-microemulsifying formulation (SMEDDS) containing digestible...... lipids as substrate, was determined. The impact of incorporating two sparingly water soluble model drugs, probucol and halofantrine, into the SMEDDS was studied. It was found that both model drugs reduced the initial rate of lipolysis compared with the vehicle, probucol having a larger effect than...

  15. Enzymatic description of the anhydrofructose pathway of glycogen degradation. I

    DEFF Research Database (Denmark)

    Yu, Shukun; Refdahl, Charlotte; Lundt, Inge

    2004-01-01

    The anhydrofructose pathway describes the degradation of glycogen and starch to metabolites via 1,5-anhydro-D-fructose (1,5AnFru). The enzyme catalyzing the first reaction step of this pathway, i.e., a-1,4-glucan lyase (EC 4.2.1.13), has been purified, cloned and characterized from fungi and red...... possessed all enzymes needed for conversion of glycogen to APP, an a-1,4-glucan lyase from this fungus was isolated and partially sequenced. Based on this work, a scheme of the enzymatic description of the anhydrofructose pathway in A. melaloma was proposed. Keywords: Anhydrofructose pathway; Anthracobia...

  16. Electrodeposition of flower-like platinum on electrophoretically grown nitrogen-doped graphene as a highly sensitive electrochemical non-enzymatic biosensor for hydrogen peroxide detection

    Energy Technology Data Exchange (ETDEWEB)

    Tajabadi, M.T. [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Sookhakian, M., E-mail: m.sokhakian@gmail.com [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Zalnezhad, E., E-mail: erfan@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Yoon, G.H. [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Hamouda, A.M.S. [Mechanical and Industrial Engineering Department, College of Engineering, Qatar University, 2713, Doha (Qatar); Azarang, Majid [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Basirun, W.J. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Institute of Nanotechnology & Catalysis Research, Institute of Postgraduate Studies, University Malaya, 50603 Kuala Lumpur (Malaysia); Alias, Y., E-mail: yatimah70@um.edu.my [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2016-11-15

    Highlights: • Nitrogen doped graphene with different thickness by electrophoretic deposition. • The conductivity of N-graphene layer depends on the tickness. • Support of platinum shows efficient electrocatalytic performance for biosensor. • CV curves and amperometric responses improved and optimized in the presence of N-graphene. - Abstract: An efficient non-enzymatic biosensor electrode consisting of nitrogen-doped graphene (N-graphene) and platinum nanoflower (Pt NF) with different N-graphene loadings were fabricated on indium tin oxide (ITO) glass using a simple layer-by-layer electrophoretic and electrochemical sequential deposition approach. N-graphene was synthesized by annealing graphene oxide with urea at 900 °C. The structure and morphology of the as-fabricated non-enzymatic biosensor electrodes were determined using X-ray diffraction, field emission electron microscopy, transmission electron microscopy, Raman and X-ray photoelectron spectra. The as-fabricated Pt NF-N-graphene-modified ITO electrodes with different N-graphene loadings were utilized as a non-enzymatic biosensor electrode for the detection of hydrogen peroxide (H{sub 2}O{sub 2}). The behaviors of the hybrid electrodes towards H{sub 2}O{sub 2} reduction were assessed using chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy analysis. The Pt NF-N-graphene-modified ITO electrode with a 0.05 mg ml{sup −1} N-graphene loading exhibited the lowest detection limit, fastest amperometric sensing, a wide linear response range, excellent stability and reproducibility for the non-enzymatic H{sub 2}O{sub 2} detection, due to the synergistic effect between the electrocatalytic activity of the Pt NF and the high conductivity and large surface area of N-graphene.

  17. Electrodeposition of flower-like platinum on electrophoretically grown nitrogen-doped graphene as a highly sensitive electrochemical non-enzymatic biosensor for hydrogen peroxide detection

    International Nuclear Information System (INIS)

    Tajabadi, M.T.; Sookhakian, M.; Zalnezhad, E.; Yoon, G.H.; Hamouda, A.M.S.; Azarang, Majid; Basirun, W.J.; Alias, Y.

    2016-01-01

    Highlights: • Nitrogen doped graphene with different thickness by electrophoretic deposition. • The conductivity of N-graphene layer depends on the tickness. • Support of platinum shows efficient electrocatalytic performance for biosensor. • CV curves and amperometric responses improved and optimized in the presence of N-graphene. - Abstract: An efficient non-enzymatic biosensor electrode consisting of nitrogen-doped graphene (N-graphene) and platinum nanoflower (Pt NF) with different N-graphene loadings were fabricated on indium tin oxide (ITO) glass using a simple layer-by-layer electrophoretic and electrochemical sequential deposition approach. N-graphene was synthesized by annealing graphene oxide with urea at 900 °C. The structure and morphology of the as-fabricated non-enzymatic biosensor electrodes were determined using X-ray diffraction, field emission electron microscopy, transmission electron microscopy, Raman and X-ray photoelectron spectra. The as-fabricated Pt NF-N-graphene-modified ITO electrodes with different N-graphene loadings were utilized as a non-enzymatic biosensor electrode for the detection of hydrogen peroxide (H_2O_2). The behaviors of the hybrid electrodes towards H_2O_2 reduction were assessed using chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy analysis. The Pt NF-N-graphene-modified ITO electrode with a 0.05 mg ml"−"1 N-graphene loading exhibited the lowest detection limit, fastest amperometric sensing, a wide linear response range, excellent stability and reproducibility for the non-enzymatic H_2O_2 detection, due to the synergistic effect between the electrocatalytic activity of the Pt NF and the high conductivity and large surface area of N-graphene.

  18. Protective effects against H2O2-induced damage by enzymatic hydrolysates of an edible brown seaweed, sea tangle (Laminaria japonica).

    Science.gov (United States)

    Park, Pyo-Jam; Kim, Eun-Kyung; Lee, Seung-Jae; Park, Sun-Young; Kang, Dong-Soo; Jung, Bok-Mi; Kim, Kui-Shik; Je, Jae-Young; Ahn, Chang-Bum

    2009-02-01

    Enzymatic hydrolysates of Laminaria japonica were evaluated for antioxidative activities using hydroxyl radical scavenging activity and protective effects against H(2)O(2)-induced DNA and cell damage. In addition, activities of antioxidative enzymes, including catalase, glutathione peroxidase, and glutathione S-transferase, of the enzymatic hydrolysates from L. japonica were also estimated. L. japonica was first enzymatically hydrolyzed by seven carbohydrases (Dextrozyme, AMG, Promozyme, Maltogenase, Termamyl, Viscozyme, and Celluclast [all from Novo Co., Novozyme Nordisk, Bagsvaerd, Denmark]) and five proteinases (Flavourzyme, Neutrase, Protamex, Alcalase [all from Novo Co.], and pancreatic trypsin). The hydroxyl radical scavenging activities of Promozyme and pancreatic trypsin hydrolysates from L. japonica were the highest as compared to those of the other carbohydrases and proteinases, and their 50% inhibitory concentration values were 1.67 and 317.49 mug/mL, respectively. The pancreatic trypsin hydrolysates of L. japonica exerted a protective effect on H(2)O(2)-induced DNA damage. We also evaluated the protective effect on hydroxyl radical-induced oxidative damage in PC12 cells via propidium iodide staining using a flow cytometer. The AMG and pancreatic trypsin hydrolysates of L. japonica dose-dependently protected PC12 cells against cell death caused by hydroxyl radical-induced oxidative damage. Additionally, we analyzed the activity of antioxidative enzymes such as catalase, glutathione peroxidase, and the phase II biotransformation enzyme glutathione S-transferase in L. japonica-treated cells. The activity of all antioxidative enzymes was higher in L. japonica-treated cells compared with the nontreated cells. These results indicate that enzymatic hydrolysates of L. japonica possess antioxidative activity.

  19. Enzymatic lipophilization of epicatechin with free fatty acids and its effect on antioxidative capacity in crude camellia seed oil.

    Science.gov (United States)

    Chen, Sa-Sa; Luo, Shui-Zhong; Zheng, Zhi; Zhao, Yan-Yan; Pang, Min; Jiang, Shao-Tong

    2017-02-01

    Crude camellia seed oil is rich in free fatty acids, which must be removed to produce an oil of acceptable quality. In the present study, we reduced the free fatty acid content of crude camellia seed oil by lipophilization of epicatechin with these free fatty acids in the presence of Candida antarctica lipase B (Novozym 435), and this may enhance the oxidative stability of the oil at the same time. The acid value of crude camellia seed oil reduced from 3.7 to 2.5 mgKOH g -1 after lipophilization. Gas chomatography-mass spectrometry analysis revealed that epicatechin oleate and epicatechin palmitate were synthesized in the lipophilized oil. The peroxide, p-anisidine, and total oxidation values during heating of the lipophilized oil were much lower than that of the crude oil and commercially available camellia seed oil, suggesting that lipophilized epicatechin derivatives could help enhance the oxidative stability of edible oil. The enzymatic process to lipophilize epicatechin with the free fatty acids in crude camellia seed oil described in the present study could decrease the acid value to meet the quality standards for commercial camellia seed oil and, at the same time, obtain a new edible camellia seed oil product with good oxidative stability. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Non-enzymatic antioxidant accumulations in BR-deficient and BR-insensitive barley mutants under control and drought conditions.

    Science.gov (United States)

    Gruszka, Damian; Janeczko, Anna; Dziurka, Michal; Pociecha, Ewa; Fodor, Jozsef

    2017-12-07

    Drought is one of the most adverse stresses that affect plant growth and yield. Disturbances in metabolic activity resulting from drought cause overproduction of reactive oxygen species. It is postulated that brassinosteroids (BRs) regulate plant tolerance to the stress conditions, but the underlying mechanisms remain largely unknown. An involvement of endogenous BRs in regulation of the antioxidant homeostasis is not fully clarified either. Therefore, the aim of this study was to elucidate the role of endogenous BRs in regulation of non-enzymatic antioxidants in barley (Hordeum vulgare) under control and drought conditions. The plant material included the 'Bowman' cultivar and a group of semi-dwarf near-isogenic lines (NILs), representing mutants deficient in BR biosynthesis or signaling. In general, accumulations of 11 compounds representing various types of non-enzymatic antioxidants were analyzed under both conditions. The analyses of accumulations of reduced and oxidized forms of ascorbate indicated that the BR mutants contain significantly higher contents of dehydroascorbic acid under drought conditions when compared with the 'Bowman' cultivar. The analysis of glutathione accumulation indicated that under the control conditions the BR-insensitive NILs contained significantly lower concentrations of this antioxidant when compared with the rest of genotypes. Therefore, we postulate that BR sensitivity is required for normal accumulation of glutathione. A complete accumulation profile of various tocopherols indicated that functional BR biosynthesis and signaling are required for their normal accumulation under both conditions. Results of this study provided an insight into the role of endogenous BRs in regulation of the non-enzymatic antioxidant homeostasis. © 2017 Scandinavian Plant Physiology Society.

  1. Enzymatic cybernetics: an unpublished work by Jacques Monod.

    Science.gov (United States)

    Gayon, Jean

    2015-06-01

    In 1959, Jacques Monod wrote a manuscript entitled Cybernétique enzymatique [Enzymatic cybernetics]. Never published, this unpublished manuscript presents a synthesis of how Monod interpreted enzymatic adaptation just before the publication of the famous papers of the 1960s on the operon. In addition, Monod offers an example of a philosophy of biology immersed in scientific investigation. Monod's philosophical thoughts are classified into two categories, methodological and ontological. On the methodological side, Monod explicitly hints at his preferences regarding the scientific method in general: hypothetical-deductive method, and use of theoretical models. He also makes heuristic proposals regarding molecular biology: the need to analyse the phenomena in question at the level of individual cells, and the dual aspect of all biological explanation, functional and evolutionary. Ontological issues deal with the notions of information and genetic determinism, "cellular memory", the irrelevance of the notion of "living matter", and the usefulness of a cybernetic comprehension of molecular biology. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  2. Enzymatic modification of egg lecithin to improve properties.

    Science.gov (United States)

    Asomaning, Justice; Curtis, Jonathan M

    2017-04-01

    This research studied the enzymatic modification of egg yolk phospholipids and its effect on physicochemical properties. Egg yolk lipids were extracted with food grade ethanol and egg phospholipids (ePL) produced by deoiling with acetone. Vegetable oils were used to interesterify ePL utilizing Lipozyme®: sn-1,3 specific lipase. The enzymatic interesterification resulted in a single phase liquid product, whereas simple blending of the ePL and vegetable oil resulted in a product with two phases. In addition solid fat content decreased by 50% at -10°C and 94% at 35°C when compared with egg yolk lipids extract. A decrease in melting temperature resulted from the interesterification process. Interesterification improved emulsion stability index when used as an emulsifier in oil-in-water emulsion and compared to the native and soy lecithin. Enzyme reusability test showed retention of 63% activity after 10 cycles. Overall, the properties of native egg phospholipids were significantly enhanced in a potentially useful manner through interesterification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Enzymatic Digestion of Chronic Wasting Disease Prions Bound to Soil

    Science.gov (United States)

    SAUNDERS, SAMUEL E.; BARTZ, JASON C.; VERCAUTEREN, KURT C.; BARTELT-HUNT, SHANNON L.

    2010-01-01

    Chronic wasting disease (CWD) and sheep scrapie can be transmitted via indirect environmental routes, and it is known that soil can serve as a reservoir of prion infectivity. Given the strong interaction between the prion protein (PrP) and soil, we hypothesized that binding to soil enhances prion resistance to enzymatic digestion, thereby facilitating prion longevity in the environment and providing protection from host degradation. We characterized the performance of a commercially available subtilisin enzyme, the Prionzyme, to degrade soil-bound and unbound CWD and HY TME PrP as a function of pH, temperature, and treatment time. The subtilisin enzyme effectively degraded PrP adsorbed to a wide range of soils and soil minerals below the limits of detection. Signal loss occurred rapidly at high pH (12.5) and within 7 d under conditions representative of the natural environment (pH 7.4, 22°C). We observed no apparent difference in enzyme effectiveness between bound and unbound CWD PrP. Our results show that although adsorbed prions do retain relative resistance to enzymatic digestion compared with other brain homogenate proteins, they can be effectively degraded when bound to soil. Our results also suggest a topical application of a subtilisin enzyme solution may be an effective decontamination method to limit disease transmission via environmental ‘hot spots’ of prion infectivity. PMID:20450190

  4. Cellulase-lignin interactions in the enzymatic hydrolysis of lignocellulose

    Energy Technology Data Exchange (ETDEWEB)

    Rahikainen, J.

    2013-11-01

    Today, the production of transportation fuels and chemicals is heavily dependent on fossil carbon sources, such as oil and natural gas. Their limited availability and the environmental concerns arising from their use have driven the search for renewable alternatives. Lignocellulosic plant biomass is the most abundant, but currently underutilised, renewable carbon-rich resource for fuel and chemical production. Enzymatic degradation of structural polysaccharides in lignocellulose produces soluble carbohydrates that serve as ideal precursors for the production of a vast amount of different chemical compounds. The difficulty in full exploitation of lignocellulose for fuel and chemical production lies in the complex and recalcitrant structure of the raw material. Lignocellulose is mainly composed of structural polysaccharides, cellulose and hemicellulose, but also of lignin, which is an aromatic polymer. Enzymatic degradation of cellulose and hemicellulose is restricted by several substrate- and enzyme-related factors, among which lignin is considered as one of the most problematic issues. Lignin restricts the action of hydrolytic enzymes and enzyme binding onto lignin has been identified as a major inhibitory mechanism preventing efficient hydrolysis of lignocellulosic feedstocks. In this thesis, the interactions between cellulase enzymes and lignin-rich compounds were studied in detail and the findings reported in this work have the potential to help in controlling the harmful cellulase-lignin interactions, and thus improve the biochemical processing route from lignocellulose to fuels and chemicals.

  5. Chemical and Enzymatic Hydrolysis of Polyurethane/Polylactide Blends

    Directory of Open Access Journals (Sweden)

    Joanna Brzeska

    2015-01-01

    Full Text Available Polyether-esterurethanes containing synthetic poly[(R,S-3-hydroxybutyrate] (R,S-PHB and polyoxytetramethylenediol in soft segments and polyesterurethanes with poly(ε-caprolactone and poly[(R,S-3-hydroxybutyrate] were blended with poly([D,L]-lactide (PLA. The products were tested in terms of their oil and water absorption. Oil sorption tests of polyether-esterurethane revealed their higher response in comparison to polyesterurethanes. Blending of polyether-esterurethanes with PLA caused the increase of oil sorption. The highest water sorption was observed for blends of polyether-esterurethane, obtained with 10% of R,S-PHB in soft segments. The samples mass of polyurethanes and their blends were almost not changed after incubation in phosphate buffer and trypsin and lipase solutions. Nevertheless the molecular weight of polymers was significantly reduced after degradation. It was especially visible in case of incubation of samples in phosphate buffer what suggested the chemical hydrolysis of polymer chains. The changes of surface of polyurethanes and their blends, after incubation in both enzymatic solutions, indicated on enzymatic degradation, which had been started despite the lack of mass lost. Polyurethanes and their blends, contained more R,S-PHB in soft segments, were degraded faster.

  6. Improvement of Soybean Oil Solvent Extraction through Enzymatic Pretreatment

    Directory of Open Access Journals (Sweden)

    F. V. Grasso

    2012-01-01

    Full Text Available The purpose of this study is to evaluate multienzyme hydrolysis as a pretreatment option to improve soybean oil solvent extraction and its eventual adaptation to conventional processes. Enzymatic action causes the degradation of the cell structures that contain oil. Improvements in terms of extraction, yield, and extraction rate are expected to be achieved. Soybean flakes and collets were used as materials and hexane was used as a solvent. Temperature, pH, and incubation time were optimized and diffusion coefficients were estimated for each solid. Extractions were carried out in a column, oil content was determined according to time, and a mathematical model was developed to describe the system. The optimum conditions obtained were pH 5.4, 38°C, and 9.7 h, and pH 5.8, 44°C, and 5.8h of treatment for flakes and collets, respectively. Hydrolyzed solids exhibited a higher yield. Diffusion coefficients were estimated between 10-11 and 10-10. The highest diffusion coefficient was obtained for hydrolyzed collets. 0.73 g oil/mL and 0.7 g oil/mL were obtained at 240 s in a column for collets and flakes, respectively. Hydrolyzed solids exhibited a higher yield. The enzymatic incubation accelerates the extraction rate and allows for higher yield. The proposed model proved to be appropriate.

  7. Enzymatic production of pectic oligosaccharides from onion skins.

    Science.gov (United States)

    Babbar, Neha; Baldassarre, Stefania; Maesen, Miranda; Prandi, Barbara; Dejonghe, Winnie; Sforza, Stefano; Elst, Kathy

    2016-08-01

    Onion skins are evaluated as a new raw material for the enzymatic production of pectic oligosaccharides (POS) with a targeted degree of polymerization (DP). The process is based on a two-stage process consisting of a chelator-based crude pectin extraction followed by a controlled enzymatic hydrolysis. Treatment of the extracted crude onion skin's pectin with various enzymes (EPG-M2, Viscozyme and Pectinase) shows that EPG-M2 is the most appropriate enzyme for tailored POS production. The experiments reveal that the highest amount of DP2 and DP3 is obtained at a time scale of 75-90min with an EPG-M2 concentration of 26IU/mL. At these conditions the production amounts 2.5-3.0% (w/w) d.m for DP2 and 5.5-5.6% (w/w) d.m for DP3 respectively. In contrast, maximum DP4 production of 5.2-5.5% (w/w) d.m. is obtained with 5.2IU/mL at a time scale of 15-30min. Detailed LC-MS analysis reveals the presence of more methylated oligomers compared to acetylated forms in the digests. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles.

    Science.gov (United States)

    Bawazer, Lukmaan A; Izumi, Michi; Kolodin, Dmitriy; Neilson, James R; Schwenzer, Birgit; Morse, Daniel E

    2012-06-26

    The way nature evolves and sculpts materials using proteins inspires new approaches to materials engineering but is still not completely understood. Here, we present a cell-free synthetic biological platform to advance studies of biologically synthesized solid-state materials. This platform is capable of simultaneously exerting many of the hierarchical levels of control found in natural biomineralization, including genetic, chemical, spatial, structural, and morphological control, while supporting the evolutionary selection of new mineralizing proteins and the corresponding genetically encoded materials that they produce. DNA-directed protein expression and enzymatic mineralization occur on polystyrene microbeads in water-in-oil emulsions, yielding synthetic surrogates of biomineralizing cells that are then screened by flow sorting, with light-scattering signals used to sort the resulting mineralized composites differentially. We demonstrate the utility of this platform by evolutionarily selecting newly identified silicateins, biomineralizing enzymes previously identified from the silica skeleton of a marine sponge, for enzyme variants capable of synthesizing silicon dioxide (silica) or titanium dioxide (titania) composites. Mineral composites of intermediate strength are preferentially selected to remain intact for identification during cell sorting, and then to collapse postsorting to expose the encoding genes for enzymatic DNA amplification. Some of the newly selected silicatein variants catalyze the formation of crystalline silicates, whereas the parent silicateins lack this ability. The demonstrated bioengineered route to previously undescribed materials introduces in vitro enzyme selection as a viable strategy for mimicking genetic evolution of materials as it occurs in nature.

  9. PARP1 Val762Ala polymorphism reduces enzymatic activity

    International Nuclear Information System (INIS)

    Wang Xiaogan; Wang Zhaoqi; Tong Weimin; Shen Yan

    2007-01-01

    Poly(ADP-ribose) polymerase 1 (PARP1) modifies a variety of nuclear proteins by poly(ADP-ribosyl)ation, and plays diverse roles in molecular and cellular processes. A common PARP1 single nucleotide polymorphism (SNP) at codon 762, resulting in the substitution of alanine (Ala) for valine (Val) in the catalytic domain has been implicated in susceptibility to cancer. To characterize the functional effect of this polymorphism on PARP1, we performed in vitro enzymatic analysis on PARP1-Ala762 and PARP1-Val762. We found that PARP1-Ala762 displayed 57.2% of the activity of PARP1-Val762 for auto-poly(ADP-ribosyl)ation and 61.9% of the activity of PARP1-Val762 for trans-poly(ADP-ribosyl)ation of histone H1. The kinetic characterization revealed that the K m of PARP1-Ala762 was increased to a 1.2-fold of the K m of PARP1-Val762 for trans-poly(ADP-ribosyl)ation. Thus, the PARP1 Val762Ala polymorphism reduces the enzymatic activity of PARP1 by increasing K m . This finding suggests that different levels of poly(ADP-ribosyl)ation by PARP1 might aid in understanding Cancer risk of carriers of the PARP1 Val762Ala polymorphism

  10. Multicenter evaluation of an enzymatic method for glycated albumin.

    Science.gov (United States)

    Paleari, Renata; Bonetti, Graziella; Callà, Cinzia; Carta, Mariarosa; Ceriotti, Ferruccio; Di Gaetano, Nicola; Ferri, Marilisa; Guerra, Elena; Lavalle, Gabriella; Cascio, Claudia Lo; Martino, Francesca Gabriela; Montagnana, Martina; Moretti, Marco; Santini, Gabriele; Scribano, Donata; Testa, Roberto; Vero, Anna; Mosca, Andrea

    2017-06-01

    The use of glycated albumin (GA) has been proposed as an additional glycemic control marker particularly useful in intermediate-term monitoring and in situation when HbA 1c test is not reliable. We have performed the first multicenter evaluation of the analytical performance of the enzymatic method quantILab Glycated Albumin assay implemented on the most widely used clinical chemistry analyzers (i.e. Abbott Architect C8000, Beckman Coulter AU 480 and 680, Roche Cobas C6000, Siemens ADVIA 2400 and 2400 XPT). The repeatability of the GA measurement (expressed as CV, %) implemented in the participating centers ranged between 0.9% and 1.2%. The within-laboratory CVs ranged between 1.2% and 1.6%. A good alignment between laboratories was found, with correlation coefficients from 0.996 to 0.998. Linearity was confirmed in the range from 7.6 to 84.7%. The new enzymatic method for glycated albumin evaluated by our investigation is suitable for clinical use. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A characterization of scale invariant responses in enzymatic networks.

    Directory of Open Access Journals (Sweden)

    Maja Skataric

    Full Text Available An ubiquitous property of biological sensory systems is adaptation: a step increase in stimulus triggers an initial change in a biochemical or physiological response, followed by a more gradual relaxation toward a basal, pre-stimulus level. Adaptation helps maintain essential variables within acceptable bounds and allows organisms to readjust themselves to an optimum and non-saturating sensitivity range when faced with a prolonged change in their environment. Recently, it was shown theoretically and experimentally that many adapting systems, both at the organism and single-cell level, enjoy a remarkable additional feature: scale invariance, meaning that the initial, transient behavior remains (approximately the same even when the background signal level is scaled. In this work, we set out to investigate under what conditions a broadly used model of biochemical enzymatic networks will exhibit scale-invariant behavior. An exhaustive computational study led us to discover a new property of surprising simplicity and generality, uniform linearizations with fast output (ULFO, whose validity we show is both necessary and sufficient for scale invariance of three-node enzymatic networks (and sufficient for any number of nodes. Based on this study, we go on to develop a mathematical explanation of how ULFO results in scale invariance. Our work provides a surprisingly consistent, simple, and general framework for understanding this phenomenon, and results in concrete experimental predictions.

  12. Effect of irradiation on enzymatic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Chowdhury, N.A.; Matsuhashi, Shinpei; Hashimoto, Shoji; Kume, Tamikazu.

    1993-03-01

    Combination treatments with irradiation and other methods were examined to enhance the digestion of cellulosic materials such as sugar cane bagasse and rice straw. The amount of crude fiber (CF), acid detergent fiber (ADF) and neutral detergent fiber (NDF) of bagasse and rice straw were changed with various treatments. Alkali treatment (0.2N NaOH) was the most efficient for the enzymatic hydrolysis of bagasse and rice straw. Combination treatments with radiation and alkali or other methods increased their efficiency, and synergistic effect of radiation and alkali treatment was observed. Enzymatic digestion of CF of bagasse and rice straw treated by degassed water yielded high reducing sugar comparable to that of CF treated by alkali. CF of bagasse and rice straw treated by ozone did not show the significant increase in the release of reducing sugar upon saccharification. ADF and acid detergent lignin (ADL) contents decreased with the fermentation of bagasse by Coriolus versicolor. Electron microscopic observations also revealed the degradation of lignocellulosic components of bagasse. (author)

  13. Enzymatic U(VI) reduction by Desulfosporosinus species

    International Nuclear Information System (INIS)

    Suzuki, Y.; Kelly, S.D.; Kemner, K.M.; Banfield, J.F.

    2004-01-01

    Here we tested U(VI) reduction by a Desulfosporosinus species (sp.) isolate and type strain (DSM 765) in cell suspensions (pH 7) containing 1 mM U(VI) and lactate, under an atmosphere containing N 2 -CO 2 -H 2 (90: 5: 5). Although neither Desulfosporosinus species (spp.) reduced U(VI) in cell suspensions with 0.25% Na-bicarbonate or 0.85% NaCl, U(VI) was reduced in these solutions by a control strain, desulfovibrio desulfuricans (ATCC 642). However, both Desulfosporosinus strains reduced U(VI) in cell suspensions depleted in bicarbonate and NaCl. No U(VI) reduction was observed without lactate and H 2 electron donors or with heat-killed cells, indicating enzymatic U(VI) reduction. Uranium(VI) reduction by both strains was inhibited when 1 mM CuCl 2 was added to the cell suspensions. Because the Desulfosporosinus DSM 765 does not contain cytochrome c 3 used by Desulfovibrio spp. to reduce U(VI), Desulfosporosinus species reduce uranium via a different enzymatic pathway. (orig.)

  14. Enzymatic oxidation of volatile malodorous organosulfur compounds in a two-phase reactor

    Directory of Open Access Journals (Sweden)

    Julio C. Cruz

    2015-01-01

    Full Text Available En este trabajo reportamos la oxidación de una serie de compuestos organoazufrados volátiles (COV catalizada por la enzima cloroperoxidasa obtenida del hongo Caldariomyces fumago . Los COV se consideran contaminantes atmosféricos debido a su olor desagradable y a su bajo umbral de detección. El sulfuro de etilo, disulfuro de dimetilo, propanotiol, butanotiol y hexanotiol fueron transformados por la enzima en un medio de reacción acuoso a pH 6 y en presencia de peróxido de hidrógeno. El análisis de los productos demostró que los sulfuros fueron oxidados a sus respectivos sulfóxidos, mientras que los tioles fueron oxidados a sus correspondientes disulfuros. Los productos identificados tienen una presión de vapor significativamente menor que los compuestos originales, por lo que son mucho menos volátiles y por tanto no se consideran contaminantes atmosféricos. Se ensambló un reactor de dos fases de 70 mL de volumen con el fin de determinar la eficiencia del tratamiento enzimático. La fase líquida, compuesta por 85% de amortiguador y 15% de solvente orgánico, se puso en contacto con la fase gaseosa, compuesta por aire enriquecido con el sustrato. Usando disulfuro de metilo como sustrato modelo, encontramos únicamente reacción enzimática en este sistema; al controlar la concentración de enzima y de peróxido en la fase líquida se logró transferir el sustrato a la fase acuosa en donde 1 mol de enzima convirtió aproximadamente 12,400 moles de sustrato, resaltando el potencial de los tratamientos enzimáticos para las corrientes gaseosas con mal olor por COV.

  15. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer

    DEFF Research Database (Denmark)

    Westereng, Bjorge; Cannella, David; Wittrup Agger, Jane

    2015-01-01

    cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds...

  16. Leaf phenolics and seaweed tannins : analysis, enzymatic oxidation and non-covalent protein binding

    NARCIS (Netherlands)

    Vissers, Anne M.

    2017-01-01

    Upon extraction of proteins from sugar beet leaves (Beta vulgaris L.) and oarweed (Laminaria digitata) for animal food and feed purposes, endogenous phenolics and proteins can interact with each other, which might affect the protein’s applicability. Sugar beet leaf proteins

  17. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer

    DEFF Research Database (Denmark)

    Westereng, Bjorge; Cannella, David; Wittrup Agger, Jane

    2015-01-01

    in biological systems are only partly understood. We show here that insoluble high molecular weight lignin functions as a reservoir of electrons facilitating LPMO activity. The electrons are donated to the enzyme by long-range electron transfer involving soluble low molecular weight lignins present in plant...... cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds...

  18. Oxidative stability and non-enzymatic browning reactions in Antarctic krill oil (Euphausia superba)

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Bruheim, Inge; Jacobsen, Charlotte

    2014-01-01

    Antarctic krill oil has gained much consideration recently due to its rich content of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the form of phospholipids and its powerful antioxidant known as astaxanthin. To secure these valuable bioactive nutrients in krill oil, a gentle...

  19. Networks of enzymatically oxidized membrane lipids support calcium-dependent coagulation factor binding to maintain hemostasis

    NARCIS (Netherlands)

    Lauder, S.N.; Allen-Redpath, K.; Slatter, D.A.; Aldrovandi, M.; O'Connor, A.; Farewell, D.; Percy, C.L.; Molhoek, J.E.; Rannikko, S.; Tyrrell, V.J.; Ferla, S.; Milne, G.L.; Poole, A.W.; Thomas, C.P.; Obaji, S.; Taylor, P.R.; Jones, S.A.; Groot, P.G. de; Urbanus, R.T.; Horkko, S.; Uderhardt, S.; Ackermann, J.; Jenkins, P.V.; Brancale, A.; Kronke, G.; Collins, P.W.; O'Donnell, V.B.

    2017-01-01

    Blood coagulation functions as part of the innate immune system by preventing bacterial invasion, and it is critical to stopping blood loss (hemostasis). Coagulation involves the external membrane surface of activated platelets and leukocytes. Using lipidomic, genetic, biochemical, and mathematical

  20. Novel anti-oxidative peptides from enzymatic digestion of human milk

    DEFF Research Database (Denmark)

    Tsopmo, Apollinaire; Romanowski, Andrea; Banda, Lyness

    2011-01-01

    Humanmilk pepsin and pancreatin digests were separated using molecular membrane and reverse phase chromatography. Chemical screening of the resulting fractions using the ORAC antioxidant assay yielded a peptide fraction (PF-23) with high antioxidant activity (5207 μM Trolox Equivalents (TE...

  1. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose; Actividad enzimatica del complejo celulolitico producido por Trichoderma reesei. Hidrolisis enzimatica de la celulosa

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsel, M; Negro, M J; Saez, R; Martin, C

    1986-07-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs.

  2. Oxidative degradation of alkylphenols by horseradish peroxidase.

    Science.gov (United States)

    Sakuyama, Hisae; Endo, Yasushi; Fujimoto, Kenshiro; Hatana, Yasuhiko

    2003-01-01

    Alkylphenols such as bisphenol A (2,2-bis(4-hydroxyphenyl)propane; BPA), p-nonylphenol (p-NP), and p-octylphenol (p-OP) that are known as endocrine disrupters were oxidized by horseradish (Armoracia rusticana) peroxidase (HRP) with H2O2. The optimal pHs for BPA, p-NP, and p-OP were 8.0, 7.0, and 5.0, respectively. The optimal temperature for BPA was 20 degrees C. Although BPA was rapidly degraded by HRP, its degradation depended on the concentration of HRP. Most of the oxidation products of BPA were polymers, although some 4-isopropenylphenol was produced. When male Japanese medaka (Oryzias latipes) were exposed to BPA, vitellogenin in the blood increased. However, no increased vitellogenin was observed in medaka exposed to HRP-oxidized BPA. The enzymatic oxidation of BPA using HRP was able to eliminate its estrogen-like activity.

  3. Synthesis of CdS quantum dots decorated graphene nanosheets and non-enzymatic photoelectrochemical detection of glucose

    International Nuclear Information System (INIS)

    Zhang, Xuyan; Xu, Fang; Zhao, Bingqing; Ji, Xin; Yao, Yanwen; Wu, Dapeng; Gao, Zhiyong; Jiang, Kai

    2014-01-01

    Graphical abstract: - Highlights: • Graphene-CdS hybrid materials were prepared via one-step hydrothermal method. • Graphene-CdS was used as non-enzymatic photoelectrochemical sensor to detect glucose. • Glucose in real sample was detected and showed good specificity and sensitivity. - ABSTRACT: Graphene-CdS quantum dots (QDs) hybrid materials were successfully prepared via one-step hydrothermal method. CdS QDs with average size of ∼6 nm were dispersed on graphene sheets with high coverage through non-covalent bonding. Photocurrent and electrochemical impedance spectroscopy (EIS) results suggested that the best dosage of graphene oxide for graphene-CdS hybrid materials is 0.5% (G0.5-CdS). When G0.5-CdS QDs was used as photoanode materials in non-enzymatic sensor, and the sensor was used to detect glucose and displayed satisfactory analytical performance with good linear range from 0.1∼4 mmol dm −3 with a detection limit of 7 μmol dm −3 at a signal-to-noise ratio of 3. The sensor also possessed high selectivity and durability in trace detection of glucose

  4. A high performance non-enzymatic glucose sensor based on nickel hydroxide modified nitrogen-incorporated nanodiamonds.

    Science.gov (United States)

    Ko, Chih-Yu; Huang, Jin-Hua; Raina, Supil; Kang, Weng P

    2013-06-07

    A highly selective, sensitive, and stable non-enzymatic glucose sensor based on Ni hydroxide modified nitrogen-incorporated nanodiamonds (Ni(OH)2-NND) was developed. The sensor was fabricated by e-beam evaporation of a thin Ni film on NND followed by the growth of Ni(OH)2 using an electrochemical process. It was found that the Ni film thickness greatly affects the morphology and electro-catalytic activity of the as-synthesized electrode for non-enzymatic glucose oxidation. Owing to its nanostructure characteristics, the best sensor fabricated by 150 nm Ni deposition showed two wide response ranges, namely, 0.02-1 mM and 1-9 mM, with sensitivities of 3.20 and 1.41 mA mM(-1) cm(-2), respectively, and a detection limit of 1.2 μM (S/N = 3). The sensor also showed good long-term stability as well as high selectivity in the presence of interferences such as ascorbic acid, acetaminophen, and uric acid. This finding reveals the possibility of exploiting the NND as an electrochemical biosensor platform where high performance addressable sensor arrays could be built.

  5. Co-solvent effects on reaction rate and reaction equilibrium of an enzymatic peptide hydrolysis.

    Science.gov (United States)

    Wangler, A; Canales, R; Held, C; Luong, T Q; Winter, R; Zaitsau, D H; Verevkin, S P; Sadowski, G

    2018-04-25

    This work presents an approach that expresses the Michaelis constant KaM and the equilibrium constant Kth of an enzymatic peptide hydrolysis based on thermodynamic activities instead of concentrations. This provides KaM and Kth values that are independent of any co-solvent. To this end, the hydrolysis reaction of N-succinyl-l-phenylalanine-p-nitroanilide catalysed by the enzyme α-chymotrypsin was studied in pure buffer and in the presence of the co-solvents dimethyl sulfoxide, trimethylamine-N-oxide, urea, and two salts. A strong influence of the co-solvents on the measured Michaelis constant (KM) and equilibrium constant (Kx) was observed, which was found to be caused by molecular interactions expressed as activity coefficients. Substrate and product activity coefficients were used to calculate the activity-based values KaM and Kth for the co-solvent free reaction. Based on these constants, the co-solvent effect on KM and Kx was predicted in almost quantitative agreement with the experimental data. The approach presented here does not only reveal the importance of understanding the thermodynamic non-ideality of reactions taking place in biological solutions and in many technological applications, it also provides a framework for interpreting and quantifying the multifaceted co-solvent effects on enzyme-catalysed reactions that are known and have been observed experimentally for a long time.

  6. Kinetic modeling of a bi-enzymatic system for efficient conversion of lactose to lactobionic acid.

    Science.gov (United States)

    Van Hecke, Wouter; Bhagwat, Aditya; Ludwig, Roland; Dewulf, Jo; Haltrich, Dietmar; Van Langenhove, Herman

    2009-04-01

    A model has been developed to describe the interaction between two enzymes and an intermediary redox mediator. In this bi-enzymatic process, the enzyme cellobiose dehydrogenase oxidizes lactose at the C-1 position of the reducing sugar moiety to lactobionolactone, which spontaneously hydrolyzes to lactobionic acid. 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt is used as electron acceptor and is continuously regenerated by laccase. Oxygen is the terminal electron acceptor and is fully reduced to water by laccase, a copper-containing oxidase. Oxygen is added to the system by means of bubble-free oxygenation. Using the model, the productivity of the process is investigated by simultaneous solution of the rate equations for varying enzyme quantities and redox mediator concentrations, solved with the aid of a numerical solution. The isocharts developed in this work provide an easy-to-use graphical tool to determine optimal process conditions. The model allows the optimization of the employed activities of the two enzymes and the redox mediator concentration for a given overall oxygen mass transfer coefficient by using the isocharts. Model predictions are well in agreement with the experimental data.

  7. Crystal structure and enzymatic properties of chalcone isomerase from the Antarctic vascular plant Deschampsia antarctica Desv.

    Directory of Open Access Journals (Sweden)

    Sun-Ha Park

    Full Text Available Chalcone isomerase (CHI is an important enzyme for flavonoid biosynthesis that catalyzes the intramolecular cyclization of chalcones into (S-flavanones. CHIs have been classified into two types based on their substrate specificity. Type I CHIs use naringenin chalcone as a substrate and are found in most of plants besides legumes, whereas type II CHIs in leguminous plants can also utilize isoliquiritigenin. In this study, we found that the CHI from the Antarctic plant Deschampsia antarctica (DaCHI1 is of type I based on sequence homology but can use type II CHI substrates. To clarify the enzymatic mechanism of DaCHI1 at the molecular level, the crystal structures of unliganded DaCHI1 and isoliquiritigenin-bound DaCHI1 were determined at 2.7 and 2.1 Å resolutions, respectively. The structures revealed that isoliquiritigenin binds to the active site of DaCHI1 and induces conformational changes. Additionally, the activity assay showed that while DaCHI1 exhibits substrate preference for naringenin chalcone, it can also utilize isoliquiritigenin although the catalytic activity was relatively low. Based on these results, we propose that DaCHI1 uses various substrates to produce antioxidant flavonoids as an adaptation to oxidative stresses associated with harsh environmental conditions.

  8. Crystal structure and enzymatic properties of chalcone isomerase from the Antarctic vascular plant Deschampsia antarctica Desv.

    Science.gov (United States)

    Park, Sun-Ha; Lee, Chang Woo; Cho, Sung Mi; Lee, Hyoungseok; Park, Hyun; Lee, Jungeun; Lee, Jun Hyuck

    2018-01-01

    Chalcone isomerase (CHI) is an important enzyme for flavonoid biosynthesis that catalyzes the intramolecular cyclization of chalcones into (S)-flavanones. CHIs have been classified into two types based on their substrate specificity. Type I CHIs use naringenin chalcone as a substrate and are found in most of plants besides legumes, whereas type II CHIs in leguminous plants can also utilize isoliquiritigenin. In this study, we found that the CHI from the Antarctic plant Deschampsia antarctica (DaCHI1) is of type I based on sequence homology but can use type II CHI substrates. To clarify the enzymatic mechanism of DaCHI1 at the molecular level, the crystal structures of unliganded DaCHI1 and isoliquiritigenin-bound DaCHI1 were determined at 2.7 and 2.1 Å resolutions, respectively. The structures revealed that isoliquiritigenin binds to the active site of DaCHI1 and induces conformational changes. Additionally, the activity assay showed that while DaCHI1 exhibits substrate preference for naringenin chalcone, it can also utilize isoliquiritigenin although the catalytic activity was relatively low. Based on these results, we propose that DaCHI1 uses various substrates to produce antioxidant flavonoids as an adaptation to oxidative stresses associated with harsh environmental conditions.

  9. Enzymatic catalysis of anti-Baldwin ring closure in polyether biosynthesis.

    Science.gov (United States)

    Hotta, Kinya; Chen, Xi; Paton, Robert S; Minami, Atsushi; Li, Hao; Swaminathan, Kunchithapadam; Mathews, Irimpan I; Watanabe, Kenji; Oikawa, Hideaki; Houk, Kendall N; Kim, Chu-Young

    2012-03-04

    Polycyclic polyether natural products have fascinated chemists and biologists alike owing to their useful biological activity, highly complex structure and intriguing biosynthetic mechanisms. Following the original proposal for the polyepoxide origin of lasalocid and isolasalocid and the experimental determination of the origins of the oxygen and carbon atoms of both lasalocid and monensin, a unified stereochemical model for the biosynthesis of polyether ionophore antibiotics was proposed. The model was based on a cascade of nucleophilic ring closures of postulated polyepoxide substrates generated by stereospecific oxidation of all-trans polyene polyketide intermediates. Shortly thereafter, a related model was proposed for the biogenesis of marine ladder toxins, involving a series of nominally disfavoured anti-Baldwin, endo-tet epoxide-ring-opening reactions. Recently, we identified Lsd19 from the Streptomyces lasaliensis gene cluster as the epoxide hydrolase responsible for the epoxide-opening cyclization of bisepoxyprelasalocid A to form lasalocid A. Here we report the X-ray crystal structure of Lsd19 in complex with its substrate and product analogue to provide the first atomic structure-to our knowledge-of a natural enzyme capable of catalysing the disfavoured epoxide-opening cyclic ether formation. On the basis of our structural and computational studies, we propose a general mechanism for the enzymatic catalysis of polyether natural product biosynthesis. © 2012 Macmillan Publishers Limited. All rights reserved

  10. Enzymatic browning and antioxidant activities in harvested litchi fruit as influenced by apple polyphenols.

    Science.gov (United States)

    Zhang, Zhengke; Huber, Donald J; Qu, Hongxia; Yun, Ze; Wang, Hui; Huang, Zihui; Huang, Hua; Jiang, Yueming

    2015-03-15

    'Guiwei' litchi fruit were treated with 5 ga.i. L(-1) apple polyphenols (APP) and then stored at 25°C to investigate the effects on pericarp browning. APP treatment effectively reduced pericarp browning and retarded the loss of red colour. APP-treated fruit exhibited higher levels of anthocyanins and cyanidin-3-rutinoside, which correlated with suppressed anthocyanase activity. APP treatment also maintained membrane integrity and reduced oxidative damage, as indicated by a lower relative leakage rate, malondialdehyde content, and reactive oxygen species (ROS) generation. The data suggest that decompartmentalisation of peroxidase and polyphenoloxidase and respective browning substrates was reduced. In addition, APP treatment enhanced the activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase), as well as non-enzymatic antioxidant capacity (DPPH radical-scavenging activity and reducing power), which might be beneficial in scavenging ROS. We propose that APP treatment is a promising safe strategy for controlling postharvest browning of litchi fruit. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Chemo-enzymatic Synthesis of Clickable Xylo-oligosaccharide Monomers from Hardwood 4-O-Methylglucuronoxylan.

    Science.gov (United States)

    MacCormick, Benjamin; Vuong, Thu V; Master, Emma R

    2018-02-12

    A chemo-enzymatic pathway was developed to transform 4-O-methylglucuronic acid (MeGlcpA) containing xylo-oligosaccharides from beechwood into clickable monomers capable of polymerizing at room temperature and in aqueous conditions to form unique polytriazoles. While the gluco-oligosaccharide oxidase (GOOX) from Sarocladium strictum was used to oxidize C6-propargylated oligosaccharides, the acid-amine coupling reagents 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide (EDAC) and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) were employed and compared for their ability to append click functionalities to carboxylic acid groups of enzyme-treated oligosaccharides. While DMT-MM was a superior coupling reagent for this application, a triazine side product was observed during C-1 amidation. Resulting bifunctional xylo-oligosaccharide monomers were polymerized using a Cu(I) catalyst, forming a soft gel which was characterized by 1 H NMR, confirming the triazole product.

  12. Catalytic oxidation using nitrous oxide

    Directory of Open Access Journals (Sweden)

    Juan Carlos Beltran-Prieto

    2017-01-01

    Full Text Available Nitrous oxide is a very inert gas used generally as oxidant as it offers some advantage compared with other oxidants such as O2 but a considerably higher temperature (> 526 °C is often required. For particular cases such as the oxidation of sugar alcohols, especially for the oxidation of primary alcohols to aldehydes, N2O has the advantage over O2 of a higher reaction selectivity. In the present paper we present the modelling of oxidation reaction of sugar alcohols using an oxidizing agent in low concentrations, which is important to suppress subsequent oxidation reactions due to the very low residual concentrations of the oxidizing agent. For orientation experiments we chose nitrous oxide generated by thermal decomposition of ammonium nitrate. Kinetic modeling of the reaction was performed after determination of the differential equations that describe the system under study.

  13. Radiation-induced cross-link DNA damages: synthesis, measurement and insertion into oligonucleotides for replication and enzymatic repair studies

    International Nuclear Information System (INIS)

    Bellon, Sophie

    2003-01-01

    This research thesis addresses the synthesis, measurement and study of the biological impact of radio-induced DNA double damages. In the first part, the author reports the study of the reactivity and fate of the 5-(2'-desoxy-uridilyl)methyl radical which is one of the intermediates formed by oxidizing photo-sensitisation of thymine. The next part reports results of the formation and measurement of double damages of isolated and cellular DNA, notably in the case of γ irradiation. The third part reports the study of in vitro replication of one of the double damages. The behaviour of different polymerases with respect to the damage is reported. Finally, the modified oligonucleotide has been used as a substrate to highlight possible activities of enzymatic repair for this type of cross-link damages by purified proteins or proteins present within cellular extracts [fr

  14. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Science.gov (United States)

    Luhana, Charles; Bo, Xiang-Jie; Ju, Jian; Guo, Li-Ping

    2012-10-01

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H2O2 at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H2O2. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 μA mM-1), low detection limit (1.8 μM), fast response time tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  15. Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus

    Energy Technology Data Exchange (ETDEWEB)

    Dewez, David [Departement de Chimie et de Biochimie, Centre TOXEN, Universite du Quebec a Montreal, CP 8888, Succursale Centre-Ville, Montreal, Quebec, H3C 3P8 (Canada); Geoffroy, Laure [Laboratoire d' Eco-Toxicologie, Unite de recherche ' Vignes et Vins de Champagne' , UPRES-EA 2069, Universite de Reims Champagne-Ardenne BP 1039, F51687 REIMS CEDEX 2 (France); Vernet, Guy [Laboratoire d' Eco-Toxicologie, Unite de recherche ' Vignes et Vins de Champagne' , UPRES-EA 2069, Universite de Reims Champagne-Ardenne BP 1039, F51687 REIMS CEDEX 2 (France); Popovic, Radovan [Departement de Chimie et de Biochimie, Centre TOXEN, Universite du Quebec a Montreal, CP 8888, Succursale Centre-Ville, Montreal, Quebec, H3C 3P8 (Canada)]. E-mail: popovic.radovan@uqam.ca

    2005-08-30

    Modulated PAM fluorometry and Plant Efficiency Analyser methods were used to investigate photosynthetic fluorescence parameters of alga Scenedesmus obliquus exposed to inhibitory effect of fungicides copper sulphate and fludioxonil (N-(4-nitrophenyl)-N'-propyl-uree). The change of those parameters were studied when alga S. obliquus have been exposed during 48 h to different concentrations of fungicides (1, 2 and 3 mg l{sup -1}). Under the same condition, enzymatic activities of catalase, ascorbate peroxidase, glutathione reductase and glutathione S-transferase were investigated to evaluate antioxidative response to fungicides effects. The change of sensitivity of those parameters was dependent to the mode of fungicide action, their concentration and time of exposure. For copper effects, the most indicative photosynthetic biomarkers were parameters Q {sub N} as non-photochemical fluorescence quenching, Q {sub Emax} as the proton induced fluorescence quenching and ABS/RC as the antenna size per photosystem II reaction center. Copper induced oxidative stress was indicated by increased activity of catalase serving as the most sensitive and valuable enzymatic biomarker. On the other hand, fludioxonil effect on photosynthetic parameters was very negligible and consequently not very useful as biomarkers. However, fludioxonil induced strong antioxidative activities associated with cytosol enzymes, as we found for catalase, ascorbate peroxidase and glutathione S-transferase activities. By obtained results, we may suggest for the activation of those enzymes to be sensitive and valuable biomarkers of oxidative stress induced by fludioxonil. Determination of biomarkers sensitivity may offer advantages in providing real criteria to use them for ecotoxicological diagnostic studies.

  16. Enzymatic-fluorometric quantification of cholesterol in bovine milk

    DEFF Research Database (Denmark)

    Larsen, Torben

    2012-01-01

    The present paper describes an enzymatic–fluorometric method for the determination of cholesterol in milk and other opaque matrices. The initial step of the method is to liberate chemically and physically bound cholesterol from the milk fat globule membrane by enzymatic action. The method is able...... to discriminate between esterified and free cholesterol in milk. The analysis is cost effective and is developed to work directly on whole, fresh milk thereby eliminating time consuming and tedious pre-treatment procedures of the sample. More than 1000 milk samples were analysed on the day of sampling. The total...... concentration of milk cholesterol ranged from 80 to 756 μM (n = 1068; mean 351 μM). Milk cholesterol was significantly correlated to milk fat concentration as analysed by mid-infra red spectrometry (r = 0.630; n = 853) and by an enzymatic–fluorometric method (triacylglycerol) (r = 0.611; n = 842)....

  17. Rapid tryptic mapping using enzymatically active mass spectrometer probe tips

    Energy Technology Data Exchange (ETDEWEB)

    Dogruel, D.; Williams, P.; Nelson, R.W. [Arizona State Univ., Tempe, AZ (United States)

    1995-12-01

    A method has been developed for rapid, sensitive, and accurate tryptic mapping of polypeptides using matrix-assisted laser desorption/ionization time-of-flight mass analysis. The technique utilizes mass spectrometer probe tips which have been activated through the covalent immobilization of trypsin. The enzymatically active probe tips were used for the tryptic mapping of chicken egg lysozyme and the results compared with those obtained using either free trypsin or agarose-immobilized trypsin. A significant increase in the overall sensitivity of the process was observed using the active probe tips, as well as the production of more characteristic proteolytic fragments and the elimination of background signals due to the autolysis of the trypsin. Further, probe tip digestions were found to be rapid and convenient. 19 refs., 6 figs., 2 tabs.

  18. Enzymatic processes in alternative reaction media: a mini review

    Directory of Open Access Journals (Sweden)

    Mansour Ghaffari-Moghaddam

    2015-08-01

    Full Text Available Biocatalysis is a growing field in the production of fine chemicals and will most probably increase its share in the future. Enzymatic reactions are carried out under mild conditions, i.e., non-toxic solvents, low temperature and pressure, which eliminates most environmental drawbacks associated with conventional production methods. The superiority of chemo-, regio- and enantioselectivity of enzymes exhibit significant advantages over conventional catalysts for production of fine chemicals, flavors, fragrances, agrochemicals and pharmaceuticals. Enzymes can function both in aqueous and non-aqueous solvents. As a result of the growing scientific and industrial interest towards green chemistry, green solvent systems, which are mainly water, supercritical fluids, ionic liquids, fluorinated solvents, and solvent-free systems have become more popular in biocatalysis. However, the activity and selectivity of an enzyme is heavily dependent on solvent properties. In this review, various green solvents were classified and some of their influential features on enzyme activity were discussed.

  19. Synthesis of tritium labelled nucleoside triphosphates by enzymatic phosphorylation

    International Nuclear Information System (INIS)

    Shen Decun; Ji Linzhen; Liao Sha

    1986-01-01

    [5- 3 H]UMP, [5- 3 H]CMP, [8- 3 H]AMP and [8- 3 H]GMP were prepared from 5BrUMP 5BrCMP 8BrAMP and 8BrGMP by catalytic halogentritium replacement at the same time. [5- 3 H]UTP, [5- 3 H]CTP, [8- 3 H]ATP and [8- 3 H]GTP were subsequently synthesized from [5- 3 H]UMP, [5- 3 H]CMP, [8- 3 H]AMP and [8- 3 H]GMP by enzymatic phosphorylation with the crude enzyme prepared from brewer's yeasts and purified by paper chromatography simultaneously. In addition, four kinds of tritium labelled nucleoside monophosphates and four kinds of tritium labelled nucleoside diphosphates were obtained as the by-products. The specific activity of these products is between 14-19 Ci/mmol and the radiochemical purity is more than 98%

  20. Production of resistant starch by enzymatic debranching in legume flours.

    Science.gov (United States)

    Morales-Medina, Rocío; Del Mar Muñío, María; Guadix, Emilia M; Guadix, Antonio

    2014-01-30

    Resistant starch (RS) was produced by enzymatic hydrolysis of flours from five different legumes: lentil, chickpea, faba bean, kidney bean and red kidney bean. Each legume was firstly treated thermally, then hydrolyzed with pullulanase for 24h at 50°C and pH 5 and lyophilized. At the end of each hydrolysis reaction, the RS amount ranged from 4.7% for red kidney beans to 7.5% for chickpeas. With respect to the curves of RS against hydrolysis time, a linear increase was observed initially and a plateau was generally achieved by the end of reaction. These curves were successfully modeled by a kinetic equation including three parameters: initial RS, RS at long operation time and a kinetic constant (k). Furthermore, the relative increase in hydrolysis, calculated using the kinetic parameters, was successfully correlated to the percentage of amylose. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Enzymatic Modification of Corn Starch Influences Human Fecal Fermentation Profiles.

    Science.gov (United States)

    Dura, Angela; Rose, Devin J; Rosell, Cristina M

    2017-06-14

    Enzymatically modified starches have been widely used in food applications to develop new products, but information regarding digestion and fecal fermentation of these products is sparse. The objective of this study was to determine the fermentation properties of corn starch modified with α-amylase, amyloglucosidase, or cyclodextrin glycosyltransferase and the possible role of hydrolysis products. Samples differed in their digestibility and availability to be fermented by the microbiota, resulting in differences in microbial metabolites produced during in vitro fermentation. The presence or absence of hydrolysis products and gelatinization affected starch composition and subsequent metabolite production by the microbiota. Amyloglucosidase-treated starch led to the greatest production of short- and branched-chain fatty acid production by the microbiota. Results from this study could be taken into consideration to confirm the possible nutritional claims and potential health benefits of these starches as raw ingredients for food development.

  2. Functional bio-based polyesters by enzymatic polymerization

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hoffmann, Christian; Andersen, Christian

    During recent years enzymatic polymerization has become increasingly popular as an alternative to classical polyesterification processes. The high regioselectivity observed for lipases permits preparation of novel polyesters with a high number of functional groups.1 This is particularly interesting...... polymerization was applied to prepare functional water soluble polyesters based on dimethyl itaconate and poly(ethyleneglycol).2 The monomer permits postfunctionalization using thiol-ene chemistry or aza-michael additions, which was used to illustrate the possibilites of preparing functional hydrogels. Hydrogels...... based on the polyesters were shown to be degradable and could be prepared either from the pure polyester or from prefunctionalized polyesters, though the thiol-ene reactions were found to be less effective. Since then a new monomer, trans-2,5-dihydroxy-3-pentenoic acid methyl ester (DPM) has been...

  3. Advances in the enzymatic production of L-hexoses.

    Science.gov (United States)

    Chen, Ziwei; Zhang, Wenli; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    2016-08-01

    Rare sugars have recently drawn attention because of their potential applications and huge market demands in the food and pharmaceutical industries. All L-hexoses are considered rare sugars, as they rarely occur in nature and are thus very expensive. L-Hexoses are important components of biologically relevant compounds as well as being used as precursors for certain pharmaceutical drugs and thus play an important role in the pharmaceutical industry. Many general strategies have been established for the synthesis of L-hexoses; however, the only one used in the biotechnology industry is the Izumoring strategy. In hexose Izumoring, four entrances link the D- to L-enantiomers, ketose 3-epimerases catalyze the C-3 epimerization of L-ketohexoses, and aldose isomerases catalyze the specific bioconversion of L-ketohexoses and the corresponding L-aldohexoses. In this article, recent studies on the enzymatic production of various L-hexoses are reviewed based on the Izumoring strategy.

  4. DEXTRINIZED SYRUPS OBTAINING THROUGH THE ENZYMATIC HYDROLYSIS OF SORGHUM STARCH

    Directory of Open Access Journals (Sweden)

    Leyanis Rodríguez Rodríguez

    2015-10-01

    Full Text Available The main objective of this work was the production of syrups dextrinized by enzymatic hydrolysis of starch red sorghum CIAPR-132 using α-amylase on solutions at different concentrations, with different concentrations of enzyme and enzyme hydrolysis time. The response variable was the dextrose equivalent in each obtained syrup (ED using the modified Lane-Eynon method. In some of the experiments, we used a full factorial design 23 and in others we worked with intermediate concentration and higher hydrolysis time with different levels of enzyme. The obtained products were syrups dextrinized ED between 10,25 and 33,97% (values we can find within the established ones for these types of syrups, which can be used for their functional properties as intermediates syrups or as raw material for different processes of the food industry. This allows you to set a pattern for the use of sorghum feedstock in unconventional obtaining products from its starch.

  5. Preparation of immobilized growing cells and enzymatic hydrolysis of sawdust

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    Trichoderma reesei cells were immobilized by radiation polymerization using porous materials such as non-woven material and sawdust, and the enzymatic hydrolysis of sawdust with the enzyme solution from the immobilized growing cells was studied. The filter paper activity, which shows the magnitude of cellulase production in the immobilized cells, was comparable with that in the intact cells. The filter paper activity was affected by addition concentration of monomer and porous materials. The cells in the immobilized cells grew to be adhered on the surface of the fibrous polymers. Sawdust, which was pretreated by irradiation technique, was effectively hydrolyzed with the enzyme solution resulting from the culture of the immobilized cells, in which the glucose yield increased increasing the culture time of the immobilized cells. (author)

  6. Enzymatic Synthesis and Anti-Allergic Activities of Curcumin Oligosaccharides

    Directory of Open Access Journals (Sweden)

    Kei Shimoda

    2010-01-01

    Full Text Available Curcumin 4‘- O -glucooligosaccharides were synthesized by a two step-enzymatic method using almond β-glucosidase and cyclodextrin glucanotransferase (CGTase. Curcumin was glucosylated to curcumin 4‘- O -β-D-glucopyranoside by almond β-glucosidase in 19% yield. Curcumin 4‘- O -β-D-glucopyranoside was converted into curcumin 4‘- O -β-glucooligosaccharides, i.e. 4‘- O -β-maltoside (51% and 4‘- O -β-maltotrioside (25%, by further CGTase-catalyzed glycosylation. Curcumin 4‘- O -β-glycosides showed suppressive action on IgE antibody formation and inhibitory effects on histamine release from rat peritoneal mast cells.

  7. Enzymatic catalysis treatment method of meat industry wastewater using lacasse.

    Science.gov (United States)

    Thirugnanasambandham, K; Sivakumar, V

    2015-01-01

    The process of meat industry produces in a large amount of wastewater that contains high levels of colour and chemical oxygen demand (COD). So they must be pretreated before their discharge into the ecological system. In this paper, enzymatic catalysis (EC) was adopted to treat the meat wastewater. Box-Behnken design (BBD), an experimental design for response surface methodology (RSM), was used to create a set of 29 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the colour and COD removals. The experimental results show that EC could effectively reduce colour (95 %) and COD (86 %) at the optimum conditions of enzyme dose of 110 U/L, incubation time of 100 min, pH of 7 and temperature of 40 °C. RSM could be effectively adopted to optimize the operating multifactors in complex EC process.

  8. Beam irradiation pretreatment on enzymatic hydrolysis of biomass

    International Nuclear Information System (INIS)

    Yoo, Hah Young; Choi, Han Suk; Yang, Soo Jeong; Lee, Ja Hyun; Kim, Sung Bong; Jung, Da Un; Kim, Seung Wook

    2013-01-01

    As a renewable energy resource, lignocellulosic biomass has become great attention these days. Miscanthus is considered as one of the best feed stock for sugar production due to its high carbohydrate conversion, more efficient pretreatment process was necessary for removal of enzymatic hydrolysis barriers. In this study, electron beam irradiation pretreatment was utilized to Miscanthus straw for the enhancement of sugar conversion. The prepared samples were exposed 20 ∼ 500 kGy of doses and 5 ∼ 100 kGy of dose rate under 1 MeV of energy. Optimum irradiation conditions were 300 kGy of doses, 10 kGy of doses rate and 7.4 mA of current. Finally, compared with untreated Miscanthus, the glucose conversion was 2 fold increased under optimal conditions

  9. Enzymatic Production of Monoclonal Stoichiometric Single-Stranded DNA Oligonucleotides

    Science.gov (United States)

    Ducani, Cosimo; Kaul, Corinna; Moche, Martin; Shih, William M.; Högberg, Björn

    2013-01-01

    Single-stranded oligonucleotides are important as research tools as probes for diagnostics and gene therapy. Today, production of oligonucleotides is done via solid-phase synthesis. However, the capabilities of current polymer chemistry are limited in comparison to what can be produced in biological systems. The errors in synthetic DNA increases with oligonucleotide length, and sequence diversity can often be a problem. Here, we present the Monoclonal Stoichiometric (MOSIC) method for enzymatic DNA oligonucleotide production. Using this method, we amplify oligonucleotides from clonal templates followed by digestion of a cutter-hairpin, resulting in pools of monoclonal oligonucleotides with precisely controlled relative stoichiometric ratios. We present data where MOSIC oligonucleotides, 14–378 nt long, were prepared either by in vitro rolling-circle amplification, or by amplification in Escherichia coli in the form of phagemid DNA. The formation of a DNA crystal and folding of DNA nanostructures confirmed the scalability, purity and stoichiometry of the produced oligonucleotides. PMID:23727986

  10. Evaluation of enzymatic reactors for large-scale panose production.

    Science.gov (United States)

    Fernandes, Fabiano A N; Rodrigues, Sueli

    2007-07-01

    Panose is a trisaccharide constituted by a maltose molecule bonded to a glucose molecule by an alpha-1,6-glycosidic bond. This trisaccharide has potential to be used in the food industry as a noncariogenic sweetener, as the oral flora does not ferment it. Panose can also be considered prebiotic for stimulating the growth of benefic microorganisms, such as lactobacillus and bifidobacteria, and for inhibiting the growth of undesired microorganisms such as E. coli and Salmonella. In this paper, the production of panose by enzymatic synthesis in a batch and a fed-batch reactor was optimized using a mathematical model developed to simulate the process. Results show that optimum production is obtained in a fed-batch process with an optimum production of 11.23 g/l h of panose, which is 51.5% higher than production with batch reactor.

  11. Waste management and enzymatic treatment of Municipal Solid Waste

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner

    generation for subsequent biogas production. Municipal solid waste (MSW) is produced in large amounts every year in the developed part of the world. The household waste composition varies between geographical areas and between seasons. However the overall content of organic and degradable material is rather......The work carried out during the Ph.D. project is part of the Danish Energy Authority funded research project called PSO REnescience and is focussed on studying the enzymatic hydrolysis and liquefaction of waste biomass. The purpose of studying the liquefaction of waste biomass is uniform slurry...... constant between 50 - 60 % wet weight and therefore holds a potential for bioenergy production. The degradable fraction has positive effects for anaerobic digestion when evaluated to desired parameters of anaerobic digestion plants. Wanted parameters are: 1) high organic content (high volatile solid...

  12. Non-enzymatic glucose detection using magnetic nanoemulsions

    International Nuclear Information System (INIS)

    Mahendran, V.; Philip, John

    2014-01-01

    We probe the optical properties and intermolecular interactions in magnetically responsive nanoemulsions in the presence of glucose. The equilibrium interdroplet distance between the emulsion droplets in an one-dimensional array increases by several nanometers in the presence of glucose because of intermolecular hydrogen bonding with sodium dodecyl sulphate molecules at the oil-water interface that gives rise to stretched lamellae-like structure. The observed large red shift in the diffracted Bragg peak (∼50–100 nm) and the linear response in the glucose concentration range of 0.25–25 mM offer a simple, fast, and cost effective non-enzymatic approach for glucose detection.

  13. Enzymatic hydrolysis of pretreated barley and wheat straw

    DEFF Research Database (Denmark)

    Rosgaard, Lisa

    2007-01-01

    . The work involved evaluation of 1) possible ways to increase the glucose release from the commercial cellulase product Celluclast by boosting with other enzyme activities to increase the enzymatic hydrolysis, 2) comparing differently pretreated feedstock substrates and 3) evaluating a fed-batch substrate...... mixture resulted in a glucose release corresponding to ~84 % of the glucose release from Celluclast. It was therefore suggested that other enzyme activities than the 4 four main cellulase activities in Celluclast are necessary for optimal hydrolysis of lignocellulose. Even though Celluclast...... is a multicomponent cellulase mixture, there are still possibilities for further improvement in terms of providing the most efficient cellulase mixture for lignocellulose hydrolysis. It was shown that substrates evaluated all had some residual hemicellulose in the solid cellulose fraction after pretreatment...

  14. Rapid enzymatic response to compensate UV radiation in copepods.

    Directory of Open Access Journals (Sweden)

    María Sol Souza

    Full Text Available Ultraviolet radiation (UVR causes physical damage to DNA, carboxylation of proteins and peroxidation of lipids in copepod crustaceans, ubiquitous and abundant secondary producers in most aquatic ecosystems. Copepod adaptations for long duration exposures include changes in behaviour, changes in pigmentation and ultimately changes in morphology. Adaptations to short-term exposures are little studied. Here we show that short-duration exposure to UVR causes the freshwater calanoid copepod, Eudiaptomus gracilis, to rapidly activate production of enzymes that prevent widespread collateral peroxidation (glutathione S-transferase, GST, that regulate apoptosis cell death (Caspase-3, Casp-3, and that facilitate neurotransmissions (cholinesterase-ChE. None of these enzyme systems is alone sufficient, but they act in concert to reduce the stress level of the organism. The interplay among enzymatic responses provides useful information on how organisms respond to environmental stressors acting on short time scales.

  15. Intramolecular epistasis and the evolution of a new enzymatic function.

    Directory of Open Access Journals (Sweden)

    Sajid Noor

    Full Text Available Atrazine chlorohydrolase (AtzA and its close relative melamine deaminase (TriA differ by just nine amino acid substitutions but have distinct catalytic activities. Together, they offer an informative model system to study the molecular processes that underpin the emergence of new enzymatic function. Here we have constructed the potential evolutionary trajectories between AtzA and TriA, and characterized the catalytic activities and biophysical properties of the intermediates along those trajectories. The order in which the nine amino acid substitutions that separate the enzymes could be introduced to either enzyme, while maintaining significant catalytic activity, was dictated by epistatic interactions, principally between three amino acids within the active site: namely, S331C, N328D and F84L. The mechanistic basis for the epistatic relationships is consistent with a model for the catalytic mechanisms in which protonation is required for hydrolysis of melamine, but not atrazine.

  16. A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation.

    Science.gov (United States)

    Long, Lingfeng; Tian, Dong; Hu, Jinguang; Wang, Fei; Saddler, Jack

    2017-11-01

    Although biological pretreatment of cellulosic fiber based on endoglucanases has shown some promise to facilitate cellulose nanofibrillation, its efficacy is still limited. In this study, a xylanase-aided endoglucanase pretreatment was assessed on the bleached hardwood and softwood Kraft pulps to facilitate the downstream cellulose nanofibrillation. Four commercial xylanase preparations were compared and the changes of major fiber physicochemical characteristics such as cellulose/hemicellulose content, gross fiber properties, fiber morphologies, cellulose accessibility/degree of polymerization (DP)/crystallinity were systematically evaluated before and after enzymatic pretreatment. It showed that the synergistic cooperation between endoglucanase and certain xylanase (Biobrite) could efficiently "open up" the hardwood Kraft pulp with limited carbohydrates degradation (cellulose nanofibrillation during mild sonication process (90Wh) with more uniform disintegrated nanofibril products (50-150nm, as assessed by scanning electron microscopy and UV-vis spectroscopy). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Enzymatic digestibility of peptides cross-linked by ionizing radiation

    International Nuclear Information System (INIS)

    Dizdaroglu, M.; Gajewski, E.; Simic, M.G.

    1984-01-01

    Digestibility by proteolytic enzymes of peptides cross-linked by ionizing radiation was investigated. Small peptides of alanine and phenylalanine were chosen as model compounds and aminopeptidases and carboxypeptidases were used as proteolytic enzymes. Peptides exposed to γ-radiation in aqueous solution were analysed by high-performance liquid chromatography before and after hydrolysis by aminopeptidase M, leucine aminopeptidase carboxypeptidase A and carboxypeptidase Y. The results obtained clearly demonstrate the different actions of these enzymes on cross-linked aliphatic and aromatic peptides. Peptide bonds of cross-linked dipeptides of alanine were completely resistant to enzymatic hydrolysis whereas the enzymes, except for carboxypeptidase Y, cleaved all peptide bonds of cross-linked peptides of phenylalanine. The actions of the enzymes on these particular compounds are discussed in detail. (author)

  18. Enzymatic transesterification of waste vegetable oil to produce biodiesel.

    Science.gov (United States)

    Lopresto, C G; Naccarato, S; Albo, L; De Paola, M G; Chakraborty, S; Curcio, S; Calabrò, V

    2015-11-01

    An experimental study on enzymatic transesterification was performed to produce biodiesel from waste vegetable oils. Lipase from Pseudomonas cepacia was covalently immobilized on a epoxy-acrylic resin support. The immobilized enzyme exhibited high catalytic specific surface and allowed an easy recovery, regeneration and reutilisation of biocatalyst. Waste vegetable oils - such as frying oils, considered not competitive with food applications and wastes to be treated - were used as a source of glycerides. Ethanol was used as a short chain alcohol and was added in three steps with the aim to reduce its inhibitory effect on lipase activity. The effect of biocatalyst/substrate feed mass ratios and the waste oil quality have been investigated in order to estimate the process performances. Biocatalyst recovery and reuse have been also studied with the aim to verify the stability of the biocatalyst for its application in industrial scale. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Transport equations in an enzymatic glucose fuel cell

    Science.gov (United States)

    Jariwala, Soham; Krishnamurthy, Balaji

    2018-01-01

    A mathematical model is developed to study the effects of convective flux and operating temperature on the performance of an enzymatic glucose fuel cell with a membrane. The model assumes isothermal operating conditions and constant feed rate of glucose. The glucose fuel cell domain is divided into five sections, with governing equations describing transport characteristics in each region, namely - anode diffusion layer, anode catalyst layer (enzyme layer), membrane, cathode catalyst layer and cathode diffusion layer. The mass transport is assumed to be one-dimensional and the governing equations are solved numerically. The effects flow rate of glucose feed on the performance of the fuel cell are studied as it contributes significantly to the convective flux. The effects of operating temperature on the performance of a glucose fuel cell are also modeled. The cell performances are compared using cell polarization curves, which were found compliant with experimental observations.

  20. Effect of Maize Biomass Composition on the Optimization of Dilute-Acid Pretreatments and Enzymatic Saccharification

    NARCIS (Netherlands)

    Torres Salvador, A.F.; Weijde, van der R.T.; Dolstra, O.; Visser, R.G.F.; Trindade, L.M.

    2013-01-01

    At the core of cellulosic ethanol research are innovations leading to reductions in the chemical and energetic stringency of thermochemical pretreatments and enzymatic saccharification. In this study, key compositional features of maize cell walls influencing the enzymatic conversion of biomass into

  1. Role of supramolecular cellulose structures in enzymatic hydrolysis of plant cell walls

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Hidayat, Budi Juliman; Johansen, Katja Salomon

    2011-01-01

    The study of biomass deconstruction by enzymatic hydrolysis has hitherto not focussed on the importance of supramolecular structures of cellulose. In lignocellulose fibres, regions with a different organisation of the microfibrils are present. These regions are called dislocations or slip planes ...... the initial part of enzymatic hydrolysis of cellulose. The implications of this phenomenon have not yet been recognized or explored within cellulosic biofuels....

  2. Xylanase supplementation on enzymatic saccharification of dilute acid pretreated poplars at different severities

    Science.gov (United States)

    Chao Zhang; Xinshu Zhuang; Zhao Jiang Wang; Fred Matt; Franz St. John; J.Y. Zhu

    2013-01-01

    Three pairs of solid substrates from dilute acid pretreatment of two poplar wood samples were enzymatically hydrolyzed by cellulase preparations supplemented with xylanase. Supplementation of xylanase improved cellulose saccharification perhaps due to improved cellulose accessibility by xylan hydrolysis. Total xylan removal directly affected enzymatic cellulose...

  3. The enzymatic determination of starch in food, feed and raw materials of the starch industry

    NARCIS (Netherlands)

    Brunt, K.; Sanders, P.; Rozema, T.

    1998-01-01

    An enzymatic starch determination which can be used for the analysis of starch in a very broad range of different samples is evaluated, ranging from starch in plants, feed and food to industrial applications as starch in starch. The method is based on a complete enzymatic conversion of the starch

  4. Rapid and sensitive enzymatic-radiochemical assay for the determination of triglycerides

    International Nuclear Information System (INIS)

    Khoo, J.C.; Miller, E.; Goldberg, D.I.

    1987-01-01

    An enzymatic-radiochemical method suitable for the determination of triglyceride levels of cells in culture is described. The method is based on the enzymatic hydrolysis of triglycerides to free fatty acids which then complex with 63 Ni. The method is rapid, accurate, and inexpensive. The procedure extends the sensitivity of triglyceride measurement to as low as 0.25 nanomoles

  5. Enzymatic pH Control for Biomimetic Deposition of Calcium Phosphate Coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.; Reza Nejadnik, M.; Nudelman, F.; Walboomers, X.F.; te Riet, J.; Habibovic, Pamela; Tahmasebi Birgani, Zeinab; Yubao, L.; Bomans, P.H.H.; Jansen, J.A.; Sommerdijk, N.A.J.M.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study has focused on enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of Calcium Phospate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium

  6. Enzymatic pH control for biomimetic depostion of calcium phosphate coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.G.; Nejadnik, M.R.; Nudelman, F.; Walboomers, X.F.; Riet, te J.; Habibovic, P.; Birgani, Z.T.; Li, Y.B.; Bomans, P.H.H.; Jansen, J.A.; Sommerdijk, N.A.J.M.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study examines the enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of calcium phospate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium

  7. Enzymatic pH control for biomimetic deposition of calcium phosphate coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.G.; Nejadnik, M.R.; Nudelman, F.; Walboomers, X.F.; Riet, J. te; Habibovic, P.; Tahmasebi Birgani, Z.; Li, Y.; Bomans, P.H.; Jansen, J.A.; Sommerdijk, N.A.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study examines the enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of calcium phosphate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium

  8. The effect of high intensity mixing on the enzymatic hydrolysis of concentrated cellulose fiber suspensions

    Science.gov (United States)

    Joseph R. Samaniuk; C. Tim Scott; Thatcher W. Root; Daniel J. Klingenberg

    2011-01-01

    Enzymatic hydrolysis of lignocellulosic biomass in a high shear environment was examined. The conversion of cellulose to glucose in samples mixed in a torque rheometer producing shear flows similar to those found in twin screw extruders was greater than that of unmixed samples. In addition, there is a synergistic effect of mixing and enzymatic hydrolysis; mixing...

  9. Understanding the effects of lignosulfonate on enzymatic saccharification of pure cellulose

    Science.gov (United States)

    Hongming Lou; Haifeng Zhou; Xiuli Li; Mengxia Wang; J.Y. Zhu; Xueqing Qiu

    2014-01-01

    The effects of lignosulfonate (LS) on enzymatic saccharification of pure cellulose were studied. Four fractions of LS with different molecular weight (MW) prepared by ultrafiltration of a commercial LS were applied at different loadings to enzymatic hydrolysis of Whatman paper under different pH. Using LS fractions with low MW and high degree of sulfonation can enhance...

  10. Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors

    NARCIS (Netherlands)

    Budzaki, S.; Miljic, G.; Sundaram, S.; Tisma, M.; Hessel, V.

    2017-01-01

    A cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors using refined sunflower oil is performed in this work. A few enzymatic micro-flow reactors have so far reached a performance close to gram-scale, which might be sufficient for the pharmaceutical industry. This

  11. Enzymatic collection test as total gamma irradiation pronostic test in rat, rabbit and man

    International Nuclear Information System (INIS)

    Breuil, G.; Dinnequin, B.

    The purpose of this study is to known, during 30 days, what becomes the animal whose enzymatic co-ordinates are well known. Both 100, 160, 200, 325, 400, 650, 850, 975, 1000, 1300 rads irradiated rabbit serum enzymatic evolution and that of two 1000 rads in toto irradiated leucemic men for a cord graft are studied [fr

  12. Chemical catalysis in biodiesel production (I): enzymatic catalysis processes

    International Nuclear Information System (INIS)

    Jachmarian, I.; Dobroyan, M.; Veira, J.; Vieitez, I.; Mottini, M.; Segura, N.; Grompone, M.

    2009-01-01

    There are some well known advantages related with the substitution of chemical catalysis by enzymatic catalysis processes.Some commercial immobilized lipases are useful for the catalysis of bio diesel reaction, which permits the achievement of high conversions and the recovery of high purity products, like a high quality glycerine. The main disadvantage of this alternative method is related with the last inactivation of the enzyme (by both the effect of the alcohol and the absorption of glycerol on catalyst surface), which added to the high cost of the catalyst, produces an unfavourable economical balance of the entire process. In the work the efficiency of two commercial immobilized lipases (Lipozyme TL IM y Novozyme 435 NNovozymes-Dinamarca) in the catalysis of the continuous transesterification of sunflower oil with different alcohols was studied. The intersolubility of the different mixturesinvolving reactans (S oil/alkyl esters/alcohol) and products (P mixtures with a higher content of 1% of glycerol,while for ethanol homogeneous mixtures were obtained at 12% of glycerol (44.44 12).Using and ethanolic substrate at the proportion S=19:75:6 and Lipozyme TL IM, it was possible to achieve a 98% of convertion to the corresponding biodiesel.When Novozymes 435 catalyzed the process it was possible to increase the oil concentration in the substrateaccording to proportion S=35:30:35, and a 78% conversion was obtained. The productivity shown by the firt enzyme was 70mg biodiesel g enzime-1, hora-1 while with the second one the productivity increased to 230. Results suggested that the convenient adjustement of substrate composition with the addition of biodiesel to reactants offers an efficient method for maximizing the enzyme productivity, hence improving the profitability of the enzymatic catalyzed process. (author)

  13. Optimal information transfer in enzymatic networks: A field theoretic formulation

    Science.gov (United States)

    Samanta, Himadri S.; Hinczewski, Michael; Thirumalai, D.

    2017-07-01

    Signaling in enzymatic networks is typically triggered by environmental fluctuations, resulting in a series of stochastic chemical reactions, leading to corruption of the signal by noise. For example, information flow is initiated by binding of extracellular ligands to receptors, which is transmitted through a cascade involving kinase-phosphatase stochastic chemical reactions. For a class of such networks, we develop a general field-theoretic approach to calculate the error in signal transmission as a function of an appropriate control variable. Application of the theory to a simple push-pull network, a module in the kinase-phosphatase cascade, recovers the exact results for error in signal transmission previously obtained using umbral calculus [Hinczewski and Thirumalai, Phys. Rev. X 4, 041017 (2014), 10.1103/PhysRevX.4.041017]. We illustrate the generality of the theory by studying the minimal errors in noise reduction in a reaction cascade with two connected push-pull modules. Such a cascade behaves as an effective three-species network with a pseudointermediate. In this case, optimal information transfer, resulting in the smallest square of the error between the input and output, occurs with a time delay, which is given by the inverse of the decay rate of the pseudointermediate. Surprisingly, in these examples the minimum error computed using simulations that take nonlinearities and discrete nature of molecules into account coincides with the predictions of a linear theory. In contrast, there are substantial deviations between simulations and predictions of the linear theory in error in signal propagation in an enzymatic push-pull network for a certain range of parameters. Inclusion of second-order perturbative corrections shows that differences between simulations and theoretical predictions are minimized. Our study establishes that a field theoretic formulation of stochastic biological signaling offers a systematic way to understand error propagation in

  14. Hydrolytic And Enzymatic Degradation Characteristics Of Biodegradable Aliphatic Polysters

    Institute of Scientific and Technical Information of China (English)

    LI Suming

    2004-01-01

    Aliphatic polyesters, especially those derived from lactide (PLA), glycolide (PGA) and ε-caprolactone (PCL), are being investigated worldwide for applications in the field of surgery (suture material, devices for internal bone fracture fixation), pharmacology (sustained drug delivery systems), and tissue engineering (scaffold for tissue regeneration) [1,2]. This is mainly due to their good biocompatibility and variable degradability. These polymers present also a growing interest for environmental applications in agriculture (mulch films) and in our everyday life (packaging material)as the development of biodegradable materials is now considered as one of the potential solutions to the problem of plastic waste management.For both biomedical and environmental applications, it is of major importance to understand the degradation characteristics of the polymers. The hydrolytic degradation of aliphatic polyesters has been investigated by many research groups. Our group has shown that degradation of PLAGA large size devices is faster inside than at the surface. This heterogeneous degradation is due to the autocatalytic effect of carboxylic endgroups formed by ester bond cleavage. Moreover,degradation-induced morphological and compositional changes were also elucidated. In the case of PCL, the hydrolytic degradation is very slow due to its hydrophobicity and crystallinity.The enzymatic degradation of these polymers has been investigated by a number of authors. A specific enzyme, proteinase K, has been shown to have significant effects on PLA degradation. This enzyme preferentially degrade L-lactate units as opposed to D-lactate ones, amorphous zones as opposed to crystalline ones [3]. The enzymatic degradation of PCL polymers has also been investigated. A number of lipase-type enzymes were found to significantly accelerate the degradation of PCL despite its high crystallinity. In the case of PLA/PCL blends, the two components exhibited well separated crystalline domains

  15. Study of Enzymatic Hydrolysis of Dilute Acid Pretreated Coconut Husk

    Directory of Open Access Journals (Sweden)

    Rudy Agustriyanto

    2012-12-01

    Full Text Available Coconut husk is classified as complex lignocellulosic material that contains cellulose, hemicellulose, lignin, and some other extractive compounds. Cellulose from coconut husk can be used as fermentation substrate after enzymatic hydrolysis. In contrary, lignin content from the coconut husk will act as an inhibitor in this hydrolysis process. Therefore, a pretreatment process is needed to enhance the hydrolysis of cellulose. The objective of this research is to investigate the production of the glucose through dilute acid pretreatment and to obtain its optimum operating conditions. In this study, the pretreatment was done using dilute sulfuric acid in an autoclave reactor. The pretreatment condition were varied at 80°C, 100°C, 120°C and 0.9%, 1.2%, 1.5% for temperature and acid concentration respectively. The acid pretreated coconut husk was then hydrolyzed using commercial cellulase (celluclast and β-glucosidase (Novozyme 188. The hydrolysis time was 72 hours and the operating conditions were varied at several temperature and pH. From the experimental results it can be concluded that the delignification temperature variation has greater influence than the acid concentration. The optimum operating condition was obtained at pH 4 and 50°C which was pretreated at 100°C using 1.5% acid concentration. Copyright © 2012 by BCREC UNDIP. All rights reserved. (Selected Paper from International Conference on Chemical and Material Engineering (ICCME 2012Received: 28th September 2012, Revised: 2nd October 2012, Accepted: 4th October 2012[How to Cite: R. Agustriyanto, A. Fatmawati, Y. Liasari. (2012. Study of Enzymatic Hydrolysis of Dilute Acid Pretreated Coconut Husk. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 137-141. doi:10.9767/bcrec.7.2.4046.137-141] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.4046.137-141 ] | View in 

  16. Acute hormonal, immunological and enzymatic responses to a basketball game

    Directory of Open Access Journals (Sweden)

    Denis Foschini

    2008-01-01

    Full Text Available The objective of the present study was to analyze the acute hormonal, immunological and enzymatic responses of professional basketball players to a basketball game. The sample was composed of eight basketball athletes, with a minimum of 4 years’ experience in basketball. A real game was simulated with a total duration of 40 minutes, divided into two halves of 20 minutes each and an interval of 10 minutes between halves. Blood samples were collected before and immediately after the game (20 ml, vacuum tube system. The variables analyzed were: testosterone and cortisol hormones, total leukocytes, neutrophils, lymphocytes, monocytes and the enzymes creatine kinase (CK and lactate dehydrogenase (LDH. Statistical analysis was with descriptive statistics and the Student’s t test for paired samples to p≤0.05. The pre (13.34 nmol/L and 301.97 nmol/L and post game (17.34 nmol/L and 395.91 nmol/L levels of testosterone and cortisol were statistically different, with higher levels after the game for both hormones. The immune cell counts exhibited significant differences for total leukocytes (6393.75 nmol/L and 9158.75 nmol/L and neutrophils (3532.5 nmol/L and 6392.62 nmol/L, with levels being higher after the game. No statistical differences were observed for the enzymatic variables. Therefore, based on the markers analyzed, testosterone and cortisol exhibited pronounced increases after the game and the same behavior was observed for total leukocytes and neutrophils.

  17. Optimization of the Enzymatic Saccharification Process of Milled Orange Wastes

    Directory of Open Access Journals (Sweden)

    Daniel Velasco

    2017-08-01

    Full Text Available Orange juice production generates a very high quantity of residues (Orange Peel Waste or OPW-50–60% of total weight that can be used for cattle feed as well as feedstock for the extraction or production of essential oils, pectin and nutraceutics and several monosaccharides by saccharification, inversion and enzyme-aided extraction. As in all solid wastes, simple pretreatments can enhance these processes. In this study, hydrothermal pretreatments and knife milling have been analyzed with enzyme saccharification at different dry solid contents as the selection test: simple knife milling seemed more appropriate, as no added pretreatment resulted in better final glucose yields. A Taguchi optimization study on dry solid to liquid content and the composition of the enzymatic cocktail was undertaken. The amounts of enzymatic preparations were set to reduce their impact on the economy of the process; however, as expected, the highest amounts resulted in the best yields to glucose and other monomers. Interestingly, the highest content in solid to liquid (11.5% on dry basis rendered the best yields. Additionally, in search for process economy with high yields, operational conditions were set: medium amounts of hemicellulases, polygalacturonases and β-glucosidases. Finally, a fractal kinetic modelling of results for all products from the saccharification process indicated very high activities resulting in the liberation of glucose, fructose and xylose, and very low activities to arabinose and galactose. High activity on pectin was also observed, but, for all monomers liberated initially at a fast rate, high hindrances appeared during the saccharification process.

  18. Acute hormonal, immunological and enzymatic responses to a basketball game

    Directory of Open Access Journals (Sweden)

    Denis Foschini

    2008-12-01

    Full Text Available The objective of the present study was to analyze the acute hormonal, immunological and enzymatic responses of professional basketball players to a basketball game. The sample was composed of eight basketball athletes, with a minimum of 4 years’ experience in basketball. A real game was simulated with a total duration of 40 minutes, divided into two halves of 20 minutes each and an interval of 10 minutes between halves. Blood samples were collected before andimmediately after the game (20 ml, vacuum tube system. The variables analyzed were: testosterone and cortisol hormones, total leukocytes, neutrophils, lymphocytes, monocytes and the enzymes creatine kinase (CK and lactate dehydrogenase (LDH. Statistical analysis was with descriptive statistics and the Student’s t test for paired samples to p≤0.05. The pre (13.34 nmol/L and 301.97 nmol/L and post game (17.34 nmol/L and 395.91 nmol/L levels of testosterone and cortisol were statistically different, with higher levels after the game for both hormones. The immune cell counts exhibited significant differences for total leukocytes (6393.75 nmol/L and 9158.75 nmol/L and neutrophils (3532.5 nmol/L and 6392.62 nmol/L, with levels being higher after the game. No statistical differences were observed for the enzymatic variables. Therefore, based on the markers analyzed, testosterone and cortisol exhibited pronounced increases after the game and the samebehavior was observed for total leukocytes and neutrophils.

  19. [Non-enzymatic glycosylation of dietary protein in vitro].

    Science.gov (United States)

    Bednykh, B S; Evdokimov, I A; Sokolov, A I

    2015-01-01

    Non-enzymatic glycosylation of proteins, based on discovered by Mayarn reaction of carbohydrate aldehyde group with a free amino group of a protein molecule, is well known to experts in biochemistry of food industry. Generated brown solid in some cases give the product marketable qualities--crackling bread--in others conversely, worsen the product. The biological effects of far-advanced products of non-enzymatic protein glycosylation reaction have not been studied enough, although it was reported previously that they are not split by digestive enzymes and couldn't be absorbed by animals. The objective of this work was to compare the depth of glycosylation of different food proteins of animal and vegetable origin. The objects of the study were proteins of animal (casein, lactoglobulin, albumin) and vegetable (soy isolate, proteins of rice flour, buckwheat, oatmeal) origin, glucose and fructose were selected as glycosylation agents, exposure 15 days at 37 degrees C. Lactoglobulin was glycosylated to a lesser extent among the proteins of animal origin while protein of oatmeal was glycosylated in the least degree among vegetable proteins. Conversely, such proteins as casein and soya isolate protein bound rather large amounts of carbohydrates. Fructose binding with protein was generally higher than the binding of glucose. The only exception was a protein of oatmeal. When of glucose and fructose simultaneously presented in the incubation medium, glucose binding usually increased while binding of fructose, in contrast, reduced. According to the total amount of carbohydrate (mcg), which is able to attach a protein (mg) the studied food proteins located in the following order: albumin (38) > soy protein isolate (23) > casein (15,) > whey protein rice flour protein (6) > protein from buckwheat flour (3) > globulin (2) > protein of oatmeal (0.3). The results obtained are to be used to select the optimal combination of proteins and carbohydrates, in which the glycosylation

  20. Identification of Key Residues for Enzymatic Carboxylate Reduction

    Directory of Open Access Journals (Sweden)

    Holly Stolterfoht

    2018-02-01

    Full Text Available Carboxylate reductases (CARs, E.C. 1.2.1.30 generate aldehydes from their corresponding carboxylic acid with high selectivity. Little is known about the structure of CARs and their catalytically important amino acid residues. The identification of key residues for carboxylate reduction provides a starting point to gain deeper understanding of enzymatic carboxylate reduction. A multiple sequence alignment of CARs with confirmed activity recently identified in our lab and from the literature revealed a fingerprint of conserved amino acids. We studied the function of conserved residues by multiple sequence alignments and mutational replacements of these residues. In this study, single-site alanine variants of Neurospora crassa CAR were investigated to determine the contribution of conserved residues to the function, expressability or stability of the enzyme. The effect of amino acid replacements was investigated by analyzing enzymatic activity of the variants in vivo and in vitro. Supported by molecular modeling, we interpreted that five of these residues are essential for catalytic activity, or substrate and co-substrate binding. We identified amino acid residues having significant impact on CAR activity. Replacement of His 237, Glu 433, Ser 595, Tyr 844, and Lys 848 by Ala abolish CAR activity, indicating their key role in acid reduction. These results may assist in the functional annotation of CAR coding genes in genomic databases. While some other conserved residues decreased activity or had no significant impact, four residues increased the specific activity of NcCAR variants when replaced by alanine. Finally, we showed that NcCAR wild-type and mutants efficiently reduce aliphatic acids.

  1. Non-enzymatic palladium recovery on microbial and synthetic surfaces.

    Science.gov (United States)

    Rotaru, Amelia-Elena; Jiang, Wei; Finster, Kai; Skrydstrup, Troels; Meyer, Rikke Louise

    2012-08-01

    The use of microorganisms as support for reduction of dissolved Pd(II) to immobilized Pd(0) nanoparticles is an environmentally friendly approach for Pd recovery from waste. To better understand and engineer Pd(0) nanoparticle synthesis, one has to consider the mechanisms by which Pd(II) is reduced on microbial surfaces. Escherichia coli, Shewanella oneidensis, and Pseudomonas putida were used as model organisms in order to elucidate the role of microbial cells in Pd(II) reduction under acidic conditions. Pd(II) was reduced by formate under acidic conditions, and the process occurred substantially faster in the presence of cells as compared to cell-free controls. We found no difference between native (untreated) and autoclaved cells, and could demonstrate that even a non-enzymatic protein (bovine serum albumin) stimulated Pd(II) reduction as efficiently as bacterial cells. Amine groups readily interact with Pd(II), and to specifically test their role in surface-assisted Pd(II) reduction by formate, we replaced bacterial cells with polystyrene microparticles functionalized with amine or carboxyl groups. Amine-functionalized microparticles had the same effect on Pd(II) reduction as bacterial cells, and the effect could be hampered if the amine groups were blocked by acetylation. The interaction with amine groups was confirmed by infrared spectroscopy on whole cells and amine-functionalized microparticles. In conclusion, bio-supported Pd(II) reduction on microbial surfaces is possibly mediated by a non-enzymatic mechanism. We therefore suggest the use of amine-rich biomaterials rather than intact cells for Pd bio-recovery from waste. Copyright © 2012 Wiley Periodicals, Inc.

  2. Non-enzymatic detection of glucose in fruits using TiO2-Mn3O4 hybrid nano interface

    Science.gov (United States)

    Jayanth Babu, K.; Sasya, Madhurantakam; Nesakumar, Noel; Shankar, Prabakaran; Gumpu, Manju Bhargavi; Ramachandra, Bhat Lakshmishri; Kulandaisamy, Arockia Jayalatha; Rayappan, John Bosco Balaguru

    2017-08-01

    Consumption of fruits leads to increase in glucose level in blood for diabetic patients, which in turn leads to peripheral, vascular, ocular complications and cardiac diseases. In this context, a non-enzymatic hybrid glucose biosensor was fabricated for the first time to detect glucose by immobilizing titanium oxide-manganese oxide (TiO2-Mn3O4) nanocomposite and chitosan membrane on to the surface of Pt working electrode (Pt/TiO2-Mn3O4/chitosan). TiO2-Mn3O4 nanocomposite catalyzed the oxidation of glucose to gluconolactone in the absence of glucose oxidase enzyme with high electron transfer rate, good biocompatibility and large surface coverage. Electrochemical measurements revealed the excellent sensing response of the developed biosensor towards glucose with a high sensitivity of 7.073 µA mM-1, linearity of 0.01-0.1 mM, low detection limit of 0.01 µM, reproducibility of 1.5% and stability of 98.8%. The electrochemical parameters estimated from the anodic process were subjected to linear regression models for the detection of unknown concentration of glucose in different fruit samples.

  3. Role of deferoxamine on enzymatic stress markers in an animal model of Alzheimer's disease after chronic aluminum exposure.

    Science.gov (United States)

    Esparza, José L; Garcia, Tania; Gómez, Mercedes; Nogués, M Rosa; Giralt, Montserrat; Domingo, José L

    2011-06-01

    The effect of the chelator deferoxamine (DFO) on the activity of enzymatic stress markers was assessed in amyloid beta peptide (AβPP) transgenic mice, an animal model of Alzheimer's disease, after oral aluminum (Al) exposure for 6 months. AβPP transgenic (Tg2576) and C57BL6/SJL wild-type mice of 5 months of age were fed a diet supplemented with Al lactate (1 mg of Al/g food). Four groups of Tg2576 and wild-type animals were used: control, Al only, DFO only, and Al plus DFO. Mice in the DFO-treated groups received also subcutaneous injections of 0.20 mmol/kg/d of this chelating agent twice a week until the end of the study at 11 months of age. The hippocampus, cerebellum, and cortex were removed and processed to examine a number of oxidative stress markers. Furthermore, the expression of Cu-Zn superoxide dismutase, glutathione reductase, and catalase was evaluated by quantitative reverse transcriptase polymerase chain reaction analysis. Aluminum levels in the hippocampus of Tg2576 mice were higher than those found in cerebellum and cortex, while the main oxidative effects were evidenced in the presence of DFO only. Oral Al exposure of AβPP transgenic mice would have some potential to promote pro-oxidant events, while DFO administration would not help in preventing these deleterious effects.

  4. RGO/Au NPs/N-doped CNTs supported on nickel foam as an anode for enzymatic biofuel cells.

    Science.gov (United States)

    Zhang, He; Zhang, Lingling; Han, Yujie; Yu, You; Xu, Miao; Zhang, Xueping; Huang, Liang; Dong, Shaojun

    2017-11-15

    In this study, three-dimensional reduced graphene oxide/Au NPs/nitrogen-doped carbon nanotubes (RGO/Au NPs/N-doped CNTs) assembly supported on nickel foam was utilized as an anode for enzymatic biofuel cells (EBFCs). 3D RGO/Au NPs was obtained by electrodepositing reduced graphene oxide on nickel foam (Ni foam), while Au NPs were co-deposited during the process. Afterwards, nitrogen doped CNTs (N-CNTs) were allowed to grow seamlessly on the surfaces of 3D RGO/Au NPs via a simple chemical vapor deposition (CVD) process. In this nanostructure, Au NPs co-deposition and nitrogen doping offer more active sites for bioelectrocatalysis. Additionally, N-CNTs were demonstrated providing high specific surface area for enzyme immobilization and facilitating the electron transfer between glucose oxidase (GOx) and electrode. The resulting bioanode achieved efficient glucose oxidation with high current densities of 7.02mAcm -2 (0.3V vs. Ag/AgCl). Coupling with a Pt cathode, the fabricated glucose/air biofuel cell exhibited an open-circuit potential of 0.32V and generated a maximum power density 235µWcm -2 at 0.15V. This novel electrode substrate achieved high performance in current density at bioelectrochemical systems and could be useful for further exploiting the application of three dimensional carbon-based nanomaterials in EBFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Optimization of Pumpkin Oil Recovery by Using Aqueous Enzymatic Extraction and Comparison of the Quality of the Obtained Oil with the Quality of Cold-Pressed Oil

    Directory of Open Access Journals (Sweden)

    Beata Roszkowska

    2016-01-01

    Full Text Available The study was carried out to optimize pumpkin oil recovery in the process of aqueous extraction preceded by enzymatic maceration of seeds, as well as to compare the quality of the obtained oil to the quality of cold-pressed pumpkin seed oil. Hydrated pulp of hulless pumpkin seeds was macerated using a 2 % (by mass cocktail of commercial pectinolytic, cellulolytic and proteolytic preparations (Rohapect® UF, Rohament® CL and Colorase® 7089. The optimization procedure utilized response surface methodology based on Box-Behnken plan of experiment. The optimized variables of enzymatic pretreatment were pH, temperature and maceration time. The results showed that the pH value, temperature and maceration time of 4.7, 54 °C and 15.4 h, respectively, were conducive to maximize the oil yield up to 72.64 %. Among these variables, the impact of pH was crucial (above 73 % of determined variation for oil recovery results. The oil obtained by aqueous enzymatic extraction was richer in sterols, squalene and tocopherols, and only slightly less abundant in carotenoids than the cold-pressed one. However, it had a lower oxidative stability, with induction period shortened by approx. 30 % in relation to the cold-pressed oil.

  6. Optimization of Pumpkin Oil Recovery by Using Aqueous Enzymatic Extraction and Comparison of the Quality of the Obtained Oil with the Quality of Cold-Pressed Oil

    Science.gov (United States)

    Roszkowska, Beata; Czaplicki, Sylwester; Tańska, Małgorzata

    2016-01-01

    Summary The study was carried out to optimize pumpkin oil recovery in the process of aqueous extraction preceded by enzymatic maceration of seeds, as well as to compare the quality of the obtained oil to the quality of cold-pressed pumpkin seed oil. Hydrated pulp of hulless pumpkin seeds was macerated using a 2% (by mass) cocktail of commercial pectinolytic, cellulolytic and proteolytic preparations (Rohapect® UF, Rohament® CL and Colorase® 7089). The optimization procedure utilized response surface methodology based on Box- -Behnken plan of experiment. The optimized variables of enzymatic pretreatment were pH, temperature and maceration time. The results showed that the pH value, temperature and maceration time of 4.7, 54 °C and 15.4 h, respectively, were conducive to maximize the oil yield up to 72.64%. Among these variables, the impact of pH was crucial (above 73% of determined variation) for oil recovery results. The oil obtained by aqueous enzymatic extraction was richer in sterols, squalene and tocopherols, and only slightly less abundant in carotenoids than the cold-pressed one. However, it had a lower oxidative stability, with induction period shortened by approx. 30% in relation to the cold-pressed oil. PMID:28115898

  7. Enzymatic conversion of CO2 to CH3OH via reverse dehydrogenase cascade biocatalysis: Quantitative comparison of efficiencies of immobilized enzyme systems

    DEFF Research Database (Denmark)

    Marpani, Fauziah Binti; Pinelo, Manuel; Meyer, Anne S.

    2017-01-01

    A designed biocatalytic cascade system based on reverse enzymatic catalysis by formate dehydrogenase (EC 1.2.1.2), formaldehyde dehydrogenase (EC 1.2.1.46), and alcohol dehydrogenase (EC 1.1.1.1) can convert carbon dioxide (CO2) to methanol (CH3OH) via formation of formic acid (CHOOH......) and formaldehyde (CHOH) during equimolar cofactor oxidation of NADH to NAD+. This reaction is appealing because it represents a double gain: (1) reduction of CO2 and (2) an alternative to fossil fuel based production of CH3OH. The present review evaluates the efficiency of different immobilized enzyme systems...

  8. pH catalyzed pretreatment of corn bran for enhanced enzymatic arabinoxylan degradation

    DEFF Research Database (Denmark)

    Agger, Jane; Johansen, Katja Salomon; Meyer, Anne S.

    2011-01-01

    Corn bran is mainly made up of the pericarp of corn kernels and is a byproduct stream resulting from the wet milling step in corn starch processing. Through statistic modeling this study examined the optimization of pretreatment of corn bran for enzymatic hydrolysis. A low pH pretreatment (pH 2......, 150°C, 65min) boosted the enzymatic release of xylose and glucose and maximized biomass solubilization. With more acidic pretreatment followed by enzymatic hydrolysis the total xylose release was maximized (at pH 1.3) reaching ∼50% by weight of the original amount present in destarched corn bran......, but the enzyme catalyzed xylose release was maximal after pretreatment at approx. pH 2. The total glucose release peaked after pretreatment of approx. pH 1.5 with an enzymatic release of approx. 68% by weight of the original amounts present in destarched corn bran. For arabinose the enzymatic release...

  9. Oxidant-antioxidant imbalance in horses infected with equine infectious anaemia virus.

    Science.gov (United States)

    Bolfă, Pompei Florin; Leroux, Caroline; Pintea, Adela; Andrei, Sanda; Cătoi, Cornel; Taulescu, Marian; Tăbăran, Flaviu; Spînu, Marina

    2012-06-01

    This study assesses the impact of equine infectious anaemia virus (EIAV) infection on the oxidant/antioxidant equilibrium of horses. Blood samples from 96 Romanian horses aged 1-25 years, were divided into different groups according to their EIAV-infection status, age, and time post-seroconversion. The effect of infection on oxidative stress was estimated by measuring enzymatic antioxidants (superoxide dismutase [SOD], glutathione peroxidase [GPx] and catalase), non-enzymatic antioxidants (uric acid and carotenoids), and lipid peroxidation (malondialdehyde [MDA]). Infection modified the oxidant/antioxidant equilibrium in the horses, influencing GPx and uric acid levels (P5 years old, represented the most vulnerable category in terms of oxidative stress, followed by recently infected animals <5 years old. The results of this study are novel in implicating EIAV infection in the development of oxidative stress in horses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. A STUDY OF OXIDATIVE STRESS IN DIABETES

    Directory of Open Access Journals (Sweden)

    Babu Rao

    2015-06-01

    Full Text Available Non - enzymatic free radical mediated oxidation of biological molecules, membranes and tissues is associated with a variety of pathological events such as cancer, aging and diabetes mellitus . [1] Increased oxidative stress is seen in both types of diabetes me llitus namely type 1 and type 2, irrespective of duration, complications and treatment. In diabetes mellitus, oxidative stress seems primarily due to both an increased plasma free radical concentration and a sharp decline in antioxidant defences . [1] Among the causes of enhanced free radical production, hyperglycemia and hyper insulinemia seem to play a major role , [2,3] Hyperglycemia is the more easily modifiable factor among the two and good glycemic control can reduce the oxidative stress. Controversy pers ists regarding the other possible mechanisms of increased oxidative stress in diabetes and whether oxidative stress normalizes with adequate metabolic control alone. The role of oxidative stress and diabetic complications has been extensively investigated. Oxidative stress has been suggested to be involved in the genesis of both macro and micro angiopathy [4,5] Prospective trials are now underway addressing the controversial issues of possible role of pharmacological antioxidants in preventing or at least de laying the onset of diabetic complications.

  11. Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Koo, Bon-Wook; Min, Byeong-Cheol; Gwak, Ki-Seob; Lee, Soo-Min; Choi, Joon-Weon; Yeo, Hwanmyeong; Choi, In-Gyu

    2012-01-01

    Although organosolv pretreatment removed substantial amounts of lignin and xylan, the yield of glucan which is a major sugar source for fermentation to ethanol is more than 90% in most conditions of the organosolv pretreatment. Relative lignin contents of all pretreated biomass were more than 200 g kg −1 , however enzymatic conversions were increased dramatically comparing to untreated biomass. Therefore the correlation between lignin and enzymatic hydrolysis could not be explained just by lignin content, and other changes resulting from lignin removal affected enzymatic hydrolysis. Results on enzymatic conversion and sugar recovery suggested that the critical temperature improving enzymatic hydrolysis significantly was between 120 °C and 130 °C. Microscopic analysis using Field emission scanning electron microscopy (FE-SEM) showed that structural lignin changes happened through organosolv pretreatment. Lignins were isolated from lignin carbohydrate complex (LCC) at the initial stage and then migrated to the surface of biomass. The isolated and migrated lignins were finally redistributed onto surface. These structural changes formed droplets on surface and increased pore volume in pretreated biomass. The increase in pore volume also increased available surface area and enzyme adsorption at initial stage, and thus enzymatic conversion increased significantly through organosolv pretreatment. It was verified that the droplets were mainly composed of lignin and the lignin droplets inhibited enzymatic hydrolysis through adsorption with cellulase. -- Highlights: ► Just lignin contents cannot explain a correlation with enzymatic hydrolysis. ► Several changes resulted from lignin removal must affect enzymatic hydrolysis. ► Droplets are formed by structural changes in lignin during organosolv pretreatment. ► Formation of the lignin droplet increases the pore volume in biomass. ► The increase in pore volume enhances the enzymatic hydrolysis.

  12. An integrated chemo-enzymatic route for preparation of ß-thymidine, a key intermediate in the preparation of antiretrovirals

    CSIR Research Space (South Africa)

    Gordon, GER

    2011-01-01

    Full Text Available A chemo-enzymatic method for production of ß-thymidine, an intermediate in the synthesis of antiretrovirals, is described. Guanosine and thymine were converted by means of enzymatic transglycosylation to yield 5-methyluridine (5-MU), which...

  13. Comparison of Chemical and Enzymatic Interesterification of Fully Hydrogenated Soybean Oil and Walnut Oil to Produce a Fat Base with Adequate Nutritional and Physical Characteristics

    Directory of Open Access Journals (Sweden)

    Mariel Farfán

    2015-01-01

    Full Text Available The optimal physical, chemical and nutritional properties of natural lipids depend on the structure and composition of triacylglycerols. However, they are not always mutually compatible. Lipid modification is a good way to give them specific functionalities, increase their oxidative stability, or improve their nutritional value. As such, chemical and enzymatic interesterification may be used to modify them and produce structured lipids. In accordance, the aim of this study is to compare chemical and enzymatic interesterifi cation of binary blends of fully hydrogenated soybean oil and walnut oil, using sodium methoxide or Lipozyme TL IM, respectively, to produce a fat base with adequate nutritional and physical characteristics. Three different mass ratios of fully hydrogenated soybean oil and walnut oil blends (20:80, 40:60 and 60:40 were interesterified and evaluated. Total interesterification was determined by the stabilization of the solid fat content. Chemical reaction of the 20:80 blend was completed in 10 min and of the 40:60 and 60:40 blends in 15 min. Enzymatically interesterified blends were stabilized in 120 min at all of the mass ratios. Complete interesterification significantly reduced the solid fat content of the blends at any composition. Chemical and enzymatically interesterified fully hydrogenated blend of soybean and walnut oil at mass ratio of 40:60 showed the plastic curve of an all-purpose-type shortening rich in polyunsaturated fatty acids, with a high linolenic acid (C18:3n3 content and with zero trans-fatty acids.

  14. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    Science.gov (United States)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  15. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  16. Real-time ESI-MS of enzymatic conversion: impact of organic solvents and multiplexing.

    Science.gov (United States)

    Scheerle, Romy K; Grassmann, Johanna; Letzel, Thomas

    2012-01-01

    Different enzymatic assays were characterized systematically by real-time electrospray ionization mass spectrometry (ESI-MS) in the presence of organic solvents as well as in multiplex approaches and in a combination of both. Typically, biological enzymatic reactions are studied in aqueous solutions, since most enzymes show their full activity solely in aqueous solutions. However, in recent years, the use of organic solvents in combination with enzymatic reactions has gained increasing interest due to biotechnological advantages in chemical synthesis, development of online coupled setups screening for enzyme regulatory compounds, advantages regarding mass spectrometric detection and others. In the current study, the influence of several common organic solvents (methanol, ethanol, isopropanol, acetone, acetonitrile) on enzymatic activity (hen egg white lysozyme, chitinase, α-chymotrypsin, elastase from human neutrophils and porcine pancreas, acetylcholinesterase) was tested. Moreover, multiplexing is a promising approach enabling fast and cost-efficient screening methods, e.g. for determination of inhibitors in complex mixtures or in the field of biomedical research. Although in multiplexed setups the enzymatic activity may be affected by the presence of other substrates and/or enzymes, the expected advantages possibly will predominate. To investigate those effects, we measured multiple enzymatic assays simultaneously. For all conducted measurements, the conversion rate of the substrate(s) was calculated, which reflects the enzymatic activity. The results provide an overview about the susceptibility of the selected enzymes towards diverse factors and a reference point for many applications in analytical chemistry and biotechnology.

  17. Enzymatic saccharification of dilute acid pretreated saline crops for fermentable sugar production

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Zhang, Ruihong [Biological and Agricultural Engineering Department, University of California, Davis One Shields Avenue, Davis, CA 95616 (United States); Pan, Zhongli [Biological and Agricultural Engineering Department, University of California, Davis One Shields Avenue, Davis, CA 95616 (United States); Processed Foods Research Unit, USDA-ARS-WRRC, 800 Buchanan Street, Albany, CA 94710 (United States); Wang, Donghai [Biological and Agricultural Engineering Department, Kansas State University, Manhattan, KS 66506 (United States)

    2009-11-15

    Four saline crops [athel (Tamarix aphylla L), eucalyptus (Eucalyptus camaldulensis), Jose Tall Wheatgrass (Agropyron elongatum), and Creeping Wild Ryegrass (Leymus triticoides)] that are used in farms for salt uptake from soil and drainage irrigation water have the potential for fuel ethanol production because they don't take a large number of arable lands. Dilute sulfuric acid pretreatment and enzymatic hydrolysis were conducted to select the optimum pretreatment conditions and the best saline crop for further enzymatic hydrolysis research. The optimum dilute acid pretreatment conditions included T = 165 C, t = 8 min, and sulfuric acid concentration 1.4% (w/w). Creeping Wild Ryegrass was decided to be the best saline crop. Solid loading, cellulase and {beta}-glucosidase concentrations had significant effects on the enzymatic hydrolysis of dilute acid pretreated Creeping Wild Ryegrass. Glucose concentration increased by 36 mg/mL and enzymatic digestibility decreased by 20% when the solid loading increased from 4 to 12%. With 8% solid loading, enzymatic digestibility increased by over 30% with the increase of cellulase concentration from 5 to 15 FPU/g-cellulose. Under given cellulase concentration of 15 FPU/g-cellulose, 60% increase of enzymatic digestibility of pretreated Creeping Wild Ryegrass was obtained with the increase of {beta}-glucosidase concentration up to 15 CBU/g-cellulose. With a high solid loading of 10%, fed-batch operation generated 12% and 18% higher enzymatic digestibility and glucose concentration, respectively, than batch process. (author)

  18. Optimization of enzymatic clarification of green asparagus juice using response surface methodology.

    Science.gov (United States)

    Chen, Xuehong; Xu, Feng; Qin, Weidong; Ma, Lihua; Zheng, Yonghua

    2012-06-01

    Enzymatic clarification conditions for green asparagus juice were optimized by using response surface methodology (RSM). The asparagus juice was treated with pectinase at different temperatures (35 °C-45 °C), pH values (4.00-5.00), and enzyme concentrations (0.6-1.8 v/v%). The effects of enzymatic treatment on juice clarity and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging capacity were investigated by employing a 3-factor central composite design coupled with RSM. According to response surface analysis, the optimal enzymatic treatment condition was pectinase concentration of 1.45%, incubation temperature of 40.56 °C and pH of 4.43. The clarity, juice yield, and soluble solid contents in asparagus juice were significantly increased by enzymatic treatment at the optimal conditions. DPPH radical-scavenging capacity was maintained at the level close to that of raw asparagus juice. These results indicated that enzymatic treatment could be a useful technique for producing green asparagus juice with high clarity and high-antioxidant activity. Treatment with 1.45% pectinase at 40.56 ° C, pH 4.43, significantly increased the clarity and yield of asparagus juice. In addition, enzymatic treatment maintained antioxidant activity. Thus, enzymatic treatment has the potential for industrial asparagus juice clarification. © 2012 Institute of Food Technologists®

  19. Characterization of Volatile Flavor Compounds in Chinese Rice Wine Fermented from Enzymatic Extruded Rice.

    Science.gov (United States)

    Xu, Enbo; Long, Jie; Wu, Zhengzong; Li, Hongyan; Wang, Fang; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan

    2015-07-01

    Enzymatic extrusion, instead of traditional steam cooking, to treat rice is an efficient and alternative pretreatment for Chinese rice wine fermentation. In order to determine the formation of volatiles in enzymatic extrusion-processed rice wine (EE), and to confirm its characteristic flavor compounds, headspace solid-phase micro-extraction followed by GC-MS was used. A total of 66 volatile compounds were identified in EE. During fermentation, most volatiles generated from enzymatic extruded rice had the similar trends with those from steam-cooked rice, but the differences in the concentration of volatiles indicated a changed balance of flavors release caused by enzymatic extrusion. Besides, the concentrations and sorts of volatiles in EEs fermented from different rice particle sizes, were not dramatically different. By principal component analysis, EE could be distinctly separated from other traditional Chinese rice wines according to its characteristic volatiles, namely, 2-heptanol, 1-octen-3-ol, ethyl 4-hydroxybenzoate, methylpentyl 2-propenoate, γ-hexalactone, and 4-vinylguaiacol. Enzymatic extrusion liquefaction has been a popular thermal treatment for cereals, and gradually being applied in fermentation and liquor-making industry all over the world. The characterization of volatile flavor compounds in Chinese rice wine processed by enzymatic extrusion liquefaction pretreatment, might be made use not only for a better understanding of this new-type rice wine, but for the further utilization of enzymatic extrusion in other wine or alcohol production as well. © 2015 Institute of Food Technologists®

  20. Enzymatic assays for the diagnosis of bradykinin-dependent angioedema.

    Directory of Open Access Journals (Sweden)

    Federica Defendi

    Full Text Available BACKGROUND: The kinins (primarily bradykinin, BK represent the mediators responsible for local increase of vascular permeability in hereditary angioedema (HAE, HAE I-II associated with alterations of the SERPING1 gene and HAE with normal C1-Inhibitor function (HAE-nC1INH. Besides C1-Inhibitor function and concentration, no biological assay of kinin metabolism is actually available to help physicians for the diagnosis of angioedema (AE. We describe enzymatic tests on the plasma for diagnosis of BK-dependent AE. METHODS: The plasma amidase assays are performed using the Pro-Phe-Arg-p-nitroanilide peptide substrate to evaluate the spontaneous amidase activity and the proenzyme activation. We analyzed data of 872 patients presenting with BK-dependent AE or BK-unrelated diseases, compared to 303 controls. Anti-high MW kininogen (HK immunoblot was achieved to confirm HK cleavage in exemplary samples. Reproducibility, repeatability, limit of blank, limit of detection, precision, linearity and receiver operating characteristics (ROC were used to calculate the diagnostic performance of the assays. RESULTS: Spontaneous amidase activity was significantly increased in all BK-dependent AE, associated with the acute phase of disease in HAE-nC1INH, but preserved in BK-unrelated disorders. The increase of the amidase activity was associated to HK proteolysis, indicating its relevance to identify kininogenase activity. The oestrogens, known for precipitating AE episodes, were found as triggers of enzymatic activity. Calculations from ROC curves gave the optimum diagnostic cut-off for women (9.3 nmol⋅min(-1⋅mL(-1, area under curve [AUC] 92.1%, sensitivity 80.0%, and specificity 90.1% and for men (6.6 nmol·min(-1⋅mL(-1, AUC 91.0%, sensitivity 87.0% and specificity 81.2%. CONCLUSION: The amidase assay represents a diagnostic tool to help physicians in the decision to distinguish between BK-related and -unrelated AE.