WorldWideScience

Sample records for environmental test tank

  1. Intrusive sampling and testing of ferrocyanide tanks, Hanford Site, Richland, Washington: Environmental Assessment

    International Nuclear Information System (INIS)

    1992-02-01

    The proposed action involves intrusive sampling and testing of 24 Hanford Site single-shell waste tanks that contain ferrocyanide-nitrate/nitrite mixtures to determine the physical and chemical properties of the waste material. The Department of Energy (DOE) needs to take this action to help define the required controls to prevent or mitigate the potential for an accident during future characterization and monitoring of these tanks. Given the Unreviewed Safety Question associated with the consequences of a potential ferrocyanide nitrate/nitrite reaction, two safety assessments and this environmental assessment (EA) have been prepared to help ensure that the proposed action is conducted in a safe and environmentally sound manner. Standard operating procedures for sampling high-level waste tanks have been revised to reflect the potential presence of flammable or explosive mixtures in the waste. The proposed action would be conducted using nonsparking materials, spark resistant tools, and a portable containment enclosure (greenhouse) and plastic ground cover. The proposed activities involving Hanford Site ferrocyanide-containing tanks would be on land dedicated to DOE waste management

  2. TANK FARM ENVIRONMENTAL REQUIREMENTS

    International Nuclear Information System (INIS)

    TIFFT, S.R.

    2003-01-01

    Through regulations, permitting or binding negotiations, Regulators establish requirements, limits, permit conditions and Notice of Construction (NOC) conditions with which the Office of River Protection (ORP) and the Tank Farm Contractor (TFC) must comply. Operating Specifications are technical limits which are set on a process to prevent injury to personnel, or damage to the facility or environment, The main purpose of this document is to provide specification limits and recovery actions for the TFC Environmental Surveillance Program at the Hanford Site. Specification limits are given for monitoring frequencies and permissible variation of readings from an established baseline or previous reading. The requirements in this document are driven by environmental considerations and data analysis issues, rather than facility design or personnel safety issues. This document is applicable to all single-shell tank (SST) and double-shell tank (DST) waste tanks, and the associated catch tanks and receiver tanks, and transfer systems. This Tank Farm Environmental Specifications Document (ESD) implements environmental-regulatory limits on the configuration and operation of the Hanford Tank Farms facility that have been established by Regulators. This ESD contains specific field operational limits and recovery actions for compliance with airborne effluent regulations and agreements, liquid effluents regulations and agreements, and environmental tank system requirements. The scope of this ESD is limited to conditions that have direct impact on Operations/Projects or that Operations Projects have direct impact upon. This document does not supercede or replace any Department of Energy (DOE) Orders, regulatory permits, notices of construction, or Regulatory agency agreements binding on the ORP or the TFC. Refer to the appropriate regulation, permit, or Notice of Construction for an inclusive listing of requirements

  3. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 121: Storage Tanks and Miscellaneous Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 121, Storage Tanks and Miscellaneous Sites. CAU 121 is currently listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO, 1996) and consists of three Corrective Action Sites (CASs) located in Area 12 of the Nevada Test Site (NTS): CAS 12-01-01, Aboveground Storage Tank; CAS 12-01-02, Aboveground Storage Tank; and CAS 12-22-26, Drums; 2 AST's. CASs 12-01-01 and 12-01-02 are located to the west of the Area 12 Camp, and CAS 12-22-26 is located near the U-12g Tunnel, also known as G-tunnel, in Area 12 (Figure 1). The aboveground storage tanks (ASTs) present at CASs 12-01-01 and 12-01-02 will be removed and disposed of at an appropriate facility. Soil below the ASTs will be sampled to identify whether it has been impacted with chemicals or radioactivity above action levels. If impacted soil above action levels is present, the soil will be excavated and disposed of at an appropriate facility. The CAS 12-22-26 site is composed of two overlapping areas, one where drums had formerly been stored, and the other where an AST was used to dispense diesel for locomotives used at G-tunnel. This area is located above an underground radioactive materials area (URMA), and within an area that may have elevated background radioactivity because of containment breaches during nuclear tests and associated tunnel reentry operations. CAS 12-22-26 does not include the URMA or the elevated background radioactivity. An AST that had previously been used to store liquid magnesium chloride (MgCl) was properly disposed of several years ago, and releases from this tank are not an environmental concern. The diesel AST will be removed and disposed of at an appropriate facility. Soil at the former drum area and the diesel AST area will be sampled to identify whether it has been impacted by releases, from the drums or the

  4. Streamlined approach for environmental restoration work plan for Corrective Action Unit 126: Closure of aboveground storage tanks, Nevada Test Site, Nevada. Revision 1

    International Nuclear Information System (INIS)

    1998-07-01

    This plan addresses the closure of several aboveground storage tanks in Area 25 of the Nevada Test Site. The unit is currently identified as Corrective Action Unit 126 in the Federal Facility Agreement and Consent Order and is listed as having six Corrective Action Sites. This plan addresses the Streamlined Approach for Environmental Restoration closure for five of the six sites. Four of the CASs are located at the Engine Test Stand complex and one is located in the Central Support Area. The sites consist of aboveground tanks, two of which were used to store diesel fuel and one stored Nalcool (an antifreeze mixture). The remaining tanks were used as part of a water demineralization process and stored either sulfuric acid or sodium hydroxide, and one was used as a charcoal adsorption furnace. Closure will be completed by removal of the associated piping, tank supports and tanks using a front end loader, backhoe, and/or crane. When possible, the tanks will be salvaged as scrap metal. The piping that is not removed will be sealed using a cement grout

  5. Testing underground tanks for leak tightness at LLNL

    International Nuclear Information System (INIS)

    Henry, R.K.; Sites, R.L.; Sledge, M.

    1986-01-01

    Two types of tank systems are present at the Livermore Site: tanks and associated piping for the storage of fuel (forty-three systems), and tanks or sumps and associated piping for the retention of potentially contaminated wastewater (forty systems). The fuel systems were tested using commercially available test methods: Petro-Tite, Hunter Leak Lokator, Ezy-Chek, and Associated Environmental Systems (A.E.S.). In contrast to fuel tank systems, wastewater systems have containers that are predominantly open at the top and not readily testable. Therefore, a project to test and evaluate all available testing methods was initiated and completed. The commercial method Tank Auditor was determined to be appropriate for testing open-top tanks and sumps and this was the method used to test the majority of the open-top containers. Of the 81 tanks tested, 61 were found to be leak tight, 9 were shown to have leaks, and 11 yielded inconclusive results. Two tanks have not yet been tested because of operational constraints; they are sheduled to be tested within the next two months. Schedules are being developed for the retesting of tanks and for remedial actions

  6. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2001-08-01

    This Streamlined Approach for Environmental restoration (SAFER) plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 330, Areas 6,22, and 23 Tanks and Spill Sites. The CAUs are currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO). This CAU is located at the Nevada Test Site (NTS) (Figure 1). CAU 330 consists of the following Corrective Action Sites (CASs): (1) CAS 06-02-04 - Consists of an underground tank and piping. This CAS is close to an area that was part of the Animal Investigation Program (AIP), conducted under the U.S. Public Health Service. Its purpose was to study and perform tests on the cattle and wild animals in and around the NTS that were exposed to radionuclides. It is unknown if this tank was part of these operations. (2) CAS 22-99-06 - Is a fuel spill that is believed to be a waste oil release which occurred when Camp Desert Rock was an active facility. This CAS was originally identified as being a small depression where liquids were poured onto the ground, located on the west side of Building T-1001. This building has been identified as housing a fire station, radio station, and radio net remote and telephone switchboard. (3) CAS 23-01-02 - Is a large aboveground storage tank (AST) farm that was constructed to provide gasoline and diesel storage in Area 23. The site consists of two ASTs, a concrete foundation, a surrounding earthen berm, associated piping, and unloading stations. (4) CAS 23-25-05 - Consists of an asphalt oil spill/tar release that contains a wash covered with asphalt oil/tar material, a half buried 208-liter (L) (55-gallon [gal]) drum, rebar, and concrete located in the vicinity.

  7. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    T. M. Fitzmaurice

    2001-01-01

    This Streamlined Approach for Environmental restoration (SAFER) plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 330, Areas 6,22, and 23 Tanks and Spill Sites. The CAUs are currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO). This CAU is located at the Nevada Test Site (NTS) (Figure 1). CAU 330 consists of the following Corrective Action Sites (CASs): (1) CAS 06-02-04 - Consists of an underground tank and piping. This CAS is close to an area that was part of the Animal Investigation Program (AIP), conducted under the U.S. Public Health Service. Its purpose was to study and perform tests on the cattle and wild animals in and around the NTS that were exposed to radionuclides. It is unknown if this tank was part of these operations. (2) CAS 22-99-06 - Is a fuel spill that is believed to be a waste oil release which occurred when Camp Desert Rock was an active facility. This CAS was originally identified as being a small depression where liquids were poured onto the ground, located on the west side of Building T-1001. This building has been identified as housing a fire station, radio station, and radio net remote and telephone switchboard. (3) CAS 23-01-02 - Is a large aboveground storage tank (AST) farm that was constructed to provide gasoline and diesel storage in Area 23. The site consists of two ASTs, a concrete foundation, a surrounding earthen berm, associated piping, and unloading stations. (4) CAS 23-25-05 - Consists of an asphalt oil spill/tar release that contains a wash covered with asphalt oil/tar material, a half buried 208-liter (L) (55-gallon[gal]) drum, rebar, and concrete located in the vicinity

  8. Streamlined approach for environmental restoration closure report for Corrective Action Unit No. 456: Underground storage tank release site 23-111-1, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    The underground storage tank (UST) release site 23-111-1 is located in Mercury, Nevada. The site is in Area 23 of the Nevada Test Site, (NTS) located on the north side of Building 111. The tank associated with the release was closed in place using cement grout on September 6, 1990. The tank was not closed by removal due to numerous active underground utilities, a high-voltage transformer pad, and overhead power lines. Soil samples collected below the tank bottom at the time of tank closure activities exceeded the Nevada Administrative Code Action Level of 100 milligrams per kilogram (mg/kg) for petroleum hydrocarbons. Maximum concentrations detected were 119 mg/kg. Two passive venting wells were subsequently installed at the tank ends to monitor the progress of biodegradation at the site. Quarterly air sampling from the wells was completed for approximately one year, but was discontinued since data indicated that considerable biodegradation was not occurring at the site

  9. Test plan for tank 241-C-104 retrieval testing

    International Nuclear Information System (INIS)

    HERTING, D.L.

    1999-01-01

    Tank 241-C-104 has been identified as one of the first tanks to be retrieved for high-level waste pretreatment and immobilization. Retrieval of the tank waste will require dilution. Laboratory tests are needed to determine the amount of dilution required for safe retrieval and transfer of feed. The proposed laboratory tests are described in this document

  10. Test Plan for Tank 241-C-104 Retrieval Testing

    International Nuclear Information System (INIS)

    HERTING, D.L.

    1999-01-01

    Tank 241-C-104 has been identified as one of the first tanks to be retrieved for high-level waste pretreatment and immobilization. Retrieval of the tank waste will require dilution. Laboratory tests are needed to determine the amount of dilution required for safe retrieval and transfer of feed. The proposed laboratory tests are described in this document

  11. Conventional fuel tank blunt impact tests : test and analysis results

    Science.gov (United States)

    2014-04-02

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. A series of impact tests are planned to : measure fuel tank deformation under two types of dynamic : loading conditi...

  12. Test requirements of locomotive fuel tank blunt impact tests

    Science.gov (United States)

    2013-10-15

    The Federal Railroad Administrations Office of Research : and Development is conducting research into passenger : locomotive fuel tank crashworthiness. A series of impact tests : are planned to measure fuel tank deformation under two types : of dy...

  13. In-Tank Elutriation Test Report And Independent Assessment

    International Nuclear Information System (INIS)

    Burns, H. H.; Adamson, D. J.; Qureshi, Z. H.; Steeper, T. J.

    2011-01-01

    The Department of Energy (DOE) Office of Environmental Management (EM) funded Technology Development and Deployment (TDD) to solve technical problems associated with waste tank closure for sites such as Hanford Site and Savannah River Site (SRS). One of the tasks supported by this funding at Savannah River National Laboratory (SRNL) and Pacific Northwest Laboratory (PNNL) was In-Tank Elutriation. Elutriation is the process whereby physical separation occurs based on particle size and density. This report satisfies the first phase of Task WP 1 .3.1.1 In-Tank Elutriation, which is to assess the feasibility of this method of separation in waste tanks at Hanford Site and SRS. This report includes an analysis of scoping tests performed in the Engineering Development Laboratory of SRNL, analysis of Hanford's inadvertent elutriation, the viability of separation methods such as elutriation and hydrocyclones and recommendations for a path forward. This report will demonstrate that the retrieval of Hanford salt waste tank S-112 very successfully decreased the tank's inventories of radionuclides. Analyses of samples collected from the tank showed that concentrations of the major radionuclides Cs-136 and Sr-90 were decreased by factors of 250 and 6 and their total curie tank inventories decreased by factors of 60,000 and 2000. The total tank curie loading decreased from 300,000 Ci to 55 Ci. The remaining heel was nearly all innocuous gibbsite, Al(OH) 3 . However, in the process of tank retrieval approximately 85% of the tank gibbsite was also removed. Significant amounts of money and processing time could be saved if more gibbsite could be left in tanks while still removing nearly all of the radionuclides. There were factors which helped to make the elutriation of Tank S-112 successful which would not necessarily be present in all salt tanks. 1. The gibbsite particles in the tank were surprisingly large, as much as 200 o)m. The gibbsite crystals had probably grown in size over

  14. Geochemical Testing And Model Development - Residual Tank Waste Test Plan

    International Nuclear Information System (INIS)

    Cantrell, K.J.; Connelly, M.P.

    2010-01-01

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  15. Fuel tank integrity research : fuel tank analyses and test plans

    Science.gov (United States)

    2013-04-15

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. Fuel tank research is being performed to : determine strategies for increasing the fuel tank impact : resistance to ...

  16. Test plan for Tank 241-AW-101 solubility screening tests

    International Nuclear Information System (INIS)

    Person, J.C.

    1998-01-01

    Tank 241-AW-101 (101-AW) has been identified as one of the early tanks to be for retrieved for low level waste pretreatment and immobilization and retrieval of the tank waste may require dilution. This test is to determine the effects of dilution on the mass of solids and their composition. This test plan gives test instructions, example data sheets, a waste compatibility review, and a waste stream fact sheet. This test Plan is similar to tests on tanks 241-AN-102 (Person 1998a) and 241-AN-107 (Person 1998 b). The 101-AW tests will be done with composites of liquid and solids from grab samples that were taken in 1998 (Benar 1998). Future revisions of the Tank Sampling and Analysis Plan (Benar 1998) may change the details of the work performed under this test plan

  17. Blunt impact tests of retired passenger locomotive fuel tanks

    Science.gov (United States)

    2017-08-01

    The Transportation Technology Center, Inc. conducted impact tests on three locomotive fuel tanks as part of the Federal Railroad Administrations locomotive fuel tank crashworthiness improvement program. Three fuel tanks, two from EMD F40PH locomot...

  18. Locomotive fuel tank structural safety testing program : passenger locomotive fuel tank jackknife derailment load test.

    Science.gov (United States)

    2010-08-01

    This report presents the results of a passenger locomotive fuel tank load test simulating jackknife derailment (JD) load. The test is based on FRA requirements for locomotive fuel tanks in the Title 49, Code of Federal Regulations (CFR), Part 238, Ap...

  19. Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 120: Areas 5 and 6 Aboveground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Allison Urban

    1999-06-01

    This Closure Report provides documentation for the closure of Corrective Action Unit 120. CAU 120 consists of two Corrective Action Sites located in Areas 5 and 6 of the Nevada Test Site. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter aboveground storage tanks, piping, and debris associated with Well RNM-1. CAS 06-01-01 in Area 6 consists of two aboveground storage tanks and two tanker trailers All the CAU 120 items have been used to convey or contain radiologically contaminated fluid from post-nuclear event activities at the NTS> Closure of this CAU was completed by collecting samples to identify the appropriate method of disposal for tanks, piping, debris, and tankers in each CAS. Placing low-level radioactive waste into the appropriate containers and disposing of waste in the Area 5 Radioactive Waste Management Site, the Area 9 10C Landfill, and the Area 3 Radioactive Waste Management Site.

  20. Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 120: Areas 5 and 6 Aboveground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Allison Urban

    1999-01-01

    This Closure Report provides documentation for the closure of Corrective Action Unit 120. CAU 120 consists of two Corrective Action Sites located in Areas 5 and 6 of the Nevada Test Site. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter aboveground storage tanks, piping, and debris associated with Well RNM-1. CAS 06-01-01 in Area 6 consists of two aboveground storage tanks and two tanker trailers All the CAU 120 items have been used to convey or contain radiologically contaminated fluid from post-nuclear event activities at the NTS> Closure of this CAU was completed by collecting samples to identify the appropriate method of disposal for tanks, piping, debris, and tankers in each CAS. Placing low-level radioactive waste into the appropriate containers and disposing of waste in the Area 5 Radioactive Waste Management Site, the Area 9 10C Landfill, and the Area 3 Radioactive Waste Management Site

  1. C-106 tank process ventilation test

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1998-01-01

    Project W-320 Acceptance Test Report for tank 241-C-106, 296-C-006 Ventilation System Acceptance Test Procedure (ATP) HNF-SD-W320-012, C-106 Tank Process Ventilation Test, was an in depth test of the 296-C-006 ventilation system and ventilation support systems required to perform the sluicing of tank C-106. Systems involved included electrical, instrumentation, chiller and HVAC. Tests began at component level, moved to loop level, up to system level and finally to an integrated systems level test. One criteria was to perform the test with the least amount of risk from a radioactive contamination potential stand point. To accomplish this a temporary configuration was designed that would simulate operation of the systems, without being connected directly to the waste tank air space. This was done by blanking off ducting to the tank and connecting temporary ducting and an inlet air filter and housing to the recirculation system. This configuration would eventually become the possible cause of exceptions. During the performance of the test, there were points where the equipment did not function per the directions listed in the ATP. These events fell into several different categories. The first and easiest problems were field configurations that did not match the design documentation. This was corrected by modifying the field configuration to meet design documentation and reperforming the applicable sections of the ATP. A second type of problem encountered was associated with equipment which did not operate correctly, at which point an exception was written against the ATP, to be resolved later. A third type of problem was with equipment that actually operated correctly but the directions in the ATP were in error. These were corrected by generating an Engineering Change Notice (ECN) against the ATP. The ATP with corrected directions was then re-performed. A fourth type of problem was where the directions in the ATP were as the equipment should operate, but the design of

  2. HIGH LEVEL WASTE TANK CLOSURE PROJECT AT THE IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY

    International Nuclear Information System (INIS)

    Quigley, K.D.; Wessman, D.

    2003-01-01

    The Department of Energy, Idaho Operations Office (DOE-ID) is in the process of closing two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 1.14 million liter (300,000 gallon) tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities. The basic tank closure sequence is as follows: Empty the tank to the residual heel using the existing jets; Video and sample the heel; Replace steam jets with new jet at a lower position in the tank, and remove additional material; Flush tank, piping and secondary containment with demineralized water; Video and sample the heel; Evaluate decontamination effectiveness; Displace the residual heel with multiple placements of grout; and Grout piping, vaults and remaining tank volume. Design, development, and deployment of a remotely operated tank cleaning system were completed in June 2002. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system is cost-effective since it also utilizes existing waste transfer technology (steam jets), to remove tank heel solids from the tank bottoms during the cleaning operations. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and

  3. 30 CFR 36.50 - Tests of fuel tank.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of fuel tank. 36.50 Section 36.50 Mineral... Requirements § 36.50 Tests of fuel tank. The fuel tank shall be inspected and tested to determine whether: (a) It is fuel-tight, (b) the vent maintains atmospheric pressure within the tank, and (c) the vent and...

  4. 14 CFR 29.965 - Fuel tank tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank tests. 29.965 Section 29.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.965 Fuel tank tests. (a) Each fuel tank...

  5. 14 CFR 27.965 - Fuel tank tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank tests. 27.965 Section 27.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.965 Fuel tank tests. (a) Each fuel tank...

  6. Mixer pump test plan for double shell tank AZ-101

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    1999-01-01

    Mixer pump systems have been chosen as the method for retrieval of tank wastes contained in double shell tanks at Hanford. This document describes the plan for testing and demonstrating the ability of two 300 hp mixer pumps to mobilize waste in tank AZ-101. The mixer pumps, equipment and instrumentation to monitor the test were installed by Project W-151

  7. Results of a conventional fuel tank blunt impact test

    Science.gov (United States)

    2015-03-23

    The Federal Railroad Administrations Office of Research : and Development is conducting research into passenger : locomotive fuel tank crashworthiness. A series of impact tests is : being conducted to measure fuel tank deformation under two : type...

  8. Microbiological test results of the environmental control and life support systems vapors compression distillation subsystem recycle tank components following various pretreatment protocols

    Science.gov (United States)

    Huff, Tim

    1993-01-01

    Microbiological samples were collected from the recycle tank of the vapor compression distillation (VCD) subsystem of the water recovery test at NASA MSFC following a 68-day run. The recycle tank collects rejected urine brine that was pretreated with a commercially available oxidant (Oxone) and sulfuric acid and pumps it back to the processing component of the VCD. Samples collected included a water sample and two swab samples, one from the particulate filter surface and a second from material floating on the surface of the water. No bacteria were recovered from the water sample. Both swab samples contained a spore-forming bacterium, Bacillus insolitus. A filamentous fungus was isolated from the floating material. Approximately 1 month after the pretreatment chemicals were changed to sodium hypochlorite and sulfuric acid, a swab of the particulate filter was again analyzed for microbial content. One fungus was isolated, and spore-forming bacteria were observed. These results indicate the inability of these pretreatments to inhibit surface attachment. The implications of the presence of these organisms are discussed.

  9. Streamlined approach for environmental restoration closure report for Corrective Action Unit 464: Historical underground storage tank release sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This report addresses the site characterization of two historical underground storage tank petroleum hydrocarbon release sites identified by Corrective Action Site (CAS) Numbers 02-02-03 and 09-02-01. The sites are located at the Nevada Test Site in Areas 2 and 9 and are concrete bunker complexes (Bunker 2-300, and 9-300). Characterization was completed using drilling equipment to delineate the extent of petroleum hydrocarbons at release site 2-300-1 (CAS 02-02-03). Based on site observations, the low hydrocarbon concentrations detected, and the delineation of the vertical and lateral extent of subsurface hydrocarbons, an ''A through K'' evaluation was completed to support a request for an Administrative Closure of the site

  10. Streamlined approach for environmental restoration closure report for Corrective Action Unit 120: Areas 5 and 6 aboveground storage tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    This Closure Report provides documentation for the closure of Corrective Action Unit (CAU) 120 of the Federal Facilities Agreement and Consent Order (FFACO). CAU 120 consists of two Corrective Action Sites (CASs) located in Areas 5 and 6 of the Nevada Test Site (NTS), which are approximately 130 kilometers (80 miles) northwest of Las Vegas, Nevada. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter (12,100-gallon) aboveground storage tanks (ASTs), piping, and debris associated with Well RNM-1. CAS 06-01-01 consists of two ASTs and two tanker trailers (all portable) that were originally located at the Area 6 Cp-50 Hot Park and which had been moved to the Area 6 Waste Handling Facility. All of the items in CAU 120 have been used to contain or convey radiologically contaminated fluid that was generated during post-nuclear event activities at the NTS.

  11. Streamlined approach for environmental restoration closure report for Corrective Action Unit 464: Historical underground storage tank release sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report addresses the site characterization of two historical underground storage tank petroleum hydrocarbon release sites identified by Corrective Action Site (CAS) Numbers 02-02-03 and 09-02-01. The sites are located at the Nevada Test Site in Areas 2 and 9 and are concrete bunker complexes (Bunker 2-300, and 9-300). Characterization was completed using drilling equipment to delineate the extent of petroleum hydrocarbons at release site 2-300-1 (CAS 02-02-03). Based on site observations, the low hydrocarbon concentrations detected, and the delineation of the vertical and lateral extent of subsurface hydrocarbons, an ``A through K`` evaluation was completed to support a request for an Administrative Closure of the site.

  12. Streamlined approach for environmental restoration closure report for Corrective Action Unit 120: Areas 5 and 6 aboveground storage tanks Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1999-06-01

    This Closure Report provides documentation for the closure of Corrective Action Unit (CAU) 120 of the Federal Facilities Agreement and Consent Order (FFACO). CAU 120 consists of two Corrective Action Sites (CASs) located in Areas 5 and 6 of the Nevada Test Site (NTS), which are approximately 130 kilometers (80 miles) northwest of Las Vegas, Nevada. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter (12,100-gallon) aboveground storage tanks (ASTs), piping, and debris associated with Well RNM-1. CAS 06-01-01 consists of two ASTs and two tanker trailers (all portable) that were originally located at the Area 6 Cp-50 Hot Park and which had been moved to the Area 6 Waste Handling Facility. All of the items in CAU 120 have been used to contain or convey radiologically contaminated fluid that was generated during post-nuclear event activities at the NTS

  13. Hanford tanks initiative - test implementation plan for demonstration of in-tank retrieval technology

    International Nuclear Information System (INIS)

    Schaus, P.S.

    1997-01-01

    This document presents a Systems Engineering approach for performing the series of tests associated with demonstrating in-tank retrieval technologies. The testing ranges from cold testing of individual components at the vendor's facility to the final fully integrated demonstration of the retrieval system's ability to remove hard heel high-level waste from the bottom of a Hanford single-shell tank

  14. Hanford tank initiative test facility site selection study

    International Nuclear Information System (INIS)

    Staehr, T.W.

    1997-01-01

    The Hanford Tanks Initiative (HTI) project is developing equipment for the removal of hard heel waste from the Hanford Site underground single-shell waste storage tanks. The HTI equipment will initially be installed in the 241-C-106 tank where its operation will be demonstrated. This study evaluates existing Hanford Site facilities and other sites for functional testing of the HTI equipment before it is installed into the 241-C-106 tank

  15. Underground storage tanks cause environmental chaos

    International Nuclear Information System (INIS)

    Cruver, P.C.

    1991-01-01

    This paper reports that during the 1950s and the subsequent three decades, petroleum products were stored in single-walled steel underground tanks; an out-of-sight, out-of-mind philosophy prevailed. Unfathomable amounts of toxic petroleum products leaking into the nation's ground water supplies has prompted enactment of recent and much needed legislation and regulation to remedy this major problem. Is the public aware of this serious ecological imbroglio? No, not as yet; except for the closing of many rural service stations and the plethora of dug-up, exposed tanks at urban stations, one could never imagine the severity of this debacle confronting the petroleum industry and the nation's environment

  16. Streamlined approach for environmental restoration closure report for Corrective Action Unit 454: Historical underground storage tank release sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This report addresses the characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 12-B-1, 12-B-3, and 12-COMM-1. The sites are located within the Nevada Test Site in Area 12 at B Tunnel and a former Communications/Power Maintenance Shop. Release Site 12-B-1 was not able to be clean-closed as proposed in the SAFER Plan. However, hydrocarbon impacted soils were excavated down to bedrock. Release Site 12-B-3 was evaluated to verify that the identified release was not associated with the UST removed from the site. Analytical results support the assumption that wood or possibly a roof sealant used as part of the bunker construction could have been the source of hydrocarbons detected. Release Site 12-COMM-1 was not clean closed as proposed in the SAFER Plan. The vertical extent of impacted soils was determined not to extend below a depth of 2.7 m (9 ft) below ground surface (bgs). The lateral extent could not be defined due to the presence of a discontinuous lens of hydrocarbon-impacted soil

  17. Streamlined approach for environmental restoration closure report for Corrective Action Unit 452: Historical underground storage tank release sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This report addresses the site characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 25-3101-1, 25-3102-3, and 25-3152-1. The sites are located within the Nevada Test Site in Area 25 at Buildings 3101, 3102, and 3152. The characterization was completed to support administrative closure of the sites. Characterization was completed using drilling equipment to delineate the extent of hydrocarbon impact. Clean closure had been previously attempted at each of these sites using backhoe equipment without success due to adjacent structures, buried utilities, or depth restrictions associated with each site. Although the depth and extent of hydrocarbon impact was determined to be too extensive for clean closure, it was verified through drilling that the sites should be closed through an administrative closure. The Nevada Administrative Code ''A Through K'' evaluation completed for each site supports that there is no significant risk to human health or the environment from the impacted soils remaining at each site

  18. Streamlined approach for environmental restoration closure report for Corrective Action Unit 454: Historical underground storage tank release sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report addresses the characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 12-B-1, 12-B-3, and 12-COMM-1. The sites are located within the Nevada Test Site in Area 12 at B Tunnel and a former Communications/Power Maintenance Shop. Release Site 12-B-1 was not able to be clean-closed as proposed in the SAFER Plan. However, hydrocarbon impacted soils were excavated down to bedrock. Release Site 12-B-3 was evaluated to verify that the identified release was not associated with the UST removed from the site. Analytical results support the assumption that wood or possibly a roof sealant used as part of the bunker construction could have been the source of hydrocarbons detected. Release Site 12-COMM-1 was not clean closed as proposed in the SAFER Plan. The vertical extent of impacted soils was determined not to extend below a depth of 2.7 m (9 ft) below ground surface (bgs). The lateral extent could not be defined due to the presence of a discontinuous lens of hydrocarbon-impacted soil.

  19. Tank waste remediation system environmental program plan

    Energy Technology Data Exchange (ETDEWEB)

    Borneman, L.E.

    1998-01-09

    This Environmental Program Plan has been developed in support of the Integrated Environmental, Safety and Health Management System and consistent with the goals of DOE/RL-96-50, Hanford Strategic Plan (RL 1996a), and the specifications and guidance for ANSI/ISO 14001-1996, Environmental Management Systems Specification with guidance for use (ANSI/ISO 1996).

  20. Tank waste remediation system environmental program plan

    International Nuclear Information System (INIS)

    Borneman, L.E.

    1998-01-01

    This Environmental Program Plan has been developed in support of the Integrated Environmental, Safety and Health Management System and consistent with the goals of DOE/RL-96-50, Hanford Strategic Plan (RL 1996a), and the specifications and guidance for ANSI/ISO 14001-1996, Environmental Management Systems Specification with guidance for use (ANSI/ISO 1996)

  1. Tank 241-C-106 in-tank imaging system operational test report

    International Nuclear Information System (INIS)

    Pedersen, L.T.

    1998-01-01

    This document presents the results of operational testing of the 241-C-106 In-Tank Video Camera Imaging System. This imaging system was installed as a component of Project W-320 to monitor sluicing and waste retrieval activities in Tank 241-C-106

  2. AX Tank farm closure settlement estimates and soil testing; TOPICAL

    International Nuclear Information System (INIS)

    BECKER, D.L.

    1999-01-01

    This study provides a conservative three-dimensional settlement study of the AX Tank Farm closure with fill materials and a surface barrier. The finite element settlement model constructed included the interaction of four tanks and the surface barrier with the site soil and bedrock. Also addressed are current soil testing techniques suitable for the site soil with recommendations applicable to the AX Tank Farm and the planned cone penetration testing

  3. Acceptance test report for the Tank 241-C-106 in-tank imaging system

    International Nuclear Information System (INIS)

    Pedersen, L.T.

    1998-01-01

    This document presents the results of Acceptance Testing of the 241-C-106 in-tank video camera imaging system. The purpose of this imaging system is to monitor the Project W-320 sluicing of Tank 241-C-106. The objective of acceptance testing of the 241-C-106 video camera system was to verify that all equipment and components function in accordance with procurement specification requirements and original equipment manufacturer's (OEM) specifications. This document reports the results of the testing

  4. Test plan for tank 241-AN-104 dilution studies

    International Nuclear Information System (INIS)

    Herting, D.L.

    1998-01-01

    Tank 241-AN-104 (104-AN) has been identified as the one of the first tanks to be retrieved for low level waste pretreatment and immobilization. Retrieval of the tank waste will require dilution. Laboratory tests are needed to determine the amount and type of dilution required for safe retrieval and transfer of feed and to re-dissolve major soluble sodium salts while not precipitating out other salts. The proposed laboratory tests are described in this document. Tank 241-AN-104 is on the Hydrogen Watch List

  5. Simple test for physical stability of cryogenic tank insulation

    Science.gov (United States)

    Rossello, D.

    1968-01-01

    Qualitative test determines the ability of insulation liners used on liquid hydrogen tanks to withstand stresses produced by the thermal shocks imparted to the insulation during tank filling and drainage. Test specimens are bonded to metal plates with a low thermal expansion coefficient and are immersed in liquid hydrogen.

  6. 14 CFR 25.965 - Fuel tank tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank tests. 25.965 Section 25.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.965 Fuel tank tests. (a) It must be...

  7. Manufacture of superhigh vacuum testing tank

    International Nuclear Information System (INIS)

    Sakai, Kusuo; Suzui, Koichi; Horigome, Toshio

    1981-01-01

    This apparatus is one of the preliminary experiment equipments for the vacuum system of a UVSOR, and the main objective is to obtain the clean vacuum below 10 - 10 Torr. From the viewpoint of manufacture, there is no problem, but all the works from the design through manufacture, assembling and adjustment of the apparatus, to the obtaining of required vacuum were carried out by the authors themselves. The design and its points, and manufacture are described. In order to obtain clean vacuum and maintain it for long period, the surface cleaning of vacuum tanks is very important. Therefore the method of electrolytic polishing was adopted for the purpose, and its effectiveness was examined. After the surface treatment by two methods, the evacuation test was carried out, and the attained pressure was compared. Electrolytic polishing seemed to be effective. As the method of suppressing surface degasification, there is argon bombardment method. It was attempted to improve the pressure attained by baking only further by this method. By baking at 250 deg C for 30 hr only, the final pressure attained was 1.7 x 10 - 10 Torr, and by making argon bombardment twice during baking, it was 0.9 x 10 - 10 Torr, thus slight improvement was obtained. The main objective to obtain vacuum below 10 - 10 Torr was accomplished, but surface treatment requires more experience. (Kako, I.)

  8. 49 CFR 179.300-16 - Tests of tanks.

    Science.gov (United States)

    2010-10-01

    ... air pressure test of at least 100 psig under conditions favorable to detection of any leakage. No... postweld heat treatment, tanks shall be subjected to hydrostatic expansion test in a water jacket, or by...

  9. Hanford site tank waste remediation system programmatic environmental review report

    International Nuclear Information System (INIS)

    Haass, C.C.

    1998-01-01

    The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE's plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations

  10. Testing and development strategy for the tank waste remediation system

    International Nuclear Information System (INIS)

    Reddick, G.W.

    1994-12-01

    This document provides a strategy for performing radioactive (hot) and nonradioactive testing to support processing tank waste. It evaluates the need for hot pilot plant(s) to support pretreatment and other processing functions and presents a strategy for performing hot test work. A strategy also is provided for nonradioactive process and equipment testing. The testing strategy supports design, construction, startup, and operation of Tank Waste Remediation System (TWRS) facilities

  11. Testing and development strategy for the tank waste remediation system

    International Nuclear Information System (INIS)

    Reddick, G.W.

    1995-01-01

    This document provides a strategy for performing radioactive (hot) and nonradioactive testing to support processing tank waste. It evaluates the need for hot pilot plant(s) to support pretreatment and other processing functions and presents a strategy for performing hot test work. A strategy also is provided for nonradioactive process and equipment testing. The testing strategy supports design, construction, startup, and operation of Tank Waste Remediation System (TWRS) facilities

  12. Reusable LH2 tank technology demonstration through ground test

    Science.gov (United States)

    Bianca, C.; Greenberg, H. S.; Johnson, S. E.

    1995-01-01

    The paper presents the project plan to demonstrate, by March 1997, the reusability of an integrated composite LH2 tank structure, cryogenic insulation, and thermal protection system (TPS). The plan includes establishment of design requirements and a comprehensive trade study to select the most suitable Reusable Hydrogen Composite Tank system (RHCTS) within the most suitable of 4 candidate structural configurations. The 4 vehicles are winged body with the capability to deliver 25,000 lbs of payload to a circular 220 nm, 51.6 degree inclined orbit (also 40,000 lbs to a 28.5 inclined 150 nm orbit). A prototype design of the selected RHCTS is established to identify the construction, fabrication, and stress simulation and test requirements necessary in an 8 foot diameter tank structure/insulation/TPS test article. A comprehensive development test program supports the 8 foot test article development and involves the composite tank itself, cryogenic insulation, and integrated tank/insulation/TPS designs. The 8 foot diameter tank will contain the integrated cryogenic insulation and TPS designs resulting from this development and that of the concurrent lightweight durable TPS program. Tank ground testing will include 330 cycles of LH2 filling, pressurization, body loading, depressurization, draining, and entry heating.

  13. Assessment of Current Practice for Tank Testing of Small Marine Energy Devices

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    Discussion Report. Equitable Testing and Evaluation of Marine Energy Extraction Devices in terms of Performance, Cost and Environmental Impact. The report is a contribution by Aalborg University (AAU) to the deliverable on Assessment of current practice for tank testing of small marine energy...

  14. Single-shell tank riser resistance to ground test plan

    International Nuclear Information System (INIS)

    Kiewert, L.R.

    1996-01-01

    This Test Procedure provides the general directions for conducting Single-Shell Tank Riser to Earth Measurements which will be used by engineering as a step towards providing closure for the Lightning Hazard Issue

  15. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    International Nuclear Information System (INIS)

    HERTING, D.L.

    2006-01-01

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 222-S Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cs-137 sulfate, and sodium) were exceeded in all three of the flowsheet tests that were performed

  16. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, P.K.

    1995-01-31

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

  17. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    International Nuclear Information System (INIS)

    Bhatia, P.K.

    1995-01-01

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm's tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers

  18. Numerical Modelling and Measurement in a Test Secondary Settling Tank

    DEFF Research Database (Denmark)

    Dahl, C.; Larsen, Torben; Petersen, O.

    1994-01-01

    sludge. Phenomena as free and hindered settling and the Bingham plastic characteristic of activated sludge suspensions are included in the numerical model. Further characterisation and test tank experiments are described. The characterisation experiments were designed to measure calibration parameters...... for model description of settling and density differences. In the test tank experiments, flow velocities and suspended sludge concentrations were measured with different tank inlet geomotry and hydraulic and sludge loads. The test tank experiments provided results for the calibration of the numerical model......A numerical model and measurements of flow and settling in activated sludge suspension is presented. The numerical model is an attempt to describe the complex and interrelated hydraulic and sedimentation phenomena by describing the turbulent flow field and the transport/dispersion of suspended...

  19. Draft Environmental Impact Statement for the tank waste remediation system. Volume 4

    International Nuclear Information System (INIS)

    1996-04-01

    This appendix describes the current safety concerns associated with the tank waste and analyzes the potential accidents and associated potential health effects that could occur under the alternatives included in this Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS)

  20. CHARACTERIZATION AND ACTUAL WASTE TEST WITH TANK 5F SAMPLES

    International Nuclear Information System (INIS)

    Fletcher, D.

    2007-01-01

    The initial phase of bulk waste removal operations was recently completed in Tank 5F. Video inspection of the tank indicates several mounds of sludge still remain in the tank. Additionally, a mound of white solids was observed under Riser 5. In support of chemical cleaning and heel removal programs, samples of the sludge and the mound of white solids were obtained from the tank for characterization and testing. A core sample of the sludge and Super Snapper sample of the white solids were characterized. A supernate dip sample from Tank 7F was also characterized. A portion of the sludge was used in two tank cleaning tests using oxalic acid at 50 C and 75 C. The filtered oxalic acid from the tank cleaning tests was subsequently neutralized by addition to a simulated Tank 7F supernate. Solids and liquid samples from the tank cleaning test and neutralization test were characterized. A separate report documents the results of the gas generation from the tank cleaning test using oxalic acid and Tank 5F sludge. The characterization results for the Tank 5F sludge sample (FTF-05-06-55) appear quite good with respect to the tight precision of the sample replicates, good results for the glass standards, and minimal contamination found in the blanks and glass standards. The aqua regia and sodium peroxide fusion data also show good agreement between the two dissolution methods. Iron dominates the sludge composition with other major contributors being uranium, manganese, nickel, sodium, aluminum, and silicon. The low sodium value for the sludge reflects the absence of supernate present in the sample due to the core sampler employed for obtaining the sample. The XRD and CSEM results for the Super Snapper salt sample (i.e., white solids) from Tank 5F (FTF-05-07-1) indicate the material contains hydrated sodium carbonate and bicarbonate salts along with some aluminum hydroxide. These compounds likely precipitated from the supernate in the tank. A solubility test showed the material

  1. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume II

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 2, provides the inventory of waste addressed in this Final Environmental Impact Statement (EIS) for the Tank Waste Remediation System, Hanford Site, Richland, Washington. The inventories consist of waste from the following four groups: (1) Tank waste; (2) Cesium (Cs) and Strontium (Sr) capsules; (3) Inactive miscellaneous underground storage tanks (MUSTs); and (4) Anticipated future tank waste additions. The major component by volume of the overall waste is the tank waste inventory (including future tank waste additions). This component accounts for more than 99 percent of the total waste volume and approximately 70 percent of the radiological activity of the four waste groups identified previously. Tank waste data are available on a tank-by-tank basis, but the accuracy of these data is suspect because they primarily are based on historical records of transfers between tanks rather than statistically based sampling and analyses programs. However, while the inventory of any specific tank may be suspect, the overall inventory for all of the tanks combined is considered more accurate. The tank waste inventory data are provided as the estimated overall chemical masses and radioactivity levels for the single-shell tanks (SSTs) and double-shell tanks (DSTs). The tank waste inventory data are broken down into tank groupings or source areas that were developed for analyzing groundwater impacts

  2. Hanford Tank Farms Waste Certification Flow Loop Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

    2010-01-01

    A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

  3. Tank 18-F And 19-F Tank Fill Grout Scale Up Test Summary

    International Nuclear Information System (INIS)

    Stefanko, D.; Langton, C.

    2012-01-01

    High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale up test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.

  4. TANK 18-F AND 19-F TANK FILL GROUT SCALE UP TEST SUMMARY

    Energy Technology Data Exchange (ETDEWEB)

    Stefanko, D.; Langton, C.

    2012-01-03

    High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale up test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.

  5. Isopropyl alcohol tank installed at A-3 Test Stand

    Science.gov (United States)

    2009-01-01

    An isopropyl alcohol (IPA) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen IPA, water and liquid oxygen (LOX) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  6. Test plan for evaluating the performance of the in-tank fluidic sampling system

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    The PHMC will provide Low Activity Wastes (LAW) tank wastes for final treatment by a privatization contractor from double-shell feed tanks, 241-AP-102 and 241-AP-104, Concerns about the inability of the baseline ''grab'' sampling to provide large volume samples within time constraints has led to the development of a conceptual sampling system that would be deployed in a feed tank riser, This sampling system will provide large volume, representative samples without the environmental, radiation exposure, and sample volume impacts of the current base-line ''grab'' sampling method. This test plan identifies ''proof-of-principle'' cold tests for the conceptual sampling system using simulant materials. The need for additional testing was identified as a result of completing tests described in the revision test plan document, Revision 1 outlines tests that will evaluate the performance and ability to provide samples that are representative of a tanks' content within a 95 percent confidence interval, to recovery from plugging, to sample supernatant wastes with over 25 wt% solids content, and to evaluate the impact of sampling at different heights within the feed tank. The test plan also identifies operating parameters that will optimize the performance of the sampling system

  7. STS-133/ET-137 Tanking Test Photogrammetry Assessment

    Science.gov (United States)

    Oliver, Stanley T.

    2012-01-01

    Following the launch scrub of Space Shuttle mission STS-133 on November 5, 2010, an anomalous condition of cracked and raised thermal protection system (TPS) foam was observed on the External Tank (ET). Subsequent dissection of the affected TPS region revealed cracks in the feet of two Intertank (IT) metallic stringers. An extensive investigation into the cause(s) and corrective action(s) for the cracked stringers was initiated, involving a wide array of material and structural tests and nondestructive evaluations, with the intent to culminate into the development of flight rational. One such structural test was the instrumented tanking test performed on December 17, 2010. The tanking test incorporated two three-dimensional optical displacement measurement systems to measure full-field outer surface displacements of the TPS surrounding the affected region that contained the stringer cracks. The results showed that the radial displacement and rotation of the liquid oxygen (LO2) tank flange changed significantly as the fluid level of the LO2 approached and passed the LO2 tank flange.

  8. Environmental Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Test Facility (ETF) provides non-isolated shock testing for stand-alone equipment and full size cabinets under MIL-S-901D specifications. The ETF...

  9. Laboratory testing in-tank sludge washing, summary letter report

    International Nuclear Information System (INIS)

    Norton, M.V.; Torres-Ayala, F.

    1994-09-01

    In-tank washing is being considered as a means of pretreating high-level radioactive waste sludges, such as neutralized current acid waste (NCAW) sludge. For this process, the contents of the tank will be allowed to settle, and the supernatant solution will be decanted and removed. A dilute sodium hydroxide/sodium nitrite wash solution will be added to the settled sludge and the tank contents will be mixed with a mixer pump system to facilitate washing of the sludge. After thorough mixing, the mixer pumps will be shut off and the solids will be allowed to re-settle. After settling, the supernatant solution will be withdrawn from the tank, and the wash cycle will be repeated several times with fresh wash solution. Core sample data of double shell tank 241-AZ-101 indicate that settling of NCAW solids may be very slow. A complicating factor is that strong thermal currents are expected to be generated from heat produced by radionuclides in the sludge layer at the bottom of the tank. Additionally, there are concerns that during the settling period (i.e., while mixing pumps and air-lift re-circulators are shut off), the radionuclides may heat the residual interstitial water in the sludge to the extent that violent steam discharges (steam bumping) could occur. Finally, there are concerns that during the washing steps sludge settling may be hindered as a result of the reduced ionic strength of the wash solution. To overcome the postulated reduced settling rates during the second and third washing steps, the use of flocculants is being considered. To address the above concerns and uncertainties associated with in-tank washing, PNL has conducted laboratory testing with simulant tank waste to investigate settling rates, steam bump potential, and the need for and use of flocculating agents

  10. Operational test procedure for SY tank farm replacement exhauster unit

    International Nuclear Information System (INIS)

    McClees, J.

    1995-01-01

    This operational test procedure will verify that the remaining functions not tested per WHC-SD-WM-ATP-080, or components disturbed during final installation, as well as interfaces with other tank farm equipment and remote monitoring stations are operating correctly

  11. Plan for dynamic testing of NFS tank and vault

    International Nuclear Information System (INIS)

    1977-12-01

    (Nuclear Fuel Services) dynamic testing methodologies are described including the determination of resonant frequencies, mode shapes and the associated structural damping. The application of dynamic testing to the determination of the eigenparameters of the neutralized waste tanks 8D-2 and 8D-1 investigated and recommendations made

  12. Calcination/dissolution testing for Hanford Site tank wastes

    International Nuclear Information System (INIS)

    Colby, S.A.; Delegard, C.H.; McLaughlin, D.F.; Danielson, M.J.

    1994-07-01

    Thermal treatment by calcination offers several benefits for the treatment of Hanford Site tank wastes, including the destruction of organics and ferrocyanides and an hydroxide fusion that permits the bulk of the mostly soluble nonradioactive constituents to be easily separated from the insoluble transuranic residue. Critical design parameters were tested, including: (1) calciner equipment design, (2) hydroxide fusion chemistry, and (3) equipment corrosion. A 2 gal/minute pilot plant processed a simulated Tank 101-SY waste and produced a free flowing 700 C molten calcine with an average calciner retention time of 20 minutes and >95% organic, nitrate, and nitrite destruction. Laboratory experiments using actual radioactive tank waste and the simulated waste pilot experiments indicate that 98 wt% of the calcine produced is soluble in water, leaving an insoluble transuranic fraction. All of the Hanford Site tank wastes can benefit from calcination/dissolution processing, contingent upon blending various tank waste types to ensure a target of 70 wt% sodium hydroxide/nitrate/nitrite fluxing agent. Finally, corrosion testing indicates that a jacketed nickel liner cooled to below 400 C would corrode <2 mil/year (0.05 mm/year) from molten calcine attack

  13. 49 CFR 179.500-14 - Test of tanks.

    Science.gov (United States)

    2010-10-01

    ... maintained for 30 seconds, and sufficiently longer to insure complete expansion of tank. Pressure gauge shall permit reading to accuracy of one percent. Expansion gauge shall permit reading of total expansion to... volumetric expansion shall not exceed 10 percent of the total volumetric expansion at test pressure. ...

  14. 14 CFR 23.965 - Fuel tank tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank tests. 23.965 Section 23.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.965 Fuel...

  15. Detailed leak detection test plan and schedule for the Oak Ridge National Laboratory LLLW active tanks

    International Nuclear Information System (INIS)

    Douglas, D.G.; Maresca, J.W. Jr.

    1993-03-01

    This document provides a detailed leak detection test plan and schedule for leak testing many of the tanks that comprise the active portion of the liquid low-level waste (LLLW) system at the Oak Ridge National Laboratory (ORNL). This plan was prepared in response to the requirements of the Federal Facility Agreement (FFA) between the US Department of Energy (DOE) and two other agencies, the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC)

  16. Photogrammetry Measurements During a Tanking Test on the Space Shuttle External Tank, ET-137

    Science.gov (United States)

    Littell, Justin D.; Schmidt, Tim; Tyson, John; Oliver, Stanley T.; Melis, Matthew E.; Ruggeri, Charles

    2012-01-01

    On November 5, 2010, a significant foam liberation threat was observed as the Space Shuttle STS-133 launch effort was scrubbed because of a hydrogen leak at the ground umbilical carrier plate. Further investigation revealed the presence of multiple cracks at the tops of stringers in the intertank region of the Space Shuttle External Tank. As part of an instrumented tanking test conducted on December 17, 2010, a three dimensional digital image correlation photogrammetry system was used to measure radial deflections and overall deformations of a section of the intertank region. This paper will describe the experimental challenges that were overcome in order to implement the photogrammetry measurements for the tanking test in support of STS-133. The technique consisted of configuring and installing two pairs of custom stereo camera bars containing calibrated cameras on the 215-ft level of the fixed service structure of Launch Pad 39-A. The cameras were remotely operated from the Launch Control Center 3.5 miles away during the 8 hour duration test, which began before sunrise and lasted through sunset. The complete deformation time history was successfully computed from the acquired images and would prove to play a crucial role in the computer modeling validation efforts supporting the successful completion of the root cause analysis of the cracked stringer problem by the Space Shuttle Program. The resulting data generated included full field fringe plots, data extraction time history analysis, section line spatial analyses and differential stringer peak ]valley motion. Some of the sample results are included with discussion. The resulting data showed that new stringer crack formation did not occur for the panel examined, and that large amounts of displacement in the external tank occurred because of the loads derived from its filling. The measurements acquired were also used to validate computer modeling efforts completed by NASA Marshall Space Flight Center (MSFC).

  17. Acceptance test procedure for SY Tank Farm replacement exhauster unit

    Energy Technology Data Exchange (ETDEWEB)

    Becken, G.W.

    1994-12-16

    The proper functioning of a new 241-SY Tank Farm replacement exhauster will be acceptance tested, to establish operability and to provide an operational baseline for the equipment. During this test, a verification of all of the alarm and control circuits associated with the exhaust, which provide operating controls and/or signals to local and remote alarm/annunciator panels, shall be performed. Test signals for sensors that provide alarms, warnings, and/or interlocks will be applied to verify that alarm, warning, and interlock setpoints are correct. Alarm and warning lights, controls, and local and remote readouts for the exhauster will be verified to be adequate for proper operation of the exhauster. Testing per this procedure shall be conducted in two phases. The first phase of testing, to verify alarm, warning, and interlock setpoints primarily, will be performed in the MO-566 Fab Shop. The second phase of testing, to verify proper operation and acceptable interface with other tank farm systems, will be conducted after the exhauster and all associated support and monitoring equipment have been installed in the SY Tank Farm. The exhauster, which is mounted on a skid and which will eventually be located in the SY tank farm, receives input signals from a variety of sensors mounted on the skid and associated equipment. These sensors provide information such as: exhauster system inlet vacuum pressure; prefilter and HEPA filter differential pressures; exhaust stack sampler status; exhaust fan status; system status (running/shut down); and radiation monitoring systems status. The output of these sensors is transmitted to the exhauster annunciator panel where the signals are displayed and monitored for out-of-specification conditions.

  18. Test set of gaseous analytes at Hanford tank farms

    International Nuclear Information System (INIS)

    1997-01-01

    DOE has stored toxic and radioactive waste materials in large underground tanks. When the vapors in the tank headspaces vent to the open atmosphere a potentially dangerous situation can occur for personnel in the area. An open-path atmospheric pollution monitor is being developed to monitor the open air space above these tanks. In developing this infrared spectra monitor as a safety alert instrument, it is important to know what hazardous gases, called the Analytes of Concern, are most likely to be found in dangerous concentrations. The monitor must consider other gases which could interfere with measurements of the Analytes of Concern. The total list of gases called the Test Set Analytes form the basis for testing the pollution monitor. Prior measurements in 54 tank headspaces have detected 102 toxic air pollutants (TAPs) and over 1000 other analytes. The hazardous Analytes are ranked herein by a Hazardous Atmosphere Rating which combines their measured concentration, their density relative to air, and the concentration at which they become dangerous. The top 20 toxic air pollutants, as ranked by the Hazardous Atmosphere Rating, and the top 20 other analytes, in terms of measured concentrations, are analyzed for possible inclusion in the Test Set Analytes. Of these 40 gases, 20 are selected. To these 20 gases are added the 6 omnipresent atmospheric gases with the highest concentrations, since their spectra could interfere with measurements of the other spectra. The 26 Test Set Analytes are divided into a Primary Set and a Secondary Set. The Primary Set, gases which must be detectable by the monitor, includes the 6 atmospheric gases and the 6 hazardous gases which have been measured at dangerous concentrations. The Secondary Set gases need not be monitored at this time. The infrared spectra indicates that the pollution monitor will detect all 26 Test Set Analytes by thermal emission and will detect 15 Test Set Analytes by laser absorption

  19. Sample preparation of tank 241-C-106 grab samples and testing For compatibility with tank 241-AY-102 supernate

    International Nuclear Information System (INIS)

    Crawford, B.A.

    1996-01-01

    This test plan describes a sample separation method which will be used to obtain physical measurements and separated 241-C-106 solids and supernate fractions. In addition compatibility of tank 241-C-106 sludge with tank 241-AY-102 supernate will be determined

  20. Upgrading a 1950s tank farm to meet the environmental standards of the 1990S

    International Nuclear Information System (INIS)

    Butler, C.F.; Peterson, S.W.

    1995-01-01

    The Texaco Inc. Research and Development (Texaco) facility in Beacon, New York includes an above ground storage tank (AST) farm, known as Tank Farm No. 1, which consists of eighteen tanks with capacities ranging from 10,000 to 21,000 gallons. A second tank farm, at the Texaco, Beacon facility, designated as the Boiler House Tank Farm, includes three additional tanks with capacities from 10,000 to 44,900 gallons. The Tank Farm No. 1 AST systems are all vertical, carbon steel tanks which were initially installed in several phases in the 1950s. The Boiler House Tank Farm ASTs are also vertical, carbon steel tanks, including one riveted construction tank that was installed in 1931. Each of the Texaco ASTs are used to store a variety of petroleum products, including diesel fuel, stoddard solvent, used oil, and various grades of gasoline and gasoline components. The New York State Department of Environmental Conservation (NYSDEC) has established regulations for petroleum bulk storage in 6 NYCRR Parts 612 through 614. These regulations include requirements for monitoring and inspecting AST systems, including a rigorous ''out of service'' inspection, to be completed at least once every ten years. Although several revisions had been completed at Tank Farm No. 1 in recent years, including installation of a reinforced concrete secondary containment dike system and new above ground piping, the tank shells and most appurtenances (e.g. water drawoff valves), were unmodified since they were initially installed. On this basis, Texaco decided to upgrade the AST systems in conjunction with the NYSDEC ten-year inspections, by installing reinforced fiberglass liners in the tank floors, and by removing and/or replacing tank appurtenances to meet current industry standards and fire code requirements. This paper presents a summary of the program implemented to upgrade the Texaco, Beacon tank farm AST systems

  1. [Environmental effects of combined sewage detention tank in central Shanghai].

    Science.gov (United States)

    Cheng, Jiang; Lü, Yong-peng; Huang, Xiao-fang; Guo, Sheng

    2009-08-15

    Through measuring the processes of precipitation, discharge and pollutant concentration over 20 times from 2006 to 2008 in Chendulu combined sewerage system (CSS) along Suzhou Creek in central Shanghai, the environmental effects of Chendulu combined sewage detention tank (CSDT), the first running CSDT in China, were studied. The results show that CSDT could improve CSS discharge capacity effectively with promoted interception ratio from 3.87 to 6.90-9.92. The mean annual combined sewer overflow (CSO) reduction and reduction rate are 9.10 x 10(4) m3 and 9.00%, respectively, and those of sanitary waste discharged directly to Suzhou Creek in non-rain-weather are 8.37 x 10(4) m(3) and 100% , respectively. The mean annual pollutants decrease rate of COD, BOD5, SS, NH4+ -N and TP of CSO are 13.76%, 19.69%, 15.29%, 18.24% and 15.10%, respectively, and those CSO pollutants decrease 41.21 t, 12.37 t, 50.10 t, 2.12 t and 0.29 t annually, respectively. The CSDT also could decrease sanitary waste discharged to Suzhou Creek totally, and those decreased pollutants are 20.75 t, 4.87 t, 14.90 t, 4.49 t and 0.30 t annually, respectively. The analysis shows that the CSDT design standard, running models and rainfall characteristics are the important influencing factors to realize the environmental effects of CSDT.

  2. TWRS tank waste pretreatment process development hot test siting report

    International Nuclear Information System (INIS)

    Howden, G.F.; Banning, D.L.; Dodd, D.A.; Smith, D.A.; Stevens, P.F.; Hansen, R.I.; Reynolds, B.A.

    1995-02-01

    This report is the sixth in a series that have assessed the hot testing requirements for TWRS pretreatment process development and identified the hot testing support requirements. This report, based on the previous work, identifies specific hot test work packages, matches those packages to specific hot cell facilities, and provides recommendations of specific facilities to be employed for the pretreatment hot test work. Also identified are serious limitations in the tank waste sample retrieval and handling infrastructure. Recommendations are provided for staged development of 500 mL, 3 L, 25 L and 4000 L sample recovery systems and specific actions to provide those capabilities

  3. Baseline monitoring and simulated liquid release test report for Tank W-9, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-08-01

    This document provides the Environmental Restoration Program with the baseline dry well conductivity monitoring data and simulated liquid release tests to support the use of Gunite and Associated Tank (GAAT) W-9 as a temporary consolidation tank during waste removal operations. Information provided in this report forms part of the technical basis for criticality safety, systems safety, engineering design and waste management as they apply to the GAAT treatability study and waste removal actions

  4. Doublet III neutral beam injector test tank cryopanel design

    International Nuclear Information System (INIS)

    Doll, D.W.; Kamperschroer, J.H.; Arend, P.V.

    1980-03-01

    A simple condensing cryopanel has been designed for the Doublet III neutral beam test tank with a 320,000 liters per second pumping capacity for hydrogen. This maintains a vacuum in the test tank which simulates the Doublet III vessel, 1.3 x 10 -3 Pa (approx.10 -5 torr). The hydrogen gas load comes from the beam striking the test tank calorimeter and amounts to about 7.2 torr liters per second. The cryopanel is cylindrical shaped with a liquid helium (LHe) surface that pumps through liquid nitrogen (LN) cooled aluminum chevrons located in squirrel-cage fashion around the inside surface of the cylinder. The LHe cooled surface is a smooth cylinder 2.09m in diameter by .69m long with LHe flowing in a approx. 1mm annular space between concentric cylinders. The chevrons which are not blackened are cooled from each end with LN flowing in ring manifolds that serve as the primary cryopanel structure. The LHe is force fed at 55.2 kPa remaining in the liquid phase through the panel. External heat exchanger capability permits use of helium at 3.8 to 4.2 0 K. Normal operating flow rate is 1.4 g/sec for a heat load expected to be 12.2 W total

  5. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-02-01

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumed to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely

  6. 40 CFR 1060.520 - How do I test fuel tanks for permeation emissions?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test fuel tanks for... STATIONARY EQUIPMENT Test Procedures § 1060.520 How do I test fuel tanks for permeation emissions? Measure permeation emissions by weighing a sealed fuel tank before and after a temperature-controlled soak. (a...

  7. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Science.gov (United States)

    2010-07-01

    ... pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Static pressure test for fuel tanks. 183.580 Section 183.580 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  8. Housekeeping Closure Report for Corrective Action Unit 119: Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2000-01-01

    The Federal Facility Agreement and Consent Order was entered into by the State of Nevada, US Department of Energy, and US Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts to the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into Corrective Action Units (CAUs) for the purpose of determining appropriate corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at 19 CASs with in CAU 119 on the NTS. The form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Activities included verification of the prior removal of both aboveground and underground gas/oil storage tanks, gas sampling tanks, pressure fuel tanks, tank stands, trailers, debris, and other material. Based on these former activities, no further action is required at these CASs

  9. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume IV

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 4, describes the current safety concerns associated with the tank waste and analyzes the potential accidents and associated potential health effects that could occur under the alternatives included in this Tank Waste Remediation System (TWRS) Final Environmental Impact Statement (EIS) for the Hanford Site, Richland, Washington

  10. 40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by weighing a sealed fuel tank before and after a temperature-controlled soak. (a) Preconditioning fuel soak...

  11. Results of a diesel multiple unit fuel tank blunt impact test

    Science.gov (United States)

    2017-04-04

    The Federal Railroad Administrations Office of Research and Development is conducting research into passenger locomotive fuel tank crashworthiness. A series of impact tests is being conducted to measure fuel tank deformation under two types of dyn...

  12. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    International Nuclear Information System (INIS)

    Howden, G.F.

    1994-01-01

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions

  13. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    Energy Technology Data Exchange (ETDEWEB)

    Howden, G.F.

    1994-10-24

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions.

  14. Bench-scale feasibility testing of pulsed-air technology for in-tank mixing of dry cementitious solids with tank liquids and settled solids

    International Nuclear Information System (INIS)

    Whyatt, G.A.; Hymas, C.R.

    1997-09-01

    This report documents the results of testing performed to determine the feasibility of using a pulsed-air mixing technology (equipment developed by Pulsair Systems, Inc., Bellevue, WA) to mix cementitious dry solids with supernatant and settled solids within a horizontal tank. The mixing technology is being considered to provide in situ stabilization of the open-quotes Vclose quotes tanks at the Idaho National Engineering and Environmental Laboratory (INEEL). The testing was performed in a vessel roughly 1/6 the scale of the INEEL tanks. The tests used a fine soil to simulate settled solids and water to simulate tank supernatants. The cementitious dry materials consisted of Portland cement and Aquaset-2H (a product of Fluid Tech Inc. consisting of clay and Portland cement). Two scoping tests were conducted to allow suitable mixing parameters to be selected. The scoping tests used only visual observations during grout disassembly to assess mixing performance. After the scoping tests indicated the approach may be feasible, an additional two mixing tests were conducted. In addition to visual observations during disassembly of the solidified grout, these tests included addition of chemical tracers and chemical analysis of samples to determine the degree of mixing uniformity achieved. The final two mixing tests demonstrated that the pulsed-air mixing technique is capable of producing slurries containing substantially more cementitious dry solids than indicated by the formulations suggested by INEEL staff. Including additional cement in the formulation may have benefits in terms of increasing mobilization of solids, reducing water separation during curing, and increasing the strength of the solidified product. During addition to the tank, the cementitious solids had a tendency to form clumps which broke down with continued mixing

  15. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Actual Waste Testing with SRS Tank 5F Sludge

    Energy Technology Data Exchange (ETDEWEB)

    King, William D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, Michael S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Solubility testing with actual High Level Waste tank sludge has been conducted in order to evaluate several alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge sluicing efforts. Tests were conducted with archived Savannah River Site (SRS) radioactive sludge solids that had been retrieved from Tank 5F in order to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent toward dissolving the bulk non-radioactive waste components. Solubility tests were performed by direct sludge contact with the oxalic/nitric acid reagent and with sludge that had been pretreated and acidified with dilute nitric acid. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid following current baseline tank chemical cleaning methods. One goal of testing with the optimized reagent was to compare the total amounts of oxalic acid and water required for sludge dissolution using the baseline and optimized cleaning methods. A second objective was to compare the two methods with regard to the dissolution of actinide species known to be drivers for SRS tank closure Performance Assessments (PA). Additionally, solubility tests were conducted with Tank 5 sludge using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species.

  16. Structural analysis of underground gunite storage tanks. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This report documents the structural analysis of the 50-ft diameter underground gunite storage tanks constructed in 1943 and located in the Oak Ridge National Laboratory (ORNL) South Tank Farm, known as Facility 3507 in the 3500-3999 area. The six gunite tanks (W-5 through W-10) are spaced in a 2 {times} 3 matrix at 60 ft on centers with 6 ft of soil cover. Each tank (Figures 1, 2, and 3) has an inside diameter of 50 ft, a 12-ft vertical sidewall having a thickness of 6 in. (there is an additional 1.5-in. inner liner for much of the height), and a spherical domed roof (nominal thickness is 10 in.) rising another 6 ft, 3 in. at the center of the tank. The thickness of both the sidewall and the domed roof increases to 30 in. near their juncture. The tank floor is nominally 3-in. thick, except at the juncture with the wall where the thickness increases to 9 in. The tanks are constructed of gunite (a mixture of Portland cement, sand, and water in the form of a mortar) sprayed from the nozzle of a cement gun against a form or a solid surface. The floor and the dome are reinforced with one layer of welded wire mesh and reinforcing rods placed in the radial direction. The sidewall is reinforced with three layers of welded wire mesh, vertical {1/2}-in. rods, and 21 horizontal rebar hoops (attached to the vertical rods) post-tensioned to 35,000 psi stress. The haunch at the sidewall/roof junction is reinforced with 17 horizontal rebar hoops post-tensioned with 35,000 to 40,000 psi stress. The yield strength of the post-tensioning steel rods is specified to be 60,000 psi, and all other steel is 40,000 psi steel. The specified 28-day design strength of the gunite is 5,000 psi.

  17. Structural analysis of underground gunite storage tanks. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-08-01

    This report documents the structural analysis of the 50-ft diameter underground gunite storage tanks constructed in 1943 and located in the Oak Ridge National Laboratory (ORNL) South Tank Farm, known as Facility 3507 in the 3500-3999 area. The six gunite tanks (W-5 through W-10) are spaced in a 2 x 3 matrix at 60 ft on centers with 6 ft of soil cover. Each tank (Figures 1, 2, and 3) has an inside diameter of 50 ft, a 12-ft vertical sidewall having a thickness of 6 in. (there is an additional 1.5-in. inner liner for much of the height), and a spherical domed roof (nominal thickness is 10 in.) rising another 6 ft, 3 in. at the center of the tank. The thickness of both the sidewall and the domed roof increases to 30 in. near their juncture. The tank floor is nominally 3-in. thick, except at the juncture with the wall where the thickness increases to 9 in. The tanks are constructed of gunite (a mixture of Portland cement, sand, and water in the form of a mortar) sprayed from the nozzle of a cement gun against a form or a solid surface. The floor and the dome are reinforced with one layer of welded wire mesh and reinforcing rods placed in the radial direction. The sidewall is reinforced with three layers of welded wire mesh, vertical 1/2-in. rods, and 21 horizontal rebar hoops (attached to the vertical rods) post-tensioned to 35,000 psi stress. The haunch at the sidewall/roof junction is reinforced with 17 horizontal rebar hoops post-tensioned with 35,000 to 40,000 psi stress. The yield strength of the post-tensioning steel rods is specified to be 60,000 psi, and all other steel is 40,000 psi steel. The specified 28-day design strength of the gunite is 5,000 psi

  18. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ''Safety Measures for Waste Tanks at Hanford Nuclear Reservation,'' of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues

  19. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  20. Closure Report for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 134 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Aboveground Storage Tanks' and consists of the following four Corrective Action Sites (CASs), located in Areas 3, 15, and 29 of the Nevada Test Site: (1) CAS 03-01-03, Aboveground Storage Tank; (2) CAS 03-01-04, Tank; (3) CAS 15-01-05, Aboveground Storage Tank; and (4) CAS 29-01-01, Hydrocarbon Stain

  1. Operability test procedure [Tank] 241-SY-101 equipment removal system

    International Nuclear Information System (INIS)

    Mast, J.C.

    1994-01-01

    The 241-SY-101 equipment removal system (ERS) consists of components, equipment, instrumentation and procedures that will provide the means to disconnect, retrieve, contain, load and transport the Mitigation Pump Assembly (MPA) from waste Tank 241-SY-101 to the Central Waste Complex (CWC). The Operability Test Procedure (OTP) will test the interfaces between ERS components and will rehearse the procedure for MPA removal and transportation to the extent they can be mocked-up at the CTF (Cold Test Facility). At the conclusion of the OTP, the ERS components and equipment will be removed from the CTF, entered into the Component Based Recall System (CBRS), and stored until needed for actual MPA removal and transportation

  2. HDR flood-water storage-tank modal vibration tests

    International Nuclear Information System (INIS)

    Gorman, V.W.; Thinnes, G.L.

    1983-01-01

    Modal vibration tests were conducted by EG and G Idaho on two vessels located at West Germany's Heissdampfreaktor (HDR) facility which is 25 kilometers east of Frankfurt. The tests were performed during May and June 1982 for the US Nuclear Regulatory Commission (NRC) as part of their cooperative effort with Kernforschungszentrum Karlsruhe (KfK) of West Germany. The primary purpose for performing this task was to determine modal properties (frequencies, mode shapes and associated damping ratios) in order to eventually provide guidelines for standards development by the NRC in modeling similar vessels. One of the vessels tested was a flood water storage tank (FWST) for empty, half full and full water conditions. The FWST was excited randomly with an electromagnetic shaker and by impulsive hammer blows. Excitation or input forces together with measured vessel responses were processed by a digital modal analyzer and stored on magnetic disks for subsequent evaluation

  3. Inactive Tanks Remediation Program Batch I, Series I tanks 3001-B, 3004-B, 3013, and T-30 technical memorandum. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-05-01

    This technical memorandum provides information that can be used to make decisions concerning the disposition of four inactive tank systems that have been designated Batch 1, Series 1, by the Inactive Tanks Remediation Program team. The Batch I, Series 1, tanks are 3001-B, 3004-B, 3013, and T-30. The report offers viable alternatives for tank system disposition. The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facility Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by DOE's Oak Ridge Operations Office, the US Environmental Protection Agency-Region IV, and the Tennessee Department of Environment and Conservation. The effective date of the FFA is January 1, 1992. One objective of the FFA is to ensure that inactive liquid low-level radioactive waste tank systems are evaluated and, if appropriate, remediated through the CERCLA process. The Inactive Tanks Remediation Program and the Gunite and Associated Tanks Project (GAAT) are the two efforts that will meet this FFA objective. This memorandum addresses tank systems within the Inactive Tanks Remediation Program. Separate CERCLA documentation addresses the tank systems within the GAAT Project

  4. Test Results for Caustic Demand Measurements on Tank 241-AX-101 and Tank 241-AX-103 Archive Samples

    International Nuclear Information System (INIS)

    Doll, Stephanie R.; Bolling, Stacie D.

    2016-01-01

    Caustic demand testing is used to determine the necessary amount of caustic required to neutralize species present in the Hanford tank waste and obtain a target molarity of free hydroxide for tank corrosion control. The presence and quantity of hydroxide-consuming analytes are just as important in determining the caustic demand as is the amount of free hydroxide present. No single data point can accurately predict whether a satisfactory hydroxide level is being met, as it is dependent on multiple factors (e.g., free hydroxide, buffers, amphoteric metal hydroxides, bicarbonate, etc.). This enclosure contains the caustic demand, scanning electron microscopy (SEM), polarized light microscopy (PLM), and X-ray diffraction (XRD) analysis for the tank 241-AX-101 (AX-101) and 241-AX-103 (AX-103) samples. The work was completed to fulfill a customer request outlined in the test plan, WRPS-1505529, ''Test Plan and Procedure for Caustic Demand Testing on Tank 241-AX-101 and Tank 241-AX-103 Archive Samples.'' The work results will provide a baseline to support planned retrieval of AX-101 and AX-103.

  5. Test Results for Caustic Demand Measurements on Tank 241-AX-101 and Tank 241-AX-103 Archive Samples

    Energy Technology Data Exchange (ETDEWEB)

    Doll, Stephanie R. [Washington River Protection Solutions, Richland, WA (United States); Bolling, Stacie D. [Washington River Protection Solutions, Richland, WA (United States)

    2016-07-14

    Caustic demand testing is used to determine the necessary amount of caustic required to neutralize species present in the Hanford tank waste and obtain a target molarity of free hydroxide for tank corrosion control. The presence and quantity of hydroxide-consuming analytes are just as important in determining the caustic demand as is the amount of free hydroxide present. No single data point can accurately predict whether a satisfactory hydroxide level is being met, as it is dependent on multiple factors (e.g., free hydroxide, buffers, amphoteric metal hydroxides, bicarbonate, etc.). This enclosure contains the caustic demand, scanning electron microscopy (SEM), polarized light microscopy (PLM), and X-ray diffraction (XRD) analysis for the tank 241-AX-101 (AX-101) and 241-AX-103 (AX-103) samples. The work was completed to fulfill a customer request outlined in the test plan, WRPS-1505529, “Test Plan and Procedure for Caustic Demand Testing on Tank 241-AX-101 and Tank 241-AX-103 Archive Samples.” The work results will provide a baseline to support planned retrieval of AX-101 and AX-103.

  6. Impact of environmental conditions on sub-surface storage tanks ...

    African Journals Online (AJOL)

    Cast iron made storage tanks with gasoline fluid were buried under the soil at a depth of 4 m under various environment conditions. The simulated conditions include natural rain fail, temperature and acidic, alkaline and neutral soils. A control condition of neutral sea sand as base and filling materials were also investigated.

  7. TESTING OF ENHANCED CHEMICAL CLEANING OF SRS ACTUAL WASTE TANK 5F AND TANK 12H SLUDGES

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; King, W.

    2011-08-22

    Forty three of the High Level Waste (HLW) tanks at the Savannah River Site (SRS) have internal structures that hinder removal of the last approximately five thousand gallons of waste sludge solely by mechanical means. Chemical cleaning can be utilized to dissolve the sludge heel with oxalic acid (OA) and pump the material to a separate waste tank in preparation for final disposition. This dissolved sludge material is pH adjusted downstream of the dissolution process, precipitating the sludge components along with sodium oxalate solids. The large quantities of sodium oxalate and other metal oxalates formed impact downstream processes by requiring additional washing during sludge batch preparation and increase the amount of material that must be processed in the tank farm evaporator systems and the Saltstone Processing Facility. Enhanced Chemical Cleaning (ECC) was identified as a potential method for greatly reducing the impact of oxalate additions to the SRS Tank Farms without adding additional components to the waste that would extend processing or increase waste form volumes. In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate an alternative to the baseline 8 wt. % OA chemical cleaning technology for tank sludge heel removal. The baseline OA technology results in the addition of significant volumes of oxalate salts to the SRS tank farm and there is insufficient space to accommodate the neutralized streams resulting from the treatment of the multiple remaining waste tanks requiring closure. ECC is a promising alternative to bulk OA cleaning, which utilizes a more dilute OA (nominally 2 wt. % at a pH of around 2) and an oxalate destruction technology. The technology is being adapted by AREVA from their decontamination technology for Nuclear Power Plant secondary side scale removal. This report contains results from the SRNL small scale testing of the ECC process

  8. Tank 241-C-106 past-practice sluicing waste retrieval, Hanford Site, Richland, Washington. Environmental Assessment

    International Nuclear Information System (INIS)

    1995-02-01

    The US Department of Energy (DOE) needs to take action to eliminate safety concerns with storage of the high-heat waste in Tank 241-C-106 (Tank C-106), and demonstrate a tank waste retrieval technology. This Environmental Assessment (EA) was prepared to analyze the potential impacts associated with the proposed action, past-practice sluicing of Tank C-106, an underground single-shell tank (SST). Past-practice sluicing is defined as the mode of waste retrieval used extensively in the past at the Hanford Site on the large underground waste tanks, and involves introducing a high-volume, low-pressure stream of liquid to mobilize sludge waste prior to pumping. It is proposed to retrieve the waste from Tank C-106 because this waste is classified not only as transuranic and high-level, but also as high-heat, which is caused by the radioactive decay of strontium. This waste characteristic has led DOE to place Tank C-106 on the safety ''Watchlist.''

  9. Technical specification for transferring tank construction data to the Oak Ridge Environmental Information System (OREIS)

    International Nuclear Information System (INIS)

    1996-06-01

    The primary goal of this technical specification is to meet the consolidated environmental data requirements defined by the Federal Facility Agreement (FFA) and the Tennessee Oversight Agreement as they pertain to tank construction data maintained in Oak Ridge, Tennessee, by the US Department of Energy's Maintenance and Operations contractor Lockheed Martin Energy Systems, Inc., and prime contractors to the Department of Energy. This technical specification describes the organizational responsibilities for loading tank construction data into OREIS, describes the logical and physical data transfer files, addresses business rules and submission rules, addresses configuration control of this technical specification, and addresses required changes to the current OREIS data base structure based on site requirements. This technical specification addresses the tank construction data maintained by the Y-12, K-25, and ORNL sites that will be sent to OREIS. The initial submission of data will include only inactive Environmental Restoration tanks as specified by the FFA

  10. 75 FR 1048 - Notice of Public Hearings on the Draft Tank Closure and Waste Management Environmental Impact...

    Science.gov (United States)

    2010-01-08

    ... Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland..., Office of Environmental Compliance, Office of Environmental Management. [FR Doc. 2010-224 Filed 1-7-10; 8... DEPARTMENT OF ENERGY Notice of Public Hearings on the Draft Tank Closure and Waste Management...

  11. Test plan for Enraf Series 854 level gauge testing in Tank 241-S-106

    International Nuclear Information System (INIS)

    Barnes, G.A.

    1994-01-01

    An Enraf Series 854 level gauge was installed on Tank 241-S-106 (S-106) during the first week of June 1994. On August 11, 1994, the gauge's measuring wire broke. An investigation has been started to determine how the wire broke. This test plan identifies a qualification test that is part of this investigation. This test will also provide evidence as to the location and extent of potential corrosion on the measuring wire due to tank environment. The results from this testing will provide data for better material selections. This test will involve placing the existing Enraf Series 854 level gauge back into service with the same type of measuring wire (316 stainless steel) that originally broke on August 11, 1994. The gauge will be operated for 14 days. At the end of the 14-day test, the wire shall be sent to Pacific Northwest Laboratory (PNL) for analysis

  12. Double-shell tank integrity assessments ultrasonic test equipment performance test

    Energy Technology Data Exchange (ETDEWEB)

    Pfluger, D.C.

    1996-09-26

    A double-shell tank (DST) inspection (DSTI) system was performance tested over three months until August 1995 at Pittsburgh, Pennsylvania, completing a contract initiated in February 1993 to design, fabricate, and test an ultrasonic inspection system intended to provide ultrasonic test (UT) and visual data to determine the integrity of 28 DSTs at Hanford. The DSTs are approximately one-million-gallon underground radioactive-waste storage tanks. The test was performed in accordance with a procedure (Jensen 1995) that included requirements described in the contract specification (Pfluger 1995). This report documents the results of tests conducted to evaluate the performance of the DSTI system against the requirements of the contract specification. The test of the DSTI system also reflects the performance of qualified personnel and operating procedures.

  13. Pore Water Extraction Test Near 241-SX Tank Farm at the Hanford Site, Washington, USA

    International Nuclear Information System (INIS)

    Eberlein, Susan J.; Parker, Danny L.; Tabor, Cynthia L.; Holm, Melissa J.

    2013-01-01

    A proof-of-principle test is underway near the Hanford Site 241-SX Tank Farm. The test will evaluate a potential remediation technology that will use tank farm-deployable equipment to remove contaminated pore water from vadose zone soils. The test system was designed and built to address the constraints of working within a tank farm. Due to radioactive soil contamination and limitations in drilling near tanks, small-diameter direct push drilling techniques applicable to tank farms are being utilized for well placement. To address space and weight limitations in working around tanks and obstacles within tank farms, the above ground portions of the test system have been constructed to allow deployment flexibility. The test system utilizes low vacuum over a sealed well screen to establish flow into an extraction well. Extracted pore water is collected in a well sump,and then pumped to the surface using a small-diameter bladder pump.If pore water extraction using this system can be successfully demonstrated, it may be possible to target local contamination in the vadose zone around underground storage tanks. It is anticipated that the results of this proof-of-principle test will support future decision making regarding interim and final actions for soil contamination within the tank farms

  14. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume I

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 1 of the Final Environmental Impact Statement, analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, Ex Situ/In Situ Combination 1, and Ex Situ/In Situ Combination 2. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. The DOE and Ecology preferred alternative for the cesium and strontium capsules is the No Action alternative

  15. Test plan for Fauske and Associates to perform tube propagation experiments with simulated Hanford tank wastes

    International Nuclear Information System (INIS)

    Carlson, C.D.; Babad, H.

    1996-05-01

    This test plan, prepared at Pacific Northwest National Laboratory for Westinghouse Hanford Company, provides guidance for performing tube propagation experiments on simulated Hanford tank wastes and on actual tank waste samples. Simulant compositions are defined and an experimental logic tree is provided for Fauske and Associates (FAI) to perform the experiments. From this guidance, methods and equipment for small-scale tube propagation experiments to be performed at the Hanford Site on actual tank samples will be developed. Propagation behavior of wastes will directly support the safety analysis (SARR) for the organic tanks. Tube propagation may be the definitive tool for determining the relative reactivity of the wastes contained in the Hanford tanks. FAI have performed tube propagation studies previously on simple two- and three-component surrogate mixtures. The simulant defined in this test plan more closely represents actual tank composition. Data will be used to support preparation of criteria for determining the relative safety of the organic bearing wastes

  16. Test plan for measuring ventilation rates and combustible gas levels in TWRS active catch tanks

    Energy Technology Data Exchange (ETDEWEB)

    NGUYEN, D.M.

    1999-05-20

    The purpose of this test is to provide an initial screening of combustible gas concentrations in catch tanks that currently are operated by Tank Waste Remediation System (TWRS). The data will be used to determine whether or not additional data will be needed for closure of the flammable gas unreviewed safety question for these facilities. This test will involve field measurements of ammonia, organic vapor, and total combustible gas levels in the headspace of the catch tanks. If combustible gas level in a tank exceeds an established threshold, gas samples will be collected in SUMMA canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flow through the tanks.

  17. Test procedures and instructions for Hanford tank waste supernatant cesium removal

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W., Westinghouse Hanford

    1996-05-31

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test using Hanford Double-Shell Slurry Feed supernatant liquor from tank 251-AW-101 in a bench-scale column.Cesium sorbents to be tested include resorcinol-formaldehyde resin and crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-022, Hanford Tank Waste Supernatant Cesium Removal Test Plan.

  18. Test procedures and instructions for single shell tank saltcake cesium removal with crystalline silicotitanate

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.B.

    1997-01-07

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Single Shell Tank Saltcake from tanks 24 t -BY- I 10, 24 1 -U- 108, 24 1 -U- 109, 24 1 -A- I 0 1, and 24 t - S-102, in a bench-scale column. The cesium sorbent to be tested is crystalline siticotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-024, Hanford Single Shell Tank Saltcake Cesium Removal Test Plan.

  19. FY 1997 Progress report on tube propagation testing of tank waste using the PRSST

    International Nuclear Information System (INIS)

    Bechtold, D.B.

    1997-01-01

    The subject of this FY 1997 progress report is tube propagation tests of actual, dried tank waste to verify the contact temperature ignition (CTI) criterion for point-source ignition in the Hanford Site waste tanks. Testing is in support of the Organic Tanks Safety Project and will help resolve safety issues with waste containing organic constituents. In FY 1997, improvements were made to the laboratory apparatus and procedures for conducting the testing, and the final testing strategy was formulated. The strategy lays out details of the tests to be performed, samples to be tested, and modes of reporting results

  20. Leak testing plan for the Oak Ridge National Laboratory liquid low- level waste system (active tanks)

    International Nuclear Information System (INIS)

    Douglas, D.G.; Wise, R.F.; Starr, J.W.; Maresca, J.W. Jr.

    1992-06-01

    A leak testing plan for a portion of the Liquid Low-Level Waste (LLLW) system at the Oak Ridge National Laboratory (ORNL) is provided in the two volumes that form this document. This plan was prepared in response to the requirements of the Federal Facilities Agreement (FFA) between the US Department of Energy and two other agencies, the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC). The effective date of this agreement was 1 January 1992. The LLLW system is an interconnected complex of tanks and pipelines. The FFA distinguishes four different categories of tank and pipeline systems within this complex: new systems (Category A), doubly contained systems (Category B), singly contained systems (Category C), and inactive systems (Category D). The FFA's specific requirements for leak testing of the Category C systems is addressed in this plan. The plan also addresses leak testing of the Category B portions of the LLLW system. Leak testing of the Category B components was brought into the plan to supplement the secondary containment design demonstration effort that is under way for these components

  1. Design, fabrication and test of a liquid hydrogen titanium honeycomb cryogenic test tank for use as a reusable launch vehicle main propellant tank

    Science.gov (United States)

    Stickler, Patrick B.; Keller, Peter C.

    1998-01-01

    Reusable Launch Vehicles (RLV's) utilizing LOX\\LH2 as the propellant require lightweight durable structural systems to meet mass fraction goals and to reduce overall systems operating costs. Titanium honeycomb sandwich with flexible blanket TPS on the windward surface is potentially the lightest-weight and most operable option. Light weight is achieved in part because the honeycomb sandwich tank provides insulation to its liquid hydrogen contents, with no need for separate cryogenic insulation, and in part because the high use temperature of titanium honeycomb reduces the required surface area of re-entry thermal protection systems. System operability is increased because TPS needs to be applied only to surfaces where temperatures exceed approximately 650 K. In order to demonstrate the viability of a titanium sandwich constructed propellant tank, a technology demonstration program was conducted including the design, fabrication and testing of a propellant tank-TPS system. The tank was tested in controlled as well as ambient environments representing ground hold conditions for a RLV main propellant tank. Data collected during each test run was used to validate predictions for air liquefaction, outside wall temperature, boil-off rates, frost buildup and its insulation effects, and the effects of placing a thermal protection system blanket on the external surface. Test results indicated that titanium honeycomb, when used as a RLV propellant tank material, has great promise as a light-weight structural system.

  2. Thermal stratification in LH2 tank of cryogenic propulsion stage tested in ISRO facility

    Science.gov (United States)

    Xavier, M.; Raj, R. Edwin; Narayanan, V.

    2017-02-01

    Liquid oxygen and hydrogen are used as oxidizer and fuel respectively in cryogenic propulsion system. These liquids are stored in foam insulated tanks of cryogenic propulsion system and are pressurized using warm pressurant gas supplied for tank pressure maintenance during cryogenic engine operation. Heat leak to cryogenic propellant tank causes buoyancy driven liquid stratification resulting in formation of warm liquid stratum at liquid free surface. This warm stratum is further heated by the admission of warm pressurant gas for tank pressurization during engine operation. Since stratified layer temperature has direct bearing on the cavitation free operation of turbo pumps integrated in cryogenic engine, it is necessary to model the thermal stratification for predicting stratified layer temperature and mass of stratified liquid in tank at the end of engine operation. These inputs are required for estimating the minimum pressure to be maintained by tank pressurization system. This paper describes configuration of cryogenic stage for ground qualification test, stage hot test sequence, a thermal model and its results for a foam insulated LH2 tank subjected to heat leak and pressurization with hydrogen gas at 200 K during liquid outflow at 38 lps for engine operation. The above model considers buoyancy flow in free convection boundary layer caused by heat flux from tank wall and energy transfer from warm pressurant gas etc. to predict temperature of liquid stratum and mass of stratified liquid in tank at the end of engine operation in stage qualification tests carried out in ISRO facility.

  3. 75 FR 3902 - Notice of Public Hearings on the Draft Tank Closure and Waste Management Environmental Impact...

    Science.gov (United States)

    2010-01-25

    ... Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland... Environmental Management. [FR Doc. 2010-1306 Filed 1-22-10; 8:45 am] BILLING CODE 6450-01-P ... DEPARTMENT OF ENERGY Notice of Public Hearings on the Draft Tank Closure and Waste Management...

  4. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1996-08-01

    This document analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, Ex Situ/In Situ Combination 1, and Ex Situ/In Situ Combination 2. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. The DOE and Ecology preferred alternative for the cesium and strontium capsules is the No Action alternative

  5. Draft Environmental Impact Statement for the tank waste remediation system. Volume 1

    International Nuclear Information System (INIS)

    1996-04-01

    This document analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, and Ex Situ/In Situ Combination. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. At this time, DOE and Ecology do not have a preferred alternative for the cesium and strontium capsules

  6. Results of Sludge Mobilization Testing at Hanford High Level Waste (HLW) Tank

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2001-01-01

    Waste stored in the Tank 241-AZ-101 at the US DOE Hanford is scheduled as the initial feed for high-level waste vitrification. Tank 241-AZ-101 currently holds over 3,000,000 liters of waste made up of a settled sludge layer covered by a layer of liquid supernant. To retrieve the waste from the tank, it is necessary to mobilize and suspend the settled sludge so that the resulting slurry can be pumped from the tank for treatment and vitrification. Two 223.8-kilowatt mixer pumps have been installed in Tank 241-AZ-101 to mobilize the settled sludge layer of waste for retrieval. In May of 2000, the mixer pumps were subjected to a series of tests to determine (1) the extent to which the mixer pumps could mobilize the settle sludge layer of waste, (2) if the mixer pumps could function within operating parameters, and (3) if state-of-the-art monitoring equipment could effectively monitor and quantify the degree of sludge mobilization and suspension. This paper presents the major findings and results of the Tank 241-AZ-101 mixer pump tests, based on analysis of data and waste samples that were collected during the testing. Discussion of the results focuses on the effective cleaning radius achieved and the volume and concentration of sludge mobilized, with both one and two pumps operating in various configurations and speeds. The Tank 241-AZ-101 mixer pump tests were unique in that sludge mobilization parameters were measured using actual waste in an underground storage tank at the hanford Site. The methods and instruments that were used to measure waste mobilization parameters in Tank 241-AZ-101 can be used in other tanks. It can be concluded from the testing that the use of mixer pumps is an effective retrieval method for the mobilization of settled solids in Tank 241-AZ-101

  7. CHARACTERIZATION AND SETTLING TESTS WITH TANK 51H SLURRY SAMPLES HTF-076-081

    International Nuclear Information System (INIS)

    HAY, MICHAEL

    2006-01-01

    Sludge Batch 4 (SB4) is the next sludge batch being prepared for feed to the Defense Waste Processing Facility (DWPF). SB4 includes sludge from Tanks 5F, 6F, and 11H and heels from Tanks 7F and 51H. In preparation of SB4, sludge was transferred from Tank 11H to Tank 51H. The sludge currently in Tank 51H has been found to settle at slower rates than previous sludge batches. The slow sludge settling in Tank 51H impacts the ability to wash SB4 to the desired final weight percent insoluble solids and sodium endpoint. This could impact the ability to have SB4 ready on time to support DWPF and result in increased recycle back to the Tank Farm, reduced waste loading at DWPF, and lengthened cycle time in the DWPF Chemical Processing Cell (CPC) Sludge Receipt and Adjustment Tank (SRAT). The Savannah River National Laboratory (SRNL) was requested to characterize and investigate the slower settling rate with six slurry dip samples of Tank 51H sludge. The filtered supernate and the total dried solids of the sludge were analyzed and summaries of the results published in the references listed below. The sludge composition was found to be consistent with H-Area high aluminum sludge. Difficulties were encountered with dissolving all of the material in the dried sludge solids. An analysis of the undissolved material from the digestions found the main constituent was Boehmite (AlO(OH)). This report provides all of the compositional data and an analysis of the data with recommended values to use for the composition of the Tank 51H composite sample. Tables 3-2 through 3-4 provide the composition of the Tank 51H composite sample. Settling tests conducted with the Tank 51H sludge showed a much slower settling rate than with the sludge in Sludge Batch 3 (SB3). A mixture of Tank 51H and sludge from SB3 was prepared to mimic the projected final composition of Sludge Batch 4 (SB4). The mixture showed minimal improvement in the settling rate versus Tank 51H sludge alone. An attempt to

  8. 49 CFR 180.605 - Requirements for periodic testing, inspection and repair of portable tanks.

    Science.gov (United States)

    2010-10-01

    ... surface of all joints under pressure must be coated with or immersed in a solution of soap and water... test markings. (1) Each IM or UN portable tank must be durably and legibly marked, in English, with the...) Each Specification DOT 51, 56, 57 or 60 portable tank must be durably and legibly marked, in English...

  9. Closure Report for Corrective Action Unit 124, Storage Tanks, Nevada Test Site, Nevada with Errata Sheet, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2008-01-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 124, Storage Tanks, Nevada Test Site (NTS), Nevada. This report complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended January 2007). This CR provides documentation and justification for the closure of CAU 124 without further corrective action. This justification is based on process knowledge and the results of the investigative activities conducted in accordance with the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (NNSA/NSO, 2007). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. Therefore, this information will not be repeated in this CR.

  10. Climatic Environmental Test Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has an extensive suite of facilities for supporting MIL-STD-810 testing, toinclude: Temperature/Altitude, Rapid Decompression, Low/High Temperature,Temperature...

  11. ELECTROCHEMICAL CORROSION TESTING OF TANKS 241-AN-102 & 241-AP-107 & 241-AP-108 IN SUPPORT OF ULTRASONIC TESTING

    Energy Technology Data Exchange (ETDEWEB)

    WYRWAS RB; DUNCAN JB

    2008-11-20

    This report presents the results of the corrosion rates that were measured using electrochemical methods for tanks 241-AN-102 (AN-102), 241-AP-107 (AP 107), and 241-AP-108 (AP-108) performed under test plant RPP-PLAN-38215. The steel used as materials of construction for AN and AP tank farms was A537 Class 1. Test coupons of A537 Class 1 carbon steel were used for corrosion testing in the AN-107, AP-107, and AP-108 tank waste. Supernate will be tested from AN-102, AP-107, and Ap-108. Saltcake testing was performed on AP-108 only.

  12. Design of crude oil storage tank for acoustic emission testing

    International Nuclear Information System (INIS)

    Shukri Mohd; Masrul Nizam Salleh; Abd Razak Hamzah; Norasiah Abd Kasim

    2005-01-01

    The integrity of crude oil storage tank needs to be well managed because they can contain a large inventory of hazardous material and because of the high cost such as cleaning and waste disposal prior to disposal and maintenance. Costs involved in cleaning and inspection can be up to several hundreds thousand Malaysian Ranting. If the floor then proves to be in good condition, these costs have been wasted. Acoustic Emission (AE) is proposed to be use for monitoring the floor of the storage tank on line without doing cleaning and waste disposal. A storage tank will be fabricated for storing the crude oil and then the corrosion process will be monitor using AE method. This paper will discuss the background, material and is technical specification, design and also the difficulties faced during design and fabrication process. (Author)

  13. Test plan for measuring ventilation rates and combustible gas levels in RPP active catch tanks

    Energy Technology Data Exchange (ETDEWEB)

    NGUYEN, D.M.

    1999-06-03

    The purpose of this test is to provide an initial screening of combustible gas concentrations in catch tanks that currently are operated by River Protection Project (RPP). The data will be used to determine whether or not additional data will be needed for closure of the flammable gas unreviewed safety question for these facilities. This test will involve field measurements of ammonia, organic vapor, and total combustible gas levels in the headspace of the catch tanks. If combustible gas level in a tank exceeds an established threshold, gas samples will be collected in SUMMA canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flow through the tanks.

  14. Elemental Water Impact Test: Phase 2 36-Inch Aluminum Tank Head

    Science.gov (United States)

    Vassilakos, Gregory J.

    2014-01-01

    Spacecraft are being designed based on LS-DYNA simulations of water landing impacts. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. EWIT Phase 2 featured a 36-inch aluminum tank head. The tank head was outfitted with one accelerometer, twelve pressure transducers, three string potentiometers, and four strain gages. The tank head was dropped from heights of 1 foot and 2 feet. The focus of this report is the correlation of analytical models against test data. As a measure of prediction accuracy, peak responses from the baseline LS-DYNA model were compared to peak responses from the tests.

  15. Retro-fitting of tank farm to comply with new environmental standards

    International Nuclear Information System (INIS)

    Rinne, N.F.

    1993-01-01

    Trans Mountain Enterprises transports jet fuel via an NPS 6 pipeline from refineries in the Vancouver area and the Company's marine terminal to a tank farm located at the Vancouver International Airport. The pipeline operates on a nearly continual basis and delivers product into tankage before releasing it to the airlines for distribution to the aircraft. Constructed in 1967 on Sea Island at the mouth of the Fraser River, the tank farm is situated on land leased from the Government of Canada and managed by the transportation agency, Transport Canada. The presence of wild life areas and a large salmon fishery combine to make the island a sensitive environmental area. The five above-ground storage tanks provide a combined storage volume of approximately 45,000 bbls. An operational spill at the tank farm in the fall of 1981 precipitated a two year clean up of the underlying soils and groundwater around the site. Although Trans Mountain assumed that the site was satisfactorily remediated by 1983 it was not until 1989 when Trans Mountain proposed an improvement to the tank bay containment area did it become aware of changing environmental and facility standards being adopted by Transport Canada. Following three years of negotiations with Transport Canada and their environmental advisors, Environment Canada, Trans Mountain completed a unique design to bring the site into compliance with Transport Canada's current standards for the Vancouver International Airport. The liner design was complicated by recent changes in the environmental standards for soil and groundwater at the site. These new changes were being adopted by Environment Canada during the design phase of this project

  16. Modelling and test of aeration tank settling (ATS)

    DEFF Research Database (Denmark)

    Nielsen, M. K.; Bechmann, H.; Henze, Mogens

    2000-01-01

    The use of aeration tank settling during high hydraulic loads on large wastewater treatment plants has previously been demonstrated as a reliable technique and proven valuable. The paper proposes a simplified deterministic model to predict the efficiency of the method. It is shown...

  17. Closure Report for Corrective Action Unit 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    A. T. Urbon

    2003-07-01

    This Closure Report (CR) documents the activities performed to close Corrective Action Unit (CAU) 330: Areas 6, 22, and 23 Tanks and Spill Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO of 1996), and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site (NTS), Nevada (U.S. Department of Energy, National Nuclear Security Administration Nevada Operation Office [NNSA/NV], 2001). CAU 330 consists of the following four Corrective Action Sites (CASs): 06-02-04, 22-99-06, 23-01-02, and 23-25-05 (Figure 1).

  18. Development and flight test of metal-lined CFRP cryogenic tank for reusable rocket

    Science.gov (United States)

    Higuchi, Ken; Takeuchi, Shinsuke; Sato, Eiichi; Naruo, Yoshihiro; Inatani, Yoshifumi; Namiki, Fumiharu; Tanaka, Kohtaro; Watabe, Yoko

    2005-07-01

    A cryogenic tank made of carbon fiber reinforced plastic (CFRP) shell with aluminum thin liner has been designed as a liquid hydrogen (LH2) tank for an ISAS reusable launch vehicle, and the function of it has been proven by repeated flights onboard the test vehicle called reusable vehicle testing (RVT) in October 2003. The liquid hydrogen tank has to be a pressure vessel, because the fuel of the engine of the test vehicle is supplied by fuel pressure. The pressure vessel of a combination of the outer shell of CFRP for strength element at a cryogenic temperature and the inner liner of aluminum for gas barrier has shown excellent weight merit for this purpose. Interfaces such as tank outline shape, bulk capacity, maximum expected operating pressure (MEOP), thermal insulation, pipe arrangement, and measurement of data are also designed to be ready onboard. This research has many aims, not only development of reusable cryogenic composite tank but also the demonstration of repeated operation including thermal cycle and stress cycle, familiarization with test techniques of operation of cryogenic composite tanks, and the accumulation of data for future design of tanks, vehicle structures, safety evaluation, and total operation systems.

  19. Photogrammetry and Laser Imagery Tests for Tank Waste Volume Estimates: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Field, Jim G. [Washington River Protection Solutions, LLC, Richland, WA (United States)

    2013-03-27

    Feasibility tests were conducted using photogrammetry and laser technologies to estimate the volume of waste in a tank. These technologies were compared with video Camera/CAD Modeling System (CCMS) estimates; the current method used for post-retrieval waste volume estimates. This report summarizes test results and presents recommendations for further development and deployment of technologies to provide more accurate and faster waste volume estimates in support of tank retrieval and closure.

  20. Photogrammetry and Laser Imagery Tests for Tank Waste Volume Estimates: Summary Report

    International Nuclear Information System (INIS)

    Field, Jim G.

    2013-01-01

    Feasibility tests were conducted using photogrammetry and laser technologies to estimate the volume of waste in a tank. These technologies were compared with video Camera/CAD Modeling System (CCMS) estimates; the current method used for post-retrieval waste volume estimates. This report summarizes test results and presents recommendations for further development and deployment of technologies to provide more accurate and faster waste volume estimates in support of tank retrieval and closure

  1. T Tank Farm Interim Cover Test - Design Plan

    International Nuclear Information System (INIS)

    Zhang, Z. F.; Keller, Jason M.

    2006-01-01

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank in 1973. Many of the contaminants from that leak still reside within the vadose zone beneath the T Tank Farm. CH2M Hill Hanford Group, Inc. seeks to minimize movement of this residual contaminant plume by placing an interim cover on the surface. Such a cover is expected to prevent infiltrating water from reaching the plume and moving it further. Pacific Northwest National Laboratory has prepared a design plan to monitor and determine the effectiveness of the interim cover. A three-dimensional numerical simulation of water movement beneath a cover was conducted to guide the design of the plan. Soil water content, water pressure, and temperature will be monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. In fiscal year 2006, two instrument nests will be installed, one inside and one outside of the proposed cover. In fiscal year 2007, two additional instrument nests, both inside the proposed cover, will be installed. Each instrument nest contains a neutron access tube and a capacitance probe (to measure water content), and four heat-dissipation units (to measure pressure head and temperature). A datalogger and a meteorological station will be installed outside of the fence. Two drain gauges will be installed in locations inside and outside the cover for the purpose of measuring soil water flux.

  2. Hanford Tank 241-S-112 Residual Waste Composition and Leach Test Data

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Geiszler, Keith N.; Lindberg, Michael J.; Arey, Bruce W.; Schaef, Herbert T.

    2008-08-29

    This report presents the results of laboratory characterization and testing of two samples (designated 20406 and 20407) of residual waste collected from tank S-112 after final waste retrieval. These studies were completed to characterize the residual waste and assess the leachability of contami¬nants from the solids. This is the first report from this PNNL project to describe the composition and leach test data for residual waste from a salt cake tank. All previous PNNL reports (Cantrell et al. 2008; Deutsch et al. 2006, 2007a, 2007b, 2007c) describing contaminant release models, and characterization and testing results for residual waste in single-shell tanks were based on samples from sludge tanks.

  3. Developmental test report, assessment of XT-70E percussion drill rig operation in tank farms

    International Nuclear Information System (INIS)

    Dougherty, L.F.

    1996-01-01

    The following report documents the testing of the XT-70E percussion drill rig for use in the 241-SX Tank Farm. The test is necessary to support evaluation of the safety and authorization level of the proposed activity of installing up to three new drywells in the 241- SX Tank Farm. The proposed activity plans to install drywells by percussion drilling 7 inch O.D./6 inch I.D. pipe in close proximity of underground storage tanks and associated equipment. The load transmitted from the drill rig's percussion hammer through the ground to the tank structure and equipment is not known and therefore testing is required to ensure the activity is safe and authorized

  4. Feasibility test of the concept of long-term passive cooling system of emergency cooldown tank

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young In; Lee, Hee Joon

    2015-01-01

    Highlights: • The concept of long-term passive cooling system of emergency cooldown tank (ECT). • Existing natural circulation of steam from ECT and measurement of its condensing flow. • Evaluation of cooling capacity and heat transfer of air-cooled condensing heat exchanger. - Abstract: When a passive cooling system is activated in the accident of a nuclear reactor, the water in the emergency cooldown tank of that system will eventually be fully depleted by evaporation. If, however, the evaporating water could be returned to the tank through an air-cooled condensing heat exchanger mounted on top of the tank, the passive cooling system could provide cooling for an extended period. This feasibility of new concept of long-term passive cooling with an emergency cooldown tank was tested by performing an energy balance test with a scaled-down experimental setup. As a result, it was determined that a naturally circulating steam flow can be used to refill the tank. For an air-cooled heat exchanger, the cooling capacity and air-side natural convective heat transfer coefficient were obtained to be 37% of the heat load and between 9 and 10.2 W/m 2 /K depending on the heat load, respectively. Moreover, it was clearly verified that the water level in the emergency cooldown tank could be maintained over the long-term operation of the passive cooling system

  5. Engineering test plan for Tank 241-SY-101 in situ viscometer

    International Nuclear Information System (INIS)

    Sobocinski, R.G.; Stokes, T.I.; Pearce, K.L.

    1994-11-01

    To obtain in situ measurements of the rheological properties within tank 241-SY-101, this document will implement the test strategy defined in PNLMIT-041994, acquisition and Reduction of Data Obtained in Tank SY-101 with the Ball Rheometer. Instructions for all sequences are defined within the procedure. All safety requirements as defined in LA-UR-92-3196, A Safety Assessment for Proposed Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-101-SY have been implemented into this procedure

  6. Static tilt tests of a full-sized cylindrical liquid storage tank model

    International Nuclear Information System (INIS)

    Sakai, F.

    1988-01-01

    This paper is explaining a static tilt test with a full-scaled tank model, the objects of which are the above-ground type LNG,LPG and oil storage tanks. Main points of view to investigate are as follows: Stress and deformation at each part of the tank wall, the bottom plate and the anchor straps in case that the anchor straps are very effective; Behavior in case that the anchor straps are not very effective; Behavior in case of no anchors; Influence of the roof above the shell; and Influence of the foundation rigidity under the bottom plate

  7. Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

    Energy Technology Data Exchange (ETDEWEB)

    Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

    2009-02-28

    This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

  8. Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

    International Nuclear Information System (INIS)

    Fiskum, Sandra K.; Billing, Justin M.; Crum, J.V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

    2009-01-01

    This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing

  9. Lower Colorado River GRP Underground Storage Tank Sites (Closed), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  10. Lower Colorado River GRP Underground Storage Tank Sites (Open), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  11. Septic tank additive impacts on microbial populations.

    Science.gov (United States)

    Pradhan, S; Hoover, M T; Clark, G H; Gumpertz, M; Wollum, A G; Cobb, C; Strock, J

    2008-01-01

    Environmental health specialists, other onsite wastewater professionals, scientists, and homeowners have questioned the effectiveness of septic tank additives. This paper describes an independent, third-party, field scale, research study of the effects of three liquid bacterial septic tank additives and a control (no additive) on septic tank microbial populations. Microbial populations were measured quarterly in a field study for 12 months in 48 full-size, functioning septic tanks. Bacterial populations in the 48 septic tanks were statistically analyzed with a mixed linear model. Additive effects were assessed for three septic tank maintenance levels (low, intermediate, and high). Dunnett's t-test for tank bacteria (alpha = .05) indicated that none of the treatments were significantly different, overall, from the control at the statistical level tested. In addition, the additives had no significant effects on septic tank bacterial populations at any of the septic tank maintenance levels. Additional controlled, field-based research iswarranted, however, to address additional additives and experimental conditions.

  12. Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.

    Science.gov (United States)

    Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin

    2016-01-01

    The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground.

  13. Environmental testing techniques for electronics and materials

    CERN Document Server

    Dummer, Geoffrey W A; Fry, D W; Higinbotham, W

    2013-01-01

    Environmental Testing Techniques for Electronics and Materials reviews environmental testing techniques for evaluating the performance of electronic equipment, components, and materials. Environmental test planning, test methods, and instrumentation are described, along with the general environmental conditions under which equipment must operate. This book is comprised of 15 chapters and begins by explaining why environmental testing is necessary and describing the environment in which electronics must operate. The next chapter considers how an environmental test plan is designed; the methods

  14. Laboratory Support Services for Environmental Testing

    National Research Council Canada - National Science Library

    1997-01-01

    ...) were effectively managing their contracts for environmental test services and whether DoD organizations were effectively performing quality assurance procedures on environmental test results received...

  15. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    International Nuclear Information System (INIS)

    Lee, D.D.; Collins, J.L.

    2000-01-01

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required

  16. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.D.; Collins, J.L.

    2000-02-01

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.

  17. Test bed control center design concept for Tank Waste Retrieval Manipulator Systems

    International Nuclear Information System (INIS)

    Sundstrom, E.; Draper, J.V.; Fausz, A.

    1995-01-01

    This paper describes the design concept for the control center for the Single Shell Tank Waste Retrieval Manipulator System test bed and the design process behind the concept. The design concept supports all phases of the test bed mission, including technology demonstration, comprehensive system testing, and comparative evaluation for further development and refinement of the TWRMS for field operations

  18. PILOT-SCALE TESTING OF THE SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A SLUDGE TANK

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.; Herman, D.

    2011-08-02

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Following strontium, actinide, and cesium removal, the concentrated solids will be transported to a sludge tank (i.e., monosodium titanate (MST)/sludge solids to Tank 42H or Tank 51H and crystalline silicotitanate (CST) to Tank 40H) for eventual transfer to the Defense Waste Processing Facility (DWPF). Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for mixing MST, CST, and simulated sludge. The purpose of this pilot scale testing is to determine the pump requirements for mixing MST and CST with sludge in a sludge tank and to determine whether segregation of particles occurs during settling. Tank 40H and Tank 51H have four Quad Volute pumps; Tank 42H has four standard pumps. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 40H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 40H. The pump locations correspond to the current locations in Tank 40H (Risers B2, H, B6, and G). The pumps are pilot-scale Quad Volute pumps. Additional settling tests were conducted in a 30 foot tall, 4 inch inner diameter clear column to investigate segregation of MST, CST, and simulated sludge particles during settling.

  19. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III

    Energy Technology Data Exchange (ETDEWEB)

    LOCKREM, L.L.

    1999-08-13

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999.

  20. Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, E.J.

    1997-07-31

    A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination. Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36`` diameter x 6` high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20` diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling

  1. Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)

    International Nuclear Information System (INIS)

    Berglin, E.J.

    1997-01-01

    A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination. Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36'' diameter x 6' high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20' diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling

  2. CRUCIBLE TESTING OF TANK 48 RADIOACTIVE WASTE SAMPLE USING FBSR TECHNOLOGY FOR ORGANIC DESTRUCTION

    International Nuclear Information System (INIS)

    Hammond, C; William Pepper, W

    2008-01-01

    The purpose of crucible scale testing with actual radioactive Tank 48H material was to duplicate the test results that had been previously performed on simulant Tank 48H material. The earlier crucible scale testing using simulants was successful in demonstrating that bench scale crucible tests produce results that are indicative of actual Fluidized Bed Steam Reforming (FBSR) pilot scale tests. Thus, comparison of the results using radioactive Tank 48H feed to those reported earlier with simulants would then provide proof that the radioactive tank waste behaves in a similar manner to the simulant. Demonstration of similar behavior for the actual radioactive Tank 48H slurry to the simulant is important as a preliminary or preparation step for the more complex bench-scale steam reformer unit that is planned for radioactive application in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF) later in 2008. The goals of this crucible-scale testing were to show 99% destruction of tetraphenylborate and to demonstrate that the final solid product produced is sodium carbonate. Testing protocol was repeated using the specifications of earlier simulant crucible scale testing, that is sealed high purity alumina crucibles containing a pre-carbonated and evaporated Tank 48H material. Sealing of the crucibles was accomplished by using an inorganic 'nepheline' sealant. The sealed crucibles were heat-treated at 650 C under constant argon flow to inert the system. Final product REDOX measurements were performed to establish the REDuction/OXidation (REDOX) state of known amounts of added iron species in the final product. These REDOX measurements confirm the processing conditions (pyrolysis occurring at low oxygen fugacity) of the sealed crucible environment which is the environment actually achieved in the fluidized bed steam reformer process. Solid product dissolution in water was used to measure soluble cations and anions, and to investigate insoluble

  3. Test Plan for Measuring Ventilation Rates and Combustible Gas Levels in TWRS Active Catch Tanks

    Energy Technology Data Exchange (ETDEWEB)

    NGUYEN, D.M.

    1999-10-25

    The purpose of this sampling activity is to obtain data to support an initial evaluation of potential hazards due to the presence of combustible gas in catch tanks that are currently operated by the River Protection Project (RPP). Results of the hazard analysis will be used to support closure of the flammable gas unreviewed safety question for these facilities. The data collection will be conducted in accordance with the Tank Safety Screening Data Quality Objective (Dukelow et al. 1995). Combustible gas, ammonia, and organic vapor levels in the headspace of the catch tanks will be field-measured using hand-held instruments. If a combustible gas level measurement in a tank exceeds an established threshold, gas samples will he collected in SUMMA' canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flowing through the tanks. This test plan identifies the sample collection, laboratory analysis, quality assurance, and reporting objectives for this data collection effort. The plan also provides the procedures for field measurement of combustible gas concentrations and ventilation rates.

  4. Summary of Group Development and Testing for Single Shell Tank Closure at Hanford

    International Nuclear Information System (INIS)

    Harbour, John R.

    2005-01-01

    This report is a summary of the bench-scale and large scale experimental studies performed by Savannah River National Laboratory for CH2M HILL to develop grout design mixes for possible use in producing fill materials as a part of Tank Closure of the Single-Shell Tanks at Hanford. The grout development data provided in this report demonstrates that these design mixes will produce fill materials that are ready for use in Hanford single shell tank closure. The purpose of this report is to assess the ability of the proposed grout specifications to meet the current requirements for successful single shell tank closure which will include the contracting of services for construction and operation of a grout batch plant. The research and field experience gained by SRNL in the closure of Tanks 17F and 20F at the Savannah River Site was leveraged into the grout development efforts for Hanford. It is concluded that the three Hanford grout design mixes provide fill materials that meet the current requirements for successful placement. This conclusion is based on the completion of recommended testing using Hanford area materials by the operators of the grout batch plant. This report summarizes the regulatory drivers and the requirements for grout mixes as tank fill material. It is these requirements for both fresh and cured grout properties that drove the development of the grout formulations for the stabilization, structural and capping layers

  5. Environmental Testing Methodology in Biometrics

    OpenAIRE

    Fernández Saavedra, Belén; Sánchez Reíllo, Raúl; Alonso Moreno, Raúl; Miguel Hurtado, Óscar

    2010-01-01

    8 pages document + 5-slide presentation.-- Contributed to: 1st International Biometric Performance Conference (IBPC 2010, NIST, Gaithersburg, MD, US, Mar 1-5, 2010). Recently, biometrics is used in many security systems and these systems can be located in different environments. As many experts claim and previous works have demonstrated, environmental conditions influence biometric performance. Nevertheless, there is not a specific methodology for testing this influence at the moment...

  6. 241-AZ-101 Waste Tank Color Video Camera System Shop Acceptance Test Report

    International Nuclear Information System (INIS)

    WERRY, S.M.

    2000-01-01

    This report includes shop acceptance test results. The test was performed prior to installation at tank AZ-101. Both the camera system and camera purge system were originally sought and procured as a part of initial waste retrieval project W-151

  7. 241-AZ-101 Waste Tank Color Video Camera System Shop Acceptance Test Report

    Energy Technology Data Exchange (ETDEWEB)

    WERRY, S.M.

    2000-03-23

    This report includes shop acceptance test results. The test was performed prior to installation at tank AZ-101. Both the camera system and camera purge system were originally sought and procured as a part of initial waste retrieval project W-151.

  8. Tank 241-AZ-101 steam bumping and settling Process Test report

    International Nuclear Information System (INIS)

    Winkler, C.M.

    1995-01-01

    This report summarizes the process test in which the airlift circulators in Tank 241-AZ-101 were shutdown. The test was successful, in that no extreme temperature excursions occurred. Only general data was obtianed through the use of a gamma energy probe

  9. System acceptance and operability test report for the RMCS exhauster C on flammable gas tanks

    International Nuclear Information System (INIS)

    Waldo, E.J.

    1998-01-01

    This test report documents the completion of acceptance and operability testing of the rotary mode core sampling (RMCS) exhauster C, as modified for use as a major stack (as defined by the Washington State Department of Health) on flammable gas tanks

  10. Study on Leaching of Hexavalent Chromium from Hardened Concretes Using Tank Leaching Test

    OpenAIRE

    Takahashi, Shigeru; Sakai, Etsuo; Sugiyama, Takafumi

    2007-01-01

    Tank leaching tests were carried out to investigate the behavior of leaching trace elements from monolith samples. This study consists of two series, and the trace element used was hexavalent chromium. In Series I, the influence of the leachant/surface area of the specimen (L/S ratio) on the leaching amount was investigated. The leaching amount was found to increase with the amount of worked water. This shows that any L/S ratio can be selected in the tank leaching test. In Series II, th...

  11. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    International Nuclear Information System (INIS)

    Wyrwas, R. B.

    2016-01-01

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval of actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.

  12. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    International Nuclear Information System (INIS)

    TEMPLETON, A.M.

    2000-01-01

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications

  13. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval of actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.

  14. 49 CFR 179.400-18 - Test of inner tank.

    Science.gov (United States)

    2010-10-01

    ... hazard involved. After a hydrostatic test the container and piping must be emptied of all water and purged of all water vapor. (b) Caulking of welded joints to stop leaks developed during the test is...

  15. FRACTIONAL CRYSTALLIZATION LABORATORY TESTS WITH SIMULATED TANK WASTE

    International Nuclear Information System (INIS)

    HERTING DL

    2007-01-01

    Results are presented for several simulated waste tests related to development of the fractional crystallization process. Product salt dissolution rates were measured to support pilot plant equipment design. Evaporation tests were performed to evaluate the effects of organics on slurry behavior and to determine optimum antifoam addition levels. A loss-of-power test was performed to support pilot plant accident scenario analysis. Envelope limit tests were done to address variations in feed composition

  16. Results of Characterization and Retrieval Testing on Tank 241-C-109 Heel Solids

    Energy Technology Data Exchange (ETDEWEB)

    Callaway, William S.

    2013-09-26

    test samples at temperatures ranging from 26-30 °C. The metathesized sodium aluminate was then dissolved by addition of volumes of water approximately equal to 1.3 times the volumes of caustic added to the test slurries. Aluminate dissolution was allowed to proceed for 2 days at ambient temperatures of ≈29 °C. Overall, the sequential water and caustic dissolution tests dissolved and removed 80.0 wt% of the tank 241-C-109 crushed heel solids composite test sample. The 20 wt% of solids remaining after the dissolution tests were 85-88 wt% gibbsite. If the density of the residual solids was approximately equal to that of gibbsite, they represented ≈17 vol% of the initial crushed solids composite test sample. In the water dissolution tests, addition of a volume of water ≈6.9 times the initial volume of the crushed solids composite was sufficient to dissolve and recover essentially all of the natrophosphate present. The ratio of the weight of water required to dissolve the natrophosphate solids to the estimated weight of natrophosphate present was 8.51. The Environmental Simulation Program (OLI Systems, Inc., Morris Plains, New Jersey) predicts that an 8.36 w/w ratio would be required to dissolve the estimated weight of natrophosphate present in the absence of other components of the heel solids. Only minor amounts of Al-bearing solids were removed from the composite solids in the water dissolution tests. The caustic metathesis/aluminate dissolution test sequence, executed at temperatures ranging from 27-30 °C, dissolved and recovered ≈69 wt% of the gibbsite estimated to have been present in the initial crushed heel solids composite. This level of gibbsite recovery is consistent with that measured in previous scoping tests on the dissolution of gibbsite in strong caustic solutions. Overall, the sequential water and caustic dissolution tests dissolved and removed 80.3 wt% of the tank 241-C-109 aggregate solids test sample. The residual solids were

  17. Tank Monitoring and Control System (TMACS) Acceptance Test Procedure

    International Nuclear Information System (INIS)

    HOLM, M.J.

    1999-01-01

    This document is intended to test the software portion of TMACS. The tests will be performed on the development system. The software to be tested is the TMACS knowledge bases (KB) and the I/O driver devices. The development system will not be talking to field equipment; instead, the field equipment is simulated using emulators or multiplexers in the lab

  18. TANK 18 AND 19-F TIER 1A EQUIPMENT FILL MOCK UP TEST SUMMARY

    Energy Technology Data Exchange (ETDEWEB)

    Stefanko, D.; Langton, C.

    2011-11-04

    The United States Department of Energy (US DOE) has determined that Tanks 18-F and 19-F have met the F-Tank Farm (FTF) General Closure Plan Requirements and are ready to be permanently closed. The high-level waste (HLW) tanks have been isolated from FTF facilities. To complete operational closure they will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) discouraging future intrusion, and (4) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. Bulk waste removal and heel removal equipment remain in Tanks 18-F and 19-F. This equipment includes the Advance Design Mixer Pump (ADMP), transfer pumps, transfer jets, standard slurry mixer pumps, equipment-support masts, sampling masts, dip tube assemblies and robotic crawlers. The present Tank 18 and 19-F closure strategy is to grout the equipment in place and eliminate vertical pathways by filling voids in the equipment to vertical fast pathways and water infiltration. The mock-up tests described in this report were intended to address placement issues identified for grouting the equipment that will be left in Tank 18-F and Tank 19-F. The Tank 18-F and 19-F closure strategy document states that one of the Performance Assessment (PA) requirements for a closed tank is that equipment remaining in the tank be filled to the extent practical and that vertical flow paths 1 inch and larger be grouted. The specific objectives of the Tier 1A equipment grout mock-up testing include: (1) Identifying the most limiting equipment configurations with respect to internal void space filling; (2) Specifying and constructing initial test geometries and forms that represent scaled boundary conditions; (3) Identifying a target grout rheology for evaluation in the scaled mock-up configurations; (4) Scaling-up production of a grout mix with the target rheology

  19. Closure Report for Corrective Action Unit 135: Areas 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox

    2001-06-01

    Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, was closed in accordance with the approved Corrective Action Plan (DOE/NV, 2000). CAU 135 consists of three Corrective Action Sites (CAS). Two of these CAS's were identified in the Corrective Action Investigation Data Quality Objective meeting as being improperly identified as underground storage tanks. CAS 25-02-03 identified as the Deluge Valve Pit was actually an underground electrical vault and CAS 25-02-10 identified as an Underground Storage Tank was actually a former above ground storage tank filled with demineralized water. Both of these CAS's are recommended for a no further action closure. CAS 25-02-01 the Underground Storage Tanks commonly referred to as the Engine Maintenance Assembly and Disassembly Waste Holdup Tanks and Vault was closed by decontaminating the vault structure and conducting a radiological verification survey to document compliance with the Nevada Test Site unrestricted use release criteria. The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine Maintenance, Assembly, and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive and cell service area drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999, discussed in ''The Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada'' (DOE/NV, 199a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples exceeded the preliminary action levels for polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. The CAU 135 closure activities consisted of scabbling radiological ''hot spots

  20. Test plan for determining breathing rates in single shell tanks using tracer gases. Revision 1

    International Nuclear Information System (INIS)

    Andersen, J.A.

    1997-01-01

    This test plan specifies the requirements and conditions for the injection of tracer gas (Helium (He)) into single shell tanks to determine breathing rates using periodic sampling. The eight tanks which have been selected at the time this Test Plan was developed are A-101, AX-102, AX-103, BY-105, C-107, U-103 (U-103 is counted twice, once during the winter months and once during the summer), and U-105. Other tanks to be sampled will be assigned by Pacific Northwest National Laboratory (PNNL) at a later date in the study process as resources allow, the document shall be revised as required. The sampling of headspace for each of these tanks shall be performed using available risers or the Standard Hydrogen Monitoring System (SHMS) cabinet as available. The tank farm vapor cognizant engineer shall assign the injection and sample testing point for each tank and document the point in the field work package. SUMMA TMI canisters, equipped in-line with dual particulate air filters and two silica gel sorbent traps will be used to collect the gas samples. The purpose of dual particulate air filters is to ensure no radioactive particulates are transferred to the SUMMA TMI canisters. The silica gel sorbent traps will effectively eliminate any tritiated water vapor that may be present in the sample gas stream. PNNL shall supply the tracer gases injection system and shall perform the analysis on the headspace samples. TWRS Characterization project shall inject the tracer gas and perform the sampling. Refer to Engineering Task Plan HNF-SD-TWR-ETP-002 for a detailed description of the responsibilities for this task

  1. Tank Monitoring and Control System (TMACS) Acceptance Test Procedure

    Energy Technology Data Exchange (ETDEWEB)

    BARNES, D.A.

    2000-06-01

    The purpose of this document is to describe tests performed to validate Revision 12.0 of the TMACS Monitor and Control System (TMACS) and verify that the software functions as intended by design. This document is intended to test the software portion of TMACS. The tests will be performed on the development system. The software to be tested is the TMACS knowledge bases (KB) and the I/O driver/services. The development system will not be communicating to field equipment; instead, the field equipment is simulated using emulators or multiplexers in the lab.

  2. Tank Monitoring and Control System (TMACS) Acceptance Test Procedure

    International Nuclear Information System (INIS)

    BARNES, D.A.

    2000-01-01

    The purpose of this document is to describe tests performed to validate Revision 12.0 of the TMACS Monitor and Control System (TMACS) and verify that the software functions as intended by design. This document is intended to test the software portion of TMACS. The tests will be performed on the development system. The software to be tested is the TMACS knowledge bases (KB) and the I/O driver/services. The development system will not be communicating to field equipment; instead, the field equipment is simulated using emulators or multiplexers in the lab

  3. DEWATERING TREATMENT SCALE-UP TESTING RESULTS OF HANFORD TANK WASTES

    International Nuclear Information System (INIS)

    TEDESCHI AR

    2008-01-01

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low-activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualified the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process

  4. NASA Prototype All Composite Tank Cryogenic Pressure Tests to Failure with Structural Health Monitoring

    Science.gov (United States)

    Werlink, Rudolph J.; Pena, Francisco

    2015-01-01

    This Paper will describe the results of pressurization to failure of 100 gallon composite tanks using liquid nitrogen. Advanced methods of health monitoring will be compared as will the experimental data to a finite element model. The testing is wholly under NASA including unique PZT (Lead Zirconate Titanate) based active vibration technology. Other technologies include fiber optics strain based systems including NASA AFRC technology, Acoustic Emission, Acellent smart sensor, this work is expected to lead to a practical in-Sutu system for composite tanks.

  5. Contaminant Leach Testing of Hanford Tank 241-C-104 Residual Waste

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle M.V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buck, Edgar C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-01

    Leach testing of Tank C-104 residual waste was completed using batch and column experiments. Tank C-104 residual waste contains exceptionally high concentrations of uranium (i.e., as high as 115 mg/g or 11.5 wt.%). This study was conducted to provide data to develop contaminant release models for Tank C-104 residual waste and Tank C-104 residual waste that has been treated with lime to transform uranium in the waste to a highly insoluble calcium uranate (CaUO4) or similar phase. Three column leaching cases were investigated. In the first case, C-104 residual waste was leached with deionized water. In the second case, crushed grout was added to the column so that deionized water contacted the grout prior to contacting the waste. In the third case, lime was mixed in with the grout. Results of the column experiments demonstrate that addition of lime dramatically reduces the leachability of uranium from Tank C-104 residual waste. Initial indications suggest that CaUO4 or a similar highly insoluble calcium rich uranium phase forms as a result of the lime addition. Additional work is needed to definitively identify the uranium phases that occur in the as received waste and the waste after the lime treatment.

  6. Multi-Function Waste Tank Facility Corrosion Test Report (Phase 1)

    International Nuclear Information System (INIS)

    Carlos, W. C.; Fritz, R. L.

    1993-01-01

    This report documents the results of the corrosion tests that were performed to aid in the selection of the construction materials for multi-function waste tanks to be built in the U.S. Department of Energy Hanford Site. Two alloys were tested: 304L and Alloy 20 austenitic stainless steel. The test media were aqueous solutions formulated to represent the extreme of the chemical compositions of waste to be stored in the tanks. The results summerized by alloy are as follows: For 304L the tests showed no stress-corrosion cracking in any of the nine test solutions. The tests showed pitting in on of the solutions. There were no indications of any weld heat-tint corrosion, nor any sign of preferential corrosion in the welded areas. For Alloy 20 the tests showed no general, pitting, or stress-corrosion cracking. One crevice corrosion coupon cracked at the web between a hole and the edge of the coupon in one of the solutions. Mechanical tests showed some possible crack extension in the same solution. Because of the failure of both alloys to meet test acceptance criteria, the tank waste chemistry will have to be restricted or an alternative alloy tested

  7. New Test Method for Rotating Spray Head Performance in Tank Cleaning

    DEFF Research Database (Denmark)

    Stenby, Mette; Dethlefsen, Markus Wied; Jensen, Bo Boye Busk

    2011-01-01

    on a standardised stainless steel plate; positioning the steel plate in tank; record total cleaning time. The method was tested on four different RSHs from Alfa Laval. Cleaning times were recorded at different distances and flow rates. Using the new method, it is possible to distinguish between RSHs based...

  8. Tank Monitoring and Control System (TMACS) Acceptance Test Procedure

    International Nuclear Information System (INIS)

    WANDLING, R.R.

    1999-01-01

    The purpose of this document is to describe tests performed to validate Revision 11.2 of the TMACS Monitor and Control System (TMCACS) and verify that the software functions as intended by design. The tests will be performed on the development system. The software to be tested is the TMACS knowledge bases (KB) and the I/O driver/services. The development system will not be talking to field equipment; instead, the field equipment is simulated using emulators or multiplexers in the lab

  9. Detailed leak detection test plan and schedule for Oak Ridge National Laboratory liquid low-level waste active tanks

    International Nuclear Information System (INIS)

    1995-01-01

    This document provides a plan and schedule for leak testing a portion of the Liquid Low-Level Waste (LLLW) system at the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. It is a concise version of a more general leak testing plan that was prepared in response to the requirements of the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). This plan includes a schedule for the initial reporting of the leak test results from the various tanks that will be tested. The FFA distinguishes four categories of tank and pipeline systems: new systems (Category A), doubly contained systems (Category B), singly contained systems (Category C), and inactive systems (Category D). The FFA specifically requires leak testing of the Category C systems; there are 14 such tanks addressed in this plan, plus one tank (W-12) that has been temporarily returned to service based on EPA and TDEC concurrence. A schedule for testing these tanks is also included. The plan and schedule also addresses an additional 15 Category B tanks have been demonstrated to meet secondary containment requirements. While these 15 tanks are addressed in this plan for the sake of completeness, they have been removed from the leak testing program based on the design demonstrations that show secondary containment. It is noted that the general plan included 42 tanks. Since that report was issued, 26 of those tanks have passed secondary containment design demonstrations and subsequently have been removed from this leak testing plan. In addition, one tank (LA-104) has been removed from service. Accordingly, this document addresses 15 of the LLLW tanks in the system; plans for testing the pipelines will be described in a separate document

  10. Detailed leak detection test plan and schedule for Oak Ridge National Laboratory liquid low-level waste active tanks

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    This document provides a plan and schedule for leak testing a portion of the Liquid Low-Level Waste (LLLW) system at the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. It is a concise version of a more general leak testing plan that was prepared in response to the requirements of the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). This plan includes a schedule for the initial reporting of the leak test results from the various tanks that will be tested. The FFA distinguishes four categories of tank and pipeline systems: new systems (Category A), doubly contained systems (Category B), singly contained systems (Category C), and inactive systems (Category D). The FFA specifically requires leak testing of the Category C systems; there are 14 such tanks addressed in this plan, plus one tank (W-12) that has been temporarily returned to service based on EPA and TDEC concurrence. A schedule for testing these tanks is also included. The plan and schedule also addresses an additional 15 Category B tanks have been demonstrated to meet secondary containment requirements. While these 15 tanks are addressed in this plan for the sake of completeness, they have been removed from the leak testing program based on the design demonstrations that show secondary containment. It is noted that the general plan included 42 tanks. Since that report was issued, 26 of those tanks have passed secondary containment design demonstrations and subsequently have been removed from this leak testing plan. In addition, one tank (LA-104) has been removed from service. Accordingly, this document addresses 15 of the LLLW tanks in the system; plans for testing the pipelines will be described in a separate document.

  11. Constant extension rate testing of Type 304L stainless steel in simulated waste tank environments

    International Nuclear Information System (INIS)

    Wiersma, B.J.

    1992-01-01

    New tanks for storage of low level radioactive wastes will be constructed at the Savannah River Site (SRS) of AISI Type 304L stainless steel (304L). The presence of chlorides and fluorides in the wastes may induce Stress Corrosion Cracking (SCC) in 304L. Constant Extension Rate Tests (CERT) were performed to determine the susceptibility of 304L to SCC in simulated wastes. In five of the six tests conducted thus far 304L was not susceptible to SCC in the simulated waste environments. Conflicting results were obtained in the final test and will be resolved by further tests. For comparison purposes the CERT tests were also performed with A537 carbon steel, a material similar to that utilized for the existing nuclear waste storage tanks at SRS

  12. Latent class analysis of bulk tank milk PCR and ELISA testing for herd level diagnosis of Mycoplasma bovis

    DEFF Research Database (Denmark)

    Nielsen, Per Kantsø; Petersen, Mette Bisgaard; Nielsen, Liza Rosenbaum

    2015-01-01

    of this study was to evaluate the herd-level diagnostic performance of an indirect ELISA test by comparison to a real-time PCR test when diagnosing M. bovis in cattle herds of bulk tank milk. Bulk tank milk samples from Danish dairy herds (N=3437) were analysed with both the antibody detecting BIO K 302 M...

  13. 49 CFR 178.277 - Requirements for the design, construction, inspection and testing of portable tanks intended for...

    Science.gov (United States)

    2010-10-01

    ...); (v) The physical properties of the individual refrigerated liquefied gas intended to be transported..., inspection and testing of portable tanks intended for the transportation of refrigerated liquefied gases. 178..., inspection and testing of portable tanks intended for the transportation of refrigerated liquefied gases. (a...

  14. Test and evaluation plan for Project W-314 tank farm restoration and safe operations

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    The ''Tank Farm Restoration and Safe Operations'' (TFRSO), Project W-314 will restore and/or upgrade existing Hanford Tank Farm facilities and systems to ensure that the Tank Farm infrastructure will be able to support near term TWRS Privatization's waste feed delivery and disposal system and continue safe management of tank waste. The capital improvements provided by this project will increase the margin of safety for Tank Farms operations, and will aid in aligning affected Tank Farm systems with compliance requirements from applicable state, Federal, and local regulations. Secondary benefits will be realized subsequent to project completion in the form of reduced equipment down-time, reduced health and safety risks to workers, reduced operating and maintenance costs, and minimization of radioactive and/or hazardous material releases to the environment. The original regulatory (e.g., Executive Orders, WACS, CFRS, permit requirements, required engineering standards, etc.) and institutional (e.g., DOE Orders, Hanford procedures, etc.) requirements for Project W-314 were extracted from the TWRS S/RIDs during the development of the Functions and Requirements (F and Rs). The entire family of requirements were then validated for TWRS and Project W-314. This information was contained in the RDD-100 database and used to establish the original CDR. The Project Hanford Management Contract (PHMC) team recognizes that safety, quality, and cost effectiveness in the Test and Evaluation (T and E) program is achieved through a planned systematic approach to T and E activities. It is to this end that the Test and Evaluation Plan (TEP) is created. The TEP for the TFRSO Project, was developed based on the guidance in HNF-IP-0842, and the Good Practice Guide GPG-FM-005, ''Test and Evaluation,'' which is derived from DOE Order 430.1, ''Life Cycle Asset Management.'' It describes the Test and Evaluation program for the TFRSO project starting with the definitive design phase and ending

  15. Tank Applied Testing of Load-Bearing Multilayer Insulation (LB-MLI)

    Science.gov (United States)

    Johnson, Wesley L.; Valenzuela, Juan G.; Feller, Jerr; Plachta, Dave

    2014-01-01

    The development of long duration orbital cryogenic storage systems will require the reduction of heat loads into the storage tank. In the case of liquid hydrogen, complete elimination of the heat load at 20 K is currently impractical due to the limitations in lift available on flight cryocoolers. In order to reduce the heat load, without having to remove heat at 20 K, the concept of Reduced Boil-Off uses cooled shields within the insulation system at approximately 90 K. The development of Load-Bearing Multilayer Insulation (LB-MLI) allowed the 90 K shield with tubing and cryocooler attachments to be suspended within the MLI and still be structurally stable. Coupon testing both thermally and structurally were performed to verify that the LB-MLI should work at the tank applied level. Then tank applied thermal and structural (acoustic) testing was performed to demonstrate the functionality of the LB-MLI as a structural insulation system. The LB-MLI showed no degradation of thermal performance due to the acoustic testing and showed excellent thermal performance when integrated with a 90 K class cryocooler on a liquid hydrogen tank.

  16. Large-Scale Liquid Hydrogen Tank Rapid Chill and Fill Testing for the Advanced Shuttle Upper Stage Concept

    Science.gov (United States)

    Flachbart, R. H.; Hedayat, A.; Holt, K. A.; Sims, J.; Johnson, E. F.; Hastings, L. J.; Lak, T.

    2013-01-01

    Cryogenic upper stages in the Space Shuttle program were prohibited primarily due to a safety risk of a 'return to launch site' abort. An upper stage concept addressed this concern by proposing that the stage be launched empty and filled using shuttle external tank residuals after the atmospheric pressure could no longer sustain an explosion. However, only about 5 minutes was allowed for tank fill. Liquid hydrogen testing was conducted within a near-ambient environment using the multipurpose hydrogen test bed 638.5 ft3 (18m3) cylindrical tank with a spray bar mounted longitudinally inside. Although the tank was filled within 5 minutes, chilldown of the tank structure was incomplete, and excessive tank pressures occurred upon vent valve closure. Elevated tank wall temperatures below the liquid level were clearly characteristic of film boiling. The test results have substantial implications for on-orbit cryogen transfer since the formation of a vapor film would be much less inhibited due to the reduced gravity. However, the heavy tank walls could become an asset in normal gravity testing for on-orbit transfer, i.e., if film boiling in a nonflight weight tank can be inhibited in normal gravity, then analytical modeling anchored with the data could be applied to reduced gravity environments with increased confidence.

  17. Tank testing of a 2500-cm2 solar panel

    Science.gov (United States)

    Bever, R. S.; Staskus, J.

    1981-01-01

    A 50 cm by 50 cm solar array panel test patch was investigated for spacecraft charging and arcing effects. Bombardment with monochromatic electron was carried out. Some objectives of the test were: (1) to estimate at what voltage of electron bombardment arcing would be probable; (2) to find whether the arc's energy would be tolerable or damagingly large; (3) to try and separate thermal and photoeffects; and, (4) to see whether materials used were such as to minimize arcing. Some conclusions were: In sunlight the tracking data relay satellite's solar panel which has ceria glass on the front and conductive paint on the backside is probably a good design for reducing charge-up. In a geomagnetic substorm simulated in testing there will be arcing at the interconnects during eclipse and transitions into and out of eclipse in testing especially in view of the very cold temperatures that will be reached by this lightweight array. Ceria-doped glass is preferred to fused silica glass for reducing charge build up. The Kapton bare patch should still be conductively painted. The differential voltages on the panel determine when arcing first begins, and the electron beam voltages vary depending upon whether the metallic structure is directly grounded or semifloating.

  18. A Muffler Design for Tank Cannon Acceptance Testing

    Science.gov (United States)

    1991-08-01

    designed a muffler to reduce the noise associated with proofing. This muffler is ;maller and lighter than the mufi ±rs tested by CSTA. Figure 1 shows...1 Old Dominion University Mathematics Department ATITN: Dr. Charlie Cooke Norfolk, VA 23508 Aberdeen Proving Ground 2 Dir, USAMSAA ATIN: AMXSY-D, Mr

  19. Treatability study operational testing program and implementation plan for the Gunite and Associated Tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-03-01

    This Treatability Study (TS) Operational Testing Program and Implementation Plan identifies operational testing to be performed to: (1) Demonstrate the technical feasibility of methods proposed for the removal of radiochemical sludge heels from the underground storage tanks located at Oak Ridge National Laboratory (ORNL), known as the Gunite and Associated Tanks (GAAT) Operable Unit (OU). (The bulk of the radiochemical waste, which was previously stored in the tanks, was removed during the 1980s, and only a sludge heel remains.) (2) Reduce the uncertainty in meeting the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements for the GAAT OU. (3) Minimize the overall costs to accomplish the first two objectives. An initial Feasibility Study (FS) effort identified uncertainties in the evaluation of various alternatives for addressing the remediation of the GAAT OU. To support future decision making, the US. Department of Energy is performing a TS to identify cost-effective remediation approaches for the GAAT OU by providing information to reduce cost and technical uncertainty and better define acceptable remediation strategies. The testing activities will be initially conducted in a nonradioactive environment at the Tanks Technology Cold Test Facility (TTCTF) at ORNL. This will permit the design and initial performance testing and training activities to be completed while minimizing the risk, employee exposure, and costs associated with the testing effort. The component design and functional testing and initial system performance testing will be completed in the TTCTF. After the component and initial system performance testing have been completed, the operations testing will continue in the North Tank Farm (NTF). This testing has an associated higher cost and risk, but is necessary to provide results for actual waste heel removal

  20. Tank testing of skimmers with waxy and viscous oils

    International Nuclear Information System (INIS)

    1989-10-01

    A series of tests of four offshore skimmers (Framo ACW-400, GT-185, Walosep W2, Heavy Oil Skimmer) was conducted in a 120-by-60-meter wave basin. Each skimmer was tested with each of 3 oils: a conventional crude, a waxy crude, and a bunker oil. Each test involved 4-6 h of skimming, partly conducted in waves having a period of 4 s and heights of 0.4-0.8 m. Near the end of selected tests, the additive Elastol was applied to the oil and its effect on recovery parameters evaluated. All the optimum results were obtained in calm conditions. In general, waves had no effect on the performance of the Walosep W2, had little effect on the performance of the GT-185, and greatly reduced the performance of the Framo. The experimental Heavy Oil Skimmer failed to recover oil at significant rates without addition of Elastol to the oils. The fluid recovery rate less the water entrainment rate generally declined as oil viscosity increased. For a waxy oil, recovery rates under conditions typical of the Grand Banks in summer would be 30-40% less than for a conventional crude with the Framo skimmer and about the same as the recovery rates for conventional crude with the Walosep and GT-185 skimmers. The Walosep, unlike the other skimmers, did not entrain more water when skimming waxy oil compared to conventional oil. Adding Elastol to the oils improved the corrected recovery rates of the Walosep by ca 15% and had no effect on its water entrainment rate. For the Framo, Elastol addition had no effect on the recovery rate but increased its water entrainment rate. Elastol reduced the GT-185's recovery rate by 25-35% and increased its water entrainment rate. Adding Elastol had several negative effects on subsequent downstream operations. 11 refs., 55 figs., 14 tabs

  1. Cesium Removal From Tanks 241-AN-103 and 241-SX-105 and 241-AZ-101 and 241-AZ-102 Composite For Testing In Bench Scale Steam Reformer

    International Nuclear Information System (INIS)

    Duncan, J.B.; Huber, H.J.

    2011-01-01

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using

  2. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101 & 241AZ-102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB; HUBER HJ

    2011-04-21

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using

  3. Mitigation of Tank 241-SY-101 by pump mixing: Results of testing phases A and B

    Energy Technology Data Exchange (ETDEWEB)

    Allemann, R.T.; Antoniak, Z.I.; Chvala, W.D.; Friley, J.R.; Gregory, W.B.; Hudson, J.D.; Michener, T.E.; Panisko, F.E.; Stewart, C.W.; Wise, B.M. [Pacific Northwest Lab., Richland, WA (United States); Efferding, L.E.; Fadeff, J.G.; Irwin, J.J.; Kirch, N.W. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-03-01

    A spare mixing pump from the Hanford Grout Program was installed in Hanford double-shell waste Tank 241-SY-101 on July 3, 1993, after being modified to take advantage of waste stratification. It was anticipated that pump mixing would prevent large episodic flammable gas releases that had been occurring about every 100-150 days. A cautious initial test plan, called Phase A, was run to find how the pump and tank would behave in response to very brief and gentle pump operation. No large gas releases were triggered, and the pump performed well except for two incidents of nozzle plugging. On October 21, 1993, the next test series, Phase B, began, and the pump was applied more aggressively to mix the tank contents and mitigate uncontrolled gas releases. Orienting the pump in new directions released large volumes of gas and reduced the waste level to a near-record low. Results of the entire period from pump installation to the end of Phase B on December 17, 1993, are presented in detail in this document. Though long-term effects require further evaluation, we conclude from these data that the jet mixer pump is an effective means of controlling flammable gas release and that it has met the success criteria for mitigation in this tank.

  4. Thermocouple module halt failure acceptance test procedure for Tank 241-SY-101 DACS-1

    International Nuclear Information System (INIS)

    Ermi, A.M.

    1997-01-01

    The readiness of the Tank 241-SY-101 Data Acquisition and Control System (DACS-1) to provide monitoring and alarms for a halt failure of any thermocouple module will be tested during the performance of this procedure. Updated DACS-1 ''1/0 MODULE HEALTH STATUS'', ''MININ1'', and ''MININ2'' screens, which now provide indication of thermocouple module failure, will also be tested as part of this procedure

  5. Testing and correction of underground tanks at LLNL: Workplan and schedule

    International Nuclear Information System (INIS)

    Henry, R.K.; Schwartz, W.W.; Castro, D.J.

    1987-01-01

    This report defines a workplan and time schedule for leak tightness testing of underground tank systems and for corrective measures for systems shown by testing to leak. The systems addressed by this report failed a leak tightness test or the test results were inconclusive. The workplan prescribes testing all systems to yield conclusive results. Systems shown to leak will be repaired, retested, and either left in service or be closed. Materials effected by leakage will be cleaned up or removed. 2 figs., 2 tabs

  6. ENVIRONMENTAL CONTAMINATION FROM WEAPON TESTS

    Energy Technology Data Exchange (ETDEWEB)

    none

    1958-10-01

    The program of the Atomic Energy Commission on environmental contamination from weapons tests is designed for the overall evaluation of the hazard to humans from test operations. It is limited to studies of the deposition of activity at long range rather than the problems associated with immediate, close-in fallout. The program has largely been a study of Sr{sup 90}, since considerations based on experience and measurement indicate that it is the isotope of greatest potential hazard. Data are presented pertinent to the monitoring of long-range fallout, particularly Sr{sup 90} and Cs{sup 137}. Values are tabulated for the fallout deposition, air concentrations, water concentrations, and the amounts in foods and human bone. In addition, results are given for some experimental investigations. The report of these results is not interpretative although certain papers that do attempt to interpret the present situation with respect to Sr{sup 90} in particular are reprinted. Bibliographies are presented covering the period since the 1957 hearings before the Joint Committee on Atomic Energy concerning the nature of radioactive fallout and its effects on man. A document list of submissions to the United Nations Scientific Committee on the Effects of Atomic Radiation is given to illustrate the work done in other countries. Several papers on the subject, which have not been generally available, are reprinted.

  7. Environmental Protection: Improved Inspections and Enforcement Would Ensure Safer Underground Storage Tanks

    National Research Council Canada - National Science Library

    Stephenson, John

    2001-01-01

    ...) Underground Storage Tank (UST) program. 1 The program is relevant to today's hearing because studies have shown that tanks that leak hazardous substances, such as methyl tertiary butyl ether (MTBE...

  8. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume VI

    International Nuclear Information System (INIS)

    1996-08-01

    The U.S. Department Of Energy and the Washington State Department of Ecology added Appendix L (Volume 6), Response to Public Comments, to the Tank Waste Remediation System (TWRS) Final Environmental Impact Statement (EIS) for the Hanford Site, Richland, Washington, to fully address and respond to public comments on the Draft EIS. In addition, DOE considered public comments, along with other factors such as programmatic need, short- and long-term impacts, technical feasibility, and cost, in arriving at DOE's preferred alternative. During the public comment period for the Draft EIS, more than 350 individuals, agencies, Tribal Nations, and organizations provided comments. This volume represents a broad spectrum of private citizens; businesses; local, State, and Federal officials; Tribal Nations; and public interest groups

  9. Test Plan for the Demonstration of Geophysical Techniques for Single-Shell Tank Leak Detection at the Hanford Mock Tank Site: Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. Brent; Gee, Glendon W.; Sweeney, Mark D.

    2001-07-31

    As part of the Leak Detection, Monitoring and Mitigation (LDMM) program conducted by CH2M HILL 105-A during FY 2001. These tests are being conducted to assess the applicability of these methods (Electrical Resistance Tomography [ERT], High Resolution Resistivity [HRR], Cross-Borehole Seismography [XBS], Cross-Borehole Radar [XBR], and Cross-Borehole Electromagnetic Induction [CEMI]) to the detection and measurement of Single Shell Tank (SST) leaks into the vadose zone during planned sluicing operations. The testing in FY 2001 will result in the selection of up to two methods for further testing in FY 2002. In parallel with the geophysical tests, a Partitioning Interwell Tracer Test (PITT) study will be conducted simultaneously at the Mock Tank to assess the effectiveness of this technology in detecting and quantifying tank leaks in the vadose zone. Preparatory and background work using Cone Penetrometer methods (CPT) will be conducted at the Mock Tank site and an adjacent test area to derive soil properties for groundtruthing purposes for all methods.

  10. Elemental Water Impact Test: Phase 3 Plunge Depth of a 36-Inch Aluminum Tank Head

    Science.gov (United States)

    Vassilakos, Gregory J.

    2014-01-01

    Spacecraft are being designed based on LS-DYNA water landing simulations. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. Phase 3 featured a composite tank head that was tested at a range of heights to verify the ability to predict structural failure of composites. To support planning for Phase 3, a test series was conducted with an aluminum tank head dropped from heights of 2, 6, 10, and 12 feet to verify that the test article would not impact the bottom of the test pool. This report focuses on the comparisons of the measured plunge depths to LS-DYNA predictions. The results for the tank head model demonstrated the following. 1. LS-DYNA provides accurate predictions for peak accelerations. 2. LS-DYNA consistently under-predicts plunge depth. An allowance of at least 20% should be added to the LS-DYNA predictions. 3. The LS-DYNA predictions for plunge depth are relatively insensitive to the fluid-structure coupling stiffness.

  11. Full-scale tank car rollover tests - survivability of top fittings and top fittings protective structures : final report.

    Science.gov (United States)

    2016-05-01

    Full-scale rollover crash tests were performed on three non-pressure tank carbodies to validate previous analytical work and : determine the effectiveness of two different types of protective structures in protecting the top fittings. The tests were ...

  12. Evaluation of Flygt Mixers for Application in Savannah River Site Tank 19. Test Results from Phase B: Mid-Scale Testing at PNNL

    International Nuclear Information System (INIS)

    Powell, M.R.; Combs, W.H.; Farmer, J.R.; Gladki, H.; Hatchell, B.K.; Johnson, M.A.; Poirier, M.R.; Rodwell, P.O.

    1999-01-01

    Pacific Northwest National Laboratory (PNNL) performed mixer tests using 3-kW (4-hp) Flygt mixers in 1.8- and 5.7-m-diameter tanks at the 336 building facility in Richland, Washington to evaluate candidate scaling relationships for Flygt mixers used for sludge mobilization and particle suspension. These tests constituted the second phase of a three-phase test program involving representatives from ITT Flygt Corporation, the Savannah River Site (SRS), the Oak Ridge National Laboratory (ORNL), and PNNL. The results of the first phase of tests, which were conducted at ITT Flygt's facility in a 0.45-m-diameter tank, are documented in Powell et al. (1999). Although some of the Phase B tests were geometrically similar to selected Phase A tests (0.45-m tank), none of the Phase B tests were geometrically, cinematically, and/or dynamically similar to the planned Tank 19 mixing system. Therefore, the mixing observed during the Phase B tests is not directly indicative of the mixing expected in Tank 19 and some extrapolation of the data is required to make predictions for Tank 19 mixing. Of particular concern is the size of the mixer propellers used for the 5.7-m tank tests. These propellers were more than three times larger than required by geometric scaling of the Tank 19 mixers. The implications of the lack of geometric similarity, as well as other factors that complicate interpretation of the test results, are discussed in Section 5.4

  13. Performance testing of a system for remote ultrasonic examination of the Hanford double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Pfluger, D.C.; Somers, T.; Berger, A.D.

    1995-02-01

    A mobile robotic inspection system is being developed for remote ultrasonic examination of the double wall waste storage tanks at Hanford. Performance testing of the system includes demonstrating robot mobility within the tank annulus, evaluating the accuracy of the vision based navigation process, and verifying ultrasonic and video system performance. This paper briefly describes the system and presents a summary of the plan for performance testing of the ultrasonic testing system. Performance test results will be presented at the conference

  14. Tank monitor and control system (TMACS) revision 11 acceptance test procedure

    International Nuclear Information System (INIS)

    HOLM, M.J.

    1999-01-01

    The purpose of this document is to describe tests performed to validate Revision 11 of the Tank Monitor and Control System (TMACS) and verify that the software functions as intended by design. This document is intended to test the software portion of TMACS. The tests will be performed on the development system. The software to be tested is the TMACS knowledge bases (KB) and the I/O driver/services. The development system will not be talking to field equipment; instead, the field equipment is simulated using emulators or multiplexers in the lab

  15. Recycle Waste Collection Tank (RWCT) simulant testing in the PVTD feed preparation system

    International Nuclear Information System (INIS)

    Abrigo, G.P.; Daume, J.T.; Halstead, S.D.; Myers, R.L.; Beckette, M.R.; Freeman, C.J.; Hatchell, B.K.

    1996-03-01

    (This is part of the radwaste vitrification program at Hanford.) RWCT was to routinely receive final canister decontamination sand blast frit and rinse water, Decontamination Waste Treatment Tank bottoms, and melter off-gas Submerged Bed Scrubber filter cake. In order to address the design needs of the RWCT system to meet performance levels, the PNL Vitrification Technology (PVTD) program used the Feed Preparation Test System (FPTS) to evaluate its equipment and performance for a simulant of RWCT slurry. (FPTS is an adaptation of the Defense Waste Processing Facility feed preparation system and represents the initially proposed Hanford Waste Vitrification Plant feed preparation system designed by Fluor-Daniel, Inc.) The following were determined: mixing performance, pump priming, pump performance, simulant flow characterization, evaporator and condenser performance, and ammonia dispersion. The RWCT test had two runs, one with and one without tank baffles

  16. Tank Monitor and Control System sensor acceptance test procedure. Revision 5

    International Nuclear Information System (INIS)

    Scaief, C.C. III.

    1994-01-01

    The purpose of this acceptance test procedure (ATP) is to verify the correct reading of sensor elements connected to the Tank Monitor and Control System (TMACS). This ATP is intended to be used for testing of the connection of existing temperature sensors, new temperature sensors, pressure sensing equipment, new Engraf level gauges, sensors that generate a current output, and discrete (on/off) inputs. It is intended that this ATP will be used each time sensors are added to the system. As a result, the data sheets have been designed to be generic. The TMACS has been designed in response to recommendations from the Defense Nuclear Facilities Safety Board primarily for improved monitoring of waste tank temperatures. The system has been designed with the capability to monitor other types of sensor input as well

  17. Grout Placement and Property Evaluation for Closing Hanford High-Level Waste Tanks - Scale-Up Testing

    International Nuclear Information System (INIS)

    LANGTON, CHRISTINE

    2003-01-01

    Hanford has 149 single-shell high level waste (HLW) tanks that were constructed between 1943 and 1964. Many of these tanks have leaked or are suspected of leaking HLW into the soil above the ground water. Consequently, a major effort is ongoing to transfer the liquid portion of the waste to the 28 newer, double-shell tanks. Savannah River National Laboratory (SRNL) was tasked to develop grout formulations for the three-layer closure concept selected by CH2M HILL for closing Tank C-106. These grout formulations were also evaluated for use as fill materials in the next six tanks scheduled to be closed. The overall scope consisted of both bench-scale testing to confirm mix designs and scale-up testing to confirm placement properties. This report provides results of the scale-up testing for the three-phase tank closure strategy. It also contains information on grouts for equipment and riser filling. The three-phase fill strategy is summarized as follows: Phase I fill encapsulates and minimizes dispersion of the residual waste in the tank. This fill is referred to as the Stabilization Layer and consists of the Stabilization Grout. The Phase II fill provides structural stability to the tank system and prevents subsidence. It is referred to as the Structural Layer and consists of the Structural Grout. A final Phase III fill consists of a grout designed to provide protection against intrusion and is referred to as the Capping Layer or Capping Grout

  18. Test plan for evaluation of primary exhaust ventilation flow meters for double shell hydrogen watch list tanks

    International Nuclear Information System (INIS)

    Willingham, W.E.

    1996-01-01

    This document is a plan for testing four different flow meters for use in the primary exhaust ventilation ducts of Double Shell Tanks on the hydrogen watch list that do not already have this capability. This currently includes tanks 241-AW-101, 241-AN-103, 241-AN-104, 241-AN-105, and 241-SY-103. The anticipated airflow velocity in these tanks range from 0.25 m/s(50 ft/min) to 1.78 m/s (350 ft/min). Past experiences at Hanford are forcing the evaluation and selection of instruments to be used at the low flow and relatively high humidity conditions found in these tanks. Based on the results of this test, a flow meter shall be chosen for installation in the primary exhaust ventilation ducts of the above mentioned waste tanks

  19. Status of test results of electrochemical organic oxidation of a tank 241-SY-101 simulated waste

    International Nuclear Information System (INIS)

    Colby, S.A.

    1994-06-01

    This report presents scoping test results of an electrochemical waste pretreatment process to oxidize organic compounds contained in the Hanford Site's radioactive waste storage tanks. Electrochemical oxidation was tested on laboratory scale to destroy organics that are thought to pose safety concerns, using a nonradioactive, simulated tank waste. Minimal development work has been applied to alkaline electrochemical organic destruction. Most electrochemical work has been directed towards acidic electrolysis, as in the metal purification industry, and silver catalyzed oxidation. Alkaline electrochemistry has traditionally been associated with the following: (1) inefficient power use, (2) electrode fouling, and (3) solids handling problems. Tests using a laboratory scale electrochemical cell oxidized surrogate organics by applying a DC electrical current to the simulated tank waste via anode and cathode electrodes. The analytical data suggest that alkaline electrolysis oxidizes the organics into inorganic carbonate and smaller carbon chain refractory organics. Electrolysis treats the waste without adding chemical reagents and at ambient conditions of temperature and pressure. Cell performance was not affected by varying operating conditions and supplemental electrolyte additions

  20. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Krogstad, Eirik J.

    2013-08-01

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energy’s goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned, access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (“rebar”). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were less

  1. Wave Tank Testing and Model Validation of an Autonomous Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Bret Bosma

    2015-08-01

    Full Text Available A key component in bringing ocean wave energy converters from concept to commercialization is the building and testing of scaled prototypes to provide model validation. A one quarter scale prototype of an autonomous two body heaving point absorber was modeled, built, and tested for this work. Wave tank testing results are compared with two hydrodynamic and system models—implemented in both ANSYS AQWA and MATLAB/Simulink—and show model validation over certain regions of operation. This work will serve as a guide for future developers of wave energy converter devices, providing insight in taking their design from concept to prototype stage.

  2. Nevada Test Site Environmental Report 2005

    International Nuclear Information System (INIS)

    Cathy A. Wills

    2006-01-01

    The Nevada Test Site Environmental Report 2005 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts

  3. Nevada Test Site Environmental Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2006-10-01

    The Nevada Test Site Environmental Report 2005 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts.

  4. Results of Characterization and Retrieval Testing on Tank 241-C-110 Heel Solids

    Energy Technology Data Exchange (ETDEWEB)

    Callaway, William S.

    2013-09-30

    Nine samples of heel solids from tank 241-C-110 were delivered to the 222-S Laboratory for characterization and dissolution testing. After being drained thoroughly, the sample solids were primarily white to light-brown with minor dark-colored inclusions. The maximum dimension of the majority of the solids was <2 mm; however, numerous pieces of aggregate, microcrystalline, and crystalline solids with maximum dimensions ranging from 5-70 mm were observed. In general, the larger pieces of aggregate solids were strongly cemented. Natrophosphate [Na{sub 7}F(PO{sub 4}){sub 2}°19H{sub 2}O] was the dominant solid phase identified in the heel solids. Results of chemical analyses suggested that 85-87 wt% of the heel solids were the fluoridephosphate double salt. The average bulk density measured for the heel solids was 1.689 g/mL; the reference density of natrophosphate is 1.71 g/mL. Dissolution tests on composite samples indicate that 94 to 97 wt% of the tank 241-C-110 heel solids can be retrieved by dissolution in water. Dissolution and recovery of the soluble components in 1 kg (0.59 L) of the heel solids required the addition of ≈9.5 kg (9.5 L) of water at 15 °C and ≈4.4 kg (4.45 L) of water at 45 °C. Calculations performed using the Environmental Simulation Program indicate that dissolution of the ≈0.86 kg of natrophosphate in each kilogram of the tank 241-C-110 heel solids would require ≈9.45 kg of water at 15 °C and ≈4.25 kg of water at 45 °C. The slightly larger quantities of water determined to be required to retrieve the soluble components in 1 kg of the heel solids are consistent with that required for the dissolution of solids composed mainly of natrophosphate with a major portion of the balance consisting of highly soluble sodium salts. At least 98% of the structural water, soluble phosphate, sodium, fluoride, nitrate, carbonate, nitrite, sulfate, oxalate, and chloride in the test composites was dissolved and recovered in the

  5. Nevada Test Site Environmental Report 2004

    International Nuclear Information System (INIS)

    BECHTEL NEVADA

    2005-01-01

    The ''Nevada Test Site Environmental Report 2004'' was prepared by Bechtel Nevada (BN) to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of non-radiological releases, implementation status of the NTS Environmental Management System, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled ''Nevada Test Site Environmental Report Summary 2004''. It was produced this year to provide a more cost-effective and wider distribution of a hardcopy summary of the ''Nevada Test Site Environmental Report 2004'' to interested DOE stakeholders

  6. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K; Paul Burket, P

    2009-03-31

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a

  7. Melter system technology testing for Hanford Site low-level tank waste vitrification

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1996-01-01

    Following revisions to the Tri-Party Agreement for Hanford Site cleanup, which specified vitrification for Complete melter feasibility and system operability immobilization of the low-level waste (LLW) tests, select reference melter(s), and establish reference derived from retrieval and pretreatment of the radioactive LLW glass formulation that meets complete systems defense wastes stored in 177 underground tanks, commercial requirements (June 1996). Available melter technologies were tested during 1994 to 1995 as part of a multiphase program to select reference Submit conceptual design and initiate definitive design technologies for the new LLW vitrification mission

  8. Laboratory testing of ozone oxidation of Hanford Site waste from Tank 241-SY-101

    International Nuclear Information System (INIS)

    Delegard, C.H.; Stubbs, A.M.; Bolling, S.D.

    1993-01-01

    Ozone was investigated as a reagent to oxidize and destroy organic species present in simulated and genuine waste from Hanford Site Tank 241-SY-101 (Tank 101-SY). Two high-shear mixing apparatus were tested to perform the gas-to-solution mass transfer necessary to achieve efficient use of the ozone reagent. Oxidations of nitrite (to form nitrate) and organic species were observed. The organics oxidized to form carbonate and oxalate as well as nitrate and nitrogen gas from nitrogen associated with the organic. oxidations of metal species also were observed directly or inferred by solubilities. The chemical reaction stoichiometries were consistent with reduction of one oxygen atom per ozone molecule. Acetate, oxalate, and formate were found to comprise about 40% of the genuine waste's total organic carbon (TOC) concentration. Ozonation was found to be chemically feasible for destroying organic species (except oxalate) present in the wastes in Tank 101-SY. The simulated waste formulation used in these studies credibly modelled the ozonation behavior of the genuine waste

  9. Testing and Fielding of the Panther Tank and Lessons for Force XXI

    Science.gov (United States)

    1997-01-01

    decided that the following solution be adopted: the construction of the Tiger Tank , a tank of some 60 tons, which had recently been started would...to minimize the German advantages of the Panther. The Russians learned quickly that charging at the new Panthers (and Tiger tanks as well), and then...vehicle powerful enough to pull a Panther was another Panther or a Tiger tank . Without another tank stopping to retrieve the disabled vehicle, the

  10. Field Test Design Simulations of Pore-Water Extraction for the SX Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    A proof of principle test of pore water extraction is being performed by Washington River Protection Solutions for the U.S. Department of Energy, Office of River Protection. This test is being conducted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989) Milestone M 045-20, and is described in RPP-PLAN-53808, 200 West Area Tank Farms Interim Measures Investigation Work Plan. To support design of this test, numerical simulations were conducted to help define equipment and operational parameters. The modeling effort builds from information collected in laboratory studies and from field characterization information collected at the test site near the Hanford Site 241-SX Tank Farm. Numerical simulations were used to evaluate pore-water extraction performance as a function of the test site properties and for the type of extraction well configuration that can be constructed using the direct-push installation technique. Output of simulations included rates of water and soil-gas production as a function of operational conditions for use in supporting field equipment design. The simulations also investigated the impact of subsurface heterogeneities in sediment properties and moisture distribution on pore-water extraction performance. Phenomena near the extraction well were also investigated because of their importance for pore-water extraction performance.

  11. Cost benefit and risk assessment for selected tank waste process testing alternatives

    International Nuclear Information System (INIS)

    Gasper, K.A.

    1995-01-01

    The US Department of Energy has established the Tank Waste Remediation System (TWRS) program to safely manage wastes currently stored in underground tank at the Hanford Site. A TWRS testing and development strategy was recently developed to define long-range TWRS testing plans. The testing and development strategy considered four alternatives. The primary variable in the alternatives is the level of pilot-scale testing involving actual waste. This study evaluates the cost benefit and risks associated with the four alternatives. Four types of risk were evaluated: programmatic schedule risk, process mishap risk, worker risk, and public health risk. The structure of this report is as follows: Section 1 introduces the report subject; Section 2 describes the test strategy alternative evaluation; Section 3 describes the approach used in this study to assess risk and cost benefit; Section 4 describes the assessment methodologies for costs and risks; Section 5 describes the bases and assumptions used to estimate the costs and risks; Section 6 presents the detailed costs and risks; and Section 7 describes the results of the cost benefit analysis and presents conclusions

  12. Mitigation of tank 241-SY-101 by pump mixing: Results of full-scale testing

    International Nuclear Information System (INIS)

    Stewart, C.W.; Hudson, J.D.; Friley, J.R.; Panisko, F.E.; Antoniak, Z.I.; Irwin, J.J.; Fadeff, J.G.; Efferding, L.F.; Michener, T.E.; Kirch, N.W.

    1994-06-01

    The Full-Scale Mixer Pump Test Program was performed in Hanford Tank 241-SY-101 from February 4 to April 13, 1994, to confirm the long-term operational strategy for flammable gas mitigation and to demonstrate that mixing can control the gas release and waste level. Since its installation on July 3, 1993, the current pump, operating only a few hours per week, has proved capable of mixing the waste sufficiently to release gas continuously instead of in large episodic events. The results of Full-Scale Testing demonstrated that the pump can control gas release and waste level for long-term mitigation, and the four test sequences formed the basis for the long-term operating schedule. The last test sequence, jet penetration tests, showed that the current pump jet creates flow near the tank wall and that it can excavate portions of the bottom sludge layer if run at maximum power. Pump mixing has altered the open-quote normal close-quote configuration of the waste; most of the original nonconvective sludge has been mixed with the supernatant liquid into a mobile convective slurry that has since been maintained by gentle pump operation and does not readily return to sludge

  13. The Continued Need for Modeling and Scaled Testing to Advance the Hanford Tank Waste Mission

    Energy Technology Data Exchange (ETDEWEB)

    Peurrung, Loni M.; Fort, James A.; Rector, David R.

    2013-09-03

    Hanford tank wastes are chemically complex slurries of liquids and solids that can exhibit changes in rheological behavior during retrieval and processing. The Hanford Waste Treatment and Immobilization Plant (WTP) recently abandoned its planned approach to use computational fluid dynamics (CFD) supported by testing at less than full scale to verify the design of vessels that process these wastes within the plant. The commercial CFD tool selected was deemed too difficult to validate to the degree necessary for use in the design of a nuclear facility. Alternative, but somewhat immature, CFD tools are available that can simulate multiphase flow of non-Newtonian fluids. Yet both CFD and scaled testing can play an important role in advancing the Hanford tank waste mission—in supporting the new verification approach, which is to conduct testing in actual plant vessels; in supporting waste feed delivery, where scaled testing is ongoing; as a fallback approach to design verification if the Full Scale Vessel Testing Program is deemed too costly and time-consuming; to troubleshoot problems during commissioning and operation of the plant; and to evaluate the effects of any proposed changes in operating conditions in the future to optimize plant performance.

  14. Nevada Test Site Environmental Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    The Nevada Test Site Environmental Report 2007 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2007. This NTSER was prepared to satisfy DOE Order 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This report meets these objectives for the NTS and three offsite Nevada facilities mentioned in this report.

  15. Nevada Test Site Environmental Report 2007

    International Nuclear Information System (INIS)

    Cathy Wills

    2008-01-01

    The Nevada Test Site Environmental Report 2007 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2007. This NTSER was prepared to satisfy DOE Order 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This report meets these objectives for the NTS and three offsite Nevada facilities mentioned in this report

  16. 78 FR 75913 - Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site...

    Science.gov (United States)

    2013-12-13

    ... site, including the disposal of Hanford's low-level radioactive waste (LLW) and mixed low-level... would be processed for disposal in Low- Level Radioactive Waste Burial Grounds (LLBGs) Trenches 31 and... treating radioactive waste from 177 underground storage tanks (149 Single-Shell Tanks [SSTs] and 28 Double...

  17. Cold test plan for the Old Hydrofracture Facility tank contents removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-11-01

    This Old Hydrofracture Facility (OHF) Tanks Contents Removal Project Cold Test Plan describes the activities to be conducted during the cold test of the OHF sluicing and pumping system at the Tank Technology Cold Test Facility (TTCTF). The TTCTF is located at the Robotics and Process Systems Complex at the Oak Ridge National Laboratory (ORNL). The cold test will demonstrate performance of the pumping and sluicing system, fine-tune operating instructions, and train the personnel in the actual work to be performed. After completion of the cold test a Technical Memorandum will be prepared documenting completion of the cold test, and the equipment will be relocated to the OHF site

  18. Hanford immobilized LAW product acceptance: Initial Tanks Focus Area testing data package

    Energy Technology Data Exchange (ETDEWEB)

    JD Vienna; A Jiricka; BP McGrail; BM Jorgensen; DE Smith; BR Allen; JC Marra; DK Peeler; KG Brown; IA Reamer; WL Ebert

    2000-03-08

    The Hanford Site's mission has been to produce nuclear materials for the US Department of Energy (DOE) and its predecessors. A large inventory of radioactive and mixed waste, largely generated during plutonium production, exists in 177 underground single- and double-shell tanks. These wastes are to be retrieved and separated into low-activity waste (LAW) and high-level waste (HLW) fractions. The total volume of LAW requiring immobilization will include the LAW separated from the tank waste, as well as new wastes generated by the retrieval, pretreatment, and immobilization processes. Per the Tri-Party Agreement (1994), both the LAW and HLW will be vitrified. It has been estimated that vitrification of the LAW waste will result in over 500,000 metric tons or 200,000 m{sup 3} of immobilized LAW (ILAW) glass. The ILAW glass is to be disposed of onsite in a near-surface burial facility. It must be demonstrated that the disposal system will adequately retain the radionuclides and prevent contamination of the surrounding environment. This report describes a study of the impacts of systematic glass-composition variation on the responses from accelerated laboratory corrosion tests of representative LAW glasses. A combination of two tests, the product consistency test and vapor-hydration test, is being used to give indictations of the relative rate at which a glass could be expected to corrode in the burial scenario.

  19. Hanford immobilized LAW product acceptance: Initial Tanks Focus Area testing data package

    International Nuclear Information System (INIS)

    JD Vienna; A Jiricka; BP McGrail; BM Jorgensen; DE Smith; BR Allen; JC Marra; DK Peeler; KG Brown; IA Reamer; WL Ebert

    2000-01-01

    The Hanford Site's mission has been to produce nuclear materials for the US Department of Energy (DOE) and its predecessors. A large inventory of radioactive and mixed waste, largely generated during plutonium production, exists in 177 underground single- and double-shell tanks. These wastes are to be retrieved and separated into low-activity waste (LAW) and high-level waste (HLW) fractions. The total volume of LAW requiring immobilization will include the LAW separated from the tank waste, as well as new wastes generated by the retrieval, pretreatment, and immobilization processes. Per the Tri-Party Agreement (1994), both the LAW and HLW will be vitrified. It has been estimated that vitrification of the LAW waste will result in over 500,000 metric tons or 200,000 m 3 of immobilized LAW (ILAW) glass. The ILAW glass is to be disposed of onsite in a near-surface burial facility. It must be demonstrated that the disposal system will adequately retain the radionuclides and prevent contamination of the surrounding environment. This report describes a study of the impacts of systematic glass-composition variation on the responses from accelerated laboratory corrosion tests of representative LAW glasses. A combination of two tests, the product consistency test and vapor-hydration test, is being used to give indictations of the relative rate at which a glass could be expected to corrode in the burial scenario

  20. Vapor Space Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gray, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murphy, T. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hicks, K. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-30

    As part of an integrated program to better understand corrosion in the high level waste tanks, Hanford has been investigating corrosion at the liquid/air interface (LAI) and at higher areas in the tank vapor space. This current research evaluated localized corrosion in the vapor space over Hanford double shell tank simulants to assess the impact of ammonia and new minimum nitrite concentration limits, which are part of the broader corrosion chemistry limits. The findings from this study showed that the presence of ammonia gas (550 ppm) in the vapor space is sufficient to reduce corrosion over the short-term (i.e. four months) for a Hanford waste chemistry (SY102 High Nitrate). These findings are in agreement with previous studies at both Hanford and SRS which showed ammonia gas in the vapor space to be inhibitive. The presence of ammonia in electrochemical test solution, however, was insufficient to inhibit against pitting corrosion. The effect of the ammonia appears to be a function of the waste chemistry and may have more significant effects in waste with low nitrite concentrations. Since high levels of ammonia were found beneficial in previous studies, additional testing is recommended to assess the necessary minimum concentration for protection of carbon steel. The new minimum R value of 0.15 was found to be insufficient to prevent pitting corrosion in the vapor space. The pitting that occurred, however, did not progress over the four-month test. Pits appeared to stop growing, which would indicate that pitting might not progress through wall.

  1. Experimental tests performed with liquid waste contained in the tank F-710/D at EUREX plant

    International Nuclear Information System (INIS)

    Gasso, G.; Momo, S.; Pietrelli, L.; Troiani, F.

    1989-11-01

    In this report the result of experimental test performed with real liquid waste earning from reprocessing of MTR nuclear fuel is reported. The aim of the research is to separate the actinides and long-lived radioactive fission products from bulk salt matrix of HLW. Taking into account the chemical and radiochemical composition of the liquid waste, process based on the chemical precipitation and/or adsorption were studied by using the radioactive waste sampled from the tank. The results show that decontamination factors of 100, 1000, 5000 were obtained for Sr, Cs and Pu respectively. (author)

  2. Analysis and testing of model worm type tanks on shaking table

    International Nuclear Information System (INIS)

    Ma, D.

    1996-01-01

    This report contains the summary of the lectures, notes and discussions at the IAEA workshop on Benchmark studies for seismic analysis of WWER NPPs, held in 1995 at St. Petersburg. The specific subject of main interest at the meeting was the testing of unanchored worm-type tanks in the emergency cooling systems of WWER-440/213 NPPs such as Paks and Bohunice. Seismic forces were not considered in the original design, therefore this is one of the important tasks in the assessment of seismic vulnerabilities of the WWER NPPs

  3. Acceptance/Operational Test Report for Tank 241-AN-104 camera and camera purge control system

    International Nuclear Information System (INIS)

    Castleberry, J.L.

    1995-11-01

    This Acceptance/Operational Test Procedure (ATP/OTP) will document the satisfactory operation of the camera purge panel, purge control panel, color camera system and associated control components destined for installation. The final acceptance of the complete system will be performed in the field. The purge panel and purge control panel will be tested for its safety interlock which shuts down the camera and pan-and-tilt inside the tank vapor space during loss of purge pressure and that the correct purge volume exchanges are performed as required by NFPA 496. This procedure is separated into seven sections. This Acceptance/Operational Test Report documents the successful acceptance and operability testing of the 241-AN-104 camera system and camera purge control system

  4. Environmental Testing for Precision Parts and Instruments

    International Nuclear Information System (INIS)

    Choi, Man Yong; Park, Jeong Hak; Yun, Kyu Tek

    2001-01-01

    Precision parts and instruments are tested to evaluate performance in development-process and product-step to prement a potential defect due to a failure design. In this paper, Environmental test technology, which is the basis of reliability analysis, is introduced with examples of test criterion, test method for products, encoder and traffic signal controller, and measuring instruments. Recently, as the importance of the environmental test technology is recognised. It is proposed that training of test technician and technology of jig design and failure analysis are very essential

  5. Technetium removal column flow testing with alkaline, high salt, radioactive tank waste

    International Nuclear Information System (INIS)

    Blanchard, D.L. Jr.; Kurath, D.E.; Golcar, G.R.; Conradson, S.D.

    1996-01-01

    This report describes two bench-scale column tests conducted to demonstrate the removal of Tc-99 from actual alkaline high salt radioactive waste. The waste used as feed for these tests was obtained from the Hanford double shell tank AW-101, which contains double shell slurry feed (DSSF). The tank sample was diluted to approximately 5 M Na with water, and most of the Cs-137 was removed using crystalline silicotitanates. The tests were conducted with two small columns connected in series, containing, 10 mL of either a sorbent, ABEC 5000 (Eichrom Industries, Inc.), or an anion exchanger Reillex trademark-HPQ (Reilly Industries, Inc.). Both materials are selective for pertechnetate anion (TcO 4 - ). The process steps generally followed those expected in a full-scale process and included (1) resin conditioning, (2) loading, (3) caustic wash to remove residual feed and prevent the precipitation of Al(OH) 3 , and (4) elution. A small amount of Tc-99m tracer was added as ammonium pertechnetate to the feed and a portable GEA counter was used to closely monitor the process. Analyses of the Tc-99 in the waste was performed using ICP-MS with spot checks using radiochemical analysis. Technetium x-ray absorption spectroscopy (XAS) spectra of 6 samples were also collected to determine the prevalence of non-pertechnetate species [e.g. Tc(IV)

  6. Level maintenance for Tank 101-SY mitigation-by-mixing test. Revision 2

    International Nuclear Information System (INIS)

    Larsen, D.C.

    1994-01-01

    The Phase A, Phase B and Full Scale testing portions of the Mitigation-By-Mixing Test have demonstrated the effectiveness of the Mixer Pump to maintain the waste in tank 101-SY in the desired mitigated state. The operation of the 101-SY Mixer Pump for short periods of time results in a controlled release of hydrogen gas in concentrations well below the established safety limits. Additionally, it has been shown that operation of the pump on a regular schedule minimizes the historical generation rate of hydrogen inventory in the waste. Generation of hydrogen inventory is exhibited by waste level growth. The primary objective of this procedure is to maintain the waste level in tank 241-SY-101 within the safe operating range as defined by the Safety Assessment and the Test Plan. The secondary objective is to operate the pump on a schedule that maximizes its useful lifespan and prevents the formation of obstructions in the normal flow path of the pump

  7. Composite Cryotank Technologies and Development 2.4 and 5.5M out of Autoclave Tank Test Results

    Science.gov (United States)

    Jackson, Justin R.; Vickers, John; Fikes, John

    2015-01-01

    The Composite Cryotank Technologies and Demonstration (CCTD) project substantially matured composite, cryogenic propellant tank technology. The project involved the design, analysis, fabrication, and testing of large-scale (2.4-m-diameter precursor and 5.5-m-diameter) composite cryotanks. Design features included a one-piece wall design that minimized tank weight, a Y-joint that incorporated an engineered material to alleviate stress concentration under combined loading, and a fluted core cylindrical section that inherently allows for venting and purging. The tanks used out-of-autoclave (OoA) cured graphite/epoxy material and processes to enable large (up to 10-m-diameter) cryotank fabrication, and thin-ply prepreg to minimize hydrogen permeation through tank walls. Both tanks were fabricated at Boeing using automated fiber placement on breakdown tooling. A fluted core skirt that efficiently carried axial loads and enabled hydrogen purging was included on the 5.5-m-diameter tank. Ultrasonic inspection was performed, and a structural health monitoring system was installed to identify any impact damage during ground processing. The precursor and 5.5-m-diameter tanks were tested in custom test fixtures at the National Aeronautics and Space Administration Marshall Space Flight Center. The testing, which consisted of a sequence of pressure and thermal cycles using liquid hydrogen, was successfully concluded and obtained valuable structural, thermal, and permeation performance data. This technology can be applied to a variety of aircraft and spacecraft applications that would benefit from 30 to 40% weight savings and substantial cost savings compared to aluminum lithium tanks.

  8. CFD simulation and experimental analysis of erosion in a slurry tank test rig

    Directory of Open Access Journals (Sweden)

    Bart Hans-Jörg

    2013-04-01

    Full Text Available Erosion occurring in equipment dealing with liquid-solid mixtures such as pipeline parts, slurry pumps, liquid-solid stirred reactors and slurry mixers in various industrial applications results in operational failure and economic costs. A slurry erosion tank test rig is designed and was built to investigate the erosion rates of materials and the influencing parameters such as flow velocity and turbulence, flow angle, solid particle concentration, particles size distribution, hardness and target material properties on the material loss and erosion profiles. In the present study, a computational fluid dynamics (CFD tool is used to simulate the erosion rate of sample plates in the liquid-solid slurry mixture in a cylindrical tank. The predictions were made in a steady state and also transient manner, applying the flow at the room temperature and using water and sand as liquid and solid phases, respectively. The multiple reference frame method (MRF is applied to simulate the flow behavior and liquid-solid interactions in the slurry tank test rig. The MRF method is used since it is less demanding than sliding mesh method (SM and gives satisfactory results. The computational domain is divided into three regions: a rotational or MRF zone containing the mixer, a rotational zone (MRF containing the erosion plates and a static zone (outer liquid zone. It is observed that changing the MRF zone diameter and height causes a very low impact on the results. The simulated results were obtained for two kinds of hard metals namely stainless steel and ST-50 under some various operating conditions and are found in good agreement with the experimental results.

  9. Testing IH Instrumentation: Analysis of 1996-1998 Tank Ventilation Data in Terms of Characterizing a Transient Release

    International Nuclear Information System (INIS)

    Droppo, James G.

    2004-01-01

    An analysis is conducted of the 1996-1998 Hanford tank ventilation studies of average ventilation rates to help define characteristics of shorter term releases. This effort is being conducted as part of the design of tests of Industrial Hygiene's (IH) instrumentation ability to detect transient airborne plumes from tanks using current deployment strategies for tank operations. This analysis has improved our understanding of the variability of hourly average tank ventilation processes. However, the analysis was unable to discern the relative importance of emissions due to continuous releases and short-duration bursts of material. The key findings are as follows: (1) The ventilation of relatively well-sealed, passively ventilated tanks appears to be driven by a combination of pressure, buoyancy, and wind influences. The results of a best-fit analysis conducted with a single data set provide information on the hourly emission variability that IH instrumentation will need to detect. (2) Tank ventilation rates and tank emission rates are not the same. The studies found that the measured infiltration rates for a single tank are often a complex function of air exchanges between tanks and air exchanges with outdoor air. This situation greatly limits the usefulness of the ventilation data in defining vapor emission rates. (3) There is no evidence in the data to discern if the routine tank vapor releases occur over a short time (i.e., a puff) or over an extended time (i.e., continuous releases). Based on this analysis of the tank ventilation studies, it is also noted that (1) the hourly averaged emission peaks from the relatively well-sealed passively-vented tanks (such as U-103) are not a simple function of one meteorological parameter--but the peaks often are the result of the coincidence of temporal maximums in pressure, temperature, and wind influences and (2) a mechanistic combination modeling approach and/or field studies may be necessary to understand the short

  10. Los Alamos National Laboratory environmental restoration program group audit report for underground storage tank removal: Audit ER-92- 04, July 22--August 11, 1992

    International Nuclear Information System (INIS)

    Gillespie, P.F.

    1992-01-01

    Audit ER-92-04 was conducted on activities being performed by Waste Management (EM-7), Environmental Protection (EM-8), and Environmental Restoration (EM-13) groups for the LANL's underground storage tank removal program. Scope of the audit was limited to an evaluation of the implementation of the State of New Mexico requirements for underground storage-tank removal. Activities were evaluated using requirements specified in the State of New Mexico Environmental Improvement Board Underground Storage Tank Regulations, EIB/USTR. Two recommendations are made: (1) that a single organization be given the responsibility and authority for the implementation of the program, and (2) that the requirements of the NM State environmental improvement board underground storage tank regulations be reviewed and a Los Alamos procedure written to address requirements and interfaces not contained in SOP-EM7-D ampersand D-001

  11. Lower Colorado River GRP Leaking Underground Storage Tank Sites (Open), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  12. Lower Colorado River GRP Leaking Underground Storage Tank Sites (Closed), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  13. Heissdampfreaktor (HDR) steel-containment-vessel and floodwater-storage-tank structural-dynamics tests

    International Nuclear Information System (INIS)

    Arendts, J.G.

    1982-01-01

    Inertance (vibration) testing of two significant vessels at the Heissdampfreaktor (HDR) facility, located near Kahl, West Germany, was recently completed. Transfer functions were obtained for determination of the modal properties (frequencies, mode shapes and damping) of the vessels using two different test methods for comparative purposes. One of the vessels tested was the steel containment vessel (SCV). The SCV is approximately 180 feet high and 65 feet in diameter with a 1.2-inch wall thickness. The other vessel, called the floodwater storage tank (FWST), is a vertically standing vessel approximately 40 feet high and 10 feet in diameter with a 1/2-inch wall thickness. The FWST support skirt is square (in plan views) with its corners intersecting the ellipsoidal bottom head near the knuckle region

  14. Simulant Development for Hanford Tank Farms Double Valve Isolation (DVI) Valves Testing

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.

    2012-12-21

    Leakage testing of a representative sample of the safety-significant isolation valves for Double Valve Isolation (DVI) in an environment that simulates the abrasive characteristics of the Hanford Tank Farms Waste Transfer System during waste feed delivery to the Waste Treatment and Immobilization Plant (WTP) is to be conducted. The testing will consist of periodic leak performed on the DVI valves after prescribed numbers of valve cycles (open and close) in a simulated environment representative of the abrasive properties of the waste and the Waste Transfer System. The valve operations include exposure to cycling conditions that include gravity drain and flush operation following slurry transfer. The simulant test will establish the performance characteristics and verify compliance with the Documented Safety Analysis. Proper simulant development is essential to ensure that the critical process streams characteristics are represented, National Research Council report “Advice on the Department of Energy's Cleanup Technology Roadmap: Gaps and Bridges”

  15. Final Environmental Assessment for the Transfer of the Mukilteo Tank Farm Property Snohomish County, Washington

    Science.gov (United States)

    2012-10-01

    terms of level of service (LOS). The LOS is a qualitative description of traffic flow based on such factors as speed, travel time, delay, and...south to Whidbey Island on the north. It provides one basic lane in each direction of travel ; however, in the vicinity of the Mukilteo Tank Farm...Wildlife, 2006). 3.7.2 Ground Water The Mukilteo Tank Farm Property overlies the Intercity Plateau Aquifer, an unconsolidated sand and gravel aquifer

  16. Playing science? Environmentally focused think tanks and the new scientific paradigm

    OpenAIRE

    Douglass, Kimberly L.; Tanner, Sarah

    2012-01-01

    Although research published by think tanks is generally studied for its contributions to policy discourses, this study finds that think tank–authored studies also affect scientific scholarly communications. Think tanks clearly represent political interests. However, this study shows that their exclusion from scientific rhetoric is not a matter of their failing to meet the community’s standards; it is a matter of ideology, which helps maintain a socially constructed boundary betwee...

  17. Inerting of a Vented Aircraft Fuel Tank Test Article with Nitrogen-Enriched Air

    National Research Council Canada - National Science Library

    Burns, Michael

    2001-01-01

    ...) required to inert a vented aircraft fuel tank. NEA, generated by a hollow fiber membrane gas separation system, was used to inert a laboratory fuel tank with a single vent on top designed to simulate a transport category airplane fuel tank...

  18. Treatability Study Operational Testing Program and Implementation Plan for the Gunite and Associated Tanks at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-09-01

    To support future decision making of the Gunite and Associated Tanks (GAAT) Operable Unit (OU) remedy selection, the Department of Energy (DOE) is performing a Treatability Study (TS), consistent with the EPA guidance for Comprehensive Environmental Response, compensation, and Liability Act (CERCLA) treatability studies. The study will inform stakeholders about various waste removal technologies and the cost of potential remediation approaches, particularly the cost associated with sluicing and the reduction in risk to human health and the environment from tank content removal. As part of the GAAT OU remedy, a series of studies and technology tests will be preformed. These may address one or more of the following areas, characterization, removal, treatment, and transfer of wastes stored in the GAAT OU

  19. Treatability Study Operational Testing Program and Implementation Plan for the Gunite and Associated Tanks at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    To support future decision making of the Gunite and Associated Tanks (GAAT) Operable Unit (OU) remedy selection, the Department of Energy (DOE) is performing a Treatability Study (TS), consistent with the EPA guidance for Comprehensive Environmental Response, compensation, and Liability Act (CERCLA) treatability studies. The study will inform stakeholders about various waste removal technologies and the cost of potential remediation approaches, particularly the cost associated with sluicing and the reduction in risk to human health and the environment from tank content removal. As part of the GAAT OU remedy, a series of studies and technology tests will be preformed. These may address one or more of the following areas, characterization, removal, treatment, and transfer of wastes stored in the GAAT OU.

  20. Observatories, think tanks, and community models in the hydrologic and environmental sciences: How does it affect me?

    Science.gov (United States)

    Torgersen, Thomas

    2006-06-01

    Multiple issues in hydrologic and environmental sciences are now squarely in the public focus and require both government and scientific study. Two facts also emerge: (1) The new approach being touted publicly for advancing the hydrologic and environmental sciences is the establishment of community-operated "big science" (observatories, think tanks, community models, and data repositories). (2) There have been important changes in the business of science over the last 20 years that make it important for the hydrologic and environmental sciences to demonstrate the "value" of public investment in hydrological and environmental science. Given that community-operated big science (observatories, think tanks, community models, and data repositories) could become operational, I argue that such big science should not mean a reduction in the importance of single-investigator science. Rather, specific linkages between the large-scale, team-built, community-operated big science and the single investigator should provide context data, observatory data, and systems models for a continuing stream of hypotheses by discipline-based, specialized research and a strong rationale for continued, single-PI ("discovery-based") research. I also argue that big science can be managed to provide a better means of demonstrating the value of public investment in the hydrologic and environmental sciences. Decisions regarding policy will still be political, but big science could provide an integration of the best scientific understanding as a guide for the best policy.

  1. Electromagnetic Environmental Effects System Testing

    Science.gov (United States)

    2013-11-20

    localized ( spot ) illumination is adequate to evaluate potential responses by illuminating specific apertures, cables and subsystems. At these...the EMC testing. The Battlefield Functional Area Control System (BFACS), Force XXI Blue Force Tracker (BFT), routers, hubs, switches, etc, are... Laser Printer F1 F1 F1 G G G G G G G G G G G G G G G G G G G G G G G G G G Embedded Training Module F1 F1 F1 G G G G G G G G G G G G G G G G G G G G G

  2. Nevada Test Site Environmental Report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    The Nevada Test Site Environmental Report 2009 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ Nevada Test Site Environmental Reports (NTSERs) are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx. This NTSER was prepared to satisfy DOE Order DOE O 231.1A, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NSO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NTSER summarizes data and compliance status for calendar year 2009 at the Nevada Test Site (NTS) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory (RSL)-Nellis. It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR). Through a Memorandum of Agreement, NNSA/NSO is responsible for the oversight of TTR ER projects, and the Sandia Site Office of NNSA (NNSA/SSO) has oversight of all other TTR activities. NNSA/SSO produces the TTR annual environmental report available at http://www.sandia.gov/news/publications/environmental/index.html.

  3. Tank Monitor and Control System sensor acceptance test procedure. Revision 6

    International Nuclear Information System (INIS)

    Scaief, C.C. III.

    1994-01-01

    The purpose of this Acceptance Test Procedure (ATP) is to verify the correct reading of sensor elements connected to the Tank Monitor and Control System (TMACS). The system functional requirements are contained in WHC-SD-WM-RD-013, Rev. 1 (WHC 1992a). This ATP is intended to be used for testing of the connection of existing temperature sensors, new temperature sensors, pressure sensing equipment, new Enraf level gauges, sensors that generate a current output, and discrete (on/off) inputs. The TMACS operation was verified by the original ATP (WHC 1991 c). It is intended that this ATP will be used each time sensors are added to the system. As a result, the data sheets have been designed to be generic

  4. Isotopic method of testing the dynamics of melt flow through a sedimentation tank

    International Nuclear Information System (INIS)

    Bazaniak, Z.; Chamer, R.; Stec, J.; Przybytniak, W.

    1981-01-01

    The isotopic method of a simultaneous measurement of copper matte and slag flow parameters is discussed. For marking Cu-64 and Zr 95/97, isotopes characterized by various gamma radiation energy are used. The chemical form of copper and zirconium compounds was chosen from the viewpoint of assuring a selective solubility in the tested phases. To interpret the results of isotopic tests, the Wolf-Resnick model was made. The obtained results have confirmed the hypothesis of a possible occurrence of the copper matte flotation effect. In order to reduce of copper uplifted with the shaft slag, a redesigning is suggested of the sedimentation tank that would assure a reduction of the ideal mixing participation and an increase of the zone characterized by the piston flow. (author)

  5. Nevada Test Site Environmental Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2005-10-01

    The ''Nevada Test Site Environmental Report 2004'' was prepared by Bechtel Nevada (BN) to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of non-radiological releases, implementation status of the NTS Environmental Management System, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled ''Nevada Test Site Environmental Report Summary 2004''. It was produced this year to provide a more cost-effective and wider distribution of a hardcopy summary of the ''Nevada Test Site Environmental Report 2004'' to interested DOE stakeholders.

  6. CRUCIBLE TESTING OF TANK 48H RADIOACTIVE WASTE SAMPLE USING FLUIDIZED BED STEAM REFORMING TECHNOLOGY FOR ORGANIC DESTRUCTION

    International Nuclear Information System (INIS)

    Crawford, C

    2008-01-01

    The purpose of crucible scale testing with actual radioactive Tank 48H material was to duplicate the test results that had been previously performed on simulant Tank 48H material. The earlier crucible scale testing using simulants was successful in demonstrating that bench scale crucible tests produce results that are indicative of actual Fluidized Bed Steam Reforming (FBSR) pilot scale tests. Thus, comparison of the results using radioactive Tank 48H feed to those reported earlier with simulants would then provide proof that the radioactive tank waste behaves in a similar manner to the simulant. Demonstration of similar behavior for the actual radioactive Tank 48H slurry to the simulant is important as a preliminary or preparation step for the more complex bench-scale steam reformer unit that is planned for radioactive application in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF) later in 2008. The goals of this crucible-scale testing were to show 99% destruction of tetraphenylborate and to demonstrate that the final solid product produced is sodium carbonate. Testing protocol was repeated using the specifications of earlier simulant crucible scale testing, that is sealed high purity alumina crucibles containing a pre-carbonated and evaporated Tank 48H material. Sealing of the crucibles was accomplished by using an inorganic 'nepheline' sealant. The sealed crucibles were heat-treated at 650 C under constant argon flow to inert the system. Final product REDOX measurements were performed to establish the REDuction/OXidation (REDOX) state of known amounts of added iron species in the final product. These REDOX measurements confirm the processing conditions (pyrolysis occurring at low oxygen fugacity) of the sealed crucible environment which is the environment actually achieved in the fluidized bed steam reformer process. Solid product dissolution in water was used to measure soluble cations and anions, and to investigate insoluble

  7. Aluminum Removal And Sodium Hydroxide Regeneration From Hanford Tank Waste By Lithium Hydrotalcite Precipitation Summary Of Prior Lab-Scale Testing

    International Nuclear Information System (INIS)

    Sams, T.L.; Guillot, S.

    2011-01-01

    Scoping laboratory scale tests were performed at the Chemical Engineering Department of the Georgia Institute of Technology (Georgia Tech), and the Hanford 222-S Laboratory, involving double-shell tank (DST) and single-shell tank (SST) Hanford waste simulants. These tests established the viability of the Lithium Hydrotalcite precipitation process as a solution to remove aluminum and recycle sodium hydroxide from the Hanford tank waste, and set the basis of a validation test campaign to demonstrate a Technology Readiness Level of 3.

  8. Leach and EP [extraction procedure] toxicity tests on grouted waste from Tank 106-AN

    International Nuclear Information System (INIS)

    Serne, R.J.; Martin, W.J.; Lokken, R.O.; LeGore, V.L.; Lindenmeier, C.W.; Martin, P.F.C.

    1989-09-01

    Pacific Northwest Laboratory is conducting laboratory experiments to produce leach rate data for various waste species that will be contained in grout at Hanford. In the work reported here, grout made from Tank 106-AN liquid waste was used to produce empirical leach rate data for several radionuclides ( 60 Co, 90 Sr, 99Tc, 129I, 137Cs, and 241 Am), stable major components (NO 3 - , NO 2 - , F, Cl, and Na), and trace metals (Cr, Mo, and Ni). Two types of tests were used to produce leach rate data: an intermittent replacement leach test (ANS 16.1 leach test) and a static leach test. Measured effective diffusivities of key species are as follows: 4 to 6 x 10 -8 cm 2 /sec for 99 Tc, 3 to 7 x 10 -8 cm 2 /sec for 129 I, 4 to 6 x 10 -9 cm 2 /sec for nitrate, and 6 to 7 x 10 -9 cm 2 /sec for nitrite. The leach indices of all species studied are above (more favorable than) the waste form criteria. The leach indices for 99 Tc and 129 I are 7.4 ± 1.2 and 7.6 ± 0.4, respectively, and are being further investigated in continuing studies of double-shell slurry feed grouts. An Extraction Procedure (EP) toxicity test was also conducted and the grouted water is considered nontoxic per this test protocol. 19 refs., 9 figs., 8 tabs

  9. Environmental Assessment for the Closure of the High-Level Waste Tanks in F- and H-Areas at the Savannah River Site

    International Nuclear Information System (INIS)

    1996-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authority of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria described in 40

  10. Environmental Assessment for the Closure of the High-Level Waste Tanks in F- & H-Areas at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1996-07-31

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authority of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria described in 40

  11. Numerical and tank test of a pivoted floating device for wave energy

    International Nuclear Information System (INIS)

    Coiro, Domenico P.; Calise, Giuseppe; Bizzarrini, Nadia; Troise, Giancarlo

    2015-01-01

    In this paper a system for extracting energy from waves is presented. The present work deals with numerical and experimental tests on a scaled model, performed in the DII towing tank facility. The device is made up of a floating body, which oscillates due to waves, and of a linear electromechanical generator. The electromechanical generator, based on ball-bearing screw, is linked both to the buoyant body and a fixed frame, converting relative movements of its anchor point in electrical power. Numerical analyses on such device have been performed in order to evaluate critical parameters for the system optimization, including analytical study of the system, potential flow and computational fluid dynamics (CFD) simulations, based on Reynolds Averaged Navier-Stokes (RANS), as well. [it

  12. Model-Free Autotuning Testing on a Model of a Three-Tank Cascade

    Directory of Open Access Journals (Sweden)

    Stanislav VRÁNA

    2009-06-01

    Full Text Available A newly developed model-free autotuning method based on frequency response analysis has been tested on a laboratory set-up that represents a physical model of a three-tank cascade. This laboratory model was chosen for the following reasons: a the laboratory model was ready for computer control; b simultaneously, computer simulation could be effectively utilized, because a mathematical description of the cascade based on quite exactly valid relations was available; c the set-up provided the necessary degree of nonlinearity and changeable properties. The improvement of the laboratory set-up instrumentation presented here was necessary because the results obtained from the first experimental identification did not correspond to the results provided by the simulation. The data was evidently imprecise, because the available sensors and the conditions for process settling were inadequate.

  13. Hanford Immobilized LAW Product Acceptance: Tanks Focus Area Testing Data Package II

    International Nuclear Information System (INIS)

    Schulz, Rebecca L.; Lorier, Troy H.; Peeler, David K.; Brown, Kevin G.; Reamer, Irene A.; Vienna, John D.; Jiricka, Antonin; Jorgensen, Benaiah M.; Smith, Donald E.

    2001-01-01

    This report is a continuation of the Hanford Immobilized Low Activity Waste (LAW) Product Acceptance (HLP): Initial Tanks Focus Area Testing Data Package (Vienna (and others) 2000). In addition to new 5000-h product consistency test (PCT), vapor hydration test (VHT), and alteration products data, some previously reported data together with relevant background information are included for an easily accessible source of reference when comparing the response of the various glasses to different test conditions. A matrix of 55 glasses was developed and tested to identify the impact of glass composition on long-term corrosion behavior and to develop an acceptable composition region for Hanford LAW glasses. Of the 55 glasses, 45 were designed to systematically vary the glass composition, and 10 were selected because large and growing databases on their corrosion characteristics had accumulated. The targeted and measured compositions of these glasses are found in the Appendix A. All glasses were fabricated according to standard procedures and heat treated to simulate the slow cooling that will occur in a portion of the waste glass after vitrification in the planned treatment facility at Hanford

  14. Development and testing of single-shell tank waste retrieval technologies: Milestone M-45-01 summary report

    International Nuclear Information System (INIS)

    Shen, E.J.

    1994-08-01

    This report summarizes the activities undertaken to develop single-shell tank (SST) waste retrieval technology and complete scale-model testing. Completion of these activities fulfills the commitment of Milestone M-45-01 of the Hanford Federal Facility Agreement and Consent Order (the Tri-Party Agreement). Initial activities included engineering studies that compiled and evaluated data on all known retrieval technologies. Based on selection criteria incorporating regulatory, safety, and operational issues, several technologies were selected for further evaluation and testing. The testing ranged from small-scale, bench-top evaluations of individual technologies to full-scale integrated tests of multiple subsystems operating concurrently as a system using simulated wastes. The current baseline retrieval method for SSTs is hydraulic sluicing. This method has been used successfully in the past to recover waste from SSTs. Variations of this hydraulic or ''past practice'' sluicing may be used to retrieve the waste from the majority of the SSTs. To minimize the potential for releases to the soil, arm-based retrieval systems may be used to recover waste from tanks that are known or suspected to have leaked. Both hydraulic sluicing and arm-based retrieval will be demonstrated in the first SST. Hydraulic sluicing is expected to retrieve most of the waste, and arm-based retrieval will retrieve wastes that remain after sluicing. Subsequent tanks will be retrieved by either hydraulic sluicing or arm-based methods, but not both. The method will be determined by waste characterization, tank integrity (leak status), and presence of in-tank hardware. Currently, it is assumed that approximately 75% of all SSTs will be retrieved by hydraulic sluicing and the remaining tanks by arm-based methods

  15. Towing Tank and Flume Testing of Passively Adaptive Composite Tidal Turbine Blades: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robynne [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ordonez-Sanchez, Stephanie [University of Strathclyde; Porter, Kate E. [University of Strathclyde; Johnstone, Cameron M. [University of Strathclyde; Doman, Darrel A. [Dalhousie University; Pegg, Michael J. [Dalhousie University

    2017-09-28

    Composite tidal turbine blades with bend-twist (BT) coupled layups allow the blade to self-adapt to local site conditions by passively twisting. Passive feathering has the potential to increase annual energy production and shed thrust loads and power under extreme tidal flows. Decreased hydrodynamic thrust and power during extreme conditions meann that the turbine support structure, generator, and other components can be sized more appropriately, resulting in a higher utilization factor and increased cost effectiveness. This paper presents new experimental data for a small-scale turbine with BT composite blades. The research team tested the turbine in the Kelvin Hydrodynamics Laboratory towing tank at the University of Strathclyde in Glasgow, United Kingdom, and in the recirculating current flume at the l Institut Francais de Recherche pour l Exploitation de la Mer Centre in Boulogne-sur-Mer, France. Tests were also performed on rigid aluminum blades with identical geometry, which yielded baseline test sets for comparison. The results from both facilities agreed closely, supporting the hypothesis that increased blade flexibility can induce load reductions. Under the most extreme conditions tested the turbine with BT blades had up to 11 percent lower peak thrust loads and a 15 percent reduction in peak power compared to the turbine with rigid blades. The load reductions varied as a function of turbine rotational velocity and ambient flow velocity.

  16. Alpha Fuels Environmental Test Facility impact gun

    International Nuclear Information System (INIS)

    Anderson, C.G.

    1978-01-01

    The Alpha Fuels Environmental Test Facility (AFETF) impact gun is a unique tool for impact testing 238 PuO 2 -fueled heat sources of up to 178-mm dia at velocities to 300 m/s. An environmentally-sealed vacuum chamber at the muzzle of the gun allows preheating of the projectile to 1,000 0 C. Immediately prior to impact, the heat source projectile is completely sealed in a vacuum-tight catching container to prevent escape of its radioactive contents should rupture occur. The impact velocity delivered by this gas-powered gun can be regulated to within +-2%

  17. Corrosion testing of a degraded moderator: L-Area Tuff Tanks

    International Nuclear Information System (INIS)

    Mickalonis, J.I.

    2000-01-01

    Based on test results, storage of the degraded moderator in 55-gallon 304L drums (0.065 inches thick) would not cause failure by general corrosion for up to 5 plus years storage. Acidic degraded moderator was temporarily stored in Tuff Tanks located in L-area. The moderator characteristics included a D 2 O content of 5.02--5.33%, a pH of 1.25--1.31, a conductivity of 29,300--31,200 m mhos/cm, tritium activity of 114--141 m Ci/mL, and levels of approximately 6,000 ppm for chloride and 500 ppm for chromium. The compatibility of the degraded with AISI Type 304L stainless steel (304L) was investigated in this study. Following ASTM standard practice, coupon immersion tests were conducted in both treated and untreated moderator. Treatment included the addition of either a 40 wt % NaOH solution, distilled water to serially dilute the chloride, or concentrated nitric acid to increase the nitrate concentration. Type 304L stainless steel exposed to the Tuff Tank moderator was found from these tests to: have a general corrosion rate of less than 5 mils per year (mpy) for 304L plate, which bounds that of the 304L storage drum, passivate at chloride concentrations up to 5,000 ppm for 304L sheet, resist corrosion for nitrate/chloride ratios ranging from 0.1 to 1,000, and be susceptible to crevice corrosion. Based on these test results, storage of the degraded moderator in 55-gallon 304L drums (0.065 inch thick) would not cause failure by general corrosion for up to 5+ years storage. The chloride concentration, [Cl], in the degraded moderator has been measured up to 6000 ppm. The potential or risk for aggressive localized attack of 304L increases with [Cl] concentration. A qualitative range is as follows: [Cl minus ] minus ] minus ] < 600 ppm, reasonable resistance, medium risk. The degraded moderator should be treated to reduce the chloride concentration to reduce the potential for localized corrosion and the risk for a leakage failure of the drum. A good practice would be to

  18. Thermal test of the insulation structure for LH 2 tank by using the large experimental apparatus

    Science.gov (United States)

    Kamiya, S.; Onishi, K.; Konshima, N.; Nishigaki, K.

    Conceptual designs of large mass LH 2 (liquid hydrogen) storage systems, whose capacity is 50,000 m3, have been studied in the Japanese hydrogen project, World Energy Network (WE-NET) [K. Fukuda, in: WE-NET Hydrogen Energy Symposium, 1999, P1-P41]. This study has concluded that their thermal insulation structures for the huge LH 2 tanks should be developed. Their actual insulation structures comprise not only the insulation material but also reinforced members and joints. To evaluate their thermal performance correctly, a large test specimen including reinforced members and joints will be necessary. After verifying the thermal performance of a developed large experimental apparatus [S. Kamiya, Cryogenics 40 (1) (2000) 35] for measuring the thermal conductance of various insulation structures, we tested two specimens, a vacuum multilayer insulation (MLI) with a glass fiber reinforced plastic (GFRP) support and a vacuum solid insulation (microtherm ®) with joints. The thermal background test for verifying the thermal design of the experimental apparatus showed that the background heat leak is 0.1 W, small enough to satisfy apparatus performance requirement. The thermal conductance measurements of specimens also showed that thermal heat fluxes of MLI with a GFRP support and microtherm ® are 8 and 5.4 W/m2, respectively.

  19. Environmental effects on metal structures and connection in NFS waste tanks

    International Nuclear Information System (INIS)

    1977-12-01

    The integrity of the existing NFS high-level waste tanks was evaluated, based upon information available in the literature. Failure modes were identified and analyzed. The occurrence of stress-corrosion cracking (SCC) was established as the most probable failure mechanism. Factors that would minimize the occurrence of SCC were identified as post-welding stress relief and control of the NO - 3 -to-NO - 2 ratio within the waste

  20. Radioactive Testing Results in Support of the In-Tank Precipitation Facility - Filtrate Test

    International Nuclear Information System (INIS)

    Hobbs, D.T.

    1998-01-01

    This report documents results investigating the decomposition of excess NaTPB in presence of filtrate from one of the Cycle I Demonstration tests, fulfilling a request by CST Engineering and the ITP Flow Sheet Team

  1. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III, sampled March 28, 1999

    International Nuclear Information System (INIS)

    LOCKREM, L.L.

    1999-01-01

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999

  2. A review of the environmental survivability of telerobotic control sensor systems for use in nuclear waste tanks

    International Nuclear Information System (INIS)

    Holcomb, D.E.; Burks, B.L.

    1994-05-01

    This report was prepared by the Oak Ridge National Laboratory (ORNL) and funded by the Department of Energy (DOE) Office of Technology Development (OTD) Robotics Technology Development Program (RTDP). During the next few years field deployment of remotely operated systems in nuclear waste cleanup operations will increase dramatically as DOE strives to efficiently and safely remediate the many waste storage sites. Typically, the most fragile components in remote systems are the sensors that provide feedback to the operators or to computer control algorithms. The purpose of this review is to determine the availability of environmentally hardened sensors to support control of a manipulator or vehicle system in a waste tank environment. The emphasis of the report is on the environmental ruggedness of currently available sensors. For the purpose of this review a set of nominal requirements for survivability were adopted conditions in the single-shell tanks at Hanford. This report is designed to be a practical guide to the state of the art in commercially available environmentally tolerant sensors for use with robotic systems. It is neither intended to be an exhaustive review of the technical literature on potential measurement techniques nor a complete physical review of the functioning of particular sensor systems. This report is intended to be a living document. As additional, corrected, or updated information is received from sensor manufacturers, it will be incorporated into the report database. The physical report will then be periodically revised and released in updated format. The authors wish to apologize to any sources of environmentally hardened sensors that were omitted during this review and encourage submission of new or updated data

  3. Annual report, spring 2015. Alternative chemical cleaning methods for high level waste tanks-corrosion test results

    Energy Technology Data Exchange (ETDEWEB)

    Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-06

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel when interacted with the chemical cleaning solution composed of 0.18 M nitric acid and 0.5 wt. % oxalic acid. This solution has been proposed as a dissolution solution that would be used to remove the remaining hard heel portion of the sludge in the waste tanks. This solution was combined with the HM and PUREX simulated sludge with dilution ratios that represent the bulk oxalic cleaning process (20:1 ratio, acid solution to simulant) and the cumulative volume associated with multiple acid strikes (50:1 ratio). The testing was conducted over 28 days at 50°C and deployed two methods to invest the corrosion conditions; passive weight loss coupon and an active electrochemical probe were used to collect data on the corrosion rate and material performance. In addition to investigating the chemical cleaning solutions, electrochemical corrosion testing was performed on acidic and basic solutions containing sodium permanganate at room temperature to explore the corrosion impacts if these solutions were to be implemented to retrieve remaining actinides that are currently in the sludge of the tank.

  4. Preliminary Tests in the NACA Tank to Investigate the Fundamental Characteristics of Hydrofoils

    Science.gov (United States)

    Ward, Kenneth E.; Land, Norman S.

    1940-01-01

    This preliminary investigation was made to study the hydrodynamic properties and general behavior of simple hydrofoils. Six 5- by 30-inch plain, rectangular hydrofoils were tested in the NACA tank at various speeds, angles of attack and depths below the water surface. Two of the hydrofoils had sections representing the sections of commonly used airfoils, one had a section similar to one developed Guidoni for use with hydrofoil-equipped seaplane floats, and three had sections designed to have constant chordwise pressure distributions at given values of the lift coefficient for the purpose of delaying the speed at which cavitation begins. The experimental results are presented as curves of the lift and drag coefficients plotted against speed for the various angles of attack and depths for which the hydrofoils were tested. A number of derived curves are included for the purpose of better comparing the characteristics of the hydrofoils and to show the effects of depth. Several representative photographs show the development of cavitation on the the upper surface of the hydrofoils. The results indicate that properly designed hydrofoil sections will have excellent characteristics and that the speed at which cavitation occurs may be delayed to an appreciable extent by the use of suitable sections.

  5. SRS environmental technology development field test platform

    International Nuclear Information System (INIS)

    Riha, B.D.; Rossabi, J.; Eddy-Dilek, C.A.

    1995-01-01

    A critical and difficult step in the development and implementation of new technologies for environmental monitoring and characterization is successfully transferring these technologies to industry and government users for routine assessment and compliance activities. The Environmental Sciences Section of the DOE Savannah River Technology Center provides a forum for developers, potential users, and regulatory organizations to evaluate new technologies in comparison with baseline technologies in a well characterized field test bed. The principal objective of this project is to conduct comprehensive, objective field tests of monitoring and characterization technologies that are not currently used in EPA standard methods and evaluate their performance during actual operating conditions against baseline methods. This paper provides an overview of the field test site and a description of some of the technologies demonstrated at the site including their field applications

  6. New Environmental Testing Capabilities at INTA

    Science.gov (United States)

    Olivo, Esperanza; Hernandez, Daniel; Garranzo, Daniel; Barandiaran, Javier; Reina, Manuel

    2012-07-01

    In this paper we aim to present and describe the facilities for aerospace environmental testing at INTA; the Spanish National Institute for Aerospace Technique with emphasis on the Thermal Vacuum testing facility with dimensions 4 m x 4 m x 4 m and a temperature range from +150oC to -175 oC and 10-6 vacuum conditions with the new Thermo Elastic Distortion (TED) measurement capability designed at INTA. It will be presented the validation data for the empty chamber, with specimens such a 3m diameter reflector and antenna towers for both, thermal cycling and TED measurements. For TED, it will be shown the feasibility study and the solution finally selected. Apart from those, it will be shown other complementary facilities for environmental testing such as 320 (2x160) kN dual shaker with a new 3 m x 3 m sliding table and other complementary facilities.

  7. Nevada Test Site Environmental Report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada

    2004-10-01

    The Nevada Test Site Environmental Report 2003 was prepared by Bechtel Nevada to meet the requirements and guidelines of the U.S. Department of Energy and the information needs of the public. This report is meant to be useful to members of the public, public officials, regulators, and Nevada Test Site contractors. The Executive Summary strives to present in a concise format the purpose of the document, the NTS mission and major programs, a summary of radiological releases and doses to the public resulting from site operations, a summary of non-radiological releases, and an overview of the Nevada Test Site Environmental Management System. The Executive Summary, combined with the following Compliance Summary, are written to meet all the objectives of the report and to be stand-alone sections for those who choose not to read the entire document.

  8. Nevada Test Site Environmental Report 2007 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). The NTS is the nation's historical testing site for nuclear weapons from 1951 through 1992 and is currently the nation's unique site for ongoing national-security related missions and high-risk operations. NNSA/NSO strives to provide to the public an understanding of the current activities on the NTS, including environmental monitoring and compliance activities aimed at protecting the public and the environment from radiation hazards and from nonradiological impacts. This document is a summary of the Nevada Test Site Environmental Report (NTSER) for calendar year 2007 (see attached compact disc on inside back cover). The NTSER is a comprehensive report of environmental activities performed at the NTS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. To provide an abbreviated and more readable version of the NTSER, this summary report is produced. This summary does not include detailed data tables, monitoring methods or design, a description of the NTS environment, or a discussion of all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  9. Nevada Test Site Environmental Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

  10. Nevada Test Site Environmental Report 2008 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

  11. Test procedure for use of the shear vane in tanks 103-SY, 103-AN, and 103-AW

    International Nuclear Information System (INIS)

    LeClair, M.D.; Waters, E.

    1995-01-01

    This is a record copy of a test procedure for application of the full-scale shear vane to underground waste tanks at Hanford. The introduction of the report provides background information on the development and proof-testing of the shear vane, as well as information about its current location. The document was originally prepared in 1988, and the work as shelved temporarily for lack of funds. Activities to utilize the shear vane will be expedited by use of this information

  12. Nevada Test Site Environmental Report Summary 2009

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). NNSA/NSO prepares the Nevada Test Site Environmental Report (NTSER) to provide the public an understanding of the environmental monitoring and compliance activities that are conducted on the NTS to protect the public and the environment from radiation hazards and from nonradiological impacts. The NTSER is a comprehensive report of environmental activities performed at the NTS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. This summary provides an abbreviated and more readable version of the NTSER. It does not contain detailed descriptions or presentations of monitoring designs, data collection methods, data tables, the NTS environment, or all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  13. Underground storage tanks

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Environmental contamination from leaking underground storage tanks poses a significant threat to human health and the environment. An estimated five to six million underground storage tanks containing hazardous substances or petroleum products are in use in the US. Originally placed underground as a fire prevention measure, these tanks have substantially reduced the damages from stored flammable liquids. However, an estimated 400,000 underground tanks are thought to be leaking now, and many more will begin to leak in the near future. Products released from these leaking tanks can threaten groundwater supplies, damage sewer lines and buried cables, poison crops, and lead to fires and explosions. As required by the Hazardous and Solid Waste Amendments (HSWA), the EPA has been developing a comprehensive regulatory program for underground storage tanks. The EPA proposed three sets of regulations pertaining to underground tanks. The first addressed technical requirements for petroleum and hazardous substance tanks, including new tank performance standards, release detection, release reporting and investigation, corrective action, and tank closure. The second proposed regulation addresses financial responsibility requirements for underground petroleum tanks. The third addressed standards for approval of state tank programs

  14. Results of the Characterization and Dissolution Tests of Samples from Tank 16H

    International Nuclear Information System (INIS)

    Hay, M.S.

    1999-01-01

    Samples from Tank 16H annulus and one sample from the tank interior were characterized to provide a source term for use in fate and transport modeling. Four of the annulus samples appeared to be similar based on visual examination and were combined to form a composite. One of the annulus samples appeared to be different from the other four based on visual examination and was analyzed separately. The analytical results of the tank interior sample indicate the sample is composed predominantly of iron containing compounds. Both of the annulus samples are composed mainly of sodium salts, however, the composite sample contained significantly more sludge/sand material of low solubilitity. The characterization of the tank 16H annulus and tank interior samples was hampered by the high dose rate and the nature of the samples. The difficulties resulted in large uncertainties in the analytical data. The large uncertainties coupled with the number of important species below detection limits indicate the need for reanalysis of the Tank 16H samples as funding becomes available. Recommendations on potential remedies for these difficulties are provided. In general, none of the reagents appeared to be effective in dissolving the composite sample even after two contacts at elevated temperature. In contrast to the composite sample, all of the reagents dissolved a large percentage of the HTF-087 solids after two contacts at ambient temperature

  15. Launch Environmental Test for KITSAT-3 FM

    Directory of Open Access Journals (Sweden)

    Sang-Hyun Lee

    1999-06-01

    Full Text Available The satellite experiences the severe launch environment such as vibration, acceleration, shock, and acoustics induced by rocket. Therefore, the satellite should be designed and manufactured to endure such severe launch environments. In this paper, we describe the structure of the KITSAT-3 FM(Flight Model and the processes and results of the launch environmental test to ensure the reliability during launch period.

  16. Environmental assessment report: Nuclear Test Technology Complex

    International Nuclear Information System (INIS)

    Tonnessen, K.; Tewes, H.A.

    1982-08-01

    The US Department of Energy (USDOE) is planning to construct and operate a structure, designated the Nuclear Test Technology Complex (NTTC), on a site located west of and adjacent to the Lawrence Livermore National Laboratory. The NTTC is designed to house 350 nuclear test program personnel, and will accommodate the needs of the entire staff of the continuing Nuclear Test Program (NTP). The project has three phases: land acquisition, facility construction and facility operation. The purpose of this environmental assessment report is to describe the activities associated with the three phases of the NTTC project and to evaluate potential environmental disruptions. The project site is located in a rural area of southeastern Alameda County, California, where the primary land use is agriculture; however, the County has zoned the area for industrial development. The environmental impacts of the project include surface disturbance, high noise levels, possible increases in site erosion, and decreased air quality. These impacts will occur primarily during the construction phase of the NTTC project and can be mitigated in part by measures proposed in this report

  17. Similarity analysis applied to the design of scaled tests of hydraulic mitigation methods for Tank 241-SY-101

    International Nuclear Information System (INIS)

    Liljegren, L.M.

    1993-02-01

    The episodic gas releases from Tank 241-SY-101 (SY-101) pose a potential safety hazard. It is thought that gas releases occur because gases are generated and trapped in layers of settled solids located at the bottom of the tank. This document focuses on issues associated with testing of hydraulic mitigation technologies proposed for SY-101. The basic assumption underlying the concept of hydraulic mitigation is that mobilization or maintained suspension of the solids settled in the bottom of the tank wig prevent gas accumulation. Engineering of hydraulic technologies will require testing to determine the operating parameters required to mobilize the solids and to maintain these solids in suspension. Because full scale testing is extremely expensive (even when possible), scaled tests are needed to assess the merit of the proposed technologies and to provide data for numerical or analytical modeling. This research is conducted to support testing and evaluation of proposed hydraulic mitigation concepts only. The work here is oriented towards determining the jet velocities, nozzle sizes, and other operating parameters required to mobilize the settled solids in SY- 101 and maintain them in suspension

  18. A Test Study to Display Buried Anti-Tank Landmines with GPR and Research Soil Characteristics with CRS

    Science.gov (United States)

    Kadioglu, Selma; Kagan Kadioglu, Yusuf

    2014-05-01

    An anti-tank mine (AT mine) is a type of land mine designed to damage or destroy vehicles including tanks and armored fighting vehicles. Anti-tank mines typically have a much larger explosive charge, and a fuze designed only to be triggered by vehicles or, in some cases, tampering with the mine. There are a lot of AT mine types. In our test study, MK4 and MK5 AT mine types has been used. The Mk 5 was a cylindrical metal cased U.K. anti-tank blast mine that entered service in 1943, during the Second World War. General Specifications of them are 203 mm diameter, 127 mm height, 4.4-5.7 kg weight, 2.05-3.75 kg of TNT explosive content and 350 lbs operating pressure respectively. The aims of the test study were to image anti-tank landmine with GPR method and to analyse the soil characteristics before the mines made explode and after made be exploded and determine changing of the soil characteristics. We realized data measurement on the real 6 unexploded anti-tank landmine buried approximately 15 cm in depth. The mines spaced 3 m were buried in two lines. Space between lines was 1.5 m. We gathered data on the profiles, approximately 7 m, with a Ramac CUII system and 800 MHz shielded antenna. We collected soil samples on the mines, near and around the mines, on the area in village. We collected soil samples before exploding and after exploding mines. We imaged anti-tank landmines on the depth slices of the GPR data and in their interactive transparent 3D subsets successfully. We used polarized microscope and confocal Raman spectroscopy (CRS) to identify soil characteristic before and after exploitation. The results presented that GPR method and its 3D imaging were successful to determine AT mines, and there was no important changing on mineralogical and petrographical characterization of the soil before and after exploding processing. This project has been supported by Ankara University under grant no 11B6055002. The study is a contribution to the EU funded COST action TU

  19. Field Testing of Environmentally Friendly Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    David Burnett

    2009-05-31

    The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

  20. Extraction, -scrub, -strip test results from the interim salt disposition program macrobatch 10 tank 21H qualification samples

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-26

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 10 for the Interim Salt Disposition Program (ISDP). The Salt Batch 10 characterization results were previously reported.ii,iii An Extraction, -Scrub, -Strip (ESS) test was performed to determine cesium distribution ratios (D(Cs)) and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Tank Farm Engineering to project a cesium decontamination factor (DF). This test used actual Tank 21H material, and a sample of the NGS Blend solvent currently being used at the Modular Caustic-Side Solvent Extraction Unit (MCU). The ESS test showed acceptable performance with an extraction D(Cs) value of 110. This value is consistent with results from previous salt batch ESS tests using similar solvent formulations. This is better than the predicted value of 39.8 from a recently created D(Cs) model.

  1. Tank 241-AW-101 tank characterization plan

    International Nuclear Information System (INIS)

    Sathyanarayana, P.

    1994-01-01

    The first section gives a summary of the available information for Tank AW-101. Included in the discussion are the process history and recent sampling events for the tank, as well as general information about the tank such as its age and the risers to be used for sampling. Tank 241-AW-101 is one of the 25 tanks on the Flammable Gas Watch List. To resolve the Flammable Gas safety issue, characterization of the tanks, including intrusive tank sampling, must be performed. Prior to sampling, however, the potential for the following scenarios must be evaluated: the potential for ignition of flammable gases such as hydrogen-air and/or hydrogen-nitrous oxide; and the potential for secondary ignition of organic-nitrate/nitrate mixtures in crust layer initiated by the burning of flammable gases or by a mechanical in-tank energy source. The characterization effort applicable to this Tank Characterization Plan is focused on the resolution of the crust burn flammable gas safety issue of Tank AW-101. To evaluate the potential for a crust burn of the waste material, calorimetry tests will be performed on the waste. Differential Scanning Calorimetry (DSC) will be used to determine whether an exothermic reaction exists

  2. Final dimensional test with alu-jig travelling through the CMS Inner vacuum tank

    CERN Multimedia

    Hubert Gerwig

    2001-01-01

    The inner vacuum tank is an object of 13m lenght and 6m diameter that is completely made of stainless steel SS304. To allow insertion of the inner detectors, especially the hadronic calorimeter, a rail at 9 and 3 o'clock position is integral part of the cylindrical tank. To insert, weld and finally machine this rail was a big challenge for the manufacturer. The dummy jig presented on the pictures represents the diameter of the most outer corner of the hadronic calorimeter plus a scintillator and some cables.

  3. Physical modelling and testing in environmental geotechnics

    International Nuclear Information System (INIS)

    Garnier, J.; Thorel, L.; Haza, E.

    2000-01-01

    The preservation of natural environment has become a major concern, which affects nowadays a wide range of professionals from local communities administrators to natural resources managers (water, wildlife, flora, etc) and, in the end, to the consumers that we all are. Although totally ignored some fifty years ago, environmental geotechnics has become an emergent area of study and research which borders on the traditional domains, with which the geo-technicians are confronted (soil and rock mechanics, engineering geology, natural and anthropogenic risk management). Dedicated to experimental approaches (in-situ investigations and tests, laboratory tests, small-scale model testing), the Symposium fits in with the geotechnical domains of environment and transport of soil pollutants. These proceedings report some progress of developments in measurement techniques and studies of transport of pollutants in saturated and unsaturated soils in order to improve our understanding of such phenomena within multiphase environments. Experimental investigations on decontamination and isolation methods for polluted soils are discussed. The intention is to assess the impact of in-situ and laboratory tests, as well as small-scale model testing, on engineering practice. One paper is analysed in INIS data base for its specific interest in nuclear industry. The other ones, concerning the energy, are analyzed in ETDE data base

  4. Physical modelling and testing in environmental geotechnics

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, J.; Thorel, L.; Haza, E. [Laboratoire Central des Ponts et Chaussees a Nantes, 44 - Nantes (France)

    2000-07-01

    The preservation of natural environment has become a major concern, which affects nowadays a wide range of professionals from local communities administrators to natural resources managers (water, wildlife, flora, etc) and, in the end, to the consumers that we all are. Although totally ignored some fifty years ago, environmental geotechnics has become an emergent area of study and research which borders on the traditional domains, with which the geo-technicians are confronted (soil and rock mechanics, engineering geology, natural and anthropogenic risk management). Dedicated to experimental approaches (in-situ investigations and tests, laboratory tests, small-scale model testing), the Symposium fits in with the geotechnical domains of environment and transport of soil pollutants. These proceedings report some progress of developments in measurement techniques and studies of transport of pollutants in saturated and unsaturated soils in order to improve our understanding of such phenomena within multiphase environments. Experimental investigations on decontamination and isolation methods for polluted soils are discussed. The intention is to assess the impact of in-situ and laboratory tests, as well as small-scale model testing, on engineering practice. One paper has been analyzed in INIS data base for its specific interest in nuclear industry.

  5. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes

    Science.gov (United States)

    2013-01-01

    In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene, toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward pumping have been used. Deionized water was used as a liquid phase. With respect to other independent variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data, empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were the most efficient speeds for oxygen mass transfer in the stirred bioreactor. PMID:23369581

  6. Mixer pump test plan for double-shell tank AZ-101. Revision 1

    International Nuclear Information System (INIS)

    Symons, G.A.

    1996-02-01

    Westinghouse Hanford Company has undertaken the task to develop and demonstrate a method of retrieval for double-shell tank waste. Mixer pumps were chosen as the planned method of retrieval for DSTs, based on engineering technology studies, past experience with hydraulic sluicing at the Hanford Site, and experience with mixer pumps at the Westinghouse Savannah River Site

  7. Mixer pump test plan for double-shell tank AZ-101. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Symons, G.A.

    1996-02-01

    Westinghouse Hanford Company has undertaken the task to develop and demonstrate a method of retrieval for double-shell tank waste. Mixer pumps were chosen as the planned method of retrieval for DSTs, based on engineering technology studies, past experience with hydraulic sluicing at the Hanford Site, and experience with mixer pumps at the Westinghouse Savannah River Site.

  8. Results Of Physicochemical Characterization And Caustic Dissolution Tests On Tank 241-C-108 Heel Solids

    International Nuclear Information System (INIS)

    Callaway, W.S.; Huber, H.J.

    2010-01-01

    Based on an ENRAF waste surface measurement taken February 1, 2009, double-shell tank (DST) 241-AN-106 (AN-106) contained approximately 278.98 inches (793 kgal) of waste. A zip cord measurement from the tank on February 1, 2009, indicated a settled solids layer of 91.7 inches in height (280 kgal). The supernatant layer in February 2009, by difference, was approximately 187 inches deep (514 kgal). Laboratory results from AN-106 February 1, 2009 (see Table 2) grab samples indicated the supernatant was below the chemistry limit that applied at the time as identified in HNF-SD-WM-TSR-006, Tank Farms Technical Safety Requirements, Administrative Control (AC) 5.16, 'Corrosion Mitigation Controls.' (The limits have since been removed from the Technical Safety Requirements (TSR) and are captured in OSD-T-151-00007, Operating Specifications for the Double-Shell Storage Tanks.) Problem evaluation request WRPS-PER-2009-0218 was submitted February 9, 2009, to document the finding that the supernatant chemistry for grab samples taken from the middle and upper regions of the supernatant was noncompliant with the chemistry control limits. The lab results for the samples taken from the bottom region of the supernatant met AC 5.16 limits.

  9. RESULTS OF PHYSICOCHEMICAL CHARACTERIZATION AND CAUSTIC DISSOLUTION TESTS ON TANK 241-C-108 HEEL SOLIDS

    Energy Technology Data Exchange (ETDEWEB)

    CALLAWAY WS; HUBER HJ

    2010-07-01

    Based on an ENRAF waste surface measurement taken February 1, 2009, double-shell tank (DST) 241-AN-106 (AN-106) contained approximately 278.98 inches (793 kgal) of waste. A zip cord measurement from the tank on February 1, 2009, indicated a settled solids layer of 91.7 inches in height (280 kgal). The supernatant layer in February 2009, by difference, was approximately 187 inches deep (514 kgal). Laboratory results from AN-106 February 1, 2009 (see Table 2) grab samples indicated the supernatant was below the chemistry limit that applied at the time as identified in HNF-SD-WM-TSR-006, Tank Farms Technical Safety Requirements, Administrative Control (AC) 5.16, 'Corrosion Mitigation Controls.' (The limits have since been removed from the Technical Safety Requirements (TSR) and are captured in OSD-T-151-00007, Operating Specifications for the Double-Shell Storage Tanks.) Problem evaluation request WRPS-PER-2009-0218 was submitted February 9, 2009, to document the finding that the supernatant chemistry for grab samples taken from the middle and upper regions of the supernatant was noncompliant with the chemistry control limits. The lab results for the samples taken from the bottom region of the supernatant met AC 5.16 limits.

  10. Evaluation of melter technologies for vitrification of Hanford site low-level tank waste - phase 1 testing summary report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.N., Westinghouse Hanford

    1996-06-27

    Following negotiation of the fourth amendment to the Tri- Party Agreement for Hanford Site cleanup, commercially available melter technologies were tested during 1994 and 1995 for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes also were tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection completed. This report describes the Phase 1 LLW melter vendor testing and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

  11. Ecological Data in Support of the Tank Closure and Waste Management Environmental Impact Statement. Part 2: Results of Spring 2007 Field Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2007-05-31

    This review provides an evaluation of potential impacts of actions that have been proposed under various alternatives to support the closure of the high level waste tanks on the Hanford Site. This review provides a summary of data collected in the field during the spring of 2007 at all of the proposed project sites within 200 East and 200 West Areas, and at sites not previously surveyed. The primary purpose of this review is to provide biological data that can be incorporated into or used to support the Tank Closure and Waste Management Environmental Impact Statement.

  12. Tank 244A tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    The Double-Shell Tank (DST) System currently receives waste from the Single-Shell Tank (SST) System in support of SST stabilization efforts or from other on-site facilities which generate or store waste. Waste is also transferred between individual DSTs. The mixing or commingling of potentially incompatible waste types at the Hanford Site must be addressed prior to any waste transfers into the DSTs. The primary goal of the Waste Compatibility Program is to prevent the formation of an Unreviewed Safety Question (USQ) as a result of improper waste management. Tank 244A is a Double Contained Receiver Tank (DCRT) which serves as any overflow tank for the East Area Farms. Waste material is able to flow freely between the underground storage tanks and tank 244A. Therefore, it is necessary to test the waste in tank 244A for compatibility purposes. Two issues related to the overall problem of waste compatibility must be evaluated: Assurance of continued operability during waste transfer and waste concentration and Assurance that safety problems are not created as a result of commingling wastes under interim storage. The results of the grab sampling activity prescribed by this Tank Characterization Plan shall help determine the potential for four kinds of safety problems: criticality, flammable gas accumulation, energetics, and corrosion and leakage

  13. Medium scale fire tests of propane tanks to study the boiling liquid expanding vapour explosion (BLEVE) and transient two-phase jet release

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhifei

    1994-07-01

    A series of medium scale fire tests were conducted to study boiling liquid expanding vapour explosions (BLEVE) and transient jet releases resulting from thermally induced propane tank ruptures. The tests were conducted using commercial propane contained in automotive propane tanks with a capacity of ca 400 liters. The tanks were brought to failure using a combination of torch and pool fire impingement. Instrumentation was included to measure internal pressure, liquid, vapour and wall temperature distribution, tank and lading mass, external blast overpressure, and fireball thermal radiation. Video and still cameras were used to record the fireball and jet fire shapes and dimensions. Two different kinds of BLEVE failure were observed. For very weak tanks the BLEVE was a single step process where the rupture propagated rapidly along the length of the tank. The duration of these events was measured in milliseconds and it is suggested that the process is driven by the vapour space energy. The other type of BLEVE was a two step process where a crack would start in a weakened area, arrest in a stronger part of the tank, and then start again to end in catastrophic failure. Initial failure and jet type release results in violent boiling and pressure recovery in the tank, leading to restart of the crack and catastrophic failure. Time duration is measured in seconds, and is driven by energy stored in the liquid. A computer model was developed to simulate the transient jet release resulting from finite tank failures, and can predict transient mass flow, tank pressure decay, visible flame length and jet fire thermal radiation. 253 refs., 132 figs., 29 tabs.

  14. Environmental qualification testing of TFE valve components

    International Nuclear Information System (INIS)

    Eyvindson, A.; Krasinski, W.; McCutcheon, R.

    1997-01-01

    Valves containing tetrafluoroethylene (TFE) components are being used in many CANDU Nuclear Generating Stations. However, some concerns remain about the performance of TFE after exposure to high levels of radiation. Stations must therefore ensure that such valves perform reliably after being exposed to postulated accident radiation dose levels. The current Ontario Hydro Environmental Qualification [EQ] program specifies much higher postulated radiation exposure than the original design, to account for conditions following a LOCA. Initial assessments indicated that Teflon components would require replacement. Proof of acceptable performance can remove the need for large scale replacement, avoiding a significant cost penalty and preserving benefits due to the superior performance of TFE-based seals. A test program was undertaken at Chalk River Laboratories (CRL) to investigate the performance of three valves after irradiation to 10 Mrad. Such valves are currently used at the Bruce B Nuclear Generating Station. Each contains TFE packing rings; one also has TFE seats. Two of the valves are used in the ECIS recovery system, while the third is used for instrumentation loop isolation or as drain valves. All are exposed to little or no radiation during normal use. Based on the results of the tests, all the valves tested will still meet functional and performance requirements after the TFE components have been exposed to 10 Mrad of irradiation. (author)

  15. Test Plan And Procedure For The Examination Of Tank 241-AY-101 Multi-Probe Corrosion Monitoring System

    International Nuclear Information System (INIS)

    Wyrwas, R.B.; Page, J.S.; Cooke, G.S.

    2012-01-01

    This test plan describes the methods to be used in the forensic examination of the Multi-probe Corrosion Monitoring System (MPCMS) installed in the double-shell tank 241-AY-101 (AY-101). The probe was designed by Applied Research and Engineering Sciences (ARES) Corporation. The probe contains four sections, each of which can be removed from the tank independently (H-14-107634, AY-101 MPCMS Removable Probe Assembly) and one fixed center assembly. Each removable section contains three types of passive corrosion coupons: bar coupons, round coupons, and stressed C-rings (H-14-l07635, AY-101 MPCMS Details). Photographs and weights of each coupon were recorded and reported on drawing H-14-107634 and in RPP-RPT-40629, 241-AY-101 MPCMS C-Ring Coupon Photographs. The coupons will be the subject of the forensic analyses. The purpose of this examination will be to document the nature and extent of corrosion of the 29 coupons. This documentation will consist of photographs and photomicrographs of the C-rings and round coupons, as well as the weights of the bar and round coupons during corrosion removal. The total weight loss of the cleaned coupons will be used in conjunction with the surface area of each to calculate corrosion rates in mils per year. The bar coupons were presumably placed to investigate the liquid-air-interface. An analysis of the waste level heights in the waste tank will be investigated as part of this examination.

  16. 46 CFR 113.05-7 - Environmental tests.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Environmental tests. 113.05-7 Section 113.05-7 Shipping... SYSTEMS AND EQUIPMENT General Provisions § 113.05-7 Environmental tests. Communication, alarm system, control, and monitoring equipment must meet the environmental tests of— (a) Section 4-9-7, Table 9, of ABS...

  17. Corrective Action Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Cox, D. H.

    2000-01-01

    The Area 25 Underground Storage Tanks site Corrective Action Unit (CAU) 135 will be closed by unrestricted release decontamination and verification survey, in accordance with the Federal Facility Agreement and Consert Order (FFACO, 1996). The CAU includes one Corrective Action Site (CAS). The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine-Maintenance Assembly and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999 discussed in the Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada (DOE/NV,1999a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples that exceeded the preliminary action levels are polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Unrestricted release decontamination and verification involves removal of concrete and the cement-lined pump sump from the vault. After verification that the contamination has been removed, the vault will be repaired with concrete, as necessary. The radiological- and chemical-contaminated pump sump and concrete removed from the vault would be disposed of at the Area 5 Radioactive Waste Management Site. The vault interior will be field surveyed following removal of contaminated material to verify that unrestricted release criteria have been achieved

  18. Corrective Action Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox

    2000-07-01

    The Area 25 Underground Storage Tanks site Corrective Action Unit (CAU) 135 will be closed by unrestricted release decontamination and verification survey, in accordance with the Federal Facility Agreement and Consert Order (FFACO, 1996). The CAU includes one Corrective Action Site (CAS). The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine-Maintenance Assembly and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999 discussed in the Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada (DOE/NV,1999a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples that exceeded the preliminary action levels are polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Unrestricted release decontamination and verification involves removal of concrete and the cement-lined pump sump from the vault. After verification that the contamination has been removed, the vault will be repaired with concrete, as necessary. The radiological- and chemical-contaminated pump sump and concrete removed from the vault would be disposed of at the Area 5 Radioactive Waste Management Site. The vault interior will be field surveyed following removal of contaminated material to verify that unrestricted release criteria have been achieved.

  19. Corrective Action Investigation Plan for Corrective Action Unit 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada (Rev. No.: 0, August 2002)

    International Nuclear Information System (INIS)

    NNSA/NV

    2002-01-01

    contaminated materials. Future land-use scenarios limit subsequent uses of the CASs to various nonresidential (i.e., industrial) activities. Field activities will consist of radiological walkover and screening surveys, and field-screening and collecting of both tank content and soil samples, and further sample testing as appropriate. A two-step data quality objective strategy will be followed: (1) Phase I will be to collect environmental samples for laboratory analysis to confirm the presence or absence of contaminants at concentrations exceeding preliminary action levels; and (2) Phase II will be to collect additional environmental samples for laboratory analysis to determine the extent of contamination identified in Phase I. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document

  20. Corrective Action Investigation Plan for Corrective Action Unit 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada (Rev. No.: 0, August 2002)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NV

    2002-08-27

    contaminated materials. Future land-use scenarios limit subsequent uses of the CASs to various nonresidential (i.e., industrial) activities. Field activities will consist of radiological walkover and screening surveys, and field-screening and collecting of both tank content and soil samples, and further sample testing as appropriate. A two-step data quality objective strategy will be followed: (1) Phase I will be to collect environmental samples for laboratory analysis to confirm the presence or absence of contaminants at concentrations exceeding preliminary action levels; and (2) Phase II will be to collect additional environmental samples for laboratory analysis to determine the extent of contamination identified in Phase I. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  1. Thermal and Radiolytic Gas Generation Tests on Material from Tanks 241-U-103, 241-AW-101, 241-S-106, and 241-S-102: Status Report

    International Nuclear Information System (INIS)

    King, C.M.; Bryan, S.A.

    1999-01-01

    This report summarizes progress in evaluating thermal and radiolytic flammable gas generation in actual Hanford single-shell tank wastes. The work described was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, whose purpose is to develop information to support DE and S Hanford (DESH) and Project Management Hanford Contract (PHMC) subcontractors in their efforts to ensure the safe interim storage of wastes at the Hanford Site. This work is related to gas generation studies performed by Numatec Hanford Corporation (formerly Westinghouse Hanford Company). This report describes the results of laboratory tests of gas generation from actual convective layer wastes from Tank 241-U-103 under thermal and radiolytic conditions. Accurate measurements of gas generation rates from highly radioactive tank wastes are needed to assess the potential for producing and storing flammable gases within the tanks. The gas generation capacity of the waste in Tank 241-U-103 is a high priority for the Flammable Gas Safety Program due to its potential for accumulating gases above the flammability limit (Johnson et al, 1997). The objective of this work was to establish the composition of gaseous degradation products formed in actual tank wastes by thermal and radiolytic processes as a function of temperature. The gas generation tests on Tank 241-U-103 samples focused first on the effect of temperature on the composition and rate of gas generation Generation rates of nitrogen, nitrous oxide, methane, and hydrogen increased with temperature, and the composition of the product gas mixture varied with temperature

  2. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Science.gov (United States)

    2010-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an underground...

  3. Full tanks - empty plates. The price for agrian fuels. Hunger, expulsion, environmental destruction; Volle Tanks - leere Teller. Der Preis fuer Agrokraftstoffe. Hunger, Vertreibung, Umweltzerstoerung

    Energy Technology Data Exchange (ETDEWEB)

    Hees, W.; Mueller, O.; Schueth, M. (eds.)

    2007-07-01

    With the cereals, which is needed in order to fill a 100-Liter-tank of a jeep, one person can be nourished one year. Whether it ethically is justified to convert food into fuel, is one of the questions, which is discussed in the book under consideration. The agro fuels forced by the European Community and the U.S.A. have given rise to a gold-digger spirit in the agrarian industry. This also is applied to the Third World, where presently plantations of gigantic extent develop. The consequences are disastrous: loss of biodiversity, heating up of the world climate and hunger.

  4. ENVIRONMENTAL AND PROCESS PARAMETERS OF METHANE FERMENTATION IN CONTINUOSLY STIRRED TANK REACTOR (CSTR

    Directory of Open Access Journals (Sweden)

    Kamil Kozłowski

    2016-12-01

    Full Text Available A key indicator of methane fermentation process which influences the cost-effectiveness of the biogas plant is efficient production of methane per 1 m3 of reactor. It depends on the proper selection of environmental and process parameters. This article present collected and analyzed the effect of the most important parameters of continuous methane fermentation (CSTR, which include temperature, pH, nutrient content and the C/N ratio in the feed medium, the presence of inhibitors, and the volume load of reactor, retention time and mixing of digestion reactor. Still, the impact of many factors remain unknown, hence there is a need for more comprehensive studies.

  5. Inorganic metal settlement in fuel tanks and their environmental effect for disposal

    International Nuclear Information System (INIS)

    Malana, M.A.; Nadeem, M.

    2000-01-01

    Air-quality or, more precisely, the health and environmental consequences of poor air-quality are currently the center of great deal of attention from media, pressure groups and government. Usage of petroleum-sludge, after its disposal, is also a cause of air pollution. The sludge is generally used for burning small local industrial and brick-kilns, without any preventive measures. This study is based on the estimation of trace-metal concentrations in petroleum sludge, which are emitting sulphur and metal contents into the environment, unknowingly. It is also noted that the concentration-ratio of metal-contents is higher in sludge samples. (author)

  6. Out-of-tank evaporator demonstration: Tanks focus area

    International Nuclear Information System (INIS)

    1998-11-01

    Approximately 100 million gal of liquid waste is stored in underground storage tanks (UST)s at the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River Site (SRS), and Oak Ridge Reservation (ORR). This waste is radioactive with a high salt content. The US Department of Energy (DOE) wants to minimize the volume of radioactive liquid waste in USTs by removing the excess water. This procedure conserves tank space; lowers the cost of storage; and reduces the volume of wastes subsequently requiring separation, immobilization, and disposal. The Out-of-Tank Evaporator Demonstration (OTED) was initiated to test a modular, skid-mounted evaporator. A mobile evaporator system manufactured by Delta Thermal Inc. was selected. The evaporator design was routinely used in commercial applications such as concentrating metal-plating wastes for recycle and concentrating ethylene glycol solutions. In FY 1995, the skid-mounted evaporator system was procured and installed in an existing ORNL facility (Building 7877) with temporary shielding and remote controls. The evaporator system was operational in January 1996. The system operated 24 h/day and processed 22,000 gal of Melton Valley Storage Tank (MVST) supernatant. The distillate contained essentially no salts or radionuclides. Upon completion of the demonstration, the evaporator underwent decontamination testing to illustrate the feasibility of hands-on maintenance and potential transport to another DOE facility. This report describes the process and the evaporator, its performance at ORNL, future plans, applications of this technology, cost estimates, regulatory and policy considerations, and lessons learned

  7. Exploratory tests of washing radioactive sludge samples from the Melton Valley and evaporator facility storage tanks at ORNL

    International Nuclear Information System (INIS)

    Sears, M.B.; Botts, J.L.; Keller, J.M.

    1991-09-01

    Exploratory tests were initiated to wash radioactive sludge samples from the waste storage tanks at the Oak Ridge National Laboratory (ORNL). The purpose was to provide preliminary information about (1) the anions in the sludge phase that are soluble in water or dilute acid (e.g., the anions in the interstitial liquid) and (2) the solubilities of sludge constituents in water under process conditions. The experiments were terminated before completion due to changing priorities by the Department of Energy (DOE). This memorandum was prepared primarily for documentation purposes and presents the incomplete data. 3 refs., 13 tabs

  8. 1993 site environmental report Tonopah Test Range, Tonopah, Nevada

    International Nuclear Information System (INIS)

    Culp, T.; Howard, D.; McClellan, Y.

    1994-10-01

    This report summarizes the environmental surveillance activities conducted by Sandia National Laboratories, the US Environmental Protection Agency, and Reynolds Electrical and Engineering Company for the Tonopah Test Range operated by Sandia National Laboratories. Sandia National Laboratories' responsibility for environmental monitoring results extend to those activities performed by Sandia National Laboratories or under its direction. Results from other environmental monitoring activities are included to provide a measure of completeness in reporting. Other environmental compliance programs such as the National Environmental Policy Act of 1969, environmental permits, and environmental restoration and waste management programs are also included in this report, prepared for the US Department of Energy in compliance with DOE Order 5400.1

  9. 1994 site environmental report, Tonopah Test Range, Tonopah, Nevada

    International Nuclear Information System (INIS)

    Culp, T.; Forston, W.

    1995-09-01

    This report summarizes the environmental surveillance activities conducted by Sandia National Laboratories, the US Environmental Protection Agency, and Kirk-Mayer, Inc., for the Tonopah Test Range operated by Sandia National Laboratories. Sandia National Laboratories' responsibility for environmental surveillance results extends to those activities performed by Sandia National Laboratories or under its direction. Results from other environmental surveillance activities are included to provide a measure of completeness in reporting. Other environmental compliance programs such as the National Environmental Policy Act of 1969, environmental permits, and environmental restoration and waste management programs are also included in this report, prepared for the US Department of Energy (DOE) in compliance with DOE Order 5400. 1

  10. Interim salt disposition program macrobatch 6 tank 21H qualification monosodium titanate and cesium mass transfer tests

    Energy Technology Data Exchange (ETDEWEB)

    Washington, A. L. II; Peters, T. B.; Fink, S. D.

    2013-02-25

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Interim Salt Disposition Program (ISDP) Batch 6 processing. This qualification material was a set of six samples from Tank 21H in October 2012. This sample was used as a real waste demonstration of the Actinide Removal Process (ARP) and the Extraction-Scrub-Strip (ESS) tests process. The Tank 21H sample was contacted with a reduced amount (0.2 g/L) of MST and characterized for strontium and actinide removal at 0 and 8 hour time intervals in this salt batch. {sup 237}Np and {sup 243}Am were both observed to be below detection limits in the source material, and so these results are not reported in this report. The plutonium and uranium samples had decontamination factor (DF) values that were on par or slightly better than we expected from Batch 5. The strontium DF values are slightly lower than expected but still in an acceptable range. The Extraction, Scrub, and Strip (ESS) testing demonstrated cesium removal, stripping and scrubbing within the acceptable range. Overall, the testing indicated that cesium removal is comparable to prior batches at MCU.

  11. ECONOMIC GROWTH, TRADE AND ENVIRONMENTAL ISSUES: TESTING ENVIRONMENTAL KUZNETS CURVE

    Directory of Open Access Journals (Sweden)

    Dedi Budiman Hakim

    2013-04-01

    Full Text Available ASEAN experiences a dynamic economic growth due to its liberalised markets. However concerns arise related to environmental issues resulting from the economic activities. It reflects tradeoffs between economic growth driven by trade and foreign direct investment (FDI, and environment. To investigate such a relation the Environmental Kuznets Curve was applied by regressing amount of carbon emission with gross domestic product (GDP, quadratic GDP, trade openness and FDI. The result reveals that amount of carbon emission is linearly and positively correlated with GDP per capita. It is predicted that as ASEAN economies grow, carbon emission increases. Trade openness is also found to contribute to carbon emission. Keywords: Kuznets curve, carbon emission, gross domestic product, trade, foreign direct investment JEL classification number: F15, F18

  12. Construction, Geology, and Aquifer Testing of the Maalo Road, Aahoaka Hill, and Upper Eleele Tank Monitor Wells, Kauai, Hawaii

    Science.gov (United States)

    Izuka, Scot K.

    2005-01-01

    The Maalo Road, Aahoaka Hill, and Upper Eleele Tank monitor wells were constructed using rotary drilling methods between July 1998 and August 2002 as part of a program of exploratory drilling, aquifer testing, and hydrologic analysis on Kauai. Aquifer tests were conducted in the uncased boreholes of the wells. The Maalo Road monitor well in the Lihue Basin penetrated 915 feet, mostly through mafic lava flows. Most of the rock samples from this well had chemical compositions similar to the Koloa Volcanics, but the deepest sample analyzed had a composition similar to the Waimea Canyon Basalt. Water temperature ranged from 25.6 to 27.4 degrees Celsius and specific conductance ranged from 303 to 627 microsiemens per centimeter during aquifer testing. Discharge rate ranged from 174 to 220 gallons per minute and maximum drawdown was 138.25 ft during a 7-day sustained-discharge test, but the test was affected by pump and generator problems. The Aahoaka Hill monitor well in the Lihue Basin penetrated 804 feet, mostly through mafic lava flows and possibly dikes. The well penetrated rocks having chemical compositions similar to the Waimea Canyon Basalt. During the first three hours of a sustained-discharge aquifer test in which the discharge rate varied between 92 and 117 gallons per minute, water temperature was 24.6 to 25.6 degrees Celsius, and specific conductance was 212 to 238 microsiemens per centimeter; this test was halted after a short period because drawdown was high. In a subsequent 7-day test, discharge was 8 to 23 gallons per minute, and maximum drawdown was 37.71 feet after 1,515 minutes of testing. The Upper Eleele Tank monitor well is near the Hanapepe River Valley. The well penetrated 740 feet through soil, sediment, mafic lava flows, volcanic ash, and scoria. Rocks above a depth of 345 feet had compositions similar to the Koloa Volcanics, but a sample from 720 to 725 feet had a composition similar to rocks of the Waimea Canyon Basalt. During a 7-day aquifer

  13. Acceptance/operational test procedure 101-AW tank camera purge system and 101-AW video camera system

    International Nuclear Information System (INIS)

    Castleberry, J.L.

    1994-01-01

    This procedure will document the satisfactory operation of the 101-AW Tank Camera Purge System (CPS) and the 101-AW Video Camera System. The safety interlock which shuts down all the electronics inside the 101-AW vapor space, during loss of purge pressure, will be in place and tested to ensure reliable performance. This procedure is separated into four sections. Section 6.1 is performed in the 306 building prior to delivery to the 200 East Tank Farms and involves leak checking all fittings on the 101-AW Purge Panel for leakage using a Snoop solution and resolving the leakage. Section 7.1 verifies that PR-1, the regulator which maintains a positive pressure within the volume (cameras and pneumatic lines), is properly set. In addition the green light (PRESSURIZED) (located on the Purge Control Panel) is verified to turn on above 10 in. w.g. and after the time delay (TDR) has timed out. Section 7.2 verifies that the purge cycle functions properly, the red light (PURGE ON) comes on, and that the correct flowrate is obtained to meet the requirements of the National Fire Protection Association. Section 7.3 verifies that the pan and tilt, camera, associated controls and components operate correctly. This section also verifies that the safety interlock system operates correctly during loss of purge pressure. During the loss of purge operation the illumination of the amber light (PURGE FAILED) will be verified

  14. 49 CFR 180.509 - Requirements for inspection and test of specification tank cars.

    Science.gov (United States)

    2010-10-01

    ...) Radiography test; (3) Magnetic particle test; (4) Ultrasonic test; or (5) Optically-aided visual inspection (e...) Testing the reclosing pressure relief device with air or another gas to ensure that it conforms to the... inoperative. The written procedures and test method for leak testing must ensure for the sensitivity and...

  15. 1991 Environmental Monitoring Report Tonopah Test Range, Tonopah, Nevada

    International Nuclear Information System (INIS)

    Howard, D.; Culp, T.

    1992-11-01

    This report summarizes the environmental surveillance activities conducted by the US Environmental Protection Agency (EPA) and Reynolds Electrical and Engineering Company (REECO) for the Tonopah Test Range (TTR) operated by Sandia National Laboratories (SNL). Other environmental compliance programs such as the National Environmental Policy Act of 1969 (NEPA), environmental permits, environmental restoration, and waste management programs are also included. The 1991 SNL, TTR, operations had no discernible impact on the general public or the environment. This report 3-s prepared for the US Department of Energy (DOE) in compliance with DOE Order 5400.1

  16. Aerospace Structures Test Facility Environmental Test Chambers (ETC)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The ETCs test the structural integrity of aerospace structures in representative operating temperatures and aerodynamic load distributions. The test article...

  17. Tank drive : ZCL takes its composite tank technology worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2010-06-15

    Edmonton-based ZCL Composites Inc. is North America's largest manufacturer and supplier of fibreglass reinforced plastic (FRP) underground storage tanks. The company has aggressively pursued new markets in the oil sands, shale gas gas, and other upstream petroleum industries. The manufacturer also targets water and sewage applications, and provides customized corrosion solutions for a variety of industries. The company developed its double-walled FRP tanks in response to Canadian Environmental Protection Act rules requiring cathodic protection for steel tanks, leak detection, and secondary containment. ZCL supplies approximately 90 per cent of the new tanks installed by gasoline retailers in Canada. Future growth is expected to be strong, as many old tanks will soon need to be replaced. The company has also developed a method of transforming underground single wall tanks into secondarily contained systems without digging them out. The company has also recently signed licence agreements with tank manufacturers in China. 3 figs.

  18. Thermocouple module halt acceptance test report for tank 241-SY-101 DACS-1

    International Nuclear Information System (INIS)

    Larsen, D.C.

    1998-01-01

    Testing was started on February 24, 1998 and completed on February 25, 1998. The completed procedure consists of 4 acceptance test sections, 6.1 through 6.4. Three test exceptions were identified during the procedure. The first test exception was determined to be unrelated to the ATP and unfortunate that the instrument failed during the ATP. The next two test exceptions were disposition as acceptable because the alarming functions worked correctly in identifying a problem when software communications were interrupted. The test was completed satisfactorily over 2 days. The remainder of the acceptance test report is the completed test procedure

  19. Project W-314 specific test and evaluation plan for AZ tank farm upgrades

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made by the addition of the SN-631 transfer line from the AZ-O1A pit to the AZ-02A pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation P1 an (TEP). Testing includes Validations and Verifications (e.g., Commercial Grade Item Dedication activities, etc), Factory Tests and Inspections (FTIs), installation tests and inspections, Construction Tests and Inspections (CTIs), Acceptance Test Procedures (ATPs), Pre-Operational Test Procedures (POTPs), and Operational Test Procedures (OTPs). The STEP will be utilized in conjunction with the TEP for verification and validation

  20. Average Skin-Friction Drag Coefficients from Tank Tests of a Parabolic Body of Revolution (NACA RM-10)

    Science.gov (United States)

    Mottard, Elmo J; Loposer, J Dan

    1954-01-01

    Average skin-friction drag coefficients were obtained from boundary-layer total-pressure measurements on a parabolic body of revolution (NACA rm-10, basic fineness ratio 15) in water at Reynolds numbers from 4.4 x 10(6) to 70 x 10(6). The tests were made in the Langley tank no. 1 with the body sting-mounted at a depth of two maximum body diameters. The arithmetic mean of three drag measurements taken around the body was in good agreement with flat-plate results, but, apparently because of the slight surface wave caused by the body, the distribution of the boundary layer around the body was not uniform over part of the Reynolds number range.

  1. Failure analysis of buried tanks

    International Nuclear Information System (INIS)

    Watkins, R.K.

    1994-01-01

    Failure of a buried tank can be hazardous. Failure may be a leak through which product is lost from the tank; but also through which contamination can occur. Failures are epidemic -- because buried tanks are out of sight, but also because designers of buried tanks have adopted analyses developed for pressure tanks. So why do pressure tanks fail when they are buried? Most failures of buried tanks are really soil failures. Soil compresses, or slips, or liquefies. Soil is not only a load, it is a support without which the tank deforms. A high water table adds to the load on the tank. It also reduces the strength of the soil. Based on tests, structural analyses are proposed for empty tanks buried in soils of various quality, with the water table at various levels, and with internal vacuum. Failure may be collapse tank. Such collapse is a sudden, audible inversion of the cylinder when the sidefill soil slips. Failure may be flotation. Failure may be a leak. Most leaks are fractures in the welds in overlap seams at flat spots. Flat spots are caused by a hard bedding or a heavy surface wheel load. Because the tank wall is double thick at the overlap, shearing stress in the weld is increased. Other weld failures occur when an end plate shears down past a cylinder; or when the tank is supported only at its ends like a beam. These, and other, failures can be analyzed with justifiable accuracy using basic principles of mechanics of materials. 10 figs

  2. Increasing Safety and Reducing Environmental Damage Risk from Aging High-Level Radioactive Waste Tanks - 2005 Report

    International Nuclear Information System (INIS)

    Eric D. Steffler; Eric D. Steffler; Mark M. Rashid; Frank A. McClintock; Richard L Williamson; Mili Selimotic

    2005-01-01

    Cracks of various shapes and sizes exist in large high-level waste (HLW) tanks at several DOE sites. There is justifiable concern that these cracks could grow to become unstable causing a substantial release of liquid contaminants to the environment. Accurate prediction of crack growth behavior in the tanks, especially during accident scenarios, is not possible with existing analysis methodologies. This research project responds to this problem by developing an improved ability to predict crack growth in material-structure combinations that are ductile. This new model not only addresses the problem for these tanks, but also has applicability to any crack in any ductile structure. This report summarizes work progress through the fourth quarter of FY-05 (year 1 of a second 3-year funding period)

  3. Inactive Tanks Remediation Program strategy and plans for Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-06-01

    The overall objective of the Inactive Tank Remediation Program is to remediate all LLLW tanks that have been removed fimn service to the extent practicable in accordance with the FFA and CERCLA requirements. Applicable or relevant and appropriate requirements (ARARs) will be addressed in choosing a remediation alternative. Preference will be given to remedies that are highly reliable and provide long-term protection. Efforts will be directed toward permanently and significantly reducing the volume, toxicity, or mobility of hazardous substances, pollutants, and contaminants associated with the tank systems. Where indicated by operational or other restraints, interim measures short of full and complete remediation may be taken to maintain human health and ecological risks at acceptable levels until full remediation can be accomplished

  4. Sonar Tank Area

    Data.gov (United States)

    Federal Laboratory Consortium — The Sonar Tank Facility permits low cost initial 'wet' testing and check out prior to full scale deployment at sea. It can manage controlled conditions calibration...

  5. Tank design

    International Nuclear Information System (INIS)

    Earle, F.A.

    1992-01-01

    This paper reports that aboveground tanks can be designed with innovative changes to complement the environment. Tanks can be constructed to eliminate the vapor and odor emanating from their contents. Aboveground tanks are sometimes considered eyesores, and in some areas the landscaping has to be improved before they are tolerated. A more universal concern, however, is the vapor or odor that emanates from the tanks as a result of the materials being sorted. The assertive posture some segments of the public now take may eventually force legislatures to classify certain vapors as hazardous pollutants or simply health risks. In any case, responsibility will be leveled at the corporation and subsequent remedy could increase cost beyond preventive measures. The new approach to design and construction of aboveground tanks will forestall any panic which might be induced or perceived by environmentalists. Recently, actions by local authorities and complaining residents were sufficient to cause a corporation to curtail odorous emissions through a change in tank design. The tank design change eliminated the odor from fuel oil vapor thus removing the threat to the environment that the residents perceived. The design includes reinforcement to the tank structure and the addition of an adsorption section. This section allows the tanks to function without any limitation and their contents do not foul the environment. The vapor and odor control was completed successfully on 6,000,000 gallon capacity tanks

  6. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by

  7. The Development of Computer Code for Safety Injection Tank (SIT) with Fluidic Device(FD) Blowdown Test

    International Nuclear Information System (INIS)

    Lee, Joo Hee; Kim, Tae Han; Choi, Hae Yun; Lee, Kwang Won; Chung, Chang Kyu

    2007-01-01

    Safety Injection Tanks (SITs) with the Fluidic Device (FD) of APR1400 provides a means of rapid reflooding of the core following a large break Loss Of Coolant Accident (LOCA), and keeping it covered until flow from the Safety Injection Pump (SIP) becomes available. A passive FD can provide two operation stages of a safety water injection into the RCS and allow more effective use of borated water in case of LOCA. Once a large break LOCA occurs, the system will deliver a high flow rate of cooling water for a certain period of time, and thereafter, the flow rate is reduced to a lower flow rate. The conventional computer code 'TURTLE' used to simulate the blowdown of OPR1000 SIT can not be directly applied to simulate a blowdown process of the SIT with FD. A new computer code is needed to be developed for the blowdown test evaluation of the APR1400 SIT with FD. Korea Power Engineering Company (KOPEC) has developed a new computer code to analyze the characteristics of the SIT with FD and validated the code through the comparison of the calculation results with the test results obtained by Ulchin 5 and 6 units pre-operational test and VAlve Performance Evaluation Rig (VAPER) tests performed by The Korea Atomic Energy Research Institute (KAERI)

  8. Final Range Environmental Assessment for Test Areas C-87 and D-51 at Eglin Air Force Base, Florida

    Science.gov (United States)

    2015-05-01

    TA C-87 consists of one septic tank and associated leach field. There are nine septic tanks and associated leach fields on TA D-51. Under...storage tank , and septic systems, and connecting the test area to the Okaloosa County water and wastewater utility lines. The existing utility systems on T...8840E Water Treatment Plan 8840F Biological/Chemical Training Area 13 (acres) 8840ST Septic Tank at 8840 8840W Well at 8840 8841 Range Support

  9. Testing of bulk tank milk for Salmonella Dublin infection in Danish dairy herds

    DEFF Research Database (Denmark)

    Wedderkopp, A.; Stroger, U.; Bitsch, V.

    2001-01-01

    -negative to test-positive in each area was correlated with the incidence of S. Dublin outbreaks in the corresponding county (r = 0.48, n = 19; P third test rounds was not constant (Pr \\t\\ = 0.0001). The study demonstrated that the probability...... of being test-negative in the third test round was 0.926 for a herd with 2 previous test-negative results. It was concluded that the investigated ELISA method was in general accordance with the cases of clinical S. Dublin infection recorded. and that the method has a potential for national screening...

  10. Nonradioactive Environmental Emissions Chemical Source Term for the Double-Shell Tank (DST) Vapor Space During Waste Retrieval Operations

    International Nuclear Information System (INIS)

    MAY, T.H.

    2000-01-01

    A nonradioactive chemical vapor space source term for tanks on the Phase 1 and the extended Phase 1 delivery, storage, and disposal mission was determined. Operations modeled included mixer pump operation and DST waste transfers. Concentrations of ammonia, specific volatile organic compounds, and quantitative volumes of aerosols were estimated

  11. Remediating the INEL's buried mixed waste tanks

    International Nuclear Information System (INIS)

    Kuhns, D.J.; Matthern, G.E.; Reese, C.L.

    1996-01-01

    The Idaho National Engineering Laboratory (INEL), formerly the National Reactor Testing Station (NRTS), encompasses 890 square miles and is located in southeast Idaho. In 1949, the United States Atomic Energy Commission, now the Department of Energy (DOE), established the NRTS as a site for the building and testing of nuclear facilities. Wastes generated during the building and testing of these nuclear facilities were disposed within the boundaries of the site. These mixed wastes, containing radionuclides and hazardous materials, were often stored in underground tanks for future disposal. The INEL has 11 buried mixed waste storage tanks regulated under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) ranging in size from 400 to 50,000 gallons. These tanks are constructed of either stainless or carbon steel and are located at 3 distinct geographic locations across the INEL. These tanks have been grouped based on their similarities in an effort to save money and decrease the time required to complete the necessary remediation. Environmental Restoration and Technology Development personnel are teaming in an effort to address the remediation problem systematically

  12. Nuclear test at Semipalatinsk test site and their environmental impacts

    International Nuclear Information System (INIS)

    Logachev, V.A.

    2000-01-01

    This paper present classification of nuclear tests conducted at the Semipalatinsk test site by tier radiation hazards. The Institute of Biophysics of the Russian Ministry of Health established a data base the archival data on radiation situation parameters and compiled an album of radioactive plum footprints. The paper states that external and internal exposure doses received by population lived in the test vicinity can sufficiently reliably assesses using archival data. (author)

  13. Tank Monitor and Control System (TMACS) Rev 11.0 Acceptance Test Review

    Energy Technology Data Exchange (ETDEWEB)

    HOLM, M.J.

    1999-08-25

    The purpose of this document is to describe tests performed to validate Revision 11 of the TMACS Monitor and Control System (TMACS) and verify that the software functions as intended by design. This document is intended to test the software portion of TMACS. The tests will be performed on the development system. The software to be tested is the TMACS knowledge bases (KB) and the I/O driver/services. The development system will not be talking to field equipment; instead, the field equipment is simulated using emulators or multiplexers in the lab.

  14. The Savannah River environmental technology field test platform

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The Savannah River technology Center (SRTC) has been developing a program to rigorously field test promising environmental technologies that have not undergone EPA equivalency testing. The infrastructure and staff expertise developed as part of the activities of the Savannah River Integrated Demonstration Program allows field testing of technologies without the difficulties of providing remote field support. By providing a well-characterized site and a well-developed infrastructure, technologies are tested in actual field scenarios to determine their appropriate applications in environmental characterization and monitoring activities. The field tests provide regulatory organizations, potential industrial partners, and potential users with the opportunity to evaluate the technology's performance and its utility for implementation in environmental characterization and monitoring programs. This program has resulted in the successful implementation of several new technologies

  15. Tank 241-SY-101 surface level rise remediation test and evaluation plan for transfer system

    International Nuclear Information System (INIS)

    BAUER, R.E.

    1999-01-01

    The purpose of this testing and evaluation plan (TEP) is to provide the high level guidance on testing requirements for ensuring that the equipment and systems to be implemented for remediation of the SY-101 waste level rise USQ are effective

  16. System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Hopkins, Derek F. [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A. [Washington River Protection Solutions, Richland, Washington 99354 (United States)

    2013-07-01

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of =14 micrometers (μm). In 2012 the PulseEcho instrument was further evaluated under WRPS' System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

  17. Task 7c: Worm tank

    International Nuclear Information System (INIS)

    1999-01-01

    Worm tank has a unique shape. In the seismic design of a worm tank, it is desirable to clear the behavior of the worm tank under the seismic loading. We assumed that there are two phenomena in the seismic behavior of the worm tank same as the behavior of the cylindrical and rectangular tanks. One is a sloshing behavior of the water and another is the dynamic response of the worm tank. In this study, we investigate the dynamic characteristics of the worm tank during the strong earthquakes. We conducted the vibration tests to clarify the seismic behaviors of the worm tanks and obtained the valuable data to verify the analytical method. It was found that the natural frequency can be calculated using the eigenvalue formula of the cylindrical and rectangular tanks. Lower modes of the worm tank are identical with that of the rectangular tank. We can estimate the surface behavior and the impact mode using the data of the rectangular tank. (author)

  18. Project management plan for inactive tanks 3001-B, 3004-B, 3013, and T-30 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-07-01

    *This document identifies the roles and responsibilities of the project team members and identifies the project scope, schedule, and cost reporting activities for a maintenance activity to remove and dispose of three inactive liquid low-level radioactive waste (LLLW) system tanks and to isolate and fill one LLLW tank with grout. Tanks 3001-B, 3004-B, and T-30 are located in concrete vaults and tank 3013 is buried directly in the soil. The maintenance project consists of cutting the existing pipes attached to the tanks; capping the piping to be left in place; removing the tanks and filling the vaults with grout for tanks 3001-B, 3004-B, and T-30; and filling tank 3013 with grout. Because the LLLW line serving tank 3001-B will be needed for discharging the 3001 canal demineralizer back flush and regeneration waste to tank WC-19, tank 3001-B will be replaced with a section of piping

  19. Tank waste remediation system high-level waste vitrification system development and testing requirements

    International Nuclear Information System (INIS)

    Calmus, R.B.

    1995-01-01

    This document provides the fiscal year (FY) 1995 recommended high-level waste melter system development and testing (D and T) requirements. The first phase of melter system testing (FY 1995) will focus on the feasibility of high-temperature operation of recommended high-level waste melter systems. These test requirements will be used to establish the basis for defining detailed testing work scope, cost, and schedules. This document includes a brief summary of the recommended technologies and technical issues associated with each technology. In addition, this document presents the key D and T activities and engineering evaluations to be performed for a particular technology or general melter system support feature. The strategy for testing in Phase 1 (FY 1995) is to pursue testing of the recommended high-temperature technologies, namely the high-temperature, ceramic-lined, joule-heated melter, referred to as the HTCM, and the high-frequency, cold-wall, induction-heated melter, referred to as the cold-crucible melter (CCM). This document provides a detailed description of the FY 1995 D and T needs and requirements relative to each of the high-temperature technologies

  20. Testing of environmentally friendly lubricants for sheet metal forming

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    2005-01-01

    the authors have especially been involved in the development of a system of test methods for sheet metal forming and in testing of friction and limits of lubrication of new, environmentally friendly lubricants. An overview of the developed tests is presented together with selected results....

  1. Simple characterisation of solar DHW tanks

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    1998-01-01

    The aim of the project is to compare different methods used for testing small solar domestic hot water tanks. A small hot water tank is tested at three different European laboratories by means of the test methods normally used at the laboratories. The tank is marketed in Denmark.The test carried ...

  2. Environmental simulation testing of solar cell contamination by hydrazine

    Science.gov (United States)

    Moore, W. W., Jr.

    1972-01-01

    Test results for thermal vacuum and radiation environment simulation of hydrazine contamination are discussed. Solar cell performance degradation, measured by short circuit current, is presented in correlation with the variations used in environmental parameters.

  3. Mid-scale tests of in situ burning in a new wave tank at Prudhoe Bay, AK

    International Nuclear Information System (INIS)

    Buist, I.; McCourt, J.; Mullin, J.; Glover, N.; Hutton, C.; McHale, J.

    1998-01-01

    A series of mid-scale research burns with weathered Alaska North Slope crude, Milne Pt. crude and emulsion slicks were carried out in the fall of 1997 in Prudhoe Bay, Alaska. A suitable wave tank was developed for the in-situ burning tests. The objective was to determine the effects of oil type, emulsification, temperature and waves on in situ burning in Arctic open water conditions. More than 60 individual burns were conducted under various parameters including varying slick thickness, water content, wave energy, degree of weathering and oil type. Results showed that a spill of 60 per cent water emulsion of weathered Alaska North Slope crude was successfully burned in the highest waves tested, with an oil removal efficiency of 79 per cent, after treatment with emulsion breakers. A slick of 60 per cent water emulsion of weathered Milne Pt. crude was also successfully burned under the same conditions but without the addition of emulsion breakers. 10 refs., 1 tab., 13 figs

  4. Decay tank

    International Nuclear Information System (INIS)

    Matsumura, Seiichi; Tagishi, Akinori; Sakata, Yuji; Kontani, Koji; Sudo, Yukio; Kaminaga, Masanori; Kameyama, Iwao; Ando, Koei; Ishiki, Masahiko.

    1990-01-01

    The present invention concerns an decay tank for decaying a radioactivity concentration of a fluid containing radioactive material. The inside of an decay tank body is partitioned by partitioning plates to form a flow channel. A porous plate is attached at the portion above the end of the partitioning plate, that is, a portion where the flow is just turned. A part of the porous plate has a slit-like opening on the side close to the partitioning plate, that is, the inner side of the flow at the turning portion thereof. Accordingly, the primary coolants passed through the pool type nuclear reactor and flown into the decay tank are flow caused to uniformly over the entire part of the tank without causing swirling. Since a distribution in a staying time is thus decreased, the effect of decaying 16 N as radioactive nuclides in the primary coolants is increased even in a limited volume of the tank. (I.N.)

  5. Non-radiological air quality modeling for the high-level waste tank closure environmental impact statement

    International Nuclear Information System (INIS)

    Hunter, C.H.

    2000-01-01

    Dispersion modeling of potential non-radiological air emissions associated with the proposed closure of high-level waste (HLW) tanks at the Savannah River Site has been completed, as requested (TtNUS, 1999). Estimated maximum ground-level concentrations of applicable regulated air pollutants at the site boundary and at the distance to the co-located onsite worker (640 meters) are summarized. In all cases, the calculated concentrations were much less than regulatory standards

  6. Corrosion tests of 316L and Hastelloy C-22 in simulated tank waste solutions

    International Nuclear Information System (INIS)

    Danielson, M.J.; Pitman, S.G.

    2000-01-01

    Both the 316L stainless steel and Hastelloy C-22 gave satisfactory corrosion performance in the simulated test environments. They were subjected to 100 day weight loss corrosion tests and electrochemical potentiodynamic evaluation. This activity supports confirmation of the design basis for the materials of construction of process vessels and equipment used to handle the feed to the LAW-melter evaporator. BNFL process and mechanical engineering will use the information derived from this task to select material of construction for process vessels and equipment

  7. Leak-thight seals got high pressure testing of pipes, tanks, valves

    International Nuclear Information System (INIS)

    Estrade, J.

    1985-01-01

    Leak-tight seals ensure quick, safe and efficient testing of pipes with plain-ended or flanged openings, valves with flanged or welded edges, manifields, recipients, etc. They are inserted into the pipe end manually then simply a slight turn of the seal treated wheel commences the pressure test. Hydraulic pressure is supplied by a pump through the inlet seal and air is purged through the outlet seal which then closes. The higher the pressure, the greater the sealing strength of the seal which prevents accidental unplugging. There are different types of seals: for interior plain-ended openings, for pipes with plain-ended opening, for flanged pipes. (author)

  8. Regeneration Study Test Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data (2 excel files) consist of the analytical test results on water sample collected from the two adsorption media tanks of the arsenic removal system during the...

  9. Corrosion Evaluation of INTEC Waste Storage Tank WM-182

    International Nuclear Information System (INIS)

    Dirk, W. J.; Anderson, P. A.

    1999-01-01

    Irradiated nuclear fuel has been stored and reprocessed at the Idaho National Engineering and Environmental Laboratory since 1953 using facilities located at the Idaho Nuclear Technology and Engineering Center (INTEC). This reprocessing produced radioactive liquid waste which was stored in the Tank Farm. The INTEC Tank Farm consists of eleven vaulted 300,000-gallon underground tanks including Tank WM-182. Tank WM-182 was put into service in 1955, has been filled four times, and has contained aluminum and zirconium fuel reprocessing wastes as well as sodium bearing waste. A program to monitor corrosion in the waste tanks was initiated in 1953 when the first of the eleven Tank Farm tanks was placed in service. Austenitic stainless steel coupons representative of the materials of construction of the tanks are used to monitor internal tank corrosion. This report documents the final inspection of the WM-182 corrosion coupons. Physical examination of the welded corrosion test coupons exposed to the tank bottom conditions of Tank WM-182 revealed very light uniform corrosion. Examination of the external surfaces of the extruded pipe samples showed very light uniform corrosion with slight indications of preferential attack parallel to extrusion marks and start of end grain attack of the cut edges. These indications were only evident when examined under stereo microscope at magnifications of 20X and above. There were no definite indications of localized corrosion, such as cracking, pitting, preferential weld attack, or weld heat affected zone attack on either the welded or extruded coupons. Visual examination of the coupon support cables, where they were not encased in plastic, failed to reveal any indication of liquid-liquid interface attack of any crevice corrosion. Based on the WM-182 coupon evaluations, which have occurred throughout the life of the tank, the metal loss from the tank wall due to uniform corrosion is not expected to exceed 5.5 x 10-1 mil (0.00 055 inch

  10. Laboratory-Scale Column Testing Using IONSIV IE-911 for Removing Cesium from Acidic Tank Waste Simulant. 2: Determination of Cesium Exchange Capacity and Effective Mass Transfer Coefficient from a 500-cm3 Column Experiment

    International Nuclear Information System (INIS)

    T.J. Tranter; R.D. Tillotson; T.A. Todd

    2005-01-01

    A semi-scale column test was performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution, which represents liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). The engineered form of CST ion exchanger, known as IONSIVtmIE-911 (UOP, Mt. Laurel, NJ, USA), was tested in a 500-cm3 column to obtain a cesium breakthrough curve. The cesium exchange capacity of this column matched that obtained from previous testing with a 15-mc3 column. A numerical algorithm using implicit finite difference approximations was developed to solve the governing mass transport equations for the CST columns. An effective mass transfer coefficient was derived from solving these equations for previously reported 15 cm3 tests. The effective mass transfer coefficient was then used to predict the cesium breakthrough curve for the 500-cm3 column and compared to the experimental data reported in this paper. The calculated breakthrough curve showed excellent agreement with the data from the 500-cm3 column even though the interstitial velocity was a factor of two greater. Thus, this approach should provide a reasonable method for scale up to larger columns for treating actual tank waste

  11. Environmental Tests of the Flight GLAST LAT Tracker Towers

    Energy Technology Data Exchange (ETDEWEB)

    Bagagli, R.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Belli, F.; Borden, T.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; Angelis, A.De; Drell, P.; Favuzzi, C.; Fusco, P.; Gargano, F.; Germani, S.; Giglietto, N.; Giordano, F.; Goodman, J.; Himel, T.

    2008-03-12

    The Gamma-ray Large Area Space telescope (GLAST) is a gamma-ray satellite scheduled for launch in 2008. Before the assembly of the Tracker subsystem of the Large Area Telescope (LAT) science instrument of GLAST, every component (tray) and module (tower) has been subjected to extensive ground testing required to ensure successful launch and on-orbit operation. This paper describes the sequence and results of the environmental tests performed on an engineering model and all the flight hardware of the GLAST LAT Tracker. Environmental tests include vibration testing, thermal cycles and thermal-vacuum cycles of every tray and tower as well as the verification of their electrical performance.

  12. Aircraft Wing Fuel Tank Environmental Simulator Tests for Evaluation of Antimisting Fuels.

    Science.gov (United States)

    1984-10-01

    C.*: % _ _ _.__ _ o During boost pump operation, strands of a gel-like, semi-transparent material were observed on the free surface of the fuel and...Boeing Materials Technology (BMT) laboratory to measure the water content of the fuel samples is described in appendix C. 2.5.3 Water Ingestion Results...Jet A pump at 8 gpm 32 .. . . ... . . . . . . . -%tr. go*7 .*.**.*.*..* -*.... * . . recuroed for each fueling increment. From these data a height

  13. Results of thermal interaction tests for various materials performed in the Ispra tank facility

    International Nuclear Information System (INIS)

    Fasoli-Stella, P.; Holtbecker, H.; Jorzik, E.; Schlittenhardt, P.; Thoma, U.

    A test facility for fuel/coolant thermal interaction measurements is described together with recent improvements of the melting oven design, the instrumentation and the collection and cleaning of the debris. The formation of a UO 2 crust on the melting crucible is investigated theoretically taking into account the heat losses during transport of the crucible from the oven to the reaction chamber. Experimental results for the systems steel-sodium, steel-water and UO 2 -sodium are presented and discussed with respect to particle size distribution and appearence of the debris. A sodium/fuel interaction model is introduced in the hydrodynamic REXCO-H-code. The results of test calculations are dealt with

  14. 1/12-Scale mixing interface visualization and buoyant particle release tests in support of Tank 241-SY-101 hydrogen mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Eschbach, E.J.; Enderlin, C.W.

    1993-10-01

    In support of tank waste safety programs, visualization tests were performed in the 1/12-scale tank facility, using a low-viscosity simulant. The primary objective of the tests was to obtain video records of the transient jet-sludge interaction. The intent is that these videos will provide useful qualitative data for comparison with model predictions. Two tests were initially planned: mixing interface visualization (MIV) and buoyant particle release (BPR). Completion of the buoyant particle release test was set aside in order to complete additional MIV tests. Rheological measurements were made on simulant samples before testing, and the simulant was found to exhibit thixotropic behavior. Shear vane measurements were also made on an in-situ analog of the 1/12-scale tank simulant. Simulant shear strength has been observed to be time dependent. The primary objective of obtaining video records of jet-sludge interaction was satisfied, and the records yielded jet location information which may be of use in completing model comparisons. The modeling effort is not part of this task, but this report also discusses test specific instrumentation, visualization techniques, and shear vane instrumentation which would enable improved characterization of jet-sludge interaction and simulant characteristics.

  15. 1/12-Scale mixing interface visualization and buoyant particle release tests in support of Tank 241-SY-101 hydrogen mitigation

    International Nuclear Information System (INIS)

    Eschbach, E.J.; Enderlin, C.W.

    1993-10-01

    In support of tank waste safety programs, visualization tests were performed in the 1/12-scale tank facility, using a low-viscosity simulant. The primary objective of the tests was to obtain video records of the transient jet-sludge interaction. The intent is that these videos will provide useful qualitative data for comparison with model predictions. Two tests were initially planned: mixing interface visualization (MIV) and buoyant particle release (BPR). Completion of the buoyant particle release test was set aside in order to complete additional MIV tests. Rheological measurements were made on simulant samples before testing, and the simulant was found to exhibit thixotropic behavior. Shear vane measurements were also made on an in-situ analog of the 1/12-scale tank simulant. Simulant shear strength has been observed to be time dependent. The primary objective of obtaining video records of jet-sludge interaction was satisfied, and the records yielded jet location information which may be of use in completing model comparisons. The modeling effort is not part of this task, but this report also discusses test specific instrumentation, visualization techniques, and shear vane instrumentation which would enable improved characterization of jet-sludge interaction and simulant characteristics

  16. In situ stabilization of mixed radioactive waste storage tanks and contaminated soil areas

    International Nuclear Information System (INIS)

    Matthern, G.E.; Meservey, R.H.

    1997-01-01

    Within the Department of Energy (DOE) Complex, there are a number of small (<50,000 gallons) underground Storage tanks containing mixed waste materials. The radioactive content of wastes eliminates the feasibility for hazardous waste treatment in accordance with previously prescribed Resource Conservation and Recovery Act (RCRA) technologies. As a result, DOE is funding in situ stabilization technology development for these tanks, Some of this development work has been done at the Idaho National Engineering and Environmental Laboratory (INEEL) and the initial efforts there were concentrated on the stabilization of the contents of the Test Area North (TAN) V-9 Tank. This is a 400 gallon underground tank filled with about 320 gallons of liquids and silty sediments. Sampling data indicates that approximately 50 wt% of the tank contents is aqueous-phase liquids. The vertically oriented cylindrical tank has a conical bottom and a chordal baffle that separates the tank inlet from its outlet. Access to the tank is through a six inch diameter access pipe on top of the tank. Because of the high volume, and the high concentration of aqueous-phase materials, Tank V-9 stabilization efforts have focussed on applying in situ agitation with dry feed addition to stabilize its contents. Materials selected for dry feed addition to this tank include a mixture of Aquaset IIH, and Type I/II Portland cement. This paper describes the results of proof-of-concept tests performed on full scale mockups of the Tank V-9. This proof-of-concept test were used to set operating parameters for in situ mixing, as well as evaluate how variations in Aquaset IIH/Portland cement ratio and sediment to liquid volume affected mixing of the tank

  17. A Six-DOF Buoyancy Tank Microgravity Test Bed with Active Drag Compensation

    Science.gov (United States)

    Sun, Chong; Chen, Shiyu; Yuan, Jianping; Zhu, Zhanxia

    2017-10-01

    Ground experiment under microgravity is very essential because it can verify the space enabling technologies before applied in space missions. In this paper, a novel ground experiment system that can provide long duration, large scale and high microgravity level for the six degree of freedom (DOF) spacecraft trajectory tracking is presented. In which, the most gravity of the test body is balanced by the buoyancy, and the small residual gravity is offset by the electromagnetic force. Because the electromagnetic force on the test body can be adjusted in the electromagnetic system, it can significantly simplify the balancing process using the proposed microgravity test bed compared to the neutral buoyance system. Besides, a novel compensation control system based on the active disturbance rejection control (ADRC) method is developed to estimate and compensate the water resistance online, in order to improve the fidelity of the ground experiment. A six-DOF trajectory tracking in the microgravity system is applied to testify the efficiency of the proposed compensation controller, and the experimental simulation results are compared to that obtained using the classic proportional-integral-derivative (PID) method. The simulation results demonstrated that, for the six-DOF motion ground experiment, the microgravity level can reach to 5 × 10-4 g. And, because the water resistance has been estimated and compensated, the performance of the presented controller is much better than the PID controller. The presented ground microgravity system can be applied in on-orbit service and other related technologies in future.

  18. Environmental Survey preliminary report, Nevada Test Site, Mercury, Nevada

    International Nuclear Information System (INIS)

    1988-04-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Nevada Test Site (NTS), conducted June 22 through July 10, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the NTS. The Survey covers all environment media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations and activities performed at the NTS, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by the Battelle Columbus Division under contract with DOE. When completed, the results will be incorporated into the NTS Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the NTS Survey. 165 refs., 42 figs., 52 tabs

  19. Environmental Survey preliminary report, Nevada Test Site, Mercury, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Nevada Test Site (NTS), conducted June 22 through July 10, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the NTS. The Survey covers all environment media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations and activities performed at the NTS, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by the Battelle Columbus Division under contract with DOE. When completed, the results will be incorporated into the NTS Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the NTS Survey. 165 refs., 42 figs., 52 tabs.

  20. Environmental site assessments should include radon gas testing

    International Nuclear Information System (INIS)

    Nardi, M.A.

    1991-01-01

    There are two emerging influences that will require radon gas testing as part of many property transfers and most site assessments. These requirements come from lending regulators and state legislatures. Fannie Mae and others have developed environmental investigation guidelines for the purchase of environmentally contaminated real estate. These guidelines include radon gas testing for many properties. Several states have enacted laws that require environmental disclosure forms be prepared to ensure that the parties involved in certain real estate transactions are aware of the environmental liabilities that may come with the transfer of property. Indiana has recently enacted legislation that would require the disclosure of the presence of radon gas on many commercial real estate transactions. With more lenders and state governments likely to follow this trend, radon gas testing should be performed during all property transfers and site assessment to protect the parties involved from any legal liabilities

  1. Nevada Test Site, Nye County, Nevada. Final environmental impact statement

    International Nuclear Information System (INIS)

    1977-09-01

    This environmental statement for the Nevada Test Site (NTS) considers underground nuclear detonations with yields of one megaton or less, along with the preparations necessary for such detonations. The testing activities considered also include other continuing and intermittent activities, both nuclear and nonnuclear, which can best be conducted in the remote and controlled area of the Nevada Test Site. These activities are listed, with emphasis on weapons testing programs which do not remain static

  2. Nevada Test Site, Nye County, Nevada. Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-09-01

    This environmental statement for the Nevada Test Site (NTS) considers underground nuclear detonations with yields of one megaton or less, along with the preparations necessary for such detonations. The testing activities considered also include other continuing and intermittent activities, both nuclear and nonnuclear, which can best be conducted in the remote and controlled area of the Nevada Test Site. These activities are listed, with emphasis on weapons testing programs which do not remain static.

  3. The Florida Ranchlands Environmental Services Project: Field Testing a Pay-for-Environmental-Services Program

    OpenAIRE

    Lynch, S.; Shabman, L.

    2007-01-01

    The Florida Ranchlands Environmental Services Project (FRESP) was recently launched, which will field test a program to complement the existing restoration programs such as the Lake Okeechobee Protection Plan (LOPP), which uses public funding to build treatment wetlands, drill aquifer storage, and capture rainwater (to delay its arrival downstream). FRESP will pay cattle ranchers to provide environmental services that will benefit the lake. PES-1 (Payments for Environmental Services Associ...

  4. Environmental Testing of the NEXT PM1R Ion Engine

    Science.gov (United States)

    Snyder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.

    2007-01-01

    The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The subsystem includes an ion engine, power processing unit, feed system components, and thruster gimbal. The Prototype Model engine PM1 was subjected to qualification-level environmental testing in 2006 to demonstrate compatibility with environments representative of anticipated mission requirements. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. The engine was reworked to address most of these findings, renamed PM1R, and the environmental test sequence was repeated. Thruster functional testing was performed before and after the vibration and thermal-vacuum tests. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 min in each of three axes. Thermal-vacuum testing included three thermal cycles from 120 to 215 C with hot engine re-starts. Thruster performance was nominal throughout the test program, with minor variations in a few engine operating parameters likely caused by facility effects. There were no significant changes in engine performance as characterized by engine operating parameters, ion optics performance measurements, and beam current density measurements, indicating no significant changes to the hardware as a result of the environmental testing. The NEXT PM1R engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. The redesigned cathode heater terminations successfully survived the vibration environments. Based on the results of this test

  5. Storage Tank Legionella and Community

    Data.gov (United States)

    U.S. Environmental Protection Agency — Storage Tank Legionella and Community. This dataset is associated with the following publication: Qin, K., I. Struewing, J. Santodomingo, D. Lytle, and J. Lu....

  6. Assessment of Technologies for the Space Shuttle External Tank Thermal Protection System and Recommendations for Technology Improvement - Part III: Material Property Characterization, Analysis, and Test Methods

    Science.gov (United States)

    Gates, Thomas S.; Johnson, Theodore F.; Whitley, Karen S.

    2005-01-01

    The objective of this report is to contribute to the independent assessment of the Space Shuttle External Tank Foam Material. This report specifically addresses material modeling, characterization testing, data reduction methods, and data pedigree. A brief description of the External Tank foam materials, locations, and standard failure modes is provided to develop suitable background information. A review of mechanics based analysis methods from the open literature is used to provide an assessment of the state-of-the-art in material modeling of closed cell foams. Further, this report assesses the existing material property database and investigates sources of material property variability. The report presents identified deficiencies in testing methods and procedures, recommendations for additional testing as required, identification of near-term improvements that should be pursued, and long-term capabilities or enhancements that should be developed.

  7. Environmental Monitoring Plan, Nevada Test Site and support facilities

    International Nuclear Information System (INIS)

    1991-11-01

    This Environmental Monitoring Plan applies to the US Department of Energy's (DOE's) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this Environmental Monitoring Plan brings together in one document a description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA). The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards

  8. Environmental qualification test of electrical penetration for nuclear power stations

    International Nuclear Information System (INIS)

    Kooziro, Tetsuya; Nakagawa, Akitoshi; Toyoda, Shigeru; Uno, Shunpei

    1979-01-01

    Environmental qualification test was conducted according to IEEE Std. 323-1974 in order to evaluate the safety and reliability of electrical penetration of PWR type nuclear power station. Electrical penetration is the assemblies of electric cables attached to the containment vessel and penetrate through the vessel. Since it is a part of the vessel, it is deemed to be one of the primary safety equipments that are important for the safety and reliability of nuclear power stations. Environmental tests were conducted continuously as to heat cycle, vibration and LOCA with the full size specimens of bushing type, pigtail type and triaxial cable type and at the same time thermal life and irradiation tests were conducted on the insulation materials used, in order to obtain the comprehensive evaluation of their electrical and mechanical characteristics. As the result, they all satisfied the requirements for the circuits for actual use during and after various environmental qualification tests according to IEEE Std. 323. (author)

  9. Cleaning Validation of Fermentation Tanks

    DEFF Research Database (Denmark)

    Salo, Satu; Friis, Alan; Wirtanen, Gun

    2008-01-01

    Reliable test methods for checking cleanliness are needed to evaluate and validate the cleaning process of fermentation tanks. Pilot scale tanks were used to test the applicability of various methods for this purpose. The methods found to be suitable for validation of the clenlinees were visula...

  10. Underground storage tanks containing hazardous chemicals

    International Nuclear Information System (INIS)

    Wise, R.F.; Starr, J.W.; Maresca, J.W. Jr.; Hillger, R.W.; Tafuri, A.N.

    1991-01-01

    The regulations issued by the United States Environmental Protection Agency in 1988 require, with several exceptions, that underground storage tank systems containing petroleum fuels and hazardous chemicals be routinely tested for releases. This paper summarizes the release detection regulations for tank systems containing chemicals and gives a preliminary assessment of the approaches to release detection currently being used. To make this assessment, detailed discussions were conducted with providers and manufacturers of leak detection equipment and testing services, owners or operators of different types of chemical storage tank systems, and state and local regulators. While these discussions were limited to a small percentage of each type of organization, certain observations are sufficiently distinctive and important that they are reported for further investigation and evaluation. To make it clearer why certain approaches are being used, this paper also summarizes the types of chemicals being stored, the effectiveness of several leak detection testing systems, and the number and characteristics of the tank systems being used to store these products

  11. Nevada test site underground storage tank number 12-13-1: Nevada division of emergency management case number H931130E corrective action unit 450. Closure report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The project site was identified as an abandoned Underground Storage Tank (UST) to be closed under the Department of Energy/Nevada Operations Office (DOE/NV) Environmental Restoration Division (ERD) Program during Fiscal Year 1993. The United States Environmental Protection Agency (EPA) requires that before permanent closure is completed an assessment of the site must take place. The Nevada Division of Environmental Protection (NDEP) requires assessment and corrective actions for a petroleum substance in the soil which exceeds 100 milligrams per kilogram (mg/kg). Subsequent to the tank removal, a hydrocarbon release was identified at the site. The release was reported to the NDEP by DOE/NV on November 30, 1993. Nevada Division of Environmental Management (NDEM) Case Number H931130E was assigned. This final closure report documents the assessment and corrective actions taken for the hydrocarbon release identified at the site. The Notification of Closure, EPA Form 7530-1 dated March 22, 1994, is provided in Appendix A. A 45-day report documenting the notification for a hydrocarbon release was submitted to NDEP on April 6, 1994.

  12. Nitrogen tank

    CERN Multimedia

    2006-01-01

    Wanted The technical file about the pressure vessel RP-270 It concerns the Nitrogen tank, 60m3, 22 bars, built in 1979, and installed at Point-2 for the former L3 experiment. If you are in possession of this file, or have any files about an equivalent tank (probably between registered No. RP-260 and -272), please contact Marc Tavlet, the ALICE Glimos.

  13. FY 1993 Ferrocyanide Tank Safety Project: Effects of Aging on Ferrocyanide Wastes test plan for the remainder of FY 1993

    International Nuclear Information System (INIS)

    Lilga, M.A.; Schiefelbein, G.F.

    1993-06-01

    Researchers in the Hanford Ferrocyanide Task Team are studying safety issues associated with ferrocyanide precipitates in single shell waste storage tanks (SST). Ferrocyanide is a stable complex of ferrous, ion and cyanide ion that is considered nontoxic because it does not dissociate readily in aqueous solutions. However, in the laboratory at temperatures in excess of 180 degrees C and in the presence of oxidizers such as nitrates and nitrites, dry ferrocyanide and ferrocyanide waste stimulants can be made to react exothermically. The Ferrocyanide Safety Project at the Pacific Northwest Laboratory (PNL) is part of the Waste Tank Safety Program at Westinghouse Hanford Company (WHC). The purpose of the WHC program is to (1) maintain the ferrocyanide tanks with minimal risk of an accident, (2) select one or more strategies to assure safe storage, and (3) close out the unreviewed safety question (USQ). Tank ferrocyanide wastes were exposed to highly alkaline wastes from subsequent processing operations. Chemical reactions with caustic may have changed the ferrocyanide materials during 40 years of storage in the SSTs. Research in the open-quotes Effects of Aging on Ferrocyanide Wastesclose quotes task is targeted at studying aging of ferrocyanide tank simulants and other ferrocyanide materials to obtain a better understanding of how tank materials may have changed over the years. The research objective in this project is to determine the solubility and hydrolysis characteristics of simulated ferrocyanide tank wastes in alkaline media. The behavior of ferrocyanide simulant wastes is being determined by performing chemical reactions under conditions that might mimic the potential ranges in SST environments. Experiments are conducted at high pH, at high ionic strength, and in the presence of gamma radiation. Verification of simulant study findings by comparison with results with actual waste will also be required

  14. Aboveground storage tanks

    International Nuclear Information System (INIS)

    Rizzo, J.A.

    1992-01-01

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. it should be noted that with the aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this paper are: Safety, Product Losses, Cost Comparison of USTs vs AGSTs, Space Availability/Accessibility, Precipitation Handling, Aesthetics and Security, Pending and Existing Regulations

  15. Separation and quantitation of radionuclides in Hanford environmental and waste tank samples using IC-ICP/MS techniques

    International Nuclear Information System (INIS)

    Farmer, O.T. III; Smith, M.R.; Wyse, E.J.; Barinage, C.J.; Koppenaal, D.W.

    1996-01-01

    The use of shielded ICP/MS instrumentation to characterize radioactive material has seen marked growth over the past few years. With a lower limit detection now in the fg/mL range for newer units, ICP/MS has become the method of choice for many studies requiring rapid, isotopic analysis of both stable elements and radionuclides with half-lives greater than 102-103 years. However, despite its sensitivity and versatility, ICP/MS has heretofore had some notable limitations in certain radiological applications. For example, Hanford waste tank samples contain a variety of nuclides with altered isotopic abundances, which complicate identification of these nuclides. Even if a nuclide can be identified, conventional quantitation using vendor-supplied software assumes natural, or knowledge of, isotopic abundance. Difficult sample matrices like those obtained from the Hanford tanks can further complicate interpretation and quantitation. On-line ion chromatography (IC) has been recently employed to mitigate some these problems. By sequentially separating elements, isobars can be resolved, thereby permitting the unequivocal determination of isotopic abundances. But even though the technique resolves isobaric interferences and is effective in reducing matrix problems, IC does not easily lend itself to quantitation. Internal standards, which are crucial for quantitation during a prolonged ICP/MS analysis with varying eluant matrices, are separated or affected as any indigenous element is using standard IC methodology

  16. Nevada Test Site annual site environmental report, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Wruble, D T; McDowell, E M [eds.

    1990-11-01

    Prior to 1989 annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the offsite radiological surveillance program conducted by the US Environmental Protection Agency (EPA), Environmental Monitoring Systems Laboratory, Las Vegas, Nevada, were reported separately by that Agency. Beginning with this 1989 annual Site environmental report for the NTS, these two documents are being combined into a single report to provide a more comprehensive annual documentation of the environmental protection program conducted for the nuclear testing program and other nuclear and non-nuclear activities at the Site. The two agencies have coordinated preparation of this combined onsite and offsite report through sharing of information on environmental releases and meteorological, hydrological, and other supporting data used in dose-estimate calculations. 57 refs., 52 figs., 65 tabs.

  17. Tank bromeliad water: similar or distinct environments for research of bacterial bioactives?

    Science.gov (United States)

    Carmo, F L; Santos, H F; Peixoto, R S; Rosado, A S; Araujo, F V

    2014-01-01

    The Atlantic Rainforest does not have a uniform physiognomy, its relief determines different environmental conditions that define the composition of its flora and fauna. Within this ecosystem, bromeliads that form tanks with their leaves hold water reservoirs throughout the year, maintaining complex food chains, based mainly on autotrophic and heterotrophic bacteria. Some works concluded that the water held by tank bromeliads concentrate the microbial diversity of their ecosystem. To investigate the bacterial diversity and the potential biotechnology of these ecosystems, tank bromeliads of the Neoregelia cruenta species from the Atlantic Rainforest in Brazil were used as models for this research. Bacteria isolated from these models were tested for production of bioactive compounds. DGGE of the water held by tank bromeliads was performed in different seasons, locations and sun exposure to verify whether these environmental factors affect bacterial communities. The DGGE bands profile showed no grouping of bacterial community by the environmental factors tested. Most of the isolates demonstrated promising activities in the tests performed. Collectively, these results suggest that tank bromeliads of the N. cruenta species provide important habitats for a diverse microbial community, suggesting that each tank forms a distinct micro-habitat. These tanks can be considered excellent sources for the search for new enzymes and/or new bioactive composites of microbial origin.

  18. Environmental assessment for Breeder Reprocessing Engineering Test (BRET): Revision 1

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1989-03-01

    This Environmental Assessment (EA) is for the proposed installation and operation of an integrated breeder fuel reprocessing test system in the shielded cells of the Fuels and Materials Examination Facility (FMEF) at Hanford and the associated modifications to the FMEF to accommodate BRET. These modifications would begin in FY-1986 subject to Congressional authorization. Hot operations would be scheduled to start in the early 1990's. The system, called the Breeder Reprocessing Engineering Test (BRET), is being designed to provide a test capability for developing the demonstrating fuel reprocessing, remote maintenance, and safeguards technologies for breeder reactor fuels. This EA describes (1) the action being proposed, (2) the existing environment which would be affected, (3) the potential environmental impacts from normal operations and severe accidents from the proposed action, (4) potential conflicts with federal, state, regional, and/or local plans for the area, and (5) environmental implications of alternatives considered to the proposed action. 41 refs., 10 figs., 31 tabs

  19. Casing pull tests for directionally drilled environmental wells

    International Nuclear Information System (INIS)

    Staller, G.E.; Wemple, R.P.; Layne, R.R.

    1994-11-01

    A series of tests to evaluate several types of environmental well casings have been conducted by Sandia National Laboratories (SNL) and it's industrial partner, The Charles Machine Works, Inc. (CMW). A test bed was constructed at the CMW test range to model a typical shallow, horizontal, directionally drilled wellbore. Four different types of casings were pulled through this test bed. The loads required to pull the casings through the test bed and the condition of the casing material were documented during the pulling operations. An additional test was conducted to make a comparison of test bed vs actual wellbore casing pull loads. A directionally drilled well was emplaced by CMW to closely match the test bed. An instrumented casing was installed in the well and the pull loads recorded. The completed tests are reviewed and the results reported

  20. Casing pull tests for directionally drilled environmental wells

    Energy Technology Data Exchange (ETDEWEB)

    Staller, G.E.; Wemple, R.P. [Sandia National Labs., Albuquerque, NM (United States); Layne, R.R. [Charles Machine Works, Inc., Perry, OK (United States)

    1994-11-01

    A series of tests to evaluate several types of environmental well casings have been conducted by Sandia National Laboratories (SNL) and it`s industrial partner, The Charles Machine Works, Inc. (CMW). A test bed was constructed at the CMW test range to model a typical shallow, horizontal, directionally drilled wellbore. Four different types of casings were pulled through this test bed. The loads required to pull the casings through the test bed and the condition of the casing material were documented during the pulling operations. An additional test was conducted to make a comparison of test bed vs actual wellbore casing pull loads. A directionally drilled well was emplaced by CMW to closely match the test bed. An instrumented casing was installed in the well and the pull loads recorded. The completed tests are reviewed and the results reported.

  1. 33 CFR 183.510 - Fuel tanks.

    Science.gov (United States)

    2010-07-01

    ... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak when...

  2. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    Energy Technology Data Exchange (ETDEWEB)

    Mallon, B.J.; Blake, R.G.

    1994-03-01

    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks.

  3. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    International Nuclear Information System (INIS)

    Mallon, B.J.; Blake, R.G.

    1994-03-01

    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks

  4. Tanks focus area. Annual report 1997

    International Nuclear Information System (INIS)

    Frey, J.

    1997-01-01

    The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM's technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE's four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program

  5. Integration of Environmental Restoration and Waste Management Activities for a More Cost-Effective Tank Remediation Program Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Brill, A.; Clark, R.; Stewart, R.

    1998-01-01

    This paper presents plans and strategies for remediation of the liquid low-level radioactive waste (LLLW) tanks that have been removed from service (also known as inactive tanks) at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. Much of the LLLW system at ORNL was installed more than 50 years ago. The overall objective of the Inactive Tank Program is to remediate all LLLW tanks that have been removed from service to the extent practicable in accordance with the regulatory requirements

  6. Environmental Testing of the NEXT PM1 Ion Engine

    Science.gov (United States)

    Synder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.

    2008-01-01

    The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The Prototype Model engine PM1 was subjected to qualification-level environmental testing to demonstrate compatibility with environments representative of anticipated mission requirements. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 minutes in each of three axes. Thermal-vacuum testing included a deep cold soak of the engine to temperatures of -168 C and thermal cycling from -120 to 203 C. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. Thruster performance was nominal throughout the test program, with minor variations in some engine operating parameters likely caused by facility effects. In general, the NEXT PM1 engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. After resolution of the findings from this test program the hardware environmental qualification program can proceed with confidence.

  7. Pilot test of ANSI draft standard N13.29 environmental dosimetry -- Performance criteria for testing

    International Nuclear Information System (INIS)

    Klemic, G.; Shebell, P.; Monetti, M.; Raccah, F.; Sengupta, S.

    1998-09-01

    American National Standards Institute Draft N13.29 describes performance tests for environmental radiation dosimetry providers. If approved it would be the first step toward applying the types of performance testing now required in personnel dosimetry to environmental radiation monitoring. The objective of this study was to pilot test the draft standard, before it undergoes final balloting, on a small group of dosimetry providers that were selected to provide a mix of facility types, thermoluminescent dosimeter designs and monitoring program applications. The first phase of the pilot test involved exposing dosimeters to laboratory photon, beta, and x-ray sources at routine and accident dose levels. In the second phase, dosimeters were subjected to ninety days of simulated environmental conditions in an environmental chamber that cycled through extremes of temperature and humidity. Two out of seven participants passed all categories of the laboratory testing phase, and all seven passed the environmental test phase. While some relatively minor deficiencies were uncovered in the course of the pilot test, the results show that draft N13.29 describes useful tests that could be appropriate for environmental dosimetry providers. An appendix to this report contains recommendations that should be addressed by the N13.29 working group before draft N13.29 is submitted for balloting

  8. Environmental testing of flat plate solar cell modules

    Science.gov (United States)

    Griffith, J.; Dumas, L.; Hoffman, A.

    1978-01-01

    Commercially available flat-plate solar cell modules have been subjected to a variety of environmental tests designed to simulate service conditions. Among the tests are those simulating heat and rain, wind-driven rains, humidity and freezing, humidity and heat, humidity with a voltage bias, salt fog, hail impact, and fungus infestation. Tests for optical surface soiling and the combined effects of temperature, humidity and UV irradiation are under development. A correlation has been demonstrated between degradation caused by the qualification tests and such observed field effects as power loss.

  9. Underground storage tank program

    International Nuclear Information System (INIS)

    Lewis, M.W.

    1994-01-01

    Underground storage tanks, UST'S, have become a major component of the Louisville District's Environmental Support Program. The District's Geotechnical and Environmental Engineering Branch has spear-headed an innovative effort to streamline the time, effort and expense for removal, replacement, upgrade and associated cleanup of USTs at military and civil work installations. This program, called Yank-A-Tank, creates generic state-wide contracts for removal, remediation, installation and upgrade of storage tanks for which individual delivery orders are written under the basic contract. The idea is to create a ''JOC type'' contract containing all the components of work necessary to remove, reinstall or upgrade an underground or above ground tank. The contract documents contain a set of generic specifications and unit price books in addition to the standard ''boiler plate'' information. Each contract requires conformance to the specific regulations for the state in which it is issued. The contractor's bid consists of a bid factor which in the multiplier used with the prices in the unit price book. The solicitation is issued as a Request for Proposal (RPP) which allows the government to select a contractor based on technical qualification an well as bid factor. Once the basic contract is awarded individual delivery orders addressing specific areas of work are scoped, negotiated and awarded an modifications to the original contract. The delivery orders utilize the prepriced components and the contractor's factor to determine the value of the work

  10. Sample test cases using the environmental computer code NECTAR

    International Nuclear Information System (INIS)

    Ponting, A.C.

    1984-06-01

    This note demonstrates a few of the many different ways in which the environmental computer code NECTAR may be used. Four sample test cases are presented and described to show how NECTAR input data are structured. Edited output is also presented to illustrate the format of the results. Two test cases demonstrate how NECTAR may be used to study radio-isotopes not explicitly included in the code. (U.K.)

  11. Environmental survey of southern part of former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Zharikov, S.K.

    2000-01-01

    The present paper discusses results of the environmental survey performed in selected areas of Semipalatinsk test site southern part and gives calculations of possible annual radionuclide (Cs-37, Sr-90 and Pu-239/240) intake due to local husbandry products. (author)

  12. Tank Focus Area Pretreatment Program. FY 1995 Program Management Plan

    International Nuclear Information System (INIS)

    Morrison, M.I.; McGinnis, C.P.; Wilkenson, W.T.; Hunt, R.D.

    1995-02-01

    This program management plan (PMP) describes the FY 1995 project plans for the Pretreatment Program of the Tank Focus Area. The Tank Focus Area is one of five areas of environmental concerns originally identified by the Deputy Assistant Secretary for Technology Development (EM-50). Projects in the Tank Focus Area relate to the remediation of liquid waste stored in underground storage tanks at various US Department of Energy sites. The Pretreatment Program is an organizational unit performing work within the Tank Focus Area. The function of the Pretreatment Program is to develop, test, evaluate, and demonstrate new technologies, with emphasis on separations. The 11 Pretreatment Program projects for FY 1995 are (1) Cesium Extraction Testing, (2) Comprehensive Supernate Treatment, (3) Hot Cell Studies, (4) Cesium Removal Demonstration, (5) Out-of-Tank Evaporator Demonstration, (6) Crossflow Filtration, (7) Technical Interchange with CEA, (8) TRUEX Applications, (9) NAC/NAG Process Studies (conducted at Oak Ridge National Laboratory), (10) NAC/NAG Process and Waste Form Studies (conducted at Florida International University), and (11) Program Management. Section 2 of this PMP contains a separate subsection for each FY 1995 project. A brief description of the project, a schedule of major milestones, and a breakdown of costs are provided for each project. The PMP also contains sections that describe the project controls that are in place. Quality assurance, document control, the project management system, and the management organization are described in these sections

  13. Thermographic Methods of Detecting Insulation Voids in Large Cryogenic Tanks

    Science.gov (United States)

    Arens, Ellen; Nurge, Mark; Youngquist, Robert; Starr, Stanley

    2010-01-01

    Four very large (900Kgal) cryogenic liquid hydrogen and oxygen storage tanks at Kennedy Space Center's LC-39 launch pads were constructed in 1965 to support the Apollo/Saturn V Program and continue to support the Space Shuttle Program. These double-walled spherical tanks with powdered insulation in the annular region, have received minimal refurbishment or even inspection over the years. Intrusively inspecting these tanks would mean a significant down time to the program as the cryogenic liquid and the perlite insulation would have to be removed which would be a significant task and long-term schedule disruption. A study of the tanks was performed to determine the extent to which performance and structural information could be revealed without intrusive inspection. Thermal images of the tanks were taken over a variety of environmental conditions to determine the best conditions under which to compare and use thermography as a health monitoring technique as the tanks continue to age. The settling and subsequent compaction of insulation is a serious concern for cryogenic tanks. Comparison of images from the tanks reveals significant variations in the insulation in the annual regions and point to the use of thermography as a way to monitor for insulation migration and possible compaction. These measurements, when combined with mathematical models of historical boil-off data provide key insight to the condition of the vessels. Acceptance testing methods for new tanks, before they are filled with cryogenic commodity (and thereby thermally cycled), are needed and we explore how thermography can be used to accomplish this.

  14. Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Patton, S.E.; Novo, M.G.; Shinn, J.H.

    1986-04-01

    The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated.

  15. Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Patton, S.E.; Novo, M.G.; Shinn, J.H.

    1986-04-01

    The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated

  16. Design, test and start up of a cleaning system for the moderator tank bottom of Atucha I Nuclear Power Plant

    International Nuclear Information System (INIS)

    Duca, J.; Gerber, O.; Ibero, M.; Riga, N.

    1989-01-01

    In order to perform the cleaning of the moderator tank bottom, during the repair of the Atucha I nuclear power plant (CNA I) failure, the Empresa Nuclear Argentina de Centrales Electricas (ENACE S.A.) designed a system with the following requirements (asked by CNA I): a) To aspirate and retain free solid particles, uranium dioxide pellets and coolant channels isolations (foils) of minor size settled at the moderator tank bottom, being the reactor at middle loop state. b) To allow a radially cleaning up to 1.4 m from the extracted channel. c) To design a lay-out attaining the ALARA dose exposure. The designed system basically consists in: a) Flexible intake for suction: allows the movement inside the moderator tank and provides the adequate speed to raise the particles. b) Filter: retains the aspirated particles, pellets and foils. Its capacity is 1.8 dm 3 and the minimum size of retained particles is 200 m. The ALARA dose exposure concept is attained due to that the filter is located inside the moderator tank. c) Filtering column: contains the filter and allows the entrance of the extraction and exchange tool (for the flexible intake and filter). d) Suction hose: connects the filtering column with the pump. Its flexibility allows its use in any channel maintaining the same positions of the discharge pump and the return piping. e) Discharge pump: it is a canned centrifugal pump with low-low net positive suction head. f) Return piping: discharges the filtered water into the moderator tank. The system fulfilled satisfactorily all requirements during its operation. (Author)

  17. Underground Storage Tanks - Storage Tank Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  18. The Savannah River environmental technology field test platform: Phase II

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.; May, C.P.; Pemberton, B.E.; Jarosch, T.R.; Eddy-Dilek, C.A.; Looney, B.B.; Raymond, R.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The DOE complex has devised several strategies to facilitate this transfer including joint research projects between private industries and government laboratories or universities (CRADAs), and streamlined licensing procedures. One strategy that has been under-utilized is a planned sequence gradually moving from laboratory development and field demonstration to long term evaluation and onsite use. Industrial partnership and commercial production can be initiated at any step based on the performance, market, user needs, and costs associated with the technology. The Savannah River Technology Center (SRTC) has been developing a program to rigorously field test promising environmental technologies that have not undergone EPA equivalency testing. The infrastructure and staff expertise developed as part of the activities of the Savannah River Integrated Demonstration Program (i.e., wells, available power, conventional baseline characterization and monitoring equipment, shelter structures) allows field testing of technologies without the difficulties of providing remote field support. By providing a well-characterized site and a well-developed infrastructure, technologies can be tested for long periods of time to determine their appropriate applications in environmental characterization and monitoring activities. Situation specific evaluations of the technology following stringent test plans can be made in comparison with simultaneous baseline methods and historical data. This program is designed to help expedite regulatory approval and technology transfer to manufacturers and the user community

  19. CM-2 Environmental/Modal Testing of SPACEHAB Racks

    Science.gov (United States)

    McNelis, Mark E.; Goodnight, Thomas W.

    2001-01-01

    Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that will launch on shuttle mission STS-107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack-level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the shuttles.

  20. Dual Tank Fuel System

    Science.gov (United States)

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  1. Tank 241-AZ-101 and tank 241-AZ-102, airlift circulator operation vapor sampling and analysis plan

    International Nuclear Information System (INIS)

    TEMPLETON, A.M.

    1999-01-01

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of the tank 241-AZ-101 and 241-AZ-102 airlift circulators (ALCs). The purpose of the ALC operation is to support portions of the operational test procedure (OTP) for Project W-030 (OTP-W030-001) and to perform functional test in support of Project W-151. Project W-030 is the 241-A-702 ventilation upgrade project (241-AZ-702) and Project W-151 is the 241-AZ-101 Mixer Pump Test. The functional tests will check the operability of the tank 241-AZ-101 ALCs. Process Memo's No.2E98-082 and No.2E99-001 (LMHC 1999a, LMHC 1999b) direct the operation of the ALCs and the Industrial Hygiene monitoring respectively. A series of tests will be conducted in which the ALCs in tanks 241-AZ-101 and 241-AZ-102 will be operated at different air flow rates. Vapor samples will be obtained to determine constituents that may be present in the tank headspace during ALC operation at tanks 241-AZ-101 and 241-AZ-102 as the waste is disturbed. During the testing, vapor samples will be obtained from the headspace of tanks 241-AZ-101 and 241-AZ-102 via the unused port on the standard hydrogen monitoring system (SHMS). Results will be used to provide the waste feed delivery program with environmental air permitting data for tank waste disturbing activities. Because of radiological concerns, the samples will be filtered for particulates. It is recognized that this may remove some organic compounds

  2. Test results for cables used in nuclear power plants by a new environmental testing method

    Energy Technology Data Exchange (ETDEWEB)

    Handa, Katsue; Fujimura, Shun-ichi; Hayashi, Toshiyasu; Takano, Keiji; Oya, Shingo

    1982-12-01

    In the nuclear power plants using PWRs or BWRs in Japan, environmental tests are provided, in which simulated LOCA conditions are considered so as to conform with Japanese conditions, and many cables which passed these tests are presently employed. Lately, the new environmental testing, in which a credible accident called MSLB (main steam line breakage) is taken into account, is investigated in PWR nuclear power plants, besides LOCA. This paper reports on the results of evaluating some PWR cables for this new environmental testing conditions. The several cables tested were selected out of PH cables (fire-retardant, ethylene propylene rubber insulated, chlorosulfonated polyethylene sheathed cables) as the cables for safety protecting circuits and to be used in containment vessels where the cables are to be exposed to severe environmental test conditions of 2 x 10/sup 8/ Rad ..gamma..-irradiation and simulated LOCA. All these cables have been accepted after the vertical tray burning test provided in the IEEE Standard 383. The new testing was carried out by sequentially applying thermal deterioration, ..gamma..-irradiation, and the exposure to steam (twice 300 s exposures to 190 deg C superheated steam). After completing each step, tensile strength, elongation, insulation resistance and breakdown voltage were measured, respectively. Every cable tested showed satisfactory breakdown voltage after the exposure to steam, thus it was decided to be acceptable. In future, it is required to investigate the influence of the rate of temperature rise on the cable to be tested in MSLB simulation.

  3. Test results for cables used in nuclear power plants by a new environmental testing method

    International Nuclear Information System (INIS)

    Handa, Katsue; Fujimura, Shun-ichi; Hayashi, Toshiyasu; Takano, Keiji; Oya, Shingo

    1982-01-01

    In the nuclear power plants using PWRs or BWRs in Japan, environmental tests are provided, in which simulated LOCA conditions are considered so as to conform with Japanese conditions, and many cables which passed these tests are presently employed. Lately, the new environmental testing, in which a credible accident called MSLB (main steam line breakage) is taken into account, is investigated in PWR nuclear power plants, besides LOCA. This paper reports on the results of evaluating some PWR cables for this new environmental testing conditions. The several cables tested were selected out of PH cables (fire-retardant, ethylene propylene rubber insulated, chlorosulfonated polyethylene sheathed cables) as the cables for safety protecting circuits and to be used in containment vessels where the cables are to be exposed to severe environmental test conditions of 2 x 10 8 Rad γ-irradiation and simulated LOCA. All these cables have been accepted after the vertical tray burning test provided in the IEEE Standard 383. The new testing was carried out by sequentially applying thermal deterioration, γ-irradiation, and the exposure to steam (twice 300 s exposures to 190 deg C superheated steam). After completing each step, tensile strength, elongation, insulation resistance and breakdown voltage were measured, respectively. Every cable tested showed satisfactory breakdown voltage after the exposure to steam, thus it was decided to be acceptable. In future, it is required to investigate the influence of the rate of temperature rise on the cable to be tested in MSLB simulation. (Wakatsuki, Y.)

  4. Optimised Environmental Test Approaches in the GOCE Project

    Science.gov (United States)

    Ancona, V.; Giordano, P.; Casagrande, C.

    2004-08-01

    The Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) is dedicated to measuring the Earth's gravity field and modelling the geoid with extremely high accuracy and spatial resolution. It is the first Earth Explorer Core mission to be developed as part of ESA's Living Planet Programme and is scheduled for launch in 2006. The program is managed by a consortium of European companies: Alenia Spazio, the prime contractor, Astrium GmbH, the platform responsible, Alcatel Space Industries and Laben, suppliers of the main payloads, respectively the Electrostatic Gravity Gradiometer (EGG) and the Satellite to Satellite Tracking Instrument (SSTI), actually a precise GPS receiver. The GOCE Assembly Integration and Verification (AIV) approach is established and implemented in order to demonstrate to the customer that the satellite design meets the applicable requirements and to qualify and accept from lower level up to system level. The driving keywords of "low cost" and "short schedule" program, call for minimizing the development effort by utilizing off-the-shelf equipment combined with a model philosophy lowering the number of models to be used. The paper will deal on the peculiarities of the optimized environmental test approach in the GOCE project. In particular it introduces the logic of the AIV approach and describe the foreseen tests at system level within the SM environmental test campaign, outlining the Quasi Static test performed in the frame of the SM sine vibration tests, and the PFM environmental test campaign pinpointing the deletion of the Sine Vibration test on PFM model. Furthermore the paper highlights how the Model and Test Effectiveness Database (MATD) can be utilized for the prediction of the new space projects like GOCE Satellite.

  5. Ecodesign of Liquid Fuel Tanks

    Science.gov (United States)

    Gicevska, Jana; Bazbauers, Gatis; Repele, Mara

    2011-01-01

    The subject of the study is a 10 litre liquid fuel tank made of metal and used for fuel storage and transportation. The study dealt with separate life cycle stages of this product, compared environmental impacts of similar fuel tanks made of metal and plastic, as well as analysed the product's end-of-life cycle stage, studying the waste treatment and disposal scenarios. The aim of this study was to find opportunities for improvement and to develop proposals for the ecodesign of 10 litre liquid fuel tank.

  6. The Multimedia Environmental Pollutant Assessment System (MEPAS reg-sign): Completely-Stirred Tank Reactor (CSTR) formulations for the wetland pathway

    International Nuclear Information System (INIS)

    McDonald, J.P.; van der Aa, N.G.F.M.; Whelan, G.

    1997-06-01

    The Multimedia Environmental Pollutant Assessment System (MEPAS) is a physics-based environmental analysis code integrating source-term, fate, and exposure models for concentration, dose, or risk endpoints. Developed by Pacific Northwest National Laboratory for the US Department of Energy, MEPAS is designed for site-specific assessments using readily available information. Endpoints are computed for chemical and radioactive pollutants. For human health impacts, risks are computed for radioactive and hazardous carcinogens, and hazard quotients for noncarcinogens. This system has wide applicability to environmental problems using air, groundwater, surface-water, overland, wetland, and exposure models. MEPAS enables users to simulate release of contaminants from a source; transport of contaminants through the air, groundwater, surface-water, overland, or wetland pathways; and transfer of contaminants through food chains and exposure pathways to the exposed individual or population. Whenever available and appropriate, guidance and/or models from the US Environmental Protection Agency, International Commission on Radiological Protection, and National Council on Radiation Protection and Measurements were used to facilitate compatibility and acceptance. Although based on relatively standard transport and exposure computation approaches, MEPAS uniquely integrated these approaches into a single system, providing a consistent basis for evaluating health impacts for a large number of problems and sites. Implemented on a desktop computer, a user-friendly platform allows the user to define the problem, input the required data, and execute the appropriate models. This document describes the mathematical formulations for the Completely-Stirred Tank Reactor (CSTR) component of MEPAS as applied to the wetland pathway

  7. Ferrocyanide tank waste stability

    International Nuclear Information System (INIS)

    Fowler, K.D.

    1993-01-01

    Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove 137 CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes

  8. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 326: Areas 6 and 27 Release Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    A. T. Urbon

    2001-09-01

    This Streamlined Approach for Environmental Restoration (SAFER) plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 326, Areas 6 and 27 Release Sites. This CAU is currently listed in the January 2001, Appendix III of the Federal Facilities Agreement and Consent Order (FFACO) (FFACO, 1996). CAU 326 is located on the Nevada Test Site (NTS) and consists of the following four Corrective Action Sites (CASS) (Figure 1): CAS 06-25-01--Is a rupture in an underground pipe that carried heating oil (diesel) from the underground heating oil tank (Tank 6-CP-1) located to the west of Building CP-70 to the boiler in Building CP-1 in the Area 6 Control Point (CP) compound. CAS 06-25-02--A heating oil spill that is a result of overfilling an underground heating oil tank (Tank 6-DAF-5) located at the Area 6 Device Assembly Facility (DAF). CAS 06-25-04--A release of waste oil that occurred while removing used oil to from Tank 6-619-4. Tank 6-619-4 is located northwest of Building 6-619 at the Area 6 Gas Station. CAS 27-25-01--Consists of an excavation that was created in an attempt to remove impacted stained soil from the Site Maintenance Yard in Area 27. Approximately 53.5 cubic meters (m{sup 3}) (70 cubic yards [yd{sup 3}]) of soil impacted by total petroleum hydrocarbons (TPH) and polychlorinated biphenyls (PCBs) was excavated before the excavation activities were halted. The excavation activities were stopped because the volume of impacted soil exceeded estimated quantities and budget.

  9. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 326: Areas 6 and 27 Release Sites, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    A. T. Urbon

    2001-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 326, Areas 6 and 27 Release Sites. This CAU is currently listed in the January 2001, Appendix III of the Federal Facilities Agreement and Consent Order (FFACO) (FFACO, 1996). CAU 326 is located on the Nevada Test Site (NTS) and consists of the following four Corrective Action Sites (CASS) (Figure 1): CAS 06-25-01-Is a rupture in an underground pipe that carried heating oil (diesel) from the underground heating oil tank (Tank 6-CP-1) located to the west of Building CP-70 to the boiler in Building CP-1 in the Area 6 Control Point (CP) compound. CAS 06-25-02-A heating oil spill that is a result of overfilling an underground heating oil tank (Tank 6-DAF-5) located at the Area 6 Device Assembly Facility (DAF). CAS 06-25-04-A release of waste oil that occurred while removing used oil to from Tank 6-619-4. Tank 6-619-4 is located northwest of Building 6-619 at the Area 6 Gas Station. CAS 27-25-01-Consists of an excavation that was created in an attempt to remove impacted stained soil from the Site Maintenance Yard in Area 27. Approximately 53.5 cubic meters (m(sup 3)) (70 cubic yards[yd(sup 3)]) of soil impacted by total petroleum hydrocarbons (TPH) and polychlorinated biphenyls (PCBs) was excavated before the excavation activities were halted. The excavation activities were stopped because the volume of impacted soil exceeded estimated quantities and budget

  10. Environmental process for elimination of phenolic water present in refinery gasoline tanks; Processo ambiental para eliminacao de agua fenolica presente em tanques de gasolina de refinarias de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Correa Junior, Bentaci; Pedroso, Osmar V.; Furlan, Luis T. [PETROBRAS, SP (Brazil). Refinaria de Paulinia

    2004-07-01

    Gasoline production in petroleum refineries usually implies carrying high phenol contents in water after treatment systems. Phenols are powerful bactericides and, therefore, harmful to microorganisms present in wastewater treatment plants and in rivers. Due to this reason, usually controlled phenolic water drainage is performed, enabling gasoline quality improvement, without jeopardizing the biological treatment. Increase of phenolic contents in the effluent, due to operational disarray during the drainage of gasoline tanks may cause inhibition or even mortality of the existing microorganisms in the wastewater treatment plants. Aiming at changing the traditional treatment logic of environmental demands at the 'end of pipe', sending the phenolic water to the sour water treatment systems was proposed and implemented, which in turn, is reutilized by the latter in the crude desalination of the Distillation Units, where the phenols are reincorporated to the crude oil, preventing negative consequences to the wastewater treatment plant. The implemented process has demonstrated that premises were correct, enabling to implement process flows quite higher than drainage flows, what has meant productivity gains and environmental improvement. (author)

  11. Bulk tank milk ELISA for detection of antibodies to Mycobacterium avium subsp paratuberculosis: Correlation between repeated tests and within-herd antibody-prevalence

    DEFF Research Database (Denmark)

    Nielsen, Søren Saxmose; Toft, Nils

    2014-01-01

    Detection of bulk tank milk (BTM) antibodies using ELISA (BTM-ELISA) may constitute an inexpensive test for surveillance of Mycobacterium avium subsp. paratuberculosis (MAP) infection in dairy cattle herds provided that the test is accurate and consistent. The objectives of this study were...... Danish Holstein herds over a period of one year. All samples were tested using a commercial indirect ELISA for detection of MAP specific antibodies. The individual cow's results were dichotomised and used to estimate the within-herd antibody prevalence at each test-date. These prevalences were...... to 0.60 when corrected for the within-herd antibody prevalence. Although the test-results were relatively consistent and correlated with the within-herd prevalence, the magnitude of the test-values makes it difficult to use the BTM-ELISA for surveillance of MAP infections in practice....

  12. Closure Report for Corrective Action Unit 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-02-01

    CAU 127, Areas 25 and 26 Storage Tanks, consists of twelve CASs located in Areas 25 and 26 of the NTS. The closure alternatives included no further action, clean closure, and closure in place with administrative controls. The purpose of this Closure Report is to provide a summary of the completed closure activities, documentation of waste disposal, and analytical data to confirm that the remediation goals were met.

  13. Environmental Assessment -- Test Area North pool stabilization project update

    International Nuclear Information System (INIS)

    1997-08-01

    The purpose of this Environmental Assessment (EA) is to update the ''Test Area North Pool Stabilization Project'' EA (DOE/EA-1050) and finding of no significant impact (FONSI) issued May 6, 1996. This update analyzes the environmental and health impacts of a drying process for the Three Mile Island (TMI) nuclear reactor core debris canisters now stored underwater in a facility on the Idaho National Engineering and Environmental Laboratory (INEEL). A drying process was analyzed in the predecision versions of the EA released in 1995 but that particular process was determined to be ineffective and dropped from the EA/FONSI issued May 6, 1996. A new drying process was subsequently developed and is analyzed in Section 2.1.2 of this document. As did the 1996 EA, this update analyzes the environmental and health impacts of removing various radioactive materials from underwater storage, dewatering these materials, constructing a new interim dry storage facility, and transporting and placing the materials into the new facility. Also, as did the 1996 EA, this EA analyzes the removal, treatment and disposal of water from the pool, and placement of the facility into a safe, standby condition. The entire action would take place within the boundaries of the INEEL. The materials are currently stored underwater in the Test Area North (TAN) building 607 pool, the new interim dry storage facility would be constructed at the Idaho Chemical Processing Plant (ICPP) which is about 25 miles south of TAN

  14. Draft environmental assessment -- Test Area North pool stabilization project update

    International Nuclear Information System (INIS)

    1997-06-01

    The purpose of this Environmental Assessment (EA) is to update the ''Test Area North Pool Stabilization Project'' EA (DOE/EA-1050) and finding of no significant impact (FONSI) issued May 6, 1996. This update analyzes the environmental and health impacts of a drying process for the Three Mile Island (TMI) nuclear reactor core debris canisters now stored underwater in a facility on the Idaho National Engineering and Environmental Laboratory (INEEL). A drying process was analyzed in the predecision versions of the EA released in 1995 but that particular process was determined to be ineffective and dropped form the Ea/FONSI issued May 6, 1996. The origin and nature of the TMI core debris and the proposed drying process are described and analyzed in detail in this EA. As did the 1996 EA, this update analyzes the environmental and health impacts of removing various radioactive materials from underwater storage, dewatering these materials, constructing a new interim dry storage facility, and transporting and placing the materials into the new facility. Also, as did the 1996 EA, this EA analyzes the removal, treatment and disposal of water from the pool, and placement of the facility into a safe, standby condition. The entire action would take place within the boundaries of the INEEL. The materials are currently stored underwater in the Test Area North (TAN) building 607 pool, the new interim dry storage facility would be constructed at the Idaho Chemical Processing Plant (ICPP) which is about 25 miles south of TAN

  15. Inerting ballast tanks

    Energy Technology Data Exchange (ETDEWEB)

    Baes, Gabriel L.; Bronneberg, Jos [SBM Offshore, AA Schiedam (Netherlands); Barros, Maria A.S.D. de [Universidade Estadual de Maringa (UEM), PR (Brazil)

    2012-07-01

    This report expands upon the work conducted by SBM Offshore to develop a tank preservation treatment, which is intended to achieve a service life of 30 years. This work focuses on the corrosion problems, in the ballast tanks, based on new built hulls, both for the Gas Exploration Market, the FLNG - Floating Liquefied Natural Gas, and for the Oil Exploration market - FPSO's - Floating Production Storage and offloading Units. Herein, the corrosion rate input comes from the various references related to the process of nitrogen injection, which is expected to extend the vessel's time life. The essential elements of this solution comprise the deoxygenation process, corrosion models, coating effects, tests from laboratory, shipboard tests, corrosion institutes and regulations applicable to the operation. The best corrosion protection system for ballast tanks area combines a coating system and an inert gas system. The condition of the tanks will be dependent upon the level of protection applied to the steel structure, including, but not limited to coating, cathodic protection, etc. There is a need for products which extend the life time. It is not sufficient, only have good theoretical base for the corrosion and an excellent treatment system. In addition, the design of the ships structure must also eliminate the presence of local stress concentrations which can result in fatigue cracking and rupture of the protective coating barrier starting the corrosion. As a direct result of this, more problems in corrosion can be mitigated, vessels can have a better corrosion performance with less maintenance and repairs to coating systems in ballast tanks. Furthermore ships will be positively impacted operationally due to less frequent dry docking. There is a huge potential in the application of inert gas to combat the corrosion rate inside the ballast tanks, one of the most corrosive environments on earth. This application can have a direct impact on vessel structure

  16. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

  17. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii

    International Nuclear Information System (INIS)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-01-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b)

  18. History of waste tank 13, 1956 through 1974

    International Nuclear Information System (INIS)

    Davis, T.L.; Tharin, D.W.; Lohr, D.R.

    1978-06-01

    Tank 13 was placed in service as a receiver of LW from the Building 221-H Purex process in December 1956. Five years later, the supernate was decanted to evaporator feed tank 21. It has since served as a transfer tank for HW supernate being sent to tank 21 and has received sludge removed from other tanks four times. The tank annulus has been inspected with an optical periscope and a lead-shielded camera. No indication of tank leakage had been seen through December 1974. However, subsequent to this report (on April 14, 1977), an arrested leak was discovered, making tank 13 the last of the four type II tanks to leak. Analytical samples of supernate and sludge have been taken. Tank 13 has had no cooling coil failures. Primary tank wall thicknesses, sludge level determinations, and temperature profiles have been obtained. Tank 13 has been included in various tests. Equipment modifications and various equipment repairs were made. 11 figures, 2 tables

  19. SRS tank closure. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-08-01

    High-level waste (HLW) tank closure technology is designed to stabilize any remaining radionuclides and hazardous constituents left in a tank after bulk waste removal. Two Savannah River Site (SRS) HLW tanks were closed after cleansing and then filling each tank with three layers of grout. The first layer consists of a chemically reducing grout. The fill material has chemical properties that retard the movement of some radionuclides and chemical constituents. A layer of controlled low-strength material (CLSM), a self-leveling fill material, is placed on top of the reducing grout. CLSM provides sufficient strength to support the overbearing weight. The final layer is a free-flowing, strong grout similar to normal concrete. After the main tank cavity is filled, risers are filled with grout, and all waste transfer piping connected to the tank is isolated. The tank ventilation system is dismantled, and the remaining systems are isolated. Equipment that remains with the tank is filled with grout. The tank and ancillary systems are left in a state requiring only limited surveillance. Administrative procedures are in place to control land use and access. DOE eventually plans to remove all of its HLW storage tanks from service. These tanks are located at SRS, Hanford, and Idaho National Engineering and Environmental Laboratory. Low-activity waste storage tanks at Oak Ridge Reservation are also scheduled for closure

  20. Waste management plan for inactive LLLW tanks 3001-B, 3004-B, 3013, and T-30 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-07-01

    This Project Waste Management Plan identifies the waste that is expected to be generated in connection with the removal and disposition of inactive liquid low-level radioactive waste tanks 3001-B, 3004-B, and T-30, and grouting of tank 3013 at the Oak Ridge National Laboratory and the isolation of these tanks' associated piping systems. The plan also identifies the organization, responsibilities, and administrative controls that will be followed to ensure proper handling of the waste

  1. Single-Shell Tank (SST) Retrieval Project Plan for Tank 241-C-104 Retrieval

    International Nuclear Information System (INIS)

    DEFIGH PRICE, C.

    2000-01-01

    In support of the SST Interim Closure Project, Project W-523 ''Tank 241-C-104 Waste Retrieval System'' will provide systems for retrieval and transfer of radioactive waste from tank 241-C-104 (C-104) to the DST staging tank 241-AY-101 (AY-101). At the conclusion of Project W-523, a retrieval system will have been designed and tested to meet the requirements for Acceptance of Beneficial Use and been turned over to operations. Completion of construction and operations of the C-104 retrieval system will meet the recently proposed near-term Tri-Party Agreement milestone, M-45-03F (Proposed Tri-Party Agreement change request M-45-00-01A, August, 30 2000) for demonstrating limits of retrieval technologies on sludge and hard heels in SSTs, reduce near-term storage risks associated with aging SSTs, and provide feed for the tank waste treatment plant. This Project Plan documents the methodology for managing Project W-523; formalizes responsibilities; identifies key interfaces required to complete the retrieval action; establishes the technical, cost, and schedule baselines; and identifies project organizational requirements pertaining to the engineering process such as environmental, safety, quality assurance, change control, design verification, testing, and operational turnover

  2. Disposal of Hanford defense high-level, transuranic and tank wastes, Hanford Site, Richland, Washington. Draft environmental impact statement. Volume 3. Appendices M-V

    International Nuclear Information System (INIS)

    1986-03-01

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into the selection and implementation of final disposal actions for high-level, transuranic and tank wastes located at the Hanford Site, Richland, Washington, and into the construction, operation and decommissioning of waste treatment facilities that may be required in implementing waste disposal alternatives. Specifically evaluated are a Hanford Waste Vitrification Plant, Transportable Grout Facility, and a Waste Receiving and Packaging Facility. Also an evaluation is presented to assist in determining whether any additional action should be taken in terms of long-term environmental protection for waste that was disposed of at Hanford prior to 1970 as low-level waste (before the transuranic waste category was established by the AEC) but which might fall into that category if generated today. The alternatives considered in this EIS are: (1) in-place stabilization and disposal, where waste is left in place but is isolated by protective and natural barriers; (2) geologic disposal, where most of the waste (to the extent practicable) is exhumed, treated, segregated, packaged and disposed of in a deep geologic repository; waste classified as high-level would be disposed of in a commercial repository developed pursuant to the Nuclear Waste Policy Act; transuranic waste would be disposed of in the Waste Isolation Pilot Plant near Carlsbad, New Mexico; (3) reference alternative, where some classes of waste are disposed of in geologic repositories and other classes of waste are disposed of by in-place stabilization and disposal; and (4) a ''no disposal'' action alternative (continued storage)

  3. Disposal of Hanford defense high-level, transuranic and tank wastes, Hanford Site, Richland, Washington. Draft environmental impact statement. Volume 2. Appendices A-L

    International Nuclear Information System (INIS)

    1986-03-01

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into the selection and implementation of final disposal actions for high-level, transuranic and tank wastes located at the Hanford Site, Richland, Washington, and into the construction, operation and decommissioning of waste treatment facilities that may be required in implementing waste disposal alternatives. Specifically evaluated are a Hanford Waste Vitrification Plant, Transportable Grout Facility, and a Waste Receiving and Packaging Facility. Also an evaluation is presented to assist in determining whether any additional action should be taken in terms of long-term environmental protection for waste that was disposed of at Hanford prior to 1970 as low-level waste (before the transuranic waste category was established by the AEC) but which might fall into that category if generated today. The alternatives considered in this EIS are: (1) in-place stabilization and disposal, where waste is left in place but is isolated by protective and natural barriers; (2) geologic disposal, where most of the waste (to the extent practicable) is exhumed, treated, segregated, packaged and disposed of in a deep geologic repository; waste classified as high-level would be disposed of in a commercial repository developed pursuant to the Nuclear Waste Policy Act; transuranic waste would be disposed of in the Waste Isolation Pilot Plant near Carlsbad, New Mexico; (3) reference alternative, where some classes of waste are disposed of in geologic repositories and other classes of waste are disposed of by in-place stabilization and disposal; and (4) a ''no disposal'' action alternative (continued storage)

  4. Comparison of simulants to actual neutralized current acid waste: process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    Energy Technology Data Exchange (ETDEWEB)

    Morrey, E.V.; Tingey, J.M.; Elliott, M.L.

    1996-10-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs were established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste was performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property ,models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

  5. Comparison of simulants to actual neutralized current acid waste: Process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    Energy Technology Data Exchange (ETDEWEB)

    Morrey, E.V.; Tingey, J.M.

    1996-04-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs have been established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste is being performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

  6. Comparison of simulants to actual neutralized current acid waste: process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    International Nuclear Information System (INIS)

    Morrey, E.V.; Tingey, J.M.; Elliott, M.L.

    1996-10-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs were established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste was performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property ,models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions

  7. Comparison of simulants to actual neutralized current acid waste: Process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    International Nuclear Information System (INIS)

    Morrey, E.V.; Tingey, J.M.

    1996-04-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs have been established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste is being performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions

  8. Tank Insulation

    Science.gov (United States)

    1979-01-01

    For NASA's Apollo program, McDonnell Douglas Astronautics Company, Huntington Beach, California, developed and built the S-IVB, uppermost stage of the three-stage Saturn V moonbooster. An important part of the development task was fabrication of a tank to contain liquid hydrogen fuel for the stage's rocket engine. The liquid hydrogen had to be contained at the supercold temperature of 423 degrees below zero Fahrenheit. The tank had to be perfectly insulated to keep engine or solar heat from reaching the fuel; if the hydrogen were permitted to warm up, it would have boiled off, or converted to gaseous form, reducing the amount of fuel available to the engine. McDonnell Douglas' answer was a supereffective insulation called 3D, which consisted of a one-inch thickness of polyurethane foam reinforced in three dimensions with fiberglass threads. Over a 13-year development and construction period, the company built 30 tanks and never experienced a failure. Now, after years of additional development, an advanced version of 3D is finding application as part of a containment system for transporting Liquefied Natural Gas (LNG) by ship.

  9. A general tank test of a model of the hull of the Pem-1 flying boat including a special working chart for the determination of hull performance

    Science.gov (United States)

    Dawson, John R

    1938-01-01

    The results of a general tank test of a 1/6 full-size model of the hull of the Pem-1 flying boat (N.A.C.A. model 18) are given in non-dimensional form. In addition to the usual curves, the results are presented in a new form that makes it possible to apply them more conveniently than in the forms previously used. The resistance was compared with that of N.A.C.A. models 11-C and 26(Sikorsky S-40) and was found to be generally less than the resistance of either.

  10. Nevada Test Site Environmental Report 2008 Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2008 (National Security Technologies, LLC [NSTec], 2009a). Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  11. Nevada Test Site Environmental Report 2007 Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    This appendix expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2007 (U.S. Department of Energy [DOE], 2008). Included are subsections that summarize the site's geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  12. Nevada Test Site Environmental Report 2005, Attachment A - Site Description

    International Nuclear Information System (INIS)

    Cathy A. Wills

    2006-01-01

    This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report

  13. Test Area North Pool Stabilization Project: Environmental assessment

    International Nuclear Information System (INIS)

    1996-05-01

    The Test Area North (TAN) Pool is located within the fenced TAN facility boundaries on the Idaho National Engineering Laboratory (INEL). The TAN pool stores 344 canisters of core debris from the March, 1979, Three Mile Island (TMI) Unit 2 reactor accident; fuel assemblies from Loss-of-Fluid Tests (LOFT); and Government-owned commercial fuel rods and assemblies. The LOFT and government owned commercial fuel rods and assemblies are hereafter referred to collectively as open-quotes commercial fuelsclose quotes except where distinction between the two is important to the analysis. DOE proposes to remove the canisters of TMI core debris and commercial fuels from the TAN Pool and transfer them to the Idaho Chemical Processing Plant (ICPP) for interim dry storage until an alternate storage location other than at the INEL, or a permanent federal spent nuclear fuel (SNF) repository is available. The TAN Pool would be drained and placed in an industrially and radiologically safe condition for refurbishment or eventual decommissioning. This environmental assessment (EA) identifies and evaluates environmental impacts associated with (1) constructing an Interim Storage System (ISS) at ICPP; (2) removing the TMI and commercial fuels from the pool and transporting them to ICPP for placement in an ISS, and (3) draining and stabilizing the TAN Pool. Miscellaneous hardware would be removed and decontaminated or disposed of in the INEL Radioactive Waste Management Complex (RWMC). This EA also describes the environmental consequences of the no action alternative

  14. Nevada Test Site Environmental Report 2009, Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2009. Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  15. Nevada Test Site Environmental Report 2005, Attachment A - Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2006-10-01

    This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  16. Sandia National Laboratories/New Mexico existing environmental analyses bounding environmental test facilities.

    Energy Technology Data Exchange (ETDEWEB)

    May, Rodney A.; Bailey-White, Brenda E. (Sandia Staffing Alliance, LLC, Albuquerque, NM); Cantwell, Amber (Sandia Staffing Alliance, LLC, Albuquerque, NM)

    2009-06-01

    This report identifies current environmental operating parameters for the various test and support facilities at SNL/NM. The intent of this report is solely to provide the limits which bound the facilities' operations. Understanding environmental limits is important to maximizing the capabilities and working within the existing constraints of each facility, and supports the decision-making process in meeting customer requests, cost and schedule planning, modifications to processes, future commitments, and use of resources. Working within environmental limits ensures that mission objectives will be met in a manner that protects human health and the environment. It should be noted that, in addition to adhering to the established limits, other approvals and permits may be required for specific projects.

  17. Feed tank transfer requirements

    International Nuclear Information System (INIS)

    Freeman-Pollard, J.R.

    1998-01-01

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented

  18. Feed tank transfer requirements

    Energy Technology Data Exchange (ETDEWEB)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

  19. Suspending Zeolite Particles In Tanks

    International Nuclear Information System (INIS)

    Poirier, M.R.

    1999-01-01

    The Savannah River Site (SRS) is in the process of removing waste (sludge and salt cake) from million gallon waste tanks. The current practice for removing waste from the tanks is adding water, agitating the tanks with long shaft vertical centrifugal pumps, and pumping the sludge/salt solution from the tank to downstream treatment processes. This practice has left sludge heels (tilde 30,000 gallons) in the bottom of the tanks. SRS is evaluating shrouded axial impeller mixers for removing the sludge heels in the waste tanks. The authors conducted a test program to determine mixer requirements for suspending sludge heels using the shrouded axial impeller mixers. The tests were performed with zeolite in scaled tanks which have diameters of 1.5, 6.0, and 18.75 feet. The mixer speeds required to suspend zeolite particles were measured at each scale. The data were analyzed with various scaling methods to compare their ability to describe the suspension of insoluble solids with the mixers and to apply the data to a full-scale waste tank. The impact of changes in particle properties and operating parameters was also evaluated. The conclusions of the work are: Scaling of the suspension of fast settling zeolite particles was best described by the constant power per unit volume method. Increasing the zeolite particle concentration increased the required mixer power needed to suspend the particles. Decreasing the zeolite particle size from 0.7 mm 0.3 mm decreased the required mixer power needed to suspend the particles. Increasing the number of mixers in the tank decreased the required mixer power needed to suspend the particles. A velocity of 1.6 ft/sec two inches above the tank bottom is needed to suspend zeolite particles

  20. Environmental testing of terrestrial flat plate photovoltaic modules

    Science.gov (United States)

    Hoffman, A.; Griffith, J.

    1979-01-01

    The Low-Cost Solar Array (LSA) Project at the Jet Propulsion Laboratory has as one objective: the development and implementation of environmental tests for flat plate photovoltaic modules as part of the Department of Energy's terrestrial photovoltaic program. Modules procured under this program have been subjected to a variety of laboratory tests intended to simulate service environments, and the results of these tests have been compared to available data from actual field service. This comparison indicates that certain tests (notably temperature cycling, humidity cycling, and cyclic pressure loading) are effective indicators of some forms of field failures. Other tests have yielded results useful in formulating module design guidelines. Not all effects noted in field service have been successfully reproduced in the laboratory, however, and work is continuing in order to improve the value of the test program as a tool for evaluating module design and workmanship. This paper contains a review of these ongoing efforts and an assessment of significant test results to date.

  1. Crossflow Ultra-filter Module Draining and Flush Testing for the Hanford Tank Waste Treatment and Immobilization Plant - Lessons Learned in De-clogging Crossflow Filters

    International Nuclear Information System (INIS)

    Townson, P.S.; Brackenbury, P.J.

    2009-01-01

    This paper describes test work conducted in order to study crossflow ultra-filter module draining and flushing for the Hanford Tank Waste Treatment and Immobilization Plant. The objective of the testing was to demonstrate that the current design, with a flush tank at elevation 29.9 m (98'-00'') has enough pressure head to drain (to a minimum elevation ∼1.5 m [∼5'-00'']) and clean out the ultra-filter tube side. Without demonstrating this, a potential failure of the flush system could cause immovable solids to plug the tubular membranes of the filters causing serious adverse impacts to plant availability and/or throughput, and could permit deleterious flammable gas accumulations. In conjunction with the water flush, the plant also utilizes air purging to prevent build up of flammable gases. Two filter configurations were investigated, one being the baseline horizontal layout and one being an alternative vertical layout. The slurry used in the tests was a non radioactive simulant (kaolin-bentonite clay), and it mimicked the rheological properties of the real waste slurry. The filter modules were full scale items, being 2.44 m (8') in length and containing 241 by 1.3 cm (1/2'') id sintered stainless steel filter tubes. (authors)

  2. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2009-01-01

    Results of experimental and numerical investigations of thermal stratification and natural convection in a vertical cylindrical hot water tank during standby periods are presented. The transient fluid flow and heat transfer in the tank during cooling caused by heat loss are investigated...... on the natural buoyancy resulting in downward flow along the tank side walls due to heat loss of the tank and the influence on thermal stratification of the tank by the downward flow and the corresponding upward flow in the central parts of the tank. Water temperatures at different levels of the tank...... by computational fluid dynamics (CFD) calculations and by thermal measurements. A tank with uniform temperatures and thermal stratification is studied. The distribution of the heat loss coefficient for the different parts of the tank is measured by tests and used as input to the CFD model. The investigations focus...

  3. Performance Test of Alpha Spectrometry for Environmental Radioactivity Analysis

    International Nuclear Information System (INIS)

    Choi, Jung Youn; Yoon, Jong-Ho; Han, Ki-Tek; Ahn, Gil Hoon

    2015-01-01

    Environmental samples are analyzed by various methods such as, ICP-MS (inductively coupled plasma mass spectrometry), AMS (accelerator mass spectrometry) TIMS (thermal ionization mass spectrometry), HRGS (high resolution gamma spectrometry) and alpha /beta particle analysis. In this study, we will described the result of performance test using alpha spectrometry for analyzing environmental samples. Measurement data of the U activity using SRM based on extraction chromatography with UTEVA resin. It should be effective way to separate of uranium isotope for the measurement of alpha spectrometry. But, the result of this measurement data is higher than another recovery data. Also concentration of U data is lack of consistency. We leave out of consideration many effect of factors about influence in the experiment process. In the future work, we will try to reduce the step of experiment process and reflect the uncertainty factors

  4. Thermal Environmental Testing of NSTAR Engineering Model Ion Thrusters

    Science.gov (United States)

    Rawlin, Vincent K.; Patterson, Michael J.; Becker, Raymond A.

    1999-01-01

    NASA's New Millenium program will fly a xenon ion propulsion system on the Deep Space 1 Mission. Tests were conducted under NASA's Solar Electric Propulsion Technology Applications Readiness (NSTAR) Program with 3 different engineering model ion thrusters to determine thruster thermal characteristics over the NSTAR operating range in a variety of thermal environments. A liquid nitrogen-cooled shroud was used to cold-soak the thruster to -120 C. Initial tests were performed prior to a mature spacecraft design. Those results and the final, severe, requirements mandated by the spacecraft led to several changes to the basic thermal design. These changes were incorporated into a final design and tested over a wide range of environmental conditions.

  5. Measuring Values in Environmental Research: A Test of an Environmental Portrait Value Questionnaire

    Science.gov (United States)

    Bouman, Thijs; Steg, Linda; Kiers, Henk A. L.

    2018-01-01

    Four human values are considered to underlie individuals’ environmental beliefs and behaviors: biospheric (i.e., concern for environment), altruistic (i.e., concern for others), egoistic (i.e., concern for personal resources) and hedonic values (i.e., concern for pleasure and comfort). These values are typically measured with an adapted and shortened version of the Schwartz Value Survey (SVS), to which we refer as the Environmental-SVS (E-SVS). Despite being well-validated, recent research has indicated some concerns about the SVS methodology (e.g., comprehensibility, self-presentation biases) and suggested an alternative method of measuring human values: The Portrait Value Questionnaire (PVQ). However, the PVQ has not yet been adapted and applied to measure values most relevant to understand environmental beliefs and behaviors. Therefore, we tested the Environmental-PVQ (E-PVQ) – a PVQ variant of E-SVS –and compared it with the E-SVS in two studies. Our findings provide strong support for the validity and reliability of both the E-SVS and E-PVQ. In addition, we find that respondents slightly preferred the E-PVQ over the E-SVS (Study 1). In general, both scales correlate similarly to environmental self-identity (Study 1), energy behaviors (Studies 1 and 2), pro-environmental personal norms, climate change beliefs and policy support (Study 2). Accordingly, both methodologies show highly similar results and seem well-suited for measuring human values underlying environmental behaviors and beliefs. PMID:29743874

  6. 'Outside the box thinking': An overview of an environmental qualification test from a test lab perspective

    International Nuclear Information System (INIS)

    Mitton, T.

    2004-01-01

    Most people in the nuclear Environmental Qualification (EQ) business know that the basis for qualification ultimately lies with an equipment's successful operation during and after exposure to a simulated harsh environment. As opposed to focusing specifically on the test results of an Environmental Qualification test program, this paper/presentation will offer a more detailed look at the mechanical, electrical and thermodynamic requirements as well as the project difficulties and solutions of one such project - particularly an extensive, large-scale, non-typical project. (author)

  7. Alternative Testing Methods for Predicting Health Risk from Environmental Exposures

    Directory of Open Access Journals (Sweden)

    Annamaria Colacci

    2014-08-01

    Full Text Available Alternative methods to animal testing are considered as promising tools to support the prediction of toxicological risks from environmental exposure. Among the alternative testing methods, the cell transformation assay (CTA appears to be one of the most appropriate approaches to predict the carcinogenic properties of single chemicals, complex mixtures and environmental pollutants. The BALB/c 3T3 CTA shows a good degree of concordance with the in vivo rodent carcinogenesis tests. Whole-genome transcriptomic profiling is performed to identify genes that are transcriptionally regulated by different kinds of exposures. Its use in cell models representative of target organs may help in understanding the mode of action and predicting the risk for human health. Aiming at associating the environmental exposure to health-adverse outcomes, we used an integrated approach including the 3T3 CTA and transcriptomics on target cells, in order to evaluate the effects of airborne particulate matter (PM on toxicological complex endpoints. Organic extracts obtained from PM2.5 and PM1 samples were evaluated in the 3T3 CTA in order to identify effects possibly associated with different aerodynamic diameters or airborne chemical components. The effects of the PM2.5 extracts on human health were assessed by using whole-genome 44 K oligo-microarray slides. Statistical analysis by GeneSpring GX identified genes whose expression was modulated in response to the cell treatment. Then, modulated genes were associated with pathways, biological processes and diseases through an extensive biological analysis. Data derived from in vitro methods and omics techniques could be valuable for monitoring the exposure to toxicants, understanding the modes of action via exposure-associated gene expression patterns and to highlight the role of genes in key events related to adversity.

  8. Environmental plutonium levels near the Nevada Test Site

    International Nuclear Information System (INIS)

    Bliss, W.A.; Jakubowski, F.M.

    1977-01-01

    The Environmental Monitoring and Support Laboratory-Las Vegas is engaged in a study to define the distribution of plutonium in the environment surrounding the Nevada Test Site (NTS). Extensive soil sampling has been conducted around the NTS, both to define areal distribution and to investigate local concentrating effects by natural phenomena. Additionally, air filters used in the off-NTS air surveillance network as well as those collected in special studies have been analyzed for plutonium to better define ambient levels and to investigate the possibility of resuspension. Results of these, as well as other studies related to defining the ambient plutonium levels around the NTS, are given in this report

  9. 46 CFR 119.435 - Integral fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Integral fuel tanks. 119.435 Section 119.435 Shipping... Machinery Requirements § 119.435 Integral fuel tanks. (a) Diesel fuel tanks may not be built integral with... for certification of a vessel, integral fuel tanks must withstand a hydrostatic pressure test of 35 k...

  10. Laboratory-Scale Column Testing Using IONSIV IE-911 for Removing Cesium from Acidic Tank Waste Simulant. 1: Cesium Exchange Capacity of a 15-cm3 Column and Dynamic Stability of the Exchange Media

    International Nuclear Information System (INIS)

    T.J. Tranter; R.D. Tillotson; T.A. Todd

    2005-01-01

    Bench-scale column tests were performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution representative of liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). An engineered form of CST ion exchanger, known as IONSIVtm IE-911 (UOP, Mt Laurel, NJ, USA), was tested in 15 cm3 columns at a flow rate of 5 bed volumes per hour. These experiments showed the ion exchange material to have reasonable selectivity and capacity for removing cesium from the complex chemical matrix of the solution. However, previous testing indicated that partial neutralization of the feed stream was necessary to increase the stability of the ion exchange media. Thus, in these studies, CST degradation was determined as a function of throughput in order to better assess the stability characteristics of the exchanger for potential future waste treatment applications. Results of these tests indicate that the degradation of the CST reaches a maximum very soon after the acidic feed is introduced to the column and then rapidly declines. Total dissolution of bed material did not exceed 3% under the experimental regime used

  11. Environmental testing of an experimental digital safety channel

    International Nuclear Information System (INIS)

    Korsah, K.; Tanaka, T.J.; Wilson, T.L. Jr.; Wood, R.T.

    1996-09-01

    This document presents the results of environmental stress tests performed on an experimental digital safety channel (EDSC) assembled at the Oak Ridge National Laboratory (ORNL) as part of the NRC-sponsored Qualification of Advanced Instrumentation and Controls (W) System program. The objective of this study is to investigate failure modes and vulnerabilities of microprocessor-based technologies when subjected to environmental stressors. The study contributes to the technical basis for environmental qualification of safety-related digital I ampersand C systems. The EDSC employs technologies and digital subsystems representative of those proposed for use in advanced light-water reactors (ALWRs) or for retrofits in existing plants. Subsystems include computers, electrical and optical serial communication links, fiber-optic network links, analog-to-digital and digital-to-analog converters, and multiplexers. The EDSC was subjected to selected stressors that are a potential risk to digital equipment in a mild environment. The selected stressors were electromagnetic and radio-frequency interference (EMYRFI), temperature, humidity, and smoke exposure. The stressors were applied over ranges that were considerably higher than what the channel is likely to experience in a normal nuclear power plant environment. Ranges of stress were selected at a sufficiently high level to induce errors so that failure modes that are characteristic of the technologies employed could be identified

  12. Allium -test as a tool for toxicity testing of environmental radioactive-chemical mixtures

    International Nuclear Information System (INIS)

    Oudalova, A A; Pyatkova, S V; Geras’kin, S A; Dikareva, N S

    2017-01-01

    Bioassay-based approaches have been propagated to assess toxicity of unknown mixtures of environmental contaminants, but it was rarely applied in cases of chemicals with radionuclides combinations. Two Allium -test studies were performed to assess environmental impact from potential sources of combined radioactive-chemical pollution. Study sites were located at nuclear waste storage facilities in European and in Far-Eastern parts of Russia. As environmental media under impact, waters from monitor wells and nearby water bodies were tested. Concentrations of some chemicals and radionuclides in the samples collected enhanced the permitted limits. Cytogenetic and cytotoxic effects were used as biological endpoints, namely, frequency and spectrum of chromosome aberrations and mitotic abnormalities in anatelophase cells as well as mitotic activity in Allium root tips. Sample points were revealed where waters have an enhanced mutagenic potential. The findings obtained could be used to optimize monitoring system and advance decision making on management and rehabilitation of industrial sites. The Allium -test could be recommended and applied as an effective tool for toxicity testing in case of combined contamination of environmental compartments with radionuclides and chemical compounds. (paper)

  13. Allium-test as a tool for toxicity testing of environmental radioactive-chemical mixtures

    Science.gov (United States)

    Oudalova, A. A.; Geras'kin, S. A.; Dikareva, N. S.; Pyatkova, S. V.

    2017-01-01

    Bioassay-based approaches have been propagated to assess toxicity of unknown mixtures of environmental contaminants, but it was rarely applied in cases of chemicals with radionuclides combinations. Two Allium-test studies were performed to assess environmental impact from potential sources of combined radioactive-chemical pollution. Study sites were located at nuclear waste storage facilities in European and in Far-Eastern parts of Russia. As environmental media under impact, waters from monitor wells and nearby water bodies were tested. Concentrations of some chemicals and radionuclides in the samples collected enhanced the permitted limits. Cytogenetic and cytotoxic effects were used as biological endpoints, namely, frequency and spectrum of chromosome aberrations and mitotic abnormalities in anatelophase cells as well as mitotic activity in Allium root tips. Sample points were revealed where waters have an enhanced mutagenic potential. The findings obtained could be used to optimize monitoring system and advance decision making on management and rehabilitation of industrial sites. The Allium-test could be recommended and applied as an effective tool for toxicity testing in case of combined contamination of environmental compartments with radionuclides and chemical compounds.

  14. Environmental assessment for double tracks test site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1996-04-01

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV), with appropriate approvals from the U.S. Air Force (USAF), proposes to conduct environmental restoration operations at the Double Tracks test site located on the Nellis Air Force Range (NAFR) in Nye County, Nevada. This environmental assessment (EA) evaluates the potential environmental consequences of four alternative actions for conducting the restoration operation and of the no action alternative. The EA also identifies mitigation measures, where appropriate, designed to protect natural and cultural resources and reduce impacts to human health and safety. The environmental restoration operation at the Double Tracks test site would serve two primary objectives. First, the proposed work would evaluate the effectiveness of future restoration operations involving contamination over larger areas. The project would implement remediation technology options and evaluate how these technologies could be applied to the larger areas of contaminated soils on the Nevada Test Site (NTS), the Tonopah Test Range (TTR), and the NAFR. Second, the remediation would provide for the removal of plutonium contamination down to or below a predetermined level which would require cleanup of 1 hectare (ha) (2.5 acres), for the most likely case, or up to 3.0 ha (7.4 acres) of contaminated soil, for the upper bounding case

  15. Preliminary testing of the Scanning Laser Environmental Airborne Fluorosensor

    International Nuclear Information System (INIS)

    Brown, C.E.; Marois, R.; Fingas, M.F.; Mullin, J.V.

    2000-01-01

    The installation and testing program of the Scanning Laser Environmental Airborne Fluorosensor (SLEAF) on Environment Canada's DC-3 aircraft was described and the capabilities of the new system were presented. SLEAF is a new generation of laser fluorosensor designed to provide prompt reliable detection and mapping of oil pollution in different marine and terrestrial environments. It consists of a high-power excimer laser, high-resolution range-gated intensified diode-array spectrometer, and a pair of variable speed and angular displacement scanning mirrors. SLEAF is capable of detecting narrow bands of oil that can pile up along the high tide lines of beaches and shorelines, including those that contain ice and snow. It also has the added benefit of providing real-time detection. SLEAF will be declared operational for emergency response personnel when the initial test flight program will be completed in the near future. 9 refs., 2 figs

  16. Environmental test program for superconducting materials and devices

    Science.gov (United States)

    Haertling, Gene; Randolph, Henry; Hsi, Chi-Shiung; Verbelyi, Darren

    1991-01-01

    This report is divided into two parts. The first dealing with work involved with Clemson University and the second with the results from Westinghouse/Savannah River. Both areas of work involved low noise, low thermal conductivity superconducting grounding links used in the NASA-sponsored Spectroscopy of the Atmosphere using Far Infrared Emission (SAFIRE) Project. Clemson prepared the links from YBa2Cu3O(7-x) superconductor tape that was mounted on a printed circuit board and encapsulated with epoxy resin. The Clemson program includes temperature vs. resistance, liquid nitrogen immersion, water immersion, thermal cycling, humidity, and radiation testing. The evaluation of the links under a long term environmental test program is described. The Savannah River program includes gamma irradiation, vibration, and long-term evaluation. The progress made in these evaluations is discussed.

  17. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  18. First environmental data from the EUV engineering test stand

    Science.gov (United States)

    Klebanoff, Leonard E.; Malinowski, Michael E.; Grunow, Philip A.; Clift, W. Miles; Steinhaus, Chip; Leung, Alvin H.; Haney, Steven J.

    2001-08-01

    The first environmental data from the Engineering Test Stand (ETS) has been collected. Excellent control of high-mass hydrocarbons has been observed. This control is a result of extensive outgas testing of components and materials, vacuum compatible design of the ETS, careful cleaning of parts and pre-baking of cables and sub assemblies where possible, and clean assembly procedures. As a result of the hydrocarbon control, the residual ETS vacuum environment is rich in water vapor. Analysis of witness plate data indicates that the ETS environment does not pose a contamination risk to the optics in the absence of EUV irradiation. However, with EUV exposure, the water rich environment can lead to EUV- induced water oxidation of the Si-terminated Mo/Si optics. Added ethanol can prevent optic oxidation, allowing carbon growth via EUV cracking of low-level residual hydrocarbons to occur. The EUV environmental issues are understood, mitigation approaches have been validated, and EUV optic contamination appears to be manageable.

  19. Environmental tests of metallization systems for terrestrial photovoltaic cells

    Science.gov (United States)

    Alexander, P., Jr.

    1985-01-01

    Seven different solar cell metallization systems were subjected to temperature cycling tests and humidity tests. Temperature cycling excursions were -50 deg C to 150 deg C per cycle. Humidity conditions were 70 deg C at 98% relative humidity. The seven metallization systems were: Ti/Ag, Ti/Pd/Ag, Ti/Pd/Cu, Ni/Cu, Pd/Ni/Solder, Cr/Pd/Ag, and thick film Ag. All metallization systems showed a slight to moderate decrease in cell efficiencies after subjection to 1000 temperature cycles. Six of the seven metallization systems also evidenced slight increases in cell efficiencies after moderate numbers of cycles, generally less than 100 cycles. The copper based systems showed the largest decrease in cell efficiencies after temperature cycling. All metallization systems showed moderate to large decreases in cell efficiencies after 123 days of humidity exposure. The copper based systems again showed the largest decrease in cell efficiencies after humidity exposure. Graphs of the environmental exposures versus cell efficiencies are presented for each metallization system, as well as environmental exposures versus fill factors or series resistance.

  20. Reliability testing across the Environmental Quality Index and national environmental indices.

    Science.gov (United States)

    One challenge in environmental epidemiology is the exploration of cumulative environmental exposure across multiple domains (e.g. air, water, land). The Environmental Quality Index (EQI), created by the U.S. EPA, uses principle component analyses combining environmental domains (...

  1. Simple Instrumental and Visual Tests for Nonlaboratory Environmental Control

    Directory of Open Access Journals (Sweden)

    L. P. Eksperiandova

    2016-01-01

    Full Text Available Proposed are simple and available techniques that can be used for rapid and reliable environmental control specifically of natural water by means of instrumental and visual tests in outdoor conditions. Developed are the chemical colorimetric modes for fast detection of socially dangerous trace impurities in water such as Co(II, Pd(II, and Rh(III as well as NO2--ions and Fe(III serving as model impurities. Application of portable digital devices and scanner allows estimating the color coordinates and increasing the accuracy and sensitivity of the tests. The combination of complex formation with preconcentration of colored complexes replaces the sensitive but time-consuming and capricious kinetic method that is usually used for this purpose at the more convenient and reliable colorimetric method. As the test tools, the following ones are worked out: polyurethane foam tablets with sorbed colored complexes, the two-layer paper sandwich packaged in slide adapter and saturated by reagents, and polyethylene terephthalate blister with dried reagents. Fast analysis of polyurethane foam tablets is realized using a pocket digital RGB-colorimeter or portable photometer. Express analysis of two-layer paper sandwich or polyethylene terephthalate blister is realized by visual and instrumental tests. The metrological characteristics of the developed visual and instrumental express analysis techniques are estimated.

  2. Batch test equilibration studies examining the removal of Cs, Sr, and Tc from supernatants from ORNL underground storage tanks by selected ion exchangers

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Anderson, K.K.; Chase, C.W.; Bell, J.T.

    1995-01-01

    Bench-scale batch equilibration tests have been conducted with supernatants from two underground tanks at the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to determine the effectiveness of selected ion exchangers in removing cesium, strontium, and technetium. Seven sorbents were evaluated for cesium removal, nine for strontium removal, and four for technetium removal. The results indicate that granular potassium cobalt hexacyanoferrate was the most effective of the exchangers evaluated for removing cesium from the supernatants. The powdered forms of sodium titanate (NaTiO) and cystalline silicotitanate (CST) were superior in removing the strontium; however, for the sorbents of suitable particle size for column use, titanium monohydrogen phosphate (TiHP φ), sodium titanate/polyacrylonitrile (NaTiO-PAN), and titanium monohydrogen phosphate/polyacrylonitrile (TiP-PAN) gave the best results and were about equally effective. Reillex trademark 402 was the most effective exchanger in removing the technetium; however, it was only slightly more satisfactory than Reillex trademark HPQ

  3. Sloshing impact in roofed tanks

    International Nuclear Information System (INIS)

    Uras, R.A.

    1995-01-01

    A large number of high-level waste (HLW) storage tanks exists in various tank farms. Seismic activities at those locations may cause significant sloshing in HLW tanks. These tanks are covered to avoid any spilling during large amplitude earthquakes. However, large amplitude sloshing may result in impact on the cover or the roof of the tank. Hence, a better understanding of the impact phenomenon is necessary to assess the safety of the tanks currently in existence, and to establish design guidelines for future designs. A pressure based formulation is derived to model sloshing impact in roared tanks. It is incorporated into Argonne's in-house finite element code FLUSTR-ANL. A numerical test case with a harmonic input excitation is studied. The simulation results indicate that linear behavior is preserved beyond the first impact, and some mesh distortion is observed following a stronger second impact. During the impact, the displacement of the contacting surface nodes remains constant, and the velocities are reduced to zero. An identification of impacting nodes is possible from the dynamic pressures induced in surface elements

  4. Sloshing impact in roofed tanks

    International Nuclear Information System (INIS)

    Uras, R.A.

    1995-01-01

    A large number of high-level waste (HLW) storage tanks exists in various tank farms. Seismic activities at those locations may cause significant sloshing in HLW tanks. These tanks are covered to avoid any spilling during large amplitude earthquakes. However, large amplitude sloshing may result in impact on the cover or the roof of the tank. Hence, a better understanding of the impact phenomenon is necessary to assess the safety of the tanks currently in existence, and to establish design guidelines for future designs. A pressure based formulation is derived to model sloshing impact in roofed tanks. It is incorporated into Argonne's in-house finite element code FLUSTR-ANL. A numerical test case with a harmonic input excitation is studied. The simulation results indicate that linear behavior is preserved beyond the first impact, and some mesh distortion is observed following a stronger second impact. During the impact, the displacement of the contacting surface nodes remains constant, and the velocities are reduced to zero. An identification of impacting nodes is possible from the dynamic pressures induced in surface elements

  5. Status of containment integrity studies for continued in-tank storage of Hanford defense high-level waste

    International Nuclear Information System (INIS)

    Baca, R.G.; Beitel, G.A.; Mercier, P.F.; Moore, E.L.; Vollert, F.R.

    1978-09-01

    Information is provided on the technical studies that have been implemented for evaluating the containment integrity of the single-shell waste storage tanks. The major areas of study are an analysis of storage tank integrity, a failure mode analysis, and storage tank improvements. Evaluations of tank structural integrity include theoretical studies on static and dynamic load responses, laboratory studies on concrete durability, and experimental studies on the potential for exothermic reactions of salt cake. The structural analyses completed to date show that the tanks are in good condition and have a safety margin against overload. Environmental conditions that could cause a loss of durability are limited to the waste chemicals stored (which do not have access to the concrete). Concern that a salt cake exothermic reaction may initiate a loss of containment is not justifiable based on extensive testing completed. A failure mode analysis of a tank liner failure, a sidewall failure, and a dome collapse shows that no radiologic hazard to man results. Storage tank improvement studies completed show that support of a tank dome is achievable. Secondary containment provided by chemical grouts and bentonite clay slurry walls does not appear promising. It is now estimated that the single-shell tanks will be serviceable for the storage of salt cake waste for decades under currently established operating temperature and load limits

  6. Level trend analysis summary report for Oak Ridge National Laboratory inactive liquid low-level waste tanks

    International Nuclear Information System (INIS)

    1994-09-01

    Oak Ridge National Laboratory facilities have produced liquid low-level waste (LLLW) that is radioactive and/or hazardous. Storage tanks have been used to collect and store these wastes. Most of the collection system, including the tanks, is located below the ground surface. Many of the systems have been removed from service (i.e., are not inactive) but contain residual amounts of waste liquid and sludges. A plan of action has been developed by DOE to ensure that environmental impacts from the waste remaining in the inactive tanks system are minimized. The Federal Facility Agreement (FFA) does not require any type of testing or monitoring for the inactive LLLW tanks that are removed from service but does require waste characterization of tanks contents, risk characterization of tanks removed from service, and remediation of the inactive tanks and their contents. This report is form information only and is not required by the FFA. It includes a description of the methodology and results of level trend analyses for the Category D tanks listed in the FFA that currently belong to the Environmental Restoration Program

  7. AX Tank Farm tank removal study

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    1999-02-24

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  8. Waste characterization data manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA), Sect. IX.G.1. This manual contains the results of sampling activities that were conducted at the Oak Ridge National Laboratory in 1988. Thirty-three tanks were sampled and analyzed at that time. Sampling of the remaining inactive tanks is currently underway, and data from these tanks will be added to this manual as they become available. Data are presented from analysis of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, radiochemical compounds, and inorganic compounds.

  9. Tank 241-U-203: Tank Characterization Plan

    International Nuclear Information System (INIS)

    Sathyanarayana, P.

    1995-01-01

    The revised Federal Facility Agreement and Consent Order states that a tank characterization plan will be developed for each double-shell tank and single-shell tank using the data quality objective process. The plans are intended to allow users and regulators to ensure their needs will be met and resources are devoted to gaining only necessary information. This document satisfies that requirement for Tank 241-U-203 sampling activities

  10. The Savannah River Technology Center environmental monitoring field test platform

    International Nuclear Information System (INIS)

    Rossabi, J.

    1993-01-01

    Nearly all industrial facilities have been responsible for introducing synthetic chemicals into the environment. The Savannah River Site is no exception. Several areas at the site have been contaminated by chlorinated volatile organic chemicals. Because of the persistence and refractory nature of these contaminants, a complete clean up of the site will take many years. A major focus of the mission of the Environmental Sciences Section of the Savannah River Technology Center is to develop better, faster, and less expensive methods for characterizing, monitoring, and remediating the subsurface. These new methods can then be applied directly at the Savannah River Site and at other contaminated areas in the United States and throughout the world. The Environmental Sciences Section has hosted field testing of many different monitoring technologies over the past two years primarily as a result of the Integrated Demonstration Program sponsored by the Department of Energy's Office of Technology Development. This paper provides an overview of some of the technologies that have been demonstrated at the site and briefly discusses the applicability of these techniques

  11. Radioactive Tank Waste Remediation Focus Area. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    In February 1991, DOE's Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina

  12. Results from the University of Calgary environmental geophysics test range

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, K; Lawton, D.C.; Juigalli, J; Parry, D. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    1995-12-31

    The Spy Hill Research Farm, operated by the University of Calgary as a test range site where geophysical equipment and methods related to environmental monitoring can be operated under controlled conditions, was described. The site is used by students in the geophysics courses offered at the University, but it is also intended to be available to other users for equipment tests. The site is underlain by glacial gravels and clays which reach thicknesses in excess of 30 m. Surveys of the site have been completed with the following geophysical systems: Geonics EM-31 and EM-34; Apex Max-Min; Huntec Mk4 IP with Phoenix IP-T1 transmitter; Geometrics Proton Magnetometer; McPhar vertical field Fluxgate magnetometer; Androtex TDR6 IP with Phoenix IP-T1 transmitter; Geometrics 12 channel refraction seismic system; and Pulse Echo Ground Penetrating Radar. The site has proved to be well suited to serve as a test range. The addition of yet more features to the site is being planned.

  13. Tank 241-BY-108 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    The sampling and analytical needs associated with the 51 Hanford Site underground storage tanks classified on one or more of the four Watch Lists (ferrocyanide, organic, flammable gas, and high heat), and the safety screening of all 177 tanks have been identified through the Data Quality Objective (DQO) process. DQOs identity information needed by a program group in the Tank Waste Remediation System concerned with safety issues, regulatory requirements, or the transporting and processing of tank waste. This Tank Characterization Plan will identify characterization objectives for tank BY-108 pertaining to sample collection, sample preparation and analysis, and laboratory analytical evaluation and reporting requirements. In addition, an estimate of the current contents and status of the tank is given. Single-shell tank BY-108 is classified as a Ferrocyanide Watch List tank. The tank was declared an assumed leaker and removed from service in 1972; interim stabilized was completed in February 1985. Although not officially an Organic Watch List tank, restrictions have been placed on intrusive operations by Standing Order number-sign 94-16 (dated 09/08/94) since the tank is suspected to contain or to have contained a floating organic layer

  14. Environmental Monitoring Plan, Nevada Test Site and support facilities

    International Nuclear Information System (INIS)

    1991-11-01

    This Operational Area Monitoring Plan for environmental monitoring, is for EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) which operates several offsite facilities in support of activities at the Nevada Test Site (NTS). These facilities include: (1) Amador Valley Operations (AVO), Pleasanton, California; (2) Kirtland Operations (KO), Kirtland Air Force base, Albuquerque, New Mexico (KAFB); (3) Las Vegas Area Operations (LVAO), Remote Sensing Laboratory (RSL), and North Las Vegas (NLV) Complex at Nellis Air Force Base (NAFB), North Las Vegas, Nevada; (4) Los Alamos Operations (LAO), Los Alamos, New Mexico; (5) Santa Barbara Operations (SBO), Goleta, California; (6) Special Technologies Laboratory (STL), Santa Barbara, California; (7) Washington Aerial Measurements Department (WAMD), Andrews Air Force Base, Maryland; and, (8) Woburn Cathode Ray Tube Operations (WCO), Woburn, Massachusetts. Each of these facilities has an individual Operational Area Monitoring Plan, but they have been consolidated herein to reduce redundancy

  15. Inequality and Trust: Testing a Mediating Relationship for Environmental Sustainability

    Directory of Open Access Journals (Sweden)

    Eric Kemp-Benedict

    2013-02-01

    Full Text Available Instrumental arguments linking inequality to environmental sustainability often suppose a negative relationship between inequality and social cohesion. While social cohesion is difficult to measure, there are measures of a narrower concept, social trust, and empirical studies have shown that social trust is negatively related to inequality. In this paper we test whether at least part of the observed relationship may be explained by income level, rather than income distribution. We use individual response data from the World Values Survey at the income decile level, and find evidence that income level is indeed important in explaining differences in levels of social trust, but it is insufficient to explain all of the dependence. In the sample used for the study, we find that both income level and income distribution help explain differences in social trust between countries.

  16. Tank 50H Tetraphenylborate Destruction Results

    International Nuclear Information System (INIS)

    Peters, T.B.

    2003-01-01

    We conducted several scoping tests with both Tank 50H surrogate materials (KTPB and phenol) as well as with actual Tank 50H solids. These tests examined whether we could destroy the tetraphenylborate in the surrogates or actual Tank 50H material either by use of Fenton's Reagent or by hydrolysis (in Tank 50H conditions at a maximum temperature of 50 degrees C) under a range of conditions. The results of these tests showed that destruction of the solids occurred only under a minority of conditions. (1)Using Fenton's Reagent and KTPB as the Tank 50H surrogate, no reaction occurred at pH ranges greater than 9. (2)Using Fenton's Reagent and phenol as the Tank 50H surrogate, no reaction occurred at a pH of 14. (3)Using Fenton's Reagent and actual Tank 50H slurry, a reaction occurred at a pH of 9.5 in the presence of ECC additives. (4)Using Fenton's Reagent and actual Tank 50H slurry, after a thirty three day period, all attempts at hydrolysis (at pH 14) were too slow to be viable. This happened even in the case of higher temperature (50 degrees C) and added (100 ppm) copper. Tank 50H is scheduled to return to HLW Tank Farm service with capabilities of transferring and receiving salt supernate solutions to and from the Tank Farms and staging feed for the Saltstone Facility. Before returning Tank 50H to Tank Farm service as a non-organic tank, less than 5 kg of TPB must remain in Tank 50H. Recently, camera inspections in Tank 50H revealed two large mounds of solid material, one in the vicinity of the B5 Riser Transfer Pump and the other on the opposite side of the tank. Personnel sampled and analyzed this material to determine its composition. The sample analysis indicated presence of a significant quantity of organics in the solid material. This quantity of organic material exceeds the 5 kg limit for declaring only trace amounts of organic material remain in Tank 50H. Additionally, these large volumes of solids, calculated as approximately 61K gallons, present other

  17. Jet mixing long horizontal storage tanks

    International Nuclear Information System (INIS)

    Perona, J.J.; Hylton, T.D.; Youngblood, E.L.; Cummins, R.L.

    1994-12-01

    Large storage tanks may require mixing to achieve homogeneity of contents for several reasons: prior to sampling for mass balance purposes, for blending in reagents, for suspending settled solids for removal, or for use as a feed tank to a process. At ORNL, mixed waste evaporator concentrates are stored in 50,000-gal tanks, about 12 ft in diameter and 60 ft long. This tank configuration has the advantage of permitting transport by truck and therefore fabrication in the shop rather than in the field. Jet mixing experiments were carried out on two model tanks: a 230-gal (1/6-linear-scale) Plexiglas tank and a 25,000-gal tank (about 2/3 linear scale). Mixing times were measured using sodium chloride tracer and several conductivity probes distributed through the tanks. Several jet sizes and configurations were tested. One-directional and two-directional jets were tested in both tanks. Mixing times for each tank were correlated with the jet Reynolds number. Mixing times were correlated for the two tank sizes using the recirculation time for the developed jet. When the recirculation times were calculated using the distance from the nozzle to the end of the tank as the length of the developed jet, the correlation was only marginally successful. Data for the two tank sizes were correlated empirically using a modified effective jet length expressed as a function of the Reynolds number raised to the 1/3 power. Mixing experiments were simulated using the TEMTEST computer program. The simulations predicted trends correctly and were within the scatter of the experimental data with the lower jet Reynolds numbers. Agreement was not as good at high Reynolds numbers except for single nozzles in the 25,000-gal tank, where agreement was excellent over the entire range

  18. State Certification of Underground Storage Tanks

    National Research Council Canada - National Science Library

    Granetto, Paul

    1998-01-01

    .... The audit was performed in response to a Senate Armed Services Committee inquiry about whether state environmental regulatory agencies would be able to certify that DoD underground storage tanks...

  19. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    Science.gov (United States)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  20. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...