WorldWideScience

Sample records for environmentally acceptable disposal

  1. Environmental Restoration Disposal Facility Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    Dronen, V.R.

    1998-06-01

    The Hanford Site is operated by the U. S. Department of Energy (DOE) with a primary mission of environmental cleanup and restoration. The Environmental Restoration Disposal Facility (ERDF) is an integral part of the DOE environmental restoration effort at the Hanford Site. The purpose of this document is to establish the ERDF waste acceptance criteria for disposal of materials resulting from Hanford Site cleanup activities. Definition of and compliance with the requirements of this document will enable implementation of appropriate measures to protect human health and the environment, ensure the integrity of the ERDF liner system, facilitate efficient use of the available space in the ERDF, and comply with applicable environmental regulations and DOE orders. To serve this purpose, the document defines responsibilities, identifies the waste acceptance process, and provides the primary acceptance criteria and regulatory citations to guide ERDF users. The information contained in this document is not intended to repeat or summarize the contents of all applicable regulations

  2. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  3. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    International Nuclear Information System (INIS)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-01-01

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information

  4. Radioactive waste disposal and public acceptance aspects

    Energy Technology Data Exchange (ETDEWEB)

    Ulhoa, Barbara M.A.; Aleixo, Bruna L.; Mourao, Rogerio P.; Ferreira, Vinicius V.M., E-mail: mouraor@cdtn.b, E-mail: vvmf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Part of the public opinion around the world considers the wastes generated due to nuclear applications as the biggest environmental problem of the present time. The development of a solution that satisfies everybody is a great challenge, in that obtaining public acceptance for nuclear enterprises is much more challenging than solving the technical issues involved. Considering that the offering of a final solution that closes the radioactive waste cycle has a potentially positive impact on public opinion, the objective of this work is to evaluate the amount of the radioactive waste volume disposed in a five-year period in several countries and gauge the public opinion regarding nuclear energy. The results show that the volume of disposed radioactive waste increased, a fact that stresses the importance of promoting discussions about repositories and public acceptance. (author)

  5. Radioactive waste disposal and public acceptance aspects

    International Nuclear Information System (INIS)

    Ulhoa, Barbara M.A.; Aleixo, Bruna L.; Mourao, Rogerio P.; Ferreira, Vinicius V.M.

    2011-01-01

    Part of the public opinion around the world considers the wastes generated due to nuclear applications as the biggest environmental problem of the present time. The development of a solution that satisfies everybody is a great challenge, in that obtaining public acceptance for nuclear enterprises is much more challenging than solving the technical issues involved. Considering that the offering of a final solution that closes the radioactive waste cycle has a potentially positive impact on public opinion, the objective of this work is to evaluate the amount of the radioactive waste volume disposed in a five-year period in several countries and gauge the public opinion regarding nuclear energy. The results show that the volume of disposed radioactive waste increased, a fact that stresses the importance of promoting discussions about repositories and public acceptance. (author)

  6. Environmental Restoration Disposal Facility waste acceptance criteria. Revision 1

    International Nuclear Information System (INIS)

    Corriveau, C.E.

    1996-01-01

    The Environmental Restoration Disposal Facility (ERDF) is designed to be an isolation structure for low-level radioactive remediation waste, chemically contaminated remediation waste, and remediation waste that contains both chemical and radioactive constituents (i.e., mixed remediation waste) produced during environmental remediation of Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) past-practice units at the Hanford Site. Remedial action wastes, which will become a structural component of the ERDF, include bulk soil, demolition debris, and miscellaneous wastes from burial grounds. These wastes may originate from CERCLA past-practice sites (i.e., operable units) in the 100 Areas, the 200 Areas, and the 300 Area of the Hanford Site

  7. Radwaste characteristics and Disposal Facility Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    Sung, Suk Hyun; Jeong, Yi Yeong; Kim, Ki Hong

    2008-01-01

    The purpose of Radioactive Waste Acceptance Criteria (WAC) is to verify a radioactive waste compliance with radioactive disposal facility requirements in order to maintain a disposal facility's performance objectives and to ensure its safety. To develop WAC which is conformable with domestic disposal site conditions, we furthermore analysed the WAC of foreign disposal sites similar to the Kyung-Ju disposal site and the characteristics of various wastes which are being generated from Korea nuclear facilities. Radioactive WAC was developed in the technical cooperation with the Korea Atomic Energy Research Institute in consideration of characteristics of the wastes which are being generated from various facilities, waste generators' opinions and other conditions. The established criteria was also discussed and verified at an advisory committee which was comprised of some experts from universities, institutes and the industry. So radioactive WAC was developed to accept all wastes which are being generated from various nuclear facilities as much as possible, ensuring the safety of a disposal facility. But this developed waste acceptance criteria is not a criteria to accept all the present wastes generated from various nuclear facilities, so waste generators must seek an alternative treatment method for wastes which were not worth disposing of, and then they must treat the wastes more to be acceptable at a disposal site. The radioactive disposal facility WAC will continuously complement certain criteria related to a disposal concentration limit for individual radionuclide in order to ensure a long-term safety.

  8. Institutional innovation to generate the public acceptance of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kemp, R.

    1991-01-01

    Contrasting experiences of public acceptance of radioactive waste disposal are compared for the United Kingdom, France, Sweden and Canada. The disparity between scientifically assessed and publicly perceived levels of risk is noted. The author argues that the form of decision-making process is more important to public acceptance of radioactive waste disposal than the technology of disposal. Public risk perception can be altered by procedures employed in planning, negotiation and consultation. Precisely what constitutes acceptable risk does vary from country to country, and differences in institutional responses and innovation are particularly highlighted. (UK)

  9. Waste-acceptance criteria for greater confinement disposal

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Meshkov, N.K.

    1987-01-01

    A methodology for establishing waste-acceptance criteria based on quantitative performance factors that characterize the confinement capabilities of a waste disposal site and facility has been developed. The methodology starts from the basic objective of protecting public health and safety by providing assurance that disposal of the waste will not result in a radiation dose to any member of the general public, in either the short or long term, in excess of an established basic dose limit. The method is based on an explicit, straight-forward, and quantitative relationship among individual risk, confinement capabilities, and waste characteristics. A key aspect of the methodology is introduction of a confinement factor that characterizes the overall confinement capability of a particular facility and can be used for quantitative assessments of the performance of different disposal sites and facilities, as well as for establishing site-specific waste acceptance criteria. Confinement factors are derived by means of site-specific pathway analyses. They make possible a direct and simple conversion of a basic dose limit into waste-acceptance criteria, specified as concentration limits on radionuclides in the waste streams and expressed in quantitative form as a function of parameters that characterize the site, facility design, waste containers, and waste form. Waste acceptance criteria can be represented visually as activity/time plots for various waste streams. These plots show the concentrations of radionuclides in a waste stream as a function of time and permit a visual, quantitative assessment of long-term performance, relative risks from different radionuclides in the waste stream, and contributions from ingrowth. 13 references, 7 figures

  10. Environmental risk assessment: its contribution to criteria development for HLW disposal

    International Nuclear Information System (INIS)

    Smith, G.M.; Little, R.H.; Watkins, B.M.

    1999-01-01

    Principles for radioactive waste management have been provided by the International Atomic Energy Agency in Safety Series No.111-F, which was published in 1995. This has been a major step forward in the process of achieving acceptance for proposals for disposal of radioactive waste, for example, for High Level Waste disposal in deep repositories. However, these principles have still to be interpreted and developed into practical radiation protection criteria. Without prejudicing final judgements on the acceptability of waste proposals, an important aspect is that practical demonstration of compliance (or the opposite) with these criteria must be possible. One of the IAEA principles requires that radioactive waste shall be managed in such a way as to provide an acceptable level of protection of the environment. There has been and continues to be considerable debate as to how to demonstrate compliance with such a principle. This paper briefly reviews the current status and considers how experience in other areas of environmental protection could contribute to criteria development for HLW disposal

  11. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy''s (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE''s Environmental Management Program

  12. Waste-acceptance criteria for greater-confinement disposal

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Meshkov, N.K.

    1986-01-01

    A methodology for establishing waste-acceptance criteria based on quantitative performance factors that characterize the confinement capabilities of a waste-disposal site and facility has been developed. The methodology starts from the basic objective of protecting public health and safety by providing assurance that dispsoal of the waste will not result in a radiation dose to any member of the general public, in either the short or long term, in excess of an established basic dose limit. The method is based on an explicit, straightforward, and quantitative relationship among individual risk, confinement capabilities, and waste characteristics. A key aspect of the methodology is the introduction of a confinement factor that characterizes the overall confinement capability of a particular facility and can be used for quantitative assessments of the performance of different disposal sites and facilities, as well as for establishing site-specific waste-acceptance criteria. Confinement factors are derived by means of site-specific pathway analyses. They make possible a direct and simple conversion of a basic dose limit into waste-acceptance criteria, specified as concentration limits on radionuclides in the waste streams and expressed in quantitative form as a function of parameters that characterize the site, facility design, waste containers, and waste form. Waste-acceptance criteria can be represented visually as activity/time plots for various waste streams. These plots show the concentrations of radionuclides in a waste stream as a function of time and permit a visual, quantitative assessment of long-term performance, relative risks from different radionuclides in the waste stream, and contributions from ingrowth. 13 refs

  13. Acceptability criteria for final underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1984-01-01

    Specialists now generally agree that the underground disposal of suitably immobilized radioactive waste offers a means of attaining the basic objective of ensuring the immediate and long-term protection of man and the environment throughout the requisite period of time and in all foreseeable circumstances. Criteria of a more general as well as a more specific nature are practical means through which this basic protection objective can be reached. These criteria, which need not necessarily be quantified, enable the authorities to gauge the acceptability of a given project and provide those responsible for waste management with a basis for making decisions. In short, these principles constitute the framework of a suitably safety-oriented waste management policy. The more general criteria correspond to the protection objectives established by the national authorities on the basis of principles and recommendations formulated by international organizations, in particular the ICRP and the IAEA. They apply to any underground disposal system considered as a whole. The more specific criteria provide a means of evaluating the degree to which the various components of the disposal system meet the general criteria. They must also take account of the interaction between these components. As the ultimate aim is the overall safety of the disposal system, individual components can be adjusted to compensate for the performance of others with respect to the criteria. This is the approach adopted by the international bodies and national authorities in developing acceptability criteria for the final underground radioactive disposal systems to be used during the operational and post-operational phases respectively. The main criteria are reviewed and an attempt is made to assess the importance of the specific criteria according to the different types of disposal systems. (author)

  14. Acceptance criteria for disposal of radioactive wastes in shallow ground and rock cavities

    International Nuclear Information System (INIS)

    1985-01-01

    This document provides an overview of basic information related to waste acceptance criteria for disposal in shallow ground and rock cavity repositories, consisting of a discussion of acceptable waste types. The last item includes identification of those waste characteristics which may influence the performance of the disposal system and as such are areas of consideration for criteria development. The material is presented in a manner similar to a safety assessment. Waste acceptance criteria aimed at limiting the radiation exposure to acceptable levels are presented for each pathway. Radioactive wastes considered here are low-level radioactive wastes and intermediate-level radioactive wastes from nuclear fuel cycle operations and applications of radionuclides in research, medicine and industry

  15. Sewage sludge disposal-requirements, expense and acceptance; Klaerschlammentsorgung zwischen Anspruch, Aufwand und Akzeptanz

    Energy Technology Data Exchange (ETDEWEB)

    Gruenebaum, T. [Ruhrverband, Essen (Germany)

    1997-02-01

    Production of sewage sludges is unavoidable at wastewater treatment. Sewage sludges shall be used in agriculture. Although the content of hazardous substances in sewage sludges has obviously been minimized, the use of those sludges is limited because of the low acceptance in agriculture and food industry. Therefore it is necessary to build up methods of disposal which make possible and ensure a medium- or even longtime disposal. Incineration seems to be the solution since the requirements for landfill of sewage sludges have been renewed. The currently valid transitional regulation lead to remarkable reactions of the disposal market. The plans for sewage sludge disposal have to agree with the principles of environmental protection, safety, economic efficiency, good realization and operational handling. (orig.) [Deutsch] Bei der Abwasserreinigung faellt Klaerschlamm an. Dieser ist moeglichst in der Landwirtschaft zu verwerten. Obwohl die Schadstoffgehalte der Klaerschlaemme in den letzten 15 Jahren sehr deutlich gesunken sind, ist der Einsatz durch Akzeptanzprobleme in der Landwirtschaft und bei der Nahrungsmittelindustrie limitiert. Es gilt deshalb, Entsorgungspfade aufzubauen, die eine mittel- und langfristige Sicherung der Entsorgung ermoeglichen. Nach den neueren Anforderungen an eine Deponierung ist demnach immer eine Verbrennung vorzusehen. Die z.Z. noch geltende Uebergangsregelung hat zu massiven Reaktionen des Entsorgungsmarktes gefuehrt. Die Planungen zur Klaerschlammentsorgung muessen sich an den Grundsaetzen der Umsetzbarkeit und betrieblichen Handhabbarkeit ausrichten. (orig.)

  16. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Volume 2: Appendices

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy's (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE's Environmental Management Program. This volume contains the following appendices: Waste inventory; Summary of the waste management programmatic environmental impact statement and its use in determining human health impacts at treatment sites; Air quality; Life-cycle costs and economic impacts; Transportation; Human health; Facility accidents; Long-term consequence analysis for proposed action and action alternatives; Long-term consequence analysis for no action alternative 2; and Updated estimates of the DOE's transuranic waste volumes

  17. Summary of the Environmental Impact Statement on the concept for disposal of Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    1994-01-01

    This is the Summary of the Environmental Impact Statement (EIS) prepared by Atomic Energy of Canada Limited (AECL) on the concept for disposal of Canada's nuclear fuel waste. The proposed concept is a method for geological disposal, based on a system of natural and engineered barriers. The EIS provides information requested by the Environmental Assessment Panel reviewing the disposal concept and presents AECL's case for the acceptability of the concept. The introductory chapter of this Summary provides background information on several topics related to nuclear fuel waste, including current storage practices for used fuel, the need for eventual disposal of nuclear fuel waste, the options for disposal, and the reasons for Canada's focus on geological disposal. Chapter 2 describes the concept for disposal of nuclear fuel waste. Because the purpose of implementing the concept would he to protect human health and the natural environment far into the future, we discuss the long-term performance of a disposal system and present a case study of potential effects on human health and the natural environment after the closure of a disposal facility. The effects and social acceptability of disposal would depend greatly on how the concept was implemented. Chapter 3 describes AECL's proposed approach to concept implementation. We discuss how the public would be involved in implementation; activities that would be undertaken to protect human health, the natural environment, and the socio-economic environment; and a case study of the potential effects of disposal before the closure of a disposal facility. The last chapter presents AECL's Conclusion, based on more than 15 years of research and development, that implementation of the disposal concept represents a means by which Canada can safely dispose of its nuclear fuel waste. This chapter also presents AECL's recommendation that Canada progress toward disposal of its nuclear fuel waste by undertaking the first stage of concept

  18. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Volume 1, Chapters 1--6

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy's (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE's Environmental Management Program. Chapters 1--6 include an introduction, background information, description of the proposed action and alternatives, description of the affected environments, environmental impacts, and consultations and permits

  19. Determining ''Best Practicable Environmental Options'' for final waste disposal of radioactive waste

    International Nuclear Information System (INIS)

    Smith, Graham

    1999-01-01

    This presentation discusses some ideas on what the Best Practical Environmental Option (BPEO) process should include. A BPEO study to help develop a radioactive waste management strategy should not only look at post-closure safety of a facility. In the UK there was a 1986 Study of BPEOs for management of low and intermediate level radioactive wastes. This study tried to answer important questions such as (1) What are the practical options, (2) Which wastes should go to shallow burial, (3) Which wastes should go to sea disposal, (4) How does storage compare with disposal and (5) What are the cost and environmental trade-offs. The presentation discusses what was done to answer the questions. The BPEO Study resulted in major improved effort to characterise waste, much greater quantitative understanding of where and when the real costs, and environmental and radiological impacts arise. All options would be useful within a national strategy. But there was clearly a need for resolution of political acceptance problems, integration of policy with other hazardous waste management, and stronger legal framework

  20. Assessment of environmental impact models in natural occurring radionuclides solid wastes disposal from the mineral industry

    International Nuclear Information System (INIS)

    Pontedeiro, Elizabeth May Braga Dulley

    2006-07-01

    This work evaluates the behavior of wastes with naturally occurring radionuclides as generated by the mineral industry and their final disposal in landfills. An integrated methodology is used to predict the performance of an industrial landfill for disposal of wastes containing NORM/TENORM, and to define acceptable amounts that can be disposed at the landfill using long-term environmental assessment. The governing equations for radionuclide transport are solved analytically using the generalized integral transform technique. Results obtained for each compartment of the biogeosphere are validated with experimental results or compared to other classes of solutions. An impact analysis is performed in order to define the potential consequences of a landfill to the environment, considering not only the engineering characteristics of the waste deposit but also the exposure pathways and plausible scenarios in which the contaminants could migrate and reach the environment and the human population. The present work permits the development of a safety approach that can be used to derive quantitative waste acceptance criteria for the disposal of NORM/TENORM waste in landfills. (author)

  1. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Allan, C.J.

    1993-01-01

    The Canadian concept for nuclear fuel waste disposal is based on disposing of the waste in a vault excavated 500-1000 m deep in intrusive igneous rock of the Canadian Shield. The author believes that, if the concept is accepted following review by a federal environmental assessment panel (probably in 1995), then it is important that implementation should begin without delay. His reasons are listed under the following headings: Environmental leadership and reducing the burden on future generations; Fostering public confidence in nuclear energy; Forestalling inaction by default; Preserving the knowledge base. Although disposal of reprocessing waste is a possible future alternative option, it will still almost certainly include a requirement for geologic disposal

  2. Nuclear waste disposal: technology and environmental hazards

    International Nuclear Information System (INIS)

    Hare, F.K.; Aikin, A.M.

    1980-01-01

    The subject is discussed under the headings: introduction; the nature and origin of wastes (fuel cycles; character of wastes; mining and milling operations; middle stages; irradiated fuel; reprocessing (waste generation); reactor wastes); disposal techniques and disposal of reprocessing wastes; siting of repositories; potential environmental impacts (impacts after emplacement in a rock repository; catastrophic effects; dispersion processes (by migrating ground water); thermal effects; future security; environmental survey, monitoring and modelling); conclusion. (U.K.)

  3. Qualitative acceptance criteria for radioactive wastes to be disposed of in deep geological formations

    International Nuclear Information System (INIS)

    1990-05-01

    The present Safety Guide has to be seen as a companion document to the IAEA Safety Series No. 99. It is concerned with the waste form which is an important component of the overall disposal system. Because of the broad range of waste types and conditioned forms and variations in the sites, designs and constructional approaches being considered for deep geological repositories, this report necessarily approaches the waste acceptance criteria in a general way, recognizing that the assignment of quantitative limits to these criteria has to be the responsibility of national authorities. The main objective of this Safety Guide is to set out qualitative waste acceptance criteria as a basis for specifying quantitative limits for the waste forms and packages which are intended to be disposed of in deep geological repositories. It should serve as guidance for assigning such parameter values which would fully comply with the safety assessment and performance of a waste disposal system as a whole. This document is intended to serve both national authorities and regulatory bodies involved in the development of deep underground disposal systems. The qualitative waste acceptance criteria dealt with in the present Safety Guide are primarily concerned with the disposal of high level, intermediate level and long-lived alpha bearing wastes in deep geological repositories. Although some criteria are also applicable in other waste disposal concepts, it has to be borne in mind that the set of criteria presented here shall ensure the isolation capability of a waste disposal system for periods of time much longer than for other waste streams with shorter lifetimes. 51 refs, 1 tab

  4. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Volume 3: Comment response document

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy''s (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE''s Environmental Management Program. This volume provides responses to public comments on the Draft SEIS-II. Comments are related to: Alternatives; TRU waste; DOE credibility; Editorial; Endorsement/opposition; Environmental justice; Facility accidents; Generator site operations; Health and safety; Legal and policy issues; NEPA process; WIPP facilities; WIPP waste isolation performance; Purpose and need; WIPP operations; Site characterization; Site selection; Socioeconomics; and Transportation

  5. Evaluation of the Acceptability of Potential Depleted Uranium Hexafluoride Conversion Products at the Envirocare Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.

    2001-01-11

    The purpose of this report is to review and document the capability of potential products of depleted UF{sub 6} conversion to meet the current waste acceptance criteria and other regulatory requirements for disposal at the facility in Clive, Utah, owned by Envirocare of Utah, Inc. The investigation was conducted by identifying issues potentially related to disposal of depleted uranium (DU) products at Envirocare and conducting an initial analysis of them. Discussions were then held with representatives of Envirocare, the state of Utah (which is a NRC Agreement State and, thus, is the cognizant regulatory authority for Envirocare), and DOE Oak Ridge Operations. Provisional issue resolution was then established based on the analysis and discussions and documented in a draft report. The draft report was then reviewed by those providing information and revisions were made, which resulted in this document. Issues that were examined for resolution were (1) license receipt limits for U isotopes; (2) DU product classification as Class A waste; (3) use of non-DOE disposal sites for disposal of DOE material; (4) historical NRC views; (5) definition of chemical reactivity; (6) presence of mobile radionuclides; and (7) National Environmental Policy Act coverage of disposal. The conclusion of this analysis is that an amendment to the Envirocare license issued on October 5, 2000, has reduced the uncertainties regarding disposal of the DU product at Envirocare to the point that they are now comparable with uncertainties associated with the disposal of the DU product at the Nevada Test Site that were discussed in an earlier report.

  6. Factors affecting public and political acceptance for the implementation of geological disposal

    International Nuclear Information System (INIS)

    2007-10-01

    This publication identifies conditions which affect (either increase or decrease) public concern for and political acceptance of the development and implementation of programmes for geological disposal of long lived radioactive waste. It also looks at how interested citizens can be associated in the decision making process in such a way that their input enriches the outcome of a more socially robust and sustainable solution. The publication also considers how to optimize risk management, addressing the needs and expectations of the public and of other relevant stakeholders. Factors of relevance for societal acceptance conditions are identified for the different stages of a repository programme and implementation process, from policy development to the realization of the repository itself. Further, they are described and analysed through case studies from several countries, illustrating the added value of broadening the technical dimension with social dialogue and insight into value judgements.This report focuses on a geological disposal approach that consists of isolating radioactive wastes deep underground in a mined repository. It is not suggested here that geological disposal is the sole strategy that may be chosen or carried out by a country for managing high level radioactive waste, long lived waste or spent nuclear fuel. However, the geological disposal approach is favoured in principle by many countries for it is seen to offer advantages in terms of safety and security of this category of radioactive materials, and as a way to address ethical concerns. This report is meant for decision makers and others with a role in bringing forward a national programme to manage radioactive waste. Through different case studies, this report describes how programme acceptance has been fostered or hindered in different countries. It reviews factors that may affect whether a programme to develop and implement geological disposal strategy gains (or does not gain) societal

  7. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    International Nuclear Information System (INIS)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment

  8. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment.

  9. Alternatives for definse waste-salt disposal

    International Nuclear Information System (INIS)

    Benjamin, R.W.; McDonell, W.R.

    1983-01-01

    Alternatives for disposal of decontaminated high-level waste salt at Savannah River were reviewed to estimate costs and potential environmental impact for several processes. In this review, the reference process utilizing intermediate-depth burial of salt-concrete (saltcrete) monoliths was compared with alternatives including land application of the decontaminated salt as fertilizer for SRP pine stands, ocean disposal with and without containment, and terminal storage as saltcake in existing SRP waste tanks. Discounted total costs for the reference process and its modifications were in the same range as those for most of the alternative processes; uncontained ocean disposal with truck transport to Savannah River barges and storage as saltcake in SRP tanks had lower costs, but presented other difficulties. Environmental impacts could generally be maintained within acceptable limits for all processes except retention of saltcake in waste tanks, which could result in chemical contamination of surrounding areas on tank collapse. Land application would require additional salt decontamination to meet radioactive waste disposal standards, and ocean disposal without containment is not permitted in existing US practice. The reference process was judged to be the only salt disposal option studied which would meet all current requirements at an acceptable cost

  10. Technology, socio-political acceptance, and the low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Andrews, L.J.; Domenech, J.S.

    1986-01-01

    The technology which is required to develop and operate low-level radioactive waste disposal sites in the 1990's is available today. The push for best available technology is a response to the political difficulties in securing public acceptance of the site selection process. Advances in waste management technologies include development of High Integrity Containers (HIC), solidification media, liquid volume reduction techniques using GEODE/sub sm/ and DeVoe-Holbein technology of selective removal of target radioisotopes, and CASTOR V storage casks. Advances in technology alone, however, do not make the site selection process easier and without socio-political acceptance there may be no process at all. Chem-Nuclear has been successful in achieving community acceptance at the Barnwell facility and elsewhere. For example, last June in Fall River County, South Dakota, citizens voted almost 2:1 to support the development of a low-level radioactive waste disposal facility. In Edgemont, the city nearest the proposed site, 85% of the voters were in favor of the proposed facility

  11. A proposed risk acceptance criterion for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Mehta, K.

    1985-06-01

    The need to establish a radiological protection criterion that applies specifically to disposal of high level nuclear fuel wastes arises from the difficulty of applying the present ICRP recommendations. These recommendations apply to situations in which radiological detriment can be actively controlled, while a permanent waste disposal facility is meant to operate without the need for corrective actions. Also, the risks associated with waste disposal depend on events and processes that have various probabilities of occurrence. In these circumstances, it is not suitable to apply standards that are based on a single dose limit as in the present ICRP recommendations, because it will generally be possible to envisage events, perhaps rare, that would lead to doses above any selected limit. To overcome these difficulties, it is proposed to base a criterion for acceptability on a set of dose values and corresponding limiting values of probabilities; this set of values constitutes a risk-limit line. A risk-limit line suitable for waste disposal is proposed that has characteristics consistent with the basic philosophy of the ICRP and UNSCEAR recommendations, and is based on levels on natural background radiation

  12. Northeast Regional environmental impact study: Waste disposal technical report

    Science.gov (United States)

    Saguinsin, J. L. S.

    1981-04-01

    The potential for cumulative and interactive environmental impacts associated with the conversion of multiple generating stations in the Northeast is assessed. The estimated quantities and composition of wastes resulting from coal conversion, including ash and SO2 scrubber sludge, are presented. Regulations governing the use of ash and scrubber sludge are identified. Currently available waste disposal schemes are described. The location, capacity, and projected life of present and potential disposal sites in the region are identified. Waste disposal problems, both hazardous and nonhazardous, are evaluated. Environmental regulations within the region as they pertain to coal conversion and as they affect the choice of conversion alternatives are discussed. A regional waste management strategy for solid waste disposal is developed.

  13. Phytoextraction crop disposal--an unsolved problem

    International Nuclear Information System (INIS)

    Sas-Nowosielska, A.; Kucharski, R.; Malkowski, E.; Pogrzeba, M.; Kuperberg, J.M.; Krynski, K.

    2004-01-01

    Several methods of contaminated crop disposal after phytoextraction process (composting, compaction, incineration, ashing, pyrolysis, direct disposal, liquid extraction) have been described. Advantages and disadvantages of methods are presented and discussed. Composting, compaction and pyrolysis are the pretreatment steps, since significant amount of contaminated biomass will still exist after each of the process. Four methods of final disposal were distinguished: incineration, direct disposal, ashing and liquid extraction. Among them, incineration (smelting) is proposed as the most feasible, economically acceptable and environmentally sound. - Methods of contaminated crop disposal are described and evaluated

  14. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 2, Battery recycling and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D

    1992-09-01

    Recycling and disposal of spent sodium-sulfur (Na/S) batteries are important issues that must be addressed as part of the commercialization process of Na/S battery-powered electric vehicles. The use of Na/S batteries in electric vehicles will result in significant environmental benefits, and the disposal of spent batteries should not detract from those benefits. In the United States, waste disposal is regulated under the Resource Conservation and Recovery Act (RCRA). Understanding these regulations will help in selecting recycling and disposal processes for Na/S batteries that are environmentally acceptable and cost effective. Treatment processes for spent Na/S battery wastes are in the beginning stages of development, so a final evaluation of the impact of RCRA regulations on these treatment processes is not possible. The objectives of tills report on battery recycling and disposal are as follows: Provide an overview of RCRA regulations and requirements as they apply to Na/S battery recycling and disposal so that battery developers can understand what is required of them to comply with these regulations; Analyze existing RCRA regulations for recycling and disposal and anticipated trends in these regulations and perform a preliminary regulatory analysis for potential battery disposal and recycling processes. This report assumes that long-term Na/S battery disposal processes will be capable of handling large quantities of spent batteries. The term disposal includes treatment processes that may incorporate recycling of battery constituents. The environmental regulations analyzed in this report are limited to US regulations. This report gives an overview of RCRA and discusses RCRA regulations governing Na/S battery disposal and a preliminary regulatory analysis for Na/S battery disposal.

  15. ENVIRONMENTAL EFFECTS OF DREDGING AND DISPOSAL (E2-D2)

    Science.gov (United States)

    US Army Corps of Engineers public web site for the "Environmental Effects of Dredging and Disposal" ("E2-D2") searchable database of published reports and studies about environmental impacts associated with dredging and disposal operations. Many of the reports and studies are ava...

  16. Nuclear fuel waste management and disposal concept: Report. Federal environmental assessment review process

    International Nuclear Information System (INIS)

    1998-01-01

    The Canadian concept for disposing CANDU reactor waste or high-level nuclear wastes from reprocessing involves underground disposal in sealed containers emplaced in buffer-filled and sealed vaults 500--1,000 meters below ground, in plutonic rock of the Canadian Shield. This document presents the report of a panel whose mandate was to review this concept (rather than a specific disposal project at a specific site) along with a broad range of related policy issues, and to conduct that review in five provinces (including reviews with First Nations groups). It first outlines the review process and then describes the nature of the problem of nuclear waste management. It then presents an overview of the concept being reviewed, its implementation stages, performance assessment analyses performed on the concept, and implications of a facility based on that concept (health, environmental, social, transportation, economic). The fourth section examines the criteria by which the safety and acceptability of the concept should be evaluated. This is followed by a safety and acceptability evaluation from both technical and social perspectives. Section six proposes future steps for building and determining acceptability of the concept, including an Aboriginal participation process, creation of a Nuclear Fuel Waste Management Agency, and a public participation process. The final section discusses some issues outside the panel's mandate, such as energy policy and renewable energy sources. Appendices include a chronology of panel activities, a review of radiation hazards, comparison between nuclear waste management and the management of other wastes, a review of other countries' approaches to long-term management of nuclear fuel wastes, and details of a siting process proposed by the panel

  17. Engineering, environmental and economic planning for tailings disposal

    International Nuclear Information System (INIS)

    Poellot, J.H.

    1982-01-01

    There are two principal points made in this paper. First, mining waste materials, or tailings, are geotechnical materials. Their behavior follows the principles of soil mechanics and is predictable by these principles. Second, proper disposal, meaning safe, environmentally sound and economical disposal, requires planning and recognizing waste disposal as part of the total mining system and process. In the development of these two principles, planning, design, and economic considerations of mine tailings are discussed

  18. TECHNO – ECONOMIC ACCEPTABILITY ANALISYS OF WASTE DISPOSAL BY INJECTION INTO APPROPRIATE FORMATION

    Directory of Open Access Journals (Sweden)

    Vladislav Brkić

    2013-12-01

    Full Text Available During exploration and production of oil and natural gas, various types of waste must be disposed in a permanent and safe way. There is a range of methods for processing and disposal of waste, such as disposal into landfills, solidification, namely chemical stabilization, thermal processing, appropriate formation injections uncovered by a deep well, disposal into salt domes and bioremediation. The method of waste disposal into appropriate formations is a method where strict geological and technical criteria must be satisfied when applied. A fundamental scientific hypothesis has been formulated whereby economic acceptability of the waste injection method, as a main method for waste disposal, is to be shown by an economic evaluation. The results of this research are relevant since there has been an intention in Croatia and worldwide to abandon wells permanently due to oil and gas reservoirs depletion and therefore it is essential to estimate economic impacts of the waste injection method application. In that way, profitability of using existing wells for waste disposal in oil industry has been increased, leading to the improvement of petroleum company’s business activities (the paper is published in Croatian.

  19. Analysis of local acceptance of a radioactive waste disposal facility.

    Science.gov (United States)

    Chung, Ji Bum; Kim, Hong-Kew; Rho, Sam Kew

    2008-08-01

    Like many other countries in the world, Korea has struggled to site a facility for radioactive waste for almost 30 years because of the strong opposition from local residents. Finally, in 2005, Gyeongju was established as the first Korean site for a radioactive waste facility. The objectives of this research are to verify Gyeongju citizens' average level of risk perception of a radioactive waste disposal facility as compared to other risks, and to explore the best model for predicting respondents' acceptance level using variables related to cost-benefit, risk perception, and political process. For this purpose, a survey is conducted among Gyeongju residents, the results of which are as follows. First, the local residents' risk perception of an accident in a radioactive waste disposal facility is ranked seventh among a total of 13 risks, which implies that nuclear-related risk is not perceived very highly by Gyeongju residents; however, its characteristics are still somewhat negative. Second, the comparative regression analyses show that the cost-benefit and political process models are more suitable for explaining the respondents' level of acceptance than the risk perception model. This may be the result of the current economic depression in Gyeongju, residents' familiarity with the nuclear industry, or cultural characteristics of risk tolerance.

  20. Acceptance criteria for disposal of radioactive waste in Romania

    International Nuclear Information System (INIS)

    Dogaru, D.

    2001-01-01

    In Romania the institutional radioactive waste are managed by National Institute of R and D for Physics and Nuclear Engineering. The institutional radioactive waste are collected, treated and conditioned at the Radioactive Waste Treatment Plant then transferred and disposed to the National Repository of Radioactive Waste at Baita Bihor. National Repository for Radioactive Waste is a long term storage facility. The repository is placed in a former worked out uranium ore mine, being excavated in the Bihor peak. The repository has been sited taking into account the known geological, hydrogeoloical, seismic and meteorological and mining properties of a uranium mining site. In the absence of an updated Safety Analysis Report, the maximum radioactive content permitted by the regulatory authority in the operation license is below the values reported for other engineered repositories in mine galleries. The paper presents the acceptance criteria for disposal of radioactive waste in National Repository for Radioactive Waste at Baita Bihor. (author)

  1. Radioactive waste disposal - ethical and environmental considerations - A Canadian perspective

    International Nuclear Information System (INIS)

    Roots, F.

    1994-01-01

    This work deals with ethical and environmental considerations of radioactive waste disposal in Canada. It begins with the canadian attitudes toward nature and environment. Then are given the canadian institutions which reflect an environmental ethic, the development of a canadian radioactive waste management policy, the establishment of formal assessment and review process for a nuclear fuel waste disposal facility, some studies of the ethical and risk dimensions of nuclear waste decisions, the canadian societal response to issues of radioactive wastes, the analysis of risks associated with fuel waste disposal, the influence of other energy related environmental assessments and some common ground and possible accommodation between the different views. (O.L.). 50 refs

  2. Proposed integrated hazardous waste disposal facility. Public environmental review

    International Nuclear Information System (INIS)

    1998-05-01

    This Public Environmental Report describes a proposal by the Health Department of Western Australia to establish a disposal facility for certain hazardous wastes and seeks comments from governments agencies and the public that will assist the EPA to make its recommendations to. The facility would only be used for wastes generated in Western Australia.The proposal specifically includes: a high temperature incinerator for the disposal of organo-chlorines (including agricultural chemicals and PCBs), and other intractable wastes for which this is the optimum disposal method; an area for the burial (after any appropriate conditioning) of low level radioactive intractable wastes arising from the processing of mineral sands (including monazite, ilmenite and zircon) and phosphate rock. Detailed information is presented on those wastes which are currently identified as requiring disposal at the facility.The proposed facility will also be suitable for the disposal of other intractable wastes including radioactive wastes (from industry, medicine and research) and other solid intractable wastes of a chemical nature including spent catalysts etc. Proposals to dispose of these other wastes at this facility in the future will be referred to the Environmental Protection Authority for separate assessment

  3. Derivation of Waste Acceptance Criteria for Low and Intermediate Level Waste in Surface Disposal Facility

    International Nuclear Information System (INIS)

    Gagner, L.; Voinis, S.

    2000-01-01

    In France, low- and intermediate-level radioactive wastes are disposed in a near-surface facility, at Centre de l'Aube disposal facility. This facility, which was commissioned in 1992, has a disposal capacity of one million cubic meters, and will be operated up to about 2050. It took over the job from Centre de la Manche, which was commissioned in 1969 and shut down in 1994, after having received about 520,000 cubic meters of wastes. The Centre de l'Aube disposal facility is designed to receive a many types of waste produced by nuclear power plants, reprocessing, decommissioning, as well as by the industry, hospitals and armed forces. The limitation of radioactive transfer to man and the limitation of personnel exposure in all situations considered plausible require limiting the total activity of the waste disposed in the facility as well as the activity of each package. The paper presents how ANDRA has derived the activity-related acceptance criteria, based on the safety analysis. In the French methodology, activity is considered as end-point for deriving the concentration limits per package, whereas it is the starting point for deriving the total activity limits. For the concentration limits (called here LMA) the approach consists of five steps: the determination of radionuclides important for safety with regards to operational and long-term safety, the use of relevant safety scenarios as a tool to derive quantitative limits, the setting of dose constraint per situation associated with scenarios, the setting of contribution factor per radionuclide, and the calculation of concentration activity limits. An exhaustive survey has been performed and has shown that the totality of waste packages which should be delivered by waste generators are acceptable in terms of activity limits in the Centre de l'Aube. Examples of concentration activity limits derived from this methodology are presented. Furthermore those limits have been accepted by the French regulatory body and

  4. Development of performance assessment methodology for establishment of quantitative acceptance criteria of near-surface radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. R.; Lee, E. Y.; Park, J. W.; Chang, G. M.; Park, H. Y.; Yeom, Y. S. [Korea Hydro and Nuclear Power Co., Ltd., Seoul (Korea, Republic of)

    2002-03-15

    The contents and the scope of this study are as follows : review of state-of-the-art on the establishment of waste acceptance criteria in foreign near-surface radioactive waste disposal facilities, investigation of radiological assessment methodologies and scenarios, investigation of existing models and computer codes used in performance/safety assessment, development of a performance assessment methodology(draft) to derive quantitatively radionuclide acceptance criteria of domestic near-surface disposal facility, preliminary performance/safety assessment in accordance with the developed methodology.

  5. Research on Application of Internet of Things in the Disposal of Environmental Emergency

    Directory of Open Access Journals (Sweden)

    Zhu Yanju

    2015-01-01

    Full Text Available Internet of things is an important part of a new generation of information technology and also an important stage of Information Age. Application of Internet of things in the disposal of environmental emergency is an inevitable trend of application of Internet of things in the field of environmental protection. This paper summarizes the principle, process and application field of Internet of things, and focuses on the general frame-work of environmental emergency disposal system based on Internet of things and further analyses the factors of restricting application of Internet of things in the disposal of environmental emergency. At last, the suggestions and countermeasures to optimize environmental emergency disposal system are proposed.

  6. DISPOSABLE CANISTER WASTE ACCEPTANCE CRITERIA

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2001-07-30

    The purpose of this calculation is to provide the bases for defining the preclosure limits on radioactive material releases from radioactive waste forms to be received in disposable canisters at the Monitored Geologic Repository (MGR) at Yucca Mountain. Specifically, this calculation will provide the basis for criteria to be included in a forthcoming revision of the Waste Acceptance System Requirements Document (WASRD) that limits releases in terms of non-isotope-specific canister release dose-equivalent source terms. These criteria will be developed for the Department of Energy spent nuclear fuel (DSNF) standard canister, the Multicanister Overpack (MCO), the naval spent fuel canister, the High-Level Waste (HLW) canister, the plutonium can-in-canister, and the large Multipurpose Canister (MPC). The shippers of such canisters will be required to demonstrate that they meet these criteria before the canisters are accepted at the MGR. The Quality Assurance program is applicable to this calculation. The work reported in this document is part of the analysis of DSNF and is performed using procedure AP-3.124, Calculations. The work done for this analysis was evaluated according to procedure QAP-2-0, Control of Activities, which has been superseded by AP-2.21Q, Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities. This evaluation determined that such activities are subject to the requirements of DOE/RW/0333P, Quality Assurance Requirements and Description (DOE 2000). This work is also prepared in accordance with the development plan titled Design Basis Event Analyses on DOE SNF and Plutonium Can-In-Canister Waste Forms (CRWMS M&O 1999a) and Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages (CRWMS M&O 2000d). This calculation contains no electronic data applicable to any electronic data management system.

  7. Factors affecting public and political acceptance for the implementation of geological disposal

    International Nuclear Information System (INIS)

    Neerdael, Bernard

    2007-01-01

    The main objective of this paper is to identify conditions which affect public concern (either increase or decrease) and political acceptance for developing and implementing programmes for geologic disposal of long-lived radioactive waste. It also looks how citizens and relevant actors can be associated in the decision making process in such a way that their input is enriching the outcome towards a more socially robust and sustainable solution. Finally, it aims at learning from the interaction how to optimise risk management addressing needs and expectations of the public and of other relevant stakeholders. In order to meet these objectives, factors of relevance for societal acceptance conditions are identified, described and analysed. Subsequently these factors are looked for in the real world of nuclear waste management through cases in several countries. The analysis is conducted for six stages of a repository programme and implementation process, from policy development to the realisation of the repository itself. The diversity of characteristics of such contexts increases insight in the way society and values of reference are influencing technological decision making. These interrelated factors need to be integrated in step by step decision making processes as emerging the last years in HLW disposal management. In the conclusions, the effect of each factor on acceptance is derived from the empirical record. In the course of carrying out this analysis, it became clear that acceptance had a different meaning in the first three stages of the process, more generic and therefore mainly discussed at policy level and the other stages, by nature more site-specific, and therefore requesting both public and political acceptance. Experience as clearly addressed in this report has shown that a feasible solution has its technical dimension but that 'an acceptable solution' always will have a combined technical and social dimension. If the paper provides tentative answers

  8. The treatment and disposal of oily solids

    International Nuclear Information System (INIS)

    Wright, R.A.D.; Noordhuis, B.R.

    1991-01-01

    Oily solids are generated as a waste product of Brunel Shell Petroleum's drilling and production activities. The main sources are waste oil based mud, tank bottom sludges, and oil contaminated soil. The oily solids are stored in a purpose built holding basin which is gradually being filled up. The need for appropriate treatment and an acceptable means of final disposal of the solids has been recognized as an item for attention in the Company's Environmental Management Plan. The paper describes the resulting feasibility study which is evaluating the relative merits of processes such as incineration, lime stabilization, and landfarming. The feasibility study is considering the quantity and properties of the solids, the environmental conditions in Brunei, the availability of treatment services in the country, and the need to define acceptable environmental criteria for the treatment and disposal methods. The way in which these factors influence the study are discussed

  9. Hanford grout disposal program - an environmentally sound alternative

    International Nuclear Information System (INIS)

    Bergman, T.B.; Allison, J.M.

    1987-01-01

    The Hanford Grout Disposal Program (HGDP) is a comprehensive, integrated program to develop technology and facilities for the disposal of ∼ 3.0 x 10 5 m 3 (80 million gal) of the low-level fraction of liquid radioactive tank wastes at the Hanford site in southeastern Washington state. Environmentally sound disposal via long-term protection of the public and the environment is the principal goal of the HGDP. To accomplish this goal, several criteria have been established that guide technology and facility development activities. The key criteria are discussed. To meet the challenges posed by disposal of these wastes, the HGDP is developing a waste form using grout-forming materials, such as blast furnace slag, fly ash, clays, and Portland cement for solidification and immobilization of both the radioactive and hazardous chemical constituents. In addition to development of a final waste form, the HGDP is also developing a unique disposal system to assure long-term protection of the public and the environment. Disposal of a low-level nonhazardous waste will be initiated, as a demonstration of the disposal system concept, in June 1988. Disposal of higher activity hazardous wastes is scheduled to begin in October 1989

  10. Contested environmental policy infrastructure: Socio-political acceptance of renewable energy, water, and waste facilities

    International Nuclear Information System (INIS)

    Wolsink, Maarten

    2010-01-01

    The construction of new infrastructure is hotly contested. This paper presents a comparative study on three environmental policy domains in the Netherlands that all deal with legitimising building and locating infrastructure facilities. Such infrastructure is usually declared essential to environmental policy and claimed to serve sustainability goals. They are considered to serve (proclaimed) public interests, while the adverse impact or risk that mainly concerns environmental values as well is concentrated at a smaller scale, for example in local communities. The social acceptance of environmental policy infrastructure is institutionally determined. The institutional capacity for learning in infrastructure decision-making processes in the following three domains is compared: 1.The implementation of wind power as a renewable energy innovation; 2.The policy on space-water adaptation, with its claim to implement a new style of management replacing the current practice of focusing on control and 'hard' infrastructure; 3.Waste policy with a focus on sound waste management and disposal, claiming a preference for waste minimization (the 'waste management hierarchy'). All three cases show a large variety of social acceptance issues, where the appraisal of the impact of siting the facilities is confronted with the desirability of the policies. In dealing with environmental conflict, the environmental capacity of the Netherlands appears to be low. The policies are frequently hotly contested within the process of infrastructure decision-making. Decision-making on infrastructure is often framed as if consensus about the objectives of environmental policies exists. These claims are not justified, and therefore stimulating the emergence of environmental conflicts that discourage social acceptance of the policies. Authorities are frequently involved in planning infrastructure that conflicts with their officially proclaimed policy objectives. In these circumstances, they are

  11. Proposed rulemaking on the storage and disposal of nuclear waste. Cross-statement of the United States Department of Energy

    International Nuclear Information System (INIS)

    1980-01-01

    The US DOE cross-statement in the matter of proposed rulemaking in the storage and disposal of nuclear wastes is presented. It is concluded from evidence contained in the document that: (1) spent fuel can be disposed of in a manner that is safe and environmentally acceptable; (2) present plans for establishing geological repositories are an effective and reasonable means of disposal; (3) spent nuclear fuel from licensed facilities can be stored in a safe and environmentally acceptable manner on-site or off-site until disposal facilities are ready; (4) sufficient additional storage capacity for spent fuel will be established; and (5) the disposal and interim storage systems for spent nuclear fuel will be integrated into an acceptable operating system. It was recommended that the commission should promulgate a rule providing that the safety and environmental implications of spent nuclear fuel remaining on site after the anticipated expiration of the facility licenses involved need not be considered in individual facility licensing proceedings. A prompt finding of confidence in the nuclear waste disposal and storage area by the commission is also recommeded

  12. Proposed rulemaking on the storage and disposal of nuclear waste. Cross-statement of the United States Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-05

    The US DOE cross-statement in the matter of proposed rulemaking in the storage and disposal of nuclear wastes is presented. It is concluded from evidence contained in the document that: (1) spent fuel can be disposed of in a manner that is safe and environmentally acceptable; (2) present plans for establishing geological repositories are an effective and reasonable means of disposal; (3) spent nuclear fuel from licensed facilities can be stored in a safe and environmentally acceptable manner on-site or off-site until disposal facilities are ready; (4) sufficient additional storage capacity for spent fuel will be established; and (5) the disposal and interim storage systems for spent nuclear fuel will be integrated into an acceptable operating system. It was recommended that the commission should promulgate a rule providing that the safety and environmental implications of spent nuclear fuel remaining on site after the anticipated expiration of the facility licenses involved need not be considered in individual facility licensing proceedings. A prompt finding of confidence in the nuclear waste disposal and storage area by the commission is also recommeded. (DMC)

  13. Characteristics of radioactive waste forms conditioned for storage and disposal: Guidance for the development of waste acceptance criteria

    International Nuclear Information System (INIS)

    1983-04-01

    This report attempts to review the characteristics of the individual components of the waste package, i.e. the waste form and the container, in order to formulate, where appropriate, quidelines for the development of practical waste acceptance criteria. Primarily the criteria for disposal are considered, but if more stringent criteria are expected to be necessary for storage or transportation prior to the disposal, these will be discussed. The report will also suggest test areas which will aid the development of the final waste acceptance criteria

  14. Environmental monitoring for low-level radioactive waste-disposal facilities

    International Nuclear Information System (INIS)

    Shum, E.Y.; Starmer, R.J.; Westbrook, K.; Young, M.H.

    1990-01-01

    The U.S. Nuclear Regulatory Commission prepared a Branch Technical Position (BTP) paper on environmental monitoring of a low-level radioactive waste-disposal facility. The BTP provides guidance on what is required in Section 61.53 of 10 CFR Part 61 for those submitting a license application. Guidance is also provided on choosing constituents to measure, setting action levels, relating measurements to appropriate actions in a corrective action plan, and quality assurance. The environmental monitoring program generally consists of three phases: preoperational, operational, and postoperational. Each phase should be designed to fulfill specific objectives defined in the BTP. During the preoperational phase, program objectives are to provide site characterization information, demonstrate site suitability and acceptability, and obtain background or baseline information. Emphasis during the operational phase is on measurement shifts. Monitoring data are obtained to demonstrate compliance with regulations, with dose limits of 10 CFR Part 61, or with applicable U.S. Environmental Protection Agency standards. Data are also used to update important pathway parameters to improve predictions of site performance and to provide a record of performance for public information. The postoperational phase emphasizes measurements to demonstrate compliance with site closure requirements and continued compliance with the performance objective for release. Data are used to support evaluation of long-term impacts to the general public and for public information

  15. Disposal facility for spent nuclear fuel. Environmental impact assessment program

    International Nuclear Information System (INIS)

    1998-01-01

    The report presents the Environmental Impact Assessment (EIA) of the high level radioactive waste disposal in Finland. In EIA different alternatives concerning site selection, construction, operation and sealing of the disposal facility as well as waste transportation and encapsulation of the waste are considered

  16. The politics of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kemp, R.

    1992-01-01

    Plans for radioactive waste disposal have been among the most controversial of all environmental policies, provoking vociferous public opposition in a number of countries. This book looks at the problem from an international perspective, and shows how proposed solutions have to be politically and environmentally, as well as technologically acceptable. In the book the technical and political agenda behind low and intermediate level radioactive waste disposal in the UK, Western Europe, Scandinavia and North America is examined. The technical issues and the industrial proposals and analyses and factors which have been crucial in affecting relative levels of public acceptability are set out. Why Britain has lagged behind countries such as Sweden and France in establishing Low Level Waste (LLW) and Intermediate Level Waste (ILW) sites, the strength of the 'not in my backyard' syndrome in Britain, and comparisons of Britain's decision-making process with the innovative and open pattern followed in the US and Canada are examined. An important insight into the problems facing Nirex, Britain's radioactive waste disposal company, which is seeking to establish an underground waste site at Sellafield in Cumbria is given. (author)

  17. Environmental policy on radwaste management and disposal in China

    International Nuclear Information System (INIS)

    Zhao Yamin

    1993-01-01

    This paper introduces the environmental policy on radwaste management and disposal. In order to prevent different kinds of radwaste from polluting environment, ensure public health, and simultaneously promote the development of nuclear energy and nuclear technology, a set of environmental policies on radwaste management and disposal has been established. The major policy are as follows: (1) Solidifying the temporarily-stored radioactive liquid waste as early as possible. (2) Limiting the temporarily-stored time for intermediate-and low-level solidified radwaste, and solid radwaste. (3) Constructing regional disposal repository for Low and Intermediate level radwaste (L/ILW) (4) The radwaste and spent radiation sources arising from nuclear technology application shall be sent to the provincial waste repositories that are named City Radwaste Repository. (5) The radwaste coming from the development and application of inter-grown radioactive mineral resources should be stored in the dams which have to be provided

  18. Evaluating Options for Disposal of Low-Level Waste at LANL

    International Nuclear Information System (INIS)

    Hargis, K.M.; French, S.B.; Boyance, J.A.

    2009-01-01

    Los Alamos National Laboratory (LANL) generates a wide range of waste types, including solid low-level radioactive waste (LLW), in conducting its national security mission and other science and technology activities. Although most of LANL's LLW has been disposed on-site, limitations on expansion, stakeholder concerns, and the potential for significant volumes from environmental remediation and decontamination and demolition (D and D) have led LANL to evaluate the feasibility of increasing off-site disposal. It appears that most of the LLW generated at LANL would meet the Waste Acceptance Criteria at the Nevada Test Site or available commercial LLW disposal sites. Some waste is considered to be problematic to transport to off-site disposal even though it could meet the off-site Waste Acceptance Criteria. Cost estimates for off-site disposal are being evaluated for comparison to estimated costs under the current plans for continued on-site disposal. An evaluation of risks associated with both on-site and off-site disposal will also be conducted. (authors)

  19. Risk communication by utilizing environmental ethics as meta-cognition for high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Kugo, Akihide; Uda, Akinobu; Shimoda, Hiroshi; Yoshikawa, Hidekazu; Ito, Kyoko; Wakabayashi, Yasunaga

    2005-01-01

    Though the high level radioactive waste disposal policy in Japan has been clearly stated, this issue is still unfamiliar with the general public, who tend to make a social decision based on heuristics. Therefore, much effort such as developing risk communication system is required to restrain the general public from making a negative decision which may bring social dilemma. However, societal consensus on acceptable disposal practice will be very difficult to attain in a short period of time. The purpose of this research was to verify the effect of web risk communication model which has dialog-mode contents with environmental ethics as a meta-cognition and a bulletin board system in light of developing objective risk cognition. The experimental result suggested that this model was able to inspire subjective norm and introspection towards the necessity of pro-social behaviors more effectively than a one-way lecture. (author)

  20. Processing of Irradiated Graphite to Meet Acceptance Criteria for Waste Disposal. Results of a Coordinated Research Project

    International Nuclear Information System (INIS)

    2016-05-01

    Graphite is widely used in the nuclear industry and in research facilities and this has led to increasing amounts of irradiated graphite residing in temporary storage facilities pending disposal. This publication arises from a coordinated research project (CRP) on the processing of irradiated graphite to meet acceptance criteria for waste disposal. It presents the findings of the CRP, the general conclusions and recommendations. The topics covered include, graphite management issues, characterization of irradiated graphite, processing and treatment, immobilization and disposal. Included on the attached CD-ROM are formal reports from the participants

  1. Waste Isolation Pilot Plant disposal phase: Draft supplemental Environmental Impact Statement

    International Nuclear Information System (INIS)

    1996-11-01

    Purpose of this SEIS-II is to provide information on environmental impacts regarding DOE's proposed disposal operations at WIPP. To that end, SEIS-II was prepared to assess the potential impacts of continuing the phased development of WIPP as a geologic repository for the safe disposal of transuranic (TRU) waste. SEIS-II evaluates a Proposed Action, three Action Alternatives, and two No Action Alternatives. The Proposed Action describes the treatment and disposal of the Basic Inventory of TRU waste over a 35-year period. SEIS-II evaluates environmental impacts resulting from the various treatment options; transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with implementation of the alternatives are discussed

  2. Public acceptability of risk of radioactive waste disposal

    International Nuclear Information System (INIS)

    Millerd, W.H.

    1977-01-01

    A ''public interest'' viewpoint is presented on the disposal of radioactive wastes. Criteria for the development of disposal methods are needed. The current program to develop disposal sites and methods has become an experiment. The advantages and disadvantages of radwaste disposal as an ongoing experiment are discussed briefly

  3. Environmental monitoring of low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Shum, E.Y.; Starmer, R.J.; Young, M.H.

    1989-12-01

    This branch technical position (BTP) paper on the environmental monitoring program for a low-level radioactive waste disposal facility provides general guidance on what is required by Section 61.53 of Title 10 of the Code of Federal Regulations (10 CFR) of applicants submitting a license application for such a facility. In general, the environmental monitoring program consists of three phases: preoperational, operational, and postoperational. Each phase of the monitoring program should be designed to fulfill the specific objectives defined in the BTP paper. During the preoperational phase, the objectives of the program are to provide site characterization information, to demonstrate site suitability and acceptability, to obtain background or baseline information, and to provide a record for public information. During the operational phase, the emphasis on measurement shifts. Monitoring data are obtained to provide early warning of releases and to document compliance with regulations, the dose limits of 10 CFR Part 61, or applicable standards of the US Environmental Protection Agency. Data are also used to update important pathway parameters to improve predictions of site performance and to provide a record of performance for public information. The postoperational environmental monitoring program emphasizes measurements to demonstrate compliance with the site-closure requirements and continued compliance with the performance objective in regard to the release of radionuclides to the environment. The data are used to support evaluation of long-term effects on the general public and for public information. Guidance is also provided in the BTP paper on the choice of which constituents to measure, setting action levels, relating measurements to appropriate actions in a corrective action plan, and quality assurance

  4. Perceived risks of nuclear fuel waste disposal: trust, compensation, and public acceptance in Canada

    International Nuclear Information System (INIS)

    Hine, D.W.; Summers, C.

    1996-01-01

    AECL's recommendation to place the high-level radioactive waste in corrosion resistant containers and bury it in underground vaults several hundred metres deep in the rock of the Canadian shield is presently under federal review. If and when the disposal concept is approved by the federal review panel, a search will begin for a suitable host community. Given that siting guidelines prevent the government from unilaterally imposing the waste on a reluctant community, identifying a suitable site may represent the single greatest obstacle to successfully implementing the disposal concept. Even if the concept is approved by the review panel, it may be very difficult to find a community that is willing to accept the waste. In the US, efforts to site an underground disposal facility for high-level nuclear waste at Yucca Mountain has run into strong opposition from local residents and politicians, resulting in long delays and major cost overruns

  5. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Hare, Tony.

    1990-01-01

    The Save Our Earth series has been designed to appeal to the inquiring minds of ''planet-friendly'' young readers. There is now a greater awareness of environmental issues and an increasing concern for a world no longer able to tolerate the onslaught of pollution, the depletion of natural resources and the effects of toxic chemicals. Each book approaches a specific topic in a way that is exciting and thought-provoking, presenting the facts in a style that is concise and appropriate. The series aims to demonstrate how various environmental subjects relate to our lives, and encourages the reader to accept not only responsibility for the planet, but also for its rescue and restoration. This volume, on nuclear waste disposal, explains how nuclear energy is harnessed in a nuclear reactor, what radioactive waste is, what radioactivity is and its effects, and the problems and possible solutions of disposing of nuclear waste. An awareness of the dangers of nuclear waste is sought. (author)

  6. Radioactive waste disposal implications of extending Part IIA of the Environmental Protection Act to cover radioactively contaminated land.

    Science.gov (United States)

    Nancarrow, D J; White, M M

    2004-03-01

    A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation. This is expected to be principally wastes of high volume and low activity (categorised as low level waste (LLW) and very low level waste (VLLW)). The availability problem results from a lack of applications by landfill operators for authorisation to accept LLW wastes for disposal. This is apparently due to perceived adverse publicity associated with the consultation process for authorisation coupled with uncertainty over future liabilities. Disposal of waste as VLLW is limited both by questions over volumes that may be acceptable and, more fundamentally, by the likely alpha activity of wastes (originating from radium and thorium operations). Authorised on-site disposal has had little attention in policy and guidance in recent years, but may have a part to play, especially if considered commercially attractive. Disposal at BNFL's near surface disposal facility for LLW at Drigg is limited to wastes for which there are no practical alternative disposal options (and preference has been given to operational type wastes). Therefore, wastes from the radioactively contaminated land (RCL) regime are not obviously attractive for disposal to Drigg. Illustrative calculations have been performed based on possible volumes and activities of RCL arisings (and assuming Drigg's future volumetric disposal capacity is 950,000 m3). These suggest that wastes arising from implementing the RCL regime, if all disposed to Drigg, would not represent a significant fraction of the volumetric capacity of Drigg, but could have a significant impact on the radiological

  7. Radioactive waste disposal implications of extending Part IIA of the Environmental Protection Act to cover radioactively contaminated land

    International Nuclear Information System (INIS)

    Nancarrow, D J; White, M M

    2004-01-01

    A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation. This is expected to be principally wastes of high volume and low activity (categorised as low level waste (LLW) and very low level waste (VLLW)). The availability problem results from a lack of applications by landfill operators for authorisation to accept LLW wastes for disposal. This is apparently due to perceived adverse publicity associated with the consultation process for authorisation coupled with uncertainty over future liabilities. Disposal of waste as VLLW is limited both by questions over volumes that may be acceptable and, more fundamentally, by the likely alpha activity of wastes (originating from radium and thorium operations). Authorised on-site disposal has had little attention in policy and guidance in recent years, but may have a part to play, especially if considered commercially attractive. Disposal at BNFL's near surface disposal facility for LLW at Drigg is limited to wastes for which there are no practical alternative disposal options (and preference has been given to operational type wastes). Therefore, wastes from the radioactively contaminated land (RCL) regime are not obviously attractive for disposal to Drigg. Illustrative calculations have been performed based on possible volumes and activities of RCL arisings (and assuming Drigg's future volumetric disposal capacity is 950 000 m 3 ). These suggest that wastes arising from implementing the RCL regime, if all disposed to Drigg, would not represent a significant fraction of the volumetric capacity of Drigg, but could have a significant impact on the radiological

  8. From waste packages acceptance criteria to waste packages acceptance process at the Centre de l'Aube disposal facility

    International Nuclear Information System (INIS)

    Dutzer, M.

    2003-01-01

    The Centre de l'Aube disposal facility has now been operated for 10 years. At the end of 2001, about 124,000 m3 of low and intermediate level short lived waste packages, representing 180,000 packages, have been disposed, for a total capacity of 1,000,000 m3. The flow of waste packages is now between 12 and 15,000 m3 per year, that is one third of the flow that was taken into account for the design of the repository. It confirms the efforts by waste generators to minimise waste production. This flow represents 25 to 30,000 packages, 50% are conditioned into the compaction facility of the repository, so that 17,000 packages are disposed per year. 54 disposal vaults have been closed. In 1996-1999, the safety assessment of the repository have been reviewed, taking into account the experience of operation. This assessment was investigated by the regulatory body and, subsequently, a so-called 'definitive license' to operate was granted to ANDRA on September 2, 1999 with updated licensing requirements. Another review will be performed in 2004. To ensure a better consistency with the safety assessment of the facility, Andra issued new technical requirements for waste packages at the end of 2000. Discussions with waste generators also showed that the waste package acceptance process should be improved to provide a more precise definition of operational criteria to comply with in waste conditioning facilities. Consequently, a new approach has been implemented since 2000. (orig.)

  9. THE ENVIRONMENTAL TECHNOLOGIES ACCEPTANCE (ETA) PROGRAM

    International Nuclear Information System (INIS)

    Behr-Andres, Christina B.

    2001-01-01

    The Environmental Technologies Acceptance (ETA) Program at the Energy and Environmental Research Center (EERC) is intended to advance the development, commercial acceptance, and timely deployment of selected private sector technologies for the cleanup of sites in the nuclear defense complex as well as the greater market. As shown in Table 1, this cooperative agreement funded by the National Energy Technology Laboratory (NETL) consists of three tasks: Technology Selection, Technology Development, and Technology Verification. As currently conceived, the ETA will address the needs of as many technologies as appropriate under its current 3-year term. This report covers activities during the first 6 months of the 3-year ETA program

  10. Nuclear waste disposal: regional options for the Western Pacific

    International Nuclear Information System (INIS)

    Childs, I.

    1985-01-01

    The disposal of nuclear waste is a complex environmental problem involving the technology of containing a radiation hazard and the political problem of finding an acceptable site for a hazardous waste facility. The focus of discussion here is the degree to which Western Pacific countries are committed to nuclear power as an energy source, and the political and economic interdependencies in the region which will influence waste disposal options

  11. Timing of High-level Waste Disposal

    International Nuclear Information System (INIS)

    2008-01-01

    This study identifies key factors influencing the timing of high-level waste (HLW) disposal and examines how social acceptability, technical soundness, environmental responsibility and economic feasibility impact on national strategies for HLW management and disposal. Based on case study analyses, it also presents the strategic approaches adopted in a number of national policies to address public concerns and civil society requirements regarding long-term stewardship of high-level radioactive waste. The findings and conclusions of the study confirm the importance of informing all stakeholders and involving them in the decision-making process in order to implement HLW disposal strategies successfully. This study will be of considerable interest to nuclear energy policy makers and analysts as well as to experts in the area of radioactive waste management and disposal. (author)

  12. Preliminary environmental impact assessment for the final disposal of vanadium hazardous wastes

    International Nuclear Information System (INIS)

    Leyva Bombuse, D.; Peralta, J.L.; Gil Castillo, R.

    2006-01-01

    The aim of the present paper is the environmental impact assessment for the final management of vanadium wastes. The assessed practice is proposed as a final solution for a real problem in Cuba, related with the combustion fossil fuel burn in the electric generation. The study case, embrace the interim storage of hazardous wastes with high vanadium contents (5.08 T) and other heavy metals traces (Cr, Zn). According to the Cuban conditions (tacking into account the environmental regulations and infrastructure lack for the hazardous wastes disposal), it was decided the terrestrial dilution as a final disposal way. The environmental impact assessment methodology used, take into account, in the analyzed management practice, the actions, factors and environmental impacts. The positives and more relevant impacts were obtained for the socioeconomic means. The negative and irrelevant impacts were associated to the biotic and abiotic means. Socioeconomic factors were the most affected and the biotic and abiotic factors were less affected. The waste handling was the most relevant environmental action. According to the evaluated conditions, the obtained results showed that is feasible the terrestrial dilution as a sustainability way for the final disposal of vanadium hazardous wastes

  13. Environmental monitoring considerations for low-level waste disposal sites

    International Nuclear Information System (INIS)

    Sedlet, J.

    1982-01-01

    All waste disposal sites are required to monitor the environment. The proposed NRC licensing rule, 10 CFR Part 61, requires that such monitoring be conducted before, during, and after a site is operated. An adequate monitoring program consists of measuring concentrations of radionuclides, chemically-toxic substances, and leachate indicators in environmental media and of evaluating specific physical properties of the site. In addition, the composition of the buried waste must be known. Methods for obtaining this information are discussed and monitoring programs are presented for the preoperational, operational, and postclosure phases of a disposal site. Environmental monitoring is considered in a broad context, since it includes monitoring burial trenches onsite, as well as surveillance in the offsite environment. Postclosure monitoring programs will be strongly influenced by the operational monitoring results. In some respects, this phase will be easier since the migration pathways should be well known and the number of radionuclides of concern reduced by radioactive decay. The results of the environmental monitoring program will be vital to successful site operation. These results should be used to determine if operational changes are needed and to predict future environmental impacts

  14. Public Acceptance of Low-Level Waste Disposal Critical to the Nuclear Renaissance

    International Nuclear Information System (INIS)

    Sonny Goldston, W.T.

    2009-01-01

    The disposal of various Low-Level Waste (LLW) forms projected to result from the operation of a pilot or large scale Advanced Fuel Cycle Initiative Programs' (formally known as Global Nuclear Energy Partnership (GNEP)) reprocessing and vitrification plants requires the DOE LLW program and regulatory structure to be utilized in its present form due to the limited availability of Nuclear Regulatory Commission licensed commercial LLW disposal facilities to handle wastes with radionuclide concentrations that are greater than Nuclear Regulatory Commission (NRC) Class A limits. This paper will describe the LLW forms and the regulatory structures and facilities available to dispose of this waste. Then the paper discusses the necessity of an excellent public involvement program to ensure the success of an effective technical solution. All of the decisions associated with the management of these wastes are of interest to the public and successful program implementation would be impossible without including the public up-front in the program formulation. Serious problems can result if program decisions are made without public involvement, and if the public is informed after key decisions are made. This paper will describe the regulatory and public involvement program and their effects on the decisions concerning the disposal of Low-Level Radioactive Waste (LLW) at the Savannah River Site (SRS). An extensive public communications effort resulted in endorsement of changes in disposal practices by the SRS Citizens Advisory Board that was critical to the success of the program. A recommendation will be made to install a public involvement program that is similar to the SRS Citizens Advisory Board in order to ensure the success of the AFCI programs in view of the limited availability to handle the wastes from the program and the public acceptance of change that will be required. (authors)

  15. Wastewater Disposal Wells, Fracking, and Environmental Injustice in Southern Texas.

    Science.gov (United States)

    Johnston, Jill E; Werder, Emily; Sebastian, Daniel

    2016-03-01

    To investigate race and poverty in areas where oil and gas wastewater disposal wells, which are used to permanently inject wastewater from hydraulic fracturing (fracking) operations, are permitted. With location data of oil and gas disposal wells permitted between 2007 and 2014 in the Eagle Ford area, a region of intensive fracking in southern Texas, we analyzed the racial composition of residents living less than 5 kilometers from a disposal well and those farther away, adjusting for rurality and poverty, using a Poisson regression. The proportion of people of color living less than 5 kilometers from a disposal well was 1.3 times higher than was the proportion of non-Hispanic Whites. Adjusting for rurality, disposal wells were 2.04 times (95% confidence interval = 2.02, 2.06) as common in areas with 80% people of color or more than in majority White areas. Disposal wells are also disproportionately sited in high-poverty areas. Wastewater disposal wells in southern Texas are disproportionately permitted in areas with higher proportions of people of color and residents living in poverty, a pattern known as "environmental injustice."

  16. Waste from medicine, industry and research must also be disposed of

    International Nuclear Information System (INIS)

    Issler, H.

    1990-01-01

    Disposal of waste in a manner which is environmentally acceptable is an important political concern of our society today. Nagra has been charged with the resposibility of solving this problem with respect to disposal of radioactive waste in particular. In this context, the fact that radioactive waste also arises from activities other than the operation of nuclear power plants is often overlooked. (author) 7 figs., 3 tabs

  17. Making waves with undersea (radioactive waste) disposal

    International Nuclear Information System (INIS)

    Milne, Roger.

    1987-01-01

    Following the Government's decision to halt the search for land-based disposal sites for low-level radioactive wastes, the search for alternative means of disposal of low- and intermediate-level wastes continues. Off-shore sites now seems to be the most likely. Two approaches are mentioned. The first is that proposed by Consolidated Environmental Technologies Ltd., to sink a shaft 15 metre in diameter under the seabed in an area of tectonic stability, possibly off Lincolnshire. The shaft could be 3000 metres deep. Waste packages and large decommissioning items would be lowered in from a giant barge. This would be expensive but environmentally more acceptable than the other approach. That is to tunnel out from the land and store the waste offshore, below the seabed. (U.K.)

  18. Criteria and principles for environmental assessment of disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Hill, M.D.

    1989-01-01

    This paper describes the criteria which are used in judging whether methods for the disposal of radioactive wastes are acceptable, from a radiological protection point of view, and the principles used in assessing the radiological impact of waste disposal methods. Gaseous, liquid and solid wastes are considered, and the discussion is relevant to wastes arising from the nuclear power industry, and from medical practices, general industry and research. Throughout the paper, emphasis is given to the general criteria and principles recommended by international organizations rather than to the detailed legislative and regulatory requirements in particular countries

  19. 10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...

  20. Finnish HLW disposal programme : site selection in 2000

    International Nuclear Information System (INIS)

    Ryhsnen, Veijo

    1997-01-01

    This paper covers the technical concepts for final disposal in the Finnish geological conditions, the approach for site selection and implementation, the safety assessments and development of criteria, the environmental impact assessment, the licensing stages and acceptance, and the financial provisions, the project organization in 1997 - 2000. 2 refs., 9 figs

  1. Finnish HLW disposal programme : site selection in 2000

    Energy Technology Data Exchange (ETDEWEB)

    Ryhsnen, Veijo [Posiva Oy, Helsinki (Finland)

    1997-12-31

    This paper covers the technical concepts for final disposal in the Finnish geological conditions, the approach for site selection and implementation, the safety assessments and development of criteria, the environmental impact assessment, the licensing stages and acceptance, and the financial provisions, the project organization in 1997 - 2000. 2 refs., 9 figs.

  2. Radiobiological effects in small mammals populations dwelled at radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Sypin, V.D.; Osipov, A.N.; Pol'skij, O.G.; Elakov, A.L.; Egorov, V.G.; Synsynys, B.I.

    2004-01-01

    A major issue in evaluating the ecological acceptability of a disposal system for radioactive waste is in preventing the ecological risk that may arise from exposures in the distant future. There is uncertainty surrounding any estimate of these doses or risks due to lack of knowledge about future conditions. Therefore, the adequate estimation of the ecological acceptability of a radioactive waste disposal system required a complex radioecological and radiobiological approach. Environmental surveillance at the Sergievo-Posadsky radioactive waste disposal system of the Scientific and Industrial Association Radon in additional to a standard complex radiological testing includes also the study of the radiobiological effects in different biological objects sampled from the contaminated areas. In present report the results obtained on small rodents (mice and voles) sampled from the strict mode and fence zones of this disposal system are displayed and discussed. (author)

  3. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Ellefson, M.D.

    1998-01-01

    Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities

  4. Postconstruction report of the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Oakley, L.B.; Siberell, J.K.; Voskuil, T.L.

    1993-06-01

    Remedial actions conducted under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) were completed at the Y-12 United Nuclear Corporation (UNC) Disposal Site in August 1992. The purpose of this Postconstruction Report is to summarize numerous technical reports and provide CERCLA documentation for completion of the remedial actions. Other CERCLA reports, such as the Feasibility Study for the UNC Disposal Site, provide documentation leading up to the remedial action decision. The remedial action chosen, placement of a modified RCRA cap, was completed successfully, and performance standards were either met or exceeded. This remedial action provided solutions to two environmentally contaminated areas and achieved the goal of minimizing the potential for contamination of the shallow groundwater downgradient of the site, thereby providing protection of human health and the environment. Surveillance and maintenance of the cap will be accomplished to ensure cap integrity, and groundwater monitoring downgradient of the site will continue to confirm the acceptability of the remedial action chosen.

  5. Source Release Modeling for the Idaho National Engineering and Environmental Laboratory's Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Becker, B.H.

    2002-01-01

    A source release model was developed to determine the release of contaminants into the shallow subsurface, as part of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) evaluation at the Idaho National Engineering and Environmental Laboratory's (INEEL) Subsurface Disposal Area (SDA). The output of the source release model is used as input to the subsurface transport and biotic uptake models. The model allowed separating the waste into areas that match the actual disposal units. This allows quantitative evaluation of the relative contribution to the total risk and allows evaluation of selective remediation of the disposal units within the SDA

  6. Processing of Irradiated Graphite to Meet Acceptance Criteria for Waste Disposal. Results of a Coordinated Research Project. Companion CD-ROM

    International Nuclear Information System (INIS)

    2016-05-01

    Graphite is widely used in the nuclear industry and in research facilities and this has led to increasing amounts of irradiated graphite residing in temporary storage facilities pending disposal. This publication arises from a coordinated research project (CRP) on the processing of irradiated graphite to meet acceptance criteria for waste disposal. It presents the findings of the CRP, the general conclusions and recommendations. The topics covered include, graphite management issues, characterization of irradiated graphite, processing and treatment, immobilization and disposal. Included on the attached CD-ROM are formal reports from the participants

  7. Systematic handling of requirements and conditions (in compliance with waste acceptance requirements for a radioactive waste disposal facility)

    International Nuclear Information System (INIS)

    Keyser, Peter; Helander, Anita

    2012-01-01

    This Abstract and presentation will demonstrate the need for a structured requirement management and draw upon experiences and development from SKB requirements data base and methodology, in addition to international guidelines and software tools. The presentation will include a discussion on how requirement management can be applied for the decommissioning area. The key issue in the decommissioning of nuclear facilities is the progressive removal of hazards, by stepwise decontamination and dismantling activities that have to be carried out safely and within the boundaries of an approved safety case. For decommissioning there exists at least two safety cases, one for the pre-disposal activities and one for the disposal facility, and a need for a systematic handling of requirements and conditions to safely manage the radioactive waste in the long term. The decommissioning safety case is a collection of arguments and evidence to demonstrate the safety of a decommissioning project. It also includes analyzing and updating the decommissioning safety case in accordance with the waste acceptance criteria's and the expected output, i.e. waste packages. It is a continuous process to confirm that all requirements have been met. On the other hand there is the safety case for a radioactive waste disposal facility, which may include the following processes and requirements: i) Integrating relevant scientific (and other) information in a structured, traceable and transparent way and, thereby, developing and demonstrating an understanding of the potential behavior and performance of the disposal system; ii) Identifying uncertainties in the behavior and performance of the disposal system, describing the possible significance of the uncertainties, and identifying approaches for the management of significant uncertainties; iii) Demonstrating long-term safety and providing reasonable assurance that the disposal facility will perform in a manner that protects human health and the

  8. The effect of alternative cost and environmental impact minimisation strategies on radioactive waste disposal strategies

    International Nuclear Information System (INIS)

    Laundy, R.S.; James, A.R.; Groom, M.S.; Dalrymple, G.J.

    1985-06-01

    The study reported here investigates the effects of different cost and environmental impact minimisation strategies for a single waste disposal scenario. Four disposal options are considered. The study examines the environmental impacts from waste storage and transport and the disposal impacts in terms of collective dose, maximum individual dose and individual dose from intrusion. The total cost of disposing of waste takes account of storage, transport and disposal costs to each of the four facilities. Two minimum cost scenarios and seven minimum impact assessments were performed. The results showed clearly that a trade-off has to be made between the environmental impacts from transport and storage of waste. A low objective risk of transport is achieved by directing waste to the engineered trench, assumed to have a central location. This waste is stored until the facility is available in 1995 thus increasing the potential impact from storage. The results also show a trade-off has to be made between minimising the maximum individual dose from disposal and collective dose. The study shows that for relatively little cost large reductions in the impacts can be obtained particularly in short and long-term collective dose and the individual dose from intrusion. (author)

  9. Environmental impacts of ocean disposal of CO2

    International Nuclear Information System (INIS)

    Adams, E.; Herzog, H.; Auerbach, D.

    1995-01-01

    One option to reduce atmospheric CO 2 levels is to capture and sequester power plant CO 2 Commercial CO 2 capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO 2 is highly uncertain. The deep ocean is one of only a few possible CO 2 disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO 2 . The term disposal is really a misnomer because the atmosphere and ocean eventually equilibrate on a timescale of 1000 years regardless of where the CO 2 is originally discharged. However, peak atmospheric CO 2 concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO 2 injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO 2 will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. Our project has been examining these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. The end-product will be a report issued during the summer of 1996 consisting of two volumes an executive summary (Vol I) and a series of six, individually authored topical reports (Vol II). A workshop with invited participants from the U.S. and abroad will review the draft findings in January, 1996

  10. 3D inkjet printed disposable environmental monitoring wireless sensor node

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2017-01-01

    We propose a disposable, miniaturized, moveable, fully integrated 3D inkjet-printed wireless sensor node for large area environmental monitoring applications. As a proof of concept, we show the wireless sensing of temperature, humidity and H2S

  11. Nuclear waste: Department of Energy's Transuranic Waste Disposal Plan needs revision

    International Nuclear Information System (INIS)

    1986-01-01

    Transuranic waste consists of discarded tools, rags, machinery, paper, sheet metal, and glass containing man-made radioactive elements that can be dangerous if inhaled, ingested, or absorbed into the body through an open wound. GAO found that the Defense Waste Management Plan does not provide the Congress with complete inventory and cost data or details on environmental and safety issues related to the permanent disposal of TRU waste; the Plan's $2.8 billion costs are understated by at least $300 million. Further, it does not include costs for disposing of buried waste, contaminated soil, and TRU waste that may not be accepted at the Waste Isolation Pilot Plant. Lastly, the Plan provides no details on the environmental and safety issues related to the permanent disposal of TRU waste, nor does it discuss the types of or timing for environmental analyses needed before WIPP starts operating

  12. Brent Spar abandonment - Best Practicable Environmental Option (BPEO) assessment

    International Nuclear Information System (INIS)

    1994-12-01

    Possible methods of abandoning or re-using the Brent Spar storage and tanker offloading facility following its decommissioning in 1991 are discussed. The report assesses six of the thirteen possible methods, including horizontal dismantling and onshore disposal, vertical dismantling and onshore disposal, in-field disposal, deep water disposal, refurbishment and re-use, and continued maintenance, in order to determine the Best Practicable Environmental Option (BPEO). The BPEO covers technical feasibility risks to health and safety of the work force, environmental impacts, public acceptability and costs. (UK)

  13. Preoperational baseline and site characterization report for the Environmental Restoration Disposal Facility: Volume 1. Revision 1

    International Nuclear Information System (INIS)

    Weekes, D.C.; Ford, B.H.; Jaeger, G.K.

    1996-09-01

    This site characterization report provides the results of the field data collection activities for the Environmental Restoration Disposal Facility site. Information gathered on the geology, hydrology, ecology, chemistry, and cultural resources of the area is presented. The Environmental Restoration Disposal Facility is located at the Hanford Site in Richland, Washington

  14. Brazilian low and intermediate level radioactive waste disposal and environmental conservation areas

    International Nuclear Information System (INIS)

    Uemura, George; Cuccia, Valeria

    2013-01-01

    Low and intermediate level radioactive waste should be disposed off in proper disposal facilities. These facilities must include unoccupied areas as protection barriers, also called buffer zone. Besides that, Brazilian environmental laws require that certain enterprises must preserve part of their area for environmental conservation. The future Brazilian low and intermediate level waste repository (RBMN) might be classified as such enterprise. This paper presents and discusses the main Brazilian legal framework concerning different types of conservation areas that are allowed and which of them could be applied to the buffer zones of RBMN. The possibility of creating a plant repository in the buffer zone is also discussed. (author)

  15. Alternatives for future land disposal of radioactive waste

    International Nuclear Information System (INIS)

    Mallory, C.W.

    1982-01-01

    Shallow land burial incorporating improvements to facilitate stabilization and decommissioning will continue to be the primary method of disposing of low level waste in areas where conditions are suitable for this type of disposal. The existing disposal sites should be closely monitored to assure that continued acceptance of this method of disposal. Plans for the decommissioning of the existing sites should be closely reviewed to assure that the planning is adequate and that adequate resources will be available to implement the decommissioning plan. For these areas where geological conditions are not suitable for shallow land burial and in situations where a higher degree of containment is desired, alternative disposal methods should be considered. Technology exists or is readily attainable to provide engineered disposal facilities which provide a higher degree of containment and can be readily decommissioned. The cost of disposal using these methods can be competitive with shallow land burial when the cost of environmental and hydrogeologic investigations and decommissioning are included. Disposal of radioactive waste having low activity in secure sanitary landfills could significantly reduce the transportation and disposal requirements for low level waste

  16. Consideration of Criteria for a Conceptual Near Surface Radioactive Waste disposal Facility in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Nderitu, Stanley Werugia; Kim, Changlak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-05-15

    The purpose of the criteria is to limit the consequences of events which could lead to radiation exposures. This study will present an approach for establishing radiological waste acceptance criteria using a safety assessment methodology and illustrate some of its application in establishing limits on the total activity and the activity concentrations of radioactive waste to be disposed in a conceptual near surface disposal facility in Kenya. The approach will make use of accepted methods and computational schemes currently used in assessing the safety of near surface disposal facilities. The study will mainly focus on post-closure periods. The study will employ some specific inadvertent human intrusion scenarios in the development of example concentration ranges for the disposal of near-surface wastes. The overall goal of the example calculations is to illustrate the application of the scenarios in a performance assessment to assure that people in the future cannot receive a dose greater than an established limit. The specific performance assessments will use modified scenarios and data to establish acceptable disposal concentrations for specific disposal sites and conditions. Safety and environmental impacts assessments is required in the post-closure phase to support particular decisions in development, operation, and closure of a near surface repository.

  17. Low-level radioactive waste disposal in the USA - Use of mill tailings impoundments as a new policy option

    International Nuclear Information System (INIS)

    Farrell, C.W.

    2006-01-01

    Disposal of low-level radioactive waste (LLW) in the United States is facing severe and immediate capacity limitations. Seemingly intractable regulatory and jurisdictional conflicts make establishment of new LLW disposal sites effectively impossible. Uranium mill tailings impoundments constructed at conventional uranium open-cast and underground mines could offer approximately 40 to 80+ million tons of disposal capacity for low activity radioactive waste. Such impoundments would provide an enhanced, high level of environmental and health and safety protection for the direct disposal of depleted uranium, special nuclear material, technologically-enhanced, naturally-occurring radioactive material (TENORM) and mixed waste. Many waste streams, such as TENORM and decommissioning rubble, will be high-volume, low activity materials and ideally suited for disposal in such structures. Materials in a given decay chain with a total activity from all radionuclides present of ∼820 Bq/g (2.22 x 10 -08 Ci/g) with no single radionuclide present in an activity greater than ∼104 Bq/g (2,800 pCi/g) should be acceptable for disposal. Materials of this type could be accepted without any site-specific dose modelling, so long as the total activity of the tailings impoundment not exceed its design capacity (generally 82 x 10 07 Bq/metric tonne) (0.020 Ci/short ton) and the cover design requirements to limit radon releases are satisfied. This paper provides background on US LLW disposal regulations, examines LLW disposal options under active consideration by the US Environmental Protection Agency and Department of Energy, develops generic waste acceptance criteria and identifies policy needs for federal and state governments to facilitate use of uranium mill tailings impoundments for LLW disposal. (author)

  18. A benefit-cost methodology for developing environmental standards for uranium mill tailings disposal

    International Nuclear Information System (INIS)

    Leiter, A.J.

    1982-01-01

    This paper describes a method for using benefit-cost analysis in developing generally applicable environmental standards for uranium mill tailings disposal. Several disposal alternatives were selected which consist of different combinations of control measures. The resulting cost and benefit estimations allow the calculation of the incremental cost of obtaining incremental benefits of radiation protection. The overall benefit of a disposal alternative is expressed in terms of an index which is based on weighting factors assigned to individual benefits. The results show that some disposal alternatives have higher costs while providing no additional benefit than other alternatives. These alternatives should be eliminated from consideration in developing standards

  19. Innovative Disposal Practices at the Nevada Test Site to Meet Its Low-Level Waste Generators' Future Disposal Needs

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Carilli, J.T.

    2006-01-01

    Low-level radioactive waste (LLW) streams which have a clear, defined pathway to disposal are becoming less common as U.S. Department of Energy accelerated cleanup sites enters their closure phase. These commonly disposed LLW waste streams are rapidly being disposed and the LLW inventory awaiting disposal is dwindling. However, more complex waste streams that have no path for disposal are now requiring attention. The U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NSO) Environmental Management Program is charged with the responsibility of carrying out the disposal of onsite and off-site defense-generated and research-related LLW at the Nevada. Test Site (NTS). The NSO and its generator community are constantly pursuing new LLW disposal techniques while meeting the core mission of safe and cost-effective disposal that protects the worker, the public and the environment. From trenches to present-day super-cells, the NTS disposal techniques must change to meet the LLW generator's disposal needs. One of the many ways the NTS is addressing complex waste streams is by designing waste specific pits and trenches. This ensures unusual waste streams with high-activity or large packaging have a disposal path. Another option the NTS offers is disposal of classified low-level radioactive-contaminated material. In order to perform this function, the NTS has a safety plan in place as well as a secure facility. By doing this, the NTS can accept DOE generated classified low-level radioactive-contaminated material that would be equivalent to U.S. Nuclear Regulatory Commission Class B, C, and Greater than Class C waste. In fiscal year 2006, the NTS will be the only federal disposal facility that will be able to dispose mixed low-level radioactive waste (MLLW) streams. This is an activity that is highly anticipated by waste generators. In order for the NTS to accept MLLW, generators will have to meet the stringent requirements of the NTS

  20. Identification of permit and waste acceptance criteria provisions requiring modification for acceptance of commercial mixed waste

    International Nuclear Information System (INIS)

    1994-03-01

    In October 1990, representatives of States and compact regions requested that the US Department of Energy (DOE) explore an agreement with host States and compact regions under which DOE would accept commercial mixed low-level radioactive waste (LLW) at DOE's own treatment and disposal facilities. A program for DOE management of commercial mixed waste is made potentially more attractive in light of the low commercial mixed waste volumes, high regulatory burdens, public opposition to new disposal sites, and relatively high cost of constructing commercial disposal facilities. Several studies were identified as essential in determining the feasibility of DOE accepting commercial mixed waste for disposal. The purpose of this report is to identify any current or proposed waste acceptance criteria (WAC) or Resource Conservation and Recovery Act (RCRA) provisions that would have to be modified for commercial mixed waste acceptance at specified DOE facilities. Following the introduction, Section 2 of this report (a) provides a background summary of existing and proposed mixed waste disposal facilities at each DOE site, and (b) summarizes the status of any RCRA Part B permit and WAC provisions relating to the disposal of mixed waste, including provisions relating to acceptance of offsite waste. Section 3 provides overall conclusions regarding the current status and permit modifications that must be implemented in order to grant DOE sites authority under their permits to accept commercial mixed waste for disposal. Section 4 contains a list of references

  1. Controlling corrosion of carbon steel in cooling water applications -- A novel environmentally acceptable approach

    International Nuclear Information System (INIS)

    Banerjee, G.; Miller, A.E.

    1998-01-01

    Cr(VI) containing salts have been in use for a long time as one of the best inhibitors for minimizing corrosion of carbon steel in cooling water applications. Irrespective of the type of system, i.e., once through, open recirculating, pressurized water reactor power plants, etc. and irrespective of the conductivity of water, i.e., low or high, Cr(VI) salts always have proven to be very effective inhibitors. However, the toxicity of chromate compounds and the consequential disposal difficulties have made it essential to look for an alternate treatment. It is however, imperative that the alternate system must provide the matching efficiency as that provided by Cr(VI) salts and that it should also be easy to maintain and be economical. While many researchers have been trying to find a suitable chromate free inhibitor system, the present authors have explored the possibility of formulating an inhibitor system containing Cr(VI) at a concentration below the safety limit for drinking water as suggested by EPA/OSHA. This is based on the assumption that EPA (Environmental Protection Agency) and OSHA (Occupational Safety and Health Administration) only regulate the discharge and exposure limits of chromium above which it is found harmful. Therefore, any new formulation containing Cr(VI) well below these safety limits should be acceptable environmentally. If such a formulation can perform similar to ones with high concentration of Cr(VI), it will also be commercially acceptable. The authors will discuss the preliminary results of such a strategy

  2. Disposable Screen Printed Electrochemical Sensors: Tools for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Akhtar Hayat

    2014-06-01

    Full Text Available Screen printing technology is a widely used technique for the fabrication of electrochemical sensors. This methodology is likely to underpin the progressive drive towards miniaturized, sensitive and portable devices, and has already established its route from “lab-to-market” for a plethora of sensors. The application of these sensors for analysis of environmental samples has been the major focus of research in this field. As a consequence, this work will focus on recent important advances in the design and fabrication of disposable screen printed sensors for the electrochemical detection of environmental contaminants. Special emphasis is given on sensor fabrication methodology, operating details and performance characteristics for environmental applications.

  3. Low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Balaz, J.; Chren, O.

    2015-01-01

    The Mochovce National Radwaste Repository is a near surface multi-barrier disposal facility for disposal of processed low and very low level radioactive wastes (radwastes) resulting from the operation and decommissioning of nuclear facilities situated in the territory of the Slovak Republic and from research institutes, laboratories, hospitals and other institutions (institutional RAW) which are in compliance with the acceptance criteria. The basic safety requirement of the Repository is to avoid a radioactive release to the environment during its operation and institutional inspection. This commitment is covered by the protection barrier system. The method of solution designed and implemented at the Repository construction complies with the latest knowledge and practice of the repository developments all over the world and meets requirements for the safe radwaste disposal with minimum environmental consequences. All wastes are solidified and have to meet the acceptance criteria before disposal into the Repository. They are processed and treated at the Bohunice RAW Treatment Centre and Liquid RAW Final Treatment Facility at Mochovce. The disposal facility for low level radwastes consists of two double-rows of reinforced concrete vaults with total capacity 7 200 fibre reinforced concrete containers (FCCs) with RAW. One double-row contains 40 The operation of the Repository was started in year 2001 and after ten years, in 2011 was conducted the periodic assessment of nuclear safety with positive results. Till the end of year 2014 was disposed to the Repository 11 514 m 3 RAW. The analysis of total RAW production from operation and decommissioning of all nuclear installation in SR, which has been carried out in frame of the BIDSF project C9.1, has showed that the total volume estimation of conditioned waste is 108 thousand m 3 of which 45.5 % are low level waste (LLW) and 54,5 % very low level waste (VLLW). On the base of this fact there is the need to build 7

  4. Anticipating Potential Waste Acceptance Criteria for Defense Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Rechard, R.P.; Lord, M.E.; Stockman, C.T.; McCurley, R.D.

    1997-01-01

    The Office of Environmental Management of the U.S. Department of Energy is responsible for the safe management and disposal of DOE owned defense spent nuclear fuel and high level waste (DSNF/DHLW). A desirable option, direct disposal of the waste in the potential repository at Yucca Mountain, depends on the final waste acceptance criteria, which will be set by DOE's Office of Civilian Radioactive Waste Management (OCRWM). However, evolving regulations make it difficult to determine what the final acceptance criteria will be. A method of anticipating waste acceptance criteria is to gain an understanding of the DOE owned waste types and their behavior in a disposal system through a performance assessment and contrast such behavior with characteristics of commercial spent fuel. Preliminary results from such an analysis indicate that releases of 99Tc and 237Np from commercial spent fuel exceed those of the DSNF/DHLW; thus, if commercial spent fuel can meet the waste acceptance criteria, then DSNF can also meet the criteria. In large part, these results are caused by the small percentage of total activity of the DSNF in the repository (1.5%) and regulatory mass (4%), and also because commercial fuel cladding was assumed to provide no protection

  5. Preliminary environmental assessments of disposal of rock mined during excavation of a federal repository for radioactive waste

    International Nuclear Information System (INIS)

    1977-09-01

    Since the environmental impact of mined rock handling will be dependent not only upon the nature of the material and the way in which it might be disposed but also upon the features of the disposal site area and surroundings, it was necessary to select ''reference environmental locii'' within the regions of geological interest to typify the environmental setting into which the rock would be placed. Reference locii (locations) were developed for consideration of the environmental implications of mined rock from: bedded rock salt from the Salina region, bedded rock salt from the Permian region, dome rock salt from the Gulf Interior region, Pierre shale from the Argillaceous region, granite from the crystalline rock region, volcanic basalt rock from the crystalline ash region, and carbonate rock from the limestone region. Each of these reference locii was examined with respect to those demographic, geographic, physical and ecological attributes which might be impacted by various mined rock disposal alternatives. Alternatives considered included: onsite surface storage, industrial or commercial use, offsite disposal, and environmental blending. Potential impact assessment consists of a qualitative look at the environmental implications of various alternatives for handling the mined rock, given baseline characteristics of an area typified by those represented by the ''reference locus''

  6. Assessment of environmental impact models in natural occurring radionuclides solid wastes disposal from the mineral industry; Avaliacao de modelos de impacto ambiental para deposicao de residuos solidos com radionuclideos naturais em instalacoes minero-industriais

    Energy Technology Data Exchange (ETDEWEB)

    Pontedeiro, Elizabeth May Braga Dulley

    2006-07-15

    This work evaluates the behavior of wastes with naturally occurring radionuclides as generated by the mineral industry and their final disposal in landfills. An integrated methodology is used to predict the performance of an industrial landfill for disposal of wastes containing NORM/TENORM, and to define acceptable amounts that can be disposed at the landfill using long-term environmental assessment. The governing equations for radionuclide transport are solved analytically using the generalized integral transform technique. Results obtained for each compartment of the biogeosphere are validated with experimental results or compared to other classes of solutions. An impact analysis is performed in order to define the potential consequences of a landfill to the environment, considering not only the engineering characteristics of the waste deposit but also the exposure pathways and plausible scenarios in which the contaminants could migrate and reach the environment and the human population. The present work permits the development of a safety approach that can be used to derive quantitative waste acceptance criteria for the disposal of NORM/TENORM waste in landfills. (author)

  7. Annual Status Report (FY2016) Performance Assessment for the Environmental Restoration Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Casbon, M. A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Nichols, W. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2017-03-15

    DOE O 435.1, Radioactive Waste Management, and DOE M 435.1-1, Radioactive Waste Management Manual, require that a determination of continued adequacy of the performance assessment (PA), composite analysis (CA), and disposal authorization statement (DAS) be made on an annual basis, and it must consider the results of data collection and analysis from research, field studies, and monitoring. Annual summaries of low-level waste (LLW) disposal operations must be prepared with respect to the conclusions and recommendations of the PA and CA, and a determination of the need to revise the PA or CA must be made. The annual summary requirement provides a structured approach for demonstrating the continued adequacy of the PA and CA in demonstrating a reasonable expectation that the performance objectives will be met. This annual summary addresses only the status of the Environmental Restoration Disposal Facility (ERDF) PA (CP-60089, Performance Assessment for the Environmental Restoration Disposal Facility, Hanford Site, Washington, formerly WCH-520 Rev. 1)1. The CA for ERDF is supported by DOE/RL-2016-62, Annual Status Report (FY 2016): Composite Analysis of Low Level Waste Disposal in the Central Plateau at the Hanford Site. The ERDF PA portion of the CA document is found in Section 3.1.4, and the ERDF operations portion is found in Section 3.3.3.2 of that document.

  8. Radiation and environmental safety of spent nuclear fuel management options based on direct disposal or reprocessing and disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Vuori, S.

    1996-05-01

    The report considers the various stages of two nuclear fuel cycle options: direct disposal and reprocessing followed by disposal of vitrified high-level waste. The comparative review is based on the results of previous international studies and concentrates on the radiation and environmental safety aspects of technical solutions based on today's technology. (23 refs., 7 figs., 4 tabs.)

  9. Environmental safety evaluation in test sea disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    1979-01-01

    The study results on the environmental safety in the test sea disposal of low-level wastes by Subcommittee on Radioactive Waste Safety Technology in Nuclear Safety Commission are given in connection with the test disposal of radioactive wastes into sea reported by the Nuclear Safety Bureau. The Subcommittee concludes that the effect of the test disposal of radioactive wastes into sea on the environment is extremely small. The contents are as follows. The full text of the report; attached data, (1) prediction of the concentrations of radioactive nuclides in sea, (2) calculation of the concentrations of radioactive nuclides in marine life with biological paths, and (3) estimation of exposure dose in general people; references (1) radiation exposure of the personnel engaged in sea disposal, (2) the effect of a sea disaster during ocean transport. (J.P.N.)

  10. Shallow land disposal of radioactive waste

    International Nuclear Information System (INIS)

    1987-01-01

    The application of basic radiation protection concepts and objectives to the disposal of radioactive wastes requires the development of specific reference levels or criteria for the radiological acceptance of each type of waste in each disposal option. This report suggests a methodology for the establishment of acceptance criteria for the disposal of low-level radioactive waste containing long-lived radionuclides in shallow land burial facilities

  11. An environmental LCA of alternative scenarios of urban sewage sludge treatment and disposal

    Directory of Open Access Journals (Sweden)

    Tarantini Mario

    2007-01-01

    Full Text Available The majority of pollutants that affect wastewater are concentrated by treatment processes in sludge; it is therefore critical to have a suitable evaluation methodology of sludge management options to analyze if pollution is redirected from water to other media, such as air and soil. Life cycle assessment is one of the most widely known and internationally accepted methodologies to compare environmental impacts of processes and systems and to evaluate their sustainability in the entire life cycle. In this study the methodology was applied to assess and compare three scenarios of urban sewage sludge treatment and disposal: sludge anaerobic digestion followed by dedicated incineration, sludge incineration without previous digestion, and sludge anaerobic digestion followed by composting. The potential benefits of spreading the compost to soil were not included in the system boundaries even if, due to its nutrients contents and soil improving features, compost could partially replace the use of commercial products. The study was aimed at finding out the environmental critical points of the treatment alternatives selected and at providing a technical and scientific contribution for further debates with national and local authorities on the environmental optimization of sewage sludge management. Life cycle assessment results confirmed the major contribution of electricity and methane consumption on several environmental impact categories. Incineration contributes more than sludge composting to almost all categories, although the heavy metals content of urban wastewater sludge raises substantial concerns when composted sludge is spread to soil. In this paper the models adopted, the hypotheses assumed and the main findings of the study are presented and discussed. .

  12. Retrievability - a matter of public acceptance? Reflections on the public review of the proposed nuclear fuel waste disposal concept in Canada

    International Nuclear Information System (INIS)

    Riverin, G.

    2000-01-01

    Environmental assessment has been used as a planning tool in Canada for almost three decades. Public participation, one of its fundamental principles, is at the heart of environmental assessment in our country. To date, approximately 12 large projects related to nuclear energy have been the subject of public reviews by independent panels of experts appointed by the Government of Canada. These include: the development of uranium mines in Northern Saskatchewan; the construction and operation of two CANDU reactors in New-Brunswick, the second of which was never constructed; proposed uranium hexafluoride refineries in Ontario and Saskatchewan; expansion of a dry storage facility for nuclear spent fuel in Quebec; and decommissioning of uranium mine tailings areas in Ontario. All of the assessments mentioned above were conducted under the environmental assessment regimes of 1975 and 1984 that preceded the Canadian Environmental Assessment Act (1995). One of the public reviews of particular interest to this workshop is that of the proposed concept for deep geological disposal of nuclear fuel waste in Canada. This paper focuses exclusively on the public review of the Nuclear Fuel Waste Disposal Concept developed by Atomic Energy of Canada Limited (AECL), particularly as it relates to public acceptance of retrievability. The paper first describes the historical context in which AECL's concept was developed prior to the public review. It then briefly outlines the changes in the societal context that occurred between the time when decisions were made to proceed with the development of the concept in 1978 and the time when public hearings were held in 1996-1997 and the panel report was presented to the government in 1998. It also provides a short description of the concept itself. The paper then presents a discussion of the arguments used by the public in the panel review, arguments, which demonstrate a decrease in confidence in a concept lacking effective postclosure

  13. Environmental and waste disposal options in nuclear engineering curricula

    International Nuclear Information System (INIS)

    Elleman, T.S.; Gilligan, J.G.

    1991-01-01

    The strong national emphasis on waste and environmental issues has prompted increasing interest among nuclear engineering students in study options that will prepare them for careers in these areas. Student interest appears to focus principally on health physics, radioactive waste disposal, and environmental interactions with radionuclides. One motivation for this interest appears to be the growing national programs in environmental restoration and waste remediation that have produced fellowship support for nuclear engineering students as well as employment opportunities. Also, the recent National Academy of sciences study on nuclear engineering education specifically emphasized the importance of expanding nuclear engineering curricula and research programs to include a greater emphasis on radioactive waste and environmental issues. The North Carolina State University (NCSU) Department of Nuclear Engineering is attempting to respond to these needs through the development of course options that will allow students to acquire background in environmental subjects as a complement to the traditional nuclear engineering education

  14. Strategic environmental audit for the national waste disposal program; Strategische Umweltpruefung zum Nationalen Entsorgungsprogramm. Umweltbericht fuer die Oeffentlichkeitsbeteiligung

    Energy Technology Data Exchange (ETDEWEB)

    Steinhoff, Mathias; Kallenbach-Herbert, Beate; Claus, Manuel [Oeko-Institut e.V., Darmstadt (Germany); and others

    2015-03-27

    The report on the strategic environmental audit for the national waste disposal program covers the following issues: aim of the study, active factors, environmental objectives; description and evaluation of environmental impact including site selection criteria for final repositories of heat generating radioactive waste, intermediate storage of spent fuel elements and waste from reprocessing plants, disposal of wastes retrieved from Asse II; hypothetical zero variants.

  15. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.

    1998-03-10

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  16. Risk assessment of nonhazardous oil-field waste disposal in salt caverns

    International Nuclear Information System (INIS)

    Elcock, D.

    1998-01-01

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  17. Retrievable disposal - opposing views on ethics

    International Nuclear Information System (INIS)

    Selling, H.A.

    2000-01-01

    In the previous decades many research programmes on the disposal of radioactive waste have been completed in the Netherlands. The experts involved have reconfirmed their view that deep underground disposal in suitable geological formations would ensure a safe and prolonged isolation of the waste from the biosphere. Both rock salt and clay formations are considered to qualify as a suitable host rock. In 1993 the government in a position paper stated that such a repository should be designed in a way that the waste can be retrieved from it, should the need arise. In an attempt to involve stakeholders in the decision-making process, a research contract was awarded to an environmental group to study the ethical aspects related to retrievable disposal of radioactive waste. In their report which was published in its final form in January 2000 the authors concluded that retrievable disposal is acceptable from an ethical point of view. However, this conclusion was reached in the understanding that this situation of retrievability would be permanent. From the concept of equity between generations, each successive generation should be offered equal opportunities to decide for itself how to dispose of the radioactive waste. Consequently, the preferred disposal option is retrievable disposal (or long term storage) in a surface facility. Although this view is not in conformity with the ''official'' position on radioactive waste disposal, there is a benefit of having established a dialogue between interested parties in a broad sense. (author)

  18. Implications of moisture content determination in the environmental characterisation of FGD gypsum for its disposal in landfills

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Ayuso, E. [Department of Environmental Geology, Institute of Earth Sciences ' Jaume Almera' (CSIC), C/ Lluis Sole i Sabaris s/n, 08028 Barcelona (Spain)], E-mail: ealvarez@ija.csic.es; Querol, X. [Department of Environmental Geology, Institute of Earth Sciences ' Jaume Almera' (CSIC), C/ Lluis Sole i Sabaris s/n, 08028 Barcelona (Spain); Tomas, A. [Endesa Generacion, S.A., C/ Ribera de Loira 60, 28042 Madrid (Spain)

    2008-05-01

    The leachable contents of elements of environmental concern considered in the Council Decision 2003/33/EC on waste disposal were determined in flue gas desulphurisation (FGD) gypsum. To this end, leaching tests were performed following the standard EN-12457-4 which specifies the determination of the dry mass of the material at 105 deg. C and the use of a liquid to solid (L/S) ratio of 10 l kg{sup -1} dry matter. Additionally, leaching tests were also carried out taking into account the dry mass of the material at 60 deg. C and using different L/S ratios (2, 5, 8, 10, 15 and 20 l kg{sup -1} dry matter). It was found that the dry mass determination at 105 deg. C turns out to be inappropriate for FGD gypsum since at this temperature gypsum transforms into bassanite, and so, in addition to moisture content, crystalline water is removed. As a consequence the moisture content is overvalued (about 16%), what makes consider a lower L/S ratio than that specified by the standard EN-12457-4. As a result the leachable contents in FGD gypsum are, in general, overestimated, what could lead to more strict environmental requirements for FGD gypsum when considering its disposal in landfills, specially concerning those elements (e.g., F) risking the characterisation of FGD gypsum as a waste acceptable at landfills for non-hazardous wastes.

  19. Environmental impacts of ocean disposal of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Adams, E.; Herzog, H.; Auerbach, D. [and others

    1995-11-01

    One option to reduce atmospheric CO{sub 2} levels is to capture and sequester power plant CO{sub 2} Commercial CO{sub 2} capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO{sub 2} is highly uncertain. The deep ocean is one of only a few possible CO{sub 2} disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO{sub 2}. The term disposal is really a misnomer because the atmosphere and ocean eventually equilibrate on a timescale of 1000 years regardless of where the CO{sub 2} is originally discharged. However, peak atmospheric CO{sub 2} concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO{sub 2} injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO{sub 2} will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. Our project has been examining these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. The end-product will be a report issued during the summer of 1996 consisting of two volumes an executive summary (Vol I) and a series of six, individually authored topical reports (Vol II). A workshop with invited participants from the U.S. and abroad will review the draft findings in January, 1996.

  20. Scenarios of the TWRS low-level waste disposal program

    International Nuclear Information System (INIS)

    1994-10-01

    As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 Area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pretreating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste

  1. Status of defense radioactive waste disposal activities

    International Nuclear Information System (INIS)

    Wade, T.W.

    1988-01-01

    The Office of Defense Programs, U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. As a byproduct to their activities, nuclear production facilities have generated, and will continue to generate, certain radioactive, hazardous, or mixed wastes that must be managed and disposed of in a safe and cost-effective manner. Compliance with all applicable Federal and State regulations is required. This paper describes the principal elements that comprise Defense Programs' approach to waste management and disposal. The status of high-level, transuranic, and low-level radioactive waste disposal is set forth. Defense Programs' activities in connection with the environmental restoration of inactive facilities and with the safe transport of waste materials are summarized. Finally, the principal challenges to realizing the goals set for the defense waste program are discussed in terms of regulatory, public acceptance, technical, and budget issues

  2. Derivation of quantitative acceptance criteria for disposal of radioactive waste to near surface facilities: Development and implementation of an approach for the post-closure phase

    International Nuclear Information System (INIS)

    Torres, C.

    2000-01-01

    The International Atomic Energy Agency has established a project to develop and illustrate, through practical examples, an approach that allows the derivation of quantitative waste acceptance criteria for near surface disposal of radioactive waste. The first phase focussed on the derivation of example post-closure safety waste acceptance criteria through the use of a safety assessment approach that allows for the derivation of values in a clear and well documented manner. The approach consists of five steps: the specification of the assessment context; the description of the disposal system; the development and justification of scenarios; the formulation and implementation of models; and the calculation and derivation of example values. The approach has been successfully used to derive activity values for the disposal of radioactive waste to illustrative near surface facilities. (author)

  3. Acceptable Risk Analysis for Abrupt Environmental Pollution Accidents in Zhangjiakou City, China.

    Science.gov (United States)

    Du, Xi; Zhang, Zhijiao; Dong, Lei; Liu, Jing; Borthwick, Alistair G L; Liu, Renzhi

    2017-04-20

    Abrupt environmental pollution accidents cause considerable damage worldwide to the ecological environment, human health, and property. The concept of acceptable risk aims to answer whether or not a given environmental pollution risk exceeds a societally determined criterion. This paper presents a case study on acceptable environmental pollution risk conducted through a questionnaire survey carried out between August and October 2014 in five representative districts and two counties of Zhangjiakou City, Hebei Province, China. Here, environmental risk primarily arises from accidental water pollution, accidental air pollution, and tailings dam failure. Based on 870 valid questionnaires, demographic and regional differences in public attitudes towards abrupt environmental pollution risks were analyzed, and risk acceptance impact factors determined. The results showed females, people between 21-40 years of age, people with higher levels of education, public servants, and people with higher income had lower risk tolerance. People with lower perceived risk, low-level risk knowledge, high-level familiarity and satisfaction with environmental management, and without experience of environmental accidents had higher risk tolerance. Multiple logistic regression analysis indicated that public satisfaction with environmental management was the most significant factor in risk acceptance, followed by perceived risk of abrupt air pollution, occupation, perceived risk of tailings dam failure, and sex. These findings should be helpful to local decision-makers concerned with environmental risk management (e.g., selecting target groups for effective risk communication) in the context of abrupt environmental accidents.

  4. Disposal of Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Nuttall, K.

    1994-01-01

    In 1978, the governments of Canada and Ontario established the Nuclear Fuel Waste Management program. As of the time of the conference, the research performed by AECL was jointly funded by AECL and Ontario Hydro through the CANDU owners' group. Ontario Hydro have also done some of the research on disposal containers and vault seals. From 1978 to 1992, AECL's research and development on disposal cost about C$413 million, of which C$305 was from funds provided to AECL by the federal government, and C$77 million was from Ontario Hydro. The concept involves the construction of a waste vault 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield. Used fuel (or possibly solidified reprocessing waste) would be sealed into containers (of copper, titanium or special steel) and emplaced (probably in boreholes) in the vault floor, surrounded by sealing material (buffer). Disposal rooms might be excavated on more than one level. Eventually all excavated openings in the rock would be backfilled and sealed. Research is organized under the following headings: disposal container, waste form, vault seals, geosphere, surface environment, total system, assessment of environmental effects. A federal Environmental Assessment Panel is assessing the concept (holding public hearings for the purpose) and will eventually make recommendations to assist the governments of Canada and Ontario in deciding whether to accept the concept, and how to manage nuclear fuel waste. 16 refs., 1 tab., 3 figs

  5. Environmentally Sustainable Apparel Acquisition and Disposal Behaviours among Slovenian Consumers

    Directory of Open Access Journals (Sweden)

    Žurga Zala

    2015-12-01

    Full Text Available Fibre production and textile processing comprise various industries that consume large amounts of energy and resources. Textiles are a largely untapped consumer commodity with a strong reuse and recycling potential, still fibres and fibre containing products ends up in landfill sites or in waste incinerators to a large extent. Reuse and recycle of waste clothing results in reduction in the environmental burden. Between 3% and 4% of the municipal solid waste stream in Slovenia is composed of apparel and textiles. This exploratory study examines consumer practices regarding purchase and the disposal of apparel in Slovenia. Data were collected through structured online survey from a representative random sample of 535 consumers. Responses to online questionnaire indicated the use of a variety of textile purchase and disposal methods. The influence of different sociodemographic variables on apparel purchase, disposal and recycling behaviour was examined. Moreover, the differences in the frequency of apparel recycling between consumers with and without an apparel bank available nearby were explored. This research was conducted, since it is crucial to analyse the means by which consumers are currently disposing their textile waste in order to plan the strategies that would encourage them to further reduce the amount of apparel sent to landfills.

  6. Environmental impact assessment of the Swedish high-level radioactive waste disposal system - examples of likely considerations

    International Nuclear Information System (INIS)

    1994-01-01

    Sweden is investigating the feasibility of establishing a high-level radioactive waste (HLW) disposal system consisting of three components as follows: (1) Encapsulation facility, (2) system for transporting waste and (3) geologic repository. Swedish law requires that an Environmental Impact Assessment (EIA) be written for any planned action expected to have a significant impact on the environment. Before embarking on construction and operation of a HLW disposal system, the Swedish government will evaluate the expected environmental impacts to assure that the Swedish people and environmental will not be unduly affected by the disposal system. The EIA process requires that reasonable alternatives to the proposed action, including the 'zero' or 'no action' alternative, be considered so that the final approved plan for disposal will have undergone scrutiny and comparison of alternatives to arrive at a plan which is the best achievable given reasonable physical and monetary constraints. This report has been prepared by the Center for Nuclear Waste Regulatory Analyses (CNWRA) for use by the Swedish Radiation Protection Institute (SSI). The purpose of this report is to establish a document which outlines the types of information which would be in an EIA for a three part disposal system like that envisioned by the Swedish Nuclear Fuel and Waste Management Company (SKB) for the disposal of Sweden's HLW. Technical information that would normally be included in an EIA is outlined in this document. The SSI's primary interest is in radiological impacts. However, for the sake of completeness and also to evaluate all environmental impacts in a single document, non-radiological impacts are also included. Swedish authorities other than the SSI may have interest in the non-radiological parts of the document. 26 refs

  7. Environmental Report Utah State Prison Geothermal Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-03-01

    This environmental report assesses the potential impact of developing a geothermal resource for space heating at the Utah State Prison. Wells will be drilled on prison property for production and for injection to minimize reservoir depletion and provide for convenient disposal of cooled fluid. The most significant environmental concerns are the proper handling of drilling muds during well drilling and the disposal of produced water during well testing. These problems will be handled by following currently accepted practices to reduce the potential risks.

  8. Overview of EPA's environmental standards for the land disposal of LLW and NARM waste - 1988

    International Nuclear Information System (INIS)

    Gruhlke, J.M.; Galpin, F.L.; Holcomb, W.F.

    1988-01-01

    The Environmental Protection Agency program to develop proposed generally applicable environmental standards for land disposal of low-level radioactive waste (LLW) and certain naturally occurring and accelerator-produced radioactive wastes has been completed. The elements of the proposed standards include the following: (a) exposure limits for predisposal management and storage operations, (b) criteria for other regulatory agencies to follow in specifying wastes that are below regulatory concern; (c) postdisposal exposure limits, (d) groundwater protection requirements, and (e) qualitative implementation requirements. In addition to covering those radioactive wastes subject to the Atomic Energy Act, the Agency also intends to propose a standard to require the disposal of high concentration, naturally occurring and accelerator-produced radioactive materials wastes exceeding 2 nCi/g, excluding a few consumer items, in regulated LLW disposal facilities

  9. Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-03-31

    The Nevada Test Site (NTS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NTS and National Security Technologies LLC (NSTec) is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The site will be used for the disposal of refuse, rubbish, garbage, sewage sludge, pathological waste, Asbestos-Containing Material (ACM), industrial solid waste, hydrocarbon-burdened soil, hydrocarbon-burdened demolition and construction waste, and other inert waste (hereafter called permissible waste). Waste containing free liquids or regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA) will not be accepted for disposal at the site. Waste regulated under the Toxic Substance Control Act (TSCA), excluding Polychlorinated Biphenyl [PCB], Bulk Product Waste (see Section 6.2.5) and ACM (see Section 6.2.2.2) will not be accepted for disposal at the site. The disposal site will be used as the sole depository of permissible waste which is: (1) Generated by entities covered under the U.S. Environmental Protection Agency (EPA) Hazardous Waste Generator Identification Number for the NTS; (2) Generated at sites identified in the Federal Facilities Agreement and Consent Order (FFACO); (3) Sensitive records and media, including documents, vugraphs, computer disks, typewriter ribbons, magnetic tapes, etc., generated by NNSA/NSO or its contractors; (4) ACM generated by NNSA/NSO or its contractors according to Section 6.2.2.2, as necessary; (5) Hydrocarbon-burdened soil and solid waste from areas covered under the EPA Hazardous Waste Generator Identification Number for the NTS; (6) Other waste on a case-by-case concurrence by

  10. Experience and improved techniques in radiological environmental monitoring at major DOE low-level waste disposal sites

    International Nuclear Information System (INIS)

    1986-09-01

    A summary of routine radiological environmental surveillance programs conducted at major active US Department of Energy (DOE) solid low-level waste (LLW) disposal sites is provided. The DOE disposal sites at which monitoring programs were reviewed include those located at Hanford, Idaho National Engineering Laboratory (INEL), Nevada Test Site (NTS), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL) and Savannah River Plant (SRP). The review is limited to activities conducted for the purpose of monitoring disposal site performance. Areas of environmental monitoring reviewed include air monitoring for particulates and gases, monitoring of surface water runoff, surface water bodies, ground water, monitoring of surface soils and the vadose zone, and monitoring of ambient penetrating radiation. Routine environmental surveillance is conducted at major LLW disposal sites at various levels of effort for specific environmental media. In summary, all sites implement a routine monitoring program for penetrating radiation. Four sites (INEL, NTS, LANL, and SRP) monitor particulates in air specifically at LLW disposal sites. Hanford monitors particulates at LLW sites in conjunction with monitoring of other site operations. Particulates are monitored on a reservationwide network at ORNL. Gases are monitored specifically at active LLW sites operated at NTS, LANL, and SRP. Ground water is monitored specifically at LLW sites at INEL, LANL, and SRP, in conjunction with other operations at Hanford, and as part of a reservationwide program at NTS and ORNL. Surface water is monitored at INEL, LANL, and SRP LLW sites. Surface soil is sampled and analyzed on a routine basis at INEL and LANL. Routine monitoring of the vadose zone is conducted at the INEL and SRP. Techniques and equipment in use are described and other aspects of environmental monitoring programs, such as quality assurance and data base management, are reviewed

  11. Waste Isolation Pilot Plant disposal phase supplemental environmental impact statement. Implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The Implementation Plan for the Waste Isolation Pilot Plant Disposal Phase Supplemental Environmental Impact Statement (SEIS-II) has two primary purposes: (1) To report on the results of the scoping process (2) To provide guidance for preparing SEIS-II SEIS-II will be the National Environmental Policy Act (NEPA) review for WIPP`s disposal phase. Chapter 1 of this plan provides background on WIPP and this NEPA review. Chapter 2 describes the purpose and need for action by the Department of Energy (hereafter DOE or the Department), as well as a description of the Proposed Action and alternatives being considered. Chapter 3 describes the work plan, including the schedule, responsibilities, and planned consultations with other agencies and organizations. Chapter 4 describes the scoping process, presents major issues identified during the scoping process, and briefly indicates how issues will be addressed in SEIS-II.

  12. Waste Isolation Pilot Plant disposal phase supplemental environmental impact statement. Implementation plan

    International Nuclear Information System (INIS)

    1996-05-01

    The Implementation Plan for the Waste Isolation Pilot Plant Disposal Phase Supplemental Environmental Impact Statement (SEIS-II) has two primary purposes: (1) To report on the results of the scoping process (2) To provide guidance for preparing SEIS-II SEIS-II will be the National Environmental Policy Act (NEPA) review for WIPP's disposal phase. Chapter 1 of this plan provides background on WIPP and this NEPA review. Chapter 2 describes the purpose and need for action by the Department of Energy (hereafter DOE or the Department), as well as a description of the Proposed Action and alternatives being considered. Chapter 3 describes the work plan, including the schedule, responsibilities, and planned consultations with other agencies and organizations. Chapter 4 describes the scoping process, presents major issues identified during the scoping process, and briefly indicates how issues will be addressed in SEIS-II

  13. Environmental hazards of waste disposal patterns--a multimethod study in an unrecognized Bedouin village in the Negev area of Israel.

    Science.gov (United States)

    Meallem, Ilana; Garb, Yaakov; Cwikel, Julie

    2010-01-01

    The Bedouin of the Negev region of Israel are a formerly nomadic, indigenous, ethnic minority, of which 40% currently live in unrecognized villages without organized, solid waste disposal. This study, using both quantitative and qualitative methods, explored the transition from traditional rubbish production and disposal to current uses, the current composition of rubbish, methods of waste disposal, and the extent of exposure to waste-related environmental hazards in the village of Um Batim. The modern, consumer lifestyle produced both residential and construction waste that was dumped very close to households. Waste was tended to by women who predominantly used backyard burning for disposal, exposing villagers to corrosive, poisonous, and dangerously flammable items at these burn sites. Village residents expressed a high level of concern over environmental hazards, yet no organized waste disposal or environmental hazards reduction was implemented.

  14. Shallow land disposal technology

    Energy Technology Data Exchange (ETDEWEB)

    Pillette-Cousin, L. [Nuclear Environment Technology Insitute, Taejon (Korea, Republic of Korea )

    1997-12-31

    This paper covers the radioactive waste management policy and regulatory framework, the characteristics of low and intermediate level radioactive waste, the characteristics of waste package, the waste acceptance criteria, the waste acceptance and related activities, the design of the disposal system, the organization of waste transportation, the operation feature, the safety assessment of the Centre de L`Aube, the post closure measures, the closure of the Centre de la Mache disposal facility, the licensing issues. 3 tabs., 7 figs.

  15. Shallow land disposal technology

    International Nuclear Information System (INIS)

    Pillette-Cousin, L.

    1997-01-01

    This paper covers the radioactive waste management policy and regulatory framework, the characteristics of low and intermediate level radioactive waste, the characteristics of waste package, the waste acceptance criteria, the waste acceptance and related activities, the design of the disposal system, the organization of waste transportation, the operation feature, the safety assessment of the Centre de L'Aube, the post closure measures, the closure of the Centre de la Mache disposal facility, the licensing issues. 3 tabs., 7 figs

  16. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    International Nuclear Information System (INIS)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-01-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal

  17. Disposal alternatives and recommendations for waste salt management for repository excavation in the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    1987-01-01

    This report documents an evaluation of five alternatives for the disposal of waste salt that would be generated by the construction of a repository for radioactive waste in underground salt deposits at either of two sites in the Palo Duro Basin, Texas. The alternatives include commercial disposal, offsite deep-well injection, disposal in abandoned mines, ocean disposal, and land surface disposal on or off the site. For each alternative a reference case was rated - positive, neutral, or negative - in terms of environmental and dependability factors developed specifically for Texas sites. The factors constituting the environmental checklist relate to water quality impact, water- and land-use conflicts, ecological compatibility, conformity with air quality standards, and aesthetic impact. Factors on the dependability check-list relate to public acceptance, the adequacy of site characterization, permit and licensing requirements, technological requirements, and operational availability. A comparison of the ratings yielded the following viable alternatives, in order of preference: (1) land surface disposal, specifically disposal on tailings piles associated with abandoned potash mines; (2) disposal in abandoned mines, specifically potash mines; and (3) commercial disposal. Approaches to the further study of these three salt management techniques are recommended

  18. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    International Nuclear Information System (INIS)

    Carilli, J.T.; Krenzien, S.K.; Geisinger, R.G.; Gordon, S.J.; Quinn, B.

    2009-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams

  19. Disposal of chemical agents and munitions stored at Pueblo Depot Activity, Colorado. Final, Phase 1: Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.W.; Blasing, T.J.; Ensminger, J.T.; Johnson, R.O.; Schexnayder, S.M.; Shor, J.T.; Staub, W.P.; Tolbert, V.R.; Zimmerman, G.P.

    1995-04-01

    Under the Chemical Stockpile Disposal Program (CSDP), the US Army proposes to dispose of lethal chemical agents and munitions stored at eight existing Army installations in the continental United States. In 1988, the US Army issued the final programmatic environmental impact statement (FPEIS) for the CSDP. The FPEIS and the subsequent Record of Decision (ROD) identified an on-site disposal process as the preferred method for destruction of the stockpile. That is, the FPEIS determined the environmentally preferred alternative to be on-site disposal in high-temperature incinerators, while the ROD selected this alternative for implementation as the preferred method for destruction of the stockpile. In this Phase I report, the overall CSDP decision regarding disposal of the PUDA Stockpile is subjected to further analyses, and its validity at PUDA is reviewed with newer, more detailed data than those providing the basis for the conclusions in the FPEIS. The findings of this Phase I report will be factored into the scope of a site-specific environmental impact statement to be prepared for the destruction of the PUDA stockpile. The focus of this Phase I report is on those data identified as having the potential to alter the Army`s previous decision regarding disposal of the PUDA stockpile; however, several other factors beyond the scope of this Phase I report must also be acknowledged to have the potential to change or modify the Army`s decisions regarding PUDA.

  20. Environmental stewardship practices of veterinary professionals and educators related to use and disposal of pharmaceuticals and personal care products.

    Science.gov (United States)

    Lam, Jennifer; Chan, Samuel S; Conway, Flaxen D L; Stone, David

    2018-03-01

    OBJECTIVE To document the environmental stewardship practices (decisions and actions regarding use and disposal) of pet and human pharmaceuticals and personal care products (PPCPs) among pet-owning veterinary-care professionals (practicing veterinarians, veterinary students, and veterinary technicians and trainees) and environmental educators. DESIGN Internet-based cross-sectional survey. SAMPLE 191 pet owners (103 veterinary-care professionals and 88 environmental educators). PROCEDURES Study participants were recruited by means of a 2-part internet survey distributed to veterinary-care professional and environmental educator networks of individuals residing in Washington state, Oregon, and southern California. Survey questions addressed motivators for environmental stewardship practices (ie, decisions and actions regarding use and disposal of pet and human PPCPs). RESULTS Data were collected from 191 respondents; the response rate for individuals who self-selected to opt in was 78% (191/246). Of the 191 respondents, 42 (22%) stored pet pharmaceuticals indefinitely. The most common disposal method was the garbage (88/191 [46%]). Veterinary-care professionals counseled clients infrequently regarding environmental stewardship practices for PPCPs. Fifty-five percent (105/191) of all respondents preferred more environmentally friendly and clinically effective PPCPs. CONCLUSIONS AND CLINICAL RELEVANCE Results of the present survey emphasized the urgent need for improved educational resources to minimize environmental contamination from improper disposal of PPCPs. Environmental and economic motivations among pet owners in the veterinary-care and education professions indicate further opportunities for outreach and institutional support.

  1. Feasibility study for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-02-01

    In July 1990, the US Environmental Protection Agency (EPA) directed the Department of Energy Oak Ridge Operations to comply with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements for the remediation of the United Nuclear Corporation (UNC) Disposal Site located at the Y-12 Plant, Oak Ridge, Tennessee. EPA, Waste Management Branch, had approved a closure plan in December 1989 for the UNC Disposal Site. This feasibility study (FS) is a fully satisfy the National Oil and Hazardous Substances Contingency Plan (NCP) requirements for support of the selection of a remedial response for closure of the UNC Disposal Site. For two years the UNC Disposal Site accepted and disposed of waste from the decommissioning of a UNC uranium recovery facility in Wood River Junction, Rhode Island. Between June 1982 and November 1984, the UNC Disposal Site received 11,000 55-gal drums of sludge fixed in cement, 18,000 drums of contaminated soil, and 288 wooden boxes of contaminated building and process demolition materials. The FS assembles a wide range of remedial technologies so the most appropriate actions could be selected to remediate potential contamination to below MCLs and/or to below the maximum level of acceptable risk. Technologies were evaluated based on technical effectiveness, ease of implementation, and costs. Applicable technologies were then selected for alternative development. 33 refs., 9 figs., 27 tabs

  2. Social acceptance process model for ensuring the high-level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Wada, Ryutaro; Tanaka, Satoru; Nagasaki, Shinya

    2009-01-01

    Generally speaking, a vast, advanced and unfamiliar science and technology are unacceptable to the public for fear of their unknown nature. Here, the social acceptance process model was examined on the basis of the analysis of the cause phenomenon and numerical grounds, by referring to the problems on the application of literature documentation for location examination of a high-level radioactive waste disposal site in Toyo town in Kochi Pref. in April 2007. In analyzing the Toyo town case, we have found a possibility that the majority of local residents knew very little about the object opposed by the fringe route processing. To ensure a healthy decision making by the public, it is vital to convey fundamental information using sufficient wide-area PR media before the issue becomes actual. After the issue becomes actual, dialog with residents through a careful technology assessment is indispensable. The authors focus attention on the decision-making process of human beings from the social and psychological viewpoints, and point out that it is desirable for promoting social acceptance by adopting two approaches: a direct approach aiming at better intelligibility for the different resident layers and a deductive approach in technological essence. (author)

  3. Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities

    International Nuclear Information System (INIS)

    2003-12-01

    Radioactive waste must be managed safely, consistent with internationally agreed safety standards. The disposal method chosen for the waste should be commensurate with the hazard and longevity of the waste. Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides and low concentrations of long lived radionuclides. The term 'near surface disposal' encompasses a wide range of design options, including disposal in engineered structures at or just below ground level, disposal in simple earthen trenches a few metres deep, disposal in engineered concrete vaults, and disposal in rock caverns several tens of metres below the surface. The use of a near surface disposal option requires design and operational measures to provide for the protection of human health and the environment, both during operation of the disposal facility and following its closure. To ensure the safety of both workers and the public (both in the short term and the long term), the operator is required to design a comprehensive waste management system for the safe operation and closure of a near surface disposal facility. Part of such a system is to establish criteria for accepting waste for disposal at the facility. The purpose of the criteria is to limit the consequences of events which could lead to radiation exposures and in addition, to prevent or limit hazards, which could arise from non-radiological causes. Waste acceptance criteria include limits on radionuclide content concentration in waste materials, and radionuclide amounts in packages and in the repository as a whole. They also include limits on quantity of free liquids, requirements for exclusion of chelating agents and pyrophoric materials, and specifications of the characteristics of the waste containers. Largely as a result of problems encountered at some disposal facilities operated in the past, in 1985 the IAEA published guidance on generic acceptance

  4. Proposed Plan for an amendment to the Environmental Restoration Disposal Facility Record of Decision, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1997-07-01

    The U.S. Environmental Protection Agency, the Washington State Department of Ecology, and the U.S. Department of Energy (Tri- Parties) are proposing an amendment to the Environmental Restoration Disposal Facility Record of Decision (ERDF ROD). EPA is the lead regulatory agency for the ERDF Project. This Proposed Plan includes two elements intended to promote Hanford Site cleanup activities by broadening utilization and operation of ERDF as follows: (1) Construct the planned Phase II of ERDF using the current disposal cell design and (2) enable centralized treatment of remediation waste at ERDF prior to disposal, as appropriate

  5. Radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Gera, F.

    1977-01-01

    The nuclear energy controversy, now raging in several countries, is based on two main issues: the safety of nuclear plants and the possibility to dispose safely of the long-lived radioactive wastes. Consideration of the evolution of the hazard potential of waste in function of decay time leads to a somewhat conservative reference containment time in the order of one hundred thousand years. Several concepts have been proposed for the disposal of long-lived wastes. At the present time, emplacement into suitable geological formations under land areas can be considered the most promising disposal option. It is practically impossible to define detailed criteria to be followed in selecting suitable sites for disposal of long-lived wastes. Basically there is a single criterion, namely; that the geological environment must be able to contain the wastes for at least a hundred thousand years. However, due to the extreme variability of geological settings, it is conceivable that this basic capability could be provided by a great variety of different conditions. The predominant natural mechanism by which waste radionuclides could be moved from a sealed repository in a deep geological formation into the biosphere is leaching and transfer by ground water. Hence the greatest challenge is to give a satisfactory demonstration that isolation from ground water will persist over the required containment time. Since geological predictions are necessarily affected by fairly high levels of uncertainty, the only practical approach is not a straight-forward forecast of future geological events, but a careful assessment of the upper limits of geologic changes that could take place in the repository area over the next hundred thousand years. If waste containment were to survive these extreme geological changes the disposal site could be considered acceptable. If some release of activity were to take place in consequence of the hypothetical events the disposal solution might still be

  6. Hospital Workers' Awareness of Health and Environmental Impacts of Poor Clinical Waste Disposal in the Northwest Region of Cameroon

    DEFF Research Database (Denmark)

    Mochungong, Peter I K; Gulis, Gabriel; Sodemann, Morten

    2010-01-01

    a survey to evaluate hospital workers' awareness of health and environmental impacts of poor clinical waste disposal in Cameroon. We randomly distributed 500 questionnaires to hospital workers in three hospitals in the Northwest Region of Cameroon in April 2008. In addition, we observed collection......Due to the infectious nature of some clinical waste, poor disposal practices have sparked concern regarding the impact on public health and the environment. Lack of sufficient knowledge of the associated risks may be a strong factor contributing to inadequate disposal practices. We conducted......, segregation, transportation, and disposal of clinical waste at the three hospitals. Of 475 total respondents, most lacked sufficient awareness of any environmental or public health impacts of poor clinical waste disposal and had never heard of any policy--national or international--on safe clinical waste...

  7. The Changing Adventures of Mixed Low-Level Waste Disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    2007-01-01

    After a 15-year hiatus, the United States Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO) began accepting DOE off-site generated mixed low-level radioactive waste (MLLW) for disposal at the Nevada Test Site (NTS) in December 2005. This action was predicated on the acceptance by the Nevada Division of Environmental Protection (NDEP) of a waste analysis plan (WAP). The NNSA/NSO agreed to limit mixed waste disposal to 20,000 cubic meters (approximately 706,000 cubic feet) and close the facility by December 2010 or sooner, if the volume limit is reached. The WAP and implementing procedures were developed based on Hanford?s system of verification to the extent possible so the two regional disposal sites could have similar processes. Since the NNSA/NSO does not have a breaching facility to allow the opening of boxes at the site, verification of the waste occurs by visual inspection at the generator/treatment facility or by Real-Time-Radiography (RTR) at the NTS. This system allows the NTS to effectively, efficiently, and compliantly accept MLLW for disposal. The WAP, NTS Waste Acceptance Criteria, and procedures have been revised based on learning experiences. These changes include: RTR expectations; visual inspection techniques; tamper-indicating device selection; void space requirements; and chemical screening concerns. The NNSA/NSO, NDEP, and the generators have been working together throughout the debugging of the verification processes. Additionally, the NNSA/NSO will continue to refine the MLLW acceptance processes and strive for continual improvement of the program

  8. DC arc plasma disposal of printed circuit board

    International Nuclear Information System (INIS)

    Huang Jianjun; Shenzhen Univ., Shenzhen; Shi Jiabiao; Meng Yuedong; Liu Zhengzhi

    2004-01-01

    A new solid waste disposal technology setup with DC arc plasma is presented. Being different from conventional combustion or burning such as incineration, it is based on a process called controlled high-temperature pyrolysis, the thermal destruction and recovery process. The results of vitrification of the circuit board are presented. The properties of vitrified product including hardness and leaching test results are presented. The final product (vitrified material) and air emission from the plasma treatment is environmentally acceptable. (authors)

  9. Expanded public notice: Washington State notice of intent for corrective action management unit, Hanford Environmental Restoration Disposal

    International Nuclear Information System (INIS)

    1994-01-01

    This document is to serve notice of the intent to operate an Environmental Restoration Disposal Facility (ERDF), adjacent to the 200 West Area of the Hanford Facility, Richland, Washington, as a Corrective Action Management Unit (CAMU), in accordance with 40 Code of Federal Regulation (CFR) 264.552. The ERDF CAMU will serve as a management unit for the majority of waste (primarily soil) excavated during remediation of waste management sites on the Hanford Facility. Only waste that originates from the Hanford Facility can be accepted in this ERDF CAMU. The waste is expected to consist of dangerous waste, radioactive waste, and mixed waste. Mixed waste contains radioactive and dangerous components. The primary features of the ERDF could include the following: one or more trenches, rail and tractor/trailer container handling capability, railroads, an inventory control system, a decontamination building, and operational offices

  10. Financing of radioactive waste disposal

    International Nuclear Information System (INIS)

    Reich, J.

    1989-01-01

    Waste disposal is modelled as a financial calculus. In this connection the particularity is not primarily the dimension to be expected of financial requirement but above all the uncertainty of financial requirement as well as the ecological, socio-economic and especially also the temporal dimension of the Nuclear Waste Disposal project (disposal of spent fuel elements from light-water reactors with and without reprocessing, decommissioning = safe containment and disposal of nuclear power plants, permanent isolation of radioactive waste from the biosphere, intermediate storage). Based on the above mentioned factors the author analyses alternative approaches of financing or financial planning. He points out the decisive significance of the perception of risks or the evaluation of risks by involved or affected persons - i.e. the social acceptance of planned and designed waste disposal concepts - for the achievement and assessment of alternative solutions. With the help of an acceptance-specific risk measure developed on the basis of a mathematical chaos theory he illustrates, in a model, the social influence on the financing of nuclear waste disposal. (orig./HP) [de

  11. Environmental considerations in the selection of isolation gowns: A life cycle assessment of reusable and disposable alternatives.

    Science.gov (United States)

    Vozzola, Eric; Overcash, Michael; Griffing, Evan

    2018-04-11

    Isolation gowns serve a critical role in infection control by protecting healthcare workers, visitors, and patients from the transfer of microorganisms and body fluids. The decision of whether to use a reusable or disposable garment system is a selection process based on factors including sustainability, barrier effectiveness, cost, and comfort. Environmental sustainability is increasingly being used in the decision-making process. Life cycle assessment is the most comprehensive and widely used tool used to evaluate environmental performance. The environmental impacts of market-representative reusable and disposable isolation gown systems were compared using standard life cycle assessment procedures. The basis of comparison was 1,000 isolation gown uses in a healthcare setting. The scope included the manufacture, use, and end-of-life stages of the gown systems. At the healthcare facility, compared to the disposable gown system, the reusable gown system showed a 28% reduction in energy consumption, a 30% reduction in greenhouse gas emissions, a 41% reduction in blue water consumption, and a 93% reduction in solid waste generation. Selecting reusable garment systems may result in significant environmental benefits compared to selecting disposable garment systems. By selecting reusable isolation gowns, healthcare facilities can add these quantitative benefits directly to their sustainability scorecards. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  12. Scenarios of the TWRS low-level waste disposal program. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pre-treating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste

  13. Long-term surveillance plan for the Rifle, Colorado, Disposal site

    International Nuclear Information System (INIS)

    1996-09-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Estes Gulch disposal site in Garfield County, Colorado. The U.S. Environmental Protection Agency (EPA) has developed regulations for the issuance of a general license by the U.S. Nuclear Regulatory Commission (NRC) for the custody and long-term care of UMTRA Project disposal Sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites, will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Estes Gulch disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Estes Gulch site and the NRC formally accepts this LTSP

  14. Radioactive waste disposal by UKAEA establishments during 1980 and associated environmental monitoring results

    International Nuclear Information System (INIS)

    Flew, E.M.

    1981-09-01

    This report gives details of the amounts of solid and liquid radioactive waste disposed of by the principal establishments of the UKAEA during 1980. Waste arising at the UKAEA Nuclear Power Development Laboratories at Windscale and Springfields, which are both situated on British Nuclear Fuels Ltd. (BNFL)-sites, is disposed of by BNFL and included in their authorisations. Discharges to atmosphere of airborne radioactive waste are also included in the report. A summary of the results of the environmental monitoring programmes carried out in connection with the radioactive waste discharges is given. (author)

  15. Radioactive waste disposal by UKAEA establishments during 1978 and associated environmental monitoring results

    International Nuclear Information System (INIS)

    Flew, E.M.

    1979-05-01

    This report gives details of the amounts of solid and liquid radioactive waste disposed of by the principal establishments of the UKAEA during 1978. Waste arising at the UKAEA Nuclear Power Development Laboratories at Windscale and Springfields, which are both situated on British Nuclear Fuels Ltd. (BNFL) sites, is disposed of by BNFL and included in their authorisations. Discharges to atmosphere of airborne radioactive waste are also included in the report. A summary of the results of the environmental monitoring programmes carried out in connection with the radioactive waste discharges is given. (author)

  16. High-level waste processing and disposal

    International Nuclear Information System (INIS)

    Crandall, J.L.; Krause, H.; Sombret, C.; Uematsu, K.

    1984-01-01

    The national high-level waste disposal plans for France, the Federal Republic of Germany, Japan, and the United States are covered. Three conclusions are reached. The first conclusion is that an excellent technology already exists for high-level waste disposal. With appropriate packaging, spent fuel seems to be an acceptable waste form. Borosilicate glass reprocessing waste forms are well understood, in production in France, and scheduled for production in the next few years in a number of other countries. For final disposal, a number of candidate geological repository sites have been identified and several demonstration sites opened. The second conclusion is that adequate financing and a legal basis for waste disposal are in place in most countries. Costs of high-level waste disposal will probably add about 5 to 10% to the costs of nuclear electric power. The third conclusion is less optimistic. Political problems remain formidable in highly conservative regulations, in qualifying a final disposal site, and in securing acceptable transport routes

  17. Control of environmental impact of low-level aqueous fuel reprocessing wastes by deep-well disposal

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Steindler, M.J.

    1978-01-01

    The following conclusions are made: (1) the technology and much experience for this disposal method are available; (2) large areas of the U.S. offer geological formations suitable for deep well disposal, but substantial effort may be required in the choice of a specific site; (3) although costs are substantial, they are small compared to associated environmental and energy benefits; (4) impacts on water consumers would be minimized through regulatory checks of siting, construction, and monitoring, and also through natural dilution and radioactive decay; (5) disposal wells must satisfy regulations, of recently-increased stringency, on siting, design, construction, operation, monitoring, and decommissioning

  18. Disposal of chemical agents and munitions stored at Umatilla Depot Activity, Hermiston, Oregon. Final Phase 1 environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, G.P.; Hillsman, E.L.; Johnson, R.O.; Miller, R.L.; Patton, T.G.; Schoepfle, G.M.; Tolbert, V.R.; Feldman, D.L.; Hunsaker, D.B. Jr.; Kroodsma, R.L.; Morrissey, J.; Rickert, L.W.; Staub, W.P.; West, D.C.

    1993-02-01

    The Umatilla Depot Activity (UMDA) near Hermiston, Oregon, is one of eight US Army installations in the continental United States where lethal unitary chemical agents and munitions are stored, and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at UMDA consists of 11.6%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts), using a method based on five measures of risk for potential human health and ecosystem/environmental effects; the effectiveness and adequacy of emergency preparedness capabilities also played a key role in the FPEIS selection methodology. In some instances, the FPEIS included generic data and assumptions that were developed to allow a consistent comparison of potential impacts among programmatic alternatives and did not include detailed conditions at each of the eight installations. The purpose of this Phase 1 report is to examine the proposed implementation of on-site disposal at UMDA in light of more recent and more detailed data than those included in the FPEIS. Specifically, this Phase 1 report is intended to either confirm or reject the validity of on-site disposal for the UMDA stockpile. Using the same computation methods as in the FPEIS, new population data were used to compute potential fatalities from hypothetical disposal accidents. Results indicate that onsite disposal is clearly preferable to either continued storage at UMDA or transportation of the UMDA stockpile to another depot for disposal.

  19. Alternative disposal technologies for new low-level radioactive waste disposal/storage facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    A Draft Environmental Impact Statement for Waste Management Activities for groundwater protection has been prepared for the Savannah River Plant. Support documentation for the DEIS included an Environmental Information Document on new radioactive waste disposal and storage facilities in which possible alternative disposal technologies were examined in depth. Six technologies that would meet the needs of the Savannah River Plant that selected for description and analysis include near surface disposal, near surface disposal with exceptions, engineered storage, engineered disposal, vault disposal of untreated waste, and a combination of near surface disposal, engineered disposal, and engineered storage. 2 refs

  20. Monetary or environmental appeals for saving electricity? –Potentials for spillover on low carbon policy acceptability

    International Nuclear Information System (INIS)

    Steinhorst, Julia; Matthies, Ellen

    2016-01-01

    The acceptability of low carbon policies is an important precondition for energy system transitions, such as the German Energiewende. This long-term experimental study examines the potential for behavioural spillover on the acceptability of low carbon policies, caused by a framed intervention to promote electricity saving behaviour. Clients of a German energy provider were randomly assigned to continuously receive electricity saving tips with either monetary framing (saving potential in €) or environmental framing (saving potential in CO_2). The control group did not receive any information. In two follow-up surveys, four (N=333) and nine months (N=258) later, participants rated the acceptability of several low carbon policies. A pre-survey assessed the personal ecological norm for saving electricity. Participants with strong personal ecological norms reported generally higher policy acceptability. After environmental framing they also indicated higher acceptability compared to the monetary framing or control group. These results indicate that information campaigns should be designed carefully in order to promote positive spillover effects. Environmental framing of private-sphere behaviour can increase the disposition for further pro-environmental behaviour in the public sphere, e.g. policy acceptability. When appealing to monetary benefits in pro-environmental behaviour, there is a risk of inhibiting positive spillover effects. - Highlights: •Policy acceptability may be influenced by type of framing and individual factors. •We examined long-term spillover effects in association with type of framing. •Framing (environmental vs. monetary) interacts with personal ecological norms. •For strong personal ecological norms, environmental framing increases acceptability. •Also, strong personal ecological norms increase low carbon policy acceptability.

  1. Acceptance of waste for disposal in the potential United States repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stahl, D.; Svinicki, K.

    1996-01-01

    This paper addresses the process for the acceptance of waste into the waste management system (WMS) with a focus on the detailed requirements identified from the Waste Acceptance System Requirements Document. Also described is the recent dialogue between OCRWM and the Office of Environmental Management to resolve issues, including the appropriate interpretation and application of regulatory and system requirements to DOE-owned spent fuel. Some information is provided on the design of the repository system to aid the reader in understanding how waste that is accepted into the WMS is received and emplaced in the repository

  2. 36 CFR 13.1118 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  3. 36 CFR 13.1008 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  4. 36 CFR 13.1912 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located...

  5. 36 CFR 13.1604 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...

  6. How much do we value the environment? The acceptation of environmental policy and environmental measures

    International Nuclear Information System (INIS)

    Mulder, S.; Verhue, D.; Adriaansen, M.

    2005-01-01

    Several surveys were conducted to investigate the public opinion in the Netherlands on the environment. The subjects investigated were: climatic change, air pollution, biodiversity, noise and soil pollution, and nature in the Netherlands. Special attention was paid to the willingness of the Dutch to accept specific environmental measures and a marketing strategy for new environmental policy. The purpose of the surveys is to broaden the support of the Dutch people for the environmental policy [nl

  7. Environmental monitoring annual report for the Tumulus Disposal Demonstration Project

    International Nuclear Information System (INIS)

    Yager, R.E.; Craig, P.M.

    1989-01-01

    The Fiscal Year 1988 Annual Report is the third in a series of semi-annual Tumulus Development Disposal Project data summary reports. The reporting schedule has been modified to correspond to the fiscal years and the subcontractor contract periods. This data summary spans the time from start of operations in June 1987 through the end of September 1988. The environmental data collected include run-off water quality and quantity, groundwater quality and levels, soil sampling and hydrometeorological data. This data is being used and analyzed here to demonstrate the environmental performance objectives for the TDDP as part of the overall performance assessment for the TDDP. Approximately one year of pre-operational data were collected prior to operations beginning on April 11, 1988. Comparisons are made between pre- and post-operational data. No significant environmental impacts have been found since operations have begun. 10 refs., 21 figs., 22 tabs

  8. Overview of the performance objectives and scenarios of TWRS Low-Level Waste Disposal Program. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pre-treating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. Assuming the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If the disposal system is not acceptable, then the waste will be subject to possible retrieval followed by some other disposal solution. Westinghouse Hanford Company is also planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing

  9. Environmental studies data base: development and data synthesis activities of the US Subseabed Disposal Program

    International Nuclear Information System (INIS)

    Gomez, L.S.; Hesssler, R.R.; Jackson, D.W.; Marietta, M.G.; Smith, K.L. Jr.; Yayanos, A.A.

    1980-01-01

    The US Subseabed Disposal Program is assessing the scientific feasibility of subseabed emplacement of high-level nuclear wastes. Studies of disposal methods and of the barriers to radionuclide migration (canister, waste form and sediment) suggest that environmental information will be needed to address the impact of accidental release of radionuclides in the deep sea. Biological, physical, and geochemical data are being collected from field and laboratory studies as well as from literature searches. These data are being analyzed using a multicompartmental radionuclide transport model and appropriate physical oceanographic models. The data integrated into this framework will help answer two questions: what are the environmental effects of radionuclides which may be released in the deep sea, and what are the effects of such a release upon man

  10. Environmental studies data base development and data synthesis activities of the US Subseabed Disposal Program

    International Nuclear Information System (INIS)

    Gomez, L.S.; Marietta, M.G.; Hessler, R.R.; Smith, K.L. Jr.; Yayanos, A.A.; Jackson, D.W.

    1981-05-01

    The US Subseabed Disposal Program is assessing the scientific feasibility of subseabed emplacement of high-level nuclear wastes. Studies of disposal methods and of the barriers to radionuclide migration (canister, waste form, and sediment) suggest that environmental information will be needed to address the impact of accidental release of radionuclides in the deep sea. Biological, physical, and geochemical data are being collected from field and laboratory studies as well as from literature searches. These data are being analyzed using a multicompartmental radionuclide transport model and appropriate physical oceanographic models. The data integrated into this framework will help answer two questions - what are the environmental effects of radionuclides that may be released in the deep sea, and what are the effects of such a release upon man

  11. Waste disposal options report. Volume 1

    International Nuclear Information System (INIS)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    This report summarizes the potential options for the processing and disposal of mixed waste generated by reprocessing spent nuclear fuel at the Idaho Chemical Processing Plant. It compares the proposed waste-immobilization processes, quantifies and characterizes the resulting waste forms, identifies potential disposal sites and their primary acceptance criteria, and addresses disposal issues for hazardous waste

  12. Waste acceptance product specifications for vitrified high-level waste forms

    International Nuclear Information System (INIS)

    Applewhite-Ramsey, A.; Sproull, J.F.

    1993-01-01

    The Nuclear Waste Policy Act of 1982 mandated that all high-level waste (HLW) be sent to a federal geologic repository for permanent disposal. DOE published the Environmental Assessment in 1982 which identified borosilicate glass as the chosen HLW form. 1 In 1985 the Department of Energy instituted a Waste Acceptance Process to assure that DWPF glass waste forms would be acceptable to such a repository. This assurance was important since production of waste forms will precede repository construction and licensing. As part of this Waste Acceptance Process, the DOE Office of Civilian Radioactive Waste Management (RW) formed the Waste Acceptance Committee (WAC). The WAC included representatives from the candidate repository sites, the waste producing sites and DOE. The WAC was responsible for developing the Waste Acceptance Preliminary Specifications (WAPS) which defined the requirements the waste forms must meet to be compatible with the candidate repository geologies

  13. Disposal of Hanford defense high-level, transuranic and tank wastes, Hanford Site, Richland, Washington. Draft environmental impact statement. Volume 3. Appendices M-V

    International Nuclear Information System (INIS)

    1986-03-01

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into the selection and implementation of final disposal actions for high-level, transuranic and tank wastes located at the Hanford Site, Richland, Washington, and into the construction, operation and decommissioning of waste treatment facilities that may be required in implementing waste disposal alternatives. Specifically evaluated are a Hanford Waste Vitrification Plant, Transportable Grout Facility, and a Waste Receiving and Packaging Facility. Also an evaluation is presented to assist in determining whether any additional action should be taken in terms of long-term environmental protection for waste that was disposed of at Hanford prior to 1970 as low-level waste (before the transuranic waste category was established by the AEC) but which might fall into that category if generated today. The alternatives considered in this EIS are: (1) in-place stabilization and disposal, where waste is left in place but is isolated by protective and natural barriers; (2) geologic disposal, where most of the waste (to the extent practicable) is exhumed, treated, segregated, packaged and disposed of in a deep geologic repository; waste classified as high-level would be disposed of in a commercial repository developed pursuant to the Nuclear Waste Policy Act; transuranic waste would be disposed of in the Waste Isolation Pilot Plant near Carlsbad, New Mexico; (3) reference alternative, where some classes of waste are disposed of in geologic repositories and other classes of waste are disposed of by in-place stabilization and disposal; and (4) a ''no disposal'' action alternative (continued storage)

  14. Disposal of Hanford defense high-level, transuranic and tank wastes, Hanford Site, Richland, Washington. Draft environmental impact statement. Volume 2. Appendices A-L

    International Nuclear Information System (INIS)

    1986-03-01

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into the selection and implementation of final disposal actions for high-level, transuranic and tank wastes located at the Hanford Site, Richland, Washington, and into the construction, operation and decommissioning of waste treatment facilities that may be required in implementing waste disposal alternatives. Specifically evaluated are a Hanford Waste Vitrification Plant, Transportable Grout Facility, and a Waste Receiving and Packaging Facility. Also an evaluation is presented to assist in determining whether any additional action should be taken in terms of long-term environmental protection for waste that was disposed of at Hanford prior to 1970 as low-level waste (before the transuranic waste category was established by the AEC) but which might fall into that category if generated today. The alternatives considered in this EIS are: (1) in-place stabilization and disposal, where waste is left in place but is isolated by protective and natural barriers; (2) geologic disposal, where most of the waste (to the extent practicable) is exhumed, treated, segregated, packaged and disposed of in a deep geologic repository; waste classified as high-level would be disposed of in a commercial repository developed pursuant to the Nuclear Waste Policy Act; transuranic waste would be disposed of in the Waste Isolation Pilot Plant near Carlsbad, New Mexico; (3) reference alternative, where some classes of waste are disposed of in geologic repositories and other classes of waste are disposed of by in-place stabilization and disposal; and (4) a ''no disposal'' action alternative (continued storage)

  15. High-quality collection and disposal of WEEE: Environmental impacts and resultant issues.

    Science.gov (United States)

    Baxter, John; Lyng, Kari-Anne; Askham, Cecilia; Hanssen, Ole Jørgen

    2016-11-01

    Life cycle assessment of the collection, transport and recycling of various types of waste electrical and electronic equipment (WEEE) in Norway shows that small amounts of critical materials (refrigerants, precious/trace metals) are vital for the overall environmental accounts of the value chains. High-quality recycling ensures that materials and energy are effectively recovered from WEEE. This recovery means that responsible waste handling confers net environmental benefits in terms of global warming potential (GWP), for all types of WEEE analysed. For refrigeration equipment, the potential reduction of GWP by high-quality recycling is so large as to be of national significance. For all waste types, the magnitude of the net benefit from recovering materials and energy exceeds the negative consequences of irresponsible disposal. One outcome of this may be widespread misunderstanding of the need for recycling. Furthermore, framing public communication on recycling in terms of avoiding negative consequences, as is essentially universal, may not convey an appropriate message. The issue is particularly important where the consumer regards products as relatively disposable and environmentally benign, and/or where the "null option" of retaining the product at end-of-life is especially prevalent. The paper highlights the implications of all these issues for policy-makers, waste collectors and recyclers, and consumers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Safety considerations of disposal of disused sealed sources in Puspokszilagy Repository, Hungary

    International Nuclear Information System (INIS)

    2003-01-01

    The report presents the management of radioactive waste in Hungary Puspokszilagy Repository (RWTDF) including waste acceptance criteria, safety assessments, Action Plan for the safety improvement and present projects. The Puspokszilagy Repository is a typical near-surface repository, sink into the ground 6 m depth. The facility is a shallow land disposal type, appropriated for disposal of short and medium lived LILW, acceptable for temporary storage of long lived LILW. It consists of vaults containing cells for solidified drummed waste, wells for spent sealed sources, work building for treatment and interim storage and office building for environmental measurements. Two safety assessments have been performed in 2000 and 2002. The new safety assessment confirms the main statements of SA 2000, according to which several waste types can cause serious problems in the distant future: Until the finish of passive control the safety of the environment is guaranteed. After that time it is possible to arise events leading to exceeding of dose restricts (more then 10 mSv/yr but less then 100 mSv/yr), because of disposal of long lived radionuclides (mainly C-14,Tc-99, Ra-226, Th-232, U-234) and significant activities of Cs-137 sources.There are uncertainties in radionuclide amounts and distributions, as well as in the physical and chemical characteristics of the wastes that determine radionuclide mobility and toxicity. The recommendations to improve the safety include: Long lived SSRS in the 'B' and 'D' wells should be removed before the closure of repository. Large Cs-137 sources and long lived sources in the 'A' vaults should be recovered (if its feasible); All vaults should be backfilled to provide chemical conditioning; The waste packaged in plastic bags should be repackaged and compacted into drums or containers; The inventory should be revise. Waste acceptance requirements in the future are: The disposal of long lived radionuclides is no permitted. The long lived waste

  17. HOW TO DEAL WITH WASTE ACCEPTANCE UNCERTAINTY USING THE WASTE ACCEPTANCE CRITERIA FORECASTING AND ANALYSIS CAPABILITY SYSTEM (WACFACS)

    Energy Technology Data Exchange (ETDEWEB)

    Redus, K. S.; Hampshire, G. J.; Patterson, J. E.; Perkins, A. B.

    2002-02-25

    The Waste Acceptance Criteria Forecasting and Analysis Capability System (WACFACS) is used to plan for, evaluate, and control the supply of approximately 1.8 million yd3 of low-level radioactive, TSCA, and RCRA hazardous wastes from over 60 environmental restoration projects between FY02 through FY10 to the Oak Ridge Environmental Management Waste Management Facility (EMWMF). WACFACS is a validated decision support tool that propagates uncertainties inherent in site-related contaminant characterization data, disposition volumes during EMWMF operations, and project schedules to quantitatively determine the confidence that risk-based performance standards are met. Trade-offs in schedule, volumes of waste lots, and allowable concentrations of contaminants are performed to optimize project waste disposition, regulatory compliance, and disposal cell management.

  18. HOW TO DEAL WITH WASTE ACCEPTANCE UNCERTAINTY USING THE WASTE ACCEPTANCE CRITERIA FORECASTING AND ANALYSIS CAPABILITY SYSTEM (WACFACS)

    International Nuclear Information System (INIS)

    Redus, K. S.; Hampshire, G. J.; Patterson, J. E.; Perkins, A. B.

    2002-01-01

    The Waste Acceptance Criteria Forecasting and Analysis Capability System (WACFACS) is used to plan for, evaluate, and control the supply of approximately 1.8 million yd3 of low-level radioactive, TSCA, and RCRA hazardous wastes from over 60 environmental restoration projects between FY02 through FY10 to the Oak Ridge Environmental Management Waste Management Facility (EMWMF). WACFACS is a validated decision support tool that propagates uncertainties inherent in site-related contaminant characterization data, disposition volumes during EMWMF operations, and project schedules to quantitatively determine the confidence that risk-based performance standards are met. Trade-offs in schedule, volumes of waste lots, and allowable concentrations of contaminants are performed to optimize project waste disposition, regulatory compliance, and disposal cell management

  19. Preoperational baseline and site characterization report for the Environmental Restoration Disposal Facility. Volume 2, Revision 2

    International Nuclear Information System (INIS)

    Weekes, D.C.; Lindsey, K.A.; Ford, B.H.; Jaeger, G.K.

    1996-12-01

    This document is Volume 2 in a two-volume series that comprise the site characterization report, the Preoperational Baseline and Site Characterization Report for the Environmental Restoration Disposal Facility. Volume 1 contains data interpretation and information supporting the conclusions in the main text. This document presents original data in support of Volume 1 of the report. The following types of data are presented: well construction reports; borehole logs; borehole geophysical data; well development and pump installation; survey reports; preoperational baseline chemical data and aquifer test data. Five groundwater monitoring wells, six deep characterization boreholes, and two shallow characterization boreholes were drilled at the Environmental Restoration Disposal Facility (ERDF) site to directly investigate site-specific hydrogeologic conditions

  20. Cost avoidance realized through transportation and disposal of Fernald mixed low-level waste

    International Nuclear Information System (INIS)

    Sparks, A.K.; Dilday, D.R.; Rast, D.M.

    1995-11-01

    Currently, Department of Energy (DOE) facilities are undergoing a transformation from shipping radiologically contaminated waste within the DOE structure for disposal to now include Mixed Low Level Waste (MLLW) shipments to a permitted commercial disposal facility (PCDF) final disposition. Implementing this change can be confusing and is perceived as being more difficult than it actually is. Lack of experience and disposal capacity, sometimes and/or confusing regulatory guidance, and expense of transportation and disposal of MLLW ar contributing factors to many DOE facilities opting to simply store their MLLW. Fernald Environmental Restoration Management Company (FERMCO) established itself as a leader i addressing MLLW transportation and disposal by being one of the first DOE facilities to ship mixed waste to a PCDF (Envirocare of Utah) for disposal. FERMCO's proactive approach in establishing a MLLW Disposal Program produces long-term cost savings while generating interim mixed waste storage space to support FERMCO's cleanup mission. FERMCO's goal for all MLLW shipments was to develop a cost efficient system to accurately characterize, sample and analyze the waste, prepare containers and shipping paperwork, and achieve regulatory compliance while satisfying disposal facility waste acceptance criteria (WAC). This goal required the ability to evolve with the regulations, to address waste streams of varying matrices and contaminants, and to learn from each MLLW shipment campaign. These efforts have produced a successful MLLW Disposal Program at the Fernald Environmental Management Project (FEMP). FERMCO has a massed lessons learned from development of this fledgling program which may be applied complex-wide to ultimately save facilities time and money traditionally wasted by maintaining the status quo

  1. Reversing nuclear opposition: evolving public acceptance of a permanent nuclear waste disposal facility.

    Science.gov (United States)

    Jenkins-Smith, Hank C; Silva, Carol L; Nowlin, Matthew C; deLozier, Grant

    2011-04-01

    Nuclear facilities have long been seen as the top of the list of locally unwanted land uses (LULUs), with nuclear waste repositories generating the greatest opposition. Focusing on the case of the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, we test competing hypotheses concerning the sources of opposition and support for siting the facility, including demographics, proximity, political ideology, and partisanship, and the unfolding policy process over time. This study tracks the changes of risk perception and acceptance of WIPP over a decade, using measures taken from 35 statewide surveys of New Mexico citizens spanning an 11-year period from fall 1990 to summer 2001. This time span includes periods before and after WIPP became operational. We find that acceptance of WIPP is greater among those whose residences are closest to the WIPP facility. Surprisingly, and contrary to expectations drawn from the broader literature, acceptance is also greater among those who live closest to the nuclear waste transportation route. We also find that ideology, partisanship, government approval, and broader environmental concerns influence support for WIPP acceptance. Finally, the sequence of procedural steps taken toward formal approval of WIPP by government agencies proved to be important to gaining public acceptance, the most significant being the opening of the WIPP facility itself. © 2010 Society for Risk Analysis.

  2. Introduction to Envirocare of Utah's low activity radioactive waste disposal site located at Clive, Utah

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Envirocare of Utah was licensed by the state of Utah on February 2, 1988, to become fully operational to receive low-activity radioactive waste at its disposal site near Clive, Utah. This paper discusses the organization of the firm, political support, acceptable materials, benefits of the operation, site characteristics, construction, health physics program, and environmental program

  3. Recommendations to the NRC for review criteria for alternative methods of low-level radioactive waste disposal: Environmental monitoring and surveillance programs

    International Nuclear Information System (INIS)

    Denham, D.H.; Stenner, R.D.; Eddy, P.A.; Jaquish, R.E.; Ramsdell, J.V. Jr.

    1988-07-01

    Licensing of a facility for low-level radioactive waste disposal requires the review of the environmental monitoring and surveillance programs. A set of review criteria is recommended for the US Nuclear Regulatory Commission (NRC) staff to use in each monitoring phase---preoperational, operational, and post operational---for evaluating radiological and selected nonradiological parameters in proposed environmental monitoring and surveillance programs at low-level waste disposal facilities. Applicable regulations, industry standards, and technical guidance on low-level radioactive waste are noted throughout the document. In the preoperational phase, the applicant must demonstrate that the environmental monitoring program identifies radiation levels and radionuclide concentrations at the site and also provides adequate basic data on the disposal site. Data recording and statistical analyses for this phase are addressed

  4. Environmental monitoring six month report for the Tumulus Disposal Demonstration Project

    International Nuclear Information System (INIS)

    Yager, R.E.; Furnari, J.A.; Craig, P.M.

    1989-05-01

    The Fiscal Year 1989 Six Month Report is the fourth in a series of semi-annual Tumulus Disposal Demonstration Project (TDDP) data summary reports. This data summary spans the time from start of operations in June 1987 through the end of March 1989 with particular emphasis on the last six months: October 1988 through March 1989. The environmental data collected include run-off water quality and quantity, groundwater quality and levels, soil sampling and hydrometeorological data. These data are being used and analyzed here to demonstrate the environmental performance objectives for the TDDP as part of the overall performance assessment. Comparisons are made between pre- and post-operational data and data collected during size month period ending March 31, 1989. No significant environmental impacts have been found since operations have begun. 13 refs., 28 figs., 12 tabs

  5. Proposed approach to derivation of acceptance criteria for disposal of disused sealed sources mixed with other accepted wastes in near-surface repository

    International Nuclear Information System (INIS)

    Salzer, P.; Stefula, V.; Homola, J.

    2003-01-01

    The Mochovce repository is described in the report. It is vault type near surface repository with 80 concrete vaults (2x2x20), 90 FRC containers (3.1 m 3 ) in one vault (3x10x3), compacted clay bath-tub around double row. 300 years of institutional control are envisioned.The following scenarios are examined: Normal evolution scenario; Alternative evolution scenarios (perforated clay barrier; well in close proximity); Intruder scenarios (construction of simple dwelling; construction of multi-storey building; construction of road; residence scenario). It is being proposed that the DSSs are disposed of in the containers together with normal operational waste. Long-lived alpha emitters - excluded a priori (e.g. 226 Ra); Short-lived (T 1/2 = 10 2 days) radionuclides - interim stored until decayed down to clearance level 60 Co - no activity limit, with due consideration of operational safety. The DSSs disposal issue is thus reduced to the disposal of 137 Cs. No limit has been imposed on total activity. Existing limits for operational waste: 3.13.10 13 Bq / container in the upper layer; 3.41.10 13 Bq / container in the bottom or intermediate layer. The acceptance criteria are assessed according to the risk. Two are models set up in MicroShield ver. 5.0. Homogenous source of 137 Cs in cubic concrete container and point source (hot spot) of the same activity. The result is - dose from the point source is 16.6 times higher than the one from the cube. As a result the following new restrictions arise for disposal of the 137 Cs spent industrial sources: disposal of DSSs is forbidden in the upper layer of the containers; maximum activity of the 137 Cs disused industrial source emplaced into the FRC container is 3.41x10 13 / 16.6 = 2.05x10 12 Bq in case of FRC filling by non-radioactive cement mortar; if the cemented radioactive waste is to be used for filling of FRC, decrease of the limit for the disused sealed source is equivalent to the radioactivity of the cement mixture

  6. Radioactive Waste Disposal Pilot Plant concept for a New Mexico site

    International Nuclear Information System (INIS)

    Weart, W.D.

    1976-01-01

    Twenty years of investigation have shown that disposal of nuclear wastes in deep salt formations is the surest means of isolating these wastes from the biosphere for the extremely long period of time required. A large scale demonstration of this capability will soon be provided by a Radioactive Waste Disposal Pilot Plant (RWDPP) to be developed in southeastern New Mexico. Initially, the pilot plant will accept only ERDA generated waste; high level waste from the commercial power reactor fuel cycle will eventually be accommodated in the pilot plant and the initial RWDPP design will be compatible with this waste form. Selection of a specific site and salt horizon will be completed in June 1976. Conceptual design of the RWDPP and assessment of its environmental impact will be completed by June 1977. Construction is expected to start in 1978 with first waste accepted in 1982. The present concept develops disposal areas for all nuclear waste types in a single salt horizon about 800 meters deep. This single level can accommodate all low level and high level waste generated in the United States through the year 2010. A major constraint on the RWDPP design is the ERDA requirement that all waste be ''readily'' retrievable during the duration of pilot plant operation

  7. Environmental monitoring and deep ocean disposal of packaged radioactive waste

    International Nuclear Information System (INIS)

    Mitchell, N.T.; Preston, A.

    1980-01-01

    The aims and objectives of environmental monitoring as laid down, for example by the ICRP and the IAEA include the assessment of actual or potential radiation exposure of man and the requirements of scientific investigations. The fulfillment of these aims is discussed in the context of the disposal of packaged radioactive waste in the deep Atlantic Ocean within the terms of the London Dumping Convention and within a regional agreement, the consultation/surveillance mechanism of the Nuclear Energy Agency. The paper discusses UK attitudes to such environmental monitoring, concentrates on the first of these ICRP objectives and shows how this is unlikely to be achieved by direct measurement in view of the small quantities of radioactive material involved relative to the scale of the receiving environment, and the timescale on which return to man can be conceived. Whilst meaningful environmental measurement is very unlikely to facilitate direct estimation of public radiation exposure by monitoring, it is still held that the basic objective of environmental monitoring can be met. A means by which this may be achieved is by oceanographic models. These procedures are discussed, illustrating the application of this philosophy in practice. (H.K.)

  8. Waste transmutation and public acceptance

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1991-01-01

    The concept of transmuting radioactive wastes with reactors or accelerators is appealing. It has the potential of simplifying or eliminating problems of disposing of nuclear waste. The transmutation concept has been renewed vigorously at a time when national projects to dispose of high-level and transuranic waste are seriously delayed. In this period of tightening federal funds and program curtailments, skilled technical staffs are available at US Department of Energy (DOE) national laboratories and contractors to work on waste transmutation. If the claims of transmutation can be shown to be realistic, economically feasible, and capable of being implemented within the US institutional infrastructure, public acceptance of nuclear waste disposal may be enhanced. If the claims for transmutation are not substantiated, however, there will result a serious loss of credibility and an unjust exacerbation of public concerns about nuclear waste. The paper discusses the following topics: how public acceptance is achieved; the technical community and waste disposal; transmutation and technical communication; transmutation issues; technical fixes and public perception

  9. Strategic environmental safety inspection for the National disposal program. Description of the inspection volume. Documentation for the scoping team

    International Nuclear Information System (INIS)

    2015-01-01

    The Strategic environmental safety inspection for the National disposal program covers the following topics: Legal framework: determination of the requirement for an environmental inspection program, coordination of the scoping team into the overall context; environmental targets; approach for assessment and evaluation of environmental impact, description of the inspection targets for the strategic environmental inspection; consideration of alternatives.

  10. Acceptability of health information technology aimed at environmental health education in a prenatal clinic.

    Science.gov (United States)

    Rosas, Lisa G; Trujillo, Celina; Camacho, Jose; Madrigal, Daniel; Bradman, Asa; Eskenazi, Brenda

    2014-11-01

    To describe the acceptability of an interactive computer kiosk that provides environmental health education to low-income Latina prenatal patients. A mixed-methods approach was used to assess the acceptability of the Prenatal Environmental Health Kiosk pregnant Latina women in Salinas, CA (n=152). The kiosk is a low literacy, interactive touch-screen computer program with an audio component and includes graphics and an interactive game. The majority had never used a kiosk before. Over 90% of women reported that they learned something new while using the kiosk. Prior to using the kiosk, 22% of women reported their preference of receiving health education from a kiosk over a pamphlet or video compared with 57% after using the kiosk (peducation; and (3) popularity of the interactive game. The Prenatal Environmental Health Kiosk is an innovative patient health education modality that was shown to be acceptable among a population of low-income Latino pregnant women in a prenatal care clinic. This pilot study demonstrated that a health education kiosk was an acceptable strategy for providing Latina prenatal patients with information on pertinent environmental exposures. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Low- and Intermediate Level Radioactive Waste Disposal Environmental and Safety Assessment Activities in Slovenia

    International Nuclear Information System (INIS)

    Marc, D.; Loose, A.; Urbanc, J.

    1998-01-01

    The protection of the environment is one of the main concerns in the management of radioactive waste, especially in repository planning. In different stages of repository lifetime the environmental assessment has different functions: it can be used as a decision making process and as a planning, communication and management tool. Safety assessment as a procedure for evaluating the performance of a disposal system, and its potential radiological impact on human health and environment, is also required. Following the international recommendations and Slovene legislation, a presentation is given of the role and importance of the environmental and safety assessment activities in the early stages following concept development and site selection for a low- and intermediate level radioactive waste (LILW) repository in Slovenia. As a case study, a short overview is also given of the preliminary safety assessment that has been carried out in the analysis of possibilities for long-lived LILW disposal in Slovenia. (author)

  12. The disposal of orphan wastes using the greater confinement disposal concept

    International Nuclear Information System (INIS)

    Bonano, E.J.; Chu, M.S.Y.; Price, L.L.; Conrad, S.H.; Dickman, P.T.

    1991-01-01

    In the United States, radioactive wastes are conventionally classified as high-level wastes, transuranic wastes, or low-level wastes. Each of these types of wastes, by law, has a ''home'' for their final disposal; i.e., high-level wastes are destined for disposal at the proposed repository at Yucca Mountain, transuranic waste for the proposed Waste Isolation Pilot Plant, and low-level waste for shallow-land disposal sites. However, there are some radioactive wastes within the United States Department of Energy (DOE) complex that do not meet the criteria established for disposal of either high-level waste, transuranic waste, or low-level waste. The former are called ''special-case'' or ''orphan'' wastes. This paper describes an ongoing project sponsored by the DOE's Nevada Operations Office for the disposal of orphan wastes at the Radioactive Waste Management Site at Area 5 of the Nevada Test Site using the greater confinement disposal (GCD) concept. The objectives of the GCD project are to evaluate the safety of the site for disposal of orphan wastes by assessing compliance with pertinent regulations through performance assessment, and to examine the feasibility of this disposal concept as a cost-effective, safe alternative for management of orphan wastes within the DOE complex. Decisions on the use of GCD or other alternate disposal concepts for orphan wastes be expected to be addressed in a Programmatic Environmental Impact Statement being prepared by DOE. The ultimate decision to use GCD will require a Record of Decision through the National Environmental Policy Act (NEPA) process. 20 refs., 3 figs., 2 tabs

  13. Methodology for selecting low-level radioactive waste disposal sites with application to the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Lee, D.W.; Ketelle, R.H.

    1984-01-01

    A methodology was developed to select an environmentally acceptable site for low-level radioactive waste disposal for a predetermined region of interest using prescribed site suitability requirements. The methodology provides a defensible means for identifying candidate areas within the region, candidate sites within the areas, and an environmentally preferred site from the candidate sites. This is accomplished in site screening and site characterization stages. The site screening stage relies on reconnaissance data to identify a preferred site. The site characterization stage relies on a detailed site investigation to determine site acceptability. The methodology was applied to the US Department of Energy Oak Ridge Reservation through the site screening stage. 6 references, 3 figures, 7 tables

  14. Understanding, Classifying, and Selecting Environmentally Acceptable Hydraulic Fluids

    Science.gov (United States)

    2016-08-01

    traditional mineral oil; therefore, the life cycle costs over time may be reduced . REPLACEMENT OF EXISTING HYDRAULIC FLUIDS: Hydraulic fluids in existing...properly maintaining the fluid can extend the time interval between fluid changes, thus reducing the overall operating cost of the EA hydraulic fluid. It...Environmentally Acceptable Hydraulic Fluids by Timothy J. Keyser, Robert N. Samuel, and Timothy L. Welp INTRODUCTION: On a daily basis, the United States Army

  15. Affective imagery and acceptance of replacing nuclear power plants.

    Science.gov (United States)

    Keller, Carmen; Visschers, Vivianne; Siegrist, Michael

    2012-03-01

    This study examined the relationship between the content of spontaneous associations with nuclear power plants and the acceptance of using new-generation nuclear power plants to replace old ones. The study also considered gender as a variable. A representative sample of the German- and French-speaking population of Switzerland (N= 1,221) was used. Log-linear models revealed significant two-way interactions between the association content and acceptance, association content and gender, and gender and acceptance. Correspondence analysis revealed that participants who were opposed to nuclear power plants mainly associated nuclear power plants with risk, negative feelings, accidents, radioactivity, waste disposal, military use, and negative consequences for health and environment; whereas participants favoring nuclear power plants mainly associated them with energy, appearance descriptions of nuclear power plants, and necessity. Thus, individuals opposing nuclear power plants had both more concrete and more diverse associations with them than people who were in favor of nuclear power plants. In addition, participants who were undecided often mentioned similar associations to those participants who were in favor. Males more often expressed associations with energy, waste disposal, and negative health effects. Females more often made associations with appearance descriptions, negative feelings, and negative environmental effects. The results further suggest that acceptance of replacing nuclear power plants was higher in the German-speaking part of the country, where all of the Swiss nuclear power plants are physically located. Practical implications for risk communication are discussed. © 2011 Society for Risk Analysis.

  16. Environmental assessment methodologies for sea dumping of radioactive wastes

    International Nuclear Information System (INIS)

    1984-01-01

    This document, which describes the content of an environmental assessment report, will assist national authorities to meet their obligations under the London Dumping Convention (LDC, 1972) by initiating those steps which are to be undertaken to ensure that ''the procedure to be followed and the nature of such reports shall be agreed by the parties in consultation'' (Article VI. 4). In the context of sea disposal of radioactive wastes, environmental assessments are taken to mean those evaluations which are undertaken to assist in the decision-making processes used by national authorities to determine: 1) How the option of sea disposal compares environmentally, technically, socially and economically with other disposal options (this constitutes the comparison with land-based alternatives); and 2) Whether the impact of a proposed sea disposal option is acceptable (this requires a detailed evaluation of the proposed operation including site selection, quantities and types of waste to be dumped, operational requirements and calculation of radiological and other risks). The term ''environmental assessment'' in these respects is deemed to include both the evaluation of the impact of sea dumping and the document that describes this evaluation

  17. Regulatory objectives, requirements and guidelines for the disposal of radioactive wastes - long-term aspects

    International Nuclear Information System (INIS)

    1987-01-01

    It is the purpose of this document to present the regulatory basis for judging the long-term acceptability of radioactive waste disposal options, assuming that the operational aspects of waste emplacement and facility closure satisfy the existing regulatory framework of requirements. Basic objectives of radioactive waste disposal are given, as are the regulatory requirements which must be satisfied in order to achieve these objectives. In addition, guidelines are given on the application of the radiological requirements to assist proponents in the preparation of submissions to the Atomic Energy Control Board (AECB). The primary focus of the requirements is on radiation protection, although environmental protection and institutional controls are also addressed in a more general way since these factors stem directly from the overall objectives for radioactive waste disposal

  18. Inspection and verification of waste packages for near surface disposal

    International Nuclear Information System (INIS)

    2000-01-01

    Extensive experience has been gained with various disposal options for low and intermediate level waste at or near surface disposal facilities. Near surface disposal is based on proven and well demonstrated technologies. To ensure the safety of near surface disposal facilities when available technologies are applied, it is necessary to control and assure the quality of the repository system's performance, which includes waste packages, engineered features and natural barriers, as well as siting, design, construction, operation, closure and institutional controls. Recognizing the importance of repository performance, the IAEA is producing a set of technical publications on quality assurance and quality control (QA/QC) for waste disposal to provide Member States with technical guidance and current information. These publications cover issues on the application of QA/QC programmes to waste disposal, long term record management, and specific QA/QC aspects of waste packaging, repository design and R and D. Waste package QA/QC is especially important because the package is the primary barrier to radionuclide release from a disposal facility. Waste packaging also involves interface issues between the waste generator and the disposal facility operator. Waste should be packaged by generators to meet waste acceptance requirements set for a repository or disposal system. However, it is essential that the disposal facility operator ensure that waste packages conform with disposal facility acceptance requirements. Demonstration of conformance with disposal facility acceptance requirements can be achieved through the systematic inspection and verification of waste packages at both the waste generator's site and at the disposal facility, based on a waste package QA/QC programme established by the waste generator and approved by the disposal operator. However, strategies, approaches and the scope of inspection and verification will be somewhat different from country to country

  19. Post-disposal safety assessment of toxic and radioactive waste: waste types, disposal practices, disposal criteria, assessment methods and post-disposal impacts

    International Nuclear Information System (INIS)

    Torres, C.; Simon, I.; Little, R.H.; Charles, D.; Grogan, H.A.; Smith, G.M.; Sumerling, T.J.; Watkins, B.M.

    1993-01-01

    The need for safety assessments of waste disposal stems not only from the implementation of regulations requiring the assessment of environmental effects, but also from the more general need to justify decisions on protection requirements. As waste-disposal methods have become more technologically based, through the application of more highly engineered design concepts and through more rigorous and specific limitations on the types and quantities of the waste disposed, it follows that assessment procedures also must become more sophisticated. It is the overall aim of this study to improve the predictive modelling capacity for post-disposal safety assessments of land-based disposal facilities through the development and testing of a comprehensive, yet practicable, assessment framework. This report records all the work which has been undertaken during Phase 1 of the study. Waste types, disposal practices, disposal criteria and assessment methods for both toxic and radioactive waste are reviewed with the purpose of identifying those features relevant to assessment methodology development. Difference and similarities in waste types, disposal practices, criteria and assessment methods between countries, and between toxic and radioactive wastes are highlighted and discussed. Finally, an approach to identify post-disposal impacts, how they arise and their effects on humans and the environment is described

  20. Nevada Test Site Waste Acceptance Criteria, December 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal.

  1. Nevada Test Site Waste Acceptance Criteria, December 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal

  2. Radiological impact assessment on non-human species from the radioactive waste disposal

    International Nuclear Information System (INIS)

    Gil Castillo, Reinaldo; Peralta Vital, Jose L.; Leiva Bombuse, Dennys

    2008-01-01

    The paper shows the use of a methodology in order to carry out the radiological impact assessment in non-human species (animals and plants) from a planned radioactive waste disposal facility. The application of modelling tools to simulate the behaviour (release and transport) of the radionuclides through the engineered barriers and the geosphere, and its final access to the soil and a river are described too. To evaluate the compliance with the adopted biota dose limits, were used the calculated maximum radionuclide concentrations for different environmental compartments (water, soil and sediment). Preliminary, the results showed that the Radiological Biota impacts are acceptable according to the adopted criteria (Radionuclides concentrations below the Biota Concentration Guides). The results showed that according theirs impact the more important radionuclides were: 241 Am/ 226 Ra/ 137 Cs/ 60 Co. The Riparian animals were the more exposed Biota organism. The results support the decision making process since could be identified the relevant radiological impact in the environment (plants and animals) near to a disposal facility (real or planned). Also the paper identified methodological tools useful to evaluate the site acceptance, for the early stages of disposal facilities (site selection process, licensing, etc), in absence of real data of radionuclides concentrations in the environment. (author)

  3. Environmental monitoring report for commercial low-level radioactive waste disposal sites (1960's through 1990's)

    International Nuclear Information System (INIS)

    1996-11-01

    During the time period covered in this report (1960's through early 1990's), six commercial low-level radioactive waste (LLRW) disposal facilities have been operated in the US. This report provides environmental monitoring data collected at each site. The report summarizes: (1) each site's general design, (2) each site's inventory, (3) the environmental monitoring program for each site and the data obtained as the program has evolved, and (4) what the program has indicated about releases to off-site areas, if any, including a statement of the actual health and safety significance of any release. A summary with conclusions is provided at the end of each site's chapter. The six commercial LLRW disposal sites discussed are located near: Sheffield, Illinois; Maxey Flats, Kentucky; Beatty, Nevada; West Valley, New York; Barnwell, South Carolina; Richland, Washington

  4. Preoperational baseline and site characterization report for the Environmental Restoration Disposal Facility

    International Nuclear Information System (INIS)

    Weekes, D.C.; Ford, B.H.; Jaeger, G.K.

    1996-09-01

    This document Volume 2 in a two-volume series that comprise the site characterization report for the Environmental Restoration Disposal Facility. Volume 1 contains data interpretation and information supporting the conclusions in the main text. This document presents original data in support of Volume 1 of the report. The following types of data are presented: well construction reports; borehole logs; borehole geophysical data; well development and pump installation; survey reports; and preoperational baseline chemical data and aquifer test data. This does not represent the entire body of data available. Other types of information are archived at BHI Document Control. Five ground water monitoring wells were drilled at the Environmental Restoration Disposal Facility site to directly investigate site- specific hydrogeologic conditions. Well and borehole activity summaries are presented in Volume 1. Field borehole logs and geophysical data from the drilling are presented in this document. Well development and pump installation sheets are presented for the groundwater monitoring wells. Other data presented in this document include borehole geophysical logs from existing wells; chemical data from the sampling of soil, vegetation, and mammals from the ERDF to support the preoperational baseline; ERDF surface radiation surveys;a nd aquifer testing data for well 699-32-72B

  5. Environmental restoration waste materials co-disposal

    International Nuclear Information System (INIS)

    Phillips, S.J.; Alexander, R.G.; England, J.L.; Kirdendall, J.R.; Raney, E.A.; Stewart, W.E.; Dagan, E.B.; Holt, R.G.

    1993-09-01

    Co-disposal of radioactive and hazardous waste is a highly efficient and cost-saving technology. The technology used for final treatment of soil-washing size fractionization operations is being demonstrated on simulated waste. Treated material (wasterock) is used to stabilize and isolate retired underground waste disposal structures or is used to construct landfills or equivalent surface or subsurface structures. Prototype equipment is under development as well as undergoing standardized testing protocols to prequalify treated waste materials. Polymer and hydraulic cement solidification agents are currently used for geotechnical demonstration activities

  6. Environmental radiation monitoring around waste ore disposal site in Tottori prefecture: fiscal year 1999

    International Nuclear Information System (INIS)

    2000-03-01

    This document is the compilation of environmental monitoring around waste uranium ore disposal site, near Ningyo-toge mine in Tottori prefecture. The results have been reported to Okayama and Tottori prefectures. The objects for monitoring were river water, drinking water, river sediments, paddy field sediments, air, rice, vegetables, and fruits. (A. Yamamoto)

  7. Magnox fuel dry storage and direct disposal assessment of CEGB/SSEB reports

    International Nuclear Information System (INIS)

    1987-12-01

    This report assesses the Boards' presented work in response to Recommendations 17 and 18 of the Environment Committee's First Report (Jan 86). The Boards have made an extensive study of the dry store design and also considered direct disposal. Their basic conclusion that the financial advantage is with continued reprocessing is accepted with the comment that their storage and disposal costs may be on the high side. The Boards statements on drying wet-stored fuel and on improvement of the fuel's chemical stability are accepted. The Boards coverage of fuel after disposal is considered to be too brief; the assessment expresses a more pessimistic view than the Boards' of the acceptability of direct disposal. (author)

  8. Important issues in disposal of L/ILW

    International Nuclear Information System (INIS)

    McCombie, C.

    1987-01-01

    Today waste disposal is a challenging technical and political issue. In many countries the acceptance of nuclear power has been tied formally or informally to the convincing demonstration that we can dispose of all radioactive wastes with a very high degree of safety exceeding the expected for other toxic or hazardous wastes. The importance of the public acceptance aspects and the more obviously striking characteristics of high-level wastes (HLW) - in particular their high initial radiation, their heat emission and their long decay times - led to an early concentration of effort on planning and analyzing HLW disposal. On the other hand, the problems of disposing of low- and inter-mediate-level wastes (L/ILW) are in many ways more immediate. These wastes are arising today in quantities which can make continued storge troublesome; accordingly increased effort is being expended in many countries on organizing the safe, final disposal of L/ILW. Some of the technical issues of importance which arise in the corresponding planning and analysis of repository projects for L/ILW are discussed in this paper

  9. Execution techniques for high-level radioactive waste disposal. 2. Fundamental concept of geological disposal and implementing approach of disposal project

    International Nuclear Information System (INIS)

    Kawanishi, Motoi; Komada, Hiroya; Tsuchino, Susumu; Shiozaki, Isao; Kitayama, Kazumi; Akasaka, Hidenari; Inagaki, Yusuke; Kawamura, Hideki

    1999-01-01

    The making high activity of the high-level radioactive waste disposal business shall be fully started after establishing of the implementing organization which is planned around 2000. Considering each step of disposal business, in this study, the implementation procedure for a series of disposal business such as the selection of the disposal site, the construction and operation of the disposal facility, the closure and decommissioning of the disposal facility and the management after closure, which are carried forward by the implementation body is discussed in detail from the technical viewpoint and an example of the master schedule is proposed. Furthermore, we investigate and propose the concept of the geological disposal which becomes important in carrying forward to making of the business of the disposal, such as the present site selection smoothly, the fundamental idea of the safe securing for disposal, the basic idea to get trust to the disposal technique and the geological environmental condition which is the basic condition of this whole study for the disposal business making. (author)

  10. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.

    1998-03-05

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  11. Risk assessment of nonhazardous oil-field waste disposal in salt caverns

    International Nuclear Information System (INIS)

    Elcock, D.

    1998-01-01

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes

  12. Specified radioactive waste final disposal act

    International Nuclear Information System (INIS)

    Yasui, Masaya

    2001-01-01

    Radioactive wastes must be finally and safely disposed far from human activities. Disposal act is a long-range task and needs to be understood and accepted by public for site selection. This paper explains basic policy of Japanese Government for final disposal act of specified radioactive wastes, examination for site selection guidelines to promote residential understanding, general concept of multi-barrier system for isolating the specific radioactive wastes, and research and technical development for radioactive waste management. (S. Ohno)

  13. Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)

    International Nuclear Information System (INIS)

    Arnold, P.

    2012-01-01

    This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams

  14. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles (mi)) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan

  15. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-06-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: • DOE hazardous and non-hazardous non-radioactive classified waste • DOE low-level radioactive waste (LLW) • DOE mixed low-level waste (MLLW) • U.S. Department of Defense (DOD) classified waste The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  16. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2013-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: DOE hazardous and non-hazardous non-radioactive classified waste; DOE low-level radioactive waste (LLW); DOE mixed low-level waste (MLLW); and, U.S. Department of Defense (DOD) classified waste. The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  17. INEEL special case waste storage and disposal alternatives

    International Nuclear Information System (INIS)

    Larson, L.A.; Bishop, C.W.; Bhatt, R.N.

    1997-07-01

    Special case waste is historically defined as radioactive waste that does not have a path forward or fit into current Department of Energy management plans for final treatment or disposal. The objectives of this report, relative to special case waste at the Idaho National Engineering and Environmental Laboratory, are to (a) identify its current storage locations, conditions, and configuration; (b) review and verify the currently reported inventory; (c) segregate the inventory into manageable categories; (d) identify the portion that has a path forward or is managed under other major programs/projects; (e) identify options for reconfiguring and separating the disposable portions; (f) determine if the special case waste needs to be consolidated into a single storage location; and (g) identify a preferred facility for storage. This report also provides an inventory of stored sealed sources that are potentially greater than Class C or special case waste based on Nuclear Regulatory Commission and Site-Specific Waste Acceptance Criteria

  18. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal

  19. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas. Final phase 1, Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  20. Environmental monitoring report for commercial low-level radioactive waste disposal sites (1960`s through 1990`s)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    During the time period covered in this report (1960`s through early 1990`s), six commercial low-level radioactive waste (LLRW) disposal facilities have been operated in the US. This report provides environmental monitoring data collected at each site. The report summarizes: (1) each site`s general design, (2) each site`s inventory, (3) the environmental monitoring program for each site and the data obtained as the program has evolved, and (4) what the program has indicated about releases to off-site areas, if any, including a statement of the actual health and safety significance of any release. A summary with conclusions is provided at the end of each site`s chapter. The six commercial LLRW disposal sites discussed are located near: Sheffield, Illinois; Maxey Flats, Kentucky; Beatty, Nevada; West Valley, New York; Barnwell, South Carolina; Richland, Washington.

  1. Disposal of Iodine-129

    International Nuclear Information System (INIS)

    Morgan, M.T.; Moore, J.G.; Devaney, H.E.; Rogers, G.C.; Williams, C.; Newman, E.

    1978-01-01

    One of the problems to be solved in the nuclear waste management field is the disposal of radioactive iodine-129, which is one of the more volatile and long-lived fission products. Studies have shown that fission products can be fixed in concrete for permanent disposal. Current studies have demonstrated that practical cementitious grouts may contain up to 18% iodine as barium iodate. The waste disposal criterion is based on the fact that harmful effects to present or future generations can be avoided by isolation and/or dilution. Long-term isolation is effective in deep, dry repositories; however, since penetration by water is possible, although unlikely, release was calculated based on leach rates into water. Further considerations have indicated that sea disposal on or in the ocean floor may be a more acceptable alternative

  2. Environmental effects of disposal of intermediate-level wastes by shale fracturing

    International Nuclear Information System (INIS)

    Weeren, H.O.

    1978-01-01

    Shale fracturing is a process currently being used at the Oak Ridge National Laboratory for the permanent disposal of locally generated, intermediate-level waste solutions. In this process, the waste is mixed with a solids blend of cement and other additives; the resulting grout is then injected into an impermeable shale formation at a depth of 700 to 1000 ft. A few hours after completion of the injection, the grout sets and the radioactive waste are fixed in the shale formation. An analysis of environmental effects of normal operation and possible accident situations is discussed

  3. Geological disposal concept hearings

    International Nuclear Information System (INIS)

    1996-01-01

    The article outlines the progress to date on AECL spent-nuclear fuel geological disposal concept. Hearings for discussion, organised by the federal Environmental Assessment Review Panel, of issues related to this type of disposal method occur in three phases, phase I focuses on broad societal issues related to long term management of nuclear fuel waste; phase II will focus on the technical aspects of this method of disposal; and phase III will consist of community visits in New Brunswick, Quebec, Ontario, Manitoba and Saskatchewan. This article provides the events surrounding the first two weeks of phase I hearings (extracted from UNECAN NEWS). In the first week of hearings, where submissions on general societal issues was the focus, there were 50 presentations including those by Natural Resources Canada, Energy Probe, Ontario Hydro, AECL, Canadian Nuclear Society, Aboriginal groups, environmental activist organizations (Northwatch, Saskatchewan Environmental Society, the Inter-Church Uranium Committee, and the Canadian Coalition for Nuclear responsibility). In the second week of hearings there was 33 presentations in which issues related to siting and implementation of a disposal facility was the focus. Phase II hearings dates are June 10-14, 17-21 and 27-28 in Toronto

  4. Overview on the Multinational Collaborative Waste Storage and Disposal Solutions

    International Nuclear Information System (INIS)

    MARGEANU, C.A.

    2013-01-01

    The main drivers for a Safe, Secure and Global Energy future become clear and unequivocal: Security of supply for energy sources, Low-carbon electricity generation and Extended nuclear power assuring economic nuclear energy production, safe nuclear facilities and materials, safe and secure radioactive waste management and public acceptance. Responsible use of nuclear power requires that – in addition to safety, security and environmental protection associated with NPPs operation – credible solutions to be developed for dealing with the radioactive waste produced and especially for a responsible long term radioactive waste management. The paper deals with the existing multinational initiative in nuclear fuel cycle and the technical documents sustaining the multinational/regional disposal approach. Meantime, the paper far-reaching goal is to highlight on: What is offering the multinational waste storage and disposal solutions in terms of improved nuclear security ‽

  5. Development of a Generic Environmental Safety Case for the Disposal of Higher Activity Wastes in the UK

    International Nuclear Information System (INIS)

    Bailey, Lucy; Hicks, Tim

    2016-01-01

    The UK generic ESC demonstrates safe disposal of higher activity wastes, by providing: • A demonstration of how environmental safety can be achieved by a variety of disposal concepts based on systems of multiple engineered and natural barriers, providing multiple safety functions; • An understanding of expected barrier performance and how conditions in a disposal system will evolve, based on research findings presented in RWM’s knowledge base; • An approach to safety assessment based on multiple lines of reasoning, involving both qualitative and quantitative analysis; • Complementary insight modelling and total system modelling used to develop understanding of how different components of the engineered and natural barrier system contribute to safety

  6. Environmental Impact Statement. March 2011. Interim storage, encapsulation and final disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    An Environmental Impact Statement (EIS) shall be prepared and submitted along with applications for permissibility and a licence under the Environmental Code and a licence under the Nuclear Activities Act for new nuclear facilities. This Environmental Impact Statement has been prepared by Svensk Kaernbraenslehantering AB (the Swedish Nuclear Fuel and Waste Management Co, SKB) to be included in the licence applications for continued operation of Clab (central interim storage facility for spent nuclear fuel) in Simpevarp in Oskarshamn Municipality and construction and operation of facilities for encapsulation (integrated with Clab) and final disposal of spent nuclear fuel in Forsmark in Oesthammar Municipality

  7. Environmental Impact Statement. March 2011. Interim storage, encapsulation and final disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    2011-01-01

    An Environmental Impact Statement (EIS) shall be prepared and submitted along with applications for permissibility and a licence under the Environmental Code and a licence under the Nuclear Activities Act for new nuclear facilities. This Environmental Impact Statement has been prepared by Svensk Kaernbraenslehantering AB (the Swedish Nuclear Fuel and Waste Management Co, SKB) to be included in the licence applications for continued operation of Clab (central interim storage facility for spent nuclear fuel) in Simpevarp in Oskarshamn Municipality and construction and operation of facilities for encapsulation (integrated with Clab) and final disposal of spent nuclear fuel in Forsmark in Oesthammar Municipality

  8. An evaluation model for indoor environmental quality (IEQ) acceptance in residential buildings

    International Nuclear Information System (INIS)

    Lai, A.C.K.; Mui, K.W.; Wong, L.T.; Law, L.Y.

    2009-01-01

    The indoor environmental quality (IEQ) in residential buildings is examined from the prospect of an occupant's acceptance in four aspects: thermal comfort, indoor air quality, noise level and illumination level. Based on the evaluations by 125 occupants living in 32 typical residential apartments in Hong Kong, this study proposes empirical expressions to approximate the overall IEQ acceptance with respect to four contributors, namely operative temperature, carbon dioxide concentration, equivalent noise level and illumination level, via a multivariate logistic regression model. A range of IEQ acceptances for regular residential conditions is determined and the dependence of the predicted overall IEQ acceptance on the variations of the contributors is discussed. The proposed overall IEQ acceptance can be used as a quantitative assessment criterion for similar residential environments where an occupant's evaluation is expected. (author)

  9. General criteria for radioactive waste disposal

    International Nuclear Information System (INIS)

    Maxey, M.N.; Musgrave, B.C.; Watkins, G.B.

    1979-01-01

    Techniques are being developed for conversion of radioactive wastes to solids and their placement into repositories. Criteria for such disposal are needed to assure protection of the biosphere. The ALARA (as low as reasonably achievable) principle should be applicable at all times during the disposal period. Radioactive wastes can be categorized into three classes, depending on the activity. Three approaches were developed for judging the adequacy of disposal concepts: acceptable risk, ore body comparison, and three-stage ore body comparison

  10. Determinations of TSD facility acceptability under the CERCLA Off-Site Rule

    International Nuclear Information System (INIS)

    1997-06-01

    On September 22, 1993, the US Environmental Protection Agency (EPA) published the ''Off-Site Rule'' to implement section 121(d)(3) of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). CERCLA section 121(d)(3) requires that wastes generated as a result of remediation activities taken under CERCLA authority and transferred off-site be managed only at facilities that comply with the Resource Conservation and Recovery Act. In 1994, the DOE's Office of Environmental Policy and Assistance (OEPA), RCRA/CERCLA Division (EH-413) published a CERCLA Information Brief titled ''The Off-Site Rule'' which describes the content of the Off-Site Rule and clarifies some of its implications for DOE remedial actions under CERCLA. Additionally, EH-413 published the Guide on Selecting Compliant Off-Site Hazardous Waste Treatment, Storage and Disposal Facilities which provides a regulatory roadmap for accomplishing off-site transfers of environmental restoration and process hazardous waste at DOE facilities in a manner compliant with the Off-Site Rule and other relevant Federal regulations. Those guidance documents concentrate primarily on DOE's perspective as a hazardous waste generator. The purpose of this Information Brief is to address the implications of the Off-Site Rule for DOE-owned hazardous waste treatment, storage or disposal facilities that accept CERCLA remediation wastes from off-site locations

  11. Environmental restoration disposal facility applicable or relevant and appropriate requirements study report. Revision 00

    International Nuclear Information System (INIS)

    Roeck, F.V.; Vedder, B.L.; Rugg, J.E.

    1995-10-01

    The Environmental Restoration Disposal Facility (ERDF) will be a landfill authorized under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and will comply with the Resource Conservation and Recovery Act of 1976 (RCRA) substantive requirements. The facility will also comply with applicable or relevant and appropriate requirements (ARAR), including portions of the U.S. Environmental Protection Agency (EPA) regulations, Washington Administrative Code (WAC), and to-be-considered (TBC) elements such as U.S. Department of Energy (DOE) Orders. In considering the requirements of CERCLA, a detailed analysis of various alternatives for ERDF was completed using the nine CERCLA criteria, National Environmental Policy Act of 1969 (NEPA), and public comments. The ERDF record of decision (ROD) selected an alternative that includes a RCRA-compliant double-lined trench for the disposal of radioactive, hazardous, and mixed wastes resulting from the remediation of operable units (OU) within the National Priorities List (NPL) sites in the 100, 200, and 300 Areas. Only wastes resulting from the remediation of Hanford NPL sites will be allowed in the ERDF. Of the various siting and design alternatives proposed for ERDF, the selected alternative provides the best combination of features by balancing the nine CERCLA criteria, ARAR compliance, environmentally protective site, and various stakeholder and public recommendations. The ERDF trench design, compliant with RCRA Subtitle C minimum technical requirements (MTR), will be double lined and equipped with a leachate collection system. This design provides a more reliable system to protect groundwater than other proposed alternatives. The ERDF is located on the Hanford Site Central Plateau, southeast of the 200 West Area

  12. Description of work for routine groundwater sampling at the Environmental Restoration Disposal Facility

    International Nuclear Information System (INIS)

    Ford, B.H.

    1996-09-01

    This document provides a description of work and field implementation guidance for routine (post-baseline) groundwater monitoring sampling program at the Environmental Restoration Disposal Facility. The purpose of this program is to (1) meet the intent of the applicable or relevant and appropriate requirements; (2) document baseline groundwater conditions; (3) monitor those conditions for change; and (4) allow for modifications to groundwater sampling if required by the leachate management program

  13. radioactive waste disposal standards abroad

    International Nuclear Information System (INIS)

    Lu Yan; Xin Pingping; Wu Jian; Zhang Xue

    2012-01-01

    With the world focus on human health and environmental protection, the problem of radioactive waste disposal has gradually become a global issue, and the focus of attention of public. The safety of radioactive waste disposal, is not only related to human health and environmental safety, but also an important factor of affecting the sustainable development of nuclear energy. In recent years the formulation of the radioactive waste disposal standards has been generally paid attention to at home and abroad, and it has made great progress. In China, radioactive waste management standards are being improved, and there are many new standards need to be developed. The revised task of implement standards is very arduous, and there are many areas for improvement about methods and procedures of the preparation of standards. This paper studies the current situation of radioactive waste disposal standards of the International Atomic Energy Agency, USA, France, Britain, Russia, Japan, and give some corresponding recommendations of our radioactive waste disposal standards. (authors)

  14. Biomass. A modern and environmentally acceptable fuel

    International Nuclear Information System (INIS)

    Hall, D.O.; House, J.I.

    1995-01-01

    The energy of the sun and carbon dioxide from the atmosphere are captured by plants during photosynthesis. Plant biomass can be used to absorb carbon dioxide emissions from fossil fuels, or it can be converted into modern energy carriers such as electricity, and liquid and gaseous fuels. Biomass supplies 13% of the world's energy consumption (55 EJ, 1990), and in some developing countries it accounts for over 90% of energy use. There is considerable potential for the modernisation of biomass fuels through improved utilisation of existing resources, higher plant productivities and efficient conversion processes using advanced technologies. The interest in bioenergy is increasing rapidly, and it is widely considered as one of the main renewable energy resources of the future due to its large potential, economic viability, and various social and environmental benefits. In particular, biomass energy is among the most favourable options for reducing carbon dioxide emissions. Most of the perceived problems such as land availability, environmental impact, economic viability, and efficiency can be overcome with good management. The constraints to achieving environmentally-acceptable biomass production are not insurmountable, but should rather be seen as scientific and entrepreneurial opportunities which will yield numerous advantages at local, national and international levels in the long term

  15. COMPARISON OF THE ENVIRONMENTAL IMPACT OF DIFFERENT METHODS OF MINING WASTE DISPOSAL TECHNOLOGY USING AHP METHOD

    Directory of Open Access Journals (Sweden)

    Justyna Kubicz

    2016-05-01

    Full Text Available Exploitation of tailing ponds sites for storing all types of waste materials creates multiple problems concerning waste disposal and the environmental impact of the waste. Tailing ponds waste may comprise e.g. flotation tailings from ore enrichment plants. Despite the fact that companies / corporations use state-of-the-art methods of extraction and processing of copper ore, and introduce modern systems of organization and production management, the area located closest to the reservoir is exposed to its negative effects. Many types of waste material are a valuable source of secondary raw materials which are suitable for use by various industries. Examples of such materials are mining waste (flotation tailings, usually neutral to the environment, whose quantities produced in the process of exploitation of minerals is sizeable. The article compares different technological methods of mining waste disposal using AHP method and their environmental impact.

  16. Spent fuel disassembly hardware and other non-fuel bearing components: characterization, disposal cost estimates, and proposed repository acceptance requirements

    Energy Technology Data Exchange (ETDEWEB)

    Luksic, A.T.; McKee, R.W.; Daling, P.M.; Konzek, G.J.; Ludwick, J.D.; Purcell, W.L.

    1986-10-01

    There are two categories of waste considered in this report. The first is the spent fuel disassembly (SFD) hardware. This consists of the hardware remaining after the fuel pins have been removed from the fuel assembly. This includes end fittings, spacer grids, water rods (BWR) or guide tubes (PWR) as appropriate, and assorted springs, fasteners, etc. The second category is other non-fuel-bearing (NFB) components the DOE has agreed to accept for disposal, such as control rods, fuel channels, etc., under Appendix E of the standard utiltiy contract (10 CFR 961). It is estimated that there will be approximately 150 kg of SFD and NFB waste per average metric ton of uranium (MTU) of spent uranium. PWR fuel accounts for approximately two-thirds of the average spent-fuel mass but only 50 kg of the SFD and NFB waste, with most of that being spent fuel disassembly hardware. BWR fuel accounts for one-third of the average spent-fuel mass and the remaining 100 kg of the waste. The relatively large contribution of waste hardware in BWR fuel, will be non-fuel-bearing components, primarily consisting of the fuel channels. Chapters are devoted to a description of spent fuel disassembly hardware and non-fuel assembly components, characterization of activated components, disposal considerations (regulatory requirements, economic analysis, and projected annual waste quantities), and proposed acceptance requirements for spent fuel disassembly hardware and other non-fuel assembly components at a geologic repository. The economic analysis indicates that there is a large incentive for volume reduction.

  17. Waste-acceptance criteria and risk-based thinking for radioactive-waste classification

    International Nuclear Information System (INIS)

    Lowenthal, M.D.

    1998-01-01

    The US system of radioactive-waste classification and its development provide a reference point for the discussion of risk-based thinking in waste classification. The official US system is described and waste-acceptance criteria for disposal sites are introduced because they constitute a form of de facto waste classification. Risk-based classification is explored and it is found that a truly risk-based system is context-dependent: risk depends not only on the waste-management activity but, for some activities such as disposal, it depends on the specific physical context. Some of the elements of the official US system incorporate risk-based thinking, but like many proposed alternative schemes, the physical context of disposal is ignored. The waste-acceptance criteria for disposal sites do account for this context dependence and could be used as a risk-based classification scheme for disposal. While different classes would be necessary for different management activities, the waste-acceptance criteria would obviate the need for the current system and could better match wastes to disposal environments saving money or improving safety or both

  18. Radioactive waste products - suitability for final disposal

    International Nuclear Information System (INIS)

    Merz, E.; Odoj, R.; Warnecke, E.

    1985-06-01

    48 papers were read at the conference. Separate records are available for all of them. The main problem in radioactive waste disposal was the long-term sealing to prevent pollution of the biosphere. Problems of conditioning, acceptance, and safety measures were discussed. Final disposal models and repositories were presented. (PW) [de

  19. The disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ormai, P.

    2006-01-01

    The first part shows different ways of 'producing' radioactive wastes, defines the wastes of small, medium and high activity and gives estimation on the quantity of the necessary capacities of waste disposal facilities. The modern radioactive waste disposal that is the integrated processing of the form of waste, the package, the technical facility and the embedding geological environment that guarantee the isolation together. Another factor is the lifetime of radioactive waste which means that any waste containing long lifetime waste in higher concentration than 400-4000 kBq/kg should be disposed geologically. Today the centre of debate disposal of radioactive waste is more social than technical. For this reason not only geological conditions and technical preparations, but social discussions and accepting communities are needed in selecting place of facilities. Now, the focus is on long term temporary disposal of high activity wastes, like burnt out heating elements. The final part of the paper summarizes the current Hungarian situation of disposal of radioactive wastes. (T-R.A.)

  20. AECL's concept for the disposal of nuclear fuel waste and the importance of its implementation

    International Nuclear Information System (INIS)

    Allan, C.J.

    1993-07-01

    Since 1978, Canada has been investigating a concept for permanently dealing with the nuclear fuel waste from Canadian CANDU (Canada Deuterium Uranium) nuclear generating stations. The concept is based on disposing of the waste in a vault excavated 500 to 1000 m deep in intrusive igneous rock of the Canadian Shield. AECL Research will soon be submitting an environmental impact statement (EIS) on the concept for review by a Panel through the federal environmental assessment and review process (EARP). In accordance with AECL Research's mandate and in keeping with the detailed requirements of the review Panel, AECL Research has conducted extensive studies on a wide variety of technical and socio-economic issues associated with the concept. If the concept is accepted, we can and should continue our responsible approach and take the next steps towards constructing a disposal facility for Canada's used nuclear fuel waste

  1. Radioactive waste disposal by UKAEA establishments during 1979 and associated environmental monitoring results

    International Nuclear Information System (INIS)

    Flew, E.M.

    1980-07-01

    This report gives details of the amounts of solid and liquid radioactive waste disposed of by the principal establishments of the UKAEA during 1979. Waste arising at the UKAEA Nuclear Power Development Laboratories at Windscale and Springfields, which are both situated on British Nuclear Fuels Ltd. (BNFL) sites, is disposed of by BNFL and included in their authorisations. Discharges to atmosphere of airborne radioactive waste are also included in the report. A summary of the results of the environmental monitoring programmes carried out in connection with the radioactive waste discharges is given. To facilitate an appreciation of the standard of safety achieved, the discharges are, where appropriate, shown as a percentage of those authorised. In the case of atmospheric discharges no quantitative limits are yet specified in the authorisations, but the results and estimates of discharges from stacks are compared with Derived Working Limits (DWL's) (i.e. a limit derived from the dose limits recommended by The International Commission on Radiological Protection in such a way that compliance with it implies virtual certainty of compliance with the relevant dose limits). Environmental monitoring results are also compared with appropriate DWL's. The principles underlying the control of the discharge of radioactive waste to the environment are summarised in an Appendix to the report. (author)

  2. Financing of radioactive waste disposal. Finanzierung der nuklearen Entsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Reich, J

    1989-01-01

    Waste disposal is modelled as a financial calculus. In this connection the particularity is not primarily the dimension to be expected of financial requirement but above all the uncertainty of financial requirement as well as the ecological, socio-economic and especially also the temporal dimension of the Nuclear Waste Disposal project (disposal of spent fuel elements from light-water reactors with and without reprocessing, decommissioning = safe containment and disposal of nuclear power plants, permanent isolation of radioactive waste from the biosphere, intermediate storage). Based on the above mentioned factors the author analyses alternative approaches of financing or financial planning. He points out the decisive significance of the perception of risks or the evaluation of risks by involved or affected persons - i.e. the social acceptance of planned and designed waste disposal concepts - for the achievement and assessment of alternative solutions. With the help of an acceptance-specific risk measure developed on the basis of a mathematical chaos theory he illustrates, in a model, the social influence on the financing of nuclear waste disposal. (orig./HP).

  3. Three Mile Island Cleanup: experiences, waste disposal, and environmental impact

    International Nuclear Information System (INIS)

    King, L.J.; Opelka, J.H.

    1982-01-01

    These papers were presented in a two-session symposium during the American Institute of Chemical Engineers 1981 Summer National meeting in Detroit, Michigan, August 16-19, 1981. The cleanup activities described included the venting of the gases, mostly krypton-85, from the reactor containment building and several entries of personnel into the containment building to determine the physical conditions and the levels of radiation and radioactive contamination. Results of the latest process development tests of the flowsheet for the submerged Demineralizer Water Treatment System for decontaminating the water in the containment building were presented. The status of existing knowledge of radiation effects on ion exchange materials used in radioactive waste management were reviewed. A program to demonstrate incorporation of the loaded zeolite into a glass as a final waste form was also described. The generation, classification, treatment, and disposal of solid waste forms resulting from the cleanup were discussed with special consideration of the ion exchange media used for cleanup of liquids with relatively high radionuclide concentrations. The radiological, socioeconomic, and psychological impacts of the cleanup were evaluated. This work formed the basis for the recent issuance by the NRC of a programmatic environmental impact statement relative to decontamination and disposal of the radioactive wastes resulting from the accidents

  4. Offshore disposal of oil-based drilling fluid waste

    International Nuclear Information System (INIS)

    Malachosky, E.; Shannon, B.E.; Jackson, J.E.

    1991-01-01

    Offshore drilling operations in the Gulf of Mexico may use oil-based drilling fluids to mitigate drilling problems. The result is the generation of a significant quantity of oily cuttings and mud. The transportation of this waste for onshore disposal is a concern from a standpoint of both personnel safety and potential environmental impact. A process for preparing a slurry of this waste and the subsequent disposal of the slurry through annular pumping has been put into use by ARCO Oil and Gas Company. The disposal technique has been approved by the Minerals Management Service (MMS). The slurried waste is displaced down a casing annulus into a permeable zone at a depth below the surface casing setting depth. The annular disposal includes all cuttings and waste oil mud generated during drilling with oil-based fluids. This disposal technique negates the need for cuttings storage on the platform, transportation to shore, and the environmental effects of onshore surface disposal. The paper describes the environmental and safety concerns with onshore disposal, the benefits of annular disposal, and the equipment and process used for the preparation and pumping of the slurry

  5. EXAMPLE OF A RISK-BASED DISPOSAL APPROVAL: SOLIDIFICATION OF HANFORD SITE TRANSURANIC (TRU) WASTE

    International Nuclear Information System (INIS)

    PRIGNANO AL

    2007-01-01

    The Hanford Site requested, and the U.S. Environmental Protection Agency (EPA) Region 10 approved, a Toxic Substances Control Act of 1976 (TSCA) risk-based disposal approval (RBDA) for solidifying approximately four cubic meters of waste from a specific area of one of the K East Basin: the North Loadout Pit (NLOP). The NLOP waste is a highly radioactive sludge that contained polychlorinated biphenyls (PCBs) regulated under TSCA. The prescribed disposal method for liquid PCB waste under TSCA regulations is either thermal treatment or decontamination. Due to the radioactive nature of the waste, however, neither thermal treatment nor decontamination was a viable option. As a result, the proposed treatment consisted of solidifying the material to comply with waste acceptance criteria at the Waste Isolation Pilot Plant (WPP) in Carlsbad, New Mexico, or possibly the Environmental Restoration Disposal Facility at the Hanford Site, depending on the resulting transuranic (TRU) content of the stabilized waste. The RBDA evaluated environmental risks associated with potential airborne PCBs. In addition, the RBDA made use of waste management controls already in place at the treatment unit. The treatment unit, the T Plant Complex, is a Resource Conservation and Recovery Act of 1976 (RCRA)-permitted facility used for storing and treating radioactive waste. The EPA found that the proposed activities did not pose an unreasonable risk to human health or the environment. Treatment took place from October 26,2005 to June 9,2006, and 332 208-liter (55-gallon) containers of solidified waste were produced. All treated drums assayed to date are TRU and will be disposed at WIPP

  6. A survey of possible microbiological effects within shallow land disposal sites designed to accept intermediate-level radioactive wastes

    International Nuclear Information System (INIS)

    Rushbrook, P.E.

    1985-01-01

    A literature survey was conducted to assess the current knowledge on microbial activity that may occur within a shallow intermediate-level waste disposal trench. Relatively little published information exists that is directly based on intermediate radioactive wasteforms, but relevant work was identified from other scientific fields. The likely environmental conditions within a disposal trench and their influence on microbial activity are considered. Also discussed are specific microbiological effects on waste packagings, backfill materials and concrete structures. Overall, it is unlikely that there will be extensive activity within the trenches and little evidence exists to suggest microbiologically-enhanced radionuclide migration,. The quantitative effect of microbial action is not possible to ascertain from the literature, but the general impression is that it will be low. Physical or chemical degradation processes are likely to predominate over those of a microbiological nature. Areas where further research would be valuable are also recommended. (author)

  7. Environmental emissions of SOFC and SPFC system manufacture and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Karakoussis, V.; Leach, M.; Vorst, R. van der; Hart, D.; Lane, J.; Pearson, P.; Kilner, J.

    2000-07-01

    This report gives details of a study using Life Cycle Assessment (LCA) to examine the emissions and wastes produced in the manufacture of solid oxide and solid polymer fuel cells in order to identify any barrier to their commercial acceptance. The background to the study is traced, and the selection and definition of systems for studying are outlined. Life Cycle inventories for manufacture are explored focussing on material and energy inputs and emissions, and inventories and environmental burdens are considered. Potential commercial barriers for fuel cells from the environmental effects of manufacture and end-of-life are discussed, and recommendations for future work are given.

  8. Co-ordinated research and environmental surveillance programme related to sea disposal of radioactive waste

    International Nuclear Information System (INIS)

    1984-01-01

    Sea disposal operations of packaged low-level radioactive waste are carried out under the provisions of the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, also referred to as the London Dumping Convention. The environmental impact of this disposal method is continuously kept under review, in particular within the IAEA which has provided the ''Definition of High-Level Radioactive Waste or Other High-Level Radioactive Matter Unsuitable for Dumping at Sea'' for the purpose of the Convention and within the OECD-NEA in the framework of its Multilateral Consultation and Surveillance Mechanism for Sea Dumping of Radioactive Waste. The NEA Co-Ordinated Research and Environmental Surveillance Programme (CRESP) is focussed on the actual North-East Atlantic dump site. Its objective is to increase the available scientific data base related to the oceanographic and biological characteristics of the dump site and elaborate a site specific model of the transfers of radionuclides to human populations. Future site suitability reviews, as periodically requested under the terms of the Multilateral Consultation and Surveillance Mechanism, will therefore be based on a more accurate and comprehensive scientific basis

  9. Data package for the Low-Level Waste Disposal Development and Demonstration Program environmental impact statement: Volume 1, Sections 1--7 and Appendices A--D

    Energy Technology Data Exchange (ETDEWEB)

    Ketelle, R.H.

    1988-09-01

    This data package is required to support an Environmental Impact Statement (EIS) to be written to evaluate the effects of future disposal of low-level waste at four sites on the Oak Ridge Reservation. Current waste disposal facilities are exceeding their capacities and increasingly stringent disposal requirements dictate the need for the sites and new waste disposal technologies. The Low-Level Waste Disposal Development and Demonstration Program has developed a strategy for low-level waste disposal built around a dose based approach. This approach emphasizes contamination pathways, including surface and groundwater and ALARA conditions for workers. This strategy dictates the types of data needed for this data package. The data package provides information on geology, soils, groundwater, surface water, and ecological characterization of the Oak Ridge Reservation in order to evaluate alternative technologies and alternative sites. The results of the investigations and data collections indicate that different technologies will probably have to be used at different sites. This conclusion, however, depends on the findings of the Environmental Impact Statement. 14 figs., 19 tabs.

  10. Decision Support System For Management Of Low-Level Radioactive Waste Disposal At The Nevada Test Site

    International Nuclear Information System (INIS)

    Shott, G.; Yucel, V.; Desotell, L.; Carilli, J.T.

    2006-01-01

    The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoring program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim R simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of environmental

  11. Heat transfer analyses for grout disposal of radioactive double-shell slurry and customer wastes

    International Nuclear Information System (INIS)

    Robinson, S.M.; Gilliam, T.M.; McDaniel, E.W.

    1987-04-01

    Grout immobilization is being considered by Rockwell Hanford Operations (Rockwell Hanford) as a permanent disposal method for several radioactive waste streams. These include disposal of customer and double-shell slurry wastes in earthen trenches and in single-shell underground waste storage tanks. Heat transfer studies have previously been made to determine the maximum heat loading for grout disposal of various wastes under similar conditions, but a sensitivity analysis of temperature profiles to input parameters was needed. This document presents the results of heat transfer calculations for trenches containing grouted customer and double-shell slurry wastes and for in situ disposal of double-shell wastes in single-shell, domed concrete storage tanks. It discusses the conditions that lead to maximum grout temperatures of 250 0 F during the curing stage and 350 0 F thereafter and shows the dependence of these temperatures on input parameters such as soil and grout thermal conductivity, grout specific heat, waste loading, and disposal geometries. Transient heat transfer calculations were made using the HEATING6 computer code to predict temperature profiles in solidified low-level radioactive waste disposal scenarios at the Rockwell Hanford site. The calculations provide guidance for the development of safe, environmentally acceptable grout formulas for the Transportable Grout Facility. 11 refs

  12. Project W-049H disposal facility test report

    International Nuclear Information System (INIS)

    Buckles, D.I.

    1995-01-01

    The purpose of this Acceptance Test Report (ATR) for the Project W-049H, Treated Effluent Disposal Facility, is to verify that the equipment installed in the Disposal Facility has been installed in accordance with the design documents and function as required by the project criteria

  13. Environmental Standard Review Plan for the review of a license application for a low-level radioactive waste disposal facility: Environmental report

    International Nuclear Information System (INIS)

    1987-04-01

    The Environmental Standard Review Plan (ESRP) (NUREG-1300) provides guidance to staff reviewers in the Office of Nuclear Material Safety and Safeguards who perform environmental reviews of environmental reports prepared by applicants in support of license applications to construct and operate new low-level radioactive waste disposal facilities. The individual ESRPs that constitute this document identify the information considered necessary to conduct the review, the purpose and scope of the review, the analysis procedure and evaluation, the formal input to the environmental statement, and the references considered appropriate for each review. The ESRP is intended to ensure quality and uniformity of approach in individual reviews as well as compliance with the National Environmental Policy Act of 1969. In addition, the ESRP will make information about the environmental component of the licensing process more readily available and thereby will serve to improve the understanding of this process among the public, States and regional compacts, and the regulated community

  14. 3D inkjet printed disposable environmental monitoring wireless sensor node

    KAUST Repository

    Farooqui, Muhammad Fahad

    2017-10-24

    We propose a disposable, miniaturized, moveable, fully integrated 3D inkjet-printed wireless sensor node for large area environmental monitoring applications. As a proof of concept, we show the wireless sensing of temperature, humidity and H2S levels which are important for early warnings of two critical environmental conditions namely forest fires and industrial gas leaks. The temperature sensor has TCR of -0.018/°, the highest of any inkjet-printed sensor and the H2S sensor can detect as low as 3 ppm of gas. These sensors and an antenna have been realized on the walls of a 3D-printed cubic package which encloses the microelectronics developed on a 3D-printed circuit board. Hence, 3D printing and inkjet printing have been combined in order to realize a unique low-cost, fully integrated wireless sensor node. Field tests show that these sensor nodes can wirelessly communicate up to a distance of over 100m. Our proposed sensor node can be a part of internet of things with the aim of providing a better and safe living.

  15. Environmental impacts of ocean disposal of CO{sub 2}. Final report volume 2, September 1994--August 1996

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, H.J.; Adams, E.E. [eds.

    1996-12-01

    One option to reduce atmospheric CO{sub 2} levels is to capture and sequester power plant CO{sub 2}. Commercial CO{sub 2} capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO{sub 2} is highly uncertain. The deep ocean is one of only a few possible CO{sub 2} disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO{sub 2}. Technically, the term `disposal` is really a misnomer because the atmosphere and ocean eventually equilibrate on a time scale of 1000 years regardless of where the CO{sub 2} is originally discharged. However, peak atmospheric CO{sub 2} concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO{sub 2} injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO{sub 2} will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. In this project, we examined these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. In the process, we have developed a comprehensive method to assess the impacts of pH changes on passive marine organisms. This final report addresses the following six topics: CO{sub 2} loadings and scenarios, impacts of CO{sub 2} transport, near-field perturbations, far-field perturbations, environmental impacts of CO{sub 2} release, and policy and legal implications of CO{sub 2} release.

  16. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Willis, N.P.; Triner, G.C.

    1991-09-01

    Westinghouse Hanford Company manages the Hanford Site solid waste treatment, storage, and disposal facilities for the US Department of Energy Field Office, Richland under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites, radioactive solid waste storage areas and hazardous waste treatment, storage, and/or disposal facilities. This manual defines the criteria that must be met by waste generators for solid waste to be accepted by Westinghouse Hanford Company for treatment, storage and/or disposal facilities. It is to be used by all waste generators preparing radioactive solid waste for storage or disposal at the Hanford Site facilities and for all Hanford Site generators of hazardous waste. This manual is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of solid waste. The criteria in this manual represent a compilation of state and federal regulations; US Department of Energy orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to management of solid waste. Where appropriate, these requirements are included in the manual by reference. It is the intent of this manual to provide guidance to the waste generator in meeting the applicable requirements

  17. Approved CAMU equals faster, better, cheaper remediation at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Dupuis-Nouille, E.M.; Goidell, L.C.; Strimbu, M.J.; Nickel, K.A.

    1996-01-01

    A 1,050 acre Corrective Action Management Unit (CAMU) was approved for the Fernald Protection Agency Environmental Management Project (FEMP) by the US Environmental Protection Agency (USEPA) to manage environmental media remediation waste in the Operable Unit 5 Record of Decision, 1995. Debris is also proposed for management as remediation waste under the CAMU Rule in the Operable Unit 3 Remedial Investigation/Feasibility Study (RI/FS) Report, as of December 1995. Application of the CAMU Rule at the FEMP will allow consolidation of low-level mixed waste and hazardous waste that presents minimal threat from these two operable units in an on-property engineered disposal facility without triggering land disposal restrictions (LDRs). The waste acceptance criteria for the on property disposal facility are based on a combination of site-specific risk-based concentration standards, as opposed to non-site-specific requirements imposed by regulatory classifications

  18. Investigating Elementary School Students' Technology Acceptance by Applying Digital Game-Based Learning to Environmental Education

    Science.gov (United States)

    Cheng, Yuh-Ming; Lou, Shi-Jer; Kuo, Sheng-Huang; Shih, Ru-Chu

    2013-01-01

    In order to improve and promote students' environmental knowledge, attitudes, and behaviour, integrating environmental education into the primary education curriculum has become a key issue for environmental education. For this reason, this study aimed to investigate elementary school students' acceptance of technology applying digital game-based…

  19. Radioactive waste disposal areas and associated environmental surveillance data at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Oakes, T.W.; Shank, K.E.

    1979-12-01

    Environmental surveillance data have been collected around radioactive waste disposal areas for the past thirty years at Oak Ridge National Laboratory (ORNL). The wealth of data collected around the ORNL radioactive waste burial grounds is presented in this review. The purpose of this paper is to describe the solid waste burial grounds in detail along with the environmental monitoring data. The various monitoring systems are reviewed, and the liquid discharge trends are discussed. Monitoring at White Oak Dam, the last liquid control point for the Laboratory, was started in the late 1940's and is continuing. Presently, a network of five environmental monitoring stations is in operation to monitor the radionuclide content of surface waters in the White Oak Creek watershed. Facts observed during the lifetime of the disposal sites include: (1) a large amount of 106 Ru released during 1959 to 1964 due to the fact that Conasauga shale did not retain this element as well as it retained other radionuclides. (2) Large quantities of tritiated water have been released to the Clinch River in recent years, but, from a practical standpoint, little can be done to inhibit or control these releases. (3) A general downward trend in the number of curies released has been observed for all other radionuclides. A number of corrective measures that have been initiated at ORNL to reduce the radioactive liquid discharges are outlined in the paper

  20. Disposal options for disused radioactive sources

    International Nuclear Information System (INIS)

    2005-01-01

    This report presents a review of relevant information on the various technical factors and issues, as well as approaches and relevant technologies, leading to the identification of potential disposal options for disused radioactive sources. The report attempts to provide a logical 'road map' for the disposal of disused radioactive sources, taking into consideration the high degree of variability in the radiological properties of such types of radioactive waste. The use of borehole or shaft type repositories is highlighted as a potential disposal option, particularly for those countries that have limited resources and are looking for a simple, safe and cost effective solution for the disposal of their radioactive source inventories. It offers information about usage and characteristics of radioactive sources, disposal considerations, identification and screening of disposal options as well as waste packaging and acceptance criteria for disposal. The information provided in the report could be adapted or adopted to identify and develop specific disposal options suitable for the type and inventory of radioactive sources kept in storage in a given Member State

  1. Aspects on the acceptance of waste for disposal in SFR

    International Nuclear Information System (INIS)

    Torstenfelt, Boerje

    2006-01-01

    When licensing a final repository for radioactive waste certain assumptions have to be made concerning the waste. These assumptions cover radionuclide inventory and nonradiological materials and its physical and chemical impact on the waste, the repository and on the environment. Development of new waste treatment systems and waste packages at the waste producer site aim at finding solutions and products that can be stored, transported and disposed of safely and are economically sound. This paper discusses some aspects concerning development of new or modified waste products. It highlights the importance of analysing the whole sequence in treatment, handling and disposing the waste. The process should be to find an optimal solution for the whole system, considering the fact that what is best in one step it not necessary best for the whole system, including the post closure issues. (author)

  2. Environmental safety case and cement-related issues for intermediate-level waste in a co-located geological disposal facility

    International Nuclear Information System (INIS)

    Norris, Simon; Williams, Steve

    2012-01-01

    Simon Norris of the NDA described safety case and cement-related issues for a geological disposal facility for ILW. The Environmental Safety Case (ESC) needs to demonstrate a clear understanding of: - The disposal facility in its geological setting. - How the disposal system will evolve. - How the various components of system (including cementitious materials) contribute to meeting the requirement of providing a safe long-term solution for the disposed wastes. The ESC must include and support the key environmental safety arguments with underpinning lines of reasoning and detailed analysis, assessments and supporting evidence (including those relating to cementitious materials). In an ILW disposal system, cementitious materials could be used in several ways: - As in-package grouting materials and package materials. - Backfill material. - Shotcrete and other vault lining technologies that could be employed during construction and operation. - Engineered seals. - Structural materials. Given that cementitious materials will play important roles in the disposal system - and within a general strategy for managing uncertainty - the NDA is conducting, or has recently conducted, research into the following topics: - Assessment of the potential for interactions between disposal modules for low- and intermediate-level wastes and for HLW and spent fuel. - The effect of possible cementitious vault liners (e.g. composed from shotcrete) on the early post-closure evolution of waste-derived gas in a geological disposal facility for low- and intermediate-level wastes. - The evolution of cementitious backfill materials, including cracking, and related evolution of groundwater flow and chemistry in the vault environment of a geological disposal facility. - Evidence from nature and archaeology relevant to the long-term properties of cement. - Interaction of waste-derived gas (particularly carbon-14 bearing gas) with cementitious materials in the facility near-field. - The choice of in

  3. Heat generation and heating limits for the IRUS LLRW disposal facility

    International Nuclear Information System (INIS)

    Donders, R.E.; Caron, F.

    1995-10-01

    Heat generation from radioactive decay and chemical degradation must be considered when implementing low-level radioactive waste (LLRW) disposal. This is particularly important when considering the management of spent radioisotope sources. Heating considerations and temperature calculations for the proposed IRUS (Intrusion Resistant Underground Structure) near-surface disposal facility are presented. Heat transfer calculations were performed using a finite element code with realistic but somewhat conservative heat transfer parameters and environmental boundary conditions. The softening-temperature of the bitumen waste-form (38 deg C) was found to be the factor that limits the heat generation rate in the facility. This limits the IRUS heat rate, assuming a uniform source term, to 0.34 W/m 3 . If a reduced general heat-limit is considered, then some higher-heat packages can be accepted with restrictions placed on their location within the facility. For most LLRW, heat generation from radioactive decay and degradation are a small fraction of the IRUS heating limits. However, heating restrictions will impact on the disposal of higher-activity radioactive sources. High activity 60 Co sources will require decay-storage periods of about 70 years, and some 137 Cs will need to bed disposed of in facilities designed for higher-heat waste. (author). 21 refs., 8 tabs., 2 figs

  4. Performance assessment of select covers and disposal cell compliance with EPA [Environmental Protection Agency] groundwater standards

    International Nuclear Information System (INIS)

    1989-06-01

    This document describes the technical approach to the assessment of the performance of a full component topslope cover, three sideslope covers, and hence the way in which a Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell complies with the US Environmental Protection Agency (EPA) groundwater protection standards. 4 refs

  5. Unreviewed Disposal Question Evaluation: Waste Disposal in Engineered Trenches 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-12

    Revision 0 of this UDQE addressed the proposal to place Engineered Trench #3 (ET#3) in the footprint designated for Slit Trench #12 (ST#12) and operate using ST#12 disposal limits. Similarly, Revision 1 evaluates whether ET#4 can be located in and operated to Slit Trench #13 (ST#13) disposal limits. Both evaluations conclude that the proposed operations result in an acceptably small risk of exceeding a SOF of 1.0 and approve these actions from a performance assessment (PA) perspective. Because ET#3 will be placed in the location previously designated for ST#12, Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore, new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  6. An industry perspective on commercial radioactive waste disposal conditions and trends.

    Science.gov (United States)

    Romano, Stephen A

    2006-11-01

    The United States is presently served by Class-A, -B and -C low-level radioactive waste and naturally-occurring and accelerator-produced radioactive material disposal sites in Washington and South Carolina; a Class-A and mixed waste disposal site in Utah that also accepts naturally-occurring radioactive material; and hazardous and solid waste facilities and uranium mill tailings sites that accept certain radioactive materials on a site-specific basis. The Washington site only accepts low-level radioactive waste from 11 western states due to interstate Compact restrictions on waste importation. The South Carolina site will be subject to geographic service area restrictions beginning 1 July 2008, after which only three states will have continued access. The Utah site dominates the commercial Class-A and mixed waste disposal market due to generally lower state fees than apply in South Carolina. To expand existing commercial services, an existing hazardous waste site in western Texas is seeking a Class-A, -B and -C and mixed waste disposal license. With that exception, no new Compact facilities are proposed. This fluid, uncertain situation has inspired national level rulemaking initiatives and policy studies, as well as alternative disposal practices for certain low-activity materials.

  7. Review of very low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Wang Jinsheng; Guo Minli; Tian Hao; Teng Yanguo

    2005-01-01

    Very low level waste (VLLW) is a new type of radioactive wastes proposed recently. No widely acceptable definition and disposal rules have been established for it. This paper reviews the definition of VLLW in some countries where VLLW was researched early, as well as the disposal policies and methods of VLLW that the IAEA and these countries followed. In addition, the safety assessment programs for VLLW disposal are introduced. It is proved the research of VLLW is urgent and essential in china through the comparison of VLLW disposal between china and these counties. At last, this paper points out the future development of VLLW disposal research in China. (authors)

  8. Corrective action management unit application for the Environmental Restoration Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Evans, G.C.

    1994-06-01

    The Environmental Restoration Disposal Facility (ERDF) is to accept both CERCLA (EPA-regulated) and RCRA (Ecology-regulated) remediation waste. The ERDF is considered part of the overall remediation strategy on the Hanford Site, and as such, determination of ERDF viability has followed both RCRA and CERCLA decision making processes. Typically, determination of the viability of a unit, such as the ERDF, would occur as part of record of decision (ROD) or permit modification for each remediation site before construction of the ERDF. However, because construction of the ERDF may take a significant amount of time, it is necessary to begin design and construction of the ERDF before final RODs/permit modifications for the remediation sites. This will allow movement of waste to occur quickly once the final remediation strategy for the RCRA and CERCLA past-practice units is determined. Construction of the ERDF is a unique situation relative to Hanford Facility cleanup, requiring a Hanford Facility specific process be developed for implementing the ERDF that would satisfy both RCRA and CERCLA requirements. While the ERDF will play a significant role in the remediation process, initiation of the ERDF does not preclude the evaluation of remedial alternatives at each remediation site. To facilitate this, the January 1994 amendment to the Tri-Party Agreement recognizes the necessity for the ERDF, and the Tri-Party Agreement states: ``Ecology, EPA, and DOE agree to proceed with the steps necessary to design, approve, construct, and operate such a ... facility.`` The Tri-Party Agreement requires the DOE-RL to prepare a comprehensive ``package`` for the EPA and Ecology to consider in evaluating the ERDF. The package is to address the criteria listed in 40 CFR 264.552(c) for corrective action management unit (CAMU) designation and a CERCLA ROD. This CAMU application is submitted as part of the Tri-Party Agreement-required information package.

  9. Corrective action management unit application for the Environmental Restoration Disposal Facility

    International Nuclear Information System (INIS)

    Evans, G.C.

    1994-06-01

    The Environmental Restoration Disposal Facility (ERDF) is to accept both CERCLA (EPA-regulated) and RCRA (Ecology-regulated) remediation waste. The ERDF is considered part of the overall remediation strategy on the Hanford Site, and as such, determination of ERDF viability has followed both RCRA and CERCLA decision making processes. Typically, determination of the viability of a unit, such as the ERDF, would occur as part of record of decision (ROD) or permit modification for each remediation site before construction of the ERDF. However, because construction of the ERDF may take a significant amount of time, it is necessary to begin design and construction of the ERDF before final RODs/permit modifications for the remediation sites. This will allow movement of waste to occur quickly once the final remediation strategy for the RCRA and CERCLA past-practice units is determined. Construction of the ERDF is a unique situation relative to Hanford Facility cleanup, requiring a Hanford Facility specific process be developed for implementing the ERDF that would satisfy both RCRA and CERCLA requirements. While the ERDF will play a significant role in the remediation process, initiation of the ERDF does not preclude the evaluation of remedial alternatives at each remediation site. To facilitate this, the January 1994 amendment to the Tri-Party Agreement recognizes the necessity for the ERDF, and the Tri-Party Agreement states: ''Ecology, EPA, and DOE agree to proceed with the steps necessary to design, approve, construct, and operate such a ... facility.'' The Tri-Party Agreement requires the DOE-RL to prepare a comprehensive ''package'' for the EPA and Ecology to consider in evaluating the ERDF. The package is to address the criteria listed in 40 CFR 264.552(c) for corrective action management unit (CAMU) designation and a CERCLA ROD. This CAMU application is submitted as part of the Tri-Party Agreement-required information package

  10. Commercial low-level radioactive waste disposal in the US

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.

    1995-10-01

    Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going.

  11. Commercial low-level radioactive waste disposal in the US

    International Nuclear Information System (INIS)

    Smith, P.

    1995-01-01

    Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going

  12. Environmental impact statement for initiation of transuranic waste disposal at the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Johnson, H.E.; Whatley, M.E.

    1996-01-01

    WIPP's long-standing mission is to demonstrate the safe disposal of TRU waste from US defense activities. In 1980, to comply with NEPA, US DOE completed its first environmental impact statement (EIS) which compared impacts of alternatives for TRU waste disposal. Based on this 1980 analysis, DOE decided to construct WIPP in 1981. In a 1990 decision based on examination of alternatives in a 1990 Supplemental EIS, DOE decided to continue WIPP development by proceeding with a testing program to examine WIPP's suitability as a TRU waste repository. Now, as DOE's Carlsbad Area Office (CAO) attempts to complete its regulatory obligations to begin WIPP disposal operations, CAO is developing WIPP's second supplemental EIS (SEIS-II). To complete the SEIS-II, CAO will have to meet a number of challenges. This paper explores both the past and present EISs prepared to evaluate the suitability of WIPP. The challenges in completing an objective comparison of alternatives, while also finalizing other critical-path compliance documents, controlling costs, and keeping stakeholders involved during the decision-making process are addressed

  13. Control and tracking arrangements for solid low-level waste disposals to the UK Drigg disposal site

    International Nuclear Information System (INIS)

    Elgie, K.G.; Grimwood, P.D.

    1993-01-01

    The Drigg disposal site has been the principal disposal site for solid low-level radioactive wastes (LLW) in the United Kingdom since 1959. It is situated on the Cumbrian coast, some six kilometers to the south of the Sellafield nuclear reprocessing site. The Drigg site receives LLW from a wide range of sources including nuclear power generation, nuclear fuel cycle activities, defense activities, isotope manufacture, universities, hospitals, general industry and clean-up of contaminated sites. This LLW has been disposed of in a series of trenches cut into the underlying clay layer of the site, and, since 1988, also into concrete lined vault. The total volume of LLW disposed of at Drigg is at present in the order of 800,000m 3 , with disposals currently approximately 25,000m 3 per year. British Nuclear Fuels plc (BNFL) owns and operates the Drigg disposal site. To meet operational and regulatory requirements, BNFL needs to ensure the acceptability of the disposed waste and be able to track it from its arising point to its specific disposal location. This paper describes the system that has been developed to meet these requirements

  14. Value systems and opinions on the disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Seidl, R.; Moser, C.; Kruetli, P.; Stauffacher, M.

    2011-06-01

    This report by the Institute for Environmental Decisions at the Swiss Federal Institute of Technology, Zurich, takes a look at factors concerning acceptance, values, chances and risks involved in the realisation of depositories for nuclear wastes in Switzerland. The aims of a study made on the subject are discussed. The study was organised in five steps: The first step involved a literature study covering value systems, value-connected concepts for geological deep repositories and their evaluation. In the second step, a screening in connection with the values involved and their influence on the formation of opinion is examined. The random sampling of public opinion involved in this step is described and discussed. A third step involved the evaluation of interviews made on the subject of radioactive waste disposal. The fourth step was to correlate the results and make conclusions on the methodology being used in connection with the disposal of radioactive wastes. Three appendices to the report present further details on the work done

  15. Programmatic Environmental Impact Statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident at Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320): Final report

    International Nuclear Information System (INIS)

    1987-06-01

    In accordance with the National Environmental Policy Act, the Commission's implementing regulations, and the Commission's April 27, 1981 Statement of Policy, the Programmatic Environmental Impact Statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979, accident Three Mile Island Nuclear Station, Unit 2 NUREG-0683 (PEIS) is being supplemented. This supplement updates the environmental evaluation of accident-generated water disposal alternatives published in the PEIS, utilizing more complete and current information. Also, the supplement includes a specific environmental evaluation of the licensee's proposal for water disposition. Although no clearly preferable water disposal alternative was identified, the supplement concluded that a number of alternatives could be implemented without significant environmental impact. The NRC staff has concluded that the licensee's proposed disposal of the accident-generated water by evaporation will not significantly affect the quality of the human environment. Further, any impacts from the disposal program are outweighed by its benefits

  16. AECB staff response to the environmental impact statement on the concept for disposal of Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    1995-07-01

    The Environmental Impact Statement (EIS) on the Concept for Disposal of Canada's Nuclear Fuel Waste was released in October 1994 (AECL,1994) in response to the guidelines issued in 1992 by a Panel formed to evaluate this concept (Federal Environmental Assessment Review Panel, 1992). This response is primarily a statement of deficiencies and thus focuses on the negative aspects of the EIS. The staff review of the EIS was based on the AECB mandate, which is to protect human health and the environment and as such was focused on technical issues in the EIS. These were performance assessment of the multiple barrier system, environmental impacts, concept feasibility, siting, transport and safety as well as general issues of regulatory policy and criteria. The EIS and its supporting documentation have been the sole basis used to judge whether AECB staff expectations of the EIS have been met. The staff response (Part II) considers whether an issue is addressed appropriately and adequately, while taking account of the generic and preliminary nature of the concept. The overall conclusion that AECB staff have drawn from the technical review of the EIS is that the EIS, by itself, does not adequately demonstrate the case for deep geological disposal for nuclear fuel waste. However, AECB staff believe that the EIS information, in combination with a variety of generic national and international assessments, has provided confidence that the deep geological disposal concept is safe and viable. 74 refs

  17. Subseabed disposal safety analysis

    International Nuclear Information System (INIS)

    Koplick, C.M.; Kabele, T.J.

    1982-01-01

    This report summarizes the status of work performed by Analytic Sciences Corporation (TASC) in FY'81 on subseabed disposal safety analysis. Safety analysis for subseabed disposal is divided into two phases: pre-emplacement which includes all transportation, handling, and emplacement activities; and long-term (post-emplacement), which is concerned with the potential hazard after waste is safely emplaced. Details of TASC work in these two areas are provided in two technical reports. The work to date, while preliminary, supports the technical and environmental feasibility of subseabed disposal of HLW

  18. Environmental standards for management and disposal of spent nuclear fuel, high-level and transuranic radioactive wastes, 40 CFR part 191: draft environmental impact statement

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The establishment of environmental standards for management and disposal of spent nuclear reactor fuel and high-level and transuranic radioactive wastes is proposed. The standards would require that maximum individual doses from all normal operations be limited to 25 millirem to the whole body, 75 millirem to the thyroid, and 25 millirem to any other organ. Regarding disposal of subject materials in geologic sites, the standards would include numerical containment requirements for the first 10,000 years following disposal, assurance requirements, and procedural requirements. The assurance requirements would provide seven principles necessary for developing confidence that long-term containment requirements would be upheld. The principles would call for well-designed, multiple-barrier disposal systems that would not rely on future generations for maintenance and would not be located near potential valuable resources. The principles would also require that future generations be provided with information about the location and dangers of the wastes and an option to recover the wastes if necessary. Procedural requirements would be developed to assure that the containment requirements were upheld. The implementation of the standards would protect public health and the environment against emissions of radioactivity. The maximum impact expected from a disposal system complying with the proposed standards would be less than 1000 premature cancer deaths over the first 10,000 years for disposal of high-level wastes produced by all currently operating reactors over their lifetime

  19. A summary of the geotechnical and environmental investigations pertaining to the Vaalputs national radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Hambleton-Jones, B.B.; Levin, M.; Camisani-Calzolari, F.A.G.M.

    1986-08-01

    This report describes the geological environmental surveys that lead to the choice and final evaluation of the Vaalputs national facility for the disposal of radioactive waste. This survey looked at the geography, demography, ecology, meteorology, geology, geohydrology and background radiological characteristics of the Vaalputs radioactive waste facility

  20. Consultation Report. Consultation under the Environmental Act sixth chapter 4 paragraph for interim storage, encapsulation and disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    2010-09-01

    This consultation report is an appendix to the Environmental Impact Assessment (EIA) which in turn is an appendix to SKB's application under the Environmental Code for the continued operation of CLAB (Central interim storage for spent Nuclear Fuel, located on the Simpevarp Peninsula in Oskarshamn municipality), to build the encapsulation plant and operate it integrated with CLAB and to construct and operate the disposal facility in Soederviken at Forsmark in Oesthammar municipality, and SKB's application for a license under the Nuclear Activities Act to construct and operate the disposal facility at Forsmark. The aim of the consultation report is to give an overall picture of the consultations

  1. Inorganic metal settlement in fuel tanks and their environmental effect for disposal

    International Nuclear Information System (INIS)

    Malana, M.A.; Nadeem, M.

    2000-01-01

    Air-quality or, more precisely, the health and environmental consequences of poor air-quality are currently the center of great deal of attention from media, pressure groups and government. Usage of petroleum-sludge, after its disposal, is also a cause of air pollution. The sludge is generally used for burning small local industrial and brick-kilns, without any preventive measures. This study is based on the estimation of trace-metal concentrations in petroleum sludge, which are emitting sulphur and metal contents into the environment, unknowingly. It is also noted that the concentration-ratio of metal-contents is higher in sludge samples. (author)

  2. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2012-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  3. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2012-02-28

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  4. The AMES Laboratory chemical disposal site removal action: Source removal, processing, and disposal

    International Nuclear Information System (INIS)

    Shirley, R.S.

    1996-01-01

    The Ames Laboratory has historically supported the U.S. Department of Energy (USDOE) and its predecessor agencies by providing research into the purification and manufacturing of high purity uranium, thorium, and yttrium metals. Much of this work was accomplished in the late 1950s and early 1960s prior to the legislation of strict rules and regulations covering the disposal of radioactive and chemical wastes. As a result, approximately 800 cubic meters of low-level radioactive wastes, chemical wastes, and contaminated debris were disposed in nine near surface cells located in a 0.75 hectare plot of land owned by Iowa State University in Ames, Iowa. Under a national contract with the U.S. Army Corps of Engineers (USACE), OHM Remediation Services Corp (OHM) was tasked with providing turnkey environmental services to remove, process, package, transport, and coordinate the disposal of the waste materials and contaminated environmental media

  5. The Ames Laboratory Chemical Disposal Site removal action: Source removal, processing, and disposal

    International Nuclear Information System (INIS)

    Shirley, R.S.

    1995-01-01

    The Ames Laboratory has historically supported the US Department of Energy (USDOE) and its predecessor agencies by providing research into the purification and manufacturing of high purity uranium, thorium, and yttrium metals. Much of this work was accomplished in the late 1950s and early 1960s prior to the legislation of strict rules and regulations covering the disposal of radioactive and chemical wastes. As a result, approximately 800 cubic meters of low-level radioactive wastes, mixed wastes, and contaminated debris were disposed in nine near surface cells located in a 0.75 hectare plot of land owned by Iowa State University in Ames, Iowa. Under a national contract with the US Army Corps of Engineers (USACE), OHM Remediation Services Corp. (OHM) was tasked with providing turnkey environmental services to remove, process, package, transport, and coordinate the disposal of the waste materials and contaminated environmental media

  6. Radioactive wastes with negligible heat generation suitable for disposal

    International Nuclear Information System (INIS)

    Brennecke, P.; Schumacher, J.; Warnecke, E.

    1987-01-01

    It is planned to dispose of radioactive wastes with negligible heat generation in the Konrad repository. Preliminary waste acceptance requirements are derived taking the results of site-specific safety assessments as a basis. These requirements must be fulfilled by the waste packages on delivery. The waste amounts which are currently stored and those anticipated up to the year 2000 are discussed. The disposability of these waste packages in the Konrad repository was evaluated. This examination reveals that basically almost all radioactive wastes with negligible heat generation can be accepted. (orig.) [de

  7. Environmental impacts of ocean disposal of CO2. First quarterly report, September 1--September 30, 1994

    International Nuclear Information System (INIS)

    Tester, J.W.

    1994-01-01

    This paper is divided into five sections (corresponding to five tasks) which all must be considered in order to determine the ultimate environmental impact of ocean disposal of CO 2 . The sections are: ambient physical and chemical properties of the ocean; CO 2 loadings (i.e. quantities and purities of CO 2 ) produced using different capture technologies; methods of CO 2 transport and injection, and their associated physical/chemical perturbations; environmental impacts for the scenarios outlined in section the previous section; and other considerations including legal issues, public perception, and monitoring requirements

  8. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

  9. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    International Nuclear Information System (INIS)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-01

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility

  10. Landfill disposal risk assessment

    International Nuclear Information System (INIS)

    Mininni, G.; Passino, R.; Spinosa, L.

    1993-01-01

    Landfill disposal is the most used waste disposal system in Italy, due to its low costs and also to the great opposition of populations towards new incineration plants and the adjustment of the existing ones. Nevertheless, landfills may present many environmental problems as far as leachate and biogas are concerned directly influencing water, air and soil. This paper shows the most important aspects to be considered for a correct evaluation of environmental impacts caused by a landfill of urban wastes. Moreover, detection systems for on site control of pollution phenomena are presented and some measures for an optimal operation of a landfill are suggested

  11. Radioactive waste disposal: an international law perspective

    International Nuclear Information System (INIS)

    Barrie, G.N.

    1989-01-01

    The question of radioactive waste disposal is the most intractable technical and political problem facing nuclear industry. Environmentalists world-wide demand a nuclear waste policy that must be ecologically acceptable internationally. Radioactive wastes and oil pollution were the first two types of marine pollution to receive international attention and various marine pollution controls were established. Ocean disposal was co-ordinated by the Nuclear Energy Agency and the Organization of Economic Co-operation and Development in 1967. The first treaty was the 1958 Convention on the High Seas (High Seas Convention). In response to its call for national co-operation the International Atomic Energy Agency (IAEA) established its Brynielson panel. The IAEA first issued guidelines on sea dumping in 1961. The London Dumping Convention, written in 1972, is the only global agreement concerned solely with the disposal of wastes in the marine environment by dumping. None of the global agreements make specific reference to sea-bed disposal of high-level radioactive wastes. Negotiations began at the Third UN Conference on the Law of the Sea (UNCLOS III) for the codification of a comprehensive treaty concerned with the protection, conservation, sustainable use and development of the marine environment. Burial in deep geological formations is a method of HLW disposal which decreases the chances of accidental intrusion by mankind and has little likelihood of malicious intrusion. National waste management programmes of different countries differ but there is agreement on the acceptable technical solutions to issues of waste management. The final disposition of HLW - storage or disposal - has not been decisively determined, but there is growing consensus that geological land-based disposal is the most viable alternative. Expanded international technical co-operation could well reduce the time needed to develop effective waste disposal mechanisms

  12. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.

    1992-09-01

    Recycling and disposal of spent sodium-sulfur (Na/S) batteries are important issues that must be addressed as part of the commercialization process of Na/S battery-powered electric vehicles. The use of Na/S batteries in electric vehicles will result in significant environmental benefits, and the disposal of spent batteries should not detract from those benefits. In the United States, waste disposal is regulated under the Resource Conservation and Recovery Act (RCRA). Understanding these regulations will help in selecting recycling and disposal processes for Na/S batteries that are environmentally acceptable and cost effective. Treatment processes for spent Na/S battery wastes are in the beginning stages of development, so a final evaluation of the impact of RCRA regulations on these treatment processes is not possible. The objectives of tills report on battery recycling and disposal are as follows: Provide an overview of RCRA regulations and requirements as they apply to Na/S battery recycling and disposal so that battery developers can understand what is required of them to comply with these regulations; Analyze existing RCRA regulations for recycling and disposal and anticipated trends in these regulations and perform a preliminary regulatory analysis for potential battery disposal and recycling processes. This report assumes that long-term Na/S battery disposal processes will be capable of handling large quantities of spent batteries. The term disposal includes treatment processes that may incorporate recycling of battery constituents. The environmental regulations analyzed in this report are limited to US regulations. This report gives an overview of RCRA and discusses RCRA regulations governing Na/S battery disposal and a preliminary regulatory analysis for Na/S battery disposal.

  13. The framework which aims at improving compatibility of the high-level radioactive waste disposal technology with social values and the role of risk communication

    International Nuclear Information System (INIS)

    Sakamoto, Shuichi; Kanda, Keiji

    2002-01-01

    Public perception on safety is the key factor for achieving public acceptance of the high-level radioactive waste (HLW) disposal program. Past studies on public perception and HLW management have confirmed that the public do not share the confidence of the experts in safety and feasibility of HLW disposal. The importance of a more comprehensive approach to enhance acceptability of the HLW disposal technology is recognized. This paper proposes a framework for inducing the implementers and regulators to improve compatibility of the HLW disposal technology with social values. In this framework, the implementers and regulators identify technical components which are subject to substantial influence from public concerns. Then, they manage these components through the following actions: 1) establishing policies, targets and plans to make these components compatible with social values, 2) developing and utilizing the components based on the above policies, targets and plans, 3) checking the extent of compatibility through intensive risk communication and 4) improving the process of developing and utilizing the components. This framework requires information disclosure and evaluation by an independent body which are expected to intensify the incentive to take the above actions. Canada's environmental assessment review process regarding the HLW disposal concept suggests that this framework could work effectively. (author)

  14. Some notes on the Timing of Geological Disposal of CANDU Spent Fuels

    International Nuclear Information System (INIS)

    Choi, Heui Joo; Kook, Dong Hak; Choi, Jong Won

    2010-01-01

    CANDU spent fuel is to be disposed of at repository finally rather than recycled because of its low fissile nuclide concentration. But the difficult situation of finding a repository site can not help introducing a interim storage in the short term. It is required to find an optimum timing of geological disposal of CANDU spent fuels related to the interim storage operation period. The major factors for determining the disposal starting time are considered as safety, economics, and public acceptance. Safety factor is compared in terms of the decay heat and non-proliferation. Economics factor is compared from the point of the operation cost, and public acceptance factor is reviewed from the point of retrievability and inter-generation ethics. This paper recommended the best solution for the disposal starting time by analyzing the above factors. It is concluded that the optimum timing for the CANDU spent fuel disposal is around 2041 and that the sooner disposal time, the better from the point of technical and safety aspects.

  15. On-site disposal as a decommissioning strategy

    International Nuclear Information System (INIS)

    1999-11-01

    On-site disposal is not a novel decommissioning strategy in the history of the nuclear industry. Several projects based on this strategy have been implemented. Moreover, a number of studies and proposals have explored variations within the strategy, ranging from in situ disposal of entire facilities or portions thereof to disposal within the site boundary of major components such as the reactor pressure vessel or steam generators. Regardless of these initiatives, and despite a significant potential for dose, radioactive waste and cost reduction, on-site disposal has often been disregarded as a viable decommissioning strategy, generally as the result of environmental and other public concerns. Little attention has been given to on-site disposal in previous IAEA publications in the field of decommissioning. The objective of this report is to establish an awareness of technical factors that may or may not favour the adoption of on-site disposal as a decommissioning strategy. In addition, this report presents an overview of relevant national experiences, studies and proposals. The expected end result is to show that, subject to safety and environmental protection assessment, on-site disposal can be a viable decommissioning option and should be taken into consideration in decision making

  16. Acceptance test procedure: RMW Land Disposal Facility Project W-025

    International Nuclear Information System (INIS)

    Roscha, V.

    1994-01-01

    This ATP establishes field testing procedures to demonstrate that the electrical/instrumentation system functions as intended by design for the Radioactive Mixed Waste Land Disposal Facility. Procedures are outlined for the field testing of the following: electrical heat trace system; transducers and meter/controllers; pumps; leachate storage tank; and building power and lighting

  17. Institutional aspects of siting nuclear waste disposal facilities in the United States

    International Nuclear Information System (INIS)

    Stewart, J.C.; Prichard, W.C.

    1987-01-01

    This paper has dealt with the institutional issues associated with disposal of nuclear waste in the US. The authors believe that these institutional problems must be resolved, no matter how technologically well suited a site may be for disposal, before site selection may take place. The authors have also pointed out that the geography of the US, with its large arid regions of very low population density, contributes to the institutional acceptability of nuclear waste disposal. Economic factors, especially in sparsely populated areas where the uranium mining and milling industry has caused operation, also weigh on the acceptability of nuclear waste to local communities. This acceptability will be highest where there are existing nuclear facilities and/or facilities which are closed - thus creating unemployment especially where alternative economic opportunities are few

  18. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  19. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    International Nuclear Information System (INIS)

    NNSA/NSO Waste Management Project

    2008-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal

  20. Pathways for Disposal of Commercially-Generated Tritiated Waste

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Nancy V. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Environmental Sciences and Biotechnology

    2016-09-26

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  1. Pathways for Disposal of Commercially-Generated Tritiated Waste

    International Nuclear Information System (INIS)

    Halverson, Nancy V.

    2016-01-01

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  2. Incineration: why this may be the most environmentally sound method of renal healthcare waste disposal.

    Science.gov (United States)

    James, Ray

    2010-09-01

    The environment and 'green' issues are currently being promoted in the healthcare sector through recently launched initiatives. This paper considers aspects of healthcare waste management, with particular reference to waste generated in dialysis units. With dialysis being dependent upon large amounts of disposables, it generates considerable volumes of waste. This paper focuses upon a typical haemodialysis unit, evaluating and quantifying the volumes and categories of waste generated. Each haemodialysis patient on thrice weekly dialysis generates some 323 kg per year of waste, of which 271 kg is classified as clinical. This equates to 1626 kg of (solid) clinical waste per dialysis bed, which is around three times the volume of clinical waste generated per general hospital bed. Waste disposal routes are considered and this suggests that present healthcare waste paradigms are outmoded. They do not allow for flexible approaches to solving what is a dynamic problem, and there is a need for new thinking models in terms of managing the unsustainable situation of disposal in constantly growing landfills. Healthcare waste management must be considered not only in terms of the environmental impact and potential long-term health effects, but also in terms of society's future energy requirements.

  3. Geological disposal of radioactive wastes: national commitment, local and regional involvement

    International Nuclear Information System (INIS)

    2013-07-01

    Long-term radioactive waste management, including geological disposal, involves the construction of a limited number of facilities and it is therefore a national challenge with a strong local/regional dimension. Public information, consultation and/or participation in environmental or technological decision-making are today's best practice and must take place at the different geographical and political scales. Large-scale technology projects are much more likely to be accepted when stakeholders have been involved in making them possible and have developed a sense of interest in or responsibility for them. In this way, national commitment, and local and regional involvement are two essential dimensions of the complex task of securing continued societal agreement for the deep geological disposal of radioactive wastes. Long-term radioactive waste management, including geological disposal, is a national challenge with a strong local/regional dimension. The national policy frameworks increasingly support participatory, flexible and accountable processes. Radioactive waste management institutions are evolving away from a technocratic stance, demonstrating constructive interest in learning and adapting to societal requirements. Empowerment of the local and regional actors has been growing steadily in the last decade. Regional and local players tend to take an active role concerning the siting and implementation of geological repositories. National commitment and local/regional involvement go hand-in-hand in supporting sustainable decisions for the geological disposal of radioactive waste

  4. Near-surface land disposal

    International Nuclear Information System (INIS)

    Kittel, J.H.

    1989-01-01

    The Radioactive Waste Management Handbook provides a comprehensive, systematic treatment of nuclear waste management. Near-Surface Land Disposal, the first volume, is a primary and secondary reference for the technical community. To those unfamiliar with the field, it provides a bridge to a wealth of technical information, presenting the technology associated with the near-surface disposal of low or intermediate level wastes. Coverage ranges from incipient planning to site closure and subsequent monitoring. The book discusses the importance of a systems approach during the design of new disposal facilities so that performance objectives can be achieved; gives an overview of the radioactive wastes cosigned to near-surface disposal; addresses procedures for screening and selecting sites; and emphasizes the importance of characterizing sites and obtaining reliable geologic and hydrologic data. The planning essential to the development of particular sites (land acquisition, access, layout, surface water management, capital costs, etc.) is considered, and site operations (waste receiving, inspection, emplacement, closure, stabilization, etc.) are reviewed. In addition, the book presents concepts for improved confinement of waste, important aspects of establishing a monitoring program at the disposal facility, and corrective actions available after closure to minimize release. Two analytical techniques for evaluating alternative technologies are presented. Nontechnical issues surrounding disposal, including the difficulties of public acceptance are discussed. A glossary of technical terms is included

  5. Development of a comprehensive source term model for the Subsurface Disposal Area at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    1997-01-01

    The first detailed comprehensive simulation study to evaluate fate and transport of wastes disposed in the Subsurface Disposal Area (SDA), at the Radioactive Waste Management Complex (RWMC), Idaho National Engineering and Environmental Laboratory (INEEL) has recently been conducted. One of the most crucial parts of this modeling was the source term or release model. The current study used information collected over the last five years defining contaminant specific information including: the amount disposed, the waste form (physical and chemical properties) and the type of container used for each contaminant disposed. This information was used to simulate the release of contaminants disposed in the shallow subsurface at the SDA. The DUST-MS model was used to simulate the release. Modifications were made to allow the yearly disposal information to be incorporated. The modeling includes unique container and release rate information for each of the 42 years of disposal. The results from this simulation effort are used for both a groundwater and a biotic uptake evaluation. As part of this modeling exercise, inadequacies in the available data relating to the release of contaminants have been identified. The results from this modeling study have been used to guide additional data collection activities at the SDA for purposes of increasing confidence in the appropriateness of model predictions

  6. Overview of nuclear waste disposal in space

    International Nuclear Information System (INIS)

    Rice, E.E.; Priest, C.C.

    1981-01-01

    One option receiving consideration by the Department of Energy (DOE) is the space disposal of certain high-level nuclear wastes. The National Aeronautics and Space Administration is assessing the space disposal option in support of DOE studies on alternatives for nuclear waste management. The space disposal option is viewed as a complement, since total disposal of fuel rods from commercial power plants is not considered to be economically practical with Space Shuttle technology. The space disposal of certain high-level wastes may, however, provide reduced calculated and perceived risks. The space disposal option in conjunction with terrestrial disposal may offer a more flexible and lower risk overall waste management system. For the space disposal option to be viable, it must be demonstrated that the overall long-term risks associated with this activity, as a complement to the mined geologic repository, would be significantly less than the long-term risk associated with disposing of all the high-level waste. The long-term risk benefit must be achieved within an acceptable short-term and overall program cost. This paper briefly describes space disposal alternatives, the space disposal destination, possible waste mixes and forms, systems and typical operations, and the energy and cost analysis

  7. AECB staff response to the environmental impact statement on the concept for disposal of Canada`s nuclear fuel waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Environmental Impact Statement (EIS) on the Concept for Disposal of Canada`s Nuclear Fuel Waste was released in October 1994 (AECL,1994) in response to the guidelines issued in 1992 by a Panel formed to evaluate this concept (Federal Environmental Assessment Review Panel, 1992). This response is primarily a statement of deficiencies and thus focuses on the negative aspects of the EIS. The staff review of the EIS was based on the AECB mandate, which is to protect human health and the environment and as such was focused on technical issues in the EIS. These were performance assessment of the multiple barrier system, environmental impacts, concept feasibility, siting, transport and safety as well as general issues of regulatory policy and criteria. The EIS and its supporting documentation have been the sole basis used to judge whether AECB staff expectations of the EIS have been met. The staff response (Part II) considers whether an issue is addressed appropriately and adequately, while taking account of the generic and preliminary nature of the concept. The overall conclusion that AECB staff have drawn from the technical review of the EIS is that the EIS, by itself, does not adequately demonstrate the case for deep geological disposal for nuclear fuel waste. However, AECB staff believe that the EIS information, in combination with a variety of generic national and international assessments, has provided confidence that the deep geological disposal concept is safe and viable. 74 refs.

  8. Ecological questions on the disposal of radioactive waste

    International Nuclear Information System (INIS)

    Brenner, A.; Kägi, W.; Marugg, F.; Bellmann, R.; Giaquinto, K.

    2014-10-01

    This comprehensive paper elaborated for the Swiss Federal Office of Energy (SFOE) discusses six central key questions on the disposal of radioactive wastes. Various factors in the philosophical-ethics area are discussed including disposal and responsibility, disposal and social justness, co-operation, trusteeship, nature and ecocide and questions of guilt. The ethics part of the report is dedicated to conflict management. The second part of the report deals with environmental policy. Aspects dealt with include sustainability, the principles of provision, participation and the cost-by-cause principle. Efficiency and newer developments in environmental policy are discussed. The disposal of radioactive waste is reviewed together with the effects of discussions on this topic and related developments

  9. TWRS retrieval and storage mission. Immobilized low-activity waste disposal plan

    International Nuclear Information System (INIS)

    Shade, J.W.

    1998-01-01

    expected to be completed in 2025. DOE will supply the feed to the private contractors and will receive the ILAW product from the private treatment facilities during Phase 1. For Phase 2, retrieval and feed delivery, as well as waste treatment and immobilization, will be done by private contractors. DOE will pay the private contractors for each ILAW package that meets the product specifications as stated in the RFP or subsequently negotiated. Acceptance of immobilized waste will be based on private contractor activities to qualify, verify, document, and certify the product and DOE activities to audit, review, inspect, and evaluate the treatment and immobilization process and products. The acceptance process is expected to result in ILAW product packages certified for transport and disposal at the Hanford Site safely and in compliance with environmental regulations

  10. A sustainable building promotes pro-environmental behavior: an observational study on food disposal.

    Science.gov (United States)

    Wu, David W-L; DiGiacomo, Alessandra; Kingstone, Alan

    2013-01-01

    In order to develop a more sustainable society, the wider public will need to increase engagement in pro-environmental behaviors. Psychological research on pro-environmental behaviors has thus far focused on identifying individual factors that promote such behavior, designing interventions based on these factors, and evaluating these interventions. Contextual factors that may also influence behavior at an aggregate level have been largely ignored. In the current study, we test a novel hypothesis--whether simply being in a sustainable building can elicit environmentally sustainable behavior. We find support for our hypothesis: people are significantly more likely to correctly choose the proper disposal bin (garbage, compost, recycling) in a building designed with sustainability in mind compared to a building that was not. Questionnaires reveal that these results are not due to self-selection biases. Our study provides empirical support that one's surroundings can have a profound and positive impact on behavior. It also suggests the opportunity for a new line of research that bridges psychology, design, and policy-making in an attempt to understand how the human environment can be designed and used as a subtle yet powerful tool to encourage and achieve aggregate pro-environmental behavior.

  11. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    International Nuclear Information System (INIS)

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal. These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs

  12. Disposal approach for long-lived low and intermediate-level radioactive waste

    International Nuclear Information System (INIS)

    Park, Jin Beak; Park, Joo Wan; Kim, Chang Lak

    2005-01-01

    There certainly exists the radioactive inventory that exceeds the waste acceptance criteria for final disposal of the low and intermediate-level radioactive waste. In this paper, current disposal status of the long-lived radioactive waste in several nations are summarized and the basic procedures for disposal approach are suggested. With this suggestion, intensive discussion and research activities can hopefully be launched to set down the possible resolutions to dispose of the long-lived radioactive waste

  13. Long-Term Safety Analysis of Baldone Radioactive Waste Repository and Updating of Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2001-12-01

    The main objective of the project was to provide advice to the Latvian authorities on the safety enhancements and waste acceptance criteria for near surface radioactive waste disposal facilities of the Baldone repository. The project included the following main activities: Analysis of the current status of the management of radioactive waste in Latvia in general and, at the Baldone repository in particular Development of the short and long-term safety analysis of the Baldone repository, including: the planned increasing of capacity for disposal and long term storage, the radiological analysis for the post-closure period Development of the Environment Impact Statement, for the new foreseen installations, considering the non radiological components Proposal of recommendations for future updating of radioactive waste acceptance criteria Proposal of recommendations for safety upgrades to the facility. The work programme has been developed in phases and main tasks as follows. Phase 0: Project inception, Phase 1: Establishment of current status, plans and practices (Legislation, regulation and standards, Radioactive waste management, Waste acceptance criteria), Phase 2: Development of future strategies for long-term safety management and recommendations for safety enhancements. The project team found the general approach use at the installation, the basic design and the operating practices appropriate to international standards. Nevertheless, a number of items subject to potential improvements were also identified. These upgrading recommendations deal with general aspects of the management (mainly storage versus disposal of long-lived sources), site and environmental surveillance, packaging (qualification of containers, waste characterization requirements), the design of an engineered cap and strategies for capping. (author)

  14. Effluent treatment and waste disposal

    International Nuclear Information System (INIS)

    1990-01-01

    In recent years there has been a great increase in the attention given to environmental matters by the public, media and Government. This has been reflected in the increased stature of environmental pressure groups and the introduction of new regulatory bodies and procedures. However, the satisfactory treatment and disposal of waste depends ultimately upon the development and employment of efficient low cost processes, and the enforcement of effective legislation. This Conference organised by the Yorkshire Branch of IChemE in association with the Institution's Environmental Protection Subject Group, will address the areas of waste monitoring, developments in pollution control processes and process economics and will look forward to future trends in waste disposal. It will also consider the impact of recent legislation upon the process industries. (author)

  15. Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel and Transuranic Radioactive Wastes (40 CFR Part 191)

    Science.gov (United States)

    This regulation sets environmental standards for public protection from the management and disposal of spent nuclear fuel, high-level wastes and wastes that contain elements with atomic numbers higher than uranium (transuranic wastes).

  16. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    International Nuclear Information System (INIS)

    Mohamed, Yasser T.

    2013-01-01

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

  17. Development of a low cost, low environmental impact process for disposal of nitrate wastes

    International Nuclear Information System (INIS)

    Napier, J.M.

    1975-01-01

    A uranium recycle process in the Y-12 Plant generates nitrate ions which must be discarded. Scrap enriched uranium is dissolved in nitric acid and solvent extracted to remove impurities from the uranium. Aluminum nitrate is also used in the process to remove the purified uranium from the solvent extraction process. Dilute nitric acid, aluminum nitrate, and metallic impurities must be discarded from this process. A program was started to develop a low cost, low environmental impact process for disposal of these nitrate wastes. Several disposal methods were considered. A process was selected which included: distillation and recycle of nitric acid; crystallization and recycle of aluminum nitrate; and biodegradation of the remaining nitrate waste solutions. For this presentation, only the biodegradation process will be discussed. A colony of Pseudomonas stutzeri, which is capable of using the nitrate ion as the oxygen supply, was used. An excess of organic material was used to insure that the maximum amount of nitrate was destroyed

  18. Marine environmental monitoring related to sea disposal of radioactive waste in the NE Atlantic Ocean

    International Nuclear Information System (INIS)

    Bettencourt, A.O.; Elias, M.D.T.; Ferrador, G.C.

    1988-01-01

    Reference is made to the sea disposal of packaged radioactive waste in the NE Atlantic and to the role of the OCDE Nuclear Energy Agency (NEA) since 1967, in the dumping operations. The objectives of marine environmental monitoring in relation to sea disposal of radioactive wastes are described as well as the coordinated research and environmental surveillance programme (CRESP) developed within NEA frame. The Portuguese on-going programme in this field is presented and the results concerning measurements of 239+240 Pu, 238 Pu, 241 Am and 137 Cs in samples of water, sediments and fish collected at Madeira and Continental Portuguese coasts, are discussed. It was observed that these radionuclides concentrations are lower for deep-sea fishes than for the shallow-water ones. The obtained results are compared with those found in the literature. From the observation of the large spectrum of results available, it can be concluded that no generalized contamination of the marine environment due to the sea dumping of radioactive wastes if observed at present. On the other hand, there is an interest in pursuing analyses of deep-sea fish with the aim of early detection of any possible modifications in the actual levels of radioactivity in the marine environment. (author) [pt

  19. Standardization of waste acceptance test methods by the Materials Characterization Center

    International Nuclear Information System (INIS)

    Slate, S.C.

    1985-01-01

    This paper describes the role of standardized test methods in demonstrating the acceptability of high-level waste (HLW) forms for disposal. Key waste acceptance tests are standardized by the Materials Characterization Center (MCC), which the US Department of Energy (DOE) has established as the central agency in the United States for the standardization of test methods for nuclear waste materials. This paper describes the basic three-step process that is used to show that waste is acceptable for disposal and discusses how standardized tests are used in this process. Several of the key test methods and their areas of application are described. Finally, future plans are discussed for using standardized tests to show waste acceptance. 9 refs., 1 tab

  20. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE

  1. W-025, acceptance test report

    International Nuclear Information System (INIS)

    Roscha, V.

    1994-01-01

    This acceptance test report (ATR) has been prepared to establish the results of the field testing conducted on W-025 to demonstrate that the electrical/instrumentation systems functioned as intended by design. This is part of the RMW Land Disposal Facility

  2. 42 CFR 137.285 - Are Self-Governance Tribes required to accept Federal environmental responsibilities to enter...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Are Self-Governance Tribes required to accept..., DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL SELF-GOVERNANCE Construction Nepa Process § 137.285 Are Self-Governance Tribes required to accept Federal environmental responsibilities to enter into a construction...

  3. DOE acceptance of commercial mixed waste -- Studies are under way

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, T.L. [Dept. of Energy, Washington, DC (United States). Technical Support Program; Owens, C.M. [Idaho National Engineering Lab., Idaho Falls, ID (United States). National Low-Level Waste Management Program

    1993-03-01

    The topic of the Department of Energy acceptance of commercial mixed waste at DOE facilities has been proposed by host States and compact regions that are developing low-level radioactive waste disposal facilities. States support the idea of DOE accepting commercial mixed waste because (a) very little commercial mixed waste is generated compared to generation by DOE facilities (Department of Energy--26,300 cubic meters annually vs. commercial--3400 cubic meters annually); (b) estimated costs for commercial disposal are estimated to be $15,000 to $40,000 per cubic foot; (c) once treatment capability becomes available, 70% of the current levels of commercial mixed waste will be eliminated, (d) some State laws prohibit the development of mixed waste disposal facilities in their States; (e) DOE is developing a nationwide strategy that will include treatment and disposal capacity for its own mixed waste and the incremental burden on the DOE facilities would be minuscule, and (6) no States are developing mixed waste disposal facilities. DOE senior management has repeatedly expressed willingness to consider investigating the feasibility of DOE accepting commercial mixed waste. In January 1991, Leo Duffy of the Department of energy met with members of the Low-Level Radioactive Waste Forum, which led to an agreement to explore such an arrangement. He stated that this seems like a cost-effective way to solve commercial mixed waste management problems.

  4. Final Environmental Impact Statement on 10 CFR Part 61 licensing requirements for land disposal of radioactive waste

    International Nuclear Information System (INIS)

    1982-11-01

    The three-volume final environmental impact statement (FEIS) is prepared to guide and support publication of a final regulation, 10 CFR Part 61, for the land disposal of low-level radioactive waste. The FEIS is prepared in response to public comments received on the draft environmental impact statement (DEIS) on the proposed Part 61 regulation. The DEIS was published in September 1981 as NUREG-0782. Public comments received on the proposed Part 61 regulation separate from the DEIS are also considered in the FEIS. The FEIS is not a rewritten version of the DEIS, which contains an exhaustive and detailed analysis of alternatives, but rather references the DEIS and presents the final decision bases and conclusions (costs and impacts) which are reflected in the Part 61 requirements. Four cases are specifically considered in the FEIS representing the following: past disposal practice, existing disposal practice, Part 61 requirements, and an upper bound example. The Summary and Main Report are contained in Volume 1. Volume 2 consists of Appendices A - Staff Analysis of Public Comments on the DEIS for 10 CFR Part 61, and Appendices B - Staff Analysis of Public Comments on Proposed 10 CFR Part 61 Rulemaking. Volume 3 contains Appendices C-F, entitled as follows: Appendix C - Revisions to Impact Analysis Methodology, Appendix D - Computer Codes Used for FEIS Calculations, Appendix E - Errata for the DEIS for 10 CFR Part 61 and last, Appendix F - Final Rule and Supplementary Information

  5. Greater-Than-Class C Low Level Radioactive Waste Characteristics and Disposal Aspects

    International Nuclear Information System (INIS)

    Arlt, Hans D.; Brimfield, Terrence; Grossman, Chris

    2016-01-01

    Conclusions • Due to the way LLRW is defined in the US, there is a category of LLRW (i.e., GTCC waste) that was categorized in the 1980’s and is similar to ILW and not generally acceptable for near-surface disposal. • Three decades later, it cannot be excluded that future NRC analyses may find some GTCC waste type suitable for near-surface disposal, and a proposed rule may be developed for licensing the disposal of such waste. • Current regulations only allow individual proposals for GTCC LLRW disposal to be evaluated on a case-by-case basis to determine the acceptability of land disposal other than in a geologic repository • Based on current regulations, the variability and diversity of FEPs associated with such safety cases is theoretically large: - The range of activity concentrations, half-lives, and volumes of GTCC waste types is large; - The range of physical forms is large: metal pieces to soils and sludges; - The range of potential disposal methods is large: trench, vault, landfill, shaft, borehole; - The range of potential disposal environments is large: arid vs. humid, unsaturated vs. saturated, sediment vs. rock, nearsurface to intermediate; - The stability and past natural history of a specific disposal site must also be adequately known. • Examples of potential site-specific cases designed to demonstrate the acceptability of GTCC LLRW land disposal other than deep geologic: - Proposals for disposal could entail concepts that have been relatively well assessed by NRC staff in the past; e.g., trench disposal of a moderate volume of GTCC Other Waste in an arid, unsaturated, near-surface environment; - Proposals for disposal could also entail concepts that have been less frequently assessed; e.g., borehole disposal of higher activity sealed sources in a humid, saturated, intermediate depth environment. • However, if one potential site and design was under consideration, the variability and diversity of FEPs associated with that site

  6. Sewage sludge: arisings, environmental impact, utilisation, disposal. Private wastewater disposal companies present memorandum; Klaerschlamm: Aufkommen, Belastung, Verwertung und Entsorgung. Private Abwasserentsorger legen Memorandum vor

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-05-01

    The more wastewater is cleaned to a high level of purity, the more sewage sludge arises. Problems of quantity and quality are closely intertwined with technical developments and changes in the legal framework. This applies as much to wastewater purification as it does to the utilisation or disposal of sewage sludge. Early this year the Association of Private Wastewater Disposal Companies (Verband der privaten Abwasserentsorger e.V., VpA) presented a memorandum on sewage sludge management which is intended to lead to greater transparency in this market segment of environmental protection. [Deutsch] Je mehr Abwasser auf hohem Niveau gereinigt wird, umso groesser ist die Menge des anfallenden Klaerschlamms. Mengen- und Qualitaetsprobleme sind eingebunden in sich wandelnde Techniken und veraenderte gesetzliche Grundlagen - in der Abwasserreinigung wie in der Verwertung oder Beseitigung der Klaerschlaemme. Der Verband der privaten Abwasserentsorger e.V. (VpA) hat Anfang des Jahres ein Memorandum zur Klaerschlammwirtschaft herausgegeben, das fuer groessere Transparenz in diesem Marktsegment des Umweltschutzes sorgen soll. (orig.)

  7. Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573

    Energy Technology Data Exchange (ETDEWEB)

    Carilli, Jhon T. [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States); Krenzien, Susan K. [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)

    2013-07-01

    The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

  8. Research and development plans for disposal of high-level and transuranic wastes

    International Nuclear Information System (INIS)

    Bartlett, J.W.; Platt, A.M.

    1978-09-01

    This plan recommends a 20-year, 206 million (1975 $'s) R and D program on geologic structures in the contiguous U.S. and on the midplate Pacific seabed with the objective of developing an acceptable method for disposal of commercial high-level and transuranic wastes by 1997. No differentiation between high-level and transuranic waste disposal is made in the first 5 years of the program. A unique application of probability theory to R and D planning establishes, at a 95% confidence level, that the program objective will be met if at least fifteen generic options and five specific disposal sites are explored in detail and at least two pilot plants are constructed and operated. A parallel effort on analysis and evaluation maximizes information available for decisions on the acceptability of the disposal techniques. Based on considerations of technical feasibility, timing and technical risk, the other disposal concepts, e.g., ice sheets, partitioning, transmutation and space disposal cited in BNWL-1900 are not recommended for near future R and D

  9. Are Disposable and Standard Gonioscopy Lenses Comparable?

    Science.gov (United States)

    Lee, Bonny; Szirth, Bernard C; Fechtner, Robert D; Khouri, Albert S

    2017-04-01

    Gonioscopy is important in the evaluation and treatment of glaucoma. With increased scrutiny of acceptable sterilization processes for health care instruments, disposable gonioscopy lenses have recently been introduced. Single-time use lenses are theorized to decrease infection risk and eliminate the issue of wear and tear seen on standard, reusable lenses. However, patient care would be compromised if the quality of images produced by the disposable lens were inferior to those produced by the reusable lens. The purpose of this study was to compare the quality of images produced by disposable versus standard gonioscopy lenses. A disposable single mirror lens (Sensor Medical Technology) and a standard Volk G-1 gonioscopy lens were used to image 21 volunteers who were prospectively recruited for the study. Images of the inferior and temporal angles of each subject's left eye were acquired using a slit-lamp camera through the disposable and standard gonioscopy lens. In total, 74 images were graded using the Spaeth gonioscopic system and for clarity and quality. Clarity was scored as 1 or 2 and defined as either (1) all structures perceived or (2) all structures not perceived. Quality was scored as 1, 2, or 3, and defined as (1) all angle landmarks clear and well focused, (2) some angle landmarks clear, others blurred, or (3) angle landmarks could not be ascertained. The 74 images were divided into images taken with the disposable single mirror lens and images taken with the standard Volk G-1 gonioscopy lens. The clarity and quality scores for each of these 2 image groups were averaged and P-values were calculated. Average quality of images produced with the standard lens was 1.46±0.56 compared with 1.54±0.61 for those produced with the disposable lens (P=0.55). Average clarity of images produced with the standard lens was 1.47±0.51 compared with 1.49±0.51 (P=0.90) with the disposable lens. We conclude that there is no significant difference in quality of images

  10. Radioactive waste (disposal)

    International Nuclear Information System (INIS)

    Jenkin, P.

    1985-01-01

    The disposal of low- and intermediate-level radioactive wastes was discussed. The following aspects were covered: public consultation on the principles for assessing disposal facilities; procedures for dealing with the possible sites which the Nuclear Industry Radioactive Waste Executive (NIREX) had originally identified; geological investigations to be carried out by NIREX to search for alternative sites; announcement that proposal for a site at Billingham is not to proceed further; NIREX membership; storage of radioactive wastes; public inquiries; social and environmental aspects; safety aspects; interest groups; public relations; government policies. (U.K.)

  11. An environmental friendly animal waste disposal process with ammonia recovery and energy production: Experimental study and economic analysis.

    Science.gov (United States)

    Shen, Ye; Tan, Michelle Ting Ting; Chong, Clive; Xiao, Wende; Wang, Chi-Hwa

    2017-10-01

    Animal manure waste is considered as an environmental challenge especially in farming areas mainly because of gaseous emission and water pollution. Among all the pollutants emitted from manure waste, ammonia is of greatest concern as it could contribute to formation of aerosols in the air and could hardly be controlled by traditional disposal methods like landfill or composting. On the other hand, manure waste is also a renewable source for energy production. In this work, an environmental friendly animal waste disposal process with combined ammonia recovery and energy production was proposed and investigated both experimentally and economically. Lab-scale feasibility study results showed that 70% of ammonia in the manure waste could be converted to struvite as fertilizer, while solid manure waste was successfully gasified in a 10kW downdraft fixed-bed gasifier producing syngas with the higher heating value of 4.9MJ/(Nm 3 ). Based on experimental results, economic study for the system was carried out using a cost-benefit analysis to investigate the financial feasibility based on a Singapore case study. In addition, for comparison, schemes of gasification without ammonia removal and incineration were also studied for manure waste disposal. The results showed that the proposed gasification-based manure waste treatment process integrated with ammonia recovery was most financially viable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Radioactive waste disposal and constitution

    International Nuclear Information System (INIS)

    Stober, R.

    1983-01-01

    The radioactive waste disposal has many dimensions with regard to the constitutional law. The central problem is the corret delimitation between adequate governmental precautions against risks and or the permitted risk which the state can impose on the citizen, and the illegal danger which nobody has to accept. The solution requires to consider all aspects which are relevant to the constitutional law. Therefore, the following analysis deals not only with the constitutional risks and the risks of the nuclear energy, but also with the liberal, overall-economic, social, legal, and democratic aspects of radioactive waste disposal. (HSCH) [de

  13. The environmental and ethical basis of the geological disposal of long-lived radioactive waste

    International Nuclear Information System (INIS)

    Vuori, S.

    1995-01-01

    This partial translation into Finnish of the recently issued Collective Opinion of the Radioactive Waste Management Committee (RWMC) of the OECD Nuclear Energy Agency is published here to provide general information to the members of the Finnish Nuclear Society. Full translation will be published later by the Ministry of Trade and Industry. The collective opinion addresses the strategy for the final disposal of long-lived radioactive wastes seen from an environmental and ethical perspective, including considerations of equity and fairness within and between generations

  14. Discussion on the environmental protection acceptance method and the critical issues of the completion of projects about radiation usage in the hospitals

    International Nuclear Information System (INIS)

    Wang Wei

    2014-01-01

    It is widely used in the world that the hospitals take advantages of radiation technology. Practically it is involved radioactive isotope, sealed source and the usage of ray device. Based on the environmental protection acceptance of the finished projects, this article is aimed at the actual characteristics of the medical practice and differentiating the major factors of environmental effects, choosing the monitoring criteria and method of environmental protection acceptance and exploring the critical issues in the course of acceptance. Finally this essay is intended to provide theory evidence and technical support in the acceptance of the above projects. (author)

  15. History and environmental setting of LASL near-surface land disposal facilities for radioactive wastes (Areas A, B, C, D, E, F, G, and T). A source document

    International Nuclear Information System (INIS)

    Rogers, M.A.

    1977-06-01

    The Los Alamos Scientific Laboratory (LASL) has been disposing of radioactive wastes since 1944. The LASL Materials Disposal Areas examined in this report, Areas A, B, C, D, E, F, G, and T, are solid radioactive disposal areas with the exception of Area T which is a part of the liquid radioactive waste disposal operation. Areas A, G, and T are currently active. Environmental studies of and monitoring for radioactive contamination have been done at LASL since 1944

  16. History and environmental setting of LASL near-surface land disposal facilities for radioactive wastes (Areas A, B, C, D, E, F, G, and T). A source document

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, M.A.

    1977-06-01

    The Los Alamos Scientific Laboratory (LASL) has been disposing of radioactive wastes since 1944. The LASL Materials Disposal Areas examined in this report, Areas A, B, C, D, E, F, G, and T, are solid radioactive disposal areas with the exception of Area T which is a part of the liquid radioactive waste disposal operation. Areas A, G, and T are currently active. Environmental studies of and monitoring for radioactive contamination have been done at LASL since 1944.

  17. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP)

  18. Final Environmental Assessment for solid waste disposal, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1995-08-01

    New solid waste regulations require that the existing Nevada Test Site (NTS) municipal landfills, which receive less than 20 tons of waste per day, be permitted or closed by October 9, 1995. In order to be permitted, the existing landfills must meet specific location, groundwater monitoring, design, operation, and closure requirements. The issuance of these regulations has resulted in the need of the Department of Energy (DOE) to provide a practical, cost-effective, environmentally sound means of solid waste disposal at the NTS that is in compliance with all applicable federal, state, and local regulations. The current landfills in Areas 9 and 23 on the Nevada Test Site do not meet design requirements specified in new state and federal regulations. The DOE Nevada Operations Office prepared an environmental assessment (EA) to evaluate the potential impacts of the proposal to modify the Area 23 landfill to comply with the new regulations and to close the Area 9 landfill and reopen it as Construction and Demolition debris landfill. Based on information and analyses presented in the EA, DOE has determined that the proposed action would not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act. Therefore, an environmental impact statement (EIS) is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI)

  19. Environmental and economic analyses of waste disposal options for traditional markets in Indonesia

    International Nuclear Information System (INIS)

    Aye, Lu; Widjaya, E.R.

    2006-01-01

    Waste from traditional markets in Indonesia is the second largest stream of municipal solid waste after household waste. It has a higher organic fraction and may have greater potential to be managed on a business scale compared to household wastes. The attributed reason is that in general the wastes generated from traditional markets are more uniform, more concentrated and less hazardous than waste from other sources. This paper presents the results of environmental and economic assessments to compare the options available for traditional market waste disposal in Indonesia. The options compared were composting in labour intensive plants, composting in a centralised plant that utilised a simple wheel loader, centralised biogas production and landfill for electricity production. The current open dumping practice was included as the baseline case. A life cycle assessment (LCA) was used for environmental analysis. All options compared have lower environmental impacts than the current practice of open dumping. The biogas production option has the lowest environmental impacts. A cost-benefit analysis, which considered greenhouse gas savings, was used for the economic assessment. It was found that composting at a centralised plant is the most economically feasible option under the present Indonesian conditions. The approach reported in this study could be applied for 'a pre-feasibility first cut comparison' that includes environmental aspects in a decision-making framework for developing countries even though European emission factors were used

  20. Bechtel Hanford, Inc./ERC team health and safety plan Environmental Restoration Disposal Facility operations

    International Nuclear Information System (INIS)

    Turney, S.R.

    1996-02-01

    A comprehensive safety and health program is essential for reducing work-related injuries and illnesses while maintaining a safe and health work environment. This document establishes Bechtel Hanford, Inc. (BHI)/Environmental Restoration Contractor (ERC) team requirements, policies, and procedures and provides preliminary guidance to the Environmental Restoration Disposal Facility (ERDF) subcontractor for use in preparing essential safety and health documents. This health and safety plan (HASP) defines potential safety and health issues associated with operating and maintaining the ERDF. A site-specific HASP shall be developed by the ERDF subcontractor and shall be implemented before operations and maintenance work can proceed. An activity hazard analysis (AHA) shall also be developed to provide procedures to identify, assess, and control hazards or potential incidents associated with specific operations and maintenance activities

  1. Implementation of the Environmental Management System in Radioactive Waste Management

    International Nuclear Information System (INIS)

    Fabjan, M.; Kralj, M.; Rojc, J.

    2008-01-01

    Agency for Radwaste Management (ARAO) is a public institution assigned to provide effective, safe and responsible management of all kinds of radioactive waste in Slovenia from the moment they arise to their final disposal. Therefore it holds an important role in environmental protection. Its main assignment is to provide conditions for permanent disposal of radioactive waste. It is also authorised to perform public service of radioactive waste management from small producers that includes: collection of the waste from small producers at the producers' premises, transportation to the storage facility, treatment, conditioning storage of RW from small producers; acceptance of radioactive waste in case of emergency situation (e.g. transport accidents); acceptance of radioactive waste in case of unknown producer; operation and management of Central Interim Storage of Radioactive Waste. The quality of ARAO performance in carrying out its mission is assured by implementing the environmental management system according to the standard ISO 14001:2004. Its effectiveness was confirmed by certification in October 2007. The ISO 14001:2004 certificate represents a permanent commitment of ARAO to implement and improve the environmental management system and to include environmental aspects in all its activities, especially in performing the public service. We developed own evaluation criteria for determination of relevant environmental impacts and aspects. ARAO has defined its environmental policy and objectives, it evaluates its environmental impacts yearly, and defines its environmental programmes that not only fulfil legal requirements but tend even to reduce the impacts below legally set levels. A very important environmental programme in the last few years was the reconstruction of the storage facility. Public information and communication programmes are considered to be important also from the environmental management point of view, because public shows great interest in

  2. The project for national disposal facility for low and intermediate level radioactive waste in Bulgaria

    International Nuclear Information System (INIS)

    Alexandrov, A.; Boyanov, S.; Christoskova, M.; Ivanov, A.

    2006-01-01

    The State Enterprise Radioactive Waste is the responsible organisation in Bulgaria for the radioactive waste management and, in particular, for the establishment of the national disposal facility (NDF) for low and intermediate level short-lived radioactive waste (LIL RAW SL). According to the national strategy for the safe management of spent fuel and radioactive waste the NDF should be commissioned in 2015. NDF will accept two main waste streams - for disposal and for storage if the waste is not disposable. The major part of disposable waste is generated by Kozloduy NPP. The disposal facility will be a near surface module type engineered facility. Consecutive erection of new modules will be available in order to increase the capacity of the facility. The corrective measures are previewed to be applied if needed - upgrading of engineered barriers and/or retrieval of the waste. The active control after the facility is closed should be not more than 300 years. The safety of the facility is supposed to be based on the passive measures based on defense in deep consisting of physical barriers and administrative measures. A multi barrier approach will be applied. Presently the NDF project is at the first stage of the facility life cycle - the site selection. The siting process itself consists of four stages - elaboration of a concept for waste disposal and site selection planning, data collection and region analyses, characterization of the preferred sites-candidates and site confirmation. Up till now the work on the first two stages of the siting process had been done by the SE RAW. Geological site investigations have been carried out for more than two decades all over the territory of the country. The results of the investigations have been summarized and analysed thoroughly. More than 40 potential sites have been considered, after the preselection 12 sites have been selected as favourable and among them 5 are pointed out as acceptable. The ultimate decision for a site

  3. Evaluation of Proposed New LLW Disposal Activity Disposal of Compacted Job Control Waste, Non-compactible, Non-incinerable Waste, And Other Wasteforms In Slit Trenches

    International Nuclear Information System (INIS)

    WILHITE, ELMER L.

    2000-01-01

    The effect of trench disposal of low-level wasteforms that were not analyzed in the original performance assessment for the E-Area low-level waste facility, but were analyzed in the revised performance assessment is evaluated. This evaluation was conducted to provide a bridge from the current waste acceptance criteria, which are based on the original performance assessment, to those that will be developed from the revised performance assessment. The conclusion of the evaluation is that any waste except for materials that would retain radionuclides more strongly than soil that meets the radionuclide concentration of package limits for trench burial based on the revised performance assessment, and presented in Table 1 of this document, is suitable for trench disposal; provided that, for cellulosic material the current 40 percent restriction is retained. Table 2 of this document lists materials acceptable for trench disposal

  4. 18 CFR 5.22 - Notice of acceptance and ready for environmental analysis.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Notice of acceptance and ready for environmental analysis. 5.22 Section 5.22 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT INTEGRATED LICENSE APPLICATION PROCESS § 5.22 Notice o...

  5. Economic analysis of alternative LLW disposal methods

    International Nuclear Information System (INIS)

    Foutes, C.E.

    1987-01-01

    The Environmental Protection Agency (EPA) has evaluated the costs and benefits of alternative disposal technologies as part of its program to develop generally applicable environmental standards for the land disposal of low-level radioactive waste (LLW). Costs, population health effects and Critical Population Group (CPG) exposures resulting from alternative waste treatment and disposal methods were developed and input into the analysis. The cost-effectiveness analysis took into account a number of waste streams, hydrogeologic and climatic region settings, and waste treatment and disposal methods. Total costs of each level of a standard included costs for packaging, processing, transportation, and burial of waste. Benefits are defined in terms of reductions in the general population health risk (expected fatal cancers and genetic effects) evaluated over 10,000 years. A cost-effectiveness ratio, was calculated for each alternative standard. This paper describes the alternatives considered and preliminary results of the cost-effectiveness analysis

  6. Nuclear waste disposal: Technology and environmental hazards

    International Nuclear Information System (INIS)

    Hare, F.K.; Aikin, A.M.

    1984-01-01

    The authors have arrived at what appears to be a comforting conclusion--that the ultimate disposal of nuclear wastes should be technically feasible and very safe. They find that the environment and health impacts will be negligible in the short-term, being due to the steps that precede the emplacement of the wastes in the repository. Disposal itself, once achieved, offers no short-term threat--unless an unforseen catastrophe of very low probability occurs. The risks appear negligible by comparison with those associated with earlier stages of the fuel cycle. Ultimately -- millinnia hence -- a slow leaching of radionuclides to the surface might begin. But it would be so slow that great dilution of each nuclide will occur. This phase is likely to be researched somewhere in the period 100,000 to 1,000,000 years hence

  7. A new procedure for deep sea mining tailings disposal

    NARCIS (Netherlands)

    Ma, W.; Schott, D.L.; Lodewijks, G.

    2017-01-01

    Deep sea mining tailings disposal is a new environmental challenge related to water pollution, mineral crust waste handling, and ocean biology. The objective of this paper is to propose a new tailings disposal procedure for the deep sea mining industry. Through comparisons of the tailings disposal

  8. The role of performance assessment in radioactive waste disposal

    International Nuclear Information System (INIS)

    Stenhouse, M.J.

    1998-01-01

    Performance assessment has many applications in the field of radioactive waste management, none more important than demonstrating the suitability of a particular repository system for waste disposal. The role of performance assessment in radioactive waste disposal is discussed with reference to assessments performed in civilian waste management programmes. The process is, however, relevant, and may be applied directly to the disposal of defence-related wastes. When used in an open and transparent manner, performance assessment is a powerful methodology not only for convincing the authorities of the safety of a disposal concept, but also for gaining the wider acceptance of the general public for repository siting. 26 refs

  9. Disposal Criticality Analysis Methodology Topical Report

    International Nuclear Information System (INIS)

    Horton, D.G.

    1998-01-01

    The fundamental objective of this topical report is to present the planned risk-informed disposal criticality analysis methodology to the NRC to seek acceptance that the principles of the methodology and the planned approach to validating the methodology are sound. The design parameters and environmental assumptions within which the waste forms will reside are currently not fully established and will vary with the detailed waste package design, engineered barrier design, repository design, and repository layout. Therefore, it is not practical to present the full validation of the methodology in this report, though a limited validation over a parameter range potentially applicable to the repository is presented for approval. If the NRC accepts the methodology as described in this section, the methodology will be fully validated for repository design applications to which it will be applied in the License Application and its references. For certain fuel types (e.g., intact naval fuel), a ny processes, criteria, codes or methods different from the ones presented in this report will be described in separate addenda. These addenda will employ the principles of the methodology described in this report as a foundation. Departures from the specifics of the methodology presented in this report will be described in the addenda

  10. Disposal Criticality Analysis Methodology Topical Report

    International Nuclear Information System (INIS)

    D.G. Horton

    1998-01-01

    The fundamental objective of this topical report is to present the planned risk-informed disposal criticality analysis methodology to the NRC to seek acceptance that the principles of the methodology and the planned approach to validating the methodology are sound. The design parameters and environmental assumptions within which the waste forms will reside are currently not fully established and will vary with the detailed waste package design, engineered barrier design, repository design, and repository layout. Therefore, it is not practical to present the full validation of the methodology in this report, though a limited validation over a parameter range potentially applicable to the repository is presented for approval. If the NRC accepts the methodology as described in this section, the methodology will be fully validated for repository design applications to which it will be applied in the License Application and its references. For certain fuel types (e.g., intact naval fuel), any processes, criteria, codes or methods different from the ones presented in this report will be described in separate addenda. These addenda will employ the principles of the methodology described in this report as a foundation. Departures from the specifics of the methodology presented in this report will be described in the addenda

  11. Postconstruction report of the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Oakley, L.B.; Siberell, J.K.; Voskuil, T.L.

    1993-06-01

    Remedial actions conducted under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) were completed at the Y-12 United Nuclear Corporation (UNC) Disposal Site in August 1992. The purpose of this Postconstruction Report is to summarize numerous technical reports and provide CERCLA documentation for completion of the remedial actions. Other CERCLA reports, such as the Feasibility Study for the UNC Disposal Site, provide documentation leading up to the remedial action decision. The remedial action chosen, placement of a modified RCRA cap, was completed successfully, and performance standards were either met or exceeded. This remedial action provided solutions to two environmentally contaminated areas and achieved the goal of minimizing the potential for contamination of the shallow groundwater downgradient of the site, thereby providing protection of human health and the environment. Surveillance and maintenance of the cap will be accomplished to ensure cap integrity, and groundwater monitoring downgradient of the site will continue to confirm the acceptability of the remedial action chosen

  12. Preliminary waste acceptance requirements - Konrad repository project

    International Nuclear Information System (INIS)

    Brennecke, P.W.; Warnecke, E.H.

    1991-01-01

    In Germany, the planned Konrad repository is proposed for the disposal of all types of radioactive wastes whose thermal influence upon the host rock is negligible. The Bundesamt fuer Strahlenschutz has established Preliminary Waste Acceptance Requirements (as of April 1990) for this facility. The respective requirements were developed on the basis of the results of site-specific safety assessments. They include general requirements on the waste packages to be disposed of as well as more specific requirements on the waste forms, the packaging and the radionuclide inventory per waste package. In addition, the delivery of waste packages was regulated. An outline of the structure and the elements of the Preliminary Waste Acceptance Requirements of April 1990 is given including comments on their legal status. (Author)

  13. Chemical Stockpile Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

    1990-10-01

    As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Umatilla Depot Activity (UMDA) in Hermiston, Oregon. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the Umatilla Depot Activity and by recommending the scope and content of a more detailed site-specific study. This independent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at UMDA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources; seismicity; and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 7 refs., 1 fig.

  14. Sustainable Supply Chain Management: The Influence of Disposal Scenarios on the Environmental Impact of a 2400 L Waste Container

    Directory of Open Access Journals (Sweden)

    José Eduardo Galve

    2016-06-01

    Full Text Available This paper analyzes the influence of the supply chain management on the environmental impact of a 2400 L waste disposal container used in most cities of Spain. The studied functional unit, a waste disposal container, made up mostly of plastic materials and a metallic structure, and manufactured in Madrid (Spain, is distributed to several cities at an average distance of 392 km. A life cycle assessment of four different scenarios (SC has been calculated with the software EcoTool v4.0 (version 4.0; i+: Zaragoza, Spain, 2015 and using Ecoinvent v3.0 database (version 3.0; Swiss Centre for Life Cycle Inventories: St. Gallen, Switzerland, 2013. The environmental impact has been characterized with two different methodologies, recipe and carbon footprint. In order to reduce the environmental impact, several end of life scenarios have been performed, analyzing the influence of the supply chain on a closed-looped system that increases recycling. Closed loop management of the waste and reuse of parts allows companies to stop selling products and start selling the service that their products give to the consumers.

  15. US Department of Energy acceptance of commercial transuranic waste

    International Nuclear Information System (INIS)

    Taboas, A.L.; Bennett, W.S.; Brown, C.M.

    1980-02-01

    Contaminated transuranic wastes generated as a result of non-defense activities have been disposed of by shallow land burial at a commercially operated (NECO) facility located on the Hanford federal reservation, which is licensed by the State of Washington and by the NRC. About 15,000 ft 3 of commercial TRU waste have been generated each year, but generation for the next three years could triple due to decontamination and decommissioning scheduled to start in 1980. Disposal at other commercial burial sites has been precluded due to sites closing or prohibitions on acceptance of transuranic wastes. The State of Washington recently modified the NECO-Hanford operating license, effective February 29, 1980, to provide that radioactive wastes contaminated with transuranics in excess of 10 nCi/g will not be accepted for disposal. Consistent with the state policy, the NRC amended the NECO special nuclear material license so that Pu in excess of 10n Ci/g cannot be accepted after February 29, 1980. As a result, NRC requested DOE to examine the feasibility of accepting these wastes at a DOE operated site. TRU wastes accepted by the DOE would be placed in retrievable storage in accordance with DOE policy which requires retrievable storage of transuranic wastes pending final disposition in a geologic repository. DOE transuranic wastes are stored at six major DOE sites: INEL, Hanford, LASL, NTS, ORNL, and SRP. A specific site for receiving commercial TRU waste has not yet been selected. Shipments to DOE-Hanford would cause the least disruption to past practices. Commercial TRU wastes would be subject to waste form and packaging criteria established by the DOE. The waste generators would be expected to incur all applicable costs for DOE to take ownership of the waste, and provide storage, processing, and repository disposal. The 1980 charge to generators for DOE acceptance of commercial TRU waste is $147 per cubic foot

  16. 40 CFR 228.9 - Disposal site monitoring.

    Science.gov (United States)

    2010-07-01

    ... Section 228.9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE MANAGEMENT OF DISPOSAL SITES FOR OCEAN DUMPING § 228.9 Disposal site monitoring. (a) The... following components: (1) Trend assessment surveys conducted at intervals frequent enough to assess the...

  17. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2009-05-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  18. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    International Nuclear Information System (INIS)

    2009-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  19. Developments in support of low level waste disposal at BNFL's Drigg Site

    International Nuclear Information System (INIS)

    Johnson, L.F.

    1988-01-01

    The continued upgrading of low-level waste pretreatment and disposal practices related to the United Kingdom Drigg disposal site is described, noting the need to take into account operational safety, long term post-closure safety, regulatory and public acceptance factors

  20. Assessment of Deep Geological Environmental Condition for HLW Disposal in Korea

    International Nuclear Information System (INIS)

    Koh, Yong Kweon; Bae, Dae Seok; Kim, Kyung Su

    2010-04-01

    The research developed methods to study and evaluate geological factors and items to select radioactive waste disposal site, which should meet the safety requirements for radioactive waste disposal repositories according to the guidelines recommended by IAEA. A basic concept of site evaluation and selection for high level radioactive waste disposal and develop systematic geological data management with geological data system which will be used for site selection in future are provided. We selected 36 volcanic rock sites and 26 gneissic sites as the alternative host rocks for high level radioactive waste disposal and the geochemical characteristics of groundwaters of the four representative sites were statistically analyzed. From the hydrogeological and geochemical investigation, the spatial distribution characteristics were provided for the disposal system development and preliminary safety assessment. Finally, the technology and scientific methods were developed to obtain accurate data on the hydrogeological and geochemical characteristics of the deep geological environments

  1. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U.S. Department of Energy, Nevada Operations Office, Waste Acceptance Criteria

    1999-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the Nevada Test Site

  2. Reduce, reuse, recycle: Acceptance of CO_2-utilization for plastic products

    International Nuclear Information System (INIS)

    Heek, Julia van; Arning, Katrin; Ziefle, Martina

    2017-01-01

    Global warming is a central threat for today's society caused by greenhouse gas emissions, mostly carbon dioxide emissions. Carbon dioxide capture and utilization (CCU) is a promising approach to reduce emissions and the use of expensive and limited fossil resources. Applying CCU, carbon dioxide (CO_2) can be incorporated as raw material during the manufacture of plastic products. While most of the studies address technical feasibilities, hardly any systematic research on public perception and acceptance of those specific products exists so far. This study empirically investigates the acceptance of CCU plastic products (mattress as example). First, interviews with experts and lay people revealed critical acceptance factors (CO_2 proportion, saving of fossil resources, disposal conditions, perceived health complaints). Their relative importance was detailed in two consecutive conjoint studies. Study 1 revealed disposal conditions and saving of fossil resources as essential for product selection, while the products’ CO_2 proportion was less important. In study 2, potential health complaints were integrated as well as individual levels of domain knowledge and risk perception, which significantly affected acceptance of CCU products. Recommendations concerning communication strategies for policy and industry were derived. - Highlights: • Study provides insights into the acceptance of specific CCU products. • Disposal conditions and savings of fossil resource are main drivers of acceptance. • Concerns about potential health effects act as major barrier especially for laypeople. • Perceived knowledge and risk perception affect CCU product acceptance. • Communication strategy recommendations for policy and industry are derived.

  3. 7 CFR 1955.136 - Environmental Assessment (EA) and Environmental Impact Statement (EIS).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Environmental Assessment (EA) and Environmental Impact... Disposal of Inventory Property General § 1955.136 Environmental Assessment (EA) and Environmental Impact Statement (EIS). (a) Prior to a final decision on some disposal actions, an environmental assessment must be...

  4. Waste-Mixes Study for space disposal

    International Nuclear Information System (INIS)

    McCallum, R.F.; Blair, H.T.; McKee, R.W.; Silviera, D.J.; Swanson, J.L.

    1983-01-01

    The Wastes Mixes Study is a component of Cy-1981 and 1982 research activities to determine if space disposal could be a feasible complement to geologic disposal for certain high-level (HLW) and transuranic wastes (TRU). The objectives of the study are: to determine if removal of radionuclides from HLW and TRU significantly reduces the long-term radiological risks of geologic disposal; to determine if chemical partitioning of the waste for space disposal is technically feasible; to identify acceptable waste forms for space disposal; and to compare improvements in geologic disposal system performance to impacts of additional treatment, storage, and transportation necessary for space disposal. To compare radiological effects, five system alternatives are defined: Reference case - All HLW and TRU to a repository. Alternative A - Iodine to space, the balance to a repository. Alternative B - Technetium to space, the balance to a repository. Alternative C - 95% of cesium and strontium to a repository; the balance of HLW aged first, then to space; plutonium separated from TRU for recycle; the balance of the TRU to a repository. Alternative D - HLW aged first, then to space, plutonium separated from TRU for recycle; the balance of the TRU to a repository. The conclusions of this study are: the incentive for space disposal is that it offers a perception of reduced risks rather than significant reduction. Suitable waste forms for space disposal are cermet for HLW, metallic technetium, and lead iodide. Space disposal of HLW appears to offer insignificant safety enhancements when compared to geologic disposal; the disposal of iodine and technetium wastes in space does not offer risk advantages. Increases in short-term doses for the alternatives are minimal; however, incremental costs of treating, storing and transporting wastes for space disposal are substantial

  5. Evaluation of performance, safety, subject acceptance, and compliance of a disposable autoinjector for subcutaneous injections in healthy volunteers.

    Science.gov (United States)

    Berteau, Cecile; Schwarzenbach, Florence; Donazzolo, Yves; Latreille, Mathilde; Berube, Julie; Abry, Herve; Cotten, Joël; Feger, Celine; Laurent, Philippe E

    2010-10-05

    A disposable autoinjector was developed for subcutaneous (SC) self-injection by patients with chronic diseases. To verify its performance and evaluate its acceptance, a clinical study was conducted in healthy volunteers, comparing SC injections performed by subjects using the autoinjector with SC injections performed by nurses using a syringe. This was a randomized, single-center, crossover study comparing SC self-injection using an autoinjector with SC nurse-administered injection using a syringe. Two volumes (0.2 mL and 1 mL) were injected into healthy volunteers. Study objectives included assessment of the accuracy and consistency of the volume injected by the injection systems, and skin reaction and pain associated with the injection. The fluid depot in the SC tissue layer was evaluated by ultrasound. Subject acceptance was evaluated using questionnaires on attitudes and emotions towards the injection technique, and challenged by seeking the subjects' preferred system for a final study injection or future treatment. A total of 960 injections (480 with autoinjector, 480 with syringe) were performed in 40 subjects. There were no significant differences in mean fluid leakage and injected volumes between the systems. Pain associated with the injection was significantly lower with the auto-injector than with the syringe. Local skin reaction at the injection site was overall satisfactory. Injections were appropriately performed by all subjects. At study end, all 40 subjects preferred the autoinjector for a final study injection and for future treatment. This study indicated that the autoinjector used by the subject was similar to a syringe used by a nurse in terms of performance and safety in administering the injections, and better in terms of pain, overall acceptance, and preference.

  6. Programmatic environmental impact statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident, Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320): Draft

    International Nuclear Information System (INIS)

    1986-12-01

    In accordance with the National Environmental Policy Act and the Commission's implementing regulations and its April 27, 1981 Statement of Policy, the Programmatic Environmental Impact Statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979, accident Three Mile Island Nuclear Station, Unit 2 NUREG-0683 (PEIS) is being supplemented. This draft supplement updates the environmental evaluation of accident-generated water disposal alternatives published in the PEIS, utilizing more complete and current information. Also, the draft supplement includes a specific environmental evaluation of the licensee's recently submitted proposal for water disposition

  7. AECB staff response to the environmental impact statement on the concept for disposal of Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    1995-07-01

    The Environmental Impact Statement on the Concept for Disposal of Canada's Nuclear Fuel Waste was released in October 1994 in response to the guidelines issued in 1992 by a panel formed to evaluate this concept (Federal Environmental Assessment Review Panel, 1992). This response is primarily a statement of deficiencies and thus focuses on the negative aspects of the Environmental Impact Statement (EIS). The staff review of the EIS was based on the AECB mandate, which is to protect human health and the environment and as such was focused on technical issues in the EIS. These were performance assessment of the multiple barrier system, environmental impacts, concept feasibility, siting, transport and safety as well as general issues o f regulatory policy and criteria. 30 refs

  8. Proposed radiological protection criteria for waste disposal options

    International Nuclear Information System (INIS)

    Hill, M.D.

    1981-01-01

    Criteria which are based solely on the consequences of releases of radionuclides, that is doses to man, are inappropriate for decisions on the acceptability of many of the disposal options for solid wastes. The risks associated with disposal options in which the intention is to isolate wastes from the biosphere for any length of time have two major components: the probability that a release of radionuclides will occur and the probability that subsequent radiation doses will give rise to deleterious effects. It is therefore necessary to develop criteria which embody the basic radiological principle of keeping risks to acceptable levels and take account of both components of risk. In this paper proposed criteria are described and some of the implications of adopting these criteria are discussed. (author)

  9. Radiological Operational Safety Verification for LILW Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Youl [FNC Technology, SNU, Seoul (Korea, Republic of); Jeong, Seung Young; Kim, Byung Soo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2011-10-15

    The successful implementation of radioactive waste repository program depends on scientific and technical aspects of excellent safety strategy as well as on societal aspects such as stakeholder acceptance and confidence. Monitoring is considered as key element in serving both ends. It covers all stages of the disposal process from site selection to institutional monitoring after the repository is closed. Basically, the purpose of the monitoring of radioactive waste disposal facility is not to reveal any increase of radioactivity due to the repository, but to provide reassurance and confirmation that the repository is fulfilling its passive safety purpose as an initial disposal concept and that long-term safety driven by regulatory requirements is ensured throughout the entire lifetime of disposal facility including post-closure phase. Five principal objectives of monitoring of geological disposal are summarized by IAEA-TECDOC-1208 as follows 1) Supporting management decisions in a staged programme of repository development: 2) Strengthening understanding of system behavior: 3) Societal decision making: 4) Accumulating an environmental database: 5) Nuclear safeguards (if repository contains fissile material, i.e., spent fuel or plutonium-rich waste) Based on the results of detailed studies of the above objectives and related phenomena, 6 categories of potential monitoring parameters are determined as follows: (1) degradation of repository structures, (2) behavior of the waste package and its associated buffer material, (3) near field chemical interactions between introduced materials, groundwater and host rock, (4) chemical and physical changes to the surrounding geosphere, (5) provision of an environmental database, and (6) nuclear safeguards. Typical monitoring parameters include temperature (heat), water level, pore-water and moisture content (groundwater), rock pressure, fractures, displacement and deformation (stress), water quality chemistry and dissolved

  10. A new procedure for deep sea mining tailings disposal

    OpenAIRE

    Ma, W.; Schott, D.L.; Lodewijks, G.

    2017-01-01

    Deep sea mining tailings disposal is a new environmental challenge related to water pollution, mineral crust waste handling, and ocean biology. The objective of this paper is to propose a new tailings disposal procedure for the deep sea mining industry. Through comparisons of the tailings disposal methods which exist in on-land mining and the coastal mining fields, a new tailings disposal procedure, i.e., the submarine–backfill–dam–reuse (SBDR) tailings disposal procedure, is proposed. It com...

  11. Environmental control aspects for fabrication, reprocessing and waste disposal of alternative LWR and LMFBR fuels

    International Nuclear Information System (INIS)

    Nolan, A.M.; Lewallen, M.A.; McNair, G.W.

    1979-11-01

    Environmental control aspects of alternative fuel cycles have been analyzed by evaluating fabrication, reprocessing, and waste disposal operations. Various indices have been used to assess potential environmental control requirements. For the fabrication and reprocessing operations, 50-year dose commitments were used. Waste disposal was evaluated by comparing projected nuclide concentrations in ground water at various time periods with maximum permissible concentrations (MPCs). Three different fabrication plants were analyzed: a fuel fabrication plant (FFP) to produce low-activity uranium and uranium-thorium fuel rods; a plutonium fuel refabrication plant (PFRFP) to produce plutonium-uranium and plutonium-thorium fuel rods; and a uranium fuel refabrication plant (UFRFP) to produce fuel rods containing the high-activity isotopes 232 U and 233 U. Each plant's dose commitments are discussed separately. Source terms for the analysis of effluents from the fuel reprocessing plant (FRP) were calculated using the fuel burnup codes LEOPARD, CINDER and ORIGEN. Effluent quantities are estimated for each fuel type. Bedded salt was chosen for the waste repository analysis. The repository site is modeled on the Waste Isolation Pilot Program site in New Mexico. Wastes assumed to be stored in the repository include high-level vitrified waste from the FRP, packaged fuel residue from the FRP, and transuranic (TRU) contaminated wastes from the FFP, PFRFP, and UFRFP. The potential environmental significance was determined by estimating the ground-water concentrations of the various nuclides over a time span of a million years. The MPC for each nuclide was used along with the estimated ground-water concentration to generate a biohazard index for the comparison among fuel compositions

  12. Development of new waste form for treatment and disposal of concentrated liquid radioactive waste

    International Nuclear Information System (INIS)

    Kwak, Kyung Kil; Ji, Young Yong

    2010-12-01

    The radioactive waste form should be meet the waste acceptance criteria of national regulation and disposal site specification. We carried out a characterization of rad waste form, especially the characteristics of radioactivity, mechanical and physical-chemical properties in various rad waste forms. But asphalt products is not acceptable waste form at disposal site. Thus we are change the product materials. We select the development of the new process or new materials. The asphalt process is treatment of concentrated liquid and spent-resin and that we decide the Development of new waste form for treatment and disposal of concentrated liquid radioactive waste

  13. Why consider subseabed disposal of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Heath, G.R.; Hollister, C.D.; Anderson, D.R.; Leinen, M.

    1983-01-01

    There exist large areas of the deep seabed that warrant assessment as potential disposal sites for high-level radioactive wastes because (1) they are far from seismically and tectonically active lithospheric plate boundaries; (2) they are far from active or young volcanoes; (3) they contain thick layers of very uniform fine-grained clays; (4) they are devoid of natural resources likely to be exploited in the foreseeable future; (5) the geologic and oceanographic processes governing the deposition of sediments in such areas are well understood, and have been remarkably insensitive to past oceanic and climatic changes; and (6) sedimentary records of tens of millions of years of slow, uninterrupted deposition of fine-grained clay support predictions of the future stability of such sites. Data accumulated to date on the permeability, ion-retardation properties, and mechanical strength of pelagic clayey sediments indicate that they can act as a primary barrier to the escape of buried radionuclides. Work in progress should determine within the current decade whether subseabed disposal is environmentally acceptable and technically feasible, as well as address the legal, political, and social issues raised by this new concept

  14. Why consider subseabed disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Heath, G.R.; Hollister, C.D.; Anderson, D.R.; Leinen, M.

    1980-01-01

    Large areas of the deep seabed warrant assessment as potential disposal sites for high-level radioactive waste because: (1) they are far from seismically and tectonically active lithospheric plate boundaries; (2) they are far from active or young volcanos; (3) they contain thick layers of very uniform fine-grained clays; (4) they are devoid of natural resources likely to be exploited in the forseeable future; (5) the geologic and oceanographic processes governing the deposition of sediments in such areas are well understood, and are remarkably insensitive to past oceanographic and climatic changes; and (6) sedmentary records of tens of millions of years of slow, uninterrupted deposition of fine grained clay support predictions of the future stability of such sites. Data accumulated to date on the permeability, ion-retardation properties, and mechanical strength of pelagic clay sediments indicate that they can act as a primary barrier to the escape of buried nuclides. Work in progress should determine within the current decade whether subseabed disposal is environmentally acceptable and technically feasible, as well as address the legal, political and social issues raised by this new concept

  15. 40 CFR 35.6345 - Equipment disposal options.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Equipment disposal options. 35.6345 Section 35.6345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL... options. The following disposal options are available: (a) Use the equipment on another CERCLA project and...

  16. Engineering geology of waste disposal

    International Nuclear Information System (INIS)

    Bentley, S.P.

    1996-01-01

    This volume covers a wide spectrum of activities in the field of waste disposal. These activities range from design of new landfills and containment properties of natural clays to investigation, hazard assessment and remediation of existing landfills. Consideration is given to design criteria for hard rock quarries when used for waste disposal. In addition, an entire section concerns the geotechnics of underground repositories. This covers such topics as deep drilling, in situ stress measurement, rock mass characterization, groundwater flows and barrier design. Engineering Geology of Waste Disposal examines, in detail, the active role of engineering geologists in the design of waste disposal facilities on UK and international projects. The book provides an authoritative mix of overviews and detailed case histories. The extensive spectrum of papers will be of practical value to those geologists, engineers and environmental scientists who are directly involved with waste disposal. (UK)

  17. Selection of heat disposal methods for a Hanford Nuclear Energy Center

    International Nuclear Information System (INIS)

    Young, J.R.; Kannberg, L.D.; Ramsdell, J.V.; Rickard, W.H.; Watson, D.G.

    1976-06-01

    Selection of the best method for disposal of the waste heat from a large power generation center requires a comprehensive comparison of the costs and environmental effects. The objective is to identify the heat dissipation method with the minimum total economic and environmental cost. A 20 reactor HNEC will dissipate about 50,000 MWt of waste heat; a 40 reactor HNEC would release about 100,000 MWt. This is a much larger discharge of heat than has occurred from other concentrated industrial facilities and consequently a special analysis is required to determine the permissibility of such a large heat disposal and the best methods of disposal. It is possible that some methods of disposal will not be permissible because of excessive environmental effects or that the optimum disposal method may include a combination of several methods. A preliminary analysis is presented of the Hanford Nuclear Energy Center heat disposal problem to determine the best methods for disposal and any obvious limitations on the amount of heat that can be released. The analysis is based, in part, on information from an interim conceptual study, a heat sink management analysis, and a meteorological analysis

  18. Safe Disposal of Pesticides

    Science.gov (United States)

    ... Toxics Environmental Information by Location Greener Living Health Land, Waste, and Cleanup Lead Mold Pesticides Radon Science ... or www.earth911.com . Think before disposing of extra pesticides and containers: Never reuse empty pesticide containers. ...

  19. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Bohm, H.; Closs, K.D.; Kuhn, K.

    1981-01-01

    The solutions to the technical problem of the disposal of radioactive waste are limited by a) the state of knowledge of reprocessing possibilites, b) public acceptance of the use of those techniques which are known, c) legislative procedures linking licensing of new nuclear power plants to the solution of waste problems, and d) other political constraints. Wastes are generated in the mining and enriching of radioactive elements, and in the operation of nuclear power plants as well as in all fields where radioactive substances may be used. Waste management will depend on the stability and concentration of radioactive materials which must be stored, and a resolution of the tension between numerous small storage sites and a few large ones, which again face problems of public acceptability

  20. The Remote Handled Immobilization Low Activity Waste Disposal Facility Environmental Permits & Approval Plan

    Energy Technology Data Exchange (ETDEWEB)

    DEFFENBAUGH, M.L.

    2000-08-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement

  1. Medications at School: Disposing of Pharmaceutical Waste

    Science.gov (United States)

    Taras, Howard; Haste, Nina M.; Berry, Angela T.; Tran, Jennifer; Singh, Renu F.

    2014-01-01

    Background: This project quantified and categorized medications left unclaimed by students at the end of the school year. It determined the feasibility of a model medication disposal program and assessed school nurses' perceptions of environmentally responsible medication disposal. Methods: At a large urban school district all unclaimed…

  2. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume I of V

    International Nuclear Information System (INIS)

    1997-05-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for treated (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the no action alternative, which includes only existing or approved waste management facilities, the alternatives for each of the waste type configurations include decentralized, regionalized, and centralized alternatives for using existing and operating new waste management facilities. However, the siting, construction and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  3. Humboldt Open Ocean Disposal Site (HOODS) Survey Work 2014

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Humboldt Open Ocean Disposal Site (HOODS) is a dredged material disposal site located 3 nautical miles (nm) offshore of Humboldt Bay in Northern California....

  4. Prediction of radionuclide accumulation in main ecosystem components of NPP cooling water reservoirs and assessment of acceptable radionuclide disposal into water reservoir

    International Nuclear Information System (INIS)

    Egorov, Yu.A.; Kazakov, S.V.

    1987-01-01

    The problems of prediction of radionuclide accumulation in ecosystem main components of NPP cooling water-reservoirs (CWR) and assessment of radionuclide acceptable disposal into water reservoir are considered. Two models are nessecary for the calculation technique: model of radionuclide migration and accumulation in CWR ecosystem components and calculation model of population dose commitment due to water consumption (at the public health approach to the normalization of the NPP radioactive effect on CWC) or calculation model of dose commitment on hydrocenosis components (at the ecological approach to the normalization). Analytical calculations and numerical calculation results in the model CWC, located in the USSR middle region, are presented

  5. Sustainability and Philanthropic Awareness in Clothing Disposal Behavior Among Young Malaysian Consumers

    Directory of Open Access Journals (Sweden)

    Loi Wai Yee

    2016-01-01

    Full Text Available Young consumers are the stylish shoppers who have a strong tendency to follow the latest fashion. With the rapid changes in the fashion trends, the overconsumption of clothing has had a significant environmental impact on society. Hence, there is a need to understand how young fashionable consumers are disposing their unwanted clothes. The survey was conducted among 205 young respondents, and the results show that clothing disposal behavior is affected by philanthropic awareness and mediated by the attitude toward clothing disposal. Interestingly, environmental economic factors only influence clothing disposal behavior through the attitude toward the disposal of clothing. The findings provide a valuable insight into the government and related authorities or organizations in developing strategies to encourage young consumers to increase their clothing-recycling rate, and, thus, eliminate the environmental issues in near future.

  6. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-09-03

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  7. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2010-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  8. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2011-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  9. An analysis of the intent of environmental standards in the U.S. that apply to waste disposed at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hechanova, A.E.; Mattingly, B.T.; Gitnacht, D.

    2001-01-01

    This paper contains a discussion on the application of U.S. regulatory standards for transuranic waste disposed at the Nevada Test Site. Application of current compliance requirements and regulatory guidance defined for a generic disposal system, although satisfying the 'letter of the law,' is shown to be incompatible with the 'intent of the law' based on a thorough review of the preamble and background documents supporting the regulation. Specifically, the standards that apply to transuranic waste disposal were derived assuming deep geologic disposal and much larger and more hazardous waste forms: irradiated nuclear reactor fuel and high-level radioactive waste. Therefore, key assumptions that underpin the analyses used to justify the standards (e.g., the ground water pathway being considered the only major release mechanism) are inconsistent with the nature of the radionuclide inventory and the intermediate depth of waste emplacement in Greater Confinement Disposal boreholes at the Nevada Test Site. The authors recommend that site specific performance metrics be determined to foster an analysis which is transparent and consistent with U.S. Environmental Protection Agency intent in developing the standards for a generic disposal system. (authors)

  10. Radiological dose assessment of Department of Energy Pinellas Plant waste proposed for disposal at Laidlaw Environmental Services of South Carolina, Inc

    International Nuclear Information System (INIS)

    Socolof, M.L.; Lee, D.W.

    1996-05-01

    The U.S. Department of Energy (DOE) Pinellas Plant in Largo, FL is proposing to ship and dispose of hazardous sludge, listed as F006 waste, to the Laidlaw Environmental Services of South Carolina, Inc. (Laidlaw) treatment, storage, and disposal facility in Pinewood, South Carolina. This sludge contains radioactive tritium in concentrations of about 28 pCi/g. The objective of this study is to assess the possible radiological impact to workers at the Laidlaw facility and members of the public due to the handling, processing, and burial of the DOE waste containing tritium

  11. Radiological dose assessment of Department of Energy Pinellas Plant waste proposed for disposal at Laidlaw Environmental Services of South Carolina, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Socolof, M.L.; Lee, D.W.

    1996-05-01

    The U.S. Department of Energy (DOE) Pinellas Plant in Largo, FL is proposing to ship and dispose of hazardous sludge, listed as F006 waste, to the Laidlaw Environmental Services of South Carolina, Inc. (Laidlaw) treatment, storage, and disposal facility in Pinewood, South Carolina. This sludge contains radioactive tritium in concentrations of about 28 pCi/g. The objective of this study is to assess the possible radiological impact to workers at the Laidlaw facility and members of the public due to the handling, processing, and burial of the DOE waste containing tritium.

  12. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source

  13. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-12-29

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source

  14. Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

    2012-05-01

    This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

  15. Disposal of drilling fluids and solids generated from water-based systems in Alberta

    International Nuclear Information System (INIS)

    Parenteau, S.E.

    1999-01-01

    The different disposal options for drilling wastes as outlined in Guide 50 of the Alberta Energy and Utilities Board (EUB) are discussed. Guide 50 provides for the cost effective and environmentally sound disposal of drilling waste generated in Alberta. Each disposal option of the guide is reviewed and common methods of operation are outlined. Relative costs, environmental suitability and liability issues associated with each option are described. Issues regarding overall disposal considerations, on-site and off-site disposal options, hydrocarbon contamination, salt contaminated waste, toxic waste, and documentation of waste disposal outlined. Some recent programs which have been in the trial phase for a few years are also addressed

  16. An analysis of the intent of environmental standards in the united states that apply to waste disposed at the Nevada test site

    International Nuclear Information System (INIS)

    Hechanova, A.E.; Mattingly, B.T.

    2000-01-01

    This paper addresses the disposal of transuranic waste at the Nevada Test Site (NTS), the intention of the environmental standards under which the disposal is completed, and some lingering controversy surrounding the U.S. nuclear weapons complex remediation effort. A goal of this paper besides the informational value is to provide points of discussion regarding this very costly and large-scale program in the U.S. and provide a platform for the exchange of ideas regarding remediation activities in other countries. (authors)

  17. Criteria for high-level waste disposal

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1981-01-01

    Disposal of radioactive wastes is storage without the intention of retrieval. But in such storage, it may be useful and in some cases necessary to have the possibility of retrieval at least for a certain period of time. In order to propose some criteria for HLW disposal, one has to examine how this basic concept is to be applied. HLW is waste separated as a raffinate in the first cycle of solvent extraction in reprocessing. Such waste contains the bulk of fission products which have long half lives, therefore the safety of a disposal site, at least after a certain period of time, must be intrinsic, i.e. not based on human intervention. There is a consensus that such a disposal is feasible in a suitable geological formation in which the integrity of the container will be reinforced by several additional barriers. Criteria for disposal can be proposed for all aspects of the question. The author discusses the aims of the safety analysis, particularly the length of time for this analysis, and the acceptable dose commitments resulting from the release of radionuclides, the number and role of each barrier, and a holistic analysis of safety external factors. (Auth.)

  18. Environmental awareness and traffic behaviour. Empirical analyses on the choice of means of transport and the acceptance of environment-policy measures

    International Nuclear Information System (INIS)

    Franzen, A.

    1996-01-01

    In the public and scientific discussion about options concerning solutions to the environmental problem, the role played by environmental awareness is often an area of interest. Two essential questions are posed: - What influence do environment-related attitudes have on the everyday, environmentally relevant actions of individuals? - What influence does environmental awareness have on voting behaviour and on the acceptance of environment policy measures? In this book, both questions are empirically examined in detail using, as examples, the choice of means of transport and the acceptance of measures to control traffic [de

  19. Reducing health care-associated infections by implementing separated environmental cleaning management measures by using disposable wipes of four colors.

    Science.gov (United States)

    Wong, Swee Siang; Huang, Cheng Hua; Yang, Chiu Chu; Hsieh, Yi Pei; Kuo, Chen Ni; Chen, Yi Ru; Chen, Li Ching

    2018-01-01

    Environmental cleaning is a fundamental principle of infection control in health care settings. We determined whether implementing separated environmental cleaning management measures in MICU reduced the density of HAI. We performed a 4-month prospective cohort intervention study between August and December 2013, at the MICU of Cathay General hospital. We arranged a training program for all the cleaning staff regarding separated environmental cleaning management measures by using disposable wipes of four colors to clean the patients' bedside areas, areas at a high risk of contamination, paperwork areas, and public areas. Fifteen high-touch surfaces were selected for cleanliness evaluation by using the adenosine triphosphate (ATP) bioluminescence test. Then data regarding HAI densities in the MICU were collected during the baseline, intervention, and late periods. A total of 120 ATP readings were obtained. The total number of clean high-touch surfaces increased from 13% to 53%, whereas that of unclean high-touch surface decreased from 47% to 20%. The densities of HAI were 14.32‰ and 14.90‰ during the baseline and intervention periods, respectively. The HAI density did not decrease after the intervention period, but it decreased to 9.07‰ during the late period. Implementing separated environmental cleaning management measures by using disposable wipes of four colors effectively improves cleanliness in MICU environments. However, no decrease in HAI density was observed within the study period. Considering that achieving high levels of hand-hygiene adherence is difficult, improving environmental cleaning is a crucial adjunctive measure for reducing the incidence of HAIs.

  20. Technical support document for the surface disposal of sewage sludge. Final report

    International Nuclear Information System (INIS)

    1992-11-01

    The document provides the technical background and justification for the U.S. Environmental Protection Agency's (EPA) final regulation (40 CFR Part 503) covering the surface disposal of sewage sludge. The document summarizes current practices in land application and presents data supporting the risk assessment methodology used to derive human health and environmental risk-based limits for contaminants in sewage sludge placed on surface disposal sites. The management practices associated with surface disposal are outlined and the different pathways by which contaminants reach highly-exposed individuals (HEIs) through surface disposal are discussed

  1. Technical support document for the surface disposal of sewage sludge. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The document provides the technical background and justification for the U.S. Environmental Protection Agency's (EPA) final regulation (40 CFR Part 503) covering the surface disposal of sewage sludge. The document summarizes current practices in land application and presents data supporting the risk assessment methodology used to derive human health and environmental risk-based limits for contaminants in sewage sludge placed on surface disposal sites. The management practices associated with surface disposal are outlined and the different pathways by which contaminants reach highly-exposed individuals (HEIs) through surface disposal are discussed.

  2. Transuranic advanced disposal systems: preliminary 239Pu waste-disposal criteria for Hanford

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

    1982-08-01

    An evaluation of the feasibility and potential application of advanced disposal systems is being conducted for defense transuranic (TRU) wastes at the Hanford Site. The advanced waste disposal options include those developed to provide greater confinement than provided by shallow-land burial. An example systems analysis is discussed with assumed performance objectives and various Hanford-specific disposal conditions, waste forms, site characteristics, and engineered barriers. Preliminary waste disposal criteria for 239 Pu are determined by applying the Allowable Residual Contamination Level (ARCL) method. This method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. A 10,000 year environmental performance period is assumed, and the dose rate limit for human intrusion is assumed to be 500 mrem/y to any exposed individual. Preliminary waste disposal criteria derived by this method for 239 Pu in soils at the Hanford Site are: 0.5 nCi/g in soils between the surface and a depth of 1 m, 2200 nCi/g of soil at a depth of 5 m, and 10,000 nCi/g of soil at depths 10 m and below. These waste disposal criteria are based on exposure scenarios that reflect the dependence of exposure versus burial depth. 2 figures, 5 tables

  3. Potential environmental hazards of photovoltaic panel disposal: Discussion of Tammaro et al. (2015).

    Science.gov (United States)

    Sinha, Parikhit

    2017-02-05

    In their recent publication in Journal of Hazardous Materials (http://dx.doi.org/10.1016/j.jhazmat.2015.12.018), Tammaro et al. evaluate the potential environmental impacts of an illegal disposal scenario of photovoltaic panels in the European Union. Critical assumptions that underlie the study's conclusions would benefit from clarification. A scenario of photovoltaic panels finely crushed and abandoned in nature is not supported with field breakage data, in which photovoltaic panels remain largely intact with a number of glass fractures or cracks, as opposed to breakage into cm-scale pieces. Fate and transport analysis is necessary to evaluate how leachate transforms and disperses in moving from the point of emissions to the point of exposure, prior to making comparisons with drinking water limits. Some hazardous metal content has declined in both crystalline silicon and thin film panels, including a 50% decline in semiconductor material intensity in CdTe thin film panels (g CdTe/W) from 2009 to 2015. Waste laws, recycling requirements and minimum treatment standards under the EU WEEE Directive, and illegal disposal rates affect the accuracy of forecasts of releasable metal amounts from PV panels in Europe through 2050. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Groundwater protection plan for the Environmental Restoration Disposal Facility

    International Nuclear Information System (INIS)

    Weekes, D.C.; Jaeger, G.K.; McMahon, W.J.; Ford, B.H.

    1996-01-01

    This document is the groundwater protection plan for the Environmental Restoration Disposal Facility (ERDF) Project. This plan is prepared based on the assumption that the ERDF will receive waste containing hazardous/dangerous constituents, radioactive constituents, and combinations of both. The purpose of this plan is to establish a groundwater monitoring program that (1) meets the intent of the applicable or relevant and appropriate requirements, (2) documents baseline groundwater conditions, (3) monitors those conditions for change, and (4) allows for modifications to groundwater sampling if required by the leachate management program. Groundwater samples indicate the occurrence of preexisting groundwater contamination in the uppermost unconfined aquifer below the ERDF Project site, as a result of past waste-water discharges in the 200 West Area. Therefore, it is necessary for the ERDF to establish baseline groundwater quality conditions and to monitor changes in the baseline over time. The groundwater monitoring program presented in this plan will provide the means to assess onsite and offsite impacts to the groundwater. In addition, a separate leachate management program will provide an indication of whether the liners are performing within design standards

  5. Report on decision-making of geological disposal. Discussion based on case study

    International Nuclear Information System (INIS)

    Hiruzawa, Shigenobu

    2004-01-01

    History of geological disposal from 1950 to 2000 in the world and some examples of change of policy in France, Sweden and Canada are explained. On the case study of three countries, investigations of background of the change, site decision process, communication, flexible concept of disposal are stated. Japan decided the high level radioactive waste is disposed in underground (300m deeper) under the Law Concerning the Final Disposal of Special Radioactive Waste in June, 2000. NUMO (Nuclear Waste Management Organization of Japan) was established to manage disposal of radioactive waste in October, 2000. NUMO started to accept application for the site of disposal in the country in December, 2002. The above case study is a good guide to promote geological disposal of radioactive waste. (S.Y.)

  6. Problems and prospects of refuse disposal in nigerian urban centres ...

    African Journals Online (AJOL)

    Refuse disposal is one of the major environmental problems that developing ... The problem of waste management has two parts, that of collection and that of disposal. ... Disposal methods such as dumping sites, incineration, recycling, shipping ... citizenry has roles to play in adopting more suitable solutions to this problem.

  7. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume V of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear energy research and the development, production, and testing of nuclear weapons at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives, which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for created (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the No Action Alternative, which includes only existing of approved waste management facilities, the alternatives for each of the waste-type configurations include Decentralized, Regionalized, and Centralized Alternatives for using existing and operating new waste management facilities. However, the siting, construction, and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  8. Acceptance test procedure for Project W-049H

    International Nuclear Information System (INIS)

    Buckles, D.I.

    1994-01-01

    The Acceptance Test Procedure (ATP) program for Project W-049H (200 Area Treated Effluent Disposal Facility [TEDF]) covers three activities as follows: (1) Disposal System; (2) Collection System; and (3) Instrumentation and Control System. Each activity has its own ATP. The purpose of the ATPs is to reverify that the systems have been constructed in accordance with the construction documents and to demonstrate that the systems function as required by the Project criteria. The Disposal System ATP covers the testing of the following: disposal line flowmeters, room air temperatures in the Disposal Station Sampling Building, effluent valves and position indicators, disposal pond level monitors, automated sampler, pressure relief valves, and overflow diversion sluice gates. The Collection System ATP covers the testing of the two pump stations and all equipment installed therein. The Instrumentation and Control (I and C) ATP covers the testing of the entire TEDF I and C system. This includes 3 OCS units, modem, and GPLI cabinets in the ETC control room; 2 pump stations; disposal station sampling building; and all LCUs installed in the field

  9. The Management System for the Development of Disposal Facilities for Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    Currently, many Member States are safely operating near surface disposal facilities and some are in the initial or advanced stages of planning geological repositories. As for other nuclear facilities and their operational phase, all activities associated with the disposal of radioactive waste need to be carefully planned and systematic actions undertaken in order to maintain adequate confidence that disposal systems will meet performance as well as prescribed safety requirements and objectives. The effective development and application of a management system (integrating requirements for safety, protection of health and the environment, security, quality and economics into one coherent system) which addresses every stage of repository development is essential. It provides assurance that the objectives for repository performance and safety, as well as environmental and quality criteria, will be met. For near surface repositories, a management system also provides the opportunity to re-evaluate existing disposal systems with respect to new safety, environmental or societal requirements which could arise during the operational period of a facility. The topic of waste management and disposal continues to generate public interest and scrutiny. Implementation of a formal management system provides documentation, transparency and accountability for the various activities and processes associated with radioactive waste disposal. This information can contribute to building public confidence and acceptance of disposal facilities. The objective of this report is to provide Member States with practical guidance and relevant information on management system principles and expectations for management systems that can serve as a basis for developing and implementing a management system for three important stages; the design, construction/upgrading and operation of disposal facilities. To facilitate the understanding of management system implementation at the different stages of a

  10. Review of environmental surveillance data around low-level waste disposal areas at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Oakes, T.W.; Shank, K.E.

    1979-01-01

    White Oak Creek and Melton Branch tributary surface streams flow through the Oak Ridge National Laboratory (ORNL) reservation and receive treated low-level radioactive liquid waste which originates from various Laboratory operations. The streams receive additional low-level liquid waste generated by seepage of radioactive materials from solid-waste burial grounds, hydrofracture sites, and intermediate-level liquid-waste sites. Over the years, various liquid-waste treatment and disposal processes have been employed at ORNL; some of these processes have included: settling basins, impoundment, storage tanks, evaporation, ground disposal in trenches and pits, and hydrofracture. Burial of solid radioactive waste was initiated in the early 1940's, and there are six burial grounds at ORNL with two currently in use. Monitoring at White Oak Dam, the last liquid control point for the Laboratory, was started in the late 1940's and is continuing. Presently, a network of five environmental monitoring stations is in operation to monitor the radionuclide content of surface waters in the White Oak watershed. In this paper, the solid waste burial grounds will be described in detail, and the environmental data tabulated over the past 29 years will be presented. The various monitoring systems used during the years will also be reviewed. The liquid effluent discharge trends at ORNL from the radioactive waste operations will be discussed

  11. Status of US program for disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Smith, R.I.

    1991-04-01

    In this paper, a brief history of the United States' program for the disposal of spent nuclear fuel (SNF) and the legislative acts that have guided the program are discussed. The current plans and schedules for beginning acceptance of SNF from the nuclear utilities for disposal are described, and some of the development activities supporting the program are discussed. And finally, the viability of the SNF disposal fee presently paid into the Nuclear Waste Fund by the owners/generators of commercial SNF and high-level waste (HLW) is examined. 12 refs., 9 figs

  12. Economic analysis of alternative LLW disposal methods

    International Nuclear Information System (INIS)

    Foutes, C.E.; Queenan, C.J. III

    1987-01-01

    The Environmental Protection Agency (EPA) has evaluated the costs and benefits of alternative disposal technologies as part of its program to develop generally applicable environmental standards for the land disposal of low-level radioactive waste (LLW). Costs, population health effects and Critical Population Group (CPG) exposures resulting from alternative waste treatment and disposal methods were evaluated both in absolute terms and also relative to a base case (current practice). Incremental costs of the standard included costs for packaging, processing, transportation, and burial of waste. Benefits are defined in terms of reductions in the general population health risk (expected fatal cancers and genetic effects) evaluated over 10,000 years. A cost-effectiveness ratio, defined as the incremental cost per avoided health effect, was calculated for each alternative standard. The cost-effectiveness analysis took into account a number of waste streams, hydrogeologic and climatic region settings, and waste treatment and disposal methods. This paper describes the alternatives considered and preliminary results of the cost-effectiveness analysis. 15 references, 7 figures, 3 tables

  13. Environmentally compatible sewage sludge disposal; Umweltgerechte Klaerschlammentsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J. [Technische Univ. Braunschweig (Germany). Inst. fuer Mechanische Verfahrenstechnik; Schwedes, J. [Technische Univ. Braunschweig (Germany). Inst. fuer Mechanische Verfahrenstechnik

    1997-09-01

    Cleaning of municipal and industrial waste water is done by means of biological processes: micro-organisms degrade pollutants. The resulting products are, besides cleaned waste water, sewage sludge and surplus sludge. Their disposal involves ecological and economic problems. One approach to their partial disposal is their degradation in a digester. Approximately one half of the organic substance is converted by anaerobic bacteria into energy-rich biogas. Optimization of this digestion process accelerates the anaerobic degradation process, increases the accruing amount of digester gas and reduces the volume of digested sludge to be disposed of. With these objectives, the Institute fuer Mechanische Verfahrenstechnik is conducting research into the mechanical treatment of micro-organisms remaining in surplus sludge by means of different treatment devices. The project is sponsored under the programme of the Deutsche Forschungsgemeinschaft DFG ``Biological processes with dispersive solids``. Mechanical treatment renders the cell constituents exploitable to anaerobic bacteria; the resulting sludge degradation is more rapid and more complete. (orig./ABI) [Deutsch] Zur Reinigung haeuslicher und industrieller Abwaesser werden biologische Prozesse eingesetzt. Dabei sorgen Mikroorganismen fuer den Abbau der Verunreinigungen. Neben dem gereinigten Abwasser fallen Primaer- und Ueberschussschlamm an, deren Entsorgung oekologische und oekonomische Probleme verursacht. Ein Weg zur partiellen Beseitigung dieser Klaerschlaemme ist ihr Abbau in einem Faulbehaelter. Dabei wird etwa die Haelfe der organischen Substanz durch anaerobe Bakterien zu einem energiereichen Biogas umgewandelt. Eine Optimierung dieses Faulprozesses beinhaltet: 1. Beschleunigung des anaeroben Abbauprozesses, 2. Erhoehung der anfallenden Faulgasmenge und 3. Reduzierung der zu entsorgenden Faulschlammenge. Mit diesen Zielsetzungen wird am Institut fuer Mechanische Verfahrenstechnik im Rahmen der DFG

  14. Borehole disposal design concept in Madagascar

    International Nuclear Information System (INIS)

    Randriamarolahy, J.N.; Randriantseheno, H.F.; Andriambololona, Raoelina

    2008-01-01

    Full text: In Madagascar, sealed radioactive sources are used in several socio-economic sectors such as medicine, industry, research and agriculture. At the end of their useful lives, these radioactive sources become ionizing radiations waste and can be still dangerous because they can cause harmful effects to the public and the environment. 'Borehole disposal design concept' is needed for sitting up a safe site for storage of radioactive waste, in particular, sealed radioactive sources. Borehole disposal is an option for long-term management of small quantities of radioactive waste in compliance with the internationally accepted principles for radioactive waste management. Several technical aspects must be respected to carry out such a site like the geological, geomorphologic, hydrogeology, geochemical, meteorological and demographic conditions. Two sites are most acceptable in Madagascar such as Ankazobe and Fanjakana. A Borehole will be drilled and constructed using standard techniques developed for water abstraction, oil exploration. At the Borehole, the sealed radioactive sources are encapsulated. The capsule is inserted in a container. This type of storage is benefit for the developing countries because it is technologically simple and economic. The construction cost depends on the volume of waste to store and the Borehole depth. The borehole disposal concept provides a good level of safety to avoid human intrusion. The future protection of the generations against the propagation of the ionizing radiations is then assured. (author)

  15. HEU to LEU conversion and blending facility: UNH blending alternative to produce LEU oxide for disposal

    International Nuclear Information System (INIS)

    1995-09-01

    The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than is the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This report provides data to be used in the environmental impact analysis for the uranyl nitrate hexahydrate blending option to produce oxide for disposal. This the Conversion and Blending Facility (CBF) alternative will have two missions (1) convert HEU materials into HEU uranyl nitrate (UNH) and (2) blend the HEU uranyl nitrate with depleted and natural assay uranyl nitrate to produce an oxide that can be stored until an acceptable disposal approach is available. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal

  16. HEU to LEU conversion and blending facility: UNH blending alternative to produce LEU oxide for disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than is the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This report provides data to be used in the environmental impact analysis for the uranyl nitrate hexahydrate blending option to produce oxide for disposal. This the Conversion and Blending Facility (CBF) alternative will have two missions (1) convert HEU materials into HEU uranyl nitrate (UNH) and (2) blend the HEU uranyl nitrate with depleted and natural assay uranyl nitrate to produce an oxide that can be stored until an acceptable disposal approach is available. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  17. Conclusions on the two technical panels on HLW-disposal and waste treatment processes respectively

    International Nuclear Information System (INIS)

    Dinkespiller, J.A.; Dejonghe, P.; Feates, F.

    1986-01-01

    The paper reports the concluding panel session at the European Community Conference on radioactive waste management and disposal, Luxembourg 1985. The panel considered the conclusions of two preceeding technical panels on high level waste (HLW) disposal and waste treatment processes. Geological disposal of HLW, waste management, safety assessment of waste disposal, public opinion, public acceptance of the manageability of radioactive wastes, international cooperation, and waste management in the United States, are all discussed. (U.K.)

  18. Waste disposal options report. Volume 2

    International Nuclear Information System (INIS)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k eff for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes

  19. Waste disposal options report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k{sub eff} for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes.

  20. Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    1994-04-01

    The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site

  1. Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

  2. Nuclear fuel waste disposal in Canada

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Gillespie, P.A.

    1990-05-01

    Atomic Energy of Canada Limited (AECL) has developed a concept for disposing of Canada's nuclear fuel waste and is submitting it for review under Federal Environmental Assessment and Review Process. During this review, AECL intends to show that careful, controlled burial 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield is a safe and feasible way to dispose of Canada's nuclear fuel waste. The concept has been assessed without identifying or evaluating any particular site for disposal. AECL is now preparing a comprehensive report based on more than 10 years of research and development

  3. Nuclear fuel waste disposal in Canada

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Gillespie, P.A.

    1990-05-01

    Atomic Energy of Canada Limited (AECL) has developed a concept for disposing of Canada's nuclear fuel waste and is submitting it for review under the Federal Environmental Assessment and Review Process. During this review, AECL intends to show that careful, controlled burial 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield is a safe and feasible way to dispose of Canada's nuclear fuel waste. The concept has been assessed without identifying or evaluating any particular site for disposal. AECL is now preparing a comprehensive report based on more than 10 years of research and development

  4. The Remote Handled Immobilization Low-Activity Waste Disposal Facility Environmental Permits and Approval Plan

    International Nuclear Information System (INIS)

    DEFFENBAUGH, M.L.

    2000-01-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement or record of decision shall result in shutdown of an operational

  5. Hydrologic information needs for evaluating waste disposal options

    Energy Technology Data Exchange (ETDEWEB)

    Huff, D.D.

    1983-01-01

    Before waste disposal options can be assessed, an objective or set of criteria for evaluation must be established. For hydrologists, the objective is to ensure that ground water and surface water do not become contaminated beyond acceptable limits as a result of waste disposal operations. The focus here is on the information required to quantify hydrologic transport of potential contaminants from the disposal site. It is important to recognize that the composition of the waste, its physical and chemical form, and the intended disposal methods (e.g., surface spreading, incineration, shallow land burial, or interment in a deep geologic repository) must either be specified a priori or set forth as specific options for evaluation, because these factors influence the nature of the hydrologic data needs. The hydrologic information needs of major importance are given together with specific measurable variables to be determined.

  6. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is

  7. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-10-04

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is

  8. Environmental-pathways analysis for evaluation of a low-level waste disposal site

    International Nuclear Information System (INIS)

    Lee, D.W.; Ketelle, R.H.; Pin, F.G.; Hill, G.S.

    1983-01-01

    The suitability of a site for the shallow land burial of low-level waste is evaluated by an environmental-pathways analysis. The environmental-pathways analysis considers the probable paths for the transport of contamination to man and models the long-term transport of contamination to determine the resulting dose-to-man. The model of the long-term transport of contamination is developed for a proposed site using data obtained from a comprehensive laboratory and field investigation. The proposed site is located at the US Department of Energy Portsmouth Reservation, Piketon, Ohio and is planned to accept low-level radioactive waste generated by the enrichment of uranium. Laboratory studies were performed to characterize the waste and determine the wastes' leaching and retardation characteristics with site soils and groundwater. Comprehensive drilling, sampling and laboratory investigations were performed to provide the necessary information for interpreting the site's geology and hydrology. Field tests were performed to further quantify the site's hydrology. The pathway of greatest concern is the migration of contaminated groundwater and subsequent consumption by man. This pathway was modeled using a numerical simulation of the long-term transport of contamination. Conservative scenarios were developed for leachate generation and migration through the geohydrologic system. The dose-to-man determined from the pathways analysis formed the basis for evaluating site acceptability and providing recommendations for site design and development

  9. Environmental pathways analysis for evaluation of a low-level waste disposal site

    International Nuclear Information System (INIS)

    Lee, D.W.; Ketelle, R.H.; Pin, F.G.; Hill, G.S.

    1984-01-01

    The suitability of a site for the shallow land burial of low-level waste is evaluated by an environmental pathways analysis. The environmental pathways analysis considers the probable paths for the transport of contamination to man and models the long-term transport of contamination to determine the resulting dose to man. The model of the long-term transport of contamination is developed for a proposed site using data obtained from a comprehensive laboratory and field investigation. The proposed site is located at the US Department of Energy Portsmouth Reservation, Piketon, Ohio, and is planned to accept low-level radioactive waste generated by the enrichment of uranium. Laboratory studies were performed to characterize the waste and determine the wastes' leaching and retardation characteristics with site soils and groundwater. Comprehensive drilling, sampling and laboratory investigations were performed to provide the necessary information for interpreting the site's geology and hydrology. Field tests were performed to further quantify the site's hydrology. The pathway of greatest concern is the migration of contaminated groundwater and subsequent consumption by man. This pathway was modelled using a numerical simulation of the long-term transport of contamination. Conservative scenarios were developed for leachate generation and migration through the geohydrologic system. The dose to man determined from the pathways analysis formed the basis for evaluating site acceptability and providing recommendations for site design and development. (author)

  10. Deconstructing the Nature of Safety and Acceptability in Nuclear Fuel Waste Management, Canada

    International Nuclear Information System (INIS)

    Murphy, Brenda L.

    2003-01-01

    Since the Hare report was released in 1977, Canada's nuclear fuel waste management policies have been focused on one option, deep geologic disposal. However, since new legislation, called the Nuclear Fuel Waste Management Act came into force on November 15, 2002, the newly established Nuclear Waste Management Organisation has been mandated to review, over the next three years, not only deep geologic disposal but also to consider a suite of other options including reactor-site and centralised storage, and both above and below ground options. At this point in time, the process for the study and the criteria by which it will be evaluated are still quite unclear. The need for this new approach to NFW management in Canada was highlighted by an Environmental Assessment Panel (EA Panel) report in 1998. This EA Panel reviewed the 1994 environmental impact statement submitted by Atomic Energy Canada Limited (AECL) regarding the concept of deep geologic disposal in the Canadian Shield (Disposal Concept EA). The EA Panel's key conclusion was: From a technical perspective, safety of the AECL concept has been on balance adequately demonstrated for a conceptual stage of development, but from a social perspective, it has not. As it stands, the AECL concept for deep geological disposal has not been demonstrated to have broad public support. The concept in its current form does not have the required level of acceptability to be adopted as Canada's approach for managing nuclear fuel wastes. AECL's study consisted of a review of the deep geologic disposal concept, since no site has yet been selected. It is generally understood that this type of disposal facility, if eventually sited, will be located on the Ontario portion of the Canadian Shield because Ontario power generators own and manage about 90% of Canada's NFW. This key EA Panel conclusion is predicated on the use of two key decision-making criteria - safety and acceptability. This paper reviews and assesses the specific ways

  11. Update on the Federal Facilities Compliance Act disposal workgroup disposal site evaluation - what has worked and what has not

    International Nuclear Information System (INIS)

    Case, J.T.; Waters, R.D.

    1995-01-01

    The Department of Energy (DOE) has been developing a planning process for mixed low-level waste (MLLW) disposal in conjunction with the affected states for over two years and has screened the potential disposal sites from 49 to 15. A radiological performance evaluation was conducted on these fifteen sites to further identify their strengths and weaknesses for disposal of MLLW. Technical analyses are on-going. The disposal evaluation process has sufficiently satisfied the affected states' concerns to the point that disposal has not been a major issue in the consent order process for site treatment plans. Additionally, a large amount of technical and institutional information on several DOE sites has been summarized. The relative technical capabilities of the remaining fifteen sites have been demonstrated, and the benefits of waste form and disposal facility performance have been quantified. However, the final disposal configuration has not yet been determined. Additionally, the MLLW disposal planning efforts will need to integrate more closely with the low-level waste disposal activities before a final MLLW disposal configuration can be determined. Recent Environmental Protection Agency efforts related to the definition of hazardous wastes may also affect the process

  12. Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs

    NARCIS (Netherlands)

    Kuosmanen, T.K.

    2005-01-01

    Environmental Economics and Natural Resources Group at Wageningen University in The Netherlands Weak disposability of outputs means that firms can abate harmful emissions by decreasing the activity level. Modeling weak disposability in nonparametric production analysis has caused some confusion.

  13. Safety in the Chemical Laboratory: Contracts to Dispose of Laboratory Waste.

    Science.gov (United States)

    Fischer, Kenneth E.

    1985-01-01

    Presents a sample contract for disposing of hazardous wastes in an environmentally sound, timely manner in accordance with all federal, state, and local requirements. Addresses situations where hazardous waste must be disposed of outside the laboratory and where alternate disposal methods are not feasible. (JN)

  14. Facility arrangements and the environmental performance of disposable and reusable cups

    NARCIS (Netherlands)

    Potting, José; Harst-Wintraecken, van der Eugenie

    2015-01-01

    Purpose: This paper integrates two complementary life cycle assessment (LCA) studies with the aim to advice facility managers on the sustainable use of cups, either disposable or reusable. Study 1 compares three disposable cups, i.e., made from fossil-based polystyrene (PS), biobased and

  15. Performance assessment review for DOE LLW disposal facilities

    International Nuclear Information System (INIS)

    Wilhite, Elmer L.

    1992-01-01

    The United States Department of Energy (US DOE) disposes of low-level radioactive waste in near-surface disposal facilities. Safety of the disposal operations is evaluated for operational safety as well as long-term safety. Operational safety is evaluated based on the perceived level of hazard of the operation and may vary from a simple safety assessment to a safety analysis report. Long-term safety of all low-level waste disposal systems is evaluated through the conduct of a radiological performance assessment. The US DOE has established radiological performance objectives for disposal of low-level waste. They are to protect a member of the general public from receiving over 25 mrem/y, and an inadvertent intruder into the waste from receiving over 100 mrem/y continuous exposure or 500 mrem from a single exposure. For a disposal system to be acceptable, a performance assessment must be prepared which must be technically accurate and provide reasonable assurance that these performance objectives are met. Technical quality of the performance assessments is reviewed by a panel of experts. The panel of experts is used in two ways to assure the technical quality of performance assessment. A preliminary (generally 2 day) review by the panel is employed in the late stages of development to provide guidance on finalizing the performance assessment. The comments from this review are communicated to the personnel responsible for the performance assessment for consideration and incorporation. After finalizing the performance assessment, it is submitted for a formal review. The formal review is accomplished by a much more thorough analysis of the performance assessment over a multi-week time period. The panel then formally reports their recommendations to the US DOE waste management senior staff who make the final determination on acceptability of the performance assessment. A number of lessons have been learned from conducting several preliminary reviews of performance

  16. 3D-Printed Disposable Wireless Sensors with Integrated Microelectronics for Large Area Environmental Monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad

    2017-05-19

    Large area environmental monitoring can play a crucial role in dealing with crisis situations. However, it is challenging as implementing a fixed sensor network infrastructure over large remote area is economically unfeasible. This work proposes disposable, compact, dispersible 3D-printed wireless sensor nodes with integrated microelectronics which can be dispersed in the environment and work in conjunction with few fixed nodes for large area monitoring applications. As a proof of concept, the wireless sensing of temperature, humidity, and H2S levels are shown which are important for two critical environmental conditions namely forest fires and industrial leaks. These inkjet-printed sensors and an antenna are realized on the walls of a 3D-printed cubic package which encloses the microelectronics developed on a 3D-printed circuit board. Hence, 3D printing and inkjet printing are uniquely combined in order to realize a low-cost, fully integrated wireless sensor node.

  17. Evaluation of environmental change and its effects on the radiological performance of a hypothetical shallow engineered disposal facility at Elstow, Bedfordshire

    International Nuclear Information System (INIS)

    1988-03-01

    The results of a project designed to evaluate aspects of a hypothetical facility for disposal of radioactive wastes at Elstow, Bedfordshire, are described. The project included modelling of environmental change using the TIME2 code, groundwater flow modelling, biosphere modelling and risk analysis using the SYVAC A/C code. The aims of the work were to demonstrate use of TIME2, investigate the evolution of the facility's environment and to evaluate the influence of environmental change on estimates of radiological risk. Risk analysis of several time-independent environmental system states, using data obtained from the other tasks, indicated that environmental changes significantly influence estimates of radiological risk. (author)

  18. Modularized system for disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    Mallory, C.W.; DiSibio, R.

    1985-01-01

    A modularized system for the disposal of low-level radioactive waste is presented that attempts to overcome the past problems with shallow land burial and gain public acceptance. All waste received at the disposal site is packaged into reinforced concrete modules which are filled with grout, covered and sealed. The hexagonal shape modules are placed in a closely packed array in a disposal unit. The structural stability provided by the modules allow a protective cover constructed of natural materials to be installed, and the disposal units are decommissioned as they are filled. The modules are designed to be recoverable in the event remedial action is necessary. The cost of disposal with a facility of this type is comparable to current prices of shallow land burial facilities. The system is intended to address the needs of generators, regulators, communities, elected officials, licensees and future generations

  19. Recycling and disposal of FUSRAP materials from the Ashland 2 site at a licensed uranium mill

    International Nuclear Information System (INIS)

    Howard, B.; Conboy, D.; Rehmann, M.; Roberts, H.

    1999-01-01

    During World War II the Manhattan Engineering District (MED) used facilities near Buffalo, N.Y. to extract natural uranium from ores. Some of the byproduct material left from the ores (MED byproduct), containing low levels of uranium, thorium, and radium, was deposited on a disposal site known as Ashland 2, located in Tonawanda, NY. On behalf of the United States Army Corps of Engineers (USACE, or the Corps), ICF Kaiser Engineers (ICFKE) was tasked to provide the best value clean-up results that meet all of the criteria established in the Record of Decision for the site. International Uranium (USA) Corporation (IUC), the operator of the White Mesa Uranium Mill, a Nuclear Regulatory Commission (NRC)-licensed mill near Blanding, Utah, was selected to perform uranium extraction on the excavated materials, therefore giving the best value as it provided beneficial use of the material consistent with the Resource Conservation and Recovery Act (RCRA) intent to encourage recycling and recovery, while also providing the most cost-effective means of disposal. Challenges overcome to complete this project included (1) identifying the best-value location to accept the material; (2) meeting regulatory requirements with IUC obtaining an NRC license amendment to accept and process the material as an alternate feed; (3) excavating and preparing the material for shipment, then shipping the material to the Mill for uranium recovery; and (4) processing the material, followed by disposal of tailings from the process in the Mill's licensed uranium tailings facility. Excavation from Ashland 2 and processing of the Ashland 2 material at the White Mesa Mill resulted in a cleaner environment at Tonawanda, a cost avoidance of up to $16 million, beneficial recovery of source material, and environmentally protective disposal of byproduct material. (author)

  20. Risk methodology for geologic disposal of radioactive waste: asymptotic properties of the environmental transport model

    International Nuclear Information System (INIS)

    Helton, J.C.; Brown, J.B.; Iman, R.L.

    1981-02-01

    The Environmental Transport Model is a compartmental model developed to represent the surface movement of radionuclides. The purpose of the present study is to investigate the asymptotic behavior of the model and to acquire insight with respect to such behavior and the variables which influence it. For four variations of a hypothetical river receiving a radionuclide discharge, the following properties are considered: predicted asymptotic values for environmental radionuclide concentrations and time required for environmental radionuclide concentrations to reach 90% of their predicted asymptotic values. Independent variables of two types are used to define each variation of the river: variables which define physical properties of the river system (e.g., soil depth, river discharge and sediment resuspension) and variables which summarize radionuclide properties (i.e., distribution coefficients). Sensitivity analysis techniques based on stepwise regression are used to determine the dominant variables influencing the behavior of the model. This work constitutes part of a project at Sandia National Laboratories funded by the Nuclear Regulatory Commission to develop a methodology to assess the risk associated with geologic disposal of radioactive waste

  1. Evaluation of performance, safety, subject acceptance, and compliance of a disposable autoinjector for subcutaneous injections in healthy volunteers

    Directory of Open Access Journals (Sweden)

    Cecile Berteau

    2010-09-01

    Full Text Available Cecile Berteau1, Florence Schwarzenbach1, Yves Donazzolo2, Mathilde Latreille2, Julie Berube3, Herve Abry1, Joël Cotten1, Celine Feger1, Philippe E Laurent11BD Medical Pharmaceutical Systems, Le-Pont-de-Claix, 2Eurofins Optimed Clinical Research, Gières, France; 3Statistics, BD Corporate, Franklin Lakes, NJ, USAObjective: A disposable autoinjector was developed for subcutaneous (SC self-injection by patients with chronic diseases. To verify its performance and evaluate its acceptance, a clinical study was conducted in healthy volunteers, comparing SC injections performed by subjects using the autoinjector with SC injections performed by nurses using a syringe.Methods: This was a randomized, single-center, crossover study comparing SC self-injection using an autoinjector with SC nurse-administered injection using a syringe. Two volumes (0.2 mL and 1 mL were injected into healthy volunteers. Study objectives included assessment of the accuracy and consistency of the volume injected by the injection systems, and skin reaction and pain associated with the injection. The fluid depot in the SC tissue layer was evaluated by ultrasound. Subject acceptance was evaluated using questionnaires on attitudes and emotions towards the injection technique, and challenged by seeking the subjects’ preferred system for a final study injection or future treatment.Results: A total of 960 injections (480 with autoinjector, 480 with syringe were performed in 40 subjects. There were no significant differences in mean fluid leakage and injected volumes between the systems. Pain associated with the injection was significantly lower with the autoinjector than with the syringe. Local skin reaction at the injection site was overall satisfactory. Injections were appropriately performed by all subjects. At study end, all 40 subjects preferred the autoinjector for a final study injection and for future treatment.Conclusion: This study indicated that the autoinjector used by

  2. Methods for verifying compliance with low-level radioactive waste acceptance criteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-01

    This report summarizes the methods that are currently employed and those that can be used to verify compliance with low-level radioactive waste (LLW) disposal facility waste acceptance criteria (WAC). This report presents the applicable regulations representing the Federal, State, and site-specific criteria for accepting LLW. Typical LLW generators are summarized, along with descriptions of their waste streams and final waste forms. General procedures and methods used by the LLW generators to verify compliance with the disposal facility WAC are presented. The report was written to provide an understanding of how a regulator could verify compliance with a LLW disposal facility`s WAC. A comprehensive study of the methodology used to verify waste generator compliance with the disposal facility WAC is presented in this report. The study involved compiling the relevant regulations to define the WAC, reviewing regulatory agency inspection programs, and summarizing waste verification technology and equipment. The results of the study indicate that waste generators conduct verification programs that include packaging, classification, characterization, and stabilization elements. The current LLW disposal facilities perform waste verification steps on incoming shipments. A model inspection and verification program, which includes an emphasis on the generator`s waste application documentation of their waste verification program, is recommended. The disposal facility verification procedures primarily involve the use of portable radiological survey instrumentation. The actual verification of generator compliance to the LLW disposal facility WAC is performed through a combination of incoming shipment checks and generator site audits.

  3. Methods for verifying compliance with low-level radioactive waste acceptance criteria

    International Nuclear Information System (INIS)

    1993-09-01

    This report summarizes the methods that are currently employed and those that can be used to verify compliance with low-level radioactive waste (LLW) disposal facility waste acceptance criteria (WAC). This report presents the applicable regulations representing the Federal, State, and site-specific criteria for accepting LLW. Typical LLW generators are summarized, along with descriptions of their waste streams and final waste forms. General procedures and methods used by the LLW generators to verify compliance with the disposal facility WAC are presented. The report was written to provide an understanding of how a regulator could verify compliance with a LLW disposal facility's WAC. A comprehensive study of the methodology used to verify waste generator compliance with the disposal facility WAC is presented in this report. The study involved compiling the relevant regulations to define the WAC, reviewing regulatory agency inspection programs, and summarizing waste verification technology and equipment. The results of the study indicate that waste generators conduct verification programs that include packaging, classification, characterization, and stabilization elements. The current LLW disposal facilities perform waste verification steps on incoming shipments. A model inspection and verification program, which includes an emphasis on the generator's waste application documentation of their waste verification program, is recommended. The disposal facility verification procedures primarily involve the use of portable radiological survey instrumentation. The actual verification of generator compliance to the LLW disposal facility WAC is performed through a combination of incoming shipment checks and generator site audits

  4. Oil ''rig'' disposal

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    A comparison of the environmental impacts of disposing of the Brent Spar oil platform on land and at sea is presented, with a view to establishing the best decommissioning option in the light of recent controversy. The document is presented as an aid to comprehension of the scientific and engineering issues involved for Members of Parliament. (UK)

  5. A report on the environmental safety evaluation in sea disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1976-01-01

    In October 1976, the Atomic Energy Commission of Japan decided its policy regarding radioactive wastes. It is stated that the sea disposal of low-level solid wastes as test will be made from about 1978, and after the confirmation of the safety, full-scale sea disposal will then follow. In this field, studies have long been made in Japan and international organizations. Based on these results, the present report describes on the following matters: the amount of radioactive wastes and the activities for disposal, the safety of disposal packages, the state of prospective sites for sea disposal, the models of the sea, the estimation of radionuclide concentrations in the ocean, and the exposure doses of general people. (Mori, K.)

  6. Depleted uranium disposal options evaluation

    International Nuclear Information System (INIS)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ''waste,'' but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity

  7. Projection of Environmental Pollutant Emissions From Different Final Waste Disposal Methods Based on Life Cycle Assessment Studies in Qazvin City

    Directory of Open Access Journals (Sweden)

    Javad Torkashvand

    2015-12-01

    Full Text Available In the current study, the life cycle assessment (LCA method was used to expect the emissions of different environmental pollutants through qualitative and quantitative analyses of solid wastes of Qazvin city in different final disposal methods. Therefore, four scenarios with the following properties considering physical analysis of Qazvin’s solid wastes, the current status of solid waste management in Iran, as well as the future of solid waste management of Qazvin were described. In order to detect the quantity of the solid wastes, the volume-weighted analysis was used and random sampling method was used for physical analysis. Of course, regarding the method of LCA, it contains all stages from solid wastes generation to its disposal. However, since the main aim of this study was final disposal stage, the emissions of pollutants of these stages were ignored. Next, considering the mixture of the solid waste, the amount of pollution stemming from each of final disposal methods from other cities having similar conditions was estimated. The findings of the study showed that weight combination of Qazvin solid wastes is entirely similar to that of other cities. Thus, the results of this study can be applied by decision makers around the country. In scenarios 1 and 2, emission of leachate containing high amounts of COD and BOD is high and also the highest content of nitrate, which can contaminate water and soil resulting in high costs for their management. In scenarios 3 and 4, the amounts of gaseous pollutants, particularly CO2, as well as nitrogen oxides are very high. In conclusion, the LCA methods can effectively contribute to the management of municipal solid wastes (MSW to control environmental pollutants with least expenses.

  8. Mechanisms of long-term concrete degradation in LLW disposal facilities

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1987-01-01

    Most low-level waste (LLW) disposal alternatives, except shallow land burial and improved shallow land burial, involve the use of concrete as an extra barrier for containment. Because concrete is a porous-type material, its moisture retention and transport properties can be characterized with parameters that are also used to characterize the geohydrologic properties of soils. Several processes can occur with the concrete to degrade it and to increase both the movement of water and contaminants through the disposal facility. The effect of these processes must be quantified in designing and estimating the long-term performance of disposal facilities. Modeling the long-term performance of LLW disposal technologies involves, first, estimating the degradation rate of the concrete in a particular facility configuration and environmental setting; second, calculating the water flow through the facility as a function of time; third, calculating the contaminant leaching usually by diffusion or dissolution mechanisms, and then coupling the facility water and contaminant outflow to a hydrogeological and environmental uptake model for environmental releases or doses

  9. Low-level radioactive waste disposal technology development through a public process

    International Nuclear Information System (INIS)

    Murphy, M.P.; Hysong, R.J.; Edwards, C.W.

    1989-01-01

    When Pennsylvania's legislature ratified the Appalachian States Low-Level Radioactive Waste Compact in 1985, the Commonwealth of Pennsylvania became the host state designee for the compact's low-level radioactive waste (LLWR) disposal facility. Programs necessary for the establishment of this facility became the responsibility of the Department of Environmental Resources' (DER), Bureau of Radiation Protection's, Division of Nuclear Safety (DNS). It was realized early in the process that the technical aspects of this program, while challenging, probably were not the largest obstacle to completing the facility on schedule. The largest obstacle was likely to be public acceptance. Recognizing this, the DNS set out to develop a program that would maximize public involvement in all aspects of site and facility development. To facilitate public involvement in the process, the DNS established a LLRW advisory committee and a strategy for holding public meetings throughout Pennsylvania. As a result of the significant public involvement generated by these efforts, Pennsylvania passed, in February of 1988, one of the most stringent and technically demanding LLRW disposal laws in the nation. Hopefully, increased public confidence will reduce to a minimum public opposition to the facility

  10. Radium bearing waste disposal

    International Nuclear Information System (INIS)

    Tope, W.G.; Nixon, D.A.; Smith, M.L.; Stone, T.J.; Vogel, R.A.; Schofield, W.D.

    1995-01-01

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach

  11. Public acceptance in radioactive waste management

    International Nuclear Information System (INIS)

    Diaconu, Stela; Covreag, Ilinca

    2008-01-01

    Radioactive waste, unavoidable by-products of economically developed societies, arises from the production of energy by nuclear fission reactors as well as from medical, research and industrial applications of radioactive materials. The main objective of radioactive waste management is the safety as well the protection of public health and the environment. The first approach for the disposal of radioactive waste was based on the traditional 'decide, announce and defend' model, focused almost exclusively on technical content. In spite of the significant technical progress that would ensure long-term safety, the rate of progress towards implementing such solutions has been slower than expected, partly attributable to an earlier technical optimism and to an underestimation of the societal and political dimensions. It is now broadly recognized that radioactive waste management involves both technical and societal dimensions which cannot be dissociated. Because of changes in society's decision-making environment and heightened public sensitivity to all matters connected with environmental protection, nuclear power, radioactivity, and especially radioactive waste, any decision regarding whether, when and how to implement waste management solutions will typically require thorough public examination and the involvement of many relevant stakeholders. The building of a long-term relationship with the local communities and the waste management facility is one of the most important contributors to sustainable radioactive waste management solutions. A new approach in now in place at international level, based on 'engage, interact and co-operate', for which both technical and societal issues are to be reconciled. That means that the involvement of all interested parties in the decision-making process is a condition for a successful and publicly acceptable implementation of such a project. A central role in the public acceptance of nuclear technologies play the management and

  12. Early-1990 status of performance assessment for the Waste Isolation Pilot Plant disposal system

    International Nuclear Information System (INIS)

    Bertram-Howery, S.G.; Swift, P.N.

    1991-07-01

    This paper summarizes the early-1990 status of the performance-assessment work being done to evaluate compliance of the Waste Isolation Pilot Plant with the U.S. Environmental Protection Agency regulation 40 CFR Part 191, Subpart B. This regulation sets environmental standards for radioactive waste disposal (Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes). As required by Subpart B, evaluations of compliance will include probabilistic numerical simulations of repository performance and qualitative judgments. Compliance appears uncertain only in the event of human intrusion into the repository after decommissioning. Issues affecting compliance following intrusion include properties of the plugs used to seal the intruding borehole, permeability and porosity of the waste, and possible pressurization of the repository by gas generated from the organic decomposition and corrosion of the waste and containers. Research is in progress to determine the probability of intrusion and to quantify parameter uncertainties needed to include these factors in simulations of repository performance. The Department of Energy (DOE) is following two strategies to assure compliance. First, passive marker systems will be designed and implemented to reduce the likelihood of intrusion and increase the likelihood that intruders will properly reseal the repository. Second, modifications to the form of the waste and the design of the repository to achieve acceptable performance if the intruding borehole is not adequately sealed will be designed. Goals include reductions in gas generation and waste permeability and porosity. Numerous modifications are technically possible. Work in progress will evaluate proposed modifications and recommend the most promising for further testing. The DOE is confident that compliance with Subpart B of 40 CFR 191 can be established using a combination of the two strategies

  13. Early-1990 status of performance assessment for the Waste Isolation Pilot Plant disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Bertram-Howery, S G [Sandia National Laboratories, Albuquerque, NM (United States); Swift, P N [Tech Reps Inc., Albuquerque, NM (United States)

    1991-07-15

    This paper summarizes the early-1990 status of the performance-assessment work being done to evaluate compliance of the Waste Isolation Pilot Plant with the U.S. Environmental Protection Agency regulation 40 CFR Part 191, Subpart B. This regulation sets environmental standards for radioactive waste disposal (Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes). As required by Subpart B, evaluations of compliance will include probabilistic numerical simulations of repository performance and qualitative judgments. Compliance appears uncertain only in the event of human intrusion into the repository after decommissioning. Issues affecting compliance following intrusion include properties of the plugs used to seal the intruding borehole, permeability and porosity of the waste, and possible pressurization of the repository by gas generated from the organic decomposition and corrosion of the waste and containers. Research is in progress to determine the probability of intrusion and to quantify parameter uncertainties needed to include these factors in simulations of repository performance. The Department of Energy (DOE) is following two strategies to assure compliance. First, passive marker systems will be designed and implemented to reduce the likelihood of intrusion and increase the likelihood that intruders will properly reseal the repository. Second, modifications to the form of the waste and the design of the repository to achieve acceptable performance if the intruding borehole is not adequately sealed will be designed. Goals include reductions in gas generation and waste permeability and porosity. Numerous modifications are technically possible. Work in progress will evaluate proposed modifications and recommend the most promising for further testing. The DOE is confident that compliance with Subpart B of 40 CFR 191 can be established using a combination of the two strategies

  14. Environmental impact statements: Nuclear-industry waste-disposal and isotope-separation projects. (Latest citations from the NTIS data base). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The bibliography contains citations concerning draft and final impact statements relating to environmental radiation hazards. Prepared by the Department of Energy (DOE), Nuclear Regulatory Commission, Oak Ridge National Laboratory, and others, these reports examine environmental data affecting DOE decisions on proposed construction and decommissioning of nuclear power plants, radioactive waste disposal facilities and sites, and isotope separation projects. The effects of Federal guidelines and atomic facility location on community awareness is briefly mentioned. (Contains a minimum of 120 citations and includes a subject term index and title list.)

  15. Faecal Waste Disposal and Environmental Health Status in a Nigerian Coastal Settlement of Oron

    Directory of Open Access Journals (Sweden)

    Edet E. Ikurekong

    2008-10-01

    Full Text Available AIM/BACKGROUND: This research investigated the relationship between faecal waste disposal and the environmental health status of the inhabitants of Oron LGA, of Akwa Ibom State, Nigeria. The objectives were to identify the methods of faecal disposal; identify the incidence of faecal waste related diseases and the pattern and types of diseases occurrence in the study area. METHOD: 400 households were randomly selected for interview from 17 villages of the study area. Ground and surface water samples were spatially collected and analysed to determine their quality. These include streams, boreholes pipe-borne, and rain and river water from the 17 villages. RESULTS: The result shows that both the qualitative and quantitative aspect of the major sources of drinking water supply are at variance with the established national and international standards. The stepwise multiple regression models applied proved the validity of population demographic characteristics, unhygienic environment and poor quality of water supply as factors that enhance the incidence and vulnerability of the population to faecal waste related disease occurrence. CONCLUSION: The study recommends sustainable strategies towards the management of human faecal waste and related diseases in the study area. [TAF Prev Med Bull 2008; 7(5.000: 363-368

  16. Preliminary risk benefit assessment for nuclear waste disposal in space

    Science.gov (United States)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.; Priest, C. C.

    1982-01-01

    This paper describes the recent work of the authors on the evaluation of health risk benefits of space disposal of nuclear waste. The paper describes a risk model approach that has been developed to estimate the non-recoverable, cumulative, expected radionuclide release to the earth's biosphere for different options of nuclear waste disposal in space. Risk estimates for the disposal of nuclear waste in a mined geologic repository and the short- and long-term risk estimates for space disposal were developed. The results showed that the preliminary estimates of space disposal risks are low, even with the estimated uncertainty bounds. If calculated release risks for mined geologic repositories remain as low as given by the U.S. DOE, and U.S. EPA requirements continue to be met, then no additional space disposal study effort in the U.S. is warranted at this time. If risks perceived by the public are significant in the acceptance of mined geologic repositories, then consideration of space disposal as a complement to the mined geologic repository is warranted.

  17. Disposal of Hanford defense waste

    International Nuclear Information System (INIS)

    Holten, R.A.; Burnham, J.B.; Nelson, I.C.

    1986-01-01

    An Environmental Impact Statement (EIS) on the disposal of Hanford Defense Waste is scheduled to be released near the end of March, 1986. This EIS will evaluate the impacts of alternatives for disposal of high-level, tank, and transuranic wastes which are now stored at the Department of Energy's Hanford Site or will be produced there in the future. In addition to releasing the EIS, the Department of Energy is conducting an extensive public participation process aimed at providing information to the public and receiving comments on the EIS

  18. Waste Acceptance Decisions and Uncertainty Analysis at the Oak Ridge Environmental Management Waste Management Facility

    International Nuclear Information System (INIS)

    Redus, K. S.; Patterson, J. E.; Hampshire, G. L.; Perkins, A. B.

    2003-01-01

    The Waste Acceptance Criteria (WAC) Attainment Team (AT) routinely provides the U.S. Department of Energy (DOE) Oak Ridge Operations with Go/No-Go decisions associated with the disposition of over 1.8 million yd3 of low-level radioactive, TSCA, and RCRA hazardous waste. This supply of waste comes from 60+ environmental restoration projects over the next 15 years planned to be dispositioned at the Oak Ridge Environmental Management Waste Management Facility (EMWMF). The EMWMF WAC AT decision making process is accomplished in four ways: (1) ensure a clearly defined mission and timeframe for accomplishment is established, (2) provide an effective organization structure with trained personnel, (3) have in place a set of waste acceptance decisions and Data Quality Objectives (DQO) for which quantitative measures are required, and (4) use validated risk-based forecasting, decision support, and modeling/simulation tools. We provide a summary of WAC AT structure and performance. We offer suggestions based on lessons learned for effective transfer to other DOE

  19. Waste Acceptance Decisions and Uncertainty Analysis at the Oak Ridge Environmental Management Waste Management Facility

    Energy Technology Data Exchange (ETDEWEB)

    Redus, K. S.; Patterson, J. E.; Hampshire, G. L.; Perkins, A. B.

    2003-02-25

    The Waste Acceptance Criteria (WAC) Attainment Team (AT) routinely provides the U.S. Department of Energy (DOE) Oak Ridge Operations with Go/No-Go decisions associated with the disposition of over 1.8 million yd3 of low-level radioactive, TSCA, and RCRA hazardous waste. This supply of waste comes from 60+ environmental restoration projects over the next 15 years planned to be dispositioned at the Oak Ridge Environmental Management Waste Management Facility (EMWMF). The EMWMF WAC AT decision making process is accomplished in four ways: (1) ensure a clearly defined mission and timeframe for accomplishment is established, (2) provide an effective organization structure with trained personnel, (3) have in place a set of waste acceptance decisions and Data Quality Objectives (DQO) for which quantitative measures are required, and (4) use validated risk-based forecasting, decision support, and modeling/simulation tools. We provide a summary of WAC AT structure and performance. We offer suggestions based on lessons learned for effective transfer to other DOE.

  20. 40 CFR 264.114 - Disposal or decontamination of equipment, structures and soils.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Disposal or decontamination of equipment, structures and soils. 264.114 Section 264.114 Protection of Environment ENVIRONMENTAL PROTECTION... TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure and Post-Closure § 264.114 Disposal or decontamination...

  1. Information on commercial disposal facilities that may have received offshore drilling wastes.

    Energy Technology Data Exchange (ETDEWEB)

    Gasper, J. R.; Veil, J. A.; Ayers, R. C., Jr.

    2000-08-25

    The U.S. Environmental Protection Agency (EPA) is developing regulations that would establish requirements for discharging synthetic-based drill cuttings from offshore wells into the ocean. Justification for allowing discharges of these cuttings is that the environmental impacts from discharging drilling wastes into the ocean may be less harmful than the impacts from hauling them to shore for disposal. In the past, some onshore commercial facilities that disposed of these cuttings were improperly managed and operated and left behind environmental problems. This report provides background information on commercial waste disposal facilities in Texas, Louisiana, California, and Alaska that received or may have received offshore drilling wastes in the past and are now undergoing cleanup.

  2. Some perspectives for environmental risk assessment of urban stormwater management

    DEFF Research Database (Denmark)

    Mikkelsen, Peter Steen; Baun, Anders; Ledin, Anna

    2002-01-01

    Introduction of new technologies for disposing stormwater locally, e.g. via infiltration into the ground, implies that the 'traditional' list of key-substances is not exhaustive and consequently, consultants and authorities have difficulties deciding whether to approve new technologies for stormw...... and groundwater, in an integral and transparent manner. This paper reviews some concepts used within risk assessment of chemical substances and seeks to plot a course for further developments related to risk assessments of stormwater contaminants....... for stormwater disposal. The risk for contamination of surface waters also needs to be assessed, even though this contamination is silently accepted by society. A proper risk assessment needs to consider contamination of all environmental compartments within the urban environment, i.e. surface water, soil...

  3. The Hazardous Waste/Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    Bailey, L.L.

    1991-01-01

    The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996

  4. HLW Disposal System Development

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. W.; Choi, H. J.; Lee, J. Y. (and others)

    2007-06-15

    A KRS is suggested through design requirement analysis of the buffer and the canister which are the constituent of disposal system engineered barrier and HLW management plans are proposed. In the aspect of radionuclide retention capacity, the thickness of the buffer is determined 0.5m, the shape to be disc and ring and the dry density to be 1.6 g/cm{sup 3}. The maximum temperature of the buffer is below 100 .deg. which meets the design requirement. And bentonite blocks with 5 wt% of graphite showed more than 1.0 W/mK of thermal conductivity without the addition of sand. The result of the thermal analysis for proposed double-layered buffer shows that decrease of 7 .deg. C in maximum temperature of the buffer. For the disposal canister, the copper for the outer shell material and cast iron for the inner structure material is recommended considering the results analyzed in terms of performance of the canisters and manufacturability and the geochemical properties of deep groundwater sampled from the research area with granite, salt water intrusion, and the heavy weight of the canister. The results of safety analysis for the canister shows that the criticality for the normal case including uncertainty is the value of 0.816 which meets subcritical condition. Considering nation's 'Basic Plan for Electric Power Demand and Supply' and based on the scenario of disposing CANDU spent fuels in the first phase, the disposal system that the repository will be excavated in eight phases with the construction of the Underground Research Laboratory (URL) beginning in 2020 and commissioning in 2040 until the closure of the repository is proposed. Since there is close correlation between domestic HLW management plans and front-end/back-end fuel cycle plans causing such a great sensitivity of international environment factor, items related to assuring the non-proliferation and observing the international standard are showed to be the influential factor and acceptability

  5. Health and environmental risk-related impacts of actinide burning on high-level waste disposal

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1992-05-01

    The potential health and environmental risk-related impacts of actinide burning for high-level waste disposal were evaluated. Actinide burning, also called waste partitioning-transmutation, is an advanced method for radioactive waste management based on the idea of destroying the most toxic components in the waste. It consists of two steps: (1) selective removal of the most toxic radionuclides from high-level/spent fuel waste and (2) conversion of those radionuclides into less toxic radioactive materials and/or stable elements. Risk, as used in this report, is defined as the probability of a failure times its consequence. Actinide burning has two potential health and environmental impacts on waste management. Risks and the magnitude of high-consequence repository failure scenarios are decreased by inventory reduction of the long-term radioactivity in the repository. (What does not exist cannot create risk or uncertainty.) Risk may also be reduced by the changes in the waste characteristics, resulting from selection of waste forms after processing, that are superior to spent fuel and which lower the potential of transport of radionuclides from waste form to accessible environment. There are no negative health or environmental impacts to the repository from actinide burning; however, there may be such impacts elsewhere in the fuel cycle

  6. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    International Nuclear Information System (INIS)

    1995-11-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the US Department of Energy's (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials

  7. Developments in the Canadian program for geological disposal of nuclear fuel waste

    International Nuclear Information System (INIS)

    Allan, C.J.; Nuttall, K.

    1996-01-01

    The Canadian Nuclear Fuel Waste Management Program is at the end of disposal concept and technology development and is now undergoing a comprehensive environmental review. This paper will review: the history of the Canadian program; the disposal concept and the associated technologies; the program achievements and the lessons learned; and the status of the environmental review. (author)

  8. Proceedings of the environmental technology through industry partnership conference. Volume 1

    International Nuclear Information System (INIS)

    Kothari, V.P.

    1995-10-01

    The overall objective of this conference was to review the latest environmental and waste management technologies being developed under the sponsorship of METC. The focus of this conference was also to address the accomplishments and barriers affecting private sector, and lay the groundwork for future technology development initiatives and opportunities. 26 presentations were presented in: Mixed waste characterization, treatment, and disposal; Contaminant plume containment and remediation; and Decontamination and decommissioning. In addition there were 10 Focus Area presentations, 31 Poster papers covering all Focus Areas, and two panel discussions on: Mixed waste characterization, treatment, and disposal issues; and the application, evaluation, and acceptance of in-situ and ex-situ plume remediation technologies. Volume 1 contains the keynote address, 15 poster papers, 5 papers on mixed waste characterization, treatment, and disposal, and 13 papers on decontamination and decommissioning. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  9. Proceedings of the environmental technology through industry partnership conference. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Kothari, V.P.

    1995-10-01

    The overall objective of this conference was to review the latest environmental and waste management technologies being developed under the sponsorship of METC. The focus of this conference was also to address the accomplishments and barriers affecting private sector, and lay the groundwork for future technology development initiatives and opportunities. 26 presentations were presented in: Mixed waste characterization, treatment, and disposal; Contaminant plume containment and remediation; and Decontamination and decommissioning. In addition there were 10 Focus Area presentations, 31 Poster papers covering all Focus Areas, and two panel discussions on: Mixed waste characterization, treatment, and disposal issues; and the application, evaluation, and acceptance of in-situ and ex-situ plume remediation technologies. Volume 1 contains the keynote address, 15 poster papers, 5 papers on mixed waste characterization, treatment, and disposal, and 13 papers on decontamination and decommissioning. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  10. Big picture thinking in oil sands tailings disposal

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, J. [Thurber Engineering Ltd., Calgary, AB (Canada)

    2010-07-01

    This PowerPoint presentation discussed methods of disposing oil sands tailings. Oil sands operators are currently challenged by a variety of legislative and environmental factors concerning the creation and disposal of oil sands tailings. The media has focused on the negative ecological impact of oil sands production, and technical issues are reducing the effect of some mitigation processes. Operators must learn to manage the interface between tailings production and removal, the environment, and public opinion. The successful management of oil sand tailings will include procedures designed to improve reclamation processes, understand environmental laws and regulations, and ensure that the cumulative impacts of tailings are mitigated. Geotechnical investigations, engineering designs and various auditing procedures can be used to develop tailings management plans. Environmental screening and impact assessments can be used to develop sustainable solutions. Public participation and environmental mediation is needed to integrate the public, environmental and technical tailings management strategies. Operators must ensure public accountability for all stakeholders. tabs., figs.

  11. Low-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy waste management programmatic environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Goyette, M.L.; Dolak, D.A.

    1996-12-01

    This report provides technical support information for use in analyzing environmental impacts associated with U.S. Department of Energy (DOE) low-level radioactive waste (LLW) management alternatives in the Waste-Management (WM) Programmatic Environmental Impact Statement (PEIS). Waste loads treated and disposed of for each of the LLW alternatives considered in the DOE WM PEIS are presented. Waste loads are presented for DOE Waste Management (WM) wastes, which are generated from routine operations. Radioactivity concentrations and waste quantities for treatment and disposal under the different LLW alternatives are described for WM waste. 76 refs., 14 figs., 42 tabs.

  12. Hazardous waste disposal sites: Report 2

    International Nuclear Information System (INIS)

    1979-12-01

    Arkansas, like virtually every other state, is faced with a deluge of hazardous waste. There is a critical need for increased hazardous waste disposal capacity to insure continued industrial development. Additionally, perpetual maintenance of closed hazardous waste disposal sites is essential for the protection of the environment and human health. Brief descriptions of legislative and regulatory action in six other states are provided in this report. A report prepared for the New York State Environmental Facilities Corp. outlines three broad approaches states may take in dealing with their hazardous waste disposal problems. These are described. State assistance in siting and post-closure maintenance, with private ownership of site and facility, appears to be the most advantageous option

  13. Environmentally acceptable endpoints for PAHs at a manufactured gas plant site

    Energy Technology Data Exchange (ETDEWEB)

    Stroo, H.F.; Jensen, R.; Loehr, R.C.; Nakles, D.V.; Fairbrother, A.; Liban, C.B. [ThermoRetec Corp., Carson, CA (USA)

    2000-09-01

    Samples from a former manufactured gas plant (MGP) site in Santa Barbara, CA were tested to evaluate the environmentally acceptable endpoints (EAE) process for setting risk-based cleanup criteria. The research was part of an ongoing effort to develop and demonstrate a protocol for assessing risk-based criteria for MGP sites that incorporates the availability of polycyclic aromatic hydrocarbons (PAHs). Six soil samples were subjected to a battery of physical and biological tests that focused on determining the 'availability' of the soil-bound contaminants to groundwater, ecological receptors, and human receptors. Results demonstrated that sorption to soil, matrix effects, aging, and treatment can significantly reduce chemical availability. Including these reduced availability results in risk assessment calculations yielded environmentally protective cleanup levels almost 3-10 times greater than levels derived using California default risk assessment assumptions. Using an EAE-based approach for MGP soils, especially those containing lampblack, could provide more realistic risk assessment. 23 refs., 6 tabs.

  14. Nuclear waste disposal in subseabed geologic formatons: the Seabed Disposal Program

    International Nuclear Information System (INIS)

    Anderson, D.R.

    1979-05-01

    The goal of the Seabed Disposal Program is to assess the technical and environmental feasibility of using geologic formations under the sea floor for the disposal of processed high-level radioactive wastes or repackaged spent reactor fuel. Studies are focused on the abyssal hill regions of the sea floors in the middle of tectonic plates and under massive surface current gyres. The red-clay sediments here are from 50 to 100 meters thick, are continuously depositional (without periods of erosion), and have been geologically and climatologically stable for millions of years. Mineral deposits and biological activity are minimal, and bottom currents are weak and variable. Five years of research have revealed no technological reason why nuclear waste disposal in these areas would be impractical. However, scientific assessment is not complete. Also, legal political, and sociological factors may well become the governing elements in such use of international waters. These factors are being examined as part of the work of the Seabed Working Group, an international adjunct of the Seabed Program, with members from France, England, Japan, Canada, and the United States

  15. Nuclear waste disposal in subseabed geologic formatons: the Seabed Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.R.

    1979-05-01

    The goal of the Seabed Disposal Program is to assess the technical and environmental feasibility of using geologic formations under the sea floor for the disposal of processed high-level radioactive wastes or repackaged spent reactor fuel. Studies are focused on the abyssal hill regions of the sea floors in the middle of tectonic plates and under massive surface current gyres. The red-clay sediments here are from 50 to 100 meters thick, are continuously depositional (without periods of erosion), and have been geologically and climatologically stable for millions of years. Mineral deposits and biological activity are minimal, and bottom currents are weak and variable. Five years of research have revealed no technological reason why nuclear waste disposal in these areas would be impractical. However, scientific assessment is not complete. Also, legal political, and sociological factors may well become the governing elements in such use of international waters. These factors are being examined as part of the work of the Seabed Working Group, an international adjunct of the Seabed Program, with members from France, England, Japan, Canada, and the United States.

  16. Regulated Disposal of NORM/TENORM Waste in Colorado: The Deer Trail Landfill

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Retallick, P.G.; Kehoe, J.H.; Webb, M.M.; Nielsen, D.B.; Spaanstra, J.R.; Kornfeld, L.M.

    2006-01-01

    Information, Including an Environmental Impact Assessment - since the site has been through the RCRA site selection and permit process. - Intruder Analyses - because of the low NORM/TENORM waste concentrations to be encountered and because of RCRA site closure requirements. The results of the waste acceptance criteria analysis included in the license application recommended that the total activity of NORM/TENORM waste, including the alpha and bet a emitting radionuclides, be enforced to the limit of 74 Bq/g (2,000 pCi/g), which is also used to define radioactive waste in Colorado, as long as a radium concentration limit of 15 Bq/g (400 pCi/g) is also maintained. A Radiation Protection Plan set of Standard Operating Procedures was developed and submitted as part of the license application. These procedures cover the mandatory worker training program, the various types of radiation surveys that will be conducted during operations, the required records and reporting, and waste tracking and disposal operations. All NORM/TENORM waste must also meet the RCRA waste acceptance criteria for the landfill, thus assuring that there will be no incompatibilities with waste forms, waste chemistry, or other waste co-mingling issues. On June 8, 2005, the Rocky Mountain Low Level Waste Compact approved the disposal of radium contaminated waste from a Denver Superfund site at Deer Trail. The specific waste in question was identified as radioactive waste designated by Colorado as requiring disposal under the rules of the regional compact. On August 26, 2005, the CDPHE issued the final draft radioactive materials license for disposal of NORM/TENORM waste at Deer Trail for a 60-day public comment period. The final license was issued on December 21, 2005. Once Clean Harbors has successfully demonstrated that all of the license conditions are met, the site will be authorized to receive waste. This paper provides a discussion of the status of the license, its conditions, and the regulatory process

  17. The disposal of solid radioactive wastes to land sites in the UK

    International Nuclear Information System (INIS)

    Ginniff, M.E.; Phillipson, D.L.

    1984-01-01

    Solid radioactive waste management by land disposal, using a strategy laid down by the government, is discussed. Waste disposal at Drigg, and the proposals for the two preferred sites at Elstow (shallow burial) and Billingham (deep burial) are outlined. Nuclear Industry Radioactive Waste Executive (NIREX); safety; public acceptance; and the role of the private sector; are also described. (U.K.)

  18. Disposal of chemical agents and munitions stored at Anniston Army Depot, Anniston, Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Hunsaker, D.B. Jr.; Zimmerman, G.P.; Hillsman, E.L.; Miller, R.L.; Schoepfle, G.M.; Johnson, R.O.; Tolbert, V.R.; Kroodsma, R.L.; Rickert, L.W.; Rogers, G.O.; Staub, W.P.

    1990-09-01

    The purpose of this Phase I report is to examined the proposed implementation of on-site disposal at Anniston Army Depot (ANAD) in light of more detailed and more recent data than those included in the Final Programmatic Environmental Impact Statement (EPEIS). Two principal issues are addressed: (1) whether or not the new data would result in identification of on-site disposal at ANAD as the environmentally preferred alternative (using the same selection method and data analysis tools as in the FPEIS), and (2) whether or not the new data indicate the presence of significant environmental resources that could be affected by on-site disposal at ANAD. In addition, a status report is presented on the maturity of the disposal technology (and now it could affect on-site disposal at ANAD). Inclusion of these more recent data into the FPEIS decision method resulted in confirmation of on-site disposal for ANAD. No unique resources with the potential to prevent or delay implementation of on-site disposal at ANAD have been identified. A review of the technology status identified four principal technology developments that have occurred since publication of the FPEIS and should be of value in the implementation of on-site disposal at ANAD: the disposal of nonlethal agent at Pine Bluff Arsenal, located near Pine Bluff, Arkansas; construction and testing of facilities for disposal of stored lethal agent at Johnston Atoll, located about 1300 km (800 miles) southwest of Hawaii in the Pacific Ocean; lethal agent disposal tests at the chemical agent pilot plant operations at Tooele Army Depot, located near Salt Lake City, Utah; and equipment advances. 18 references, 13 figs., 10 tabs.

  19. Discriminating performance of disposal alternatives - can it be done

    International Nuclear Information System (INIS)

    Rogers, V.C.; Baird, R.D.; Murphy, E.S.

    1987-01-01

    A basic principle of radioactive waste disposal is that the degree of isolation of the waste from human exposure should increase with the increase in the hazard of the waste. Most disposal concepts, including low-level waste disposal concepts, rely on isolation, limits on release rates, environmental retention, or environmental dilution to provide the necessary margin of safety. The answer to the question posed by the title of this paper is a qualified yes, depending on the measure of performance. Three methodologies for discriminating performance of low-level waste disposal alternatives are described. The disposal technology classification system distinguishes technologies on the basis of three qualitative performance functional features. These are relationship to natural grade, extent of cover, and presence and type of structure. Multi-attribute utility estimation is a semiquantitative decision analysis methodology used to rank disposal alternatives by taking into account both the technical merit of a particular alternative and the relative importance of issues and factors used to make the technical judgment. Use of this decision methodology by several states and compacts to rank proposed near surface disposal alternatives is described. Multipathway performance assessment is a quantitative methodology that uses models to evaluate the abilities of different disposal technologies to limit the release of radioactivity to man and the environment. Unfortunately, the degree of sophistication of present models is such that discrimination between technologies is, generally, determined by differences in input parameters that are usually difficult to justify. Several examples of the use of pathway modeling are presented. 11 references, 2 figures, 5 tables

  20. Strategy Study on Treatment and Disposal of the Radioactive Graphite Waste of HTR

    International Nuclear Information System (INIS)

    Li Junfeng; Ma Tao; Wang Jianlong

    2014-01-01

    The possible options to change HTGR spent fuel into an acceptable form for repository disposal were discussed. The progresses of physical, chemical, and electrochemical separation of graphite from the HTGR fuel elements were reviewed. The advantages and disadvantages of each method were listed out. The total waste volume of each method was compared. The preferred option depends on the waste acceptance criteria for the repository, availability of low level waste disposal for graphite, overall economics, and overall risks. The minimum processing that yields an acceptable waste form also gives the lowest costs as well as the simplest process and the least risk. The options that could be used for treating HTGR spent fuels were listed out. The strategy for treating HTGR spent fuels and the packages needed for repository were discussed. (author)

  1. Preconcentration of low-grade uranium ores with environmentally acceptable tailings, part I

    International Nuclear Information System (INIS)

    Raicevic, D.; Raicevic, M.; McCarthy, D.R.

    1979-08-01

    The low-grade ore sample used for this investigation originated from Agnew Lake Mines Limited, Espanola, Ontario. It contained about 1% pyrite and 0.057% uranium, mainly as uranothorite with a small amount of brannerite. Both of these minerals occur in the quartz-sericite matrix of a conglomerate. A preconcentration process has been developed to give a high uranium recovery, reject pyrite, radium and thorium from the ore and produce environmentally acceptable tailings. This process applies flotation in combination with high intensity magnetic separation and gravity concentration

  2. Final disposal of high levels waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Gelin, R.

    1984-05-01

    Foreign and international activities on the final disposal of high-level waste and spent nuclear fuel have been reviewed. A considerable research effort is devoted to development of acceptable disposal options. The different technical concepts presently under study are described in the report. Numerous studies have been made in many countries of the potential risks to future generations from radioactive wastes in underground disposal repositories. In the report the safety assessment studies and existing performance criteria for geological disposal are briefly discussed. The studies that are being made in Canada, the United States, France and Switzerland are the most interesting for Sweden as these countries also are considering disposal into crystalline rocks. The overall time-tables in different countries for realisation of the final disposal are rather similar. Normally actual large-scale disposal operations for high-level wastes are not foreseen until after year 2000. In the United States the Congress recently passed the important Nuclear Waste Policy Act. It gives a rather firm timetable for site-selection and construction of nuclear waste disposal facilities. According to this act the first repository for disposal of commercial high-level waste must be in operation not later than in January 1998. (Author)

  3. When is a medicine unwanted, how is it disposed, and how might safe disposal be promoted? Insights from the Australian population.

    Science.gov (United States)

    Bettington, Emilie; Spinks, Jean; Kelly, Fiona; Gallardo-Godoy, Alejandra; Nghiem, Son; Wheeler, Amanda J

    2017-12-19

    Objective The aim of the present study was to explore disposal practices of unwanted medicines in a representative sample of Australian adults, compare this with previous household waste surveys and explore awareness of the National Return and Disposal of Unwanted Medicines (RUM) Project. Methods A 10-min online survey was developed, piloted and conducted with an existing research panel of adult individuals. Survey questions recorded demographics, the presence of unwanted medicines in the home, medicine disposal practices and concerns about unwanted medicines. Descriptive statistical analyses and rank-ordered logit regression were conducted. Results Sixty per cent of 4302 respondents reported having unwanted medicines in their household. Medicines were primarily kept just in case they were needed again and one-third of these medicines were expired. Two-thirds of respondents disposed of medicines with the household garbage and approximately one-quarter poured medicines down the drain. Only 17.6% of respondents had heard of the RUM Project, although, once informed, 91.7% stated that they would use it. Respondents ranked the risk of unintended ingestion as the most important public health message for future social marketing campaigns. Conclusions Respondents were largely unaware of the RUM Project, yet were willing to use it once informed. Limited awareness could lead to environmental or public health risks, and targeted information campaigns are needed. What is known about the topic? There is a growing international evidence base on how people dispose of unwanted medicines and the negative consequences, particularly the environmental effects of inappropriate disposal. Although insight into variation in disposal methods is increasing, knowledge of how people perceive risks and awareness of inappropriate disposal methods is more limited. What does this paper add? This study provides evidence of inappropriate medicines disposal and potential stockpiling of medicines in

  4. Radionuclide limits for vault disposal at the Savannah River Site

    International Nuclear Information System (INIS)

    Cook, James R.

    1992-01-01

    The Savannah River Site is developing a facility called the E-Area Vaults which will serve as the new radioactive waste disposal facility beginning early in 1992. The facility will employ engineered below-grade concrete vaults for disposal and above grade storage for certain long-lived mobile radionuclides. This report documents the determination of interim upper limits for radionuclide inventories and concentrations which should be allowed in the disposal structures. The work presented here will aid in the development of both waste acceptance criteria and operating limits for the E-Area Vaults. Disposal limits for forty isotopes which comprise the SRS waste streams were determined. The limits are based on total facility and vault inventories for those radionuclides which impact groundwater) and on waste package concentrations for those radionuclides which could affect intruders. (author)

  5. Development of knowledge building program concerning about high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Kimura, Hiroshi; Yamada, Kazuhiro; Takase, Hiroyasu

    2005-01-01

    Acquirement of knowledge about the high-level radioactive waste (HLW) disposal is one of the important factors for public to determine the social acceptance of HLW disposal. However in Japan, public do not have knowledge about HLW and its disposal sufficiently. In this work, we developed the knowledge building program concerning about HLW disposal based on Nonaka, and Takeuchi's SECI spiral model in knowledge management, and carried to the experiment on this program. In the results, we found that the participants' knowledge about the HLW disposal increased and changed from misunderstanding' or 'assuming' to 'facts' or 'consideration' through this experimental program. These results said that the experimental program leads participants to have higher quality of knowledge about the HLW disposal. In consequence, this knowledge building program may be effective in the acquirement of high quality knowledge. (author)

  6. Comparative life cycle assessment of disposable and reusable laryngeal mask airways.

    Science.gov (United States)

    Eckelman, Matthew; Mosher, Margo; Gonzalez, Andres; Sherman, Jodi

    2012-05-01

    Growing awareness of the negative impacts from the practice of health care on the environment and public health calls for the routine inclusion of life cycle criteria into the decision-making process of device selection. Here we present a life cycle assessment of 2 laryngeal mask airways (LMAs), a one-time-use disposable Unique™ LMA and a 40-time-use reusable Classic™ LMA. In life cycle assessment, the basis of comparison is called the "functional unit." For this report, the functional unit of the disposable and reusable LMAs was taken to be maintenance of airway patency by 40 disposable LMAs or 40 uses of 1 reusable LMA. This was a cradle-to-grave study that included inputs and outputs for the manufacture, transport, use, and waste phases of the LMAs. The environmental impacts of the 2 LMAs were estimated using SimaPro life cycle assessment software and the Building for Environmental and Economic Sustainability impact assessment method. Sensitivity and simple life cycle cost analyses were conducted to aid in interpretation of the results. The reusable LMA was found to have a more favorable environmental profile than the disposable LMA as used at Yale New Haven Hospital. The most important sources of impacts for the disposable LMA were the production of polymers, packaging, and waste management, whereas for the reusable LMA, washing and sterilization dominated for most impact categories. The differences in environmental impacts between these devices strongly favor reusable devices. These benefits must be weighed against concerns regarding transmission of infection. Health care facilities can decrease their environmental impacts by using reusable LMAs, to a lesser extent by selecting disposable LMA models that are not made of certain plastics, and by ordering in bulk from local distributors. Certain practices would further reduce the environmental impacts of reusable LMAs, such as increasing the number of devices autoclaved in a single cycle to 10 (-25% GHG

  7. Design and operation of a low-level solid-waste disposal site at Los Alamos

    International Nuclear Information System (INIS)

    Balo, K.A.; Wilson, N.E.; Warren, J.L.

    1982-01-01

    Since the mid-1940's, approximately 185000 m 3 of low-level and transuranic radioactive solid waste, generated in operations at the Los Alamos National Laboratory, have been disposed of by on-site shallow land burial. Procedures and facilities have been designed and evaluated in the areas of waste acceptance, treatment and storage, disposal, traffic control, and support systems. The methodologies assuring the proper management and disposal of radioactive solid waste are summarized

  8. Acceptance criteria for radioactive waste deposition

    International Nuclear Information System (INIS)

    Rzyski, B.M.

    1989-01-01

    The disposal of low-and intermediate level radioactive waste in either shallow ground or rock cavities must be subjected to special guidelines which are used by national authorities and implementing bodies when establishing and regulating respositories. These informations are given by the acceptance criteria and will depend on specific site conditions and optmized procedures. (author) [pt

  9. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the U.S. Department of Energy`s (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials.

  10. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    International Nuclear Information System (INIS)

    1996-07-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the U.S. Department of Energy's (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials

  11. 1991 Acceptance priority ranking

    International Nuclear Information System (INIS)

    1991-12-01

    The Standard Contract for Disposal of Spent Nuclear Fuel and/or High- Level Radioactive Waste (10 CFR Part 961) that the Department of Energy (DOE) has executed with the owners and generators of civilian spent nuclear fuel requires annual publication of the Acceptance Priority Ranking (APR). The 1991 APR details the order in which DOE will allocate Federal waste acceptance capacity. As required by the Standard Contract, the ranking is based on the age of permanently discharged spent nuclear fuel (SNF), with the owners of the oldest SNF, on an industry-wide basis, given the highest priority. the 1991 APR will be the basis for the annual allocation of waste acceptance capacity to the Purchasers in the 1991 Annual Capacity Report (ACR), to be issued later this year. This document is based on SNF discharges as of December 31, 1990, and reflects Purchaser comments and corrections, as appropriate, to the draft APR issued on May 15, 1991

  12. Nuclear waste disposal technology for Pacific Basin countries

    International Nuclear Information System (INIS)

    Langley, R.A. Jr.; Brothers, G.W.

    1981-01-01

    Safe long-term disposal of nuclear wastes is technically feasible. Further technological development offers the promise of reduced costs through elimination of unnecessary conservatism and redundance in waste disposal systems. The principal deterrents to waste disposal are social and political. The issues of nuclear waste storage and disposal are being confronted by many nuclear power countries including some of the Pacific Basin nuclear countries. Both mined geologic and subseabed disposal schemes are being developed actively. The countries of the Pacific Basin, because of their geographic proximity, could benefit by jointly planning their waste disposal activities. A single repository, of a design currently being considered, could hold all the estimated reprocessing waste from all the Pacific Basin countries past the year 2010. As a start, multinational review of alterntive disposal schemes would be beneficial. This review should include the subseabed disposal of radwastes. A multinational review of radwaste packaging is also suggested. Packages destined for a common repository, even though they may come from several countries, should be standardized to maximize repository efficiency and minimize operator exposure. Since package designs may be developed before finalization of a repository scheme and design, the packages should not have characteristics that would preclude or adversely affect operation of desirable repository options. The sociopolitical problems of waste disposal are a major deterrent to a multinational approach to waste disposal. The elected representatives of a given political entity have generally been reluctant to accept the waste from another political entity. Initial studies would, nevertheless, be beneficial either to a common solution to the problem, or to aid in separate solutions

  13. Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [URS Coporation

    2012-06-26

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts have

  14. Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G

    International Nuclear Information System (INIS)

    French, Sean B.; Shuman, Rob

    2012-01-01

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts

  15. Final Environmental Impact Statement on 10 CFR Part 61 licensing requirements for land disposal of radioactive waste. Summary and main report

    International Nuclear Information System (INIS)

    1982-11-01

    The three-volume final environmental impact statement (FEIS) is prepared to guide and support publication of a final regulation, 10 CFR Part 61, for the land disposal of low-level radioactive waste. The FEIS is prepared in response to public comments received on the draft environmental impact statement (DEIS) on the proposed Part 61 regulation. The DEIS was published in September 1981 as NUREG-0782. Public comments received on the proposed Part 61 regulation separate from the DEIS are also considered in the FEIS. The FEIS is not a rewritten version of the DEIS, which contains an exhaustive and detailed analysis of alternatives, but rather references the DEIS and presents the final decision bases and conclusions (costs and impacts) which are reflected in the Part 61 requirements. Four cases are specifically considered in the FEIS representing the following: past disposal practice, existing disposal practice, Part 61 requirements, and an upper bound example. The Summary and Main Report are contained in Volume 1. Volume 2 consists of Appendices A - Staff Analysis of Public Comments on the DEIS for 10 CFR Part 61, and Appendices B - Staff Analysis of Public Comments on Proposed 10 CFR Part 61 Rulemaking. Volume 3 contains Appendices C-F, entitled as follows: Appendix C - Revisions to Impact Analysis Methodology, Appendix D - Computer Codes Used for FEIS Calculations, Appendix E - Errata for the DEIS for 10 CFR Part 61 and last, Appendix F - Final Rule and Supplementary Information

  16. Disposal of spent fuel

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Ferguson, D.E.; Croff, A.G.

    1978-01-01

    Based on preliminary analyses, spent fuel assemblies are an acceptable form for waste disposal. The following studies appear necessary to bring our knowledge of spent fuel as a final disposal form to a level comparable with that of the solidified wastes from reprocessing: 1. A complete systems analysis is needed of spent fuel disposition from reactor discharge to final isolation in a repository. 2. Since it appears desirable to encase the spent fuel assembly in a metal canister, candidate materials for this container need to be studied. 3. It is highly likely that some ''filler'' material will be needed between the fuel elements and the can. 4. Leachability, stability, and waste-rock interaction studies should be carried out on the fuels. The major disadvantages of spent fuel as a disposal form are the lower maximum heat loading, 60 kW/acre versus 150 kW/acre for high-level waste from a reprocessing plant; the greater long-term potential hazard due to the larger quantities of plutonium and uranium introduced into a repository; and the possibility of criticality in case the repository is breached. The major advantages are the lower cost and increased near-term safety resulting from eliminating reprocessing and the treatment and handling of the wastes therefrom

  17. Low-level-waste-disposal methodologies

    International Nuclear Information System (INIS)

    Wheeler, M.L.; Dragonette, K.

    1981-01-01

    This report covers the followng: (1) history of low level waste disposal; (2) current practice at the five major DOE burial sites and six commercial sites with dominant features of these sites and radionuclide content of major waste types summarized in tables; (3) site performance with performance record on burial sites tabulated; and (4) proposed solutions. Shallow burial of low level waste is a continuously evolving practice, and each site has developed its own solutions to the handling and disposal of unusual waste forms. There are no existing national standards for such disposal. However, improvements in the methodology for low level waste disposal are occurring on several fronts. Standardized criteria are being developed by both the Nuclear Regulatory Commission (NRC) and by DOE. Improved techniques for shallow burial are evolving at both commercial and DOE facilities, as well as through research sponsored by NRC, DOE, and the Environmental Protection Agency. Alternatives to shallow burial, such as deeper burial or the use of mined cavities is also being investigated by DOE

  18. Environmental implications of accelerated gasohol production: preliminary assessment

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report assesses the environmental impacts of increasing US production of fuel ethanol by 330 million gallons per year in the 1980 to 1981 time frame in order to substitute gasohol for 10% of the unleaded gasoline consumed in the United States. Alternate biomass feedstocks are examined and corn is selected as the most logical feedstock, based on its availability and cost. Three corn conversion processes that could be used to attain the desired 1980 to 1981 production are identified; fermentation plants that use a feedstock of starch and wastes from an adjacent corn refining plants are found to have environmental and economic advantages. No insurmountable environmental problems can be achieved using current technology; the capital and operating costs of this control are estimated. If ethanol production is increased substantially after 1981, the environmentally acceptable use or disposal of stillage, a liquid by-product of fermentation, could become a serious problem.

  19. Disposal of fly ash

    International Nuclear Information System (INIS)

    Singh, B.; Foley, C.

    1991-01-01

    Theoretical arguments and pilot plant results have shown that the transport of fly-furnace ash from the power station to the disposal area as a high concentration slurry is technically viable and economically attractive. Further, lack of free water, when transported as a high concentration slurry, offers significant advantages in environmental management and rehabilitation of the disposal site. This paper gives a basis for the above observations and discusses the plans to exploit the above advantages at the Stanwell Power Station. (4 x 350 MWe). This will be operated by the Queensland Electricity Commission. The first unit is to come into operation in 1992 and other units are to follow progressively on a yearly basis

  20. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    International Nuclear Information System (INIS)

    1996-05-01

    This long-term surveillance plan (LTSP) describes the US Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment.For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP