WorldWideScience

Sample records for environmental technology section

  1. Environmental Impact Section

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Section is concerned with preparation of environmental statements and assessments and development of assessment methodologies for energy technologies. During 1976, activities involved nuclear, fossil, and geothermal energy; this work was supported by the U.S.Army, HUD, US ERDA, and US NRC. Two special studies--one on the effects of power plant intake structures on fish impingement and another on multiple uses of cooling lakes--were completed and should serve as references for future analyses. Two research projects sponsored by NRC--the Unified Transport Approach (UTA) to Power Plant Assessment and the Environmental Monitoring Data Evaluation Study--were continued. The purpose of the UA program is to develop fast-transient, one- and two-dimensional transport models for estimating thermal, radiological, chemical, and biological impacts in complicated water bodies. The impact of public use of various products that contain radioactive isotope is being evaluated. The Environmental Impact Sections assistance to NRC expanded to include assessments of fuel-fabrication facilities being considered for relicensing and two uranium in-situ solution mining facility proposals. The work for HUD comprises an assessment of the first application of MIUS in a new town development. A generic environmental statement was prepared and an environmental monitoring program for the facility was designed

  2. Advanced Technology Section semiannual progress report, April 1-September 30, 1977. Volume 1. Biotechnology and environmental programs. [Lead Abstract

    Energy Technology Data Exchange (ETDEWEB)

    Pitt, W.W. Jr.; Mrochek, J.E. (comps.)

    1980-06-01

    Research efforts in six areas are reported. They include: centrifugal analyzer development; advanced analytical systems; environmental research; bioengineering research;bioprocess development and demonstration; and, environmental control technology. Individual abstracts were prepared for each section for ERA/EDB. (JCB)

  3. Energetic technologies and environmental impact

    International Nuclear Information System (INIS)

    2001-01-01

    This monograph is a collective work by scientist from CIEMAT (Spanish centre for research on energy, environment and technology). By reviewing the central topics of their own work, the authors present a world-wide update of the state of the arts of the different technologies involved in energy production. The chapters fo through the more promising technologies related to the diverse energy sources, from the nuclear to the renewable and chemical a large gamut of energy supply ways is revised. The analysis of the production technologies is accompanied by considerations of the environmental implications, an aspect to wich a whole part of the volume is devoted. The book begins with a foreword by Dr. Felix Yndurain, former General Director of CIEMAT and follows with a general introduction to the main topics, that are presented in three parts, with specific introductions. There is also a closing fourth part that includes some additional activities where more basic and technical developments are included. The first part is devoted to energy of nuclear origin. In two separate sections, fission and fusion technologies are covered. The fission section points towards the present day problems of nuclear plants (ageing, accidents, risk analysis, etc.), reprocessing of the nuclear fuel, radioactive wastes and environmental radioactivity. The fusion section contains a critical account of the present and expected developments of the fusion reactors together with an exposition of the related plasma physics problems. The second part comprises two sections devoted to energy generation of renewable and chemical origin, respectively. Tehcnologies for solar, wind and biomass energies are thoroughly exposed along the renewable energy section whereas the chemical energy section is devoted to the modern technologies of clean fossil fuel combustion and gasification, as well as to the new appealing subject of direct electric generation with fuel cells. The main environmental and social

  4. Emerging environmental technologies and environmental technology policy

    Science.gov (United States)

    Clarke, Leon Edward

    This dissertation explores the role and design of environmental technology policy when environmental innovation is embodied in emerging environmental technologies such as photovoltaic cells or fuel cells. The dissertation consists of three individual studies, all of which use a simplified, general model industry between an emerging environmental technology and an entrenched, more-polluting technology. It clarifies the situations in which environmental technology policy can achieve high welfare and those in which it cannot; and it separates the possible situations an emerging environmental technology might face into four scenarios, each with its own technology policy recommendations. The second study attempts to clarify which of two factors is having a larger limiting effect on private investment in photovoltaics: the failure to internalize the environmental costs of fossil fuel electricity generation or a broad set of innovation market failures that apply to innovation irrespective of environmental concerns. The study indicates that innovation market failures are probably having a significantly larger impact than incomplete internalization. The third study explores the effectiveness of adoption subsidies at encouraging private-sector innovation. The conclusion is that adoption subsidies probably have only a limited effect on long-term, private-sector research. Two important general conclusions of the dissertation are (1) that optimal technology policy should begin with technology-push measures and end with demand-pull measures; and (2) that the technological response to internalization instruments, such as emissions taxes, may be highly nonlinear.

  5. (Environmental technology)

    Energy Technology Data Exchange (ETDEWEB)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  6. Environmental control technology for mining, milling, and refining thorium

    International Nuclear Information System (INIS)

    Weakley, S.A.; Blahnik, D.E.; Young, J.K.; Bloomster, C.H.

    1980-02-01

    The purpose of this report is to evaluate, in terms of cost and effectiveness, the various environmental control technologies that would be used to control the radioactive wastes generated in the mining, milling, and refining of thorium from domestic resources. The technologies, in order to be considered for study, had to reduce the radioactivity in the waste streams to meet Atomic Energy Commission (10 CFR 20) standards for natural thorium's maximum permissible concentration (MPC) in air and water. Further regulatory standards or licensing requirements, either federal, state, or local, were not examined. The availability and cost of producing thorium from domestic resources is addressed in a companion volume. The objectives of this study were: (1) to identify the major waste streams generated during the mining, milling, and refining of reactor-grade thorium oxide from domestic resources; and (2) to determine the cost and levels of control of existing and advanced environmental control technologies for these waste streams. Six potential domestic deposits of thorium oxide, in addition to stockpiled thorium sludges, are discussed in this report. A summary of the location and characteristics of the potential domestic thorium resources and the mining, milling, and refining processes that will be needed to produce reactor-grade thorium oxide is presented in Section 2. The wastes from existing and potential domestic thorium oxide mines, mills, and refineries are identified in Section 3. Section 3 also presents the state-of-the-art technology and the costs associated with controlling the wastes from the mines, mills, and refineries. In Section 4, the available environmental control technologies for mines, mills, and refineries are assessed. Section 5 presents the cost and effectiveness estimates for the various environmental control technologies applicable to the mine, mill, and refinery for each domestic resource

  7. SRS environmental technology development field test platform

    International Nuclear Information System (INIS)

    Riha, B.D.; Rossabi, J.; Eddy-Dilek, C.A.

    1995-01-01

    A critical and difficult step in the development and implementation of new technologies for environmental monitoring and characterization is successfully transferring these technologies to industry and government users for routine assessment and compliance activities. The Environmental Sciences Section of the DOE Savannah River Technology Center provides a forum for developers, potential users, and regulatory organizations to evaluate new technologies in comparison with baseline technologies in a well characterized field test bed. The principal objective of this project is to conduct comprehensive, objective field tests of monitoring and characterization technologies that are not currently used in EPA standard methods and evaluate their performance during actual operating conditions against baseline methods. This paper provides an overview of the field test site and a description of some of the technologies demonstrated at the site including their field applications

  8. Technology Strategy for 'Environmental Technology for the Future'; Technology Target Areas; TTA1 - environmental technology for the future

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    and technology based on in-depth knowledge of environmental impact will further strengthen the position of the Norwegian oil and gas industry. The industry should continue to provide proactive input to the process of creating new legislation. Continuous innovation and development are important for attracting international companies to Norway, maintaining recruitment to the industry and to support export of environmental technology that can have a positive global impact. Environmental considerations specific to the other Technology Target Areas are discussed in their respective strategies. The identified interfaces are listed in Section 7. (Author)

  9. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The environmental Science and Technology Program was structured based on the continuous growth of environmental activities on areas related to nuclear programs at IPEN. The program comprehends five main areas: Environmental analysis: Chemical technology; Polymer technology nucleus: Chemical and Isotope characterization and Analytical Chemistry for the Nuclear Fuel Cycle samples.

  10. Environmental technology foresight : New horizons for technology management

    NARCIS (Netherlands)

    Den Hond, Frank; Groenewegen, Peter

    1996-01-01

    Decision-making in corporate technology management and government technology policy is increasingly influenced by the environmental impact of technologies. Technology foresight (TF) and environmental impact assessment (EIA) are analyzed with regard to the roles they can play in developing long-term

  11. Environmental and inorganic research section - 1984 annual report

    International Nuclear Information System (INIS)

    Dodd, D.J.R.

    1985-05-01

    In 1984, the section made significant contributions to the state of knowledge and technology in several areas such as; conducting polymers for advanced batteries, separation of hydrogen isotopes by chromatographic methods, ion exchange resin performance in nuclear circuits, decontamination processes, concentration mechanisms and corrosion processes under deposits in nuclear steam generators, steam generator chemical cleaning, and processes for immobilizing high level liquid wastes. New work was started in a variety of areas such as applications of plasma technology and electrochemistry in chemical processes, dew point measurement and molecular sieve drier technology in nuclear applications, and limestone injection for sulphur dioxide removal from stack gases. Ongoing capabilities in combustion research and environmental aspects of solid waste disposal and wastewater treatment were also maintained. Most of these programs will continue in 1985

  12. U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: ARSENIC MONITORING TECHNOLOGIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency Environmental Technology Verification (ETV) program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This technology ...

  13. The Savannah River Technology Center environmental monitoring field test platform

    International Nuclear Information System (INIS)

    Rossabi, J.

    1993-01-01

    Nearly all industrial facilities have been responsible for introducing synthetic chemicals into the environment. The Savannah River Site is no exception. Several areas at the site have been contaminated by chlorinated volatile organic chemicals. Because of the persistence and refractory nature of these contaminants, a complete clean up of the site will take many years. A major focus of the mission of the Environmental Sciences Section of the Savannah River Technology Center is to develop better, faster, and less expensive methods for characterizing, monitoring, and remediating the subsurface. These new methods can then be applied directly at the Savannah River Site and at other contaminated areas in the United States and throughout the world. The Environmental Sciences Section has hosted field testing of many different monitoring technologies over the past two years primarily as a result of the Integrated Demonstration Program sponsored by the Department of Energy's Office of Technology Development. This paper provides an overview of some of the technologies that have been demonstrated at the site and briefly discusses the applicability of these techniques

  14. Environmental Policy and Technological Change

    International Nuclear Information System (INIS)

    Jaffe, Adam B.; Newell, Richard G.; Stavins, Robert N.

    2002-01-01

    The relationship between technological change and environmental policy has received increasing attention from scholars and policy makers alike over the past ten years. This is partly because the environmental impacts of social activity are significantly affected by technological change, and partly because environmental policy interventions themselves create new constraints and incentives that affect the process of technological developments. Our central purpose in this article is to provide environmental economists with a useful guide to research on technological change and the analytical tools that can be used to explore further the interaction between technology and the environment. In Part 1 of the article, we provide an overview of analytical frameworks for investigating the economics of technological change, highlighting key issues for the researcher. In Part 2, we turn our attention to theoretical analysis of the effects of environmental policy on technological change, and in Part 3, we focus on issues related to the empirical analysis of technology innovation and diffusion. Finally, we conclude in Part 4 with some additional suggestions for research

  15. Environmental technology verification methods

    CSIR Research Space (South Africa)

    Szewczuk, S

    2016-03-01

    Full Text Available Environmental Technology Verification (ETV) is a tool that has been developed in the United States of America, Europe and many other countries around the world to help innovative environmental technologies reach the market. Claims about...

  16. Environmental science and technology

    International Nuclear Information System (INIS)

    2014-01-01

    The Program on Environmental Science and Technology developed at the Chemical and Environmental Technology Center comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalysts) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization). The Chemical and Environmental Technology Center was established in 1995, as an evolution of the former Department of Chemistry Engineering (1970). The program on environment science and technology was structured as consequence of the continuous growth of environmental activities on areas related to nuclear programs of IPEN. Moreover, it was an answer to the society concerning the climate changes and biodiversity preservation. All activities of research and development, services, supervision of graduate and under graduated students and courses performance at the center were related to the development, improvement and establishment of new technologies. The highlights of this period (2011 - 2013) were: - Development and use of modern analytical technology for the characterization of persistent pollutants and endocrine disrupters (metals, PAHA’s, PCBs, Pesticides, hormones, surfactants, plasticizer and human pharmaceuticals) in order to evaluate water quality and/or sediments; - Atmospheric chemistry and greenhouse gases: Evaluating an estimation of surface trace gas fluxes from aircraft measurements above the Amazon; - Cooperation with SABESP (Water and Sewage Company) and CETESB (State Environment Agency) in program for the development of public policies; - Studies and development in biodegradable polymers, polyolefins and advanced methods for polymer and rubber recycling and re-use; - Studies

  17. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Environmental Science and Technology developed at the Chemical and Environmental Technology Center comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalysts) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization). The Chemical and Environmental Technology Center was established in 1995, as an evolution of the former Department of Chemistry Engineering (1970). The program on environment science and technology was structured as consequence of the continuous growth of environmental activities on areas related to nuclear programs of IPEN. Moreover, it was an answer to the society concerning the climate changes and biodiversity preservation. All activities of research and development, services, supervision of graduate and under graduated students and courses performance at the center were related to the development, improvement and establishment of new technologies. The highlights of this period (2011 - 2013) were: - Development and use of modern analytical technology for the characterization of persistent pollutants and endocrine disrupters (metals, PAHA’s, PCBs, Pesticides, hormones, surfactants, plasticizer and human pharmaceuticals) in order to evaluate water quality and/or sediments; - Atmospheric chemistry and greenhouse gases: Evaluating an estimation of surface trace gas fluxes from aircraft measurements above the Amazon; - Cooperation with SABESP (Water and Sewage Company) and CETESB (State Environment Agency) in program for the development of public policies; - Studies and development in biodegradable polymers, polyolefins and advanced methods for polymer and rubber recycling and re-use; - Studies

  18. Environmental Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The Program on Environmental Science and Technology comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalyzers) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization)

  19. Encouraging environmentally strategic technologies

    International Nuclear Information System (INIS)

    Heaton, G.R.

    1994-01-01

    Having moved beyond its initial absorption with controlling new technology, environmental policy today must focus more strongly on promoting the development and adoption of new technologies. World Resource Institute's (WRI) ongoing study of 'environmentally strategic technology' is addressed to this fundamental policy issue. The study proposes criteria for identifying such technology, offers a specific list, suggests the kinds of public policy changes necessary to encourage their development and finally presents a comparison of critical technology lists (from the White House, the European Community, Japan and the US Department of Defense). (TEC)

  20. Energetic technologies and environmental impact; Tecnologias Energeticas e Impacto Ambiental

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This monograph is a collective work by scientist from CIEMAT (Spanish centre for research on energy, environment and technology). By reviewing the central topics of their own work, the authors present a world-wide update of the state of the arts of the different technologies involved in energy production. The chapters fo through the more promising technologies related to the diverse energy sources, from the nuclear to the renewable and chemical a large gamut of energy supply ways is revised. The analysis of the production technologies is axxompanied by considerations of the environemental implications, an aspect to wich a whole part of the volume is devoted. The book begins with a foreword by Dr. Felix Yndurain, former General Director of CIEMAT and follows with a general introduction to the main topics, that are presented in three parts, with specific introductions. There is also a closing fourth part that includes some additional activities where more basic and technical developments are included. The first part is devoted to energy os nuclear origin. In two separate sections, fission and fusion technologies are covered. The fission section points towards the present day problems of nuclear plants (ageing, accidents, risk analysis, etc.), reprocessing of the nuclear fuel, raioactive wates and environmental radioactivity. The fusion section contains a critical account of the present and expected developments of the fusion reactors together with an exposition of the related plasma physics problems. The second part comprises two sections devoted to energy generation of renewable and chemical origin, respectively. Tehcnologies for solar, wind and biomass energies are thoroughly exposed along the renewable energy section whereas the chemical energy section is devoted to the modern technologies of clean fossil fuel combustion and gasification, as well as to the new appealing subject of direct electric generation with fuel cells. The main environmental ans social issues

  1. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    Directory of Open Access Journals (Sweden)

    Durán-García Martín Enrique

    2014-07-01

    Full Text Available Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the transfer of chemical technology requires technological-environmental criteria defining, in conjunction with other criteria, an adequate process for the selection, acquisition and incorporation of technology in a holistic perspective, so it provides feasible solutions the chemical industry in pursuit of their goals. Then the criterion becomes a benchmark for assessing an appropriate technology transfer process. We performed a theoretical analysis of the technological and environmental criteria, proposing thirty-six (36 technological-environmental criteria interrelated under a systemic approach in the process of transfer of chemical technology, focused on a methodological cycle first run, based primarily on the research-action method. Future research is expected to make a refinement of the criteria from the formulation and validation of metrics so that necessary adjustments are made to optimize the process of transfer of chemical technology.

  2. Sustainable city policy. Economic, environmental, technological

    Energy Technology Data Exchange (ETDEWEB)

    Camagni, R.; Capello, R. [Politecnico di Milano, Milan (Italy). Economics Dept.; Nijkamp, P. [Dept. of Spatial Economics. Fac. of Economics and Econometrics. Vrije Univ., Amsterdam (Netherlands)

    1995-12-31

    While the reasons for advocating intensified environmental concerns at the urban level are more and more accepted and clear, the question how to overcome such concerns is still fraught with many difficulties. The aim of the present paper is to formulate some policy guidelines, based on economic principles, for a `sustainable city`; it is an ambitious aim, since a unique and operationally defined `recipe` is difficult to envisage. An urban policy for a sustainable city needs to take different (and contrasting) aspects and many conflicting interests into consideration, while many political, social and economic frictions need to be overcome. A description of various aspects and concepts concerning sustainability issues at the urban level is given in Section 2. Section 3 then provides some considerations on possible technological, economic and environmental urban policies, by creating a typo logy of policy tools associated with different causes of urban decline. Section 4 provides some new, and partly provocative, suggestions for specific urban sustainability policies; in particular it deals with the problem of urban sustainability indicators, measures, and critical threshold levels at which urban sustainability policies should be implemented. Some reflective remarks will conclude the paper. 3 figs., 4 tabs., 25 refs.

  3. Sustainable city policy. Economic, environmental, technological

    International Nuclear Information System (INIS)

    Camagni, R.; Capello, R.

    1995-01-01

    While the reasons for advocating intensified environmental concerns at the urban level are more and more accepted and clear, the question how to overcome such concerns is still fraught with many difficulties. The aim of the present paper is to formulate some policy guidelines, based on economic principles, for a 'sustainable city'; it is an ambitious aim, since a unique and operationally defined 'recipe' is difficult to envisage. An urban policy for a sustainable city needs to take different (and contrasting) aspects and many conflicting interests into consideration, while many political, social and economic frictions need to be overcome. A description of various aspects and concepts concerning sustainability issues at the urban level is given in Section 2. Section 3 then provides some considerations on possible technological, economic and environmental urban policies, by creating a typo logy of policy tools associated with different causes of urban decline. Section 4 provides some new, and partly provocative, suggestions for specific urban sustainability policies; in particular it deals with the problem of urban sustainability indicators, measures, and critical threshold levels at which urban sustainability policies should be implemented. Some reflective remarks will conclude the paper. 3 figs., 4 tabs., 25 refs

  4. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    International Nuclear Information System (INIS)

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. WETO's environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies

  5. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: GREEN BUILDING TECHNOLOGIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) Program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techno...

  7. The Center for Environmental Technology Innovative Technology Screening Process

    International Nuclear Information System (INIS)

    Bertrand, C.M.

    1995-02-01

    The Center for Environmental Technology's (CET) mission is to provide a fully integrated system for accelerated evaluation, development, commercialization, and public acceptance of creative environmental solutions which match the foremost demands in today's environmentally sensitive world. In short, CET will create a means to provide quick, effective solutions for environmental needs. To meet this mission objective, CET has created a unique and innovative approach to eliminating the usual barriers in developing and testing environmental technologies. The approach paves the way for these emerging, cutting-edge technologies by coordinating environmental restoration and waste management activities of industry, universities, and the government to: efficiently and effectively transfer technology to these users, provide market-driven, cost-effective technology programs to the public and DOE, and aid in developing innovative ideas by initiating efforts between DOE facilities and private industry. The central part to this mission is selecting and evaluating specific innovative technologies for demonstration and application at United States Department of Energy (DOE) installations. The methodology and criteria used for this selection, which is called the CET Innovative Technology Screening Process, is the subject of this paper. The selection criteria used for the screening process were modeled after other DOE technology transfer programs and were further developed by CET's Technology Screening and Evaluation Board (TSEB). The process benefits both CET and the proposing vendors by providing objective selection procedures based on predefined criteria. The selection process ensures a rapid response to proposing vendors, all technologies will have the opportunity to enter the selection process, and all technologies are evaluated on the same scale and with identical criteria

  8. U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: ARSENIC TREATMENT TECHNOLOGIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techn...

  9. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States)

    1998-12-31

    This complete survey of modern environmental science covers the four traditional spheres of the environment: water, air, earth, and life, and introduces a fifth sphere -- the anthrosphere -- which the author defines as the sphere of human activities, especially technology, that affect the earth. The book discusses how technology can be used in a manner that minimizes environmental disruption.

  10. Corporate environmental management and information technology

    DEFF Research Database (Denmark)

    Rikhardsson, Pall M.

    2001-01-01

    software, the Internet, computer networks, telecommunications devices, etc. Information technology also has an impact on how companies perform environmental management. This paper looks at the relations between corporate environmental management and information technology. First it presents a framework...... for mapping information technology. Using this framework it focuses on the use of information technology in corporate environmental management, describes the market for standard environmental management information systems and implementation experiences from one large international company.......Information technology has changed, is changing and will continue to change the face of business as we further enter the Information Society. Today it would be difficult for a company to function effectively without the aid of various information technologies such as accounting software, production...

  11. Corporate Environmental Management and Information Technology

    DEFF Research Database (Denmark)

    Rikhardsson, Pall M.

    2000-01-01

    software, the internet, computer networks, telecommunications devices, etc. Information technology also has an impact on how companies perform environmental management. This paper explores the relations between environmental management and information technology in general terms. It offers a classification...... framework for the use of information technology in corporate environmental management (CEM), describes the market for standard environmental management information systems solutions, what main functionalities are available and what main trends are visible.......Information technology has changed, is changing and will continue to change the face of business as we further enter the Information Society. Today it would be difficult for a company to function effectively without the aid of various information technologies such as accounting software, production...

  12. European workshop on technologies for environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Buesing, J H; Pippich, B [eds.

    1996-12-31

    Current European research activities in the field of environmental technologies are discussed under the following headings: photocatalysis; emission abatement - catalytic processes (mainly NO{sub x} reduction catalysts for vehicles and industrial boilers); emission abatement - biological and chemical processes; biological wastewater treatment; chemical and physical wastewater treatment; integrated wastewater treatment; environmental technologies in pulp and paper industry; environmental technologies in surface treatment; selected examples of `clean technologies`; environmental technologies in ceramic and cement industry and policy and strategies.

  13. An environmental assessment system for environmental technologies

    DEFF Research Database (Denmark)

    Clavreul, Julie; Baumeister, Hubert; Christensen, Thomas Højlund

    2014-01-01

    A new model for the environmental assessment of environmental technologies, EASETECH, has been developed. The primary aim of EASETECH is to perform life-cycle assessment (LCA) of complex systems handling heterogeneous material flows. The objectives of this paper are to describe the EASETECH...

  14. Environmental management technology demonstration and commercialization

    International Nuclear Information System (INIS)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H.

    1995-01-01

    The Energy ampersand Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD ampersand C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE's Office of Environmental Science and Technology (EM-50) under DOE's EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies

  15. Environmental management technology demonstration and commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H. [Energy & Environmental Research Center, Grand Forks, ND (United States)] [and others

    1995-10-01

    The Energy & Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD&C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE`s Office of Environmental Science and Technology (EM-50) under DOE`s EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies.

  16. Integrating energy and environmental goals. Investment needs and technology options

    International Nuclear Information System (INIS)

    2004-04-01

    Economic and population growth will continue to drive an expansion of the global energy market. The Earth's energy resources are undoubtedly adequate to meet rising demand for at least the next three decades. But the projected increases in energy consumption and market developments raise serious concerns about the security of energy supplies, investment in energy infrastructure, the threat of environmental damage caused by energy use and the uneven access of the world's population to modern energy. The first two sections of this background paper provide an outlook for energy demand and emissions over the next thirty years, based on findings in the IEA's World Energy Outlook 2002. Section four presents projections for global investment needs from the latest WEO publication, the World Energy Investment Outlook 2003. For both the energy and investment outlooks, an alternative scenario for OECD countries is examined. The scenarios describe a world in which environmental and energy supply security concerns will continue to plague policy makers. Clearly, changes in power generation, automotive engines and fuel technologies will be required to change trends in energy demand and emissions over the next thirty years and beyond. Improvements in energy efficiency will also play a fundamental role. A number of technologies offer the long term potential to diversify the energy sector away from its present heavy reliance on fossil fuels. Based on various IEA studies, section five evaluates those technologies that offer the potential to reduce emissions, including renewable energy, fossil-fuel use with CO2 capture and storage, nuclear, hydrogen, biofuels and efficient energy end use. No single technology can meet the challenge by itself. Different regions and countries will require different combinations of technologies to best serve their needs and best exploit their indigenous resources. Developing countries, in particular, will face far greater challenges in the years ahead

  17. Technology needs assessment for DOE environmental restoration programs

    International Nuclear Information System (INIS)

    Duray, J.R.; Carlson, T.J.; Carpenter, C.E.; Cummins, L.E.; Daub, G.J.

    1992-01-01

    The 'Technology Needs Assessment Final Report' describes current and planned environmental restoration activity, identifies technologies intended to be used or under consideration, and ranks technology deficiencies in the U.S. Department of Energy's environmental restoration program. Included in the ranking are treatment technologies, characterization technologies, and non-technology issues that affect environmental restoration. Data used for the assessment was gathered during interviews in the spring of 1991 with DOE site personnel responsible for the environmental restoration work. (author)

  18. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy's (DOE's) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID's technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID

  19. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  20. Technology diffusion, product differentiation and environmental subsidies

    Energy Technology Data Exchange (ETDEWEB)

    McGinty, M. [Univ. of Wisconsin, Milwaukee, WI (United States). Dept. of Economics; Vries, F.P. de [Univ. of Groningen (Netherlands). Dept. of Law and Economics

    2007-07-01

    Technological change is often seen as the promising device that will mitigate or solve environmental problems. Policy intervention that spurs the development, adoption and diffusion of new, environmentally benign technologies therefore holds great appear for environmental authorities. Policymakers have various instruments at their disposal to affect technological diffusion, ranging from direct regulation (command-and-control strategies) to market-based instruments, such as taxes, subsidies and tradable pollution permits. This paper examines environmental subsidies as a technology diffusion policy. The authors apply evolutionary game theory to explore the relationship between subsidies for clean technology, the diffusion of that technology and the degree of product differentiation in an imperfectly competitive market. They show that the subsidy succeeds in reducing environmental damage only when the substitution effect (the reduction in pollution associated with the clean technology) exceeds the output effect (the extent that the subsidy increases output). When the substitution effect does dominate, environmental damage decreases monotonically during the diffusion process. The extent of diffusion (the degree to which clean technolgy replaces dirty) and the likelihood that the substitution effect will dominate both decrease with the extent of product differentiation. Finally, the subsidy for clean technology will spill over to the remaining dirty producers increasing their profit as well.

  1. Global environmental technologies in the future

    International Nuclear Information System (INIS)

    Takahashi, M.

    1994-01-01

    This paper outlines the activities of New Energy and industrial Technology Development Organization's (NEDO) 'Research and Development of Industrial Technology' projects which are related to global environmental technologies. Then, it describes four new material programs and two biotechnology ones, and presents a list of a few environmentally-friendly technologies. These national projects are carried out by private companies which are consigned by NEDO in conformity with MITI's fundamental Research and Development policy. (TEC)

  2. THE ENVIRONMENTAL TECHNOLOGIES ACCEPTANCE (ETA) PROGRAM

    International Nuclear Information System (INIS)

    Behr-Andres, Christina B.

    2001-01-01

    The Environmental Technologies Acceptance (ETA) Program at the Energy and Environmental Research Center (EERC) is intended to advance the development, commercial acceptance, and timely deployment of selected private sector technologies for the cleanup of sites in the nuclear defense complex as well as the greater market. As shown in Table 1, this cooperative agreement funded by the National Energy Technology Laboratory (NETL) consists of three tasks: Technology Selection, Technology Development, and Technology Verification. As currently conceived, the ETA will address the needs of as many technologies as appropriate under its current 3-year term. This report covers activities during the first 6 months of the 3-year ETA program

  3. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-10-31

    The Deactivation and Decommissioning (D&D) Technology Assessment Program (TAP) was developed to provide detailed, comparable data for environmental technologies and to disseminate this data to D&D professionals in a manner that will facilitate the review and selection of technologies to perform decontamination and decommissioning. The objectives for this project include the following: Determine technology needs through review of the Site Technology Coordination Group (STCG) information and other applicable websites and needs databases; Perform a detailed review of industries that perform similar activities as those required in D&D operations to identify additional technologies; Define the technology assessment program for characterization and waste management problem sets; Define the data management program for characterization, dismantlement, and waste management problem sets; Evaluate baseline and innovative technologies under standard test conditions at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) and other locations and collect data in the areas of performance, cost, health and safety, operations and maintenance, and primary and secondary waste generation; Continue to locate, verify, and incorporate technology performance data from other sources into the multimedia information system; and Develop the conceptual design for a dismantlement technology decision analysis tool for dismantlement technologies.

  4. Political measures for promoting environmental technology

    International Nuclear Information System (INIS)

    2006-01-01

    Environmental technology can contribute to solving many environmental challenges and to industrial development. Measures to support the development and use of such technologies can be regulatory, economic or administrative, and usually one needs to use a combination of different measures in order to reach both a better environment and industrial development. For industrial development other measures than those administered by environmental authorities will be of importance. The environmental authorities therefore need to acquire knowledge about these measures and the bodies administering them, and develop an operative cooperation with these actors

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - PORTABLE GAS CHROMATOGRAPH ELECTRONIC SENSOR TECHNOLOGY MODEL 4100

    Science.gov (United States)

    The U.S. Environmental Protection Agency, through the Environmental Technology Verification Program, is working to accelerate the acceptance and use of innovative technologies that improve the way the United States manages its environmental problems. As part of this program, the...

  6. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This document has been prepared by the US Department of Energy`s (DOE`s) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE`s Operations Office and Energy Technology Centers.

  7. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    International Nuclear Information System (INIS)

    1996-03-01

    This document has been prepared by the US Department of Energy's (DOE's) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT ampersand E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE's Operations Office and Energy Technology Centers

  8. Heterogeneous technologies, strategic groups and environmental efficiency technology gaps for European countries

    International Nuclear Information System (INIS)

    Kounetas, Konstantinos

    2015-01-01

    This paper measures technology (TG) and environmental efficiency technology gaps (EETGs) in 25 European countries over two distinct periods 2002 and 2008 examining the possible effect of adopted environmental regulations and the Kyoto protocol commitments on environmental efficiency technology gaps. However, the introduction of the metafrontier in our analysis puts into our discussion the role of heterogeneous technologies and its effect on the above-mentioned measures. Employing a directional distance function, we investigate whether there is an actual difference, in terms of environmental efficiency and efficiency performance, among European countries considering the technological frontiers under which they operate. The construction of individual frontiers has been realized employing a large number of variables that are highly correlated with countries' learning and absorbing capacity, new technological knowledge and using economic theory and classical frontier discrimination like developed vs. developing, North vs. South and participation in the Eurozone or not. The overall results indicate a crucial role of heterogeneous technologies for technology gaps in both periods. Moreover, a significant decrease for both measures, although in different percent, has been recorded emphasizing the key role of knowledge spillovers. -- Highlights: •We estimate technology gaps (TGs) for 25 EU countries in two distinct periods. •We estimate environmental efficiency technology gaps (EETGs). •We consider countries' technological capabilities with R&D, innovation and eco-innovation. •We test the effect of different frontier constitutions on TGs-EETGs. •We denote the specific role of knowledge spillovers

  9. Development of environmental radiation control technology

    International Nuclear Information System (INIS)

    Kim, Ingyu; Kim, Enhan; Keum, Dongkwon

    2012-04-01

    To develop the comprehensive environmental radiation management technology, - An urban atmospheric dispersion model and decision-aiding model have been developed. - The technologies for assessing the radiation impact to non-human biota and the environmental medium contamination have developed. - The analytical techniques of the indicator radionuclides related to decommissioning of nuclear facilities and nuclear waste repository have been developed. - The national environmental radiation impact has been assessed, and the optimum management system of natural radiation has been established

  10. Experimental Engineering Section semiannual progress report, March 1-August 31, 1976. Volume 2. Biotechnology and environmental programs

    Energy Technology Data Exchange (ETDEWEB)

    Pitt, Jr., W. W.; Mrochek, J. E. [comps.

    1978-03-01

    This volume contains the progress report of the biotechnology and environmental programs in the Experimental Engineering Section of the Chemical Technology Division. Research efforts in these programs during this report period have been in five areas: (1) environmental research; (2) centrifugal analyzer development; (3) advanced analytical systems development; (4) bioengineering research; and (5) bioengineering development. Summaries of these programmatic areas are contained in Volume I.

  11. Development of decontamination, decommissioning and environmental restoration technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Kwon, H S; Kim, G N. and others

    1999-03-01

    Through the project of 'Development of decontamination, decommissioning and environmental restoration technology', the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  12. Development of decontamination, decommissioning and environmental restoration technology

    International Nuclear Information System (INIS)

    Lee, Byung Jik; Kwon, H. S.; Kim, G. N. and others

    1999-03-01

    Through the project of D evelopment of decontamination, decommissioning and environmental restoration technology , the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  13. How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review.

    Science.gov (United States)

    Arduini, Fabiana; Cinti, Stefano; Scognamiglio, Viviana; Moscone, Danila; Palleschi, Giuseppe

    2017-03-22

    Through the years, scientists have developed cutting-edge technologies to make (bio)sensors more convenient for environmental analytical purposes. Technological advancements in the fields of material science, rational design, microfluidics, and sensor printing, have radically shaped biosensor technology, which is even more evident in the continuous development of sensing systems for the monitoring of hazardous chemicals. These efforts will be crucial in solving some of the problems constraining biosensors to reach real environmental applications, such as continuous analyses in field by means of multi-analyte portable devices. This review (with 203 refs.) covers the progress between 2010 and 2015 in the field of technologies enabling biosensor applications in environmental analysis, including i) printing technology, ii) nanomaterial technology, iii) nanomotors, iv) biomimetic design, and (v) microfluidics. Next section describes futuristic cutting-edge technologies that are gaining momentum in recent years, which furnish highly innovative aspects to biosensing devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    OpenAIRE

    Durán-García Martín Enrique

    2014-01-01

    Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the ...

  15. Development of decontamination, decommissioning and environmental restoration technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Kwon, H. S.; Kim, G. N. and others

    1999-03-01

    Through the project of 'Development of decontamination, decommissioning and environmental restoration technology', the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  16. Information section of evolution of new technology

    Directory of Open Access Journals (Sweden)

    Straka Martin

    2001-12-01

    Full Text Available When the new technology is developed, the large amount of information is needed, at the beginning, also through development and there is large amount of data, information at the output, which create a manual, design procedure of the new technology. Evolution the new technology goes out from one primary original idea, or by the help of sectional or piecemeal solution come near into the bargain what we want to achieve research. Attempts and collection of information get in possession to results not only after information section, but also after technical - technological section. Another important of information source is quantity data receives from books, magazines, old planning documentation and nowadays also from Internet. This article contains the information gaining and the sources, which we have in disposal and which are necessary for developing the new technology from primary data at the beginning to data, which are gathered through development.

  17. 75 FR 18482 - Environmental Technologies Trade Advisory Committee (ETTAC)

    Science.gov (United States)

    2010-04-12

    ... DEPARTMENT OF COMMERCE Environmental Technologies Trade Advisory Committee (ETTAC) AGENCY... Environmental Technologies Trade Advisory Committee (ETTAC) will hold its quarterly meeting to discuss environmental technologies trade liberalization, industry competitiveness issues, and general Committee...

  18. Technology development and transfer in environmental management

    International Nuclear Information System (INIS)

    Katz, J.; Karnovitz, A.; Yarbrough, M.

    1994-01-01

    Federal efforts to develop and employ the innovative technologies needed to clean up contaminated facilities would greatly benefit from a greater degree of interaction and integration with the energies and resources of the private sector. Yet there are numerous institutional, economic, and regulatory obstacles to the transfer and commercialization of environmental restoration and waste management technologies. These obstacles discourage private sector involvement and investment in Federal efforts to develop and use innovative technologies. A further effect is to impede market development even where private sector interest is high. Lowering these market barriers will facilitate the commercialization of innovative environmental cleanup technologies and expedite the cleanup of contaminated Federal and private facilities. This paper identifies the major barriers to transfer and commercialization of innovative technologies and suggests possible strategies to overcome them. Emphasis is placed on issues particularly relevant to the Department of Energy's Environmental Restoration and Waste Management (EM) program, but which are applicable to other Federal agencies confronting complex environmental cleanup problems

  19. 75 FR 52716 - Environmental Technologies Trade Advisory Committee (ETTAC)

    Science.gov (United States)

    2010-08-27

    ... DEPARTMENT OF COMMERCE Environmental Technologies Trade Advisory Committee (ETTAC) AGENCY... Environmental Technologies Trade Advisory Committee (ETTAC) will hold its quarterly meeting to discuss environmental technologies industry competitiveness issues, the National Export Initiative, and general...

  20. 75 FR 1590 - Environmental Technologies Trade Advisory Committee (ETTAC)

    Science.gov (United States)

    2010-01-12

    ... DEPARTMENT OF COMMERCE Environmental Technologies Trade Advisory Committee (ETTAC) AGENCY... Environmental Technologies Trade Advisory Committee (ETTAC) will hold its first plenary meeting of 2010 to discuss environmental technologies trade liberalization, industry competitiveness issues, and general...

  1. ATBU Journal of Environmental Technology

    African Journals Online (AJOL)

    The journal of environmental technology is devoted to the publication of papers ... research results of both the natural; the technological; and the built environment. ... Assessment of multipath and shadowing effects on UHF band in built-up ...

  2. Partnership for Environmental Technology Education

    International Nuclear Information System (INIS)

    Dickinson, Paul R.; Fosse, Richard

    1992-01-01

    The need for broad cooperative effort directed toward the enhancement of science and mathematics education, including environmental science and technology has been recognized as a national priority by government, industry, and the academic community alike. In an effort to address this need, the Partnership for Environmental Technology Education (PETE) has been established in the five western states of Arizona, California, Hawaii, Nevada and Utah. PETE'S overall objectives are to link the technical resources of the DOE, ERA, and NASA Laboratories and private industry with participating community colleges to assist in the development and presentation of curricula for training environmental-Hazardous Materials Technicians and to encourage more transfer students to pursue studies in environmental science at four-year institutions. The program is co-sponsored by DOE and EPA. DoD participation is proposed. PETE is being evaluated by its sponsors as a regional pilot with potential for extension nationally. (author)

  3. Environmental characteristics of clean coal technologies

    International Nuclear Information System (INIS)

    Bossart, S.J.

    1992-01-01

    The Department of Energy's (DOE) Clean Coal Technology (CCT) Program is aimed at demonstrating the commercial readiness of advanced coal-based technologies. A major goal of the CCT program is to introduce into the US energy marketplace those coal-based power generation technologies that have superior economic and environmental performance over the current suite of commercial coal-based power generation technologies. The commercialization of CCTs will provide the electric utility industry with technology options for replacing aging power plants and meeting future growth in electricity demand. This paper discusses the environmental advantages of two CCTs used for electric power generation: pressurized fluidized-bed combustion (PFBC) and integrated gasification combined-cycle (IGCC). These CCTs are suitable for repowering existing power plants or for grassroots construction. Due to their high efficiency and advanced environmental control systems, they emit less sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), particulate matter, and carbon dioxide (CO 2 ) than a state-of-the-art, pulverized coal power plant with flue gas desulfurization (PC/FGD)

  4. Critical materialism: science, technology, and environmental sustainability.

    Science.gov (United States)

    York, Richard; Clark, Brett

    2010-01-01

    There are widely divergent views on how science and technology are connected to environmental problems. A view commonly held among natural scientists and policy makers is that environmental problems are primarily technical problems that can be solved via the development and implementation of technological innovations. This technologically optimistic view tends to ignore power relationships in society and the political-economic order that drives environmental degradation. An opposed view, common among postmodernist and poststructuralist scholars, is that the emergence of the scientific worldview is one of the fundamental causes of human oppression. This postmodernist view rejects scientific epistemology and often is associated with an anti-realist stance, which ultimately serves to deny the reality of environmental problems, thus (unintentionally) abetting right-wing efforts to scuttle environmental protection. We argue that both the technologically optimistic and the postmodernist views are misguided, and both undermine our ability to address environmental crises. We advocate the adoption of a critical materialist stance, which recognizes the importance of natural science for helping us to understand the world while also recognizing the social embeddedness of the scientific establishment and the need to challenge the manipulation of science by the elite.

  5. Environmental and process monitoring technologies

    International Nuclear Information System (INIS)

    Vo-Dinh, Tuan

    1993-01-01

    The objective of this conference was to provide a multidisciplinary forum dealing with state-of-the-art methods and instrumentation for environmental and process monitoring. In the last few years, important advances have been made in improving existing analytical methods and developing new techniques for trace detection of chemicals. These monitoring technologies are a topic of great interest for environmental and industrial control in a wide spectrum of areas. Sensitive detection, selective characterization, and cost-effective analysis are among the most important challenges facing monitoring technologies. This conference integrating interdisciplinary research and development was aimed to present the most recent advances and applications in the important areas of environmental and process monitoring. Separate abstracts have been prepared for 34 papers for inclusion in the appropriate data bases

  6. Overview of emerging environmental technologies

    International Nuclear Information System (INIS)

    Olson, D.C.

    2000-01-01

    DOD is executing environmental restoration projects in accordance with compliance regulations from many federal agencies. With the passage of amendments to the Superfund law in 1986 that stated a preference for treatment instead of disposal, demand developed for alternative methods that provided more permanent and less costly solutions for dealing with contaminated materials. The Army files environmental impact statements on major programs and specific projects that are currently affecting, or have the potential to affect the environment. Personnel conducting those studies may find it helpful to learn about current environmental assessment methods and the outcomes of previous environmental studies. The Army currently spends almost 2.4% of its total budget on environmental programs. As the future budget picture continues to decline, new technologies offer the potential to provide a lower cost means of achieving the same level of environmental protection. This paper will provide an overview of environmental restoration planning and procedures, discuss information capabilities available on the Internet, provide summaries of recent technological literature and field studies; and identifies areas of informational 'gaps'. It concludes by urging closer ties between industry and the Army, as well as the need to pursue new and innovative techniques to solve old problems. (author)

  7. GENERAL ENVIRONMENTAL CORPORATION; CURE ELECTROCOAGULATION TECHNOLOGY: INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    The CURE electrocoagulation technology was demonstrated under the Superfund Innovative Technology Evaluation (SITE) program at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS), where water from the solar evaporation ponds (SEPs) was contaminat...

  8. The Savannah River environmental technology field test platform

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The Savannah River technology Center (SRTC) has been developing a program to rigorously field test promising environmental technologies that have not undergone EPA equivalency testing. The infrastructure and staff expertise developed as part of the activities of the Savannah River Integrated Demonstration Program allows field testing of technologies without the difficulties of providing remote field support. By providing a well-characterized site and a well-developed infrastructure, technologies are tested in actual field scenarios to determine their appropriate applications in environmental characterization and monitoring activities. The field tests provide regulatory organizations, potential industrial partners, and potential users with the opportunity to evaluate the technology's performance and its utility for implementation in environmental characterization and monitoring programs. This program has resulted in the successful implementation of several new technologies

  9. Overcoming regulatory barriers: DOE environmental technology development program

    International Nuclear Information System (INIS)

    Kurtyka, B.M.; Clodfelter-Schumack, K.; Evans, T.T.

    1995-01-01

    The potential to improve environmental conditions via compliance or restoration is directly related to the ability to produce and apply innovative technological solutions. However, numerous organizations, including the US General Accounting Office (GAO), the EPA National Advisory Council for Environmental Policy and Technology (NACEPT), the DOE Environmental Management Advisory Board (EMAB), and the National Science and Technology Council (NSTC) have determined that significant regulatory barriers exist that inhibit the development and application of these technologies. They have noted the need for improved efforts in identifying and rectifying these barriers for the purpose of improving the technology development process, providing innovative alternatives, and enhancing the likelihood of technology acceptance by all. These barriers include, among others, regulator and user bias against ''unknown/unproven'' technologies; multi-level/multi-media permit disincentives; potential liability of developers and users for failed implementation; wrongly defined or inadequate data quality objectives: and lack of customer understanding and input. The ultimate goal of technology development is the utilization of technologies. This paper will present information on a number of regulatory barriers hindering DOE's environmental technology development program and describe DOE efforts to address these barriers

  10. Environmental issues affecting clean coal technology deployment

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-31

    The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mention many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.

  11. Driving forces and barriers for environmental technology development

    International Nuclear Information System (INIS)

    2005-01-01

    Driving forces and barriers behind development and usage of environmental technology is discussed, and also whether there are certain characteristics related to environmental innovations compared to other innovations in general. The development of environmental technology is in principle dominated by the same drivers and barriers as any other technology, but the order and strength of the various factors may be different. This examination as well as other empirical studies shows that regulations play a greater part for environmental technology than 'pure market forces'. To many participants it is important to be one step ahead of the regulations, i.e. the expected regulations are equally important as the factual ones in driving the technology development. Players in the business community express that it is important that the authorities cooperate with them when introducing new regulations. This will increase acceptance for the regulations and facilitate the necessary adjustments. The most important barrier in the development and use of the technologies studied is probably the lack of demand

  12. ATBU Journal of Environmental Technology: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. The journal of environmental technology is devoted to the publication of papers which advance knowledge of practical and theoretical issues of the environmental technology. Selection of papers for publication is based on their relevance, clarity, topicality and individuality; the extent to which they advance ...

  13. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.

  14. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    International Nuclear Information System (INIS)

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO's environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO's areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation's largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST's Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management

  15. Environmental Consequences of Pig Slurry Treatment Technologies

    DEFF Research Database (Denmark)

    ten Hoeve, Marieke

    occur during manure storage and after field application. The main emissions are ammonia, nitrous oxide, methane, carbon dioxide, nitrate, phosphorus and odour. Slurry treatment technologies have been and are being developed in order to reduce the environmental impacts of manure. However, it is important...... and excluding biogenic carbon, marine and freshwater eutrophication potential, terrestrial acidification and eutrophication potential, and fossil resource depletion potential. The different types of treatment technologies showed varying environmental profiles, meaning that one type of technology was beneficial...... technology, or co-substrate for anaerobic digestion). With respect to odorous emissions, an LCIA method was developed, but due to a lack of data it proved difficult to include odour in LCA. Regulations appear to have an influence on the environmental impacts of slurry treatment. A decrease in N application...

  16. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    Energy Technology Data Exchange (ETDEWEB)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B. [and others

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

  17. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    International Nuclear Information System (INIS)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B.

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management

  18. Environmental Decision Making and Information Technology: Issues Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Barg, S.; Fletcher, T.; Mechling, J.; Tonn, B.; Turner, R.

    1999-05-01

    This report presents a summary of the Information Technology and Environmental Decision Making Workshop that was held at Harvard University, October 1-3, 1998. Over sixty participants from across the US took part in discussions that focused on the current practice of using information technology to support environmental decision making and on future considerations of information technology development, information policies, and data quality issues in this area. Current practice is focusing on geographic information systems and visualization tools, Internet applications, and data warehousing. In addition, numerous organizations are developing environmental enterprise systems to integrate environmental information resources. Plaguing these efforts are issues of data quality (and public trust), system design, and organizational change. In the future, much effort needs to focus on building community-based environmental decision-making systems and processes, which will be a challenge given that exactly what needs to be developed is largely unknown and that environmental decision making in this arena has been characterized by a high level of conflict. Experimentation and evaluation are needed to contribute to efficient and effective learning about how best to use information technology to improve environmental decision making.

  19. Archives: African Journal of Environmental Science and Technology

    African Journals Online (AJOL)

    Items 1 - 50 of 117 ... Archives: African Journal of Environmental Science and Technology. Journal Home > Archives: African Journal of Environmental Science and Technology. Log in or Register to get access to full text downloads.

  20. 78 FR 21909 - Environmental Technologies Trade Advisory Committee; Public Meeting

    Science.gov (United States)

    2013-04-12

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The teleconference....S. exports of environmental technologies, goods, services, and products. The ETTAC was originally...

  1. Heavy-Section Steel Technology Program

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1992-11-01

    The Heavy-Section Steel Technology (HSST) Program is conducted for the Nuclear Regulatory Commission (NRC) by Oak Ridge National Laboratory (ORNL). The program focus is on the development and validation of technology for the assessment of fracture-prevention margins in commercial nuclear reactor pressure vessels. The HSST Program is organized in 11 tasks: program management, fracture methodology and analysis, material characterization and properties, special technical assistance, fracture analysis computer programs, cleavage-crack initiation, cladding evaluations, pressurized-thermal-shock technology, analysis methods validation, fracture evaluation tests, and warm prestressing. The program tasks have been structured to place emphasis on the resolution fracture issues with near-term licensing significance. Resources to execute the research tasks are drawn from ORNL with subcontract support from universities and other research laboratories. Close contact is maintained with the sister Heavy-Section Steel Irradiation (HSSI) Program at ORNL and with related research programs both in the United States and abroad. This report provides an overview of principal developments in each of the II program tasks from October 1, 1991 to March 31, 1992

  2. 76 FR 66912 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2011-10-28

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The teleconference... expand U.S. exports of environmental technologies, goods, services, and products. The ETTAC was...

  3. Environmental regulation and the export dynamics of energy technologies

    International Nuclear Information System (INIS)

    Costantini, Valeria; Crespi, Francesco

    2008-01-01

    The pollution haven hypothesis affirms that an open market regime will encourage the flow of low-technology polluting industries towards developing countries because of potential comparative advantages related to low environmental standards. In contrast, the hypothesis suggested by Porter and van der Linde claims that innovating firms operate in a dynamic competitive situation which allows global diffusion of environmental-friendly technologies. Environmental regulation may represent a relevant mechanism through which technological change is induced. In this way, countries that are subject to more stringent environmental regulations may become net exporters of environmental technologies. This paper provides new evidence on the evolution of export flows of environmental technologies across different countries for the energy sector. Advanced economies, particularly the European Union, have increasingly focused on the role of energy policies as tools for sustaining the development path. The Kyoto Protocol commitments, together with growing import dependence on energy products, have brought attention to the analysis of innovation processes in this specific sector. The analysis uses a gravity model in order to test the determinants and the transmission channels through which environmental technologies for renewable energies and energy efficiency are exported to advanced and developing countries. Our results are consistent with the Porter and van der Linde hypothesis where environmental regulation represents a significant source of comparative advantages. What strongly emerges is that the stringency of environmental regulation supplemented by the strength of the National Innovation System is a crucial driver of export performance in the field of energy technologies. (author)

  4. 77 FR 35941 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2012-06-15

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... promotion programs; and issues related to innovation in the environmental technology sector. Background: The...

  5. 77 FR 6064 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2012-02-07

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The teleconference... administration of programs to expand U.S. exports of environmental technologies, goods, services, and products...

  6. Environmental control technology in petroleum drilling and production

    International Nuclear Information System (INIS)

    Wojtanowicz, A.K.

    1997-01-01

    Environmental control technology (ECT) is process integrated and relates mainly to pollution prevention and risk assessment. Mechanisms of environmental impact in petroleum drilling, well completion and production, include the generation of waste, induction of toxicity or the creation of pathways for pollutant migration. The identification and evaluation of these mechanisms constitute two parts of the scope of ECT. A third part is the development of new techniques to comply with environmental requirements without prejudicing productivity. The basic concepts of the ECT approach are presented in this chapter. The approach is then used to analyse oilfield drilling and production processes. Environmental control components developed in these technologies are described. These include: the control of the volume and toxicity of drilling fluids; source separation technology in produced water cleaning; subsurface injection of oilfield waste slurries; containment technology in the integrity of petroleum wells; subsurface reduction of produced water; oilfield pit closure technology. (37 figures; 26 tables; 227 references) (UK)

  7. Advanced Environmental Monitoring Technologies

    Science.gov (United States)

    Jan, Darrell

    2004-01-01

    Viewgraphs on Advanced Environmental Monitoring Technologies are presented. The topics include: 1) Monitoring & Controlling the Environment; 2) Illustrative Example: Canary 3) Ground-based Commercial Technology; 4) High Capability & Low Mass/Power + Autonomy = Key to Future SpaceFlight; 5) Current Practice: in Flight; 6) Current Practice: Post Flight; 7) Miniature Mass Spectrometer for Planetary Exploration and Long Duration Human Flight; 8) Hardware and Data Acquisition System; 9) 16S rDNA Phylogenetic Tree; and 10) Preview of Porter.

  8. 78 FR 21911 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2013-04-12

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... review the role of the U.S. government in supporting the early adoption of environmental technologies and...

  9. Environmental control technology

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    During this report period, Chem Tech identified environmental control technology (ECT) as an area of emphasis for future planning and resource allocation. The Division plans to continue to perform R and D activities in ECT for external sponsors such as the DOE Office of Fossil Energy (DOE/FE), the Electric Power Research Institute (EPRI), and the Environmental Protection Agency (EPA) while striving for recognition as an R and D center for ECT within the Martin Marietta Energy Systems' Complex. Chem Tech has already played supporting roles in this area for the Y-12 Plant and the Oak Ridge Gaseous Diffusion Plant (ORGDP) and is currently expanding its support to organizations within ORNL responsible for environmental matters. Over the long term, the Division hopes to achieve recognition as a center for R and D in ECT within the wider DOE system. Recent initiatives supporting these plans are discussed below

  10. The Danish technology foresight on environmentally friendly agriculture

    DEFF Research Database (Denmark)

    Borch, Kristian

    2013-01-01

    A premise that is necessary for agriculture to develop into an environmentally friendly direction is that research is undertaken into environmentally friendly technologies and methods and how they can be brought into use. There is a need for a prioritised research effort that focuses on those...... without any plan or with some thought. Therefore the National Forest and Nature Agency in Denmark initiated the Green Technological foresight on environmentally friendly agriculture with the aim of examining the agricultural environmental challenges and suggesting technological and structural solutions....... problems which are related to minimising environmental problems affected by the agricultural production’s negative influence on the surroundings, improving animal welfare and finding new ways and products for agriculture. Future directions of agriculture can derive with or without dialogue; it can occur...

  11. 77 FR 14734 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2012-03-13

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... proposed agenda of a meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The... innovation in the environmental technology sector. Background: The ETTAC is mandated by Public Law 103-392...

  12. 1992 yearbook of environmental and technology-related law

    International Nuclear Information System (INIS)

    Schroeder, M.

    1992-01-01

    The 1992 and sixth edition of this yearbook contains papers on environmental and technology-related law in the European Communities and the Federal Republic of Germany including among other things information on the latest jurisdiction by the European Court of Justice; insurability of environmental damage; scientific aspects of limit values. There are also treatises on non-German and comparative as well as international environmental and technology- related law which deal among other things with atomic and immission protection law and on harmonization and codification from a general point of view. Finally, some papers report on developments of national and European environmental and technology-related law. Three of the fifteen contributions have been abstracted separately. (HSCH) [de

  13. Proceedings of Opportunity '95 -- Environmental technology through small business

    International Nuclear Information System (INIS)

    Kothari, V.P.

    1994-11-01

    The Opportunity '95--Environmental Technology Through Small Business conference was held November 16--17, 1994, at the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. The overall objective of this conference was to review the latest environmental and waste management technologies being developed under the sponsorship of the Environmental Management--Office of Technology Development (EM-OTD) Program at METC. The focus of this conference was also to address the accomplishments and barriers affecting small businesses, and lay the groundwork for future technology development initiatives and opportunities. Twenty papers were presented in three EM-OTD focus areas: mixed waste characterization, treatment and disposal (6 papers); contaminant plume containment and remediation (6 papers); and facility transitioning, decommissioning and final disposition (8 papers). In addition to the presentations, nine posters of environmental management areas were displayed. A panel discussion was also held on technology development assistance to small businesses. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  14. Environmental radiation sensing technologies

    International Nuclear Information System (INIS)

    Nishizawa, Hiroshi; Inomata, Kenji; Tamuro, Masaru; Fujita, Kazuhiko

    2013-01-01

    After the Fukushima nuclear accident, environmental radiation monitoring and radioactivity measurement of contamination of wastes, soils, food and drinking water were needed in accurate and reliable way. Based on radiation sensing technologies and radiation and light coupled analysis method, new environmental radiation measurement system for simple monitoring post without exclusive house and also portable monitoring post for temporary use were developed with low cost. Measurement accuracy was improved by real-time processing of detected pulses and corrected non-linearity of low-energy range by analysis. Environmental performance was upgraded to assure detector gain with compensated against temperature change and aging. Inspection and maintenance were also simplified using touch panel display with standardized application menu and data format. (T. Tanaka)

  15. QuEST: Qualifying Environmentally Sustainable Technologies

    Science.gov (United States)

    Lewis, Pattie

    2012-01-01

    Articles in this issue inlude: (1) Foundation of Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) Technology Evaluation is Testing and Qualification, (2) Materials Management and Substitution Efforts, (3 Recycling and Pollution Control Efforts, and (4) Remediation Efforts

  16. 78 FR 74129 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2013-12-10

    ... for Environmental Policy and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT members represent academia...

  17. SIHTI 2 - Energy and environmental technology

    International Nuclear Information System (INIS)

    Saviharju, K.; Johansson, A.

    1993-01-01

    The programme is divided into system and technology parts. The aim of system studies is to determine, on the basis of lifecycle analyses, long-term environmental-technological aims for various fields (energy, industry) and to find out an optimum strategy for reaching these aims. The analysis will give data on emission reduction costs and on fields, where technical improvements are required, and will determine the limits set by environmental factors for future technical development. Environmental impacts will be discussed from national and economic viewpoints. Technological development is dependent on new ideas. The aim is to indicate possibilities for reducing emissions from energy use of peat and wood, for low-emission production at least on one industrial field (wood-processing industry), to establish emission measuring and control methods, to indicate utilization alternatives for solid matter separated at power plants, and to find out operable alternatives for the energy use of wastes. Other ventures of significance will also be financed: survey of 'new' emissions and development of their measuring and purification methods. The field of the programme will be divided into synergic sub-fields: systematics of emission chains, fields of operation (energy and environment problems in the wood-processing industries), development of flue gas purification technology, measuring and control technology, by-products of power plants, emissions from peat production, etc

  18. 76 FR 73632 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2011-11-29

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Request for Nominations to the National Advisory Council for Environmental Policy and Technology (NACEPT). SUMMARY: The U.S. Environmental... appointment to the National Advisory Council for Environmental Policy and Technology (NACEPT). Vacancies are...

  19. 75 FR 25240 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2010-05-07

    ... ENVIRONMENTAL PROTECTION AGENCY National Advisory Council for Environmental Policy and Technology... for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT is a committee of...

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, GROUNDWATER SAMPLING TECHNOLOGIES, GEOPROBE INC., PNEUMATIC BLADDER PUMP GW 1400 SERIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) design efficient processes for conducting has created the Environmental Technology perfofl1lance tests of innovative technologies. Verification Program (E TV) to facilitate the deployment of innovative or improved environmental techn...

  1. 78 FR 47316 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2013-08-05

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Request for nominations to the National Advisory Council for Environmental Policy and Technology (NACEPT). SUMMARY: The U.S. Environmental... Environmental Policy and Technology (NACEPT). Vacancies are anticipated to be filled by February, 2014. Sources...

  2. Environmental Monitoring of Agro-Ecosystem Using Environmental Isotope Tracer Technology

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jae Sung; Cho, Jae Young

    2004-10-01

    This report has provided the counterparts the knowledge and skills on the use of environmental isotope tracer technology for obtaining valuable information on agricultural non-point pollution source in agro-ecosystem. The contamination from agricultural watersheds has been brought into attention as a potential contaminant of streams and tributaries, since majority of them caused water quality degradation, eutrophication of reservoir and negative effect on agro-environment. To prevent the contamination from these watersheds, it is necessary to find out the source of the contamination. However, accurate contaminants outflows from various types of non-point sources have not yet been elucidated due to the fact that the extent of non-point source contaminants related to uncontrollable climatic events and irrigation conditions may differ greatly from place to place and year to year. The dominant use of isotopes in environmental ecosystem research in the last few decades has been to trace sources of waters and solutes. The environmental isotope tracer technology using stable isotopes such as oxygen, hydrogen, carbon, nitrogen, and sulfur has extensively been used for tracing the fate of environmental pollutants and for identification of environmental pollutants sources in agro-ecosystems

  3. Environmental science and technology: An overview

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is intended to provide an overview of the scientific and technological effort to meet the environmental goals identified in the Green Plan. The report gives a sense of the range of scientific and technological efforts that are being devoted to issues as diverse as conserving our wildlife and national parks and developing innovative technologies to clean-up polluted sites.

  4. 76 FR 77776 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2011-12-14

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... Energy & Environmental Industries (OEEI), International Trade Administration, Room 4053, 1401...

  5. 76 FR 51001 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2011-08-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... Energy & Environmental Industries (OEEI), International Trade Administration, Room 4053, 1401...

  6. 77 FR 58356 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2012-09-20

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... Energy & Environmental Industries (OEEI), International Trade Administration, Room 4053, 1401...

  7. 78 FR 4834 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2013-01-23

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... Energy & Environmental Industries (OEEI), International Trade Administration, Room 4053, 1401...

  8. 77 FR 50987 - Environmental Technologies Trade Advisory Committee, Request for Nominations

    Science.gov (United States)

    2012-08-23

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... Commerce. ACTION: Solicitation of Nominations for Membership on the Environmental Technologies Trade...) is requesting nominations for memberships on the Environmental Technologies Trade Advisory Committee...

  9. ENVIRONMENTAL REGULATIONS AND TECHNOLOGY - THE ELECTROPLATING INDUSTRY

    Science.gov (United States)

    This 44-page Technology Transfer Environmental Regulations and Technology publication is an update of a 1980 EPA publication that has been revised to reflect changes in the EPA regulations, as well as in the pollution control technologies that affect the electroplating industry. ...

  10. Technology-based management of environmental organizations using an Environmental Management Information System (EMIS): Design and development

    Science.gov (United States)

    Kouziokas, Georgios N.

    2016-01-01

    The adoption of Information and Communication Technologies (ICT) in environmental management has become a significant demand nowadays with the rapid growth of environmental information. This paper presents a prototype Environmental Management Information System (EMIS) that was developed to provide a systematic way of managing environmental data and human resources of an environmental organization. The system was designed using programming languages, a Database Management System (DBMS) and other technologies and programming tools and combines information from the relational database in order to achieve the principal goals of the environmental organization. The developed application can be used to store and elaborate information regarding: human resources data, environmental projects, observations, reports, data about the protected species, environmental measurements of pollutant factors or other kinds of analytical measurements and also the financial data of the organization. Furthermore, the system supports the visualization of spatial data structures by using geographic information systems (GIS) and web mapping technologies. This paper describes this prototype software application, its structure, its functions and how this system can be utilized to facilitate technology-based environmental management and decision-making process.

  11. Technology management for environmentally sound and sustainable development

    International Nuclear Information System (INIS)

    Zaidi, S.M.J.

    1992-01-01

    With the evolutionary change in the production activities of human societies, the concept of development has also been changing. In the recent years the emphasis has been on the environmentally sound and sustainable development. The environmentally sound and sustainable development can be obtained through judicious use of technology. Technology as a resource transformer has emerged as the most important factor which can constitute to economic growth. But technology is not an independent and autonomous force, it is only an instrument which needs to be used carefully, properly and appropriately which necessitates technology management. (author)

  12. 76 FR 26247 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2011-05-06

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... & Environmental Industries (OEEI), International Trade Administration, Room 4053, 1401 Constitution Ave, NW...

  13. 78 FR 46921 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2013-08-02

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... Hinman, Office of Energy & Environmental Industries (OEEI), International Trade Administration, Room 4053...

  14. A survey of environmental needs and innovative technologies in Germany

    International Nuclear Information System (INIS)

    Voss, C.F.; Roberds, W.J.

    1995-05-01

    The International Technology Program (IT?), formerly the international Technology Exchange Program (ITEP), of the Department of Energy's (DOE's) Office of Environmental Restoration and Waste Management (EM) is responsible for promoting: (1) the import of innovative technologies to better address EM's needs; and (2) the export of US services into foreign markets to enhance US competitiveness. Under this program: (1) the environmental restoration market in Germany was evaluated, including the description of the general types of environmental problems, the environmental regulations, and specific selected contaminated sites; and (2) potentially innovative environmental restoration technologies, either commercially available or under development in Germany, were identified, described and evaluated. It was found that: (1) the environmental restoration market in Germany is very large, on the order of several billion US dollars per year, with a significant portion possibly available to US businesses; and (2) a large number (54) of innovative environmental restoration technologies, which are either commercially available or under development in Germany, may have some benefit to the DOE EM program and should be considered for transfer to the US

  15. Technology and Environmental Education: An Integrated Curriculum

    Science.gov (United States)

    Willis, Jana M.; Weiser, Brenda

    2005-01-01

    Preparing teacher candidates to integrate technology into their future classrooms effectively requires experience in instructional planning that utilizes technology to enhance student learning. Teacher candidates need to work with curriculum that supports a variety of technologies. Using Project Learning Tree and environmental education (EE),…

  16. Nano-enabled environmental products and technologies - opportunities and drawbacks

    DEFF Research Database (Denmark)

    Møller Christensen, Frans; Brinch, Anna; Kjølholt, Jesper

    The project aims to investigate the benefits for health and environment that the use of nanomaterials in products and technologies may have. More specifically, the project provides an overview of the most relevant nano-enabled environmental technologies, different types of products and technologies...... on the (Danish) market, as well as products and technologies, which are still in R&D and it will provide a qualitative overview of health and environmental pros and cons of these technologies. The project has focused on technologies applied in: 1) purification of water and wastewater, 2) remediation of soil...

  17. 77 FR 39705 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2012-07-05

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Advisory Committee... meeting of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management...

  18. 76 FR 1431 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2011-01-10

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Meeting. SUMMARY... National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT...

  19. 75 FR 52941 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2010-08-30

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of meeting. SUMMARY... National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT...

  20. 76 FR 24481 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2011-05-02

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of meeting. SUMMARY... National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT...

  1. 76 FR 68183 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2011-11-03

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of meeting. SUMMARY... National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT...

  2. 77 FR 1931 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2012-01-12

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Advisory Committee... meeting of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management...

  3. 75 FR 38810 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2010-07-06

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of meeting. SUMMARY... of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management...

  4. 77 FR 3475 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2012-01-24

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of advisory committee... teleconference of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management...

  5. 76 FR 37112 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2011-06-24

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of meeting. SUMMARY... of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management...

  6. 77 FR 8859 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2012-02-15

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Cancellation and Rescheduling of National Advisory Council for Environmental Policy and Technology (NACEPT) Committee Meeting. SUMMARY: EPA... Environmental Policy and Technology (NACEPT) Meeting to be held at the EPA Potomac Yard Conference Center, One...

  7. ENVIRONMENTAL IMPACT ASSESSMENT OF A HEALTH TECHNOLOGY: A SCOPING REVIEW.

    Science.gov (United States)

    Polisena, Julie; De Angelis, Gino; Kaunelis, David; Gutierrez-Ibarluzea, Iñaki

    2018-06-13

    The Health Technology Expert Review Panel is an advisory body to Canadian Agency for Drugs and Technologies in Health (CADTH) that develops recommendations on health technology assessments (HTAs) for nondrug health technologies using a deliberative framework. The framework spans several domains, including the environmental impact of the health technology(ies). Our research objective was to identify articles on frameworks, methods or case studies on the environmental impact assessment of health technologies. A literature search in major databases and a focused gray literature search were conducted. The main search concepts were HTA and environmental impact/sustainability. Eligible articles were those that described a conceptual framework or methods used to conduct an environmental assessment of health technologies, and case studies on the application of an environmental assessment. From the 1,710 citations identified, thirteen publications were included. Two articles presented a framework to incorporate environmental assessment in HTAs. Other approaches described weight of evidence practices and comprehensive and integrated environmental impact assessments. Central themes derived include transparency and repeatability, integration of components in a framework or of evidence into a single outcome, data availability to ensure the accuracy of findings, and familiarity with the approach used. Each framework and methods presented have different foci related to the ecosystem, health economics, or engineering practices. Their descriptions suggested transparency, repeatability, and the integration of components or of evidence into a single outcome as their main strengths. Our review is an initial step of a larger initiative by CADTH to develop the methods and processes to address the environmental impact question in an HTA.

  8. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-04-30

    The final data package has been completed for the Mississippi State University, DIAL FTP Wall Depth Removal Characterization Technology. The package has been sent to DIAL for comments. Work is progressing on completing the transfer of glove boxes and tanks from Rocky Flats to FIU-HCET for the purpose of performing size reduction technology assessments. Vendors are being identified and security measures are being put in place to meet the High Risk Property criteria required by Rocky Flats. The FIU-HCET Technology Assessment Program has been included as one of 11 verification programs across the US and Canada described in the Interstate Technology Regulatory Cooperation (ITRC) document, ''Multi-state Evaluation of Elements Important to the Verification of Remediation Technologies'', dated January 1999. FIU-HCET will also participate in a panel discussion on technology verification programs at the International Environmental Technology Expo '99.

  9. Environmental consequences of new energy technology

    International Nuclear Information System (INIS)

    Svensson, Torbjoern

    1991-09-01

    This report summarises and assesses the environmental consequences associated with new energy technologies, with particular emphasis on their use for space heating supplies in the built environment. In the case of solar heating, it is primarily the processes associated with the production of the necessary materials and ground use requirements that can adversely affect the environment. There is also a certain risk associated with the leakage of heat transfer fluid. For heat stores, problem areas are primarily those associated with heating of the ground, discharge of foreign substances in connection with water treatment and conflicts of other users of ground water. The main adverse effects of heat pumps are their emissions of CFCs, which damage the ozone layer, utilisation of certain types of heat sources and the need to provide primary energy for mechanical drive of the pumps. All three of these new energy technologies are regarded as having less environmental consequences than conventional alternatives, although this assumes a change to less hazardous working media in heat pumps. A mutual comparison of the three technologies indicates that solar heating and heat stores have somewhat better environmental characteristics than heat pumps

  10. Divison of Environmental Control Technology program, 1978

    International Nuclear Information System (INIS)

    1979-06-01

    This report covers Division of Environmental Control Technology projects in progress during FY 1978, within the Office of the Assistant Secretary for Environment, Department of Energy. It is the second in a planned series of annual reports. The Division of Environmental Control Technology (ECT) continues to support the Assistant Secretary for Environment (EV) in discharging two primary responsibilities: (1) under the Environmental Engineering (EE) Program, the independent overview and assessment of environmental control aspects of both the U.S. Department of Energy's (DOE) research, development, and demonstration (RD and D) programs and the Nation's energy policies, and (2) under the Decontamination and Decommissioning Program, the reduction of potential environmental hazards at the radioactively contaminated sites that are presently owned or were formerly used by the Government. This report presents a short summary of objectives, approach, progress and results, future plans, and a reference bibliography for each research, development, or assessment project within the program areas described above

  11. Divison of Environmental Control Technology program, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Mott, William E.

    1979-06-01

    This report covers Division of Environmental Control Technology projects in progress during FY 1978, within the Office of the Assistant Secretary for Environment, Department of Energy. It is the second in a planned series of annual reports. The Division of Environmental Control Technology (ECT) continues to support the Assistant Secretary for Environment (EV) in discharging two primary responsibilities: (1) under the Environmental Engineering (EE) Program, the independent overview and assessment of environmental control aspects of both the U.S. Department of Energy's (DOE) research, development, and demonstration (RD and D) programs and the Nation's energy policies, and (2) under the Decontamination and Decommissioning Program, the reduction of potential environmental hazards at the radioactively contaminated sites that are presently owned or were formerly used by the Government. This report presents a short summary of objectives, approach, progress and results, future plans, and a reference bibliography for each research, development, or assessment project within the program areas described above.

  12. Division of Environmental Control Technology program, 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    Environmental engineering programs are reviewed for the following technologies; coal; petroleum and gas; oil shale; solar; geothermal and energy conservation; nuclear energy; and decontamination and decommissioning. Separate abstracts were prepared for each technology. (MHR)

  13. The Western Environmental Technology Office (WETO) Butte, Montana

    International Nuclear Information System (INIS)

    1994-10-01

    This document has been prepared to highlight the research, development, demonstration, testing and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. This information has been assembled from recently produced Office of Technology Development (OTD) documents which highlight technology development activities within each of the OTD program elements. Projects include: Heavy metals contaminated soil project; In Situ remediation integrated program; Minimum additive waste stabilization program; Resource recovery project; Buried waste integrated demonstration; Mixed waste integrated program; Pollution prevention program; and Mine waste technology program

  14. New technology in everyday life - social processes and environmental impact

    DEFF Research Database (Denmark)

    Røpke, Inge

    2001-01-01

    aspect both of changes in everyday life and of the environmental impact of everyday-life activities. Technological change is often seen as an important part of the solutions to environmental problems, however, when technological change is seen from the perspective of everyday life, this image becomes...... more complex. In this paper technological changes are explored from the perspective of consumption and everyday life, and it is argued that environmental impacts arise through the interplay of technology, consumption and everyday life. Firstly, because technological renewals form integral parts...... influence the environment in the long run. The paper points to the need for further studies of the long term interplay between new technologies, everyday life and the environment....

  15. OCETA: services for environmental companies an technology developers

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, A.; Ozdemir, B. [Ontario Centre for Environmental Technology Advancement, Toronto, ON (Canada)

    1995-12-31

    Services provided by OCETA (Ontario Centre for Environmental Technology Advancement) to Ontario-based developers of environmental technologies, were described. While OCETA is not a granting agency, it is prepared to provide seed funding, in combination with private and government funding for client projects, and is committed to sharing risks and rewards for successful commercialization. The agency is also in a position to provide technology services at agreed discounts and to maximize in-kind contributions in order to extend project funding. Other services that the agency is equipped to provide, are described. These include information services, technology demonstration and assessment, business services, funding identification and sourcing, marketing, partnerships, and export market development.

  16. The Advanced Technology Environmental Education Center Summer Fellows Institute.

    Science.gov (United States)

    Depken, Diane E.; Zeman, Catherine L.; Lensch, Ellen Kabat; Brown, Edward J.

    2002-01-01

    Describes the background, activities, and outcomes of the Advanced Technology Environmental Education Center (ATEEC) and its Summer Fellows Institutes as a model for disciplinary and cross-disciplinary infusion of environmental science and technology content, curriculum, and methods into the classroom. Presents experiences, themes, and activities…

  17. What can information technology do for environmental protection?

    International Nuclear Information System (INIS)

    Trauboth, H.

    1987-01-01

    Information technology plays an important role in the accomplishment of an effective environmental protection. Prerequisite for its comprehensive implementation is the legal and economic achievement of closed material cycles for supply and waste discharge in production and consumption as well as in nuclear technology. Modern information processing may be used for the inventory of natural and emission sources, to gain knowledge on the functioning mechanisms of nature, for the planning of a considerate exploitation of natural recources and for the ecology-oriented monitoring and control of industrial plants. The state of the art of the corresponding information technology and new areas of research especially in measurement technology are shown. The breadth of the great opportunities of information technology for environmental protection is discribed. (orig.) [de

  18. Technologies for improved soil carbon management and environmental quality

    Energy Technology Data Exchange (ETDEWEB)

    Reicosky, D.C. [USDA-Agricultural Research Service, Morris, MN (United States)

    1997-12-31

    The objective of this paper is to create an environmental awareness of and to provide insight into the future balance of environment and economic issues in developing new technologies that benefit the farmer, the public, and agricultural product sales. Agricultural impacts of tillage-induced CO{sub 2} losses are addressed along with new and existing technologies to minimize tillage-induced flow of CO{sub 2} to the atmosphere, Emphasis is placed on the carbon cycle and the cost of environmental damage to illustrate the need for improved technologies leading to reduced environmental impacts by business ventures. New technologies and concepts related to methods of tillage and stover management for carbon sequestration with the agricultural production systems are presented. 16 refs., 3 figs.

  19. 75 FR 70215 - Environmental Technologies Trade Advisory Committee (ETTAC), Request for Nominations

    Science.gov (United States)

    2010-11-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade...: Notice of solicitation of nominations for membership on the Environmental Technologies Trade Advisory Committee (ETTAC). SUMMARY: The Environmental Technologies Trade Advisory Committee (ETTAC) was established...

  20. Application of radiation technology for industry and environmental protection

    International Nuclear Information System (INIS)

    Sueo Machi

    1996-01-01

    The world population today is 5.7 billion and increasing by 94 million per year. In order to meet the increasing consumption of food and energy due to the tremendous population growth, unproved technologies which are environmentally friendly, are indispensable. In this context. a number of advanced technologies have been brought about by the LISC of radiation and isotopes. This paper highlights radiation technology, applications in industry, environmental conservation, and agriculture

  1. Energy technologies and the environment: environmental information handbook

    International Nuclear Information System (INIS)

    1981-06-01

    This manual draws together information on the environmental consequences of energy technologies that will be in use in the United States during the next 20 years. We hope it will prove useful to planners, policymakers, legislators, researchers, and environmentalists. The information on environmental issues, control technologies, and energy production and conservation processes should also be a convenient starting point for deeper exploration. Published references are given for the statements, data, and conclusions so that the interested reader can obtain more detailed information where necessary. Environmental aspects of energy technologies are presented in a form suitable for government and public use and are intended to assist decisionmakers, researchers, and the public with basic information and references that can be relied upon through changing policies and changing world energy prices

  2. 2010 ANNUAL MEETING ON NUCLEAR TECHNOLOGY. Pt. 4. Section reports

    International Nuclear Information System (INIS)

    Berlepsch, Thilo v.; Hering, Wolfgang

    2011-01-01

    Summary report on 2 Sessions of Section: - New Build and Innovations (Section 12) of the ANNUAL MEETING On NUCLEAR TECHNOLOGY held in Berlin on May 4 to 6, 2010. The other Sections 'Reactor Physics and Methods of Calculation (Section 1)', 'Thermodynamics and Fluid Dynamics (Section 2)', 'Safety of Nuclear Installations - Methods, Analysis, Results (Section 3)', 'Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage (Section 4)', 'Front End of the Fuel Cycle, Fuel Elements and Core Components (Section 5)', 'Operation of Nuclear Installations (Section 6)', 'Decommissioning of Nuclear Installations (Section 7)', 'Fusion Technology (Section 8)', 'Energy Industry and Economics (Section 10)', 'Radiation Protection (Section 11)', 'New Build and Innovations (Session New Build and Innovations, Section 12)', and 'Education, Expert Knowledge, Know-how-Transfer (Section 13)' have been covered in atw issues 10, 11 and 12 (2010). (orig.)

  3. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan

    International Nuclear Information System (INIS)

    1991-01-01

    In FY 1990 Robotics Technology Development Program (RTDP) planning teams visited five DOE sites. These sites were selected by the Office of Technology Development to provide a needs basis for developing a 5-Year Plan. Visits to five DOE sites provided identification of needs for robotics technology development to support Environmental Restoration and Waste Management (ER ampersand WM) projects at those sites. Additional site visits will be conducted in the future to expand the planning basis. This volume summarizes both the results of the site visits and the needs and requirements of the priority ER ampersand WM activities at the sites, including potential needs for robotics and remote systems technology. It also discusses hazards associated with the site activities and any problems or technical uncertainties associated with dealing with the hazards in the performance of the ER ampersand WM work. Robotic or remote systems currently under development for remediation projects or waste operations are also discussed. The information in this document is organized principally by site, activity, and priority. Section 2.0, Site Needs, is based on information from the site visit reports and provides a summary which focuses on the site needs and requirements for each priority activity. Section 2.0 also records evaluations and discussions by the RTDP team following the site visit. Section 3.0, Commonality Assessment, documents similar site needs where common, or cross-cutting, robotics technology might be applied to several activities. Section 4.0 contains a summary of the site needs and requirements in tabular form. 1 tab

  4. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    International Nuclear Information System (INIS)

    1995-09-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R ampersand D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)

  5. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R&D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

  6. Public policy and clean technology promotion. The synergy between environmental economics and evolutionary economics of technological change

    Energy Technology Data Exchange (ETDEWEB)

    Rio Gonzalez, Pablo del [Universidad de Castilla-La Mancha, Toledo (Spain). Facultad de Ciencias Juridicas y Sociales de Toledo

    2004-07-01

    Obstacles to clean technology development, innovation and diffusion are not only related to the lack of internalisation of environmental externalities in production costs, as defended by traditional environmental economics. Empirical studies show that many other obstacles prevent these technologies from penetrating the market. The relevance of these obstacles differs between sectors, firms and technologies. Consequently, a more focused approach is proposed. By taking a look at the specific, real-world barriers to clean technologies, a policy framework as well as some specific measures that target those barriers are suggested. These instruments are useful and complementary in a policy framework that, in addition to specific instruments, takes into account the influence of the style of regulation and the configuration of actors in the environmental technological change process. This paper proposes a coherent framework integrating environmental policy and technology policy instruments. This is deemed necessary in the technological transition to sustainable development. (author)

  7. Environmental impacts from the solar energy technologies

    International Nuclear Information System (INIS)

    Tsoutsos, Theocharis; Frantzeskaki, Niki; Gekas, Vassilis

    2005-01-01

    Solar energy systems (photovoltaics, solar thermal, solar power) provide significant environmental benefits in comparison to the conventional energy sources, thus contributing, to the sustainable development of human activities. Sometimes however, their wide scale deployment has to face potential negative environmental implications. These potential problems seem to be a strong barrier for a further dissemination of these systems in some consumers. To cope with these problems this paper presents an overview of an Environmental Impact Assessment. We assess the potential environmental intrusions in order to ameliorate them with new technological innovations and good practices in the future power systems. The analysis provides the potential burdens to the environment, which include - during the construction, the installation and the demolition phases, as well as especially in the case of the central solar technologies - noise and visual intrusion, greenhouse gas emissions, water and soil pollution, energy consumption, labour accidents, impact on archaeological sites or on sensitive ecosystems, negative and positive socio-economic effects

  8. The environmental effect of subsidies for clean technologies

    International Nuclear Information System (INIS)

    De Vries, F.P.; Nentjes, A.

    2001-01-01

    Environmental subsidies for clean technology result in a larger diffusion of such technology. However, as a result emissions can increase in imperfect markets for products. When several companies compete each other with clean and dirty technologies, production and emission will rise because of price competition.This effect will be even larger in case subsidies are applied. Therefore, subsidies are not advisable for every market. In this article an evolutionary game theory has been used with respect to the diffusion of environment-friendly innovation of products and the role of environmental policy instruments (in particular subsidies). 7 refs

  9. 77 FR 2719 - National Advisory Council for Environmental Policy and Technology; Meeting

    Science.gov (United States)

    2012-01-19

    ... and Technology; Meeting AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Advisory... a public meeting of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology...

  10. Environmental implications of wireless technologies: news delivery and business meetings.

    Science.gov (United States)

    Toffel, Michael W; Horvath, Arpad

    2004-06-01

    Wireless information technologies are providing new ways to communicate, and are one of several information and communication technologies touted as an opportunity to reduce society's overall environmental impacts. However, rigorous system-wide environmental impact comparisons of these technologies to the traditional applications they may replace have only recently been initiated, and the results have been mixed. In this paper, the environmental effects of two applications of wireless technologies are compared to those of conventional technologies for which they can substitute. First, reading newspaper content on a personal digital assistant (PDA) is compared to the traditional way of reading a newspaper. Second, wireless teleconferencing is compared to business travel. The results show that for both comparisons wireless technologies create lower environmental impacts. Compared to reading a newspaper, receiving the news on a PDA wirelessly results in the release of 32-140 times less CO2, several orders of magnitude less NOx and SOx, and the use of 26-67 times less water. Wireless teleconferencing results in 1-3 orders of magnitude lower CO2, NOx, and SO2 emissions than business travel.

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: DUST SUPPRESSANT PRODUCTS: SYNTECH PRODUCTS CORPORATION'S PETROTAC

    Science.gov (United States)

    Dust suppressant products used to control particulate emissions from unpaved roads are among the technologies evaluated by the Air Pollution Control Technology (APCT) Verification Center, part of the U.S. Environmental Protection Agency's Environmental Technology Verification (ET...

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: DUST SUPPRESSANT PRODUCTS: SYNTECH PRODUCTS CORPORATION'S TECHSUPPRESS

    Science.gov (United States)

    Dust suppressant products used to control particulate emissions from unpaved roads are among the technologies evaluated by the Air Pollution Control Technology (APCT) Verification Center, part of the U.S. Environmental Protection Agency's Environmental Technology Verification (ET...

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - TETRATEC PTFE TECHNOLOGIES TETRATEX 8005

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  14. Technology of environmental pollution control, 2nd edition

    International Nuclear Information System (INIS)

    Shaheen, E.I.

    1991-01-01

    The final decade of the 20th century is truly the environmental decade of the century because of the gravity of environmental challenges we are facing. This book covers the environmental spectrum in an attempt to update the reader on new technologies and topics regarding pollution control. Engineers, scientists, plant operators, and students studying the subject of pollution control will use the comprehensive text as a reference for technological advances, regulations, and pollution control. The major disasters witnessed in the last few years, such as the Bhopal gas tragedy, the Chernobyl nuclear disaster, the Exxon Valdez oil spill and the Ashland of tank collapse are described in detail

  15. Environmental assessment of solid waste systems and technologies: EASEWASTE

    DEFF Research Database (Denmark)

    Kirkeby, Janus Torsten; Birgisdottir, Harpa; Hansen, Trine Lund

    2006-01-01

    A new model has been developed for evaluating the overall resource consumption and environmental impacts of municipal solid waste management systems by the use of life cycle assessment. The model is named EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies) and is able...... may not always be the most environmentally friendly. The EASEWASTE model can identify the most environmentally sustainable solution, which may differ among waste materials and regions and can add valuable information about environmental achievements from each process in a solid waste management system....... to compare different waste management strategies, waste treatment methods and waste process technologies. The potential environmental impacts can be traced back to the most important processes and waste fractions that contribute to the relevant impacts. A model like EASEWASTE can be used by waste planners...

  16. Are clean technology and environmental quality conflicting policy goals?

    OpenAIRE

    Brechet, Thierry; Meunier, Guy; Institut National de la Recherche Agronomique UR 1303 Alimentation et Sciences Sociales

    2012-01-01

    In this paper we analyze the effects of an environmental policy on the diffusion of a clean technology in an economy where firms compete on the output market. We show that the share of adopting firms is non-monotonic with the stringency of the environmental policy, and that the adoption of the clean technology may well increase the pollution level. We also compare the effects of an emission tax and tradable pollution permits on welfare, technology adoption, and pollution level. We show that, ...

  17. Are Clean Technology and Environmental Quality Conflicting Policy Goals?

    OpenAIRE

    Thierry Brechet; Guy Meunier

    2012-01-01

    In this paper we analyze the effects of an environmental policy on the diffusion of a clean technology in an economy where firms compete on the output market. We show that the share of adopting firms is non-monotonic with the stringency of the environmental policy, and that the adoption of the clean technology may well increase the pollution level. We also compare the effects of an emission tax and tradable pollution permits on welfare, technology adoption, and pollution level. We show that, ...

  18. Technology Evaluation for Environmental Risk Mitigation Compendium

    Science.gov (United States)

    Meinhold, A.; Greene, B.; Dussich, J.; Sorkin, A.; Olsen, W.

    2017-01-01

    The Technology Evaluation for Environmental Risk Mitigation (TEERM) Principal Center and its predecessor organization the Acquisition Pollution Prevention Program (AP2) supported the National Aeronautics and Space Administration (NASA) in identifying technology solutions to risks and costs to NASA programs driven by environmental regulations and requirements. TEERM researched the commercial and government marketplace to locate viable and available technologies that met NASAs needs. TEERM focused on addressing environmentally-driven risks of direct concern to NASA programs and facilities, including hazardous materials in NASA operations and materials that became obsolescent because of environmental regulations. TEERM projects aimed to reduce cost; ensure the health and safety of people, assets, and the environment; promote efficiency; and minimize duplication. Major TEERM and AP2 projects focused on waste minimization and hazardous waste treatment, recycling, corrosion prevention and control, solvent and ozone depleting substances substitution, and aqueous based cleaners. In 2017, NASA made the decision to terminate the TEERM Principal Center. This Compendium Report documents TEERM and AP2 project successes. The Compendium Report traces the evolution of TEERM based on evolving risks and requirements for NASA and its relationship to the Space Shuttle Program, the United States Department of Defense, the European Space Agency, and other public and private stakeholders. This Compendium Report also documents project details from Project Summaries and Joint Test Plans and describes project stakeholders and collaborative effort results.

  19. The Use of Technology by Nonformal Environmental Educators

    Science.gov (United States)

    Peffer, Tamara Elizabeth; Bodzin, Alec M.; Smith, Judith Duffield

    2013-01-01

    This study examined the use of instructional and learning technologies by nonformal environmental educators. A 40-question survey was developed to inquire about practitioner demographics, technology use in practice, and beliefs about technology. The survey consisted of multiple choice, open-ended questions, and a Likert-type scale component--the…

  20. Overview: Applicability of U.S. environmental control technologies for Korea

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S.W. [DOE Pittsburgh Energy Technology Center, PA (United States)

    1994-12-31

    A review of the applicability of US environmental control technologies for Korea is presented in outline form. The following topics are discussed: PETC coal research activities, environmental costs, environmental challenges, Clean Air Act requirements, additional regulations for air toxics, clean coal technologies (CCT) approach, CCT help meet environmental challenges, utility options, research goals for advanced power systems, PETC Programs, the NO{sub x} SO process, flue gas cleanup program, air toxics emissions, and retrofit NO{sub x} control for coal-burning boilers.

  1. Environmental aspects of battery and fuel cell technologies

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The PA Consulting Group was commissioned by the Longer Term Studies Unit, Research and Technology Policy Division and Information and Manufacturing Technologies Division, Dept. of Trade and Industry to investigate possible environmental initiatives which might be driven by the European Commission and which could promote interest in alternative energy sources, particularly batteries and fuel cells. Findings confirmed that there is a role for fuel cells in power generation, the most commercially advanced technology being the phosphoric acid fuel cell (PAFC). Development of other systems such as Proton Exchange Membrane technology (PEMFC) and solid oxide fuel cells (SOFC) should also continue. Emissions from fuel cells are lower than those of gas turbines, their main competitors for power generation applications below 100 MW. The study concluded that there is a role for both batteries or fuel cells in powering electric vehicles. Battery powered retrofitted vehicles have an environmental impact comparable to that of internal combustion engine powered vehicles and they could become commercially viable in the context of a carbon tax scenario. Purpose built electric vehicles would be even more attractive. From an environmental viewpoint, fuels cells based on proton membrane membrane technology seemed the best option for powering vehicles if the technical targets could be met.

  2. Environmental Development Plan (EDP). Enhanced gas recovery, FY 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-01

    This Enhanced Gcs Recovery EDP addresses the environmental impacts of enhanced gas recovery processes in shale and sandstone, methane drainage from coalbeds, and methane recovery from geopressured aquifers. The EDP addresses planning in two basic areas: environmental research and environmental assessment. Environmental research can be categorized as follows: characterization of pollutants from EGR processes; selective application of monitoring and measuring techniques; evaluation of control/mitigation techniques; and evaluation of the synergistic impacts of the development of EGR techniques. Environmental assessment activities scheduled by EDP include: assessment of ecological impacts; assessment of socioeconomic effects; EIA/EIS preparation; evaluation of control technology needs; and analysis of applicable and proposed emission, effluent, and health and safety standards. The EGR EDP includes an EGR technology overview (Section 2), a discussion of EGR environmental issues and requirements (Section 3), an environmental action plan (Section 4), an environmental management strategy for the EGR program (Section 5), and supporting appendices which present information on Federal legislation applicable to EGR technology, a summary of ongoing and completed research, and future research and assessment projects.

  3. Environmental aspects of battery and fuel cell technologies

    International Nuclear Information System (INIS)

    1992-10-01

    This report was commissioned by the UK Department of Trade and Industry in order to understand the policy, infrastructural and standards implications of increased use of batteries and fuel cells. In order to meet these requirements, the following areas have been examined: environmental initiatives related to power generation and transport in a pan-European context; the status of alternative technologies, specifically batteries and fuel cells; the market potential of battery and fuel cell based technologies in transport and power generation; environmental life cycle and cost benefit analyses of these technologies; the implications of the use of alternative technologies on the UK infrastructure. Each of these areas is covered briefly in the main body of the report and discussed in greater detail in six appendices. Overall there are 51 figures, 38 tables and 20 references. (UK)

  4. Preparation of environmental analyses for synfuel and unconventional gas technologies

    Energy Technology Data Exchange (ETDEWEB)

    Reed, R.M. (ed.)

    1982-09-01

    Government agencies that offer financial incentives to stimulate the commercialization of synfuel and unconventional gas technologies usually require an analysis of environmental impacts resulting from proposed projects. This report reviews potentially significant environmental issues associated with a selection of these technologies and presents guidance for developing information and preparing analyses to address these issues. The technologies considered are western oil shale, tar sand, coal liquefaction and gasification, peat, unconventional gas (western tight gas sands, eastern Devonian gas shales, methane from coal seams, and methane from geopressured aquifers), and fuel ethanol. Potentially significant issues are discussed under the general categories of land use, air quality, water use, water quality, biota, solid waste disposal, socioeconomics, and health and safety. The guidance provided in this report can be applied to preparation and/or review of proposals, environmental reports, environmental assessments, environmental impact statements, and other types of environmental analyses. The amount of detail required for any issue discussed must, by necessity, be determined on a case-by-case basis.

  5. Increased growth in environmental technology; Oekad tillvaext inom miljoeteknik

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    The Swedish Energy Agency has received a government commission, after consultation with the Swedish Agency for Economic and Regional Growth, Swedish Governmental Agency for Innovation Systems (VINNOVA) and other relevant actors. The commission is to develop proposals on how the actions for strengthening collaboration and increased communication between agencies, innovators, entrepreneurs and business angels and venture capitalists among others can be designed in environmental technology with a focus on early commercial stages. The largest part of the environmental technology sector consists of energy related technology

  6. Developing innovative environmental technologies for DOE needs

    International Nuclear Information System (INIS)

    Devgun, J.S.; Sewell, I.O.; DeGregory, J.

    1995-01-01

    Environmental restoration and waste management activities at US Department of Energy (DOE) facilities are diverse and complex. Contamination at DOE sites and facilities includes radionuclides, chlorinated hydrocarbons, volatile organic compounds, non-aqueous phase liquids, and heavy metals, among others. Soil and groundwater contamination are major areas of concern and DOE has focused very significant efforts in these areas. Relevant technology development activities are being conducted at DOE's own national laboratories, as well as through collaborative efforts with other federal agencies and the private sector. These activities span research and development (R ampersand D) of new concepts and techniques to demonstration and commercialization of mature technologies. Since 1990, DOE has also supported R ampersand D of innovative technologies through interagency agreements with US Environmental Protection Agency (EPA), US Department of Defense, the National Science Foundation, and others

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: EXEL INDUSTRIAL AIRMIX SPRAY GUN

    Science.gov (United States)

    The Environmental Technology Verification Program has partnered with Concurrent Technologies Corp. to verify innovative coatings and coating equipment technologies for reducing air emissions. This report describes the performance of EXEL Industrial's Kremlin Airmix high transfer ...

  8. Environmental and Financial Evaluation of Passenger Vehicle Technologies in Belgium

    OpenAIRE

    Messagie, Maarten; Lebeau, Kenneth; Coosemans, Thierry; Macharis, Cathy; Mierlo, Joeri van

    2013-01-01

    Vehicles with alternative drive trains are regarded as a promising substitute for conventional cars, considering the growing concern about oil depletion and the environmental impact of our transportation system. However, “clean” technologies will only be viable when they are cost-efficient. In this paper, the environmental impacts and the financial costs of different vehicle technologies are calculated for an average Belgian driver. Environmentally friendly vehicles are compared with conventi...

  9. Environmental restoration/waste management-applied technology semiannual report, January--June 1992

    International Nuclear Information System (INIS)

    Adamson, M.; Kline-Simon, K.

    1992-01-01

    This is the first issue from the Lawrence Livermore National Laboratory of The Environmental Restoration/Waste Management-Applied Technology (ER/WM-AT) Semiannual Report, a continuation of the Advanced Processing Technology (APT) Semiannual Report. The name change reflects the consolidation of the APT Program with the Environmental Restoration and Waste Management Program to form the Environmental Restoration/Waste Management-Applied Technology (ER/WM-AT) Program. The Livermore site mirrors, on a small scale, many of the environmental and waste management problems of the DOE Complex. The six articles in this issue cover incineration- alternative technologies, process development for waste minimization, the proposed Mixed Waste Management Facility, dynamic underground stripping, electrical resistance tomography, and Raman spectroscopy for remote characterization of underground tanks

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, ENVIRONMENTAL DECISION SUPPORT SOFTWARE, UNIVERSITY OF TENNESSEE RESEARCH CORPORATION, SPATIAL ANALYSIS AND DECISION ASSISTANCE (SADA)

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification Program (ETV) to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the...

  11. Technology use, cesarean section rates, and perinatal mortality at Danish maternity wards

    DEFF Research Database (Denmark)

    Lidegaard, O; Jensen, L M; Weber, Tom

    1994-01-01

    Fifty-eight Danish maternity units, managing 99% of Danish deliveries, participated in a cross sectional study to assess the relationship between use of birth-related technologies, cesarean section rates and perinatal mortality for births after 35 completed weeks of gestation. A regional technology...... a technology index was calculated for eight regions in Denmark, weighting the index of each unit in a region according to its number of deliveries. There was no association between the technology index in these eight regions in Denmark and their cesarean section rates. Use of FHM, technology index......, and unplanned cesarean section rates in the eight regions were all without significant association to the perinatal mortality in the same regions. For births after the 35th completed week of gestation, this study could not confirm a relationship between different degrees of use of birth-related technologies...

  12. Aviation environmental technology and science

    Institute of Scientific and Technical Information of China (English)

    Zhang Yanzhong

    2008-01-01

    Expatiating on the impact of aviation on the environment and aviation environmental protection projects are ex- pounded, and analyzing on the atmosphere pollution and effects on the aviation noise of aircraft discharge. Researching the approach to control aircraft exhaust pollution and noise pollution, and proposing the technology and management measures to reduce air pollution.

  13. Utilizing the right mix of environmental cleanup technologies

    International Nuclear Information System (INIS)

    Whitaker, Wade; Bergren, Chris; Flora, Mary

    2007-01-01

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990's), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical / pH-adjusting injection, phyto-remediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baro-balls, electrical resistance heating, soil vapor extraction, and micro-blowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works pro-actively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  14. UTILIZING THE RIGHT MIX OF ENVIRONMENTAL CLEANUP TECHNOLOGIES

    International Nuclear Information System (INIS)

    Bergren, C; Wade Whitaker, W; Mary Flora, M

    2007-01-01

    The Savannah River Site (SRS) Figure 1 is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990s), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical/pH-adjusting injection, phytoremediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baroballs, electrical resistance heating, soil vapor extraction, and microblowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works proactively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  15. Environment Canada's new on-line reporting system for environmental emergency plans under CEPA, Sections 199 and 200

    International Nuclear Information System (INIS)

    Rudin-Brown, P.

    2003-01-01

    One of the objectives of Canada's Environmental Emergencies program is to reduce the frequency, severity and consequences of spill events by promoting preventative measures and emergency preparedness. The program also offers advice on response methods and advancing science and technology. This paper from a poster session announces that the E2 program is expected to be administered online by late 2003. The compiled database is expected to serve as a useful statistical reference for the public, decision makers, and first responders. Users will be able to access information regarding controlled substances. In particular, sections 199 and 200 of the Environmental Emergency regulations in the Canadian Environmental Protection Act (CEPA) require that any person in Canada who manages a listed substance in large quantities provide Environment Canada with information on the quantity of the substance, the facility location, and prepare a contingency plan

  16. 77 FR 7131 - Addendum to Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2012-02-10

    ... DEPARTMENT OF COMMERCE International Trade Administration Addendum to Environmental Technologies... agenda of a meeting of the Environmental Technologies Trade Advisory Committee (ETTAC) will be changed to... & Environmental Industries, International Trade Administration, Room 4053, 1401 Constitution Avenue NW...

  17. Cost effectiveness studies of environmental technologies: Volume 1

    International Nuclear Information System (INIS)

    Silva, E.M.; Booth, S.R.

    1994-02-01

    This paper examines cost effectiveness studies of environmental technologies including the following: (1) In Situ Air Stripping, (2) Surface Towed Ordinance Locator System, (3) Ditch Witch Horizontal Boring Technology, (4) Direct Sampling Ion Trap Mass Spectrometer, (5) In Situ Vitrification, (6) Site Characterization and Analysis Penetrometer System, (7) In Situ Bioremediation, and (8) SEAMIST Membrane System Technology

  18. Environmental factors and health information technology management strategy.

    Science.gov (United States)

    Menachemi, Nir; Shin, Dong Yeong; Ford, Eric W; Yu, Feliciano

    2011-01-01

    : Previous studies have provided theoretical and empirical evidence that environmental forces influence hospital strategy. : Rooted in resource dependence theory and the information uncertainty perspective, this study examined the relationship between environmental market characteristics and hospitals' selection of a health information technology (HIT) management strategy. : A cross-sectional design is used to analyze secondary data from the American Hospital Association Annual Survey, the Healthcare Information and Management Systems Society Analytics Database, and the Area Resource File. Univariate and multinomial logistic regression analyses are used. : Overall, 3,221 hospitals were studied, of which 60.9% pursed a single-vendor HIT management strategy, 28.9% pursued a best-of-suite strategy, and 10.2% used a best-of-breed strategy. Multivariate analyses controlling for hospital characteristics found that measures of environmental factors representing munificence, dynamism, and/or complexity were systematically associated with various hospital HIT management strategy use. Specifically, the number of generalist physicians per capita was positively associated with the single-vendor strategy (B = -5.64, p = .10). Hospitals in urban markets were more likely to pursue the best-of-suite strategy (B = 0.622, p < .001). Dynamism, measured as the number of managed care contracts for a given hospital, was negatively associated with the single-vendor strategy (B = 0.004, p = .049). Lastly, complexity, measured as market competition, was positively associated with the best-of-breed strategy (B = 0.623, p = .042). : By and large, environmental factors are associated with hospital HIT management strategies in mostly theoretically supported ways. Hospital leaders and policy makers interested in influencing the adoption of hospital HIT should consider how market conditions influence HIT management decisions as part of programs to promote meaningful use.

  19. Technologies for environmental cleanup: Toxic and hazardous waste management

    International Nuclear Information System (INIS)

    Ragaini, R.C.

    1993-12-01

    This is the second in a series of EUROCOURSES conducted under the title, ''Technologies for Environmental Cleanup.'' To date, the series consist of the following courses: 1992, soils and groundwater; 1993, Toxic and Hazardous Waste Management. The 1993 course focuses on recent technological developments in the United States and Europe in the areas of waste management policies and regulations, characterization and monitoring of waste, waste minimization and recycling strategies, thermal treatment technologies, photolytic degradation processes, bioremediation processes, medical waste treatment, waste stabilization processes, catalytic organic destruction technologies, risk analyses, and data bases and information networks. It is intended that this course ill serve as a resource of state-of-the-art technologies and methodologies for the environmental protection manager involved in decisions concerning the management of toxic and hazardous waste

  20. 77 FR 39705 - National Advisory Council for Environmental Policy and Technology; Charter Renewal

    Science.gov (United States)

    2012-07-05

    ... and Technology; Charter Renewal AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. Notice... Advisory Council for Environmental Policy and Technology (NACEPT) is a necessary committee which is in the... environmental policy, technology and management issues. Inquiries may be directed to Mark Joyce, U.S. EPA, (Mail...

  1. A centralized information management system for environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Namboodiri, K. [Martin Marietta Technical Services, Inc., Bay City, MI (United States)

    1995-12-31

    During the past few decades there have been several serious initiatives focusing on the applications of computational technology towards understanding the diverse fields of environmental research such as environmental monitoring, pollution prevention, and hazardous chemical mitigation. Recently, due to the widespread application of high performance computer technology and the renewed interest of the industrial community in environmental protection, we are witnessing an era of environmental information explosion. In light of these large-scale computer-driven developments, the author identifies a highly desirable initiative for this field, which is solely devoted to a centralized environmental database and information management system. This talk will focus on some design aspects of such an information management system.

  2. Bridge to a sustainable future: National environmental technology strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    For the past two years the Administration has sought the views of Congress, the states, communities, industry, academia, nongovernmental organizations, and interested citizens on ways to spur the development and use of a new generation of environmental technologies. This document represents the views of thousands of individuals who participated in events around the country to help craft a national environmental technology strategy that will put us on the path to sustainable development.

  3. Green technological foresight on environmental friendly agriculture: Executive summary

    DEFF Research Database (Denmark)

    Borch, K.; Christensen, S.; Jørgensen, U.

    2005-01-01

    Risø and the co-operators have on behalf of the Forest and Nature Agency completed a technological foresight on environmentally friendly agriculture based on green technologies. A technological foresight is a systematic dialogue on how one prepares forfuture challenges, which have not yet manifes...

  4. Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology

    Science.gov (United States)

    Griffin, D. E. (Editor); Stanley, D. C. (Editor)

    2001-01-01

    The next millennium challenges us to produce innovative materials, processes, manufacturing, and environmental technologies that meet low-cost aerospace transportation needs while maintaining US leadership. The pursuit of advanced aerospace materials, manufacturing processes, and environmental technologies supports the development of safer, operational, next-generation, reusable, and expendable aeronautical and space vehicle systems. The Aerospace Materials, Processes, and Environmental Technology Conference (AMPET) provided a forum for manufacturing, environmental, materials, and processes engineers, scientists, and managers to describe, review, and critically assess advances in these key technology areas.

  5. Roadmapping or development of future investments in environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Wilburn, D. (Dianne)

    2002-01-01

    This paper will summarize efforts in roadmapping SCFA technical targets, which could be used for selection of future projects. The timely lessons learned and insights will be valuable to other programs desiring to roadmap large amounts of workscope, but unsure how to successfully complete it, by adequately defining a strategy to develop alternatives and core technologies to ensure needed environmental technologies are available and allow delivery of viable alternatives. In early FY02, Los Alamos National Laboratory's Environmental Science and Waste Technology Program Office was working jointly with Idaho National Environmental Engineering Laboratory to define and develop science and technology mini-roadmaps. We were defining and developing these mini-roadmaps to provide direction and guidance for DOE's Environmental Management's (DOE-EM) Subsurface Contaminants Focus Area (SCFA) in their development of target technologies. DOE EM's Strategic Plan for Science and Technology provides guidance for meeting science and technology needs with a view of the desired future and the long-term strategy to attain it. Program and technology mini-roadmapping were to be used to establish priorities, set program and project direction, and identify the high-priority science and technology need areas according to this document. In the past, EM science and technology needs collection is achieved through the DOE Site Technology Coordination Groups (STCG) across the complex. A future system for needs collection has not been defined. However, there is a need for gap analyses and a technical approach for the prioritization of these needs for DOE-EM to be strategic and successful in their technology research, development, demonstration, and deployments. To define the R&D projects needed to solve particular problems and select the project with the largest potential payoff will require analysis for project selection. Mini-roadmaps could be used for setting goals and

  6. Assessment and evaluation of technologies for environmental restoration. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Uzochukwu, G. A. [North Carolina A and T State Univ., Greensboro, NC (United States)

    2000-06-30

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration objectives of the Department of Energy are being evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objective of the environmental restoration effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.

  7. Assessment and evaluation of technologies for environmental restoration. Progress report

    International Nuclear Information System (INIS)

    Uzochukwu, G. A.

    2000-01-01

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration objectives of the Department of Energy are being evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objective of the environmental restoration effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.

  8. Assessment and evaluation of technologies for environmental restoration. Progress report

    International Nuclear Information System (INIS)

    Uzochukwu, G.A.

    1999-01-01

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration objectives of the Department of Energy are being evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objective of the environmental restoration effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT LASER TOUCH AND TECHNOLOGIES, LLC LASER TOUCH MODEL LT-B512

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of Laser Touch model LT-B512 targeting device manufactured by Laser Touch and Technologies, LLC, for manual spray painting operations. The relative transfer efficiency (TE) improved an avera...

  10. Forty years of environmentally conscious building technology design

    Directory of Open Access Journals (Sweden)

    Lorenzo Matteoli

    2013-05-01

    Full Text Available This short essay analyzes the environmental approach throughout the history of Architectural Technology, starting from building details up to the present attention to the smart city, land maintenance and urban retrofit, seen as complex research activities, political strategies, design and entrepreneurial actions which have the scope to transform present day urban crusts into organic textures, climatologically consistent, reactive, user-friendly, efficient and with a low environmental impact. The exercise identifies some research and teaching trends for Architectural Technology in order to promote debate and the analysis of the historical perspective and present situation of the discipline.

  11. 2008 annual meeting on nuclear technology. Pt. 1. Section reports

    International Nuclear Information System (INIS)

    Dagan, Ron; Sanchez Espinoza, Victor Hugo; Faber, Wolfgang; Berlepsch, Thilo v.; Spann, Holger; Schaffrath, Andreas; Schubert, Bernd; Rieger, Udo; Christ, Bernhard G.; Gulden, Werner; Bogusch, Edgar

    2008-01-01

    Summary report on these 5 - out of 11 - Sections of the Annual Conference on Nuclear Technology held in Hamburg on May 27-29, 2008: - Reactor Physics and Methods of Calculation - Thermodynamics and Fluid Dynamics - Safety of Nuclear Installations - Methods, Analysis, Results - Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage - Fusion Technology. Other Sections will be covered in reports in further issues of atw. (orig.)

  12. New technology in everyday life - social processes and environmental impact

    DEFF Research Database (Denmark)

    Røpke, Inge

    2001-01-01

    In the environmental debate it is increasingly acknowledged that our way of life has profound environmental consequences. Therefore, it becomes ever more important to focus on and to understand how everyday life is formed and how it changes over time. Changing technology constitutes an important...... of several of the dynamic forces behind consumption and thus contribute to the growing quantities of consumption, which counteract the environmental improvements. Secondly, because some of the technological changes are integrated with the processes which change everyday life more profoundly and thus...

  13. Cure electrocoagulation demonstration at Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Bridges, J.L.; Jones, J.; Ball, T.

    1996-01-01

    A demonstration of an innovative technology for remediating radionuclide contamination in water took place at the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado, during the summer of 1995. The demonstration was part of the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) program and was conducted by EPA, the U.S. Department of Energy (DOE), and General Environmental Corporation (GEC). The SITE program encourages the development and demonstration of innovative treatment and monitoring technologies. The purpose of the demonstration was to evaluate the ability of GEC's innovative CURE technology to remove uranium, plutonium, and americium from water taken from the A and B solar evaporation ponds at RFETS. The CURE electrocoagulation process uses an anode and cathode in a patented geometry to remove contaminants, including radionuclides, from wastewater in a continuous flow process. Electrocoagulation has been recognized as a method of removing a variety of contaminants from wastewaters. With the CURE process, GEC has refined the technology and adapted it to hazardous waste cleanup. Bench scale treatability testing conducted in April 1995 indicated 99 percent removal efficiencies were possible for uranium, plutonium-239/240, and americium-241. During the field scale demonstration in August and September 1995, samples were collected from four demonstration runs at RFETS. A removal efficiency of approximately 50 percent was achieved for uranium and nearly 99 percent for plutonium and americium

  14. Cure electrocoagulation demonstration at Rocky Flats Environmental Technology Site

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, J.L.; Jones, J.; Ball, T. [PRC Environmental Management, Inc., Denver, CO (United States)] [and others

    1996-12-31

    A demonstration of an innovative technology for remediating radionuclide contamination in water took place at the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado, during the summer of 1995. The demonstration was part of the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) program and was conducted by EPA, the U.S. Department of Energy (DOE), and General Environmental Corporation (GEC). The SITE program encourages the development and demonstration of innovative treatment and monitoring technologies. The purpose of the demonstration was to evaluate the ability of GEC`s innovative CURE technology to remove uranium, plutonium, and americium from water taken from the A and B solar evaporation ponds at RFETS. The CURE electrocoagulation process uses an anode and cathode in a patented geometry to remove contaminants, including radionuclides, from wastewater in a continuous flow process. Electrocoagulation has been recognized as a method of removing a variety of contaminants from wastewaters. With the CURE process, GEC has refined the technology and adapted it to hazardous waste cleanup. Bench scale treatability testing conducted in April 1995 indicated 99 percent removal efficiencies were possible for uranium, plutonium-239/240, and americium-241. During the field scale demonstration in August and September 1995, samples were collected from four demonstration runs at RFETS. A removal efficiency of approximately 50 percent was achieved for uranium and nearly 99 percent for plutonium and americium.

  15. Environmental policy and technological development in the Dutch economy

    International Nuclear Information System (INIS)

    Vollebergh, H.; Van Groenendaal, W.; Hofkes, M.; Kemp, R.

    2004-01-01

    An analysis is given of recent insights into technological development and the environment. In particular, attention is paid to the question whether it is possible or not to combine continuous economic development with a release of the environmental burden. In several chapters the authors provide insight and discuss theories with regard to innovation and adoption of new technologies, the concept of transition management and the importance of uncertainty with respect to the decision to invest in environment-friendly techniques or not. Also, much attention is paid to characteristics of the Dutch economy and their consequences for technology and environmental policy and related interactions [nl

  16. Energy technologies and the environment: Environmental information handbook

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    This revision of Energy Technologies and the Environment reflects the changes in energy supply and demand, focus of environmental concern, and emphasis of energy research and development that have occurred since publication of the earlier edition in 1980. The increase in availability of oil and natural gas, at least for the near term, is responsible in part for a reduced emphasis on development of replacement fuels and technologies. Trends in energy development also have been influenced by an increased reliance on private industry initiatives, and a correspondingly reduced government involvement, in demonstrating more developed technologies. Environmental concerns related to acid rain and waste management continue to increase the demand for development of innovative energy systems. The basic criteria for including a technology in this report are that (1) the technology is a major current or potential future energy supply and (2) significant changes in employing or understanding the technology have occurred since publication of the 1980 edition. Coal is seen to be a continuing major source of energy supply, and thus chapters pertaining to the principal coal technologies have been revised from the 1980 edition (those on coal mining and preparation, conventional coal-fired power plants, fluidized-bed combustion, coal gasification, and coal liquefaction) or added as necessary to include emerging technologies (those on oil shale, combined-cycle power plants, coal-liquid mixtures, and fuel cells).

  17. The market for environmental efficient technology; Markedet for miljoeeffektiv teknologi

    Energy Technology Data Exchange (ETDEWEB)

    Engbo Rasmussen, Peter; Madsen, Peter G. [COWI (Denmark)

    2006-08-31

    As part of governmental preparation of a Danish action plan for environmental efficient technology, COWI has made an analysis of the global market for technological solutions to important environmental challenges. The analysis focuses on technology for solving environmental challenges connected with climate changes, exploitation of water resources as well as pollution that poses a threat to health including air pollution and chemicals. The Analysis is based on reports made in Denmark, significant export countries, the European Union and different international organizations e.g. OECD and the International Energy Agency. This report presents results of the analysis. Due to the fact that the analysis was completed late in 2005 it is solely based on data and reports known at the time. (BA)

  18. Supercritical fluid technology for energy and environmental applications

    CERN Document Server

    Anikeev, Vladimir

    2014-01-01

    Supercritical Fluid Technology for Energy and Environmental Applications covers the fundamental principles involved in the preparation and characterization of supercritical fluids (SCFs) used in the energy production and other environmental applications. Energy production from diversified resources - including renewable materials - using clean processes can be accomplished using technologies like SCFs. This book is focused on critical issues scientists and engineers face in applying SCFs to energy production and environmental protection, the innovative solutions they have found, and the challenges they need to overcome. The book also covers the basics of sub- and supercritical fluids, like the thermodynamics of phase and chemical equilibria, mathematical modeling, and process calculations. A supercritical fluid is any substance at a temperature and pressure above its critical point where distinct liquid and gas phases do not exist. At this state the compound demonstrates unique properties, which can be "fine...

  19. Using information technology to measure, monitor and report on environmental performance

    Energy Technology Data Exchange (ETDEWEB)

    Ford, G.

    1999-07-01

    This article provides an overview of the process of environmental performance evaluation (EPE), including a discussion of the rationale and context for EPE as a key component of environmental management and sustainability metrics for businesses around the world. New and emerging developments, such as environmental performance benchmarking and standardized reporting, are highlighted. The ISO 14000 model for EPE and its environmental performance indicators is described. The article then discusses the need for new technology, including the Internet, to meet these new demands, and examines the important role of information technology in creating an efficient and effective system for the EPE process. In this regard, issues such as scaleability, data identification, data collection, reporting, user interface, integration and data warehousing are explored, and examples of the application of information technology to address these issues are provided. The article concludes with a discussion of the need to use emerging information technology to integrate various key types of performance information, including environmental, according to the balanced scorecard model for integrated business sustainability metrics. It concludes that such technology should be used now, even in the absence of global standards for performance metrics, and in spite of the theoretical and practical challenges in doing so, in order to move toward the important goal of achieving comprehensive sustainability metrics.

  20. Environmental technology strongholds. A business analysis of cluster creation; Miljoeteknologiske styrkepositioner. En erhvervsanalyse af klyngedannelse

    Energy Technology Data Exchange (ETDEWEB)

    Rosted, J.; Andersen, Torsten; Degn Bertelsen, M. [FORA (Denmark)

    2006-08-31

    Global focus on environmental responsibility has increased interest in new environmental technology solutions, and environmental technologies will see impressive global growth rates in the coming decades. Environmental technologies make important contributions to solving global environmental challenges. But they are only part of the solution. The development of ground-braking environmental technology solutions should go hand in hand with political decisions on binding environmental goals, public environmental regulation and economic incentives that promote an appropriate behaviour among companies and consumers. The environmental technology market is a highly competitive market that focuses on utilising new and emerging technologies. A large number of Danish companies are active participants in the global competition. There are several examples of government institutions taking an active part in the competition. More and more, new environmental technologies are developed in a binding and strategic collaboration involving companies, universities, research laboratories and government authorities. The level of Danish government authority participation is a critical element. However, this is not the focus of this analysis. The purpose of the analysis is to identify environmental technology areas where Denmark potentially could create new strongholds, if strategic and binding collaboration involving companies, knowledge institutions and government authorities is carried out. The actual level of co-operation should be decided among the relevant stake holders. (au)

  1. Innovations in Environmental Monitoring Using Mobile Phone Technology – A Review

    Directory of Open Access Journals (Sweden)

    Matt Aitkenhead

    2014-04-01

    Full Text Available In recent years, the use of mobile phones and tablets for personal communication has increased dramatically, with over 1 billion smartphones out of a total of 5 billion mobile phones worldwide. The infrastructure and technology underlying these devices has improved to a level where it is now possible to integrate sensor technology directly and use them to acquire new data. Given the available resources and the number of technical challenges that have already been overcome, it would seem a natural progression to use mobile communication technology for field-based environmental monitoring. In this work, we review existing technology for acquiring, processing and reporting on environmental data in the field. The objective is to demonstrate whether or not it is possible to use off-the-shelf technology for environmental monitoring. We show several levels at which this challenge is being approached, and discuss examples of technology that have been produced.

  2. A standard methodology for cost-effectiveness analysis of new environmental technologies

    International Nuclear Information System (INIS)

    Booth, S.R.; Trocki, L.K.; Bowling, L.

    1994-01-01

    This paper outlines a methodology that is being applied to assess the cost-effectiveness of new environmental technologies under development by EM-50, DOE. Performance, total system effects, and life-cycle costs are all considered in the methodology to compare new technologies with existing or base-line technologies. An example of performance characterization is given in the paper. Sources of data for cost estimates and technology characterizations also appear in the paper. The Department of Energy (DOE) is facing a massive clean up effort of waste sites that contain hazardous, radioactive, or mixed materials. DOE has recognized that improvements in environmental restoration and waste management methods can potentially save the taxpayers billions of dollars as older, less-effective technologies are displaced. Consequently, DOE has targeted significant funding to search for new technologies and to test and demonstrate them in rapid and cost-effective manner with the goal of applying them quickly to address environmental problems

  3. Information technologies in environmental engineering. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Athanasiadis, Ioannis N.; Rizzoli, Andrea E. [Istituto dalle Molle di Studi sull' Intelligenza Artificiale (IDSIA), Manno (Switzerland); Mitkas, Pericles A. [Aristotle Univ. of Thessaloniki (Greece); Marx Gomez, Jorge (eds.) [Oldenburg Univ. (Germany). Abt. Wirtschaftsinformatik

    2009-07-01

    Information technologies have evolved to an enabling science for natural resource management and conservation, environmental engineering, scientific simulation and integrated assessment studies. Computing plays a significant role in every day practices of environmental engineers, natural scientists, economists, and social scientists. The complexity of natural phenomena requires interdisciplinary approaches, where computing science offers the infrastructure for environmental data collection and management, scientific simulations, decision support documentation and reporting. Ecology, environmental engineering and natural resource management comprise an excellent real-world testbed for IT system demonstration, while raising new challenges for computer science. Complexity, uncertainty and scaling issues of natural systems form a demanding application domain for sensor networks and earth observation systems; modelling, simulation and scientific workflows, data management and reporting, decision support and intelligent systems, distributed computing environments, geographical information systems, heterogeneous systems integration, software engineering, accounting systems and control systems. This books offers a collection of papers presented at the 4th International Symposium on Environmental Engineering, held in May 2009, in Thessaloniki, Greece. Recent success stories in ecoinformatics, promising ideas and new challenges are discussed among computer scientists, environmental engineers, economists and social scientists, demonstrating new paradigms for problem solving and decision making. (orig.)

  4. Internet of Things technology-based management methods for environmental specimen banks.

    Science.gov (United States)

    Peng, Lihong; Wang, Qian; Yu, Ang

    2015-02-01

    The establishment and management of environmental specimen banks (ESBs) has long been a problem worldwide. The complexity of specimen environment has made the management of ESB likewise complex. Through an analysis of the development and management of ESBs worldwide and in light of the sophisticated Internet of Things (IOT) technology, this paper presents IOT technology-based ESB management methods. An IOT technology-based ESB management system can significantly facilitate ESB ingress and egress management as well as long-term storage management under quality control. This paper elaborates on the design of IOT technology-based modules, which can be used in ESB management to achieve standardized, smart, information-based ESB management. ESB management has far-reaching implications for environmental management and for research in environmental science.

  5. Environmental management practices, environmental technology portfolio, and environmental commitment: A content analytic approach for U.K. manufacturing firms

    OpenAIRE

    Nath, P; Ramanathan, R

    2016-01-01

    This study investigates how various aspects of environmental management practices EMPs (operational, strategic, and tactical) undertaken by firms influence their environmental technology portfolios ETPs (pollution control and pollution prevention). It also explores the role of environmental commitment of firms on the influence of EMPs on ETPs. This study uses data from content analysis of annual reports, and corporate social responsibility reports available from corporate websites of 76 UK ma...

  6. Lessons from patents. Using patents to measure technological change in environmental models

    International Nuclear Information System (INIS)

    Popp, David

    2005-01-01

    When studying solutions to long-term environmental problems such as climate change, it is important to consider the role that technological change may play. Nonetheless, to date few economic models of environmental policy explicitly model the link between policy and technological change. There is a growing body of evidence that the incentives offered by prices and environmental regulations have a strong influence on both the creation and adoption of new technologies. In several recent papers, I have used patent data to examine the links between environmental policy and technological change. In addition, I have used the results of this research to calibrate the ENTICE model (for ENdogenous Technological change) of climate change, which links energy-related R and D to changes in the price of carbon. Drawing on my experiences from empirical studies on innovation and from modeling the climate change problem, in this paper I review some of the key lessons from recent empirical work using patents to study environmental innovation and diffusion, and discuss its implications for modeling climate change policy. I conclude by offering suggestions for future research

  7. Geospatial Technology In Environmental Impact Assessments – Retrospective.

    Directory of Open Access Journals (Sweden)

    Goparaju Laxmi

    2015-10-01

    Full Text Available Environmental Impact Assessments are studies conducted to give us an insight into the various impacts caused by an upcoming industry or any developmental activity. It should address various social, economic and environmental issues ensuring that negative impacts are mitigated. In this context, geospatial technology has been used widely in recent times.

  8. Political measures for promoting environmental technology; Virkemidler for aa fremme miljoeteknologi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Environmental technology can contribute to solving many environmental challenges and to industrial development. Measures to support the development and use of such technologies can be regulatory, economic or administrative, and usually one needs to use a combination of different measures in order to reach both a better environment and industrial development. For industrial development other measures than those administered by environmental authorities will be of importance. The environmental authorities therefore need to acquire knowledge about these measures and the bodies administering them, and develop an operative cooperation with these actors.

  9. Applying environmental externalities to US Clean Coal Technologies for Asia

    International Nuclear Information System (INIS)

    Szpunar, C.B.; Gillette, J.L.

    1993-01-01

    The United States is well positioned to play an expanding role in meeting the energy technology demands of the Asian Pacific Basin, including Indonesia, Thailand, and the Republic of China (ROC-Taiwan). The US Department of Energy Clean Coal Technology (CCT) Demonstration Program provides a proving ground for innovative coal-related technologies that can be applied domestically and abroad. These innovative US CCTs are expected to satisfy increasingly stringent environmental requirements while substantially improving power generation efficiencies. They should also provide distinct advantages over conventional pulverized coal-fired combustors. Finally, they are expected to be competitive with other energy options currently being considered in the region. This paper presents potential technology scenarios for Indonesia, Thailand, and the ROC-Taiwan and considers an environmental cost-benefit approach employing a newly developed method of applying environmental externalities. Results suggest that the economic benefits from increased emission control can indeed be quantified and used in cost-benefit comparisons, and that US CCTs can be very cost effective in reducing emissions

  10. Commercial development of environmental technologies for the automotive industry towards a new model of technological innovation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, W.W. II [Office of Planning and Research, Sacramento, CA (United States); Paolucci, E. [Politecnico di Torino University (Italy). Production and Economics Dept.

    2001-07-01

    Economic importance of environmental issues is increasing, and new technologies are expected to reduce pollution derived both from productive processes and products, with costs that are still unknown. Until now there is still little knowledge concerning the process of technological innovation in this field. What does exist, is outdated due to rapid change in technology. In this paper we analyse the development of Zinc Air Fuel Cells (ZAFC) and their transfer from research laboratories to large mass production. ZAFC are a new environmental technology, proved to have a commercial value, that can be used for building Zero Emission Vehicles (ZEV). Although ZAFC performances are higher than traditional lead-acid batteries ones, difficulties in funding ZAFC engineering and moving them from laboratories to production caused some years delay in their diffusion. On the bases of this paradigmatic case, we argue that existing economic and organizational literature concerning technological innovation is not able to fully explain steps followed in developing environmental technologies. Existing models mainly consider adoption problems as due to market uncertainty, weak appropriability regime, lack of a dominant design, and difficulties in reconfiguring organizational routines. Additionally, the following aspects play a fundamental role in developing environmental technologies, pointing out how technological trajectories depend both on exogenous market conditions and endogenous firm competencies: 1 regulations concerning introduction of ZEV create market demand and business development for new technologies; they impose constraints that can be met only by segmenting transportation market at each stage of technology development; 2 each stage of technology development requires alternative forms of division and coordination of innovative labour; upstream and downstream industries are involved in new forms of inter-firm relationships, causing a reconfiguration of product architecture

  11. Adopting the Internet of Things technologies in environmental management in South Africa

    CSIR Research Space (South Africa)

    Dlodlo, N

    2012-04-01

    Full Text Available This paper reports on potential applications of IoT technologies that could contribute to sustainable environmental management (EM in South Africa). These technologies have been categorised under environmental quality and protection, natural...

  12. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-03-30

    A vendor was selected for the diamond wire technology demonstration scheduled for this summer at Princeton Plasma Physics Laboratory (PPPL). A team consisting of personnel from FIU-HCET, PPPL, and AEA Technology reviewed the submitted bids. FIU-HCET will contract this vendor. At the SRS Ninth ICT teleconference, the ICT team discussed the status of the following demonstrations: LRAD; x-ray, K-edge; Strippable Coatings; Thermal Spray Vitrification; Cutting/Shearing/Dismantlement/Size Reduction; and Electrets. The LRAD demo is complete, and the x-ray/K-edge, Strippable Coatings, and Electrets demos are ongoing. The Asbestos and Thermal Spray Vitrification demos require more laboratory testing. The Cutting/Shearing/Dismantlement/Size Reduction demo is undergoing procurement. Five FIU-HCET staff members took the 1S0 14000 environmental auditor training course February 22-26, 1999, given by ASC. The test plan for the Facility Dismantlement Technology Assessment is finished and ready for internal review.

  13. Linked environmental data. The next step for environmental information systems

    International Nuclear Information System (INIS)

    Menger, Matthias; Ackermann, Patrick; Linse, Andreas; Bandholtz, Thomas

    2013-01-01

    The Federal Environment Agency (UBA) in Germany as one Competent Authority of the European Member States involved with the assessment and authorisation of chemicals, pesticides, biozides and medicals, has a wide expertise of complex information systems. Having timely, comprehensive and reliable information on the environmental relevant properties (e.g. of chemical substances and preparations) is of immense importance for all sections dealing with environmental protection issues. Regarding the reality of available information systems in each environmental section, and moreover in each section itself, there has been developed several specific approaches to gather, store and search its relevant data. This makes sense due to each section has its own requirements, different user groups (industry and authorities or just authorities or scientific partners etc.), different budgets to bring technology 'on the road', and different (legally obligatory) procedures to handle the data and information of such systems. Nevertheless, there several strong reasons to look for a Linked Environmental Data infrastructure - at least internally in one authority itself: - Overcome the mostly separated systems; - Explore the potential of data silos in several environmental sections; - Efficiency/effectiveness in data gathering, assessment, results, budgets..; - sharing of knowledge, i.e. use of specific prepared information of specially intended information systems; - timelyness of data/information; - best data/information from most competent partner/section; - gain from already available systems and their data/information; - speed up developments and availability of data/information. Of course there are also several points which might be a huge obstacle to Linked Environmental Data (LED), e.g. confidential business data. This leads already to the distinction between 'Open LED' and 'Non-Open LED'. Nevertheless, the potential benefits and the possibilities offered via the modern information

  14. The 10th Anniversary Of Daejeon Environmental Technology Development Center

    International Nuclear Information System (INIS)

    2010-12-01

    This book describes the Daejeon Environment Technology Development Center with pictures for ten years. It also introduces the purpose of the foundation and background of center, structure of the center, main project and role of the center, center logo, current situation of cost of project, research business for 10 years, business supporting the environmental corporate, environment education, public relations activity and vision and prospect of the Daejeon Environmental Technology Development Center.

  15. Proceedings of the 6. Banska Stiavnica Days 2004. Environmental impacts on the environment. Trends in environmental sciences and radio-environmental sciences

    International Nuclear Information System (INIS)

    Hybler, P.; Maruskova, A.

    2004-12-01

    Scientific conference deals with problems in environmental sciences and radio-environmental sciences. The conference proceeded in two sections: (A) Environmental engineering, (B) Nuclear technologies. Sixty registered people and fifty guests participated on this conference. Twenty-seven presentations and eleven posters were presented. Proceedings contain twenty-six papers from which fourteen papers deal with the scope of INIS

  16. The Savannah River Environmental Technology Field Test Platform: Phase 2

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.; Eddy-Dilek, C.A.; Pemberton, B.E.; May, C.P.; Jarosch, T.R.; Looney, B.B.; Raymond, R.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The DOE complex has devised several strategies to facilitate this transfer including joint research projects between private industries and government laboratories or universities (CRADAs) and streamlined licensing procedures. One strategy that has been under-utilized is a planned sequence gradually moving from laboratory development and field demonstration to long term evaluation and onsite use. Industrial partnership and commercial production can be initiated at any step based on the performance, market, user needs, and costs associated with the technology. This approach allows use of the technology by onsite groups for compliance monitoring tasks (e.g. Environmental Restoration and Waste Management), while following parallel research and development organizations the opportunity to evaluate the long term performance and to make modifications or improvements to the technology. This probationary period also provides regulatory organizations, potential industrial partners, and potential users with the opportunity to evaluate the technology's performance and its utility for implementation in environmental characterization and monitoring programs

  17. The Savannah River environmental technology field test platform: Phase II

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.; May, C.P.; Pemberton, B.E.; Jarosch, T.R.; Eddy-Dilek, C.A.; Looney, B.B.; Raymond, R.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The DOE complex has devised several strategies to facilitate this transfer including joint research projects between private industries and government laboratories or universities (CRADAs), and streamlined licensing procedures. One strategy that has been under-utilized is a planned sequence gradually moving from laboratory development and field demonstration to long term evaluation and onsite use. Industrial partnership and commercial production can be initiated at any step based on the performance, market, user needs, and costs associated with the technology. The Savannah River Technology Center (SRTC) has been developing a program to rigorously field test promising environmental technologies that have not undergone EPA equivalency testing. The infrastructure and staff expertise developed as part of the activities of the Savannah River Integrated Demonstration Program (i.e., wells, available power, conventional baseline characterization and monitoring equipment, shelter structures) allows field testing of technologies without the difficulties of providing remote field support. By providing a well-characterized site and a well-developed infrastructure, technologies can be tested for long periods of time to determine their appropriate applications in environmental characterization and monitoring activities. Situation specific evaluations of the technology following stringent test plans can be made in comparison with simultaneous baseline methods and historical data. This program is designed to help expedite regulatory approval and technology transfer to manufacturers and the user community

  18. Radiation technology for environmental conservation

    International Nuclear Information System (INIS)

    Machi, Sueo; Tokunaga, Okihiro; Arai, Hidehiko; Hashimoto, Shoji

    1991-01-01

    This paper reviews research and development of radiation technology application for environmental conservation. Our group in cooperation with Ebara Mfg. co., Ltd. first found and studied removals of sulfur dioxide and nitrogen oxides from flue gases by electron beam irradiation. Most of sulfer dioxide and nitrogen oxides are converted to ammonium sulfate and nitrate by radiation with the addition of ammonia. Feasibility studies of this technology by pilot scale experiments have been carried out in Japan, USA and Germany for flue gases from iron-ore sintering furnace and coal fire power station. About 90 % of CO 2 and NO X are removed with 15 kGy. Organic pollutants in wastewater, drinking water and ground water have been found to be reduced by radiation technology. Synergetic effect of radiation and ozone to remove pollutants was also found. Disinfection of water effluent from sewage water treatment plant by radiation instead of using chlorine to avoid formation of chlorinated organic compounds has been studied by our group. Efficient composting of sewage sludge using radiation disinfection followed by fermentation has been developed and produced compost can be used as fertilizer. In conclusion, radiation technology can provide new efficient treatment method for wastes. (author)

  19. Advanced coal combustion technologies and their environmental impact

    International Nuclear Information System (INIS)

    Bozicevic, Maja; Feretic, Danilo; Tomsic, Zeljko

    1997-01-01

    Estimations of world energy reserves show that coal will remain the leading primary energy source for electricity production in the foreseeable future. In order to comply with ever stricter environmental regulations and to achieve efficient use of limited energy resources, advanced combustion technologies are being developed. The most promising are the pressurised fluidized bed combustion (PFBC) and the integrated gasification combined cycle (IGCC). By injecting sorbent in the furnace, PFBC removes more than 90 percent of SO 2 in flue gases without additional emission control device. In addition, due to lower combustion temperature, NO x emissions are around 90 percent lower than those from pulverised coal (PC) plant. IGCC plant performance is even more environmentally expectable and its high efficiency is a result of a combined cycle usage. Technical, economic and environmental characteristics of mentioned combustion technologies will be presented in this paper. Comparison of PFBC, IGCC and PC power plants economics and air impact will also be given. (Author)

  20. Overview. Department of Environmental and Radiation Transport Physics. Section 6

    Energy Technology Data Exchange (ETDEWEB)

    Loskiewicz, J. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    Research activities in the Department of Environmental and Radiation Transport Physics are carried out by three Laboratories: Laboratory of Environmental Physics, Laboratory of Neutron Transport Physics and Laboratory of Physics and Modeling of Radiation Transport. The researches provided in 1994 cover: tracer transport and flows in porous media, studies on pollution in atmospheric air, physics of molecular phenomena in chromatographic detectors, studies on neutron transport in heterogenous media, studies on evaluation of neutron cross-section in the thermal region, studies on theory and utilization of neural network in data evaluation, numerical modelling of particle cascades for particle accelerator shielding purpose. In this section the description of mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants is also given.

  1. Overview. Department of Environmental and Radiation Transport Physics. Section 6

    Energy Technology Data Exchange (ETDEWEB)

    Loskiewicz, J [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    Research activities in the Department of Environmental and Radiation Transport Physics are carried out by three Laboratories: Laboratory of Environmental Physics, Laboratory of Neutron Transport Physics and Laboratory of Physics and Modeling of Radiation Transport. The researches provided in 1994 cover: tracer transport and flows in porous media, studies on pollution in atmospheric air, physics of molecular phenomena in chromatographic detectors, studies on neutron transport in heterogenous media, studies on evaluation of neutron cross-section in the thermal region, studies on theory and utilization of neural network in data evaluation, numerical modelling of particle cascades for particle accelerator shielding purpose. In this section the description of mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants is also given.

  2. Environmental control technology activities of the Department of Energy in FY 1977

    International Nuclear Information System (INIS)

    1977-11-01

    The Department of Energy is responsible for the research, development, and demonstration of emerging energy technologies and the promotion of energy conservation. An integral and significant part of that responsibility includes the balancing of energy goals with environmental requirements to protect and enhance the general health, safety, and welfare of the nation. This requires that environmental effects be considered and mitigating measures be taken in all energy processes through incorporation of environmental and safety controls which are developed as an integral part of energy system design. This inventory of environmental control technology activities was initiated by the Administrator, ERDA, prior to the incorporation of that administration within the Department of Energy. This compilation of total Energy Research and Development Administration (ERDA) environmental control technology activities, and associated funding, related to environmental control technology identifies the resources committed by ERDA to demonstrate its objective to protect and enhance the general health, safety, and welfare of the nation in the research, development, and demonstration of energy systems. Only ERDA research, development, and demonstration activities are covered in this report. The compilation for FY 1978 will encompass all of the DOE activities

  3. 77 FR 75997 - Environmental Technologies Trade Advisory Committee (ETTAC), Request for Nominations from U.S...

    Science.gov (United States)

    2012-12-26

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... Environmental Technologies Trade Advisory Committee (ETTAC). SUMMARY: This notice sets forth a request for... serve on the Environmental Technologies Trade Advisory Committee (ETTAC). One person will be appointed...

  4. Abandonment: Technological, organisational and environmental challenges

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, B.G. [Reverse Engineering Ltd., (United Kingdom)

    1996-12-31

    The paper deals with the abandonment of offshore wells. Decommissioning of offshore installations is a complex multi-disciplined issue, which raises a number of technical, organisational and environmental challenges. The success of a planned decommissioning operation depends on the development of a clear understanding of the complex blend of drivers which control the decommissioning process and their inter-relationship. Due to the complexity of the inter-relationship between the primary drivers one cannot separate the technological, organisational and environmental issues raised by the decommissioning of offshore installations. The optimal solution will be a compromise between all the decommissioning drivers mentioned in this paper. 5 figs., 3 tabs.

  5. Abandonment: Technological, organisational and environmental challenges

    International Nuclear Information System (INIS)

    Twomey, B.G.

    1996-01-01

    The paper deals with the abandonment of offshore wells. Decommissioning of offshore installations is a complex multi-disciplined issue, which raises a number of technical, organisational and environmental challenges. The success of a planned decommissioning operation depends on the development of a clear understanding of the complex blend of drivers which control the decommissioning process and their inter-relationship. Due to the complexity of the inter-relationship between the primary drivers one cannot separate the technological, organisational and environmental issues raised by the decommissioning of offshore installations. The optimal solution will be a compromise between all the decommissioning drivers mentioned in this paper. 5 figs., 3 tabs

  6. Performance of renewable energy technologies in the energy-environmental-economic continuum

    International Nuclear Information System (INIS)

    Guthrie, B.M.; Birkenheier, T.L.

    1993-01-01

    Projected cost-performance data are used to calculate the Canadian commercial potential of selected renewable energy technologies to the year 2010. Based on projected market penetration, the extent to which renewable energy can contribute to environmental initiatives is also examined. The potential for renewable energy to contribute to the Canadian electricity supply is limited neither by the state of the technology nor the extent of the resource available. Barriers to acceptance of renewables include high initial capital costs, intermittent nature of much of the energy supply, land requirements, onerous requirements for environmental assessments and licensing, and lack of government policies which consider the externalities involved in new energy supply. Environmental benefits which will drive the adoption of renewables in Canada include the sustainable nature of renewable resources, low environmental impacts, and suitability for integrated resource planning. In addition, the cost performance of renewable technologies is improving rapidly. Under base-case scenarios, at current buyback rates, only small hydro and biomass of the five renewable technologies examined has significant commercial potential in Canada. At buyback rates that reflect currently projected avoided costs plus an additional 2 cents per kWh as an environmental premium, all five renewable technologies except for photovoltaics have appreciable commercial potential achievable by 2010. The quantity of electrical energy displaced under this latter scenario is estimated at 49 TWh/y, or 7% of the projected total generation in Canada. 2 figs., 2 tabs

  7. Smart Sensing Technology for Agriculture and Environmental Monitoring

    CERN Document Server

    2012-01-01

    The book focuses on the different aspects of sensing technology, i.e. high reliability, adaptability, recalibration, information processing, data fusion, validation and integration of novel and high performance sensors specifically aims to monitor agricultural and environmental parameters.   This book is dedicated to Sensing systems for Agricultural and Environmental Monitoring  offers to variety of users, namely, Master and PhD degree students, researchers, practitioners, especially Agriculture and Environmental engineers. The book will provide an opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field.

  8. 40 CFR 125.94 - How will requirements reflecting best technology available for minimizing adverse environmental...

    Science.gov (United States)

    2010-07-01

    ... technology available for minimizing adverse environmental impact be established for my Phase II existing... technology available to minimize adverse environmental impact for your facility in accordance with paragraphs... technology available for minimizing adverse environmental impact. This determination must be based on...

  9. Innovative characterization, monitoring and sensor technologies for environmental radioactivity at USDOE sites

    International Nuclear Information System (INIS)

    Hutter, A.; Weeks, S.

    2001-01-01

    The mission of the U.S. Department of Energy Office of Environmental Management (EM) is to clean up its contaminated sites from the past production of nuclear weapons. Within EM, the Office of Science and Technology (OST) is responsible for providing a full range of science and technology resources needed to support resolution of EM cleanup and long-term environmental stewardship problems. This responsibility includes implementation of a technology development pathway from basic research to development, demonstration, and deployment of scientific and technological solutions needed by DOE sites. One OST Program is the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP), which aims to provide innovative technologies (i.e., faster, better, cheaper, and/or safer) for environmental characterization and monitoring. Several technologies are described that CMST-CP has supported for development with significant benefits realized or projected over the baseline characterization and monitoring practices. Examples of these technologies include mapping of subsurface radioactivity using Cone Penetrometer and drilling techniques; a Rapid Liquid Sampler for Sr, Ra, Tc, and Cs using 3M Empore TM Rad Disks; Long-Range Alpha Detectors; a Compact High Resolution Spectrometer; BetaScint TM for determination of Sr in soil; Laser-Induced Fluorescence Imaging techniques for mapping U on surfaces; the Environmental Measurements While Drilling System; and the Expedited Site Characterization methodology. (author)

  10. Symposium proceedings: environmental aspects of fuel conversion technology, II, December 1975, Hollywood, Florida. [34 papers

    Energy Technology Data Exchange (ETDEWEB)

    Ayer, F.A. (comp.)

    1976-06-01

    The report covers EPA's second symposium on the environmental aspects of fuel conversion technology. Its main objective was to review and discuss environmentally related information in the field of fuel conversion technology. Specific topics were environmental problem definition, process technology, control technology, and process measurements. Thirty-four papers were abstracted and indexed separately.

  11. Electron Beam Technology for Environmental Pollution Control.

    Science.gov (United States)

    Chmielewski, Andrzej G; Han, Bumsoo

    2016-10-01

    Worldwide, there are over 1700 electron beam (EB) units in commercial use, providing an estimated added value to numerous products, amounting to 100 billion USD or more. High-current electron accelerators are used in diverse industries to enhance the physical and chemical properties of materials and to reduce undesirable contaminants such as pathogens, toxic byproducts, or emissions. Over the past few decades, EB technologies have been developed aimed at ensuring the safety of gaseous and liquid effluents discharged to the environment. It has been demonstrated that EB technologies for flue gas treatment (SO x and NO x removal), wastewater purification, and sludge hygienization can be effectively deployed to mitigate environmental degradation. Recently, extensive work has been carried out on the use of EB for environmental remediation, which also includes the removal of emerging contaminants such as VOCs, endocrine disrupting chemicals (EDCs), and potential EDCs.

  12. Technology development for nuclear fuel cycle waste treatment - Decontamination, decommissioning and environmental restoration (1)

    International Nuclear Information System (INIS)

    Lee, Byung Jik; Won, Hui Jun; Yoon, Ji Sup and others

    1997-12-01

    Through the project of D econtamination, decommissioning and environmental restoration technology development , the following were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Environmental remediation technology development. (author). 95 refs., 45 tabs., 163 figs

  13. Applications of microwave radiation environmental remediation technologies

    International Nuclear Information System (INIS)

    Krause, T.R.; Helt, J.E.

    1993-01-01

    A growing number of environmental remediation technologies (e.g., drying, melting, or sintering) utilize microwave radiation as an integral part of the process. An increasing number of novel applications, such as sustaining low-temperature plasmas or enhancing chemical reactivity, are also being developed. An overview of such technologies being developed by the Department of Energy is presented. A specific example being developed at Argonne National Laboratory, microwave-induced plasma reactors for the destruction of volatile organic compounds, is discussed in more detail

  14. Perspectives on next-generation technology for environmental sensor networks

    Science.gov (United States)

    Barbara J. Benson; Barbara J. Bond; Michael P. Hamilton; Russell K. Monson; Richard Han

    2009-01-01

    Sensor networks promise to transform and expand environmental science. However, many technological difficulties must be overcome to achieve this potential. Partnerships of ecologists with computer scientists and engineers are critical in meeting these challenges. Technological issues include promoting innovation in new sensor design, incorporating power optimization...

  15. Environmental Technology Verification: Baghouse Filtration Products--TDC Filter Manufacturing, Inc., SB025 Filtration Media

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification (ETV) Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. ETV seeks to ach...

  16. Climate Change and Requirement of Transfer of Environmentally Sound Technology

    DEFF Research Database (Denmark)

    Uddin, Mahatab

    that developed the technology, to another that adopts, adapts, and uses it. As different kinds of threats posed by climate change are continuously increasing all over the world the issue of “technology transfer” especially the transfer of environmentally sound technologies has become one of the key topics...

  17. Proceedings of the 11. Banska Stiavnica Days 2009. Peaceful use of nuclear energy. Application of nuclear technologies and determination of radionuclides in the environment. Environmental load and municipal wastes

    International Nuclear Information System (INIS)

    Seliga, M.; Sebesta, P.

    2009-10-01

    Scientific conference deals with problems in environmental sciences and radio-environmental sciences. The conference proceeded in two sections: (I) Nuclear technologies; (II) Municipal wastes and environmental load. Fifty-seven participants took part in conference. Twenty-eight lectures were presented. Proceedings contain nineteen papers and thirteen presentations, which deal with the scope of INIS..

  18. SIHTI - Energy and environmental technology

    International Nuclear Information System (INIS)

    Estlander, A.; Pietilae, S.

    1993-01-01

    The research and development program SIHTI was carried out during 1991-1992, mainly concentrating on energy and environmental technology. SIHTI focused on examining emissions from various sources of energy in all stages of the production chain. The objective was to create new methods and equipment, with which the environmental drawbacks of energy production can be reduced. Also a development work aiming at reduced traffic emissions was included in the program. Totally the program included 53 projects, which were divided into the following subsections: energy production, traffic, fuel chains and other projects. In the energy production projects the main attention was paid to reduction of sulphur dioxide, nitrogen oxide and particulate emissions. Furthermore waste utilization and possibilities of reducing carbon dioxide emissions were studied. The traffic study was focused on developing of more environmental-friendly liquid fuels. The research of emissions at low ambient temperatures was developed to an international level. Further the use of gases and the rape seed oil ester as traffic fuel was studied in practical tests. In the fuel chain study the emissions from the most important fuel chains were examined all the way from the purchase of the primary energy to the final end product. Methods for further reduction of water discharges from peat production were developed. The other projects were concentrated on modelling development, environmental impact assessment and emission surveys

  19. Radiation technology for environmental conservation

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo; Tokunaga, Okihiro; Arai, Hidehiko; Hashimoto, Shoji [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1991-01-01

    This paper reviews research and development of radiation technology application for environmental conservation. Our group in cooperation with Ebara Mfg. co., Ltd. first found and studied removals of sulfur dioxide and nitrogen oxides from flue gases by electron beam irradiation. Most of sulfer dioxide and nitrogen oxides are converted to ammonium sulfate and nitrate by radiation with the addition of ammonia. Feasibility studies of this technology by pilot scale experiments have been carried out in Japan, USA and Germany for flue gases from iron-ore sintering furnace and coal fire power station. About 90 % of CO{sub 2} and NO{sub X} are removed with 15 kGy. Organic pollutants in wastewater, drinking water and ground water have been found to be reduced by radiation technology. Synergetic effect of radiation and ozone to remove pollutants was also found. Disinfection of water effluent from sewage water treatment plant by radiation instead of using chlorine to avoid formation of chlorinated organic compounds has been studied by our group. Efficient composting of sewage sludge using radiation disinfection followed by fermentation has been developed and produced compost can be used as fertilizer. In conclusion, radiation technology can provide new efficient treatment method for wastes. (author).

  20. Environmental Evaluation of Soil Salinity with Various Watering Technologies Assessment.

    Science.gov (United States)

    Seitkaziev, Adeubay; Shilibek, Kenzhegali; Fakhrudenova, Idiya; Salybayev, Satybaldy; Zhaparova, Sayagul; Duisenbayeva, Saule; Bayazitova, Zulfia; Aliya, Maimakova; Seitkazieva, Karlygash; Aubakirov, Hamit

    2018-01-01

      The purpose of this study is to develop mathematical tools for evaluating the level of environmental safety of various watering technologies. A set of indicators, was developed with regard to the natural factors, the nature of the man-induced load, degradation type, and characteristics of the disruption of humification conditions. Thermal and physical characteristics of the soil, the state of its surface, and meteorological factors, including air temperature, relative humidity, precipitation, wind speed, solar radiation, etc. were studied with a view to determining the heat and air exchange in the soil. An environmental evaluation of the methods for saline land development was conducted with regard to the heat and moisture supply. This tool can be used to determine the level of environmental safety of soil salinization during the environmental evaluation of the investigation of soil salinity with various watering technologies.

  1. Beyond Science and Technology: The need to incorporate Environmental Ethics to solve Environmental Problems

    Directory of Open Access Journals (Sweden)

    Fesseha Mulu

    2018-01-01

    Full Text Available The emergence and development of science and technology has been critical in improving the lives of mankind. It helps mankind to cope with a number of manmade and natural challenges and disasters. Science cannot totally diminish the level of human dependency on nature; but, with the existing availability of natural resources, science has increased our productivity. However, science and technology can also have its own negative impacts on the natural environment. For the purpose of increasing productivity and satisfying human needs, humans have been egoistically exploiting nature but disregarding the effects of their activities on nature. Science has also been trying its level best to mitigate the negative effects that results from mankind’s exploitation of nature. However, science alone is incapable of solving all environmental problems. This desk research employs secondary sources of data, and argues that environmental ethics should come to the fore in order to address the gap left by science with regard to resolving environmental problems that mankind faces today.

  2. Environmental assessment of digestate treatment technologies using LCA methodology.

    Science.gov (United States)

    Vázquez-Rowe, Ian; Golkowska, Katarzyna; Lebuf, Viooltje; Vaneeckhaute, Céline; Michels, Evi; Meers, Erik; Benetto, Enrico; Koster, Daniel

    2015-09-01

    The production of biogas from energy crops, organic waste and manure has augmented considerably the amounts of digestate available in Flanders. This has pushed authorities to steadily introduce legislative changes to promote its use as a fertilising agent. There is limited arable land in Flanders, which entails that digestate has to compete with animal manure to be spread. This forces many anaerobic digestion plants to further treat digestate in such a way that it can either be exported or the nitrogen be removed. Nevertheless, the environmental impact of these treatment options is still widely unknown, as well as the influence of these impacts on the sustainability of Flemish anaerobic digestion plants in comparison to other regions where spreading of raw digestate is allowed. Despite important economic aspects that must be considered, the use of Life Cycle Assessment (LCA) is suggested in this study to identify the environmental impacts of spreading digestate directly as compared to four different treatment technologies. Results suggest relevant environmental gains when the digestate mix is treated using the examined conversion technologies prior to spreading, although important trade-offs between impact categories were observed and discussed. The promising results of digestate conversion technologies suggest that further LCA analyses should be performed to delve into, for instance, the appropriateness to shift to nutrient recovery technologies rather than digestate conversion treatments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. 40 CFR 230.74 - Actions related to technology.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Actions related to technology. 230.74 Section 230.74 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION... Minimize Adverse Effects § 230.74 Actions related to technology. Discharge technology should be adapted to...

  4. Proceedings of the 10. Banska Stiavnica Days 2008. Peaceful use of atomic energy. Application of nuclear technologies and determination of radionuclides in the environment. Environmental load and municipal wastes

    International Nuclear Information System (INIS)

    Seliga, M.; Sebesta, P.

    2008-10-01

    Scientific conference deals with problems in environmental sciences and radio-environmental sciences. The conference proceeded in two sections: (I) Nuclear technologies; (II) Municipal wastes and environmental load. Fifty participants took part in conference. Twenty-four lectures and two posters were presented. Proceedings contain twenty-six papers all papers deals with the scope of INIS

  5. Foothills Parkway Section 8B Final Environmental Report, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Blasing, T.J.; Cada, G.F.; Carer, M.; Chin, S.M.; Dickerman, J.A.; Etnier, D.A.; Gibson, R.; Harvey, M.; Hatcher, B.; Lietzske, D.; Mann, L.K.; Mulholland, P.J.; Petrich, C.H.; Pounds, L.; Ranney, J.; Reed, R.M.; Ryan, P.F.; Schweitzer, M.; Smith, D.; Thomason, P.; Wade, M.C.

    1999-07-01

    In 1994, Oak Ridge National Laboratory (ORNL) was tasked by the National Park Service (NPS) to prepare an Environmental Report (ER) for Section 8B of the Foothills Parkway in the Great Smoky Mountains National Park (GSMNP). Section 8B represents 27.7 km (14.2 miles) of a total of 115 km (72 miles) of the planned Foothills Parkway and would connect the Cosby community on the east to the incorporated town of Pittman Center to the west.

  6. Employee participation and cleaner technology: learning processes in environmental teams

    DEFF Research Database (Denmark)

    Remmen, Arne; Lorentzen, Børge

    2000-01-01

    The approach to pollution prevention in Danish industries in the late-1980s and in the beginning of the 1990s met criticism, because the cleaner technology projects focused too narrowly on technical solutions implemented by experts. The objective of the project “Employee Participation in the Impl...... to improve the firms' environmental activities (e.g. setting up environmental policies, targets and action plans, implementing new procedures and technologies).......The approach to pollution prevention in Danish industries in the late-1980s and in the beginning of the 1990s met criticism, because the cleaner technology projects focused too narrowly on technical solutions implemented by experts. The objective of the project “Employee Participation...... in the Implementation of Cleaner Technology” was to develop a more active role for employees in the environmental activities of companies. Based on practical experiments in five Danish firms within different industrial sectors, the project concluded that employee participation can have a strong effect on changing...

  7. The GETE approach to facilitating the commercialization and use of DOE-developed environmental technologies

    International Nuclear Information System (INIS)

    Harvey, T.N.

    1995-01-01

    The Global Environmental Technology Enterprise (GETE) was conceived to develop and implement strategies to facilitate the commercialization of innovative, cost-effective Department of Energy (DOE)-developed environmental technologies. These strategies are needed to aid DOE's clean-up mission; to break down barriers to commercialization; and to build partnerships between the federal government and private industry in order to facilitate the development and use of innovative environmental technologies

  8. Applications of information technology in the environmental area

    International Nuclear Information System (INIS)

    Jaeschke, A.; Page, B.

    1987-03-01

    The state of events in the environment are described by physical, chemical, meteorological and biological data. The spatially distributed information cannot be managed without technical help from automatic measuring devices, data telecommunication and process data processing. The computer-aided creation of models and simulation represent an aid involving environmental problems. One considerable extension of the possibilities will be provided by the introduction of the methods of artificial intelligence, especially expert systems. The use of information technology therefore forms an important precondition for environmental protection. The contributions illustrate the state of development of communication between scientists in the field of environmental protection. (DG) [de

  9. Health and environmental effects of oil and gas technologies: research needs

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R. D.

    1981-07-01

    This report discusses health and environmental issues associated with oil and gas technologies as they are currently perceived - both those that exist and those that are expected to emerge over the next two decades. The various sections of this report contain discussions of specific problem areas and relevant new research activities which should be pursued. This is not an exhaustive investigation of all problem areas, but the report explores a wide range of issues to provide a comprehensive picture of existing uncertainties, trends, and other factors that should serve as the focus of future research. The problem areas of major concern include: effects of drilling fluids, offshore accidents, refineries and worker health, and biota and petroleum spills, indoor air pollution, information transfer, and unconventional resources. These are highlighted in the Executive Summary because they pose serious threats to human health and the environment, and because of the sparcity of accumulated knowledge related to their definition. Separate abstracts have been prepared for selected sections of this report for inclusion in the Energy Data Base. (DMC)

  10. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090

    International Nuclear Information System (INIS)

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology

  11. 78 FR 49287 - Environmental Assessment for Potential Lease Issuance and Marine Hydrokinetic Technology Testing...

    Science.gov (United States)

    2013-08-13

    ...; MMAA104000] Environmental Assessment for Potential Lease Issuance and Marine Hydrokinetic Technology Testing... important environmental issues associated with data collection and technology testing activities (76 FR... Availability of a Revised Environmental Assessment and a Finding of No Significant Impact. SUMMARY: BOEM has...

  12. UTILIZING INNOVATIVE TECHNOLOGIES FOR ENVIRONMENTAL CLEAN-UP AT SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    Bergren, C.

    2009-01-01

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units and facilities that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990s), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical/pH-adjusting injection, phytoremediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baroballs, electrical resistance heating, soil vapor extraction, and microblowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works proactively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  13. ITEP: A survey of innovative environmental restoration technologies in the Netherlands and France

    International Nuclear Information System (INIS)

    Roberds, W.J.; Voss, C.F.; Hitchcock, S.A.

    1995-05-01

    The International Technology Exchange Program (ITEP) of the Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for promoting the import of innovative technologies to better address EM's needs and the export of US services into foreign markets to enhance US competitiveness. Under this program, potentially innovative environmental restoration technologies, either commercially available or under development in the Netherlands and France, were identified, described, and evaluated. It was found that 12 innovative environmental restoration technologies, which are either commercially available or under development in the Netherlands and France, may have some benefit for the DOE EM program and should be considered for transfer to the United States

  14. Linked environmental data. The next step for environmental information systems

    Energy Technology Data Exchange (ETDEWEB)

    Menger, Matthias; Ackermann, Patrick; Linse, Andreas [Federal Environemnt Agency, Dessau (Germany); Bandholtz, Thomas [innoQ GmbH, Monheim (Germany)

    2013-07-01

    The Federal Environment Agency (UBA) in Germany as one Competent Authority of the European Member States involved with the assessment and authorisation of chemicals, pesticides, biozides and medicals, has a wide expertise of complex information systems. Having timely, comprehensive and reliable information on the environmental relevant properties (e.g. of chemical substances and preparations) is of immense importance for all sections dealing with environmental protection issues. Regarding the reality of available information systems in each environmental section, and moreover in each section itself, there has been developed several specific approaches to gather, store and search its relevant data. This makes sense due to each section has its own requirements, different user groups (industry and authorities or just authorities or scientific partners etc.), different budgets to bring technology 'on the road', and different (legally obligatory) procedures to handle the data and information of such systems. Nevertheless, there several strong reasons to look for a Linked Environmental Data infrastructure - at least internally in one authority itself: - Overcome the mostly separated systems; - Explore the potential of data silos in several environmental sections; - Efficiency/effectiveness in data gathering, assessment, results, budgets..; - sharing of knowledge, i.e. use of specific prepared information of specially intended information systems; - timelyness of data/information; - best data/information from most competent partner/section; - gain from already available systems and their data/information; - speed up developments and availability of data/information. Of course there are also several points which might be a huge obstacle to Linked Environmental Data (LED), e.g. confidential business data. This leads already to the distinction between 'Open LED' and 'Non-Open LED'. Nevertheless, the potential benefits and the possibilities

  15. QuEST: Qualifying Environmentally Sustainable Technologies. Volume 6

    Science.gov (United States)

    Lewis, Pattie

    2011-01-01

    QuEST is a publication of the NASA Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM). This issue contains brief articles on: Risk Identification and Mitigation, Material Management and Substitution Efforts--Hexavalent Chrome-free Coatings and Low volatile organic compounds (VOCs) Coatings, Lead-Free Electronics, Corn-Based Depainting Media; Alternative Energy Efforts Hydrogen Sensors and Solar Air Conditioning. Other TEERM Efforts include: Energy and Water Management and Remediation Technology Collaboration.

  16. Technology of environmental pollution control

    International Nuclear Information System (INIS)

    Shaheen, E.I.

    1992-01-01

    This book aims to be a comprehensive reference for technological advances in pollution control and abatement and pollution regulations. The first chapter, 'The dilemma of environmental pollution' summarises pollution legislation in the United States and discusses worldwide interest in pollution abatement. Chapter 2 describes some recent environmental disasters and discusses the major air pollutants and their harmful effects. Chapters 3 and 4 assess the various techniques for air pollution control and water pollution control. Chapter 5 is devoted to oil pollution impact and abatement. Solid waste management and methods of solid waste disposal are discussed in chapter 6, and noise pollution, its harmful effects and its control are dealt within chapter 7. Appendices contain a glossary, a summary of the US Clean Air Act and the US drinking water regulations and reference figures and tables relating to energy and the environment. Individual chapters contain many references

  17. The GETE approach to facilitating the commercialization and use of DOE-developed environmental technologies

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, T.N. [Global Environment & Technology Foundation, Annandale, VA (United States)

    1995-10-01

    The Global Environmental Technology Enterprise (GETE) was conceived to develop and implement strategies to facilitate the commercialization of innovative, cost-effective Department of Energy (DOE)-developed environmental technologies. These strategies are needed to aid DOE`s clean-up mission; to break down barriers to commercialization; and to build partnerships between the federal government and private industry in order to facilitate the development and use of innovative environmental technologies.

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - FIELD PORTABLE GAS CHROMATOGRAPH/MASS SPECTROMETER - VIKING INSTRUMENTS CORPORATION

    Science.gov (United States)

    The performance evaluation of innovative and alternative environmental technologies is an integral part of the U.S. Environmental Protection Agency's (EPA) mission. Early efforts focused on evaluation technologies that supported the implementation of the Clean Air and Clean Wate...

  19. Economic and environmental impacts of alternative transportation technologies.

    Science.gov (United States)

    2013-04-01

    This project has focused on comparing alternative transportation technologies in terms of their : environmental and economic impacts. The research is data-driven and quantitative, and examines the : dynamics of impact. We have developed new theory an...

  20. Environmental and Financial Evaluation of Passenger Vehicle Technologies in Belgium

    Directory of Open Access Journals (Sweden)

    Maarten Messagie

    2013-11-01

    Full Text Available Vehicles with alternative drive trains are regarded as a promising substitute for conventional cars, considering the growing concern about oil depletion and the environmental impact of our transportation system. However, “clean” technologies will only be viable when they are cost-efficient. In this paper, the environmental impacts and the financial costs of different vehicle technologies are calculated for an average Belgian driver. Environmentally friendly vehicles are compared with conventional petrol and diesel vehicles. The assessments are done from a life cycle perspective. The effect on human health, resources and ecosystems is considered when calculating the environmental impact. The total cost of ownership (TCO model includes the purchase price, registration and road taxes, insurance, fuel or electricity cost, maintenance, tires replacement, technical control, battery leasing and battery replacement. In the presented analysis different vehicle technologies and fuels are compared (petrol, diesel, hybrid electric vehicles (HEVs, battery electric vehicles (BEVs and plug-in hybrid electric vehicles (PHEVs on their level of environmental impact and cost per kilometer. The analysis shows a lower environmental impact for electric vehicles. However, electric vehicles have a higher total cost of ownership compared to conventional vehicles, even though the fuel operating costs are significantly lower. The purchase cost of electric vehicles is highly linked to the size of the battery pack, and not to the size of the electric vehicle. This explains the relative high cost for the electric city cars and the comparable cost for the medium and premium cars.

  1. The environmental technology sector in the Netherlands. Sectoral study on size, export and innovation of the Dutch environmental technology businesses in 2010

    International Nuclear Information System (INIS)

    2010-10-01

    The title research was conducted in the period April 2009 - October 2010 and was based on the joint information about the sector provided by the team members, existing documentation and a survey among representatives of environmental technology businesses. The sector has two approaches: environmental protection and management of natural resources, the main themes being sustainable energy and energy efficiency. The research showed the importance of the environmental compartment of sustainable energy. In 2008 the largest share of added value was generated in this compartment: over 900 million Euros. [nl

  2. EASETECH – A LCA model for assessment of environmental technologies

    DEFF Research Database (Denmark)

    Damgaard, Anders; Baumeister, Hubert; Astrup, Thomas Fruergaard

    2014-01-01

    EASETECH is a new model for the environmental assessment of environmental technologies developed in collaboration between DTU Environment and DTU Compute. EASETECH is based on experience gained in the field of waste management modelling over the last decade and applies the same concepts to systems...

  3. Comparative economic evaluation of environmental impact of different cogeneration technologies

    International Nuclear Information System (INIS)

    Patrascu, Roxana; Athanasovici, Victor; Raducanu, Cristian; Minciuc, Eduard; Bitir-Istrate, Ioan

    2004-01-01

    Cogeneration is one of the most powerful technologies for reduction of environmental pollution along with renewable energies. At the Kyoto Conference cogeneration has been identified as being the most important measure for reducing emissions of greenhouse effect gases. It has also been mentioned that cogeneration has a potential of reducing pollution with about 180 million tones per year. In order to promote new cogeneration technologies and evaluate the existing ones it is necessary to know and to be able to quantify in economical terms the environmental issues. When comparing different cogeneration technologies: steam turbine (TA), gas turbine (TG), internal combustion engine (MT), in order to choose the best one, the final decision implies an economic factor, which is even more important if it includes the environmental issues. The environmental impact of different cogeneration technologies is quantified using different criteria: depletion of non-renewable natural resources, eutrofisation, greenhouse effect, acidification etc. Environmental analysis using these criteria can be made using the 'impact with impact' methodology or the global one. The results of such an analysis cannot be quantified economically directly. Therefore there is a need of internalisation of ecological effects within the costs of produced energy: electricity and heat. In the energy production sector the externalizations represent the indirect effects on the environment. They can be materialised within different types of environmental impact: - Different buildings of mines, power plants etc; - Fuel losses during transportation and processing; - Effect of emissions in the air, water and soil. Introduction of the environmental impact costs in the energy price is called internalisation and it can be made using the direct and indirect methods. The paper discusses aspects regarding the emissions of cogeneration systems, the eco-taxes - method of 'internalisation' of environmental

  4. 75 FR 76003 - Tricor Ten Section Hub LLC; Notice of Availability of the Environmental Assessment for the...

    Science.gov (United States)

    2010-12-07

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP09-432-000] Tricor Ten Section Hub LLC; Notice of Availability of the Environmental Assessment for the Proposed Ten Section Gas... Commission) has prepared an environmental assessment (EA) for the Ten Section Gas Storage Project, in Kern...

  5. Proceedings of the 2. IASTED international conference on advanced technology in the environmental field

    International Nuclear Information System (INIS)

    Ubertini, L.

    2006-01-01

    This international conference provided a forum for representatives from academic institutions, government agencies, and industries to discuss emerging technologies in the environmental field. Recent developments in physico-chemical remediation technologies were reviewed, as well as strategies related to waste water treatment in urban and coastal regions. Advances in bio-plastics and bio-hydrogen production were also discussed along with various bioremediation techniques. Strategies related to urban drainage and wetland management were presented together with issues related to energy efficiency and ecological sustainability. The conference was divided into 6 sections: (1) wastewater treatment and reuse; (2) biotechnology, bioremediation and biomass; (3) integrated water resources management; (4) alternative energy systems; (5) decision support tools; and (6) groundwater and soil remediation. The conference featured 48 presentations, of which 9 have been catalogued separately for inclusion in this database. refs., tabs., figs

  6. Proceedings of the 2. IASTED international conference on advanced technology in the environmental field

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, L. [IRPI National Research Council, Rome (Italy)] (ed.)

    2006-07-01

    This international conference provided a forum for representatives from academic institutions, government agencies, and industries to discuss emerging technologies in the environmental field. Recent developments in physico-chemical remediation technologies were reviewed, as well as strategies related to waste water treatment in urban and coastal regions. Advances in bio-plastics and bio-hydrogen production were also discussed along with various bioremediation techniques. Strategies related to urban drainage and wetland management were presented together with issues related to energy efficiency and ecological sustainability. The conference was divided into 6 sections: (1) wastewater treatment and reuse; (2) biotechnology, bioremediation and biomass; (3) integrated water resources management; (4) alternative energy systems; (5) decision support tools; and (6) groundwater and soil remediation. The conference featured 48 presentations, of which 9 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  7. Proceedings of the Conference on Industry Partnerships to Deploy Environmental Technology

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-01-01

    Three goals were accomplished at the meeting: review of the latest environmental and waste-management technologies being developed under FETC sponsorship; addressing the accomplishments in, and barriers affecting, private-sector development of these technologies; and laying the groundwork for future technology development initiatives and opportunities.

  8. Integration of environmentally compatible soldering technologies for waste minimization

    International Nuclear Information System (INIS)

    Hosking, F.M.

    1992-01-01

    There has been a concentrated effort throughout the international microelectronics industry to phase out chlorofluorocarbon (CFC) materials and alleviate the serious problem of ozone depletion created by the release of CFCS. The development of more environmentally compatible manufacturing technologies is the cornerstone of this effort. Alternative materials and processes for cleaning and soldering have received special attention. Electronic. soldering typically utilizes rosin-based fluxes to promote solder wettability. Flux residues must be removed from the soldered parts when high product reliability is essential. Halogenated or CFC solvents have been the principle chemicals used to clean the residues. With the accelerated push to eliminate CFCs in the US by 1995, CFC-free solvents, aqueous-based cleaning, water soluble or ''no clean'' fluxes, and fluxless soldering technologies are being developed and quickly integrated into manufacturing practice. Sandia's Center for Solder Science and Technology has been ch g a variety of fluxless and alternative soldering technologies for DOE's waste minimization program. The work has focused on controlled atmosphere, laser, and ultrasonic fluxless soldering, protective metallic and organic coatings, and fluxes which have water soluble or low solids-based chemistries. With the increasing concern that Pb will also be banned from electronic soldering, Sandia has been characterizing the wetting, aging, and mechanical properties of Pb-fire solder alloys. The progress of these integrated studies will be discussed. Their impact on environmentally compatible manufacturing will be emphasized. Since there is no universal solution to the various environmental, safety, and health issues which currently face industry, the proposed technologies offer several complementary materials and processing options from which one can choose

  9. Clean coal technologies: A business report

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R ampersand D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base

  10. The energy consumption and environmental impacts of SCR technology in China

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zengying; Ma, Xiaoqian; Lin, Hai; Tang, Yuting [School of Electric Power, Guangdong Key Laboratory of Clean Energy Technology, South China University of Technology, Guangzhou 510640 (China)

    2011-04-15

    Energy and environment are drawing greater attention today, particularly with the rapid development of the economy and increase consumption of energy in China. At present, coal-fired power plants are mainly responsible for atmospheric air pollution. The selective catalytic reduction (SCR) technology is a highly effective method for NO{sub X} control. The present study identified and quantified the energy consumption and the environmental impacts of SCR system throughout the whole life cycle, including production and transportation of manufacturing materials, installation and operation of SCR technology. The analysis was conducted with the utilization of life cycle assessment (LCA) methodology which provided a quantitative basis for assessing potential improvements in the environmental performance of the system. The functional unit of the study was 5454 t NO{sub X} emission from an existing Chinese pulverized coal power plant for 1 year. The current study compared life cycle emissions from two types of de-NO{sub X} technologies, namely the SCR technology and the selective non-catalytic reduction (SNCR) technology, and the case that NO{sub X} was emitted into atmosphere directly. The results showed that the environmental impact loading resulting from SCR technology (66810 PET{sub 2000}) was smaller than that of flue gas emitted into atmosphere directly (164121 PET{sub 2000}) and SNCR technology (105225 PET{sub 2000}). More importantly, the SCR technology is much more effective at the elimination of acidification and nutrient enrichment than SNCR technology and the case that NO{sub X} emitted into atmosphere directly. This SCR technology is more friendly to the environment, and can play an important role in NO{sub X} control for coal-fired power plants as well as industrial boilers. (author)

  11. The application of GIS and remote sensing technologies for site characterization and environmental assessment

    International Nuclear Information System (INIS)

    Durfee, R.C.; McCord, R.A.; Dobson, J.E.

    1993-01-01

    Environmental cleanup and restoration of hazardous waste sites are major activities at federal facilities around the US. Geographic information systems (GIS) and remote sensing technologies are very useful computer tools to aid in site characterization, monitoring, assessment, and remediation efforts. Results from applying three technologies are presented to demonstrate examples of site characterization and environmental assessment for a federal facility. The first technology involves the development and use of GIS within the comprehensive Oak Ridge Environmental Information System (OREIS) to integrate facility data, terrain models, aerial and satellite imagery, demographics, waste area information, and geographic data bases. The second technology presents 3-D subsurface analyses and displays of groundwater and contaminant measurements within waste areas. In the third application, aerial survey information is being used to characterize land cover and vegetative patterns, detect change, and study areas of previous waste activities and possible transport pathways. These computer technologies are required to manage, analyze, and display the large amounts of environmental and geographic data that must be handled in carrying out effective environmental restoration

  12. Product waste in the automotive industry : Technology and environmental management

    NARCIS (Netherlands)

    Groenewegen, Peter; Hond, Frank Den

    1993-01-01

    In this article the changes in technology and industry structure forced by waste management in the automotive industry are explored. The analysis is based on (1) a characterisation of corporate response to environmental issues, and (2) the management of technology applied to the car manufacturing

  13. Environmental effects of information and communications technologies.

    Science.gov (United States)

    Williams, Eric

    2011-11-16

    The digital revolution affects the environment on several levels. Most directly, information and communications technology (ICT) has environmental impacts through the manufacturing, operation and disposal of devices and network equipment, but it also provides ways to mitigate energy use, for example through smart buildings and teleworking. At a broader system level, ICTs influence economic growth and bring about technological and societal change. Managing the direct impacts of ICTs is more complex than just producing efficient devices, owing to the energetically expensive manufacturing process, and the increasing proliferation of devices needs to be taken into account. © 2011 Macmillan Publishers Limited. All rights reserved

  14. Technological change, depletion and environmental policy in the offshore oil and gas industry

    Science.gov (United States)

    Managi, Shunsuke

    Technological change is central to maintaining standards of living in modern economies with finite resources and increasingly stringent environmental goals. Successful environmental policies can contribute to efficiency by encouraging, rather than inhibiting, technological innovation. However, little research to date has focused on the design and implementation of environmental regulations that encourage technological progress, or in insuring productivity improvements in the face of depletion of natural resources and increasing stringency of environmental regulations. This study models and measures productivity change, with an application to offshore oil and gas production in the Gulf of Mexico using Data Envelopment Analysis. This is an important application because energy resources are central to sustaining our economy. The net effects of technological progress and depletion on productivity of offshore oil and gas production are measured using a unique field-level set of data of production from all wells in the Gulf of Mexico over the time period from 1946--1998. Results are consistent with the hypothesis that technological progress has mitigated depletion effects over the study period, but the pattern differs from the conventional wisdom for nonrenewable resource industries. The Porter Hypothesis was recast, and revised version was tested. The Porter Hypothesis states that well designed environmental regulations can potentially contribute to productive efficiency in the long run by encouraging innovation. The Porter Hypothesis was recast to include market and nonmarket outputs. Our results support the recast version of Porter hypothesis, which examine productivity of joint production of market and environmental outputs. But we find no evidence for the standard formulation of the Porter hypothesis, that increased stringency of environmental regulation lead to increased productivity of market outputs and therefore increased industry profits. The model is used to

  15. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology. (KRM)

  16. New environmental applications of radiation technology

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1998-01-01

    The paper is a brief review of recent data on environmental applications of radiation technology obtained with participation of the author. It includes the results of the study on combined electron-beam and ozone treatment of municipal wastewater in the aerosol flow and electron-beam purification of water from heavy metals (lead, cadmium, mercury, chromium) by two methods (in the presence of formate as an OH radical scavenger or sorbents of inorganic and plant origins)

  17. Distributed utility technology cost, performance, and environmental characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y; Adelman, S

    1995-06-01

    Distributed Utility (DU) is an emerging concept in which modular generation and storage technologies sited near customer loads in distribution systems and specifically targeted demand-side management programs are used to supplement conventional central station generation plants to meet customer energy service needs. Research has shown that implementation of the DU concept could provide substantial benefits to utilities. This report summarizes the cost, performance, and environmental and siting characteristics of existing and emerging modular generation and storage technologies that are applicable under the DU concept. It is intended to be a practical reference guide for utility planners and engineers seeking information on DU technology options. This work was funded by the Office of Utility Technologies of the US Department of Energy.

  18. Optimizing the Environmental Performance of In Situ Thermal Remediation Technologies Using Life Cycle Assessment

    DEFF Research Database (Denmark)

    Lemming, Gitte; Nielsen, Steffen G.; Weber, Klaus

    2013-01-01

    In situ thermal remediation technologies provide efficient and reliable cleanup of contaminated soil and groundwater, but at a high cost of environmental impacts and resource depletion due to the large amounts of energy and materials consumed. This study provides a detailed investigation of four...... in situ thermal remediation technologies (steam enhanced extraction, thermal conduction heating, electrical resistance heating, and radio frequency heating) in order to (1) compare the life-cycle environmental impacts and resource consumption associated with each thermal technology, and (2) identify...... improvements is a 10 to 21% decrease in environmental impacts and an 8 to 20% decrease in resource depletion depending on the thermal remediation technology considered. The energy consumption was found to be the main contributor to most types of environmental impacts; this will, however, depend...

  19. Environmental Consequences of Future Biogas Technologies based on Separated Slurry

    DEFF Research Database (Denmark)

    Hamelin, Lorie; Wesnæs, Marianne; Wenzel, Henrik

    2011-01-01

    different slurry separation technologies have been assessed and compared to a business-as-usual reference slurry management scenario. The results show that the environmental benefits of such biogas production are highly dependent upon the efficiency of the separation technology used to concentrate......This consequential life cycle assessment study highlights the key environmental aspects of producing biogas from separated pig and cow slurry, a relatively new but probable scenario for future biogas production, as it avoids the reliance on constrained carbon cosubstrates. Three scenarios involving...... the volatile solids in the solid fraction. The biogas scenario involving the most efficient separation technology resulted in a dry matter separation efficiency of 87% and allowed a net reduction of the global warming potential of 40%, compared to the reference slurry management. This figure comprises...

  20. Environmental measurements and technology for non-proliferation objectives. Final report

    International Nuclear Information System (INIS)

    Broadway, J.A.

    1998-01-01

    The purpose of this study is to identify multi-disciplinary and single focus laboratories from the environmental and public health communities that can serve as technical center of opportunity for nuclear, inorganic and organic analyses. The objectives of the Office of Research and Development effort are twofold: (1) to identify the technology shortcomings and technologies gaps (thus requirements) within these communities that could benefit from state-of-the-art infield analysis technologies currently under development and (2) to promote scientist-to-scientist dialog and technical exchange under such existing US government internship programs (eg SABIT/USDOC) to improve skills and work relationships. Although the data analysis will focus on environmentally sensitive signatures and materials, the office of Research and Development wishes to further its nuclear non-proliferation objectives by assessing the current technical skill and ingenious analytical tools in less-developed countries so as to broaden the base of capability for multi-species measurement technology development

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION: TEST/QA PLAN FOR THE VERIFICATION TESTING OF SELECTIVE CATALYTIC REDUCTION CONTROL TECHNOLOGIES FOR HIGHWAY, NONROAD, AND STATIONARY USE DIESEL ENGINES

    Science.gov (United States)

    The U.S. Environmental Protection Agency established the Environmental Technology Verification Program to accelerate the development and commercialization of improved environmental technology through third party verification and reporting of product performance. Research Triangl...

  2. 5th Conference on Aerospace Materials, Processes, and Environmental Technology

    Science.gov (United States)

    Cook, M. B. (Editor); Stanley, D. Cross (Editor)

    2003-01-01

    Records are presented from the 5th Conference on Aerospace Materials, Processes, and Environmental Technology. Topics included pollution prevention, inspection methods, advanced materials, aerospace materials and technical standards,materials testing and evaluation, advanced manufacturing,development in metallic processes, synthesis of nanomaterials, composite cryotank processing, environmentally friendly cleaning, and poster sessions.

  3. Technological challenges for boosting coal production with environmental sustainability.

    Science.gov (United States)

    Ghose, Mrinal K

    2009-07-01

    The global energy requirement has grown at a phenomenon rate and the consumption of primary energy sources has been a very high positive growth. This paper focuses on the consumption of different primary energy sources and it identifies that coal will continue to remain as the prime energy source in foreseeable future. It examines the energy requirement perspective for India and demand of coal as the prime energy source. Economic development and poverty alleviation depend on securing affordable energy sources and Indian coal mining industry offers a bright future for the country's energy security, provided the industry is allowed to develop by supportive government policies and adopts latest technologies for mining. It is an irony that in-spite of having a plentiful reserves, India is not able to jack up coal production to meet its current and future demand. It discusses the strategies to be adopted for growth and meeting the coal demand. But such energy are very much concerned with environmental degradation and must be driven by contemporary managerial acumen addressing environmental and social challenges effectively The paper highlights the emissions of greenhouse gases due to burning of fossil fuels and environmental consequences of global warming and sea-level rise. Technological solutions for environment friendly coal mining and environmental laws for the abatement of environmental degradation are discussed in this paper.

  4. SIHTI 2. Energy and environmental technology. Yearbook 1994 of the research programme. Project reports

    International Nuclear Information System (INIS)

    Korhonen, M.; Saviharju, K.

    1995-01-01

    The SIHTI 2 research programme on energy and environmental technology is concentrating on areas of environmental technology that are vital to Finland or in which Finns can engage in pioneering research. The promotion of product development within the environmental technology industry produces solutions for reducing the emissions of the energy sector. It is also a way of boosting Finland's share of the world market for such technology. The objectives of the programme are to cut down harmful emissions, recycle raw materials, reduce the amount of byproducts and wastes and achieve a greater utilisation of wastes. In additions, an objective is to create basic information about the effects of environmental protection technology for the other national research programmes. The development of internationally comparable research, monitoring and measurement methods creates a basis for wide-ranging international cooperation. The area of research also covers environmental problems connected with energy in the forest and base metal industries as well as the systematic development of life-cycle analyses. The programme will be carried out in 1993 - 1998. As of 1 January 1995 the Technology development Centre TEKES took over the responsibility for energy technology research and development activities, which were previously administered by the Energy Department of the Ministry of Trade and Industry. This yearbook 1994 contains project reports of the research and joint development projects and information about the participating institutions. (orig.)

  5. Development document for best technology available for the location, design, construction, and capacity of cooling water intake structures for minimizing adverse environmental impact

    International Nuclear Information System (INIS)

    Train, R.E.; Breidenbach, A.W.; Hall, E.P.; Barnes, D.

    1976-04-01

    This document presents the findings of an extensive study of the available technology for the location, design construction and capacity of cooling water intake structures for minimizing adverse environmental impact, in compliance with and to implement Section 316(b) of the Federal Water Pollution Control Act Amendments of 1972

  6. Using cloud technologies to complement environmental information systems

    International Nuclear Information System (INIS)

    Schlachter, Thorsten; Duepmeier, Clemens; Weidemann, Rainer

    2013-01-01

    Cloud services can help to close the gap between available and published data by providing infrastructure, storage, services, or even whole applications. Within this paper we present some fundamental ideas on the use of cloud services for the construction of powerful services in order to toughen up environmental information systems for the needs of state of the art web, portal, and mobile technologies. We include uses cases for the provision of environmental information as well as for the collection of user generated data. (orig.)

  7. The diffusion of patented oil and gas technology with environmental uses: A forward patent citation analysis

    International Nuclear Information System (INIS)

    Duch-Brown, Néstor; Costa-Campi, María Teresa

    2015-01-01

    Relevant advances in the mitigation of environmental impact could be obtained by the appropriate diffusion of existing environmental technologies. In this paper, we look at the diffusion of knowledge related to environmental technologies developed within the oil and gas industry. To assess knowledge spillovers from oil and gas inventions as a measure of technology diffusion, we rely on forward patent citations methodology. Results show that there is a strong likelihood that the citing patent will be eventually linked to environmental technologies if the original oil and gas invention has already environmental uses. Moreover, both intra and intersectoral spillovers produce a “turnabout” effect, meaning that citing patents show the opposite quality level of the cited patent. Our results support the idea that more sector-specific environmental policies, with an emphasis on diffusion, would significantly improve the use of environmental technologies developed within the oil and gas industry. -- Highlights: •Knowledge spillovers from oil and gas inventions are of an intrasectoral nature. •Environmental uses in original patents diffuse to patents with environmental uses. •The “turnabout” effect converts low quality patents into high quality citing patents. •Diffusion of oil and gas inventions need more ad hoc instruments

  8. Growth, technology, and environmental change—nonlinearity and non-constant returns

    Directory of Open Access Journals (Sweden)

    Wei-Bin Zhang

    2002-01-01

    Full Text Available This paper proposes a growth model with endogenous technology and environmental change. The economy consists of two sectors, production and environmental. The production sector produces goods with knowledge, labor, and capital as inputs under perfect competitive conditions. Knowledge accumulates through learning by doing. The environment is affected by production, consumption, the environmental sector's production efficiency, and the nature's purification. The simple model shows that it is difficult to explicitly judge the impact of factors such as environmental policy, knowledge accumulation efficiency and preference change on the environment.

  9. Overview. Department of Radiation and Environmental Biology. Section 7

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    1995-01-01

    The activities of the Department of Radiation and Environmental Biology in 1994 cover the following goals: application of fission neutrons to cancer therapy, studies on neutron efficiency to induce mutation and chromosomal damage, study on the formula for alteration of the repair process observed in case of gene mutation in TSH assay, investigation of new methods for more accurate measurements of molecular and cellular damage caused by radiation and environmental agents and studies on possible improvement in the application of different radiation sources to clinical cancer therapy. In this section of the Annual Report, the description of the mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given

  10. International technology catalogue: Foreign technologies to support the environmental restoration and waste management needs of the DOE complex

    International Nuclear Information System (INIS)

    Matalucci, R.V.

    1995-07-01

    This document represents a summary of 27 foreign-based environmental restoration and waste management technologies that have been screened and technically evaluated for application to the cleanup problems of the Department of Energy (DOE) nuclear weapons complex. The evaluation of these technologies was initiated in 1992 and completed in 1995 under the DOE's International Technology Coordination Program of the Office of Technology Development. A methodology was developed for conducting a country-by-country survey of several regions of the world where specific environmental technology capabilities and market potential were investigated. The countries that were selected from a rank-ordering process for the survey included: then West Germany, the Netherlands, France, Japan, Taiwan, the Czech and Slovak Republics, and the Former Soviet Union. The notably innovative foreign technologies included in this document were screened initially from a list of several hundred, and then evaluated based on criteria that examined for level of maturity, suitability to the DOE needs, and for potential cost effective application at a DOE site. Each of the selected foreign technologies that were evaluated in this effort for DOE application were subsequently matched with site-specific environmental problem units across the DOE complex using the Technology Needs Assessment CROSSWALK Report. For ease of tracking these technologies to site problem units, and to facilitate their input into the DOE EnviroTRADE Information System, they were categorized into the following three areas: (1) characterization, monitoring and sensors, (2) waste treatment and separations, and (3) waste containment. Technical data profiles regarding these technologies include title and description, performance information, development status, key regulatory considerations, intellectual property rights, institute and contact personnel, and references

  11. Putting environmental technologies into the mainstream

    DEFF Research Database (Denmark)

    Kannan, Devika; Diana, Gabriel Cepollaro; Jabbour, Charbel José Chiappetta

    2017-01-01

    of a new CSF called employee empowerment, which derives from learning and benchmarking initiatives. Two CSFs can be highlighted as the most relevant and unanimously present in both company “Alpha” and company “Beta”: support from senior management and employee empowerment through learning and benchmarking...... greater intensity in terms of CSFs than Alpha. This work can be considered one of the first researches relating CSFs and the adoption of environmental technologies in medium-sized firms in Brazil....

  12. Environmental regulation and technological innovation

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, A.E. [Carnegie Mellon Electricity Industry Center, Pittsburg, PA (United States)

    2002-07-01

    Government policies are a major factor in the determination of structural conditions of competition. The innovative activity comprises the following: invention, adoption, and diffusion. Invention involves research and development activities such as patenting, research and development budgets. The adoption phase is concerned with deployment. As for the diffusion phase, it involves commercialization, and scale-economies. The process of introducing new technologies that are adopted by small numbers of customers in a niche market was explained. Once costs are lowered through experience gained in designing, manufacturing and servicing the new technology, mew applications generally lead to larger markets. Environmental technologies have no early adopters, implying that governments have an important role to play. However, commercial processes are not normally as well known to government as it is to the private sector. The electoral cycle also interferes with long term research and development efforts for technological clusters. A look at sulphur dioxide control at United States power plants illustrated the problem. The author then explained the reasons behind low allowance prices. Low-sulphur western coal was rendered economic in large areas of the United States by rail deregulation. Electricity restructuring was also a factor. The author indicated that binding government regulation must come before adoption and diffusion of emission controls. A summary of recent research was provided, in which the author stated that no single policy instrument was likely to properly stimulate innovative activity. In those cases where both supply and demand are stimulated by government, the technological innovation is greatest. Stringent regulations induce innovation, as do greater flexibility and greater regulatory certainty. Knowledge transfer within the industry is vital. 8 refs., 3 figs.

  13. Environmental Virtue: Motivation, Skill and (In)formation Technology.

    NARCIS (Netherlands)

    Coeckelbergh, Mark

    2011-01-01

    Environmental virtue ethics faces the problem of motivation: there is a gap between knowledge and action. This paper first analyzes the roots of this problem and discusses possible solutions that require the use of imagination and information technology. Then it reformulates the problem of

  14. Corporate Social Responsibility and Environmentally Sound Technology in Endogenous Firm Growth

    Directory of Open Access Journals (Sweden)

    Angela C. Chao

    2017-02-01

    Full Text Available We have entered the “New Normal” economy, with more emphasis on economic growth driven by innovation than resource. This paper investigates the impacts of firms considering corporate social responsibility and environmentally sound technology by building a three-stage Cournot competition model with asymmetric cost. The sustainable development of economic and endogenous firm growth achieves the win–win result in the theoretical model. Using data from 31 firms in China, this paper empirically researches on the relationships among corporate social responsibility, environmentally sound technology and firm endogenous growth. The results show that: (1 Marginal cost decreased with the increase of innovation, as well as getting government research and development subsidy, which has a positive effect on firm growth. (2 Consumers respond positively to corporate social responsibility initiative, the reputation of the firm can be improved. At the same time, environmentally sound technology objectively reduces the marginal cost of competitors because of the technology spillover. (3 Profit of a firm undertaking corporate social responsibility partly decreases, which has a negative effect on firm growth. The contradiction between corporate social responsibility and profit of firm could be adjusted, such as socially responsible investment fund hosed by institutional investors.

  15. 75 FR 29533 - National Advisory Council for Environmental Policy and Technology Notice of Charter Renewal

    Science.gov (United States)

    2010-05-26

    ... and Technology Notice of Charter Renewal AGENCY: Environmental Protection Agency (EPA). ACTION: Notice....2, the National Advisory Council for Environmental Policy and Technology (NACEPT) is a necessary...

  16. Green innovations and organizational change: Making better use of environmental technology

    OpenAIRE

    Hottenrott, Hanna; Rexhäuser, Sascha; Veugelers, Reinhilde

    2012-01-01

    This study investigates productivity effects to firms introducing new environmental technologies. The literature on within-firm organisational change and productivity suggests that firms can get higher productivity effects from adopting new technologies if complementary organisational changes are adopted simultaneously. Such complementarity effects may be of critical importance for the case of adoption of greenhouse gas (GHG) abatement technologies. The adoption of these technologies is often...

  17. Do Voluntary Pollution Reduction Programs (VPRs) Spur Innovation in Environmental Technology

    OpenAIRE

    Carrion-Flores, Carmen E.; Innes, Robert; Sam, Abdoul G.

    2006-01-01

    In the context of the EPA's 33/50 program, we study whether a VPR can prompt firms to develop new environmental technologies that yield future emission reduction benefits. Because pollutant reductions generally require costly reformulations of products and/or production processes, environmental over-compliance induced by a VPR may potentially spur environmental innovation that can reduce these costs. Conversely, a VPR may induce a participating firm to divert resources from environmental rese...

  18. Environmental technologies of woody crop production systems

    Science.gov (United States)

    Ronald S. Zalesny Jr.; John A. Stanturf; Emile S. Gardiner; Gary S. Ba??uelos; Richard A. Hallett; Amir Hass; Craig M. Stange; James H. Perdue; Timothy M. Young; David R. Coyle; William L. Headlee

    2016-01-01

    Soil erosion, loss of productivity potential, biodiversity loss, water shortage, and soil and water pollution are ongoing processes that decrease or degrade provisioning (e.g., biomass, freshwater) and regulating (e.g., carbon sequestration, soil quality) ecosystem services. Therefore, developing environmental technologies that maximize these services is essential for...

  19. Environmental remediation and waste management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, M.W.; Harlan, C.P.

    1993-12-31

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.

  20. Environmental remediation and waste management information systems

    International Nuclear Information System (INIS)

    Harrington, M.W.; Harlan, C.P.

    1993-01-01

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency's (EPA's) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA's CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information

  1. Public participation in the evaluation of innovative environmental cleanup technology

    International Nuclear Information System (INIS)

    Peterson, T.; McCabe, G.; Serie, P.; Niesen, K.

    1994-08-01

    Technologies for remediation of contamination are urgently needed to clean up US Department of Energy (DOE) sites across the country. DOE is managing a national program to develop, demonstrate, and deploy new technologies with promise to expedite this cleanup. The Integrated Demonstration for Cleanup of Volatile Organic Compounds at Arid Sites (VOC-Arid ID) is one such effort. Time and resources, however, are too limited to be invested in methods of remediation that will never be deployed because they have not been rigorously evaluated or because they face the withering opposition of stakeholders. Therefore the VOC-Arid ID is assessing technology both in terms of its technical effectiveness and its stakeholder acceptability. Only if a technology performs as required and is acceptable to regulators, users of technology, and the public will the VOC-Arid ID recommend its use. What distinguishes public involvement in the VOC-Arid ID is the direct influence stakeholders have on the design of technology demonstrations by working directly with technology developers. Stakeholders participated in defining the criteria with which innovative environmental cleanup technology is being evaluated. The integrated demonstration is committed to providing stakeholders with the information they've indicated they need to reach reasoned judgments about the use of specific cleanup technologies. A guiding principle of the VOC-Arid ID is that stakeholder participation improves the technologies being developed, enhances the acceptance of the technologies, and will lead to the broad and timely deployment of appropriate and effective methods of environmental remediation. The VOC-Arid ID has involved stakeholders from the host demonstration site, Hanford, Washington, and from other and sites where the ID technologies may be deployed

  2. Driving forces and barriers for environmental technology development; Drivkrefter og barrierer for utvikling av miljoeteknologi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Driving forces and barriers behind development and usage of environmental technology is discussed, and also whether there are certain characteristics related to environmental innovations compared to other innovations in general. The development of environmental technology is in principle dominated by the same drivers and barriers as any other technology, but the order and strength of the various factors may be different. This examination as well as other empirical studies shows that regulations play a greater part for environmental technology than 'pure market forces'. To many participants it is important to be one step ahead of the regulations, i.e. the expected regulations are equally important as the factual ones in driving the technology development. Players in the business community express that it is important that the authorities cooperate with them when introducing new regulations. This will increase acceptance for the regulations and facilitate the necessary adjustments. The most important barrier in the development and use of the technologies studied is probably the lack of demand.

  3. Heavy-Section Steel Technology program fracture issues

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1989-10-01

    Large scale fracture mechanics tests have resulted in the identification of a number of fracture technology issues. Identification of additional issues has come from the reactor vessel materials irradiation test program and from reactor operating experience. This paper provides a review of fracture issues with an emphasis on their potential impact on a reactor vessel pressurized thermal shock (PTS) analysis. Mixed mode crack propagation emerges as a major issue, due in large measure to the poor performance of existing models for the prediction of ductile tearing. Rectification of ductile tearing technology deficiencies may require extending the technology to include a more complete treatment of stress state and loading history effects. The effect of cladding on vessel fracture remains uncertain to the point that it is not possible to determine at this time if the net effect will be positive or negative. Enhanced fracture toughness for shallow flaws has been demonstrated for low strength structural steels. Demonstration of a similar effect in reactor pressure vessel steels could have a significant beneficial effect on the probabilistic analysis of reactor vessel fracture. Further development of existing fracture mechanics models and concepts is required to meet the special requirements for fracture evaluation of circumferential flaws in the welds of ring forged vessels. Fracture technology advances required to address the issues discussed in this paper are the major objective for the ongoing Heavy Section Steel Technology (HSST) program at ORNL. 24 refs., 18 figs

  4. Heavy-section steel technology program: Fracture issues

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1992-01-01

    Large-scale fracture mechanics tests have resulted in the identification of a number of fracture technology issues. Identification of additional issues has come from the reactor vessel materials irradiation test program and from reactor operating experience. This paper provides a review of fracture issues with an emphasis on their potential impact on a reactor vessel pressurized thermal shock (PTS) analysis. Mixed mode crack propagation emerges as a major issue, due in large measure to the poor performance of existing models for the prediction of ductile tearing. Rectification of ductile tearing technology deficiencies may require extending the technology to include a more complete treatment of stress state and loading history effects. The effect of cladding on vessel fracture remains uncertain to the point that it is not possible to determine at this time if the net effect will be positive or negative. Enhanced fracture toughness for shallow flaws has been demonstrated for low-strength structural steels. Demonstration of a similar effect in reactor pressure vessel steels could have a significant beneficial effect on the probabilistic analysis of reactor vessel fracture. Further development of existing fracture mechanics models and concepts is required to meet the special requirements for fracture evaluation of circumferential flaws in the welds of ring-forged vessels. Fracture technology advances required to address the issues discussed in this paper are the major objective for the ongoing Heavy Section Steel Technology (HSST) program at ORNL

  5. Single-cell technologies in environmental omics

    KAUST Repository

    Kodzius, Rimantas

    2015-10-22

    Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.

  6. Single-cell technologies in environmental omics

    KAUST Repository

    Kodzius, Rimantas; Gojobori, Takashi

    2015-01-01

    Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.

  7. Waste Not, Want Not: Analyzing the Economic and Environmental Viability of Waste-to-Energy (WTE) Technology for Site-Specific Optimization of Renewable Energy Options

    Energy Technology Data Exchange (ETDEWEB)

    Funk, K.; Milford, J.; Simpkins, T.

    2013-02-01

    Waste-to-energy (WTE) technology burns municipal solid waste (MSW) in an environmentally safe combustion system to generate electricity, provide district heat, and reduce the need for landfill disposal. While this technology has gained acceptance in Europe, it has yet to be commonly recognized as an option in the United States. Section 1 of this report provides an overview of WTE as a renewable energy technology and describes a high-level model developed to assess the feasibility of WTE at a site. Section 2 reviews results from previous life cycle assessment (LCA) studies of WTE, and then uses an LCA inventory tool to perform a screening-level analysis of cost, net energy production, greenhouse gas (GHG) emissions, and conventional air pollution impacts of WTE for residual MSW in Boulder, Colorado. Section 3 of this report describes the federal regulations that govern the permitting, monitoring, and operating practices of MSW combustors and provides emissions limits for WTE projects.

  8. Energy Technology Division research summary - 1999.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  9. MICROBIAL SURFACTANTS IN ENVIRONMENTAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2015-08-01

    Full Text Available It was shown literature and own experimental data concerning the use of microbial surface active glycolipids (rhamno-, sophoro- and trehalose lipids and lipopeptides for water and soil purification from oil and other hydrocarbons, removing toxic heavy metals (Cu2+, Cd2+, Ni2+, Pb2+, degradation of complex pollution (oil and other hydrocarbons with heavy metals, and the role of microbial surfactants in phytoremediation processes. The factors that limit the use of microbial surfactants in environmental technologies are discussed. Thus, at certain concentrations biosurfactant can exhibit antimicrobial properties and inhibit microorganisms destructing xenobiotics. Microbial biodegradability of surfactants may also reduce the effectiveness of bioremediation. Development of effective technologies using microbial surfactants should include the following steps: monitoring of contaminated sites to determine the nature of pollution and analysis of the autochthonous microbiota; determining the mode of surfactant introduction (exogenous addition of stimulation of surfactant synthesis by autochthonous microbiota; establishing an optimal concentration of surfactant to prevent exhibition of antimicrobial properties and rapid biodegradation; research both in laboratory and field conditions.

  10. Application of environmental isotope tracing technology to geothermal geochemistry

    International Nuclear Information System (INIS)

    Shang Yingnan

    2006-01-01

    This paper reviews the recent application and development of environmental isotope tracing technology to geothermal geochemistry in the following aspects: gas isotopes (He, C) tracing of warm springs; H, O isotope tracing on the origin and cause of geothermal water, environmental isotope dating of geothermal water, and the advantage of excess parameter of deuterium (d) in geothermal research. The author also suggests that isotope method should combine with other geological methods to expand its advantage. (authors)

  11. Effects of `Environmental Chemistry' Elective Course Via Technology-Embedded Scientific Inquiry Model on Some Variables

    Science.gov (United States)

    Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel

    2014-06-01

    The purpose of this study is to examine the effects of `environmental chemistry' elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge (TPACK) levels. Within one group pre-test-post-test design, the study was conducted with 117 SSSTs (68 females and 49 males—aged 21-23 years) enrolled in an `environmental chemistry' elective course in the spring semester of 2011-2012 academic-years. Instruments for data collection comprised of Environmental Chemistry Conceptual Understanding Questionnaire, TPACK survey, and Chemistry Attitudes and Experiences Questionnaire. Significant increases in the SSSTs' conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and TPACK levels are attributed to the SSSTs learning how to use the innovative technologies in the contexts of the `environmental chemistry' elective course and teaching practicum. The study implies that the TESI model may serve a useful purpose in experimental science courses that use the innovative technologies. However, to generalize feasibility of the TESI model, it should be evaluated with SSSTs in diverse learning contexts.

  12. Oklahoma State University proposed Advanced Technology Research Center. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the construction and equipping of the proposed Advanced Technology Research Center (ATRC) at Oklahoma State University (OSU) in Stillwater, Oklahoma. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  13. 75 FR 9878 - Draft Principles and Standards Sections of the “Economic and Environmental Principles and...

    Science.gov (United States)

    2010-03-04

    ... COUNCIL ON ENVIRONMENTAL QUALITY Draft Principles and Standards Sections of the ``Economic and... the ``Economic and Environmental Principles and Guidelines for Water and Related Land Resources... may be accessed at the Internet addresses indicated: ``Economic and Environmental Principles and...

  14. Environmental Management Technology Leveraging Initiative. Topical report, October 1, 1995--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The ``Environmental Management Technology Leveraging Initiative,`` a cooperative agreement between the Global Environment and Technology Foundation and the Department of Energy-Morgantown Energy Technology Center, has completed its second year. This program, referred to as the Global Environmental Technology Enterprise (GETE) is an experiment to bring together the public and private sectors to identify, formulate, promote and refine methods to develop more cost-effective clean-up treatments. Working closely with Department of Energy officials, National Laboratory representatives, business people, academia, community groups, and other stakeholders, this program attempts to commercialize innovative, DOE-developed technologies. The methodology to do so incorporates three elements: business assistance, information, and outreach. A key advance this year was the development of a commercialization guidance document which can be used to diagnose the commercialization level and needs for innovative technologies.

  15. Environmental Management Technology Leveraging Initiative. Topical report, October 1, 1995 - September 30, 1996

    International Nuclear Information System (INIS)

    1996-01-01

    The ''Environmental Management Technology Leveraging Initiative,'' a cooperative agreement between the Global Environment and Technology Foundation and the Department of Energy-Morgantown Energy Technology Center, has completed its second year. This program, referred to as the Global Environmental Technology Enterprise (GETE) is an experiment to bring together the public and private sectors to identify, formulate, promote and refine methods to develop more cost-effective clean-up treatments. Working closely with Department of Energy officials, National Laboratory representatives, business people, academia, community groups, and other stakeholders, this program attempts to commercialize innovative, DOE-developed technologies. The methodology to do so incorporates three elements: business assistance, information, and outreach. A key advance this year was the development of a commercialization guidance document which can be used to diagnose the commercialization level and needs for innovative technologies

  16. African Journal of Environmental Science and Technology - Vol 4 ...

    African Journals Online (AJOL)

    Increase in healthcare facilities and rapid environmental degradation: A technological paradox in Nigeria's urban centres · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. A Coker, MKC Sridhar, 577-585 ...

  17. Symposium proceedings: environmental aspects of fuel conversion technology, IV (April 1979, Hollywood, FL)

    Energy Technology Data Exchange (ETDEWEB)

    Ayer, F.A.; Jones, N.S. (comps.)

    1979-09-01

    The proceedings document presentations made at the symposium on Environmental Aspects of Fuel Conversion Technology are presented. The symposium acted as a colloquium for discussion of environmentally related information on coal gasification and liquefaction. The program included sessions on program approach, environmental assessment, and control technology development. Process developers, process users, research scientists and state and federal government officials participated in this symposium, the fourth to be conducted by IERL-RTP on the subject since 1974. Separate abstracts have been prepared of individual presentations for inclusion in the Energy Data Base.

  18. Savannah River Site Environmental Monitoring Plan. Volume 1, Section 1000 Addendum: Revision 3

    International Nuclear Information System (INIS)

    Jannik, G.T.

    1994-01-01

    This document -- the Savannah River Site Environmental Monitoring Plan (SRS EM Plan) -- has been prepared according to guidance contained in the DOE 5400 Series orders, in 10 CFR 834, and in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and environmental Surveillance [DOE, 1991]. The SRS EM Plan's purpose is to define the criteria, regulations, and guideline requirements with which SRS will comply. These criteria and requirements are applicable to environmental monitoring activities performed in support of the SRS Environmental Monitoring Program (SRS EM Program), WSRC-3Q1-2, Volume 1, Section 1100. They are not applicable to monitoring activities utilized exclusively for process monitoring/control. The environmental monitoring program requirements documented in the SRS EM Plan incorporate all applicable should requirements of DOE/EH-0173T and expand upon them to include nonradiological environmental monitoring program requirements

  19. Short-Term and Long-Term Technology Needs/Matching Status at Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Claggett, S.L.

    1999-01-01

    This report identifies potential technology deployment opportunities for the Environmental Management (EM) programs at the Idaho National Engineering and Environmental Laboratory (INEEL). The focus is on identifying candidates for Accelerated Site Technology Deployment (ASTD) proposals within the Environmental Restoration and Waste Management areas. The 86 technology needs on the Site Technology Coordination Group list were verified in the field. Six additional needs were found, and one listed need was no longer required. Potential technology matches were identified and then investigated for applicability, maturity, cost, and performance. Where promising, information on the technologies was provided to INEEL managers for evaluation. Eleven potential ASTD projected were identified, seven for near-term application and four for application within the next five years

  20. Technology use, cesarean section rates, and perinatal mortality at Danish maternity wards

    DEFF Research Database (Denmark)

    Lidegaard, O; Jensen, L M; Weber, Tom

    1994-01-01

    Fifty-eight Danish maternity units, managing 99% of Danish deliveries, participated in a cross sectional study to assess the relationship between use of birth-related technologies, cesarean section rates and perinatal mortality for births after 35 completed weeks of gestation. A regional technology...... index (0-10) was calculated for each maternity unit according to its use of ante and intra partum fetal heart rate monitoring (FHM), hormone analysis (human placental lactogen (HPL) and/or estriol (O3)), fetal blood samples (scalp-pH), intrauterine catheter and umbilical cord-pH. Maternity units using...

  1. Environmental sustainability assessment of family house alternatives and application of green technologies

    Science.gov (United States)

    Moňoková, A.; Vilčeková, S.; Mečiarová, Ľ.; Krídlová Burdová, E.

    2017-10-01

    Transition to environmentally friendly technologies provides a comprehensive solution to problem of creating an economic value without destroying the nature. Buildings using green technologies lead to lower operating costs, healthier living and working environment and protect the environment more. The aim of this paper is to assess the environmental impact of two alternatives of family house designed as conventional building and building with green technologies. Evaluated family house are located in village Kokšov Bakša, which is situated 12 km south-east from city of Košice, a metropolis of eastern Slovakia. This analysis investigates the role of applied green technologies in single family houses for impact categories: global warming potential (GWP), acidification potential (AP) and eutrophication potential (EP) expressed as CO2eq, SO2eq and PO4 3- eq within “Cradle to Grave” boundary by using the LCA assessment method. The main contribution of the study is a proof that green technologies have significant part in the reduction of environmental impacts. Results show that alternative of family house designed as green one contributes to CO2eq, SO2eq and PO4 3- eq emissions by 81%, 73% and 35% less than alternative of conventional family house, respectively.

  2. The Effect of Government Actions on Environmental Technology Innovation: Applications to the Integrated Assessment of Carbon Sequestration Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E. S.; Hounshell, D. A.; Yeh, S.; Taylor, M.; Schrattenholzer, L.; Riahi, K.; Barreto, L.; Rao, S.

    2004-01-15

    This project seeks to improve the ability of integrated assessment models (IA) to incorporate changes in technology, especially environmental technologies, cost and performance over time. In this report, we present results of research that examines past experience in controlling other major power plant emissions that might serve as a reasonable guide to future rates of technological progress in carbon capture and sequestration (CCS) systems. In particular, we focus on U.S. and worldwide experience with sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) control technologies over the past 30 years, and derive empirical learning rates for these technologies. The patterns of technology innovation are captured by our analysis of patent activities and trends of cost reduction over time. Overall, we found learning rates of 11% for the capital costs of flue gas desulfurization (FGD) system for SO{sub 2} control, and 13% for selective catalytic reduction (SCR) systems for NO{sub x} control. We explore the key factors responsible for the observed trends, especially the development of regulatory policies for SO{sub 2} and NO{sub x} control, and their implications for environmental control technology innovation.

  3. AECL's research and development program in environmental science and technology

    International Nuclear Information System (INIS)

    Cornett, R.J.

    1998-07-01

    AECL's radiological research and development (R and D) program encompasses work on sources of radiation exposure, radionuclide transport through the environment and potential impacts on biota and on human health. The application of the radiation protection knowledge and technology developed in this program provides cradle-to-grave management for CANDU and related nuclear technologies. This document provides an overview of the Environmental Science and Technology (ES and T) program which is one of the technical areas of R and D within the radiological R and D program. The ES and T program uses science from three main areas: radiochemistry, mathematical modelling and environmental assessment. In addition to providing an overview of the program, this summary also gives specific examples of recent technical work in each of the three areas. These technical examples illustrate the applied nature of the ES and T program and the close coupling of the program to CANDU customer requirements. (author)

  4. Analysis of the environmental control technology for oil shale development

    Energy Technology Data Exchange (ETDEWEB)

    de Nevers, N.; Eckhoff, D.; Swanson, S.; Glenne, B.; Wagner, F.

    1978-02-01

    The environmental control technology proposed in the various oil shale projects which are under development are examined. The technologies for control of air pollution, water pollution, and for the disposal, stabilization, and vegetation of the processed shale were thoroughly investigated. Although some difficulties may be encountered in any of these undertakings, it seems clear that the air and water pollution problems can be solved to meet any applicable standard. There are no published national standards against which to judge the stabilization and vegetation of the processed shale. However, based on the goal of producing an environmentally and aesthetically acceptable finished processed shale pile, it seems probable that this can be accomplished. It is concluded that the environmental control technology is available to meet all current legal requirements. This was not the case before Colorado changed their applicable Air Pollution regulations in August of 1977; the previous ones for the oil shale region were sufficiently stringent to have caused a problem for the current stage of oil shale development. Similarly, the federal air-quality, non-deterioration regulations could be interpreted in the future in ways which would be difficult for the oil shale industry to comply with. The Utah water-quality, non-deterioration regulations could also be a problem. Thus, the only specific regulations which may be a problem are the non-deterioration parts of air and water quality regulations. The unresolved areas of environmental concern with oil shale processing are mostly for the problems not covered by existing environmental law, e.g., trace metals, polynuclear organics, ground water-quality changes, etc. These may be problems, but no evidence is yet available that these problems will prevent the successful commercialization of oil shale production.

  5. Cleaner Technologies and the Stability of International Environmental Agreements

    NARCIS (Netherlands)

    Benchekroun, H.; Ray Chaudhuri, A.

    2012-01-01

    Abstract: This paper shows that, if countries are farsighted when deciding whether to defect from a coalition, then the implementation of cleaner technologies may jeopardize the chances of reaching an international environmental agreement. The grand coalition may be destabilized by the

  6. New decontamination technologies for environmental applications

    International Nuclear Information System (INIS)

    Allen, R.P.; Arrowsmith, H.W.; McCoy, M.W.

    1981-01-01

    The technologies discussed represent a versatile collection of tools and approaches for environmental decontamination applications. The fixatives provide a means for gaining and maintaining control of large contaminated areas, for decontaminating large surface areas, and for protecting equipment and supplies used in decontamination operations. The other decontamination techniques together provide a method for removing loose surface contamination from almost all classes of materials and surfaces. These techniques should have wide application both as direct decontamination processes and for the cleaning of tools and equipment used in the decontamination operations

  7. SIHTI 2 - Energy and environmental technology. Yearbook 1993 of the research programme. Project reports

    International Nuclear Information System (INIS)

    Korhonen, M.; Saviharju, K.

    1994-01-01

    The SIHTI 2 research programme on energy and environmental technology, established by the Finnish Ministry of Trade and Industry, is concentrating on areas of environmental technology that are vital to Finland or in which Finns can engage in pioneering research. The promotion of product development within the environmental technology industry produces solutions for reducing the emissions of the energy sector. It is also a way of boosting Finland's share of the world market for such technology. The objectives of the programme are to cut down harmful emissions, recycle raw materials, reduce the amount of byproducts and wastes and achieve a greater utilization of wastes. In addition, an objective is to create basic information about the effects of environmental protection technology for the other research programmes financed by the Ministry of Trade and Industry. The development of internationally comparable research, monitoring and measurement methods creates a basis for wide-ranging international cooperation. The programme, to be carried out in 1993 - 1998, is in part a continuation of the previous SIHTI programme. New areas of research are environmental problems connected with energy in the forest and base metal industries as well as the systematic development of life-cycle analyses. This publication is yearbook 1993 of the programme. It contains the project reports of the research and joint development projects and information about the participating institutions

  8. A-State-of-the-Art Report on Application of Radiation Technology to Environmental Pollution Control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Kwang; Lee, Myun Joo

    2004-06-15

    Radiation technology has been rapidly developed for decades and its applicability also enlarged to many fields such as environmental protection, medical care, manufacturing industry, agriculture, and bio technology. In this report, we focused on the present situation of the development of radiation facilities and state-of-the-art on application of radiation to environmental pollution control including purification of flue gas, waste water treatment, and recycling of biological waste. We especially discussed the radiation technology for environmental pollution control and described the capability of its application to the industrial plants in Korea.

  9. Involving stakeholders in evaluating environmental restoration technologies

    International Nuclear Information System (INIS)

    McCabe, G.H.; Serie, P.J.

    1993-02-01

    Involving citizens, interest groups, and regulators in environmental restoration and waste management programs is a challenge for government agencies and the organizations that support them. To be effective, such involvement activities must identify all individuals and groups who have a stake in the cleanup. Their participation must be early, substantive, and meaningful. Stockholders must be able to see how their input was considered and used, and feel that a good- faith effort was made to reconcile conflicting objectives. The Integrated Demonstration for Cleanup of Volatile Organic Compounds at Arid Sites (VOC-Arid ID) is a Department of Energy Office of Technology Development project located at Hanford. Along with technical evaluation of innovative cleanup technologies, the program is conducting an institutional assessment of regulatory and public acceptance of new technologies. Through a series of interviews and workshops, and use of a computerized information management tool, stakeholders are having a voice in the evaluation. Public and regulatory reaction has been positive

  10. SIHTI 2. Energy and environmental technology. Yearbook 1995. Project presentations

    International Nuclear Information System (INIS)

    Korhonen, M.; Thun, R.

    1997-01-01

    Detrimental impacts of various energy production forms, their prevention and costs to enterprises and to the society are studied in the National Research Programme on Energy and Environmental Technology - SIHTI 2. For this evaluation work databases on Finland's energy production, fuels and boilers and emissions of various production forms are needed. This is one of the main subtasks of the SIHTI Programme. Development of methods and tools required for environmental decision making and for the assessment of environmental costs and testing of their usability and reliability are equally important. Emission measurements are a problem field that continuously sets new challenges. In addition to energy production and its environmental impacts, environmental issues of the woodprocessing industries form another important research field of SIHTI 2 programme. A common aim of both fields is to reduce emissions of detrimental substances, to recycle raw materials, and to minimise and reuse wastes. Research and development projects are being carried out by a number of universities of different fields of science and technology, by research organisations and enterprises, and many projects are realised in close co-operation. In 1995, the programme comprised 28 R and D projects by universities and 22 enterprise-led projects. Results of these projects are presented in this yearbook. Part of the research projects continued from the preceding year and part were new projects continuing in 1996

  11. A new approach to environmental education: environment-challenge for science, technology and society

    International Nuclear Information System (INIS)

    Popovic, D.

    2002-01-01

    The paper presents a new approach to environmental education within the project Environment: Challenge for Science, Technology and Education, realized on the Alternative Academic Education Network (AAEN) in Belgrade. The project is designed for graduate or advanced undergraduate students of science, medicine, engineering, biotechnology, political and law sciences. It is multidisciplinary and interdisciplinary project aimed to support students interest in different areas of the environmental sciences through strong inter-connection between modern scientific ideas, technological achievements and society. The project contains four basic courses (Living in the Environment; Physical and Chemical Processes in the Environment; Industrial Ecology and Sustainable Development; Environmental Philosophy and Ethics) and a number of elective courses dealing with environmental biology, adaptation processes , global eco politics, environmental ethics, scientific and public policy, environmental consequences of warfare, environmental pollution control, energy management, environmental impact assessment, etc. The standard ex catedra teaching is replaced with active student-teacher communication method enabling students to participate actively in the subject through seminars, workshops, short essays and individual research projects

  12. Development of environmental radiation control technology

    International Nuclear Information System (INIS)

    Han, M. H.; Kim, E. H.; Keum, D. K.; Kang, M. J.; Jang, B. W.

    2010-04-01

    The objectives of the study are to development of an urban atmospheric dispersion model and data assimilation technique for improving the reliability, to develop the technology for assessing the radiation impact to biota and the surface water transport model, to develop the analytical techniques for the indicator radionuclides on decommissioning of nuclear facilities and nuclear waste disposal sites and to assess of the national environmental radiation impact and establish the optimum management bases of natural radiation. The obtained results might be used; for assessing the radiological effects due to and radiological incident in an urban area, for assessing radiation doses on biota for the environmental protection from ionizing radiation with the application of new concept of the ICP new recommendation, for analyzing the indicator radionuclides on decommissioning of nuclear facilities and nuclear waste disposal sites, and for providing the natural radionuclide database of Korea to international organizations such as UNSCEAR. It can be used for emphasizing relative nuclear safety

  13. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section

  14. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

  15. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.

  16. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    International Nuclear Information System (INIS)

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation's primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate

  17. Energy Technology Division research summary 1997

    International Nuclear Information System (INIS)

    1997-01-01

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear

  18. Energy Technology Division research summary 1997.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water

  19. Tomographic Environmental Sections for Environmental Mitigation Devices in Historical Centers

    Directory of Open Access Journals (Sweden)

    Roberta Cocci Grifoni

    2017-03-01

    Full Text Available Urban heat waves and the overall growing trend in the annual global temperature underline the importance of urban/architectural resilience and the need to reduce energy consumption. By designing urban voids, it is possible to create thermodynamic buffers, i.e., bubbles of controlled atmosphere that act as mediators between the natural and built environments, between the human body and the surrounding air, between meteorology and physiology (meteorological architecture. Multiple small actions in the urban fabric’s open spaces, such as replacing dark pavements or inserting vegetation and green spaces, are intended to improve outdoor comfort conditions and therefore the resilience of the city itself. This not only benefits the place’s quality, which is intrinsic to the new project, but also the insulating capacity of buildings, which are relieved of an external heat load. The design emphasis therefore changes from solid structures to the climate and weather conditions, which are invisible but perceivable. To design and control these constructed atmopheres, tomographic sections processed with computational fluid dynamics software (tomographic environmental section, TENS becomes necessary. It allows the effects of an extreme event on an outdoor environment to be evaluated in order to establish the appropriate (adaptive climate mitigation devices, especially in historical centers where energy retrofits are often discouraged. By fixing boundary conditions after a local intervention, the virtual environment can be simulated and then "sliced" to analyze initial values and verify the design improvements.

  20. Environmental protection technologies and prospect for uranium mining and metallurgy in China

    International Nuclear Information System (INIS)

    Pan Yingjie

    2002-01-01

    Based on practices of production and environmental protection of China's uranium mining and metallurgy, control and protection of the three wastes in uranium mining and metallurgy are discussed. Prospects for environmental protection technologies of uranium mining and metallurgy is made

  1. Integrating environmental impact assessment into new product development and processing-technology selection

    NARCIS (Netherlands)

    Depping, Verena; Grunow, Martin; Middelaar, van Corina; Dumpler, Joseph

    2017-01-01

    Environmental-impact reduction potential is great early in new product development. To exploit this potential, this study evaluates novel combinations of existent processing technologies. Process engineering is combined with an environmental product assessment along the supply chain. In the dairy

  2. Countermeasure technology for environmental pollution due to radioactive substances

    International Nuclear Information System (INIS)

    Shimizu, Hideki

    2014-01-01

    This paper introduces the progress of challenges by Maeda Corporation toward the countermeasures for the environmental pollution caused by radioactive substances that covers the whole areas of Naraha Town in Fukushima Prefecture. It also introduces in full detail the environmental pollution countermeasure technologies against radioactive substances challenged by the said company. These technologies are as follows; (1) porous block kneaded with zeolite, (2) Aqua-filter System (technique to automatically and continuously purify construction work water to the level of tap water), (3) super vacuum press (dehydration unit to realize the dehydration, volume reduction and solidification, and insolubilization at the same time), (4) mist blender (technique to manufacture bentonite-mixed soil), (5) wet-type classification washing technique for contaminated soil, (6) soil sorting technique (continuous discrimination technique to sort soil depending on radiation level), and (7) speedy construction technique for dam body using CSG (cemented sand and gravel). (A.O.)

  3. Environmental policy and environment-saving technologies. Economic aspects of policy making under uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Ossokina, I.

    2003-07-01

    It is generally known that natural environment is profoundly influenced by technological change. The direction and the size of this influence are, however, surrounded by uncertainties, which substantially complicate environmental policy making. This dissertation uses game-theoretical models to study policy making under uncertainty about (a) the costs of technological advances in pollution control, (b) the preferences of the policy maker and the voters, and (c) the consequences of policy measures. From a positive point of view the analysis provides explanations for environmental policies in modern democracies. From a normative point of view it gives a number of recommendations to improve environmental policies.

  4. ANIMAL WASTE IMPACT ON SOURCE WATERSAIDED BY EPA/NSF ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) SOURCE WATER PROTECTION PILOT

    Science.gov (United States)

    The Environmental Technology Verification Program (ETV) was established in 1995 by the U.S. Environmental Protection Agency to encourage the development and commercialization of new environmental technologies through third part testing and reporting of performance data. By ensur...

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, SHARPE MANUFACTURING TITANIUM T1-CG SPRAY GUN

    Science.gov (United States)

    Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, the pollution prevention capabilities of a high transfer efficiency liquid spray gun was tested. This ...

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, ANEST IWATA CORPORATION W400-LV SPRAY GUN

    Science.gov (United States)

    Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, the pollution prevention capabilities of a high transfer efficiency liquid spray gun was tested. This ...

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BIOQUELL, INC. CLARIS C HYDROGEN PEROXIDE GAS GENERATOR

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Clarus C Hydrogen Peroxide Gas Generator, a biological decontamination device manufactured by BIOQUELL, Inc. The unit was tested by evaluating its ability to decontaminate seven types...

  8. Prospective of Societal and Environmental Benefits of Piezoelectric Technology in Road Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Lubinda F. Walubita

    2018-02-01

    Full Text Available Road energy harvesting is an ingenious horizon for clean and renewable energy production. The concept is very compatible with current traffic trends and the ongoing depletion of natural resources. Yet, the idea of harvesting roadway energy is still in its genesis, and only a few real-time implementation projects have been reported in the literature. This review article summarizes the current state of the art in road energy harvesting technology, with a focus on piezoelectric systems, including an analysis of the impact of the technology from social and environmental standpoints. Based on an extensive desktop review study, this article provides a comprehensive insight into roadway energy harvesting technologies. Specifically, the article discusses the societal and environmental benefits of road energy harvesting technologies, as well as the challenges. The study outlined the meaningful benefits that positively align with the concept of sustainability. Overall, the literature findings indicate that the expansion of the roadway energy harvesting technology to a large practical scale is feasible, but such an undertaking should be wisely weighed from broader perspectives. Ultimately, the article provides a positive outlook of the potential contributions of road energy harvesting technologies to the ongoing energy and environmental challenges of human society.

  9. Environmental assessment report: Nuclear Test Technology Complex

    International Nuclear Information System (INIS)

    Tonnessen, K.; Tewes, H.A.

    1982-08-01

    The US Department of Energy (USDOE) is planning to construct and operate a structure, designated the Nuclear Test Technology Complex (NTTC), on a site located west of and adjacent to the Lawrence Livermore National Laboratory. The NTTC is designed to house 350 nuclear test program personnel, and will accommodate the needs of the entire staff of the continuing Nuclear Test Program (NTP). The project has three phases: land acquisition, facility construction and facility operation. The purpose of this environmental assessment report is to describe the activities associated with the three phases of the NTTC project and to evaluate potential environmental disruptions. The project site is located in a rural area of southeastern Alameda County, California, where the primary land use is agriculture; however, the County has zoned the area for industrial development. The environmental impacts of the project include surface disturbance, high noise levels, possible increases in site erosion, and decreased air quality. These impacts will occur primarily during the construction phase of the NTTC project and can be mitigated in part by measures proposed in this report

  10. Environmental and institutional considerations in the development and implementation of biomass energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, C.

    1979-09-01

    The photosynthetic energy stored in plant and organic waste materials in the United States amounts to approximately 40% of the nation's total energy consumption. Conversion of this energy to usable power sources is a complex process, involving many possible materials, conversion technologies, and energy products. Near-term biomass technologies are predominantly based on traditional fuel use and have the advantage over other solar technologies of fitting into existing tax and business practices. However, no other solar technology has the potential for such large environmental impacts. Unlike the conversion of sun, wind, and ocean thermal energy, the conversion of the biomass energy source, in the form of biomass residues and wastes, can create problems. Environmental impacts may be significant, and legal responses to these impacts are a key determinant to the widespread adoption of biomass technologies. This paper focuses on the major legal areas which will impact on biomass energy conversion. These include (1) the effect of existing state and federal legislation, (2) the role of regulatory agencies in the development of biomass energy, (3) governmental incentives to biomass development, and (4) legal issues surrounding the functioning of the technologies themselves. Emphasis is placed on the near-term technologies whose environmental impacts and institutional limitations are more readily identified. If biomass energy is to begin to achieve its apparently great potential, these questions must receive immediate attention.

  11. Innovative Approaches in Distance Education in the Field of Environmental Management and Environmental Technologies

    Directory of Open Access Journals (Sweden)

    Leontev Mikhail

    2016-01-01

    Full Text Available This article discusses the innovative structures and components of distance learning and education, discusses the results of application of approaches to teaching in the electronic environment based on the proposed andragogic and pedagogical models of teaching in cyberspace, for adult learners, bachelor graduates of “Management” for the training program “Introduction to environmental management systems”. This program particularly addresses the role of environmental managers in a company activity, the implementation of ecologically clean technologies. The author proposed an innovative nonlinear andragogic model of learning. The model was mediated by the constructive approach and problem-oriented learning.

  12. International Symposium for the Promotion of APEC Environmental Technology Exchange; APEC kankyo gijutsu koryu sokushin symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-11

    The International Symposium for the Promotion of APEC Environmental Technology Exchange was held under the theme `The function and role expected of the APEC Virtual Center,` with the objectives of clarifying the need for future intra-regional environmental technological exchange, defining the types of information and personnel exchange, and promoting the use of interactive character of the APEC Virtual Center for Environmental Technology Exchange by encouraging access to and participation in the Virtual Center project. It was held in the period of 11th and 12th, November in 1996, at the venue of Rinku International Convention Center in Osaka. The symposium was attended by 477 persons from nine countries, i.e., Australia, Canada, China, Indonesia, Korea, Philippines, Thailand, the US, and Japan, comprising staff members of intra-regional environment-related organizations. After the keynote speech, `Current status and tasks of environmental technology exchange`, and `Expected roles of the Virtual Center for Environmental Technology Exchange` were discussed. During the plenary session, the chairman summarized the symposium. This summary was carried on the Virtual Center homepage of the Internet

  13. Competing recombinant technologies for environmental innovation: Extending Arthur's model of lock-in

    NARCIS (Netherlands)

    Zeppini, P.; van den Bergh, J.C.J.M.

    2011-01-01

    This article presents a model of sequential decisions about investments in environmentally dirty and clean technologies, which extends the path-dependence framework of B. Arthur (1989, Competing technologies, increasing returns, and lock-in by historical events, The Economic Journal, 99, pp.

  14. Competing recombinant technologies for environmental innovation : extending Arthur's model of lock-in

    NARCIS (Netherlands)

    Zeppini, P.; Bergh, van den J.C.J.M.

    2011-01-01

    This article presents a model of sequential decisions about investments in environmentally dirty and clean technologies, which extends the path-dependence framework of B. Arthur (1989, Competing technologies, increasing returns, and lock-in by historical events, The Economic Journal, 99, pp.

  15. On the environmental impact of energy market liberalisation: Environmental policy, economic reform and endogenous technology

    NARCIS (Netherlands)

    D.P. van Soest (Daan); H.L.F. de Groot (Henri)

    2003-01-01

    textabstractIn the literature, attention has been paid to the environmental consequences of lower energy prices caused by market liberalisation: the drop in energy prices reduces the attractiveness of investing in energy-saving technologies. In this paper we develop a simple model of investment

  16. Evaluation of environmental impacts of cellulosic ethanol using life cycle assessment with technological advances over time

    International Nuclear Information System (INIS)

    Pawelzik, Paul F.; Zhang, Qiong

    2012-01-01

    Life Cycle Assessment (LCA) has been used in quantifying the environmental impacts of materials, processes, products, or systems across their entire lifespan from creation to disposal. To evaluate the environmental impact of advancing technology, Life Cycle Assessment with Technological Advances over Time (LCA-TAT) incorporates technology improvements within the traditional LCA framework. In this paper, the LCA-TAT is applied to quantify the environmental impacts of ethanol production using cellulosic biomass as a feedstock through the simultaneous saccharification and co-fermentation (SSCF) process as it improves over time. The data for the SSCF process are taken from the Aspen Plus ® simulation developed by the National Renewable Energy Lab (NREL). The Environmental Fate and Risk Assessment Tool (EFRAT) is used to calculate the fugitive emissions and SimaPro 7.1 software is used to quantify the environmental impacts of processes. The impact indicators of the processes are calculated using the Eco-indicator 95 method; impact categories analyzed include ozone layer depletion, heavy metals, carcinogens, summer smog, winter smog, pesticides, greenhouse effect, acidification, and eutrophication. Based on the LCA-TAT results, it is found that removal of the continuous ion exchange step within the pretreatment area increases the environmental impact of the process. The main contributor to the increase in the environmental impact of the process is the heavy metal indicator. In addition, a sensitivity analysis is performed to identify major inputs and outputs that affect environmental impacts of the overall process. Based on this analysis it is observed that an increase in waste production and acid use have the greatest effect on the environmental impacts of the SSCF process. Comparing economic analysis with projected technological advances performed by NREL, the improvement in environmental impact was not matched by a concomitant improvement in economic performance. In

  17. Cost decreases in environmental technology. Evidence from four case studies

    Energy Technology Data Exchange (ETDEWEB)

    Oosterhuis, F. [Instituut for Environmental Studies, Vrije Universiteit VU, Amsterdam (Netherlands)

    2007-07-15

    The cost of a new technology tends to decrease as its uptake grows, and environmental technology is no exception to this general rule. Factors that can bring about such cost reductions include economies of scale, 'learning-by-doing', incremental technological improvements, and growing competition. In preparing environmental policies, the potential for future cost reductions is often disregarded. The present study aims to provide some additional empirical evidence on the cost decreases in environmental technology and the factors that lie behind them. To this end, four exemplary case studies have been selected. The first case (NOx emission abatement by Selective Catalytic Reduction (SCR)), shows a wide variety in cost estimates, without a clear trend. This is even true for the costs of a fairly homogeneous type of investment (SCR in coal fired power plants). Nevertheless, it is clear that an important cost decrease has been achieved by prolonging the lifetime of the catalyst, which is one of the main cost components in SCR. In the second case (NH3 emission abatement by chemical air scrubbers in pig farming) there is not yet sufficient experience with the technology to draw conclusions on the development of costs. However, it is already clear that economizing on the capacity of the system can contribute to important cost savings. Three-way catalytic converters in cars have shown significant price decreases following their large scale introduction on the European market in the early 1990s. Probably economies of scale have played an important role in this case, as the size of the market made mass production possible. To some extent, cost reductions may also be attributed to improvements such as the need for less materials (e.g. platinum). Furthermore, the performance of catalytic converters has improved, implying that the cost per unit of emission reduction has decreased even more than the cost of the device itself. Market prices of Compact Fluorescent Lamps

  18. Joint Coordinating Committee on environmental restoration and waste management (JCCEM) support, technology transfer, and special projects

    International Nuclear Information System (INIS)

    Edgar, D.E.

    1993-01-01

    Argonne National Laboratory (ANL) assisted in identifying and evaluating foreign technologies to meet EM needs; supported the evaluation, removal, and/or revision of barriers to international technology and information transfer/exchange; facilitated the integration and coordination of U.S. government international environmental restoration and waste management activities; and enhanced U.S. industry's competitiveness in the international environmental technology market

  19. Technology enhanced learning for occupational and environmental health nursing: a global imperative.

    Science.gov (United States)

    Olson, D K; Cohn, S; Carlson, V

    2000-04-01

    One strategy for decreasing the barriers to higher education and for increasing the competency and performance of the occupational and environmental health nurse in the information age is technology enhanced learning. Technology enhanced learning encompasses a variety of technologies employed in teaching and learning activities of presentation, interaction, and transmission to on campus and distant students. Web based learning is growing faster than any other instructional technology, offering students convenience and a wealth of information.

  20. Environmental policy instruments and technological change in the energy sector: findings from comparative empirical research

    International Nuclear Information System (INIS)

    Skjaerseth, J.B.; Christiansen, A.C.

    2006-01-01

    This article explores the extent to which and in what ways environmental policy instruments may affect patterns of environmental friendly technological change in the energy sector. Our argument is based on the assumption, however, that technological change is also affected by the political context in which the instruments are applied and by the nature of the problem itself. Comparative empirical research involving different European countries, sectors and policy fields were examined, including climate change, air pollution and wind power. The relationship between environmental policy instruments and technological change is extremely complex, not least due to the impact of other factors that may be more decisive than environmental ones. Against this backdrop, it was concluded that: 1) a portfolio of policy instruments works to the extent that different types of policy instruments affect the different drivers and stages behind technological change needed to solve specific problems. The need for a portfolio of policy instruments depends on the technological challenge being faced; 2) voluntary approaches facilitated constructive corporate strategies, but mandatory approaches tended to be more effective in stimulating short term major technological change; 3) voluntary approaches work well in the short term when the problem to be solved is characterized by lack of information and coordination. (author)

  1. Quantification of environmental impacts of various energy technologies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Selfors, A [ed.

    1994-10-01

    This report discusses problems related to economic assessment of the environmental impacts and abatement measures in connection with energy projects. Attention is called to the necessity of assessing environmental impacts both in the form of reduced economic welfare and in the form of costs of abatement measures to reduce the impact. In recent years, several methods for valuing environmental impacts have been developed, but the project shows that few empirical studies have been carried out. The final report indicates that some important factors are very difficult to evaluate. In addition environmental impacts of energy development in Norway vary considerably from project to project. This makes it difficult to obtain a good basis for comparing environmental impacts caused by different technologies, for instance hydroelectric power versus gas power or wind versus hydroelectric power. It might be feasible however to carry out more detailed economic assessments of environmental impacts of specific projects. 33 refs., 1 fig., 4 tabs.

  2. Environmental barriers to participation and facilitators for use of three types of assistive technology devices.

    Science.gov (United States)

    Widehammar, Cathrine; Lidström, Helene; Hermansson, Liselotte

    2017-08-07

    The aim was to compare the presence of environmental barriers to participation and facilitators for assistive technology (AT) use and study the relation between barriers and AT use in three different AT devices. A cross-sectional survey was conducted. Inclusion criteria were ≥one year of experience as a user of myoelectric prosthesis (MEP), powered mobility device (PMD), or assistive technology for cognition (ATC) and age 20-90 years. Overall, 156 participants answered the Swedish version of the Craig Hospital Inventory of Environmental Factors and a study-specific questionnaire on facilitating factors. Non-parametric tests were used for comparisons. Barriers to participation were lowest in MEP users (md=0.12; p>0.001), and highest in ATC users (md=1.56; p>0.001) with the least support for AT use (p>0.001 - p=0.048). A positive correlation between fewer barriers and higher use of MEP was seen (r=0.30, p=0.038). The greatest barriers to participation were Natural environment, Surroundings and Information, and the most support came from relatives and professionals. Support, training and education are vital in the use of AT. These factors may lead to a more sustained and prolonged use of AT and may enable increased participation. Future research should focus on interventions that meet the needs of people with cognitive disabilities.

  3. Environmental Survey preliminary report, Pittsburgh Energy Technology Center, Pittsburgh, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) conducted December 7--11, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with PETC. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at PETC, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain environmental problems identified during its on-site Survey activities at PETC. The S A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the Plan's results will be incorporated into the PETC Survey findings for inclusion into the Environmental Survey Summary Report. 64 refs., 23 figs., 29 tabs.

  4. Environmental Sciences Division. Annual progress report for period ending September 30, 1979

    International Nuclear Information System (INIS)

    1980-03-01

    Progress for the period ending September 30, 1979 by the Environmental Sciences Division is reported. Sections reporting include terrestrial ecoloy; earth sciences; environmental resources; aquatic ecology; synthetic fuels; nuclear program; environmental impacts program; ecosystem studies; and burial ground technology

  5. Advanced Technologies and Data Management Practices in Environmental Science: Lessons from Academia

    Science.gov (United States)

    Hernandez, Rebecca R.; Mayernik, Matthew S.; Murphy-Mariscal, Michelle L.; Allen, Michael F.

    2012-01-01

    Environmental scientists are increasing their capitalization on advancements in technology, computation, and data management. However, the extent of that capitalization is unknown. We analyzed the survey responses of 434 graduate students to evaluate the understanding and use of such advances in the environmental sciences. Two-thirds of the…

  6. Relationships between environmentally sound technologies and competitiveness of companies in the value chain of printed paper from forest to market

    Energy Technology Data Exchange (ETDEWEB)

    Perkioe, S.

    2007-07-01

    Technologies play a well-known role in creating competitive advantages for companies as well as in controlling environmental impacts. This study deals with the relationship between environmentally sound technologies and the competitiveness of companies in the value chain of printed paper from forest to market. These connections are important to understand, because the technology is an important solution in facing environmental requirements. This study answers the following five questions: Which environmentally sound technologies are the most important for environmental impacts in the value chain of printed paper? How do they impact on the competitiveness of companies? How do these technologies differ across the value chain. Do they impact on competitiveness of companies in the other part of the value chain? The fifth research question involves studying differences between function mechanisms of pollution-prevention technology and pollution-abatement technology in facing legal requirements. This is studied as a part of the so-called 'Porter Hypothesis'. A term, environmental value creation, has been defined as 'performing activities by managing environmental aspects so that the value of goods and services to consumers or to customers increases.' Data was collected from the value chain of printed paper and were divided into the following parts: forest harvesting, pulp mill, paper mill and printing house. Eight experts were interviewed resulting in 69 environmentally sound technologies during the time periods 1980-1999 and 2000-2019. The data was analysed by non-parametrical statistical tests. As a result of this study, automation, measurement and information technologies, closing-up technologies and energy technologies were found to be the most important for environmental impacts and frequently mentioned responses of environmentally sound technologies in the value chain of printed paper. The cost factors of raw material and staff and

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, COLUMBUS INDUSTRIES HIGH EFFICIENCY MINI PLEAT

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification (ETV) Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the...

  8. Proceedings of the international symposium on environmental technologies: Plasma systems and applications. Volume 1

    International Nuclear Information System (INIS)

    Mayne, P.W.; Mulholland, J.A.

    1995-01-01

    Plasma technology is an extremely versatile and powerful means of obtaining very high temperatures that can be used in a variety of environmental situations. Since most types of waste products and contaminants can be treated effectively and efficiently, plasma systems have been developed to address the disposal and annihilation domestic of medical, hazardous, radioactive, military, and miscellaneous wastes. Plasma technologies can also be implemented to recycle and recover usable materials from metallic wastes. The International Symposium on Environmental Technologies: Plasma Systems and Applications was held at the Omni Hotel in Atlanta, Georgia on October 8--12, 1995 to bring together a large group of technical experts working on the use of plasma for solving environmental problems. The Symposium is a sequel to the 1994 Metatechnies Conference on Stabilization and Volarization of Ultimate Waste by Plasma Processes that was held in September of 1994 at Bordeaux Lac, France. The proceedings to this second international conference contain the written contributions from eleven sessions and are published in two volumes. A total of 65 papers address the use of plasma systems for environmental applications and include topics concerning the development and use of innovative technologies for waste treatment, environmental remediation, recycling, characterization of the plasma and solid residue, off-gas analyses, as well as case studies and regulatory policies

  9. Application of electron beams to environmental conservation technology

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1992-01-01

    The paper is a review of current status of the application of electron beams to environmental conservation technology. Different aspects of radiation treatment of natural and polluted drinking water, radiation purification of industrial and municipal wastes, radiation treatment of sewage sludge and radiation purification of exhaust gases are considered. The special attention is paid to the respective pilot and industrial facilities. (author) 70 refs

  10. Development of Thin Section Zinc Die Casting Technology

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, Frank [International Lead Zinc Research Org., Inc., Durham, NC (United States)

    2013-10-31

    A new high fluidity zinc high pressure die casting alloy, termed the HF alloy, was developed during laboratory trials and proven in industrial production. The HF alloy permits castings to be achieved with section thicknesses of 0.3 mm or less. Technology transfer activities were conducted to develop usage of the HF high fluidity alloy. These included production of a brochure and a one-hour webinar on the HF alloy. The brochure was then sent to 1,184 product designers in the Interzinc database. There was excellent reception to this mailing, and from this initial contact 5 technology transfer seminars were conducted for 81 participants from 30 companies across a wide range of business sectors. Many of the successful applications to date involve high quality surface finishes. Design and manufacturing assistance was given for development of selected applications.

  11. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part B, Characterization; robotics/automation

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate theses problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part B of Volume 3 and contains the Characterization and Robotics/Automation sections

  12. Techno-economic viability assessments of greener propulsion technology under potential environmental regulatory policy scenarios

    International Nuclear Information System (INIS)

    Nalianda, D.K.; Kyprianidis, K.G.; Sethi, V.; Singh, R.

    2015-01-01

    Highlights: • An advanced method is presented for techno-economic assessment under potential environmental regulatory policy scenarios. • The viability of the contra-rotating open rotor concept is investigated under various environmental policies. • CO_2 taxation is needed to drive the aerospace industry towards greener solutions. - Abstract: Sustainability of the aviation industry, as any other industry, depends on the elasticity of demand for the product and profitability through minimising operating costs. Of paramount importance is assessing and understanding the interdependency and effects of environmentally optimised solutions and emission mitigation policies. This paper describes the development and application of assessment methodologies to better understand the effects of environmental taxation/energy policies aimed at environmental pollution reduction and the future potential economic impact they may have on the adaptation of “greener” novel technologies. These studies are undertaken using a Techno-economic Environmental Risk Assessment approach. The methodology demonstrated allows the assessment of the economic viability of new technologies compared to conventional technologies, for various CO_2 emission taxation and fuel price scenarios. It considers relative increases in acquisition price and maintenance costs. A study undertaken as a ‘proof of concept’ compares a Counter Rotating Open Rotor aircraft with a conventional aircraft for short range operations. It indicates that at current fuel price and with no carbon taxation, a highly fuel efficient technology, such as the one considered, could be rendered economically unviable. The work goes on to demonstrate that in comparison to the conventional aircraft, any economic benefits that may be accrued from improvement in fuel consumption through such a technology, may well be negated through increases in acquisition price and maintenance costs. The work further demonstrates that if policy

  13. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This space suit system architecture and technologies required based on human exploration (EVA) destinations will be discussed, and how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and nonenvironmental design drivers that will become increasingly important as humans venture farther from Earth. The presentation of destination environmental data demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  14. Emerging Technologies for Environmental Remediation: Integrating Data and Judgment.

    Science.gov (United States)

    Bates, Matthew E; Grieger, Khara D; Trump, Benjamin D; Keisler, Jeffrey M; Plourde, Kenton J; Linkov, Igor

    2016-01-05

    Emerging technologies present significant challenges to researchers, decision-makers, industry professionals, and other stakeholder groups due to the lack of quantitative risk, benefit, and cost data associated with their use. Multi-criteria decision analysis (MCDA) can support early decisions for emerging technologies when data is too sparse or uncertain for traditional risk assessment. It does this by integrating expert judgment with available quantitative and qualitative inputs across multiple criteria to provide relative technology scores. Here, an MCDA framework provides preliminary insights on the suitability of emerging technologies for environmental remediation by comparing nanotechnology and synthetic biology to conventional remediation methods. Subject matter experts provided judgments regarding the importance of criteria used in the evaluations and scored the technologies with respect to those criteria. The results indicate that synthetic biology may be preferred over nanotechnology and conventional methods for high expected benefits and low deployment costs but that conventional technology may be preferred over emerging technologies for reduced risks and development costs. In the absence of field data regarding the risks, benefits, and costs of emerging technologies, structuring evidence-based expert judgment through a weighted hierarchy of topical questions may be helpful to inform preliminary risk governance and guide emerging technology development and policy.

  15. Assessing environmental impacts of storage technologies and competing options for balancing demand and supply in 2050

    Energy Technology Data Exchange (ETDEWEB)

    Droste-Franke, Bert [Europaeische Akademie Bad Neuenahr-Ahrweiler GmbH, Bad Neuenahr-Ahrweiler (Germany)

    2012-07-01

    The major aim of using renewable energies for electricity production is to realise a sustainable and environmental friendly energy system which can be operated viably in the long term. One major indicator to reach this aim is the overall emission of CO2 resulting from the use of a certain technology. However, further environmental aspects have to be taken into account for an adequate evaluation of technologies. With respect to preserving the environmental basis for future generations several environmental pressures have to be considered which can either lead to small and substitutable, marginal environmental damages or to environmental impacts which contribute to burdens which could become critical, i.e., jeopardising important environmental functions. Thus, it should be accounted for the societal acceptability of their (potential) environmental impacts. The analysis presented here deals with the assessment of environmental effects of both types, marginal and potentially critical, for current and advanced technologies which can be used for balancing fluctuations in the electricity production from renewable sources in an economic environment of 2050. The basic results used were derived in a study carried out by the Europaeische Akademie GmbH (Droste-Franke et al. 2012).

  16. Nano-scale Materials and Nano-technology Processes in Environmental Protection

    International Nuclear Information System (INIS)

    Vissokov, Gh; Tzvetkoff, T.

    2003-01-01

    A number of environmental and energy technologies have benefited substantially from nano-scale technology: reduced waste and improved energy efficiency; environmentally friendly composite structures; waste remediation; energy conversion. In this report examples of current achievements and paradigm shifts are presented: from discovery to application; a nano structured materials; nanoparticles in the environment (plasma chemical preparation); nano-porous polymers and their applications in water purification; photo catalytic fluid purification; hierarchical self-assembled nano-structures for adsorption of heavy metals, etc. Several themes should be considered priorities in developing nano-scale processes related to environmental management: 1. To develop understanding and control of relevant processes, including protein precipitation and crystallisation, desorption of pollutants, stability of colloidal dispersion, micelle aggregation, microbe mobility, formation and mobility of nanoparticles, and tissue-nanoparticle interaction. Emphasis should be given to processes at phase boundaries (solid-liquid, solid-gas, liquid-gas) that involve mineral and organic soil components, aerosols, biomolecules (cells, microbes), bio tissues, derived components such as bio films and membranes, and anthropogenic additions (e.g. trace and heavy metals); 2. To carry out interdisciplinary research that initiates Noel approaches and adopts new methods for characterising surfaces and modelling complex systems to problems at interfaces and other nano-structures in the natural environment, including those involving biological or living systems. New technological advances such as optical traps, laser tweezers, and synchrotrons are extending examination of molecular and nano-scale processes to the single-molecule or single-cell level; 3. To integrate understanding of the roles of molecular and nano-scale phenomena and behaviour at the meso- and/or macro-scale over a period of time

  17. Health and environmental effects of oil and gas technologies: Research needs. A report to the Federal Interagency Committee on the health and environmental effects of energy technologies. Draft

    International Nuclear Information System (INIS)

    2006-01-01

    This report discusses health and environmental issues associated with oil and gas technologies as they are currently perceived - both those that exist and those that are expected to emerge over the next two decades. The various sections of this report contain discussions of specific problem areas and relevant new research activities which should be pursued. This is not an exhaustive investigation of all problem areas, but the report explores a wide range of issues to provide a comprehensive picture of existing uncertainties, trends, and other factors that should serve as the focus of future research. The problem areas of major concern include: effects of drilling fluids, offshore accidents, refineries and worker health, soil biota and petroleum spills, indoor air pollution, information transfer, and unconventional resources. These are highlighted in the Executive Summary because they pose serious threats to human health and the environment, and because of the sparsity of accumulated knowledge related to their definition

  18. Health and environmental effects of oil and gas technologies: Research needs. A report to the Federal Interagency Committee on the health and environmental effects of energy technologies. Draft

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This report discusses health and environmental issues associated with oil and gas technologies as they are currently perceived - both those that exist and those that are expected to emerge over the next two decades. The various sections of this report contain discussions of specific problem areas and relevant new research activities which should be pursued. This is not an exhaustive investigation of all problem areas, but the report explores a wide range of issues to provide a comprehensive picture of existing uncertainties, trends, and other factors that should serve as the focus of future research. The problem areas of major concern include: effects of drilling fluids, offshore accidents, refineries and worker health, soil biota and petroleum spills, indoor air pollution, information transfer, and unconventional resources. These are highlighted in the Executive Summary because they pose serious threats to human health and the environment, and because of the sparsity of accumulated knowledge related to their definition.

  19. Animal manure separation technologies diminish the environmental burden of steroid hormones

    DEFF Research Database (Denmark)

    Hansen, Martin; Björklund, Erland; Popovic, Olga

    2015-01-01

    environmental risks associated with the release of steroid hormones to adjacent waterways. To assess the potential benefit of these technologies in reducing the level of release of steroid hormones to adjacent waterways, distribution profiles of nine steroid hormones (pregnenolone, progesterone......Newly developed treatment technologies are capable of separating livestock manure into a liquid fraction and a solid fraction using sedimentation, mechanical, and/or chemical methods. These technologies offer a potential means of distributing nutrients to agricultural lands without the unwanted...

  20. The Relationship Between Technological Development and Environmental Effects

    DEFF Research Database (Denmark)

    Madsen, Henning

    Consumption of energy for private and commercial purposes is a factor which has many effects in our daily life and thus on our environment and our society as such. And since energy can be produced by a variety of methods some of which have larger effects on the environment than other it is obvious...... to consider how the effect of the damaging methods can be avoided. But it is not possible just to change production methods over night as the existing power plants and the related distribution networks are of a considerable size so long term strategic evaluations must be carried out. Such considerations...... include e.g. when a new technological substitute with less environmental damaging effect can be expected to be available from a technological as well a commercial point of view. The presentatio focuses on how technological forecasting can be applied to evaluate the future performance of a potential...

  1. Emerging photovoltaic technologies: Environmental and health issues update

    Energy Technology Data Exchange (ETDEWEB)

    Fthenakis, V.M.; Moskowitz, P.D. [Biomedical and Environmental Assessment Group, Department of Applied Science, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    1997-02-01

    New photovoltaic (PV) technologies promise low-cost, reliable PV modules and have the potential for significant PV penetration into the energy market. These prospects for commercialization have attracted renewed interest in the advantageous environmental impact of using PV and also in the potential environmental, health and safety (EHS) burdens in PV manufacturing and decommissioning. In this paper, we highlight recent studies on EHS issues: (a) An integrated energy-environmental-economic analysis which shows that large-scale use of PV can significantly contribute to alleviating the greenhouse effect; in the United States alone, it could displace 450 million tons of carbon emissions by the year 2030, (b) Recycling of the spent modules and scarp is economically feasible; current research centers on improving the efficiency and economics of recycling CdTe and CIS modules, (c) Toxicological studies conducted by the National Institute of Environmental Health Sciences (NIEHS) compared the acute toxicity of CdTe, CIS, and CGS; CdTe was the most toxic, and CGS the least toxic of the three. Additional studies are now comparing the systemic toxicity of these compounds with the toxicity of their precursors. {copyright} {ital 1997 American Institute of Physics.}

  2. Emerging photovoltaic technologies: Environmental and health issues update

    Science.gov (United States)

    Fthenakis, Vasilis M.; Moskowitz, Paul D.

    1997-02-01

    New photovoltaic (PV) technologies promise low-cost, reliable PV modules and have the potential for significant PV penetration into the energy market. These prospects for commercialization have attracted renewed interest in the advantageous environmental impact of using PV and also in the potential environmental, health and safety (EHS) burdens in PV manufacturing and decommissioning. In this paper, we highlight recent studies on EHS issues: a) An integrated energy-environmental-economic analysis which shows that large-scale use of PV can significantly contribute to alleviating the greenhouse effect; in the United States alone, it could displace 450 million tons of carbon emissions by the year 2030, b) Recycling of the spent modules and scarp is economically feasible; current research centers on improving the efficiency and economics of recycling CdTe and CIS modules, c) Toxicological studies conducted by the National Institute of Environmental Health Sciences (NIEHS) compared the acute toxicity of CdTe, CIS, and CGS; CdTe was the most toxic, and CGS the least toxic of the three. Additional studies are now comparing the systemic toxicity of these compounds with the toxicity of their precursors.

  3. Using the Case Study Technology in Developing the Students’ Environmental Competence

    Directory of Open Access Journals (Sweden)

    S. B. Ignatov

    2012-01-01

    Full Text Available The case study technology is considered to be an effective tool for developing the students’ environmental competence. Numerous modern interactive techniques, facilitating the competence approach, can be fitted into its framework. The essence of the case-study is defined as the teaching method of problem-solving. The technology in question makes it possible to use the so called triad of «training – education – development», and provides such teaching opportunities as streaming the students according to their interests, skills, abilities and psychological peculiarities; and, therefore, assigning the relevant and motivating individual tasks.The paper traces the history of the case-study, as well as some theoretical and methodological aspects of its implementation in teaching process; the pedagogic goals fulfilled by means of the given technology are listed along with its advantages compared to other methods. The «case-study» term, its structure and working algorithms are defined. The application examples relating to environmental education at different levels are given. 

  4. Effects of '"Environmental Chemistry" Elective Course via Technology-Embedded Scientific Inquiry Model on Some Variables

    Science.gov (United States)

    Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel

    2014-01-01

    The purpose of this study is to examine the effects of "environmental chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge…

  5. Status of environmental technology; Interim Report to the sector study 'Petroleum and Energy', the integrated management plan for North Sea. Mapping of available environmental technology; Statusrapport for miljoeteknologi

    Energy Technology Data Exchange (ETDEWEB)

    2011-03-15

    The purpose of this report is to provide an overview of the current status of environmental technology that may help to prevent and reduce / prevent environmental pollution. The report is a foundation report to the management plan for the North Sea. The report was prepared based on the NPD's knowledge and with good input from the PSA, and resource persons in the oil companies. The following is given a summary of the various disciplines and the technological challenges the industry has managed to meet and which ones remain. (Author)

  6. The Chemical Technology Division at Argonne National Laboratory: Applying chemical innovation to environmental problems

    International Nuclear Information System (INIS)

    1995-01-01

    The Chemical Technology Division is one of the largest technical divisions at Argonne National Laboratory, a leading center for research and development related to energy and environmental issues. Since its inception in 1948, the Division has pioneered in developing separations processes for the nuclear industry. The current scope of activities includes R ampersand D on methods for disposing of radioactive and hazardous wastes and on energy conversion processes with improved efficiencies, lower costs, and reduced environmental impact. Many of the technologies developed by CMT can be applied to solve manufacturing as well as environmental problems of industry

  7. Clean coal technologies in Japan: technological innovation in the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-15

    This brochure reviews the history clean coal technologies (CCT) in Japan and systematically describes the present state of CCT insofar. The brochure contains three parts. Part 1. CCT classifications; Part 2. CCT overview; and Part 3. Future outlook for CCT. The main section is part 2 which includes 1) technologies for coal resources development; 2) coal-fired power generation technologies - combustion technologies and gasification technologies; 3) iron making and general industry technologies; 4) multi-purpose coal utilization technologies - liquefaction technologies, pyrolysis technologies, powdering, fluidization, and co-utilisation technologies, and de-ashing and reforming technologies; 5) Environmental protection technologies - CO{sub 2} recovery technologies; flue gas treatment and gas cleaning technologies, and technologies to effectively use coal has; 6) basic technologies for advanced coal utilization; and 7) co-production systems.

  8. Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: Incineration and base catalyzed decomposition

    International Nuclear Information System (INIS)

    Hu Xintao; Zhu Jianxin; Ding Qiong

    2011-01-01

    Highlights: → We study the environmental impacts of two kinds of remediation technologies including Infrared High Temperature Incineration(IHTI) and Base Catalyzed Decomposition(BCD). → Combined midpoint/damage approaches were calculated for two technologies. → The results showed that major environmental impacts arose from energy consumption. → BCD has a lower environmental impact than IHTI in the view of single score. - Abstract: Remediation action is critical for the management of polychlorinated biphenyl (PCB) contaminated sites. Dozens of remediation technologies developed internationally could be divided in two general categories incineration and non-incineration. In this paper, life cycle assessment (LCA) was carried out to study the environmental impacts of these two kinds of remediation technologies in selected PCB contaminated sites, where Infrared High Temperature Incineration (IHTI) and Base Catalyzed Decomposition (BCD) were selected as representatives of incineration and non-incineration. A combined midpoint/damage approach was adopted by using SimaPro 7.2 and IMPACTA2002+ to assess the human toxicity, ecotoxicity, climate change impact, and resource consumption from the five subsystems of IHTI and BCD technologies, respectively. It was found that the major environmental impacts through the whole lifecycle arose from energy consumption in both IHTI and BCD processes. For IHTI, primary and secondary combustion subsystem contributes more than 50% of midpoint impacts concerning with carcinogens, respiratory inorganics, respiratory organics, terrestrial ecotoxity, terrestrial acidification/eutrophication and global warming. In BCD process, the rotary kiln reactor subsystem presents the highest contribution to almost all the midpoint impacts including global warming, non-renewable energy, non-carcinogens, terrestrial ecotoxity and respiratory inorganics. In the view of midpoint impacts, the characterization values for global warming from IHTI and

  9. Low-rank coal study: national needs for resource development. Volume 3. Technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    Technologies applicable to the development and use of low-rank coals are analyzed in order to identify specific needs for research, development, and demonstration (RD and D). Major sections of the report address the following technologies: extraction; transportation; preparation, handling and storage; conventional combustion and environmental control technology; gasification; liquefaction; and pyrolysis. Each of these sections contains an introduction and summary of the key issues with regard to subbituminous coal and lignite; description of all relevant technology, both existing and under development; a description of related environmental control technology; an evaluation of the effects of low-rank coal properties on the technology; and summaries of current commercial status of the technology and/or current RD and D projects relevant to low-rank coals.

  10. Life Cycle Environmental Impacts of Disinfection Technologies Used in Small Drinking Water Systems.

    Science.gov (United States)

    Jones, Christopher H; Shilling, Elizabeth G; Linden, Karl G; Cook, Sherri M

    2018-03-06

    Small drinking water systems serve a fifth of the U.S. population and rely heavily on disinfection. While chlorine disinfection is common, there is interest in minimizing chemical addition, especially due to carcinogenic disinfection byproducts and chlorine-resistant pathogens, by using ultraviolet technologies; however, the relative, broader environmental impacts of these technologies are not well established, especially in the context of small (environmental trade-offs between chlorine and ultraviolet disinfection via comparative life cycle assessment. The functional unit was the production of 1 m 3 of drinking water to U.S. Treatment included cartridge filtration followed by either chlorine disinfection or ultraviolet disinfection with chlorine residual addition. Environmental performance was evaluated for various chlorine contact zone materials (plastic, concrete, steel), ultraviolet validation factors (1.2 to 4.4), and electricity sources (renewable; U.S. average, high, and low impact grids). Performance was also evaluated when filtration and chlorine residual were not required. From a life cycle assessment perspective, replacing chlorine with UV was preferred only in a limited number of cases (i.e., high pumping pressure but filtration is not required). In all others, chlorine was environmentally preferred, although some contact zone materials and energy sources had an impact on the comparison. Utilities can use these data to inform their disinfection technology selection and operation to minimize environmental and human health impacts.

  11. Renewable energy and environmental technology: Norwegian trends, innovations and cutting-edge companies

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Robert; Criscione, Valeria

    2011-07-01

    This issue of Norway Exports: Renewable Energy and environmental technology looks at Norway's role in one of most important global challenges today. Norway has long placed an emphasis on environmental issues both through global cooperation as well as initiatives on the national, regional and local level. In this issue we present you with two forewords; one from the Norwegian Minister of Petroleum and Energy, Ola Borten Moe, and one from Managing Director INTPOW, Geir Elsebutangen. A brief overview of the most important Norwegian environmental organizations as well as series of articles to give you a more in-depth understanding of Norway's present focus and activities. In the second half of the magazine you will find cutting-edge Norwegian companies within energy and renewable technology that provide their products or services on the global market.(Author)

  12. Technological developments for environmental monitoring and assessment at PETROBRAS; O desenvolvimento de tecnologia de avaliacao e monitoramento ambiental na PETROBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Pedro Penido D.; Veiga, Leticia Falcao [PETROBRAS, Rio de Janeiro, RJ (Brazil); Borges, Heloisa V.

    2004-07-01

    Since 2000 PETROBRAS adopted strategies and actions to establish excellence in Environmental Management and Operational Safety - PEGASO, having invested around 6.1 billions of reais in the last four years to reduce emissions, residues, effluents, and to improve prevention and accident control in its units. In this context, PETROBRAS Research and Development Center has been expanding knowledge about the ecosystems where the company operates, providing essential information to evaluate viability and sustainability on its enterprises, as well as for environmental licensing. Reinforcing its corporative strategy, it was created in 2002 the Environmental Assessment and Monitoring Section, a group that counts nowadays with 48 professionals. This group develops technology and methodology for monitoring in social and environmental context for the petroleum industry, gas and energy, evaluating the impacts of PETROBRAS activities and products life cycle, contributing for reduction of negative effects and to improve the company's environmental management. The research areas are: land, coastal and marine ecosystems monitoring, atmospheric monitoring and air quality, environmental chemistry, ecotoxicology, social and economic evaluation and environmental damage valuation. Working partnerships with the scientific community established several contacts with Brazilian and international universities. Among these various projects related to activities in the Brazilian offshore we present some aspects of the project Campos Basin Deep Sea Environmental Monitoring. (author)

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES/CLEAN DIESEL TECHNOLOGIES FUEL BORNE CATALYST WITH CLEANAIR SYSTEM'S DIESEL OXIDATION CATALYST

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Fuel-Borne Catalyst with CleanAir System's Diesel Oxidation Catalyst manufactured by Clean Diesel Technologies, Inc. The technology is a fuel-borne catalyst used in ultra low sulfur d...

  14. Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-03-01

    Renewable energy technologies offer the promise of non-polluting alternatives to fossil and nuclear-fueled power plants to meet growing demand for electrical energy. Two emerging categories of renewable energy technologies, hydrokinetic and wave energy conversion devices, offer ways to tap the energy of moving water without impoundment (dams) or diversion required by many conventional hydroelectric facilities. These technologies include devices designed for deployment in natural streams, tidal estuaries, ocean currents, and constructed waterways, as well as devices designed to capture the energy of ocean waves. On October 26-28, 2005, 54 representatives from government, non-governmental organizations, and private business met to (1) identify the varieties of hydrokinetic energy and wave technology devices, their stages of development, and the projected cost to bring each to market; (2) identify where these technologies can best operate; (3) identify the potential environmental issues associated with these technologies and possible mitigation measures; (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. These workshop proceedings include detailed summaries of the 24 presentations made and the discussions that followed.

  15. Environmental consequences of future biogas technologies based on separated slurry.

    Science.gov (United States)

    Hamelin, Lorie; Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn M

    2011-07-01

    This consequential life cycle assessment study highlights the key environmental aspects of producing biogas from separated pig and cow slurry, a relatively new but probable scenario for future biogas production, as it avoids the reliance on constrained carbon cosubstrates. Three scenarios involving different slurry separation technologies have been assessed and compared to a business-as-usual reference slurry management scenario. The results show that the environmental benefits of such biogas production are highly dependent upon the efficiency of the separation technology used to concentrate the volatile solids in the solid fraction. The biogas scenario involving the most efficient separation technology resulted in a dry matter separation efficiency of 87% and allowed a net reduction of the global warming potential of 40%, compared to the reference slurry management. This figure comprises the whole slurry life cycle, including the flows bypassing the biogas plant. This study includes soil carbon balances and a method for quantifying the changes in yield resulting from increased nitrogen availability as well as for quantifying mineral fertilizers displacement. Soil carbon balances showed that between 13 and 50% less carbon ends up in the soil pool with the different biogas alternatives, as opposed to the reference slurry management.

  16. Investigation of Environmental Topics in the Science and Technology Curriculum and Textbooks in Terms of Environmental Ethics and Aesthetics

    Science.gov (United States)

    Lacin Simsek, Canan

    2011-01-01

    In order to solve environmental problems, it is thought that education should be connected with values. For this reason, it is emphasized that environmental issues should be integrated with ethical and aesthetic values. In this study, 6th, 7th and 8th grade science and technology curriculum and textbooks were investigated to find out how much…

  17. Relationship between Pre-School Preservice Teachers' Environmental Literacy and Science and Technology Literacy Self Efficacy Beliefs

    Science.gov (United States)

    Surmeli, Hikmet

    2013-01-01

    This study examined the relationship between preschool teachers' environmental literacy and their science and technology self efficacy beliefs. 120 preschool teachers from teacher education programme at one university participated in this study. Data were collected by using Environmental Literacy Scale and Science and Technology Literacy Self…

  18. SIHTI - The research and development program of energy and environmental technology

    International Nuclear Information System (INIS)

    Pietilae, S.

    1991-01-01

    The SIHTI programme consists of the environmental part of the energy research programmes in Finland funded by the Ministry of Trade and Industry. Also industry participates in the funding of the projects especially the development projects. The main subject areas of the SIHTI programme are: Monitoring of international energy and environmental technology and national solution models, emissions from energy production, traffic emissions and emissions and discharges from fuel chains

  19. New technologies - How to assess environmental effects

    Science.gov (United States)

    Sullivan, P. J.; Lavin, M. L.

    1981-01-01

    A method is provided for assessing the environmental effects of a room-and-pillar mining system (RP) and a new hydraulic borehole mining system (HBM). Before environmental assessment can begin, each technology is defined in terms of its engineering characteristics at both the conceptual and preliminary design stages. The mining sites are also described in order to identify the significant advantages and constraints for each system. This can be a basic physical and biological survey of the region at the conceptual stage, but a more specific representation of site characteristics is required at the preliminary stage. Assessment of potential environmental effects of each system at the conceptual design is critical to its hardware development and application. A checklist can be used to compare and identify the negative impacts of each method, outlining the resource affected, the type of impact involved, and the exact activity causing that impact. At the preliminary design stage, these impacts should be evaluated as a result of either utilization or alteration. Underground coal mining systems have three major utilization impacts - the total area disturbed, the total water resources withdrawn from other uses, and the overall energy efficiency of the process - and one major alteration impact - the degradation of water quality by sedimentation and acid contamination. A comparison of the RP and HBM systems shows the HBM to be an environmentally less desirable system for the Central Appalachia region.

  20. Environmental Management Performance Report for December 1999

    Energy Technology Data Exchange (ETDEWEB)

    EDER, D.M.

    2000-02-16

    The purpose of the Environmental Management Performance Report (EMPR) is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's Environmental Management (EM) performance by: U. S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Hanford, Inc. (FHI) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for EM and EM Science and Technology (S&T) Mission. This report is a monthly publication that summarizes EM Site performance under RL Operations Office. It is organized by the four sections listed above, with each section containing an Executive Summary and Area Performance Summaries. A listing of what is contained in the sections can be found in the Table of Contents.

  1. Experience with modern technologies at collection, archiving and presentation of environmental data

    International Nuclear Information System (INIS)

    Bartok, J.

    2005-01-01

    This presentation contains solutions in the areas of collection, archiving and presentation of environmental data realised by the company MicroStep-MIS in the Slovakia and abroad. In the first part are characterised in brief used technologies. The second part contains some examples of application of these technologies in complexes monitoring networks

  2. Environmental report 2001 - Verbund Austria Power Grid

    International Nuclear Information System (INIS)

    2002-01-01

    A balance of the environmental activities performed by Verbund Austria Power Grid during 2001 is presented. It comprises which measures were taken to reach their environmental objectives: certification of an environmental management system according to ISO 14001 and EMAS, environmental protection, policies, water and thermoelectric power generation status ( CO 2 , SO 2 , NO x emission monitoring, energy efficiency, replacement of old equipment), reduction of the greenhouse gases emissions and nature conservation. The report is divided in 8 sections: power grid, environmental policy, environmental management, power grid layout, environmental status of the system, introduction of new technologies for environmental monitoring, environmental objectives 2001 - 2002, and data and facts 2001. (nevyjel)

  3. EPA'S ENVIRONMENTAL TECHNOLOGIES

    Science.gov (United States)

    The use of innovative technology is impeded by the lack of independent, credible information as to how the technology performs. Such data is needed by technology buyers and regulatory decision makers to make informed decisions on technologies that represent good financial invest...

  4. Technological retrofit of existing buildings: dwelling quality, environmental sustainability, economic rising

    Directory of Open Access Journals (Sweden)

    Mariangela Bellomo

    2011-04-01

    Full Text Available Redevelopment can stand as an effective response to the converging ecological, energy and economic crises if the energy efficiency of the built heritage can be enhanced using renewable energy and innovative technologies with a low environmental impact. To this end, the Research Unit Technology and Environment, University of Naples Federico II, is undertaking a structured set of studies addressing the issue of retrofit technology of buildings in Campania put up in the second half of the 20th century to help in defining best practices for planning, design and production.

  5. Collection of presentations of the Enviro-i-Forum 2005. Special forum about accessibility of environmental information and using of information technologies at their processing

    International Nuclear Information System (INIS)

    2005-01-01

    Scientific conference deals with problems in environmental sciences and application of environmental information and using of information technologies. The conference proceeded in five sections: (I) Legal frame of information about the environment; (II) Information systems in the environment; (III) GIS and Earth remote sensing; (IV) Information about the environment on the Internet; (V) Training and education. One hundred sixty participants took part in conference. Seventy lectures and posters as well as seventy-nine presentations were presented. Collection of presentations contain sixty presentations deals with the scope of INIS. Totally, forty-six presentations deal with the scope of INIS

  6. Analysis of the environmental control technology for tar sand development

    Energy Technology Data Exchange (ETDEWEB)

    de Nevers, N.; Glenne, B.; Bryner, C.

    1979-06-01

    The environmental technology for control of air pollution, water pollution, and for the disposal, stabilization, and vegetation of the waste tar sand were thoroughly investigated. Although some difficulties may be encountered in any of these undertakings, it seems clear that the air and water pollution problems can be solved to meet any applicable standard. Currently there are two large-scale plants producing liquid fuels from tar sands in Alberta, Canada which use similar technology involving surface mining, hot water extraction, and surface disposal of waste sand. These projects all meet the Canadian environmental control regulations in force at the time they began. The largest US deposits of tar sands are much smaller than the Canadian; 95 percent are located in the state of Utah. Their economics do not appear as attractive as the Canadian deposits. The environmental control costs are not large enough to make an otherwise economic project uneconomic. The most serious environmental conflict likely to occur over the recovery of liquid fuels from the US deposits of tar sands is that caused by the proximity of the deposits to national parks, national monuments, and a national recreation area in Utah. These areas have very stringent air pollution requirements; and even if the air pollution control requirements can be met, there may still be adequate opposition to large-scale mining ventures in these areas to prevent their commercial exploitation. Another environmental constraint may be water rights availability.Essentially all of the water running in the Colorado river basin is now legally allocated. Barring new interpretations of the legality of water rights purchase, Utah tar sands developments should be able to obtain water by purchasing existing irrigation water rights.

  7. Environmental Technology Verification Report - Electric Power and Heat Production Using Renewable Biogas at Patterson Farms

    Science.gov (United States)

    The U.S. EPA operates the Environmental Technology Verification program to facilitate the deployment of innovative technologies through performance verification and information dissemination. A technology area of interest is distributed electrical power generation, particularly w...

  8. Discussion of environmental impact assessment for the nuclear technology application in hospital

    International Nuclear Information System (INIS)

    Li Shaoting; Xu Zhongyang

    2010-01-01

    Medical use of ionizing radiation has become the greatest artificial radiation in the world. Based on the characteristics of the nuclear technology application in hospital the content of the environmental impact assessment has been stated, including identification of the environmental impact factor, the standard, the environmental impact, control of the pollution as well. The dose of the medical staff which engaged in interventional operation and the accompanies of the patients which received nuclear medicine treatment should be focused on. (authors)

  9. Liquefied gaseous fuels safety and environmental control assessment program: third status report

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-01

    This Status Report contains contributions from all contractors currently participating in the DOE Liquefied Gaseous Fuels (LG) Safety and Environmental Control Assessment Program and is presented in two principal sections. Section I is an Executive Summary of work done by all program participants. Section II is a presentation of fourteen individual reports (A through N) on specific LGF Program activities. The emphasis of Section II is on research conducted by Lawrence Livermore National Laboratory (Reports A through M). Report N, an annotated bibliography of literature related to LNG safety and environmental control, was prepared by Pacific Northwest Laboratory (PNL) as part of its LGF Safety Studies Project. Other organizations who contributed to this Status Report are Aerojet Energy Conversion Company; Applied Technology Corporation; Arthur D. Little, Incorporated; C/sub v/ International, Incorporated; Institute of Gas Technology; and Massachusetts Institute of Technology. Separate abstracts have been prepared for Reports A through N for inclusion in the Energy Data Base.

  10. Research on environmental bioecosensing technology using ecological information; Seitaikei joho ni yoru kankyo bio eco sensing gijutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The bioecosensing technology was studied which detects and identifies feeble signals generated by biosystem communication in wide biological environment. The following were reported as current notable environmental biosensing technologies: a quick measurement method of environmental contaminants using immunological measurement method, analysis method of ecological state of microorganism using DNA probes, observation of ecosystem by bioluminescent system, measurement method of environmental changes and contaminants using higher animals and plants, and detection method of chemical contaminants using chemotaxis of microorganism. As a result, the new bioecosensing/monitoring technology in molecular level was suggested for identifying comprehensive environmental changes which could not be measured by previous physical and chemical methods, as changes in ecosystem corresponding to environmental changes. As the wide area remote sensing technology of environmental ecological information, sensing technology on the earth, aircraft and satellite was also discussed. 247 refs., 55 figs., 17 tabs.

  11. Radiation technology for environmental conservation

    International Nuclear Information System (INIS)

    Machi, S.

    1983-01-01

    The use of radiation technology for environmental conservation is becoming increasingly important. Commercial plants for the radiation treatment of sewage sludge to reduce pathogenic micro-organisms have been operating in the Federal Republic of Germany for the past ten years and their technical and economical feasibility has been demonstrated. Irradiation of dried sludge has been developed at the Sandia National Laboratory (USA) using Cs-137, and the construction of a commercial plant is planned in Albuquerque. At the Japan Atomic Energy Research Institute (JAERI), efforts are under way to increase the rate of composting of sludge by radiation. Regarding waste water treatment, a significant synergistic effect of radiation and ozone was found in the reduction of TOC. The construction of a gamma irradiation plant is in the planning stage in Canada, for the disinfection of virus-contaminated waste effluents from the Canadian Animal Disease Research Institute. The treatment of exhaust gases by electron beam has been studied in Japan using a large pilot plant which demonstrated that 90% of SO 2 and 80% of NOsub(x) can be removed from the flue gas of iron ore sintering furnaces. The US Department of Energy is assisting in projects for the further development of this technology for combined removal of SO 2 and NOsub(x) in flue gas from coal burning power stations. (author)

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: MOBILE SOURCE RETROFIT AIR POLLUTION CONTROL DEVICES: CLEAN CLEAR FUEL TECHNOLOGIES, INC.’S, UNIVERSAL FUEL CELL

    Science.gov (United States)

    The U.S. EPA's Office of Research and Development operates the Environmental Technology Verification (ETV) program to facilitate the deployment of innovative technologies through performance verification and information dissemination. Congress funds ETV in response to the belief ...

  13. NEDO environmental technology subcommittee. 18th project report meeting; NEDO kankyo gijutsu bunkakai. Dai 18 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    In relation with the 'recent trends of global warming problems and the outline of environmental technology development office activities,' Hiroshi Mitsukawa, a NEDO (New Energy and Industrial Technology Development Organization) director, delivers a report on Japan's policy toward the international commitments of the Kyoto session of the Conference of the Parties to the United Nations Framework Convention on Climate Change and NEDO's approach in this connection to new energy technology development. Furthermore, global environment-related industry technology research and development projects are explained, which involve environmentally friendly production technology, reduction in substances that cause environmental impacts, effective use of CO2 fixation, recycling of wastes, environment restoration technology, international relationship, and so forth. In relation with the 'promotion of global warming prevention projects by the environmental technology development office,' researches for the promotion of joint implementation, climate technology initiative, international joint projects for CO2 isolation in the ocean, and IEA (International Energy Agency) agreement on the research and development of technologies related to greenhouse gas, are explained. Concerning the development of eco-cement production technology utilizing urbane type general wastes, a verification research project on the manufacture of cement from incinerated urbane waste residue and sewage sludge is reported. (NEDO)

  14. Water pollution control technology in Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This work is a compilation by members of the Committee for Studying Transfer of Environmental Technology on the expertise and technology developed by the members for controlling water pollution in Japan, together with consideration of issues concerning the transfer of environmental technologies to developing countries. The committee is composed of representatives for the Environment Agency, Japan, Osaka Prefectural Government, Osaka Municipal Government, and 25 companies such as manufacturers of environmental equipment. The document contains a total of 93 short papers grouped into sections on: industrial wastewater treatment; sewage treatment; right soil treatment; sludge treatment; and miscellaneous. One paper by the Kausai Electric Power Co., Inc., discusses waste water treatment systems in oil-fired thermal power plants; another describes an internally circulating fluidized bed boiler for cocombusting coal with industrial wastes.

  15. Environmental Management Performance Report April 2000

    Energy Technology Data Exchange (ETDEWEB)

    EDER, D.M.

    2000-04-01

    The purpose of the Environmental Management Performance Report (EMPR) is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's Environmental Management (EM) performance by: Project Hanford Management Contract (PHMC) through Fluor Hanford, Inc. (FHI) and its subcontractors; Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors; Pacific Northwest National Laboratories (PNNL) for EM and EM Science and Technology (S and T) Mission; and Office of Safety Regulation of the TWRS Privatization Contractor. This report is a monthly publication that summarizes EM Site performance under RL Operations Office. It is organized by the four sections listed above, with each section containing an Executive Summary and Area Performance Summaries.

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES: CLEAN DIESEL TECHNOLOGIES FUEL-BORNE CATALYST WITH MITSUI/PUREARTH CATALYZED WIRE MESH FILTER

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Fuel-Borne Catalyst with Mitsui/PUREarth Catalyzed Wire Mesh Filter manufactured by Clean Diesel Technologies, Inc. The technology is a platinum/cerium fuel-borne catalyst in commerci...

  17. Impact of environmental constraints and aircraft technology on airline fleet composition

    Science.gov (United States)

    Moolchandani, Kushal A.

    This thesis models an airline's decisions about fleet evolution in order to maintain economic and regulatory viability. The aim is to analyze the fleet evolution under different scenarios of environmental policy and technology availability in order to suggest an optimal fleet under each case. An understanding of the effect of aircraft technologies, fleet size and age distribution, and operational procedures on airline performance may improve the quality of policies to achieve environmental goals. Additionally, the effect of decisions about fleet evolution on air travel is assessed as the change in market demand and profits of an abstracted, benevolent monopolist airline. Attention to the environmental impact of aviation has grown, and this has prompted several organizations such as ICAO (and, in response, NASA) to establish emissions reduction targets to reduce aviation's global climate impact. The introduction of new technology, change in operational procedures, etc. are some of the proposed means to achieve these targets. Of these, this thesis studies the efficacy of implementation of environmental policies in form of emissions constraints as a means to achieve these goals and assesses their impact on an airline's fleet evolution and technology use (along with resulting effects on air travel demand). All studies in this thesis are conducted using the Fleet-level Environmental Evaluation Tool (FLEET), a NASA sponsored simulation tool developed at Purdue University. This tool models airline operational decisions via a resource allocation problem and uses a system dynamics type approach to mimic airline economics, their decisions regarding retirement and acquisition of aircraft and evolution of market demand in response to the economic conditions. The development of an aircraft acquisition model for FLEET is a significant contribution of the author. Further, the author conducted a study of various environmental policies using FLEET. Studies introduce constraints on

  18. Real-time environmental monitoring at the Japan Nuclear Cycle Development Institute O-arai Engineering Center. Using the internet to promote safety and environmental transparency

    International Nuclear Information System (INIS)

    Motomatsu, Sheila; Nakashima Inoue, Naoko

    2000-12-01

    The report documents the results of an effort at the Japan Nuclear Cycle Development Institute O-arai Engineering Center (JNC/OEC) to provide via the Internet, in real-time, environmental monitoring data to promote safety and environmental transparency. Provided in Japanese as well as in English, the Internet site provides assurance that OEC nuclear operations are being conducted in a manner that is safe to both people in the surrounding area and the environment. This work conducted by Environmental Monitoring Team of the OEC Safety Administration Section fulfilled the assignment to release data real-time via the Internet tasked by the Information Disclosure Section of the JNC Headquarters Public Relations Division. The work conducted by the visiting exchange scientist fulfilled the experimental portion of Action Sheet 34 of the Agreement between JNC and DOE for Cooperation in Research and Development Concerning Nuclear Material Control and Accounting Measures for Safeguards and Nonproliferation. In Japan, the project for Action Sheet 34 Personnel Exchange on Remote Monitoring and Transparency' entailed both a study and an experiment on how remote monitoring technologies can be used to promote nonproliferation, environmental and safety transparency. Environmental airborne radionuclide monitoring falls under the definition of remote monitoring technology more broadly defined as 'remotely accessed unattended monitoring system technology'. (author)

  19. EnviroTRADE: A technical perspective on the development of an information system providing data on environmental technologies and needs worldwide

    International Nuclear Information System (INIS)

    Harrington, M.W.; Harlan, C.P.

    1992-01-01

    In support of the US Department of Energy's commitment to the remediation of waste sites throughout its complex, the DOE has recognized that it can accelerate its technology development efforts and leverage the expenditure of available funds through an international cooperation among government entities, private industry, and educational institutions. To support the technology transfer of environmental information, the DOE has sponsored the development of EnviroTRADE - an international information system that will facilitate the exchange of environmental restoration and waste management technologies worldwide. The system will contain profiles on both environmental restoration / waste management needs and foreign / domestic technologies. Users will be able to identify matches between worldwide needs and available or emerging technologies. Where matches between needs and existing technologies are not found, the system will identify the potential for development of new and innovative technologies to address environmental problems. EnviroTRADE will also provide general information on international environmental restoration and waste management organizations, sites, activities, and contacts

  20. Report on International Symposium for the Promotion of APEC Environmental Technology Exchange and Experts; APEC kankyogijutsu koryusokushin kokusai shinpojium jisshi hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The above event took place at Nagoya City, Japan, on December 5, 2000. Taken up were the response of developing nations to the problem of environmental protection, their needs for environmental technologies, examples of the transfer of environmental technologies carried out by Japan's environment related businesses or organizations, introduction of technologies Japan was able to present, and so forth. Introduced also were the current state and future outlook of such activities as the exchange of environmental technologies and business through the utilization of the virtual center for APEC (Asia-Pacific Economic Cooperation Conference) environmental technology exchange now in service, and so forth. At the symposium, a keynote address entitled Toward the Realization of Sustainable Society was delivered by Professor Yamamoto of the Institute of Industrial Science of the University of Tokyo. Panel discussions were held on the exchange of environmental technologies and business making use of the international network APEC-VC (virtual center) at Session 1, on some front-line cases of environmental technology transfer at Session 2, and on the transfer of technologies useful for developing nations as it ought to be at Session 3. (NEDO)

  1. National conference on environmental remediation science and technology: Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference was held September 8--10, 1998 in Greensboro, North Carolina. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on methods and site characterization technologies for environmental monitoring and remedial action planning of hazardous materials. This report contains the abstracts of sixty-one papers presented at the conference.

  2. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 2: Technology logic diagram

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge.

  3. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 2: Technology logic diagram

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge

  4. Environmental benefits of advanced oil and gas exploration and production technology

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-10-01

    THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

  5. 40 CFR 125.99 - What are approved design and construction technologies?

    Science.gov (United States)

    2010-07-01

    ... construction technologies? 125.99 Section 125.99 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...) of the Act § 125.99 What are approved design and construction technologies? (a) The following....99 was suspended. ...

  6. Three Mass. Firms Awarded EPA Research Grants to Develop Environmental Technologies by Small Businesses

    Science.gov (United States)

    Three small businesses in Massachusetts are among 15 firms nationwide selected by the U.S. Environmental Protection Agency to share $1.6 million in funding that is helping to develop technologies that provide sustainable solutions for environmental issues.

  7. Competing recombinant technologies for environmental innovation: extending Arthur’s model of lock-in

    NARCIS (Netherlands)

    Zeppini, P.; van den Bergh, J.C.J.M.

    2010-01-01

    This article presents a model of sequential decisions about investments in environmentally dirty and clean technologies, which extends the path-dependence framework of Arthur (1989). This allows us to evaluate if and how an economy locked into a dirty technology can be unlocked and move towards the

  8. Environmental biotechnology for waste treatment, environmental science research, Volume 41

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, G.S.; Fox, R.; Blackburn, J.W.

    1991-01-01

    This book contains the proceedings of the symposium entitled [open quotes]Environmental Biotechnology: Moving from the Flask to the Field[close quotes] held in October 17th through 19th, 1990, in Knoxville, Tennessee. Environmental biotechnology involves the use of microorganisms and their processes for the clean-up of environmental contamination, specific examples of which include ground-water treatment, treatment of leachates, and clean-up of contaminated soils, sludges, and sediments. In comparison with other technologies, environmental biotechnology (or bioremediation) has the advantages of affecting mineralization of toxic compounds to innocuous end-products, being energy-effective with processes able to take place at a moderate temperature and pressure, safety, and economy and is, therefore, perceived to hold great potential for environmental clean-up. Bioremediation treatment technologies for contaminated soils and groundwater can take the form of: (1) solid-phase biotreatment; (2) slurry-phase treatment; (3) in situ treatment; and (4) combination biological and physical/chemical treatment. The goal of the symposium was to pressure technical accomplishments at the laboratory and field-scale levels, future technical directions and economic, public and regulatory concerns in environmental biotechnology. The book is divided into five major sections on Current Perceptions, Field-Scale Studies, Technical Issues and Concerns in Implementation, Nontechnical Issues and Concerns in Implementation, International Activities, and ends with a critical review of the symposium.

  9. Implementation of the geoethics principal to environmental technologies by Biogeosystem Technique

    Science.gov (United States)

    Batukaev, Abdulmalik; Kalinitchenko, Valery; Minkina, Tatiana; Mandzhieva, Saglara; Sushkova, Svetlana

    2017-04-01

    The uncertainty and degradation of biosphere is a result of outdated industrial technologies. The incorrect principals of the nature resources use paradigm are to be radically changed corresponding to principals of Geoethics. Technological dead-end is linked to Philosophy of Technology. The organic protection and imitation of natural patterns are till now the theoretical base of technology. The technological and social determinism are proposed as the "inevitable" for humankind. One is forced to believe that the only way for humanity is to agree that the outdated way of technical development is the only possibility for humankind to survive. But rough imitation as a method of outdated technological platform is fruitless now. Survival under practice of industrial technology platform now has become extremely dangerous. The challenge for humanity is to overcome the chain of environmental hazards of agronomy, irrigation, industry, and other human activities in biosphere, which awkwardly imitate the natural processes: plowing leads to degradation of soil and greenhouse gases emission; irrigation leads to excessive moistening and degradation of soil, landscape, greenhouse gases emission, loss of freshwater - the global deficit; waste utilization leads to greenhouse gases emission, loss of oxigen and other ecological hazards. The fundamentally new technologies are to be generates for development of biosphere, food and resources renewing. Aristotle told that technique can go beyond nature and implement "what nature can't bring to a finish." To overcome fundamental shortcomings of industrial technologies, incorrect land use we propose the Biogeosystem Technique (BGT*) for biosphere sustainability. The BGT* key point is transcendent approach (not imitating of the natural processes) - new technical solutions for biosphere - soil construction, the fluxes of energy, matter, and water control and biological productivity of terrestrial systems. Intra-soil milling which provides the

  10. Pacific Northwest Laboratory annual report for 1979 to the DOE Assistant Secretary for Environment. Part 5. Environmental assessment, control, health, and safety

    International Nuclear Information System (INIS)

    Baalman, R.W.; Dotson, C.W.

    1980-02-01

    Part 5 of the 1979 Annual Report to the Department of Energy Assistant Secretary for the Environment presents Pacific Northwest Laboratory's progress on work performed for the Office of Technology Impacts, the Office of Environmental Compliance and Overview, and the Office of Health and Environmental Research. The report is in four sections, corresponding to the program elements: technology impacts, environmental control engineering, operational and environmental compliance, and human health studies. In each section, articles describe progress made during FY 1979 on individual projects

  11. Evaluation of conservatisms and environmental effects in ASME Code, Section III, Class 1 fatigue analysis

    International Nuclear Information System (INIS)

    Deardorff, A.F.; Smith, J.K.

    1994-08-01

    This report documents the results of a study regarding the conservatisms in ASME Code Section 3, Class 1 component fatigue evaluations and the effects of Light Water Reactor (LWR) water environments on fatigue margins. After review of numerous Class 1 stress reports, it is apparent that there is a substantial amount of conservatism present in many existing component fatigue evaluations. With little effort, existing evaluations could be modified to reduce the overall predicted fatigue usage. Areas of conservatism include design transients considerably more severe than those experienced during service, conservative grouping of transients, conservatisms that have been removed in later editions of Section 3, bounding heat transfer and stress analysis, and use of the ''elastic-plastic penalty factor'' (K 3 ). Environmental effects were evaluated for two typical components that experience severe transient thermal cycling during service, based on both design transients and actual plant data. For all reasonable values of actual operating parameters, environmental effects reduced predicted margins, but fatigue usage was still bounded by the ASME Section 3 fatigue design curves. It was concluded that the potential increase in predicted fatigue usage due to environmental effects should be more than offset by decreases in predicted fatigue usage if re-analysis were conducted to reduce the conservatisms that are present in existing component fatigue evaluations

  12. Interpretation of Technology Diffusion Patterns for the U.S. Department of Energy's Environmental Management Program

    International Nuclear Information System (INIS)

    Cummings, M.A.

    1999-01-01

    The purpose of this paper is to provide a response to the general question as to why there has been so little actual application of new environmental technologies to on-the-ground cleanup. There are two sides to the issue that may at first seem unrelated, but taken together provide both a tactical and theoretical response to the question. EM-50 has provided a tactical response to the challenge of showing that expenditures in technology development are justified by implementation of its ASTD program. ASTD provides a fiscal incentive for the major DOE facilities to effect remedial actions using new technologies. The purpose of the ASTD is to demonstrate to stakeholders, including US Congress and concerned citizens, that environmental costs can be reduced and site cleanup accelerated by substituting new technologies for established baseline methods. The theoretical side looks at how historically, the substitution of new technologies for old in any given industry follows well-documented principles of diffusion; therefore, the aggregate adoption of new environmental technologies is predictive. It is not within the scope of this paper to accurately quantify the equations that result in the mathematical description of the S-shaped diffusion curve, but the overall concept of the innovation-development process is an important clue in understanding why new EM-50 technologies are not already in more widespread use

  13. Investigating Elementary School Students' Technology Acceptance by Applying Digital Game-Based Learning to Environmental Education

    Science.gov (United States)

    Cheng, Yuh-Ming; Lou, Shi-Jer; Kuo, Sheng-Huang; Shih, Ru-Chu

    2013-01-01

    In order to improve and promote students' environmental knowledge, attitudes, and behaviour, integrating environmental education into the primary education curriculum has become a key issue for environmental education. For this reason, this study aimed to investigate elementary school students' acceptance of technology applying digital game-based…

  14. ENVIRONMENTAL AND SUSTAINABLE TECHNOLOGY EVALUATION: BIOMASS CO-FIRING IN INDUSTRIAL BOILERS--UNIVERSITY OF IOWA

    Science.gov (United States)

    The U.S. EPA operates the Environmental and Sustainable Technology Evaluation (ESTE) program to facilitate the deployment of innovative technologies through performance verification and information dissemination. This ESTE project involved evaluation of co-firing common woody bio...

  15. Environmental impacts of lighting technologies - Life cycle assessment and sensitivity analysis

    International Nuclear Information System (INIS)

    Welz, Tobias; Hischier, Roland; Hilty, Lorenz M.

    2011-01-01

    With two regulations, 244/2009 and 245/2009, the European Commission recently put into practice the EuP Directive in the area of lighting devices, aiming to improve energy efficiency in the domestic lighting sector. This article presents a comprehensive life cycle assessment comparison of four different lighting technologies: the tungsten lamp, the halogen lamp, the conventional fluorescent lamp and the compact fluorescent lamp. Taking advantage of the most up-to-date life cycle inventory database available (ecoinvent data version 2.01), all life cycle phases were assessed and the sensitivity of the results for varying assumptions analysed: different qualities of compact fluorescent lamps (production phase), different electricity mixes (use phase), and end-of-life scenarios for WEEE recycling versus municipal solid waste incineration (disposal phase). A functional unit of 'one hour of lighting' was defined and the environmental burdens for the whole life cycle for all four lamp types were calculated, showing a clearly lower impact for the two gas-discharge lamps, i.e. the fluorescent and the compact fluorescent lamp. Differences in the product quality of the compact fluorescent lamps reveal to have only a very small effect on the overall environmental performance of this lamp type; a decline of the actual life time of this lamp type doesn't result in a change of the rank order of the results of the here examined four lamp types. It was also shown that the environmental break-even point of the gas-discharge lamps is reached long before the end of their expected life-span. All in all, it can be concluded that a change from today's tungsten lamp technology to a low-energy-consuming technology such as the compact fluorescent lamp results in a substantial environmental benefit.

  16. Industry-Cost-Curve Approach for Modeling the Environmental Impact of Introducing New Technologies in Life Cycle Assessment.

    Science.gov (United States)

    Kätelhön, Arne; von der Assen, Niklas; Suh, Sangwon; Jung, Johannes; Bardow, André

    2015-07-07

    The environmental costs and benefits of introducing a new technology depend not only on the technology itself, but also on the responses of the market where substitution or displacement of competing technologies may occur. An internationally accepted method taking both technological and market-mediated effects into account, however, is still lacking in life cycle assessment (LCA). For the introduction of a new technology, we here present a new approach for modeling the environmental impacts within the framework of LCA. Our approach is motivated by consequential life cycle assessment (CLCA) and aims to contribute to the discussion on how to operationalize consequential thinking in LCA practice. In our approach, we focus on new technologies producing homogeneous products such as chemicals or raw materials. We employ the industry cost-curve (ICC) for modeling market-mediated effects. Thereby, we can determine substitution effects at a level of granularity sufficient to distinguish between competing technologies. In our approach, a new technology alters the ICC potentially replacing the highest-cost producer(s). The technologies that remain competitive after the new technology's introduction determine the new environmental impact profile of the product. We apply our approach in a case study on a new technology for chlor-alkali electrolysis to be introduced in Germany.

  17. GEOSS, NEW TECHNOLOGY AND THE BIOSPHERE: REMOTE SENSING OF ENVIRONMENTAL INDICATORS

    Science.gov (United States)

    The international Global Earth Observation System of Systems (GEOSS) initiative combines science, technology and collaboration to improve our understanding and monitoring of the integrated earth system, and to see how humans can be better global environmental stewards. GEOSS inco...

  18. IN SITU STEAM ENHANCED RECOVERY PROCESS - HUGHES ENVIRONMENTAL SYSTEMS, INC. - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This Innovative Technology Evaluation report summarizes the findings of an evaluation of the in situ Steam Enhanced Recovery Process (SERP) operated by Hughes Environmental Systems, Inc. at the Rainbow Disposal facility in Huntington Beach, California. he technology demonstration...

  19. 78 FR 18359 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2013-03-26

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Training, Nat. Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park... Environmental Health Sciences Special Emphasis Panel; Research Careers in Emerging Technologies. Date: April 30...

  20. CONTRIBUTIONS TO THE IMPLEMENTATION OF ENVIRONMENTAL MANAGEMENT SYSTEM WITHIN THE ECO TECHNOLOGIC ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Gheorghe AMZA

    2012-05-01

    Full Text Available This paper presents contributions to the implementation of environmental management system within the eco technologic organization. SME type organization's environmental policies highlights the accomplishment of requirements of ISO 19001 standard, regarding pollution prevention, commitment in accordance to the law and if it is documented and can provide a framework for setting environmental objectives and targets. The audit may reveal whether it corresponds to the nature, scale and impact that activities, products and services of the organization have on the environment, or if it is implemented, maintained and communicated to all staff. This paper presents mainly the following: elements of environmental planning process, environmental planning process, place of environmental conservation in the general strategy of the organization

  1. Clean coal technology: Export finance programs

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    Participation by US firms in the development of Clean Coal. Technology (CCT) projects in foreign countries will help the United States achieve multiple national objectives simultaneously--addressing critical goals related to energy, environmental technology, industrial competitiveness and international trade. US participation in these projects will result in an improved global environment, an improvement in the balance of payments and an increase in US jobs. Meanwhile, host countries will benefit from the development of economically- and environmentally-sound power facilities. The Clean Air Act Amendments of 1990 (Public Law 101-549, Section 409) as supplemented by a requirement in the Energy Policy Act of 1992 (Public Law 102-486, Section 1331(f)) requires that the Secretary of Energy, acting through the Trade Promotion Coordinating Committee Subgroup on Clean Coal Technologies, submit a report to Congress with information on the status of recommendations made in the US Department of Energy, Clean Coal Technology Export Programs, Report to the United States Congress, February 1992. Specific emphasis is placed on the adequacy of financial assistance for export of CCTS. This report fulfills the requirements of the Act. In addition, although this report focuses on CCT power projects, the issues it raises about the financing of these projects are also relevant to other CCT projects such as industrial applications or coal preparation, as well as to a much broader range of energy and environmental technology projects worldwide.

  2. A thermodynamic perspective on technologies in the Anthropocene : analyzing environmental sustainability

    NARCIS (Netherlands)

    Liao, Wenjie

    2012-01-01

    Technologies and sustainable development are interrelated from a thermodynamic perspective, with industrial ecology (IE) as a major point of access for studying the relationship in the Anthropocene. To offer insights into the potential offered by thermodynamics in the environmental sustainability

  3. Economical-environmental assessment on technologies producing electric energy

    International Nuclear Information System (INIS)

    Najafzadeh, K.

    2000-01-01

    Currently, the electric power industry is undergoing substantial regulatory and organizational change with respect to economical and environmental aspects. Under these circumstances, with utilization of analytic hierarchy process (AHP) concept, we consider the assessment of Technologies producing energy from financial and pollution viewpoint. AHP techniques is one of the efficient methods in analysis of complex and multi-criteria problems, which has plenty of applications. General pattern of this assessment has been introduced, and the main goal is determining of overall priority weights for each technology. With using this pattern, overall priority weights has been determined for thermal, combined cycle and Gas turbine plants. It has been cleared that relative priority of these plants will change, if relative priority of assessment criterions changes. For application of this approach, capital budgeting process and selection of some suitable technologies among the alternatives candidate for construction have been presented. In this process the objective is to maximize the sum of overall priority weights of technologies which have been identified from AHP. Constraints are about the construction budget and annual budget for emission allowances. This process is in the integer programming IP form an has been applied to three kind of power plants with reasonable assumptions

  4. Pacific Northwest Laboratory environmental technologies available for deployment

    International Nuclear Information System (INIS)

    Slate, S.C.

    1994-07-01

    The Department of Energy created the Office of Environmental Management (EM) to conduct a 30-year plus, multi-billion dollar program to manage the wastes and cleanup the legacy from over fifty years of nuclear material production. Across the DOE System there are thousands of sites containing millions of metric tons of buried wastes and contaminated soils and groundwater. Additionally, there are nearly 400,000 m 3 of highly radioactive wastes in underground storage tanks, over 1,400 different mixed-waste streams, and thousands of contaminated surplus facilities, some exceeding 200,000 m 2 in size. Costs to remediate all these problems have been estimated to be as much as several hundred billion dollars. The tremendous technical challenges with some of the problems and the high costs of using existing technologies has led the Department to create the Office of Technology Development (TD) to lead an aggressive, integrated national program to develop and deploy the needed advanced, cost-effective technologies. This program is developing technologies for all major cleanup steps: assessment, characterization, retrieval, treatment, final stabilization, and disposal. Work is focused on the Department's five major problem areas: High-Level Waste Tank Remediation; Contaminant Plume Containment and Remediation; Mixed Waste Characterization, Treatment, and Disposal; Contaminated Soils and Buried Wastes Facility Transitioning, Decommissioning, and Final Disposal

  5. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  6. Some implications of in situ uranium mining technology development

    International Nuclear Information System (INIS)

    Cowan, C.E.; Parkhurst, M.A.; Cole, R.J.; Keller, D.; Mellinger, P.J.; Wallace, R.W.

    1980-09-01

    A technology assessment was initiated in March 1979 of the in-situ uranium mining technology. This report explores the impediments to development and deployment of this technology and evaluates the environmental impacts of a generic in-situ facility. The report is divided into the following sections: introduction, technology description, physical environment, institutional and socioeconomic environment, impact assessment, impediments, and conclusions

  7. Mitigation and Adaptation: Critical Perspectives toward Digital Technologies in Place-Conscious Environmental Education

    Science.gov (United States)

    Greenwood, David A.; Hougham, R. Justin

    2015-01-01

    This paper explores the tension for educators between the proliferation of mobile, digital technologies, and the widely held belief that environmental learning is best nurtured through place-based approaches that emphasize direct experience. We begin by offering a general critique of technology in culture and education, emphasizing what is at…

  8. Technical Data Management Center: a focal point for meteorological and other environmental transport computing technology

    International Nuclear Information System (INIS)

    McGill, B.; Maskewitz, B.F.; Trubey, D.K.

    1981-01-01

    The Technical Data Management Center, collecting, packaging, analyzing, and distributing information, computer technology and data which includes meteorological and other environmental transport work is located at the Oak Ridge National Laboratory, within the Engineering Physics Division. Major activities include maintaining a collection of computing technology and associated literature citations to provide capabilities for meteorological and environmental work. Details of the activities on behalf of TDMC's sponsoring agency, the US Nuclear Regulatory Commission, are described

  9. Pacific Northwest Laboratory annual report for 1979 to the DOE Assistant Secretary for Environment. Part 5. Environmental assessment, control, health, and safety

    Energy Technology Data Exchange (ETDEWEB)

    Baalman, R.W.; Dotson, C.W. (eds.)

    1980-02-01

    Part 5 of the 1979 Annual Report to the Department of Energy Assistant Secretary for the Environment presents Pacific Northwest Laboratory's progress on work performed for the Office of Technology Impacts, the Office of Environmental Compliance and Overview, and the Office of Health and Environmental Research. The report is in four sections, corresponding to the program elements: technology impacts, environmental control engineering, operational and environmental compliance, and human health studies. In each section, articles describe progress made during FY 1979 on individual projects.

  10. Environmental Management Performance Report November 2000

    Energy Technology Data Exchange (ETDEWEB)

    EDER, D.M.

    2000-11-01

    The purpose of the Environmental Management Performance Report (EMPR) is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's Environmental Management (EM) performance by: Project Hanford Management Contract (PHMC) through Fluor Hanford, Inc. (FH) and its subcontractors; Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors; Pacific Northwest National Laboratories (PNNL) for Science and Technology support to the EM Mission; and Office of Safety Regulation of the TWRS Privatization Contractor. This report is a monthly publication that summarizes EM Site performance under RL Operations Office. It is organized by the four sections listed above, with each section containing an Executive Summary and Area Performance Summaries. A glossary of terms is provided at the end of this report for reference purposes.

  11. Do water-saving technologies improve environmental flows?

    Science.gov (United States)

    Batchelor, Charles; Reddy, V. Ratna; Linstead, Conor; Dhar, Murli; Roy, Sumit; May, Rebecca

    2014-10-01

    Water saving and conservation technologies (WCTs) have been promoted widely in India as a practical means of improving the water use efficiency and freeing up water for other uses (e.g. for maintaining environmental flows in river systems). However, there is increasing evidence that, somewhat paradoxically, WCTs often contribute to intensification of water use by irrigated and rainfed farming systems. This occurs when: (1) Increased crop yields are coupled with increased consumptive water use and/or (2) Improved efficiency, productivity and profitability encourages farmers to increase the area cropped and/or to adopt multiple cropping systems. In both cases, the net effect is an increase in annual evapotranspiration that, particularly in areas of increasing water scarcity, can have the trade-off of reduced environmental flows. Recognition is also increasing that the claimed water savings of many WCTs may have been overstated. The root cause of this problem lies in confusion over what constitutes real water saving at the system or basin scales. The simple fact is that some of the water that is claimed to be ‘saved’ by WCTs would have percolated into the groundwater from where it can be and often is accessed and reused. Similarly, some of the “saved” runoff can be used downstream by, for example, farmers or freshwater ecosystems. This paper concludes that, particularly in areas facing increasing water scarcity, environmental flows will only be restored and maintained if they are given explicit (rather than theoretical or notional) attention. With this in mind, a simple methodology is proposed for deciding when and where WCTs may have detrimental impacts on environmental flows.

  12. Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) or Superfund, Section 104(k); and CERCLA Section 104(d); ‘‘ ‘Discounted Loans’ Under Brownfields Revolving Loan Fund Grants’

    Science.gov (United States)

    Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) or Superfund, Section 104(k); and CERCLA Section 104(d); ‘‘ ‘Discounted Loans’ Under Brownfields Revolving Loan Fund Grants’`

  13. A Plan for Environmental/Energy Education in the Public Community College System of Illinois.

    Science.gov (United States)

    National Field Research Center Inc., Iowa City, IA.

    This report examines the environmental training efforts of community colleges in Illinois. The text includes a series of nine model environmental protection curricula and outlines appropriate course descriptions for pollution control and abatement, radiation, and general environmental technology. A final section offers recommendations which…

  14. Increased growth in environmental technology - More capital in early stages; Oekad tillvaext inom miljoeteknik - Mer kapital i tidiga skeden

    Energy Technology Data Exchange (ETDEWEB)

    Stubelius, Andreas; Axelsson, Helene; Fjaellstroem, Mikael; Agnvall, Dag; Olsson, Erik

    2011-07-01

    Swedish environmental technology companies has great growth potential. The transition to a renewable and energy-efficient energy systems and greater attention to the ecosystem, creates a growing international demand for products and services. The Energy Agency has received a government commission to develop proposals that contribute to stronger collaboration and increased communication between those involved in environmental engineering with the aim of increasing environmental technology companies access to capital in the early commercial stages, with particular focus on small and medium-sized players. The Energy Agency submits proposals for action that will lead to increased growth of Swedish environmental technology companies

  15. Defensive technology and welfare analysis of environmental quality change with uncertain consumer health impacts

    International Nuclear Information System (INIS)

    Lee, L.K.; Moffitt, L.J.

    1993-01-01

    Measuring the ex post losses from environmental quality change is an important issue when environmental contamination creates health risks, liability is assigned, and private compensation efforts are required. This paper proposes a methodology for measuring the ex post welfare impact of environmental quality change using market behavior from defensive expenditures. Conditions under which a defensive technology can provide a bound on welfare estimates are identified

  16. 2008 annual meeting on nuclear technology. Pt. 1. Section reports; JAHRESTAGUNG KERNTECHNIK 2008. T. 1. Sektionsberichte

    Energy Technology Data Exchange (ETDEWEB)

    Dagan, Ron; Sanchez Espinoza, Victor Hugo [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Reaktorsicherheit; Rohde, U.; Kliem, Soeren [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany); Faber, Wolfgang; Berlepsch, Thilo v.; Spann, Holger [E.ON Kernkraft GmbH, Hannover (Germany); Schaffrath, Andreas [TUEV Nord SysTec GmbH und Co. KG, Hamburg (Germany); Schubert, Bernd [Vattenfall Europe Nuclear Energy GmbH, Hamburg (Germany); Rieger, Udo [Vattenfall Nuclear Energy GmbH, Hamburg (Germany); Christ,, Bernhard G. [NUKEM Technologies GmbH, Alzenau (Germany); Gulden, Werner [Fusion for Energy, Barcelona (Spain); Bogusch, Edgar [AREVA NP GmbH, Erlangen (Germany)

    2008-08-15

    Summary report on these 5 - out of 11 - Sections of the Annual Conference on Nuclear Technology held in Hamburg on May 27-29, 2008: - Reactor Physics and Methods of Calculation - Thermodynamics and Fluid Dynamics - Safety of Nuclear Installations - Methods, Analysis, Results - Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage - Fusion Technology. Other Sections will be covered in reports in further issues of atw. (orig.)

  17. 75 FR 22785 - Proposed Administrative Settlement Agreement Under Section 122 of the Comprehensive Environmental...

    Science.gov (United States)

    2010-04-30

    ... Leaman Tank Lines, Inc. Superfund Site Located in Logan Township, Gloucester County, NJ AGENCY..., Inc. (the ``Settling Party'') pursuant to Section 122 of the Comprehensive Environmental Response, Compensation, and Liability Act (``CERCLA''), 42 U.S.C. 9622. The Settlement Agreement provides for Settling...

  18. Technical, environmental, and economic assessment of deploying advanced coal power technologies in the Chinese context

    International Nuclear Information System (INIS)

    Zhao Lifeng; Xiao Yunhan; Gallagher, Kelly Sims; Wang Bo; Xu Xiang

    2008-01-01

    The goal of this study is to evaluate the technical, environmental, and economic dimensions of deploying advanced coal-fired power technologies in China. In particular, we estimate the differences in capital cost and overall cost of electricity (COE) for a variety of advanced coal-power technologies based on the technological and economic levels in 2006 in China. This paper explores the economic gaps between Integrated Gasification Combined Cycle (IGCC) and other advanced coal power technologies, and compares 12 different power plant configurations using advanced coal power technologies. Super critical (SC) and ultra super critical (USC) pulverized coal (PC) power generation technologies coupled with pollution control technologies can meet the emission requirements. These technologies are highly efficient, technically mature, and cost-effective. From the point of view of efficiency, SC and USC units are good choices for power industry. The net plant efficiency for IGCC has reached 45%, and it has the best environmental performance overall. The cost of IGCC is much higher, however, than that of other power generation technologies, so the development of IGCC is slow throughout the world. Incentive policies are needed if IGCC is to be deployed in China

  19. Can Pollution Problems Be Effectively Solved by Environmental Science and Technology? An Analysis of Critical Limitations

    Energy Technology Data Exchange (ETDEWEB)

    Huesemann, Michael H.(BATTELLE (PACIFIC NW LAB))

    2000-12-01

    It is currently believed that science and technology can provide effective solutions to most, if not all, environmental problems facing western industrial societies. The validity of this optimistic assumption is highly questionable for at least three reasons: First, current mechanistic, reductionist science is inherently incapable of providing the complete and accurate information which is required to successfully address environmental problems. Second, both the conservation of mass principle and the second law of thermodynamics dictate that most remediation technologies - while successful in solving specific pollution problems - cause unavoidable negative environmental impacts elsewhere or in the future. Third, it is intrinsically impossible to design industrial processes that have no negative environmental impacts. This follows not only from the entropy law but also from the fact that any generation of energy is impossible without negative environmental consequences. It can therefore be concluded that science and technology have only very limited potential in solving current and future environmental problems. Consequently, it will be necessary to address the root cause of environmental deterioration, namely the prevailing materialistic values that are the main driving force for both overpopulation and overconsumption. The long-term protection of the environment is therefore not primarily a technical problem but rather a social and moral problem that can only be solved by drastically reducing the strong influence of materialistic values.

  20. Investigations on an environmental technology transfer information network; Kankyo gijutsu iten joho network chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    With developing countries (APEC countries) as the main objects, investigations were carried out to issue environmental technology transfer information that Japan has accumulated, and advance exchanges of technical information with persons related inside and outside Japan. As a result of the investigations, it was found that the environmental technology information that serves more effectively for the developing countries is the technical information that has been developed by repeating improvements, has provided actual results in work sites, and is actually used, rather than the state-of-art technologies. Based on this result, business entities having factories and operation centers located in Mie Prefecture and the city of Yokkaichi were asked to provide data for the actually used environmental technologies. Out of 51 items provided by 17 companies, nine items were selected to be used as prototype database materials for an information network. The objects of information sources will be expanded to a nationwide scale in the future to improve the contents of the database. Problems of handling information copyrights and technical know-hows were presented in the course of data collection, urging the necessity of due considerations on the matter. Necessity was indicated on maintenance and management of data base as well as its quantitative expansion. 1 ref., 4 figs.

  1. Magnetically responsive (nano) composites as perspective materials for environmental technology applications

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Šafaříková, Miroslava

    -, č. 0 (2010), s. 85-90 R&D Projects: GA MPO(CZ) 2A-1TP1/094; GA MŠk OC09052 Institutional research plan: CEZ:AV0Z60870520 Keywords : magnetically responsive materials * ( nano )biocomposites * environmental technology Subject RIV: JI - Composite Materials

  2. A state of the art on coastal environmental protection using radioisotope tracer technology

    International Nuclear Information System (INIS)

    Jung, Sung Hee; Jin, Joon Ha; Kim, Jong Bum; Choi, Byung Jong

    2002-04-01

    Construction of artificial structures has caused a sediment process change due to the variation of hydraulic condition in Korea. Subsequently we have a serious problem of shoaling for shoreline deformation, siltation of the harbor and shipping channel. To protect those abnormal environmental changes, a large estimate has been spent for additional construction such as outer wall facilities, littoral nourishment and dredging. Systematic long-term studies should be carried out to understand the causes of environmental change. In addition, comprehensive plan is required for its monitoring and prevention. The radioisotope application studies for coastal environmental protection have not been actively performed only in the developed countries like France, Canada, and Australia etc., but also in many developing countries like Poland, India. Since KAERI has performed two experiments in costal area of Korea in 1960s, no more study has been reported. Recently the studies of radiotracer application technology is getting more interested in terms of on-line data acquisition and analysis for the validation of the numerical simulation models. The experiment using radiotracer becomes an important part of the method to solve the problems happening in coastal environment, as it supplies data with high confidence in the field. On the basis of the experience obtained from the researches for industrial application of radiotracer technology, KAERI is going to make its first step to the development of the radiotracer technology for costal environmental studies

  3. Technology needs for environmental restoration remedial action. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.S.

    1992-11-01

    This report summarizes the current view of the most important technology needs for the US Department of Energy (DOE) facilities operated by Martin Marietta Energy Systems, Inc. These facilities are the Oak Ridge National Laboratory, the Oak Ridge K-25 Site, the Oak Ridge Y-12 Plant, the Paducah Gaseous Diffusion Plant, and the Portsmouth Gaseous Diffusion Plant. The sources of information used in this assessment were a survey of selected representatives of the Environmental Restoration (ER) programs at each facility, results from a questionnaire distributed by Geotech CWM, Inc., for DOE, and associated discussions with individuals from each facility. This is not a final assessment, but a brief look at an ongoing assessment; the needs will change as the plans for restoration change and, it is hoped, as some technical problems are solved through successful development programs.

  4. US Department of Energy Environmental Cleanup Technology Development program: Business and research opportunities guide

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The US Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) is charged with overseeing a multi-billion dollar environmental cleanup effort. EM leads an aggressive national research, development, demonstration, testing, and evaluation program to provide environmental restoration and waste management technologies to DOE sites, and to manage DOE-generated waste. DOE is firmly committed to working with industry to effectuate this cleanup effort. We recognize that private industry, university, and other research and development programs are valuable sources of technology innovation. The primary purpose of this document is to provide you with information on potential business opportunities in the following technical program areas: Remediation of High-Level Waste Tanks; Characterization, Treatment, and Disposal of Mixed Waste; Migration of Contaminants; Containment of Existing Landfills; Decommissioning and Final Disposition, and Robotics.

  5. The science and the technology like input for the environmental administration of the energy sector

    International Nuclear Information System (INIS)

    Guerrero, Eduardo

    1999-01-01

    It is presented an analysis of the scientific-technological dynamics of Colombia in function of the environmental administration of the energy sector. The importance of the investigation is emphasized the flow of knowledge in terms of the competitiveness and environmental effectiveness of the electric, oil and carboniferous companies. Of critical way and positive, the effective of the institution is evaluated and relative suggestions are made to the interaction and coordination inter-institutional. Some of the variables that condition the offer and demand of science and technology are discussed and, with base in it, they think about elements to be kept in mind in the design and implementation of strategies and politics of environmental investigation for the energy sector

  6. QuEST: Qualifying Environmentally Sustainable Technologies. Volume 4

    Science.gov (United States)

    Lewis, Pattie L.

    2009-01-01

    In 2004, in one of their first collaborative efforts, Centro Para Prevencao da Poluicao (Portuguese Center for Pollution Prevention or C3P). teamed with Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) and two Portuguese entities, TAP Portugal (Portuguese National Airline) and OGMA Indtistria Aeron utica de Portugal (Portuguese Aeronautics Industry), to target the reduction of hexavalent chromium, cadmium, and volatile organic compounds (VOCs) in aircraft maintenance operations. This project focused on two coating systems that utilize non-chrome pretreatments and low-VOC primers and topcoats.

  7. Environmental Science and Technology Department annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Bjergbakke, E.; Oestergaard, H.; Aarkrog, A. [eds.

    1996-03-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1995 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The department`s contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 40 ills., 163 refs.

  8. Environmental Science and Technology Department annual report 1992

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A. [eds.

    1993-03-01

    Through basic and strategic research, the Environmental Science and Technology Department aspires to develop new ideas for industrial and agricultural production thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department in predominantly experimental. Selected department research activities during 1992 are introduced and reviewed in seven chapters: 1. Introduction. 2. The Atmospheric Environment. 3. Plant Genetics and Resistance Biology. 4. Plant Nutrition and Mineral Cycling. 5. Chemistry of the Geosphere. 6. Ecology and Mineral Cycling. 7. Other Activities. The department`s contribution to national and international collaborative research programmes in presented in addition in formation about large research and development facilities used and management by the department. The department`s educational and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technological staff members, visiting scientists, Post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au).

  9. Environmental Science and Technology Department annual report 1992

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1993-03-01

    Through basic and strategic research, the Environmental Science and Technology Department aspires to develop new ideas for industrial and agricultural production thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department in predominantly experimental. Selected department research activities during 1992 are introduced and reviewed in seven chapters: 1. Introduction. 2. The Atmospheric Environment. 3. Plant Genetics and Resistance Biology. 4. Plant Nutrition and Mineral Cycling. 5. Chemistry of the Geosphere. 6. Ecology and Mineral Cycling. 7. Other Activities. The department's contribution to national and international collaborative research programmes in presented in addition in formation about large research and development facilities used and management by the department. The department's educational and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technological staff members, visiting scientists, Post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au)

  10. Environmental Science and Technology Department annual report 1996

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1997-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The Department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the Department is mainly experimental. Selected departmental research activities during 1996 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace Analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The Department's contribution to national and international collaborative research programmes are presented together with information about the use of its large experimental facilities. Information about the Department's contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 63 ills., 207 refs

  11. Environmental Science and Technology Department annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O. J.; Oestergaard, H.; Aarkrog, A. [eds.

    1997-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The Department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the Department is mainly experimental. Selected departmental research activities during 1996 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace Analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The Department`s contribution to national and international collaborative research programmes are presented together with information about the use of its large experimental facilities. Information about the Department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 63 ills., 207 refs.

  12. Environmental Science and Technology Department annual report 1995

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Bjergbakke, E.; Oestergaard, H.; Aarkrog, A.

    1996-03-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1995 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The department's contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department's contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 40 ills., 163 refs

  13. Pretreatment technologies for industrial effluents: Critical review on bioenergy production and environmental concerns.

    Science.gov (United States)

    Prabakar, Desika; Suvetha K, Subha; Manimudi, Varshini T; Mathimani, Thangavel; Kumar, Gopalakrishnan; Rene, Eldon R; Pugazhendhi, Arivalagan

    2018-07-15

    The implementation of different pretreatment techniques and technologies prior to effluent discharge is a direct result of the inefficiency of several existing wastewater treatment methods. A majority of the industrial sectors have known to cause severe negative effects on the environment. The five major polluting industries are the paper and pulp mills, coal manufacturing facilities, petrochemical, textile and the pharmaceutical sectors. Pretreatment methods have been widely used in order to lower the toxicity levels of effluents and comply with environmental standards. In this review, the possible environmental benefits and concerns of adopting different pretreatment technologies for renewable energy production and product/resource recovery has been reviewed and discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. COST action TD1407: network on technology-critical elements (NOTICE)--from environmental processes to human health threats.

    Science.gov (United States)

    Cobelo-García, A; Filella, M; Croot, P; Frazzoli, C; Du Laing, G; Ospina-Alvarez, N; Rauch, S; Salaun, P; Schäfer, J; Zimmermann, S

    2015-10-01

    The current socio-economic, environmental and public health challenges that countries are facing clearly need common-defined strategies to inform and support our transition to a sustainable economy. Here, the technology-critical elements (which includes Ga, Ge, In, Te, Nb, Ta, Tl, the Platinum Group Elements and most of the rare-earth elements) are of great relevance in the development of emerging key technologies-including renewable energy, energy efficiency, electronics or the aerospace industry. In this context, the increasing use of technology-critical elements (TCEs) and associated environmental impacts (from mining to end-of-life waste products) is not restricted to a national level but covers most likely a global scale. Accordingly, the European COST Action TD1407: Network on Technology-Critical Elements (NOTICE)-from environmental processes to human health threats, has an overall objective for creating a network of scientists and practitioners interested in TCEs, from the evaluation of their environmental processes to understanding potential human health threats, with the aim of defining the current state of knowledge and gaps, proposing priority research lines/activities and acting as a platform for new collaborations and joint research projects. The Action is focused on three major scientific areas: (i) analytical chemistry, (ii) environmental biogeochemistry and (iii) human exposure and (eco)-toxicology.

  15. Environmental monitoring plan - environmental monitoring section. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Wilt, G.C. [ed.; Tate, P.J.; Brigdon, S.L. [and others

    1994-11-01

    This report presents the environmental monitoring plan for the Lawrence Livermore National Laboratory. A site characterization is provided along with monitoring and measurement techniques and quality assurance measures.

  16. Environmental monitoring plan - environmental monitoring section. Revision 1

    International Nuclear Information System (INIS)

    Wilt, G.C.; Tate, P.J.; Brigdon, S.L.

    1994-11-01

    This report presents the environmental monitoring plan for the Lawrence Livermore National Laboratory. A site characterization is provided along with monitoring and measurement techniques and quality assurance measures

  17. ENVIRONMENTAL TECHNOLOGY PROTOCOL VERIFICATION REPORT, EMISSIONS OF VOCS AND ALDEHYDES FROM COMMERCIAL FURNITURE (WITH APPENDICES)

    Science.gov (United States)

    As part of a U.S. Environmental Protection Agency Environmental Technology Verification program, the Research Triangle Institute (RTI) developed a test protocol for measuring volatile organic compounds and aldehydes in a large chamber. RTI convened stakeholders for the commercial...

  18. Transforming environmental permitting and compliance policies to promote pollution prevention: Removing barriers and providing incentives to foster technology innovation, economic productivity, and environmental protection. Final report

    International Nuclear Information System (INIS)

    Berg, D.R.; Kerr, R.L.; Fleischer, S.; Gorsen, M.; Harris, E.

    1993-04-01

    The Technology Innovation and Economics (TIE) Committee, a standing committee of EPA's National Advisory Council for Environmental Policy and Technology (NACEPT), has concluded that major changes are needed in federal and state permitting and compliance programs to encourage adoption of practical pollution prevention approaches to environmental protection. The Committee recommends seven major areas for improvement, including: (1) Redesigning permit procedures to encourage regulated facilities to expand multi-media and pollution prevention environmental improvement efforts; (2) Accelerating development and use of innovative pollution prevention technologies and techniques through special permitting and review procedures during RD ampersand D and commercialization phases; (3) Developing and expanding federal and state pollution prevention enforcement initiative; (4) Supporting state initiatives in pollution prevention facility planning; (5) Expanding pollution prevention-related training, educational and technology diffusion efforts to better reach managers in all sectors of the economy; (6) Altering personnel reward systems to encourage EPA staff to champion pollution prevention; (7) Expanding and publicizing the system of national awards honoring outstanding pollution prevention research, training and technology implementation

  19. Inland Waterway Environmental Safety

    Science.gov (United States)

    Reshnyak, Valery; Sokolov, Sergey; Nyrkov, Anatoliy; Budnik, Vlad

    2018-05-01

    The article presents the results of development of the main components of the environmental safety when operating vessels on inland waterways, which include strategy selection ensuring the environmental safety of vessels, the selection and justification of a complex of environmental technical means, activities to ensure operation of vessels taking into account the environmental technical means. Measures to ensure environmental safety are developed on the basis of the principles aimed at ensuring environmental safety of vessels. They include the development of strategies for the use of environmental protection equipment, which are determined by the conditions for wastewater treatment of purified sewage and oily bilge water as well as technical characteristics of the vessels, the introduction of the process of the out-of-the-vessel processing of ship pollution as a technology for their movement. This must take into account the operating conditions of vessels on different sections of waterways. An algorithm of actions aimed at ensuring ecological safety of operated vessels is proposed.

  20. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The HBCU/MI Consortium was formed (1) to respond to national R and D, policy formulation and minority manpower needs in environmental technology, hazardous, solid and mixed waste materials management, environmental restoration, and environmental health; and (2) to address limited minority participation in the public, private and non-profit environmental industries; limited environmental awareness among minorities; minimal interaction between HBCUs/MIs and majority universities, industry and interest groups; limited institutional development in environmental education and research; and lack of minority technical businesses in the environmental industry. This report gives progress made for the 92--93 period.

  1. Quality Assurance in Environmental Technology Verification (ETV): Analysis and Impact on the EU ETV Pilot Programme Performance

    Science.gov (United States)

    Molenda, Michał; Ratman-Kłosińska, Izabela

    2018-03-01

    Many innovative environmental technologies never reach the market because they are new and cannot demonstrate a successful track record of previous applications. This fact is a serious obstacle on their way to the market. Lack of credible data on the performance of a technology causes mistrust of investors in innovations, especially from public sector, who seek effective solutions however without compromising the technical and financial risks associated with their implementation. Environmental technology verification (ETV) offers a credible, robust and transparent process that results in a third party confirmation of the claims made by the providers about the performance of the novel environmental technologies. Verifications of performance are supported by high quality, independent test data. In that way ETV as a tool helps establish vendor credibility and buyer confidence. Several countries across the world have implemented ETV in the form of national or regional programmes. ETV in the European Union was implemented as a voluntary scheme if a form of a pilot programme. The European Commission launched the Environmental Technology Pilot Programme of the European Union (EU ETV) in 2011. The paper describes the European model of ETV set up and put to operation under the Pilot Programme of Environmental Technologies Verification of the European Union. The goal, objectives, technological scope, involved entities are presented. An attempt has been made to summarise the results of the EU ETV scheme performance available for the period of 2012 when the programme has become fully operational until the first half of 2016. The study was aimed at analysing the overall organisation and efficiency of the EU ETV Pilot Programme. The study was based on the analysis of the documents the operation of the EU ETV system. For this purpose, a relevant statistical analysis of the data on the performance of the EU ETV system provided by the European Commission was carried out.

  2. Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-06-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-December 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  3. International technology transfer to support the environmental restoration needs of the DOE complex

    International Nuclear Information System (INIS)

    DuCharme, A.R.; Jimenez, R.D.; Roberds, W.J.

    1992-01-01

    One of the principal objectives of the International Technology Exchange Program (ITEP) is the exchange of waste management and environmental restoration (WM/ER) technologies between the US and other nations. The current emphasis of ITEP is the transfer of technologies to the US that could provide better, faster, cheaper, or safer solutions to the needs of the DOE complex. The 10 candidate technologies that have been identified thus far by ITEP are discussed. The highlights of preliminary evaluations of these technologies through a systems approach are also described. The technologies have been evaluated by a screening process to determine their applicability to the leading WM/ER needs of the DOE complex. The technologies have been qualitatively compared with the known or anticipated capabilities of domestic, base case technologies

  4. Actinide solution processing at the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    1995-04-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1039, for radioactive solution removal and processing at Rocky Flats Environmental Technology Site, Golden, Colorado. The proposal for solution removal and processing is in response to independent safety assessments and an agreement with the State of Colorado to remove mixed residues at Rocky Flats and reduce the risk of future accidents. Monthly public meetings were held during the scoping and preparation of the EA. The scope of the EA included evaluations of alternative methods and locations of solution processing. A comment period from February 20, 1995 through March 21, 1995 was provided to the public and the State of Colorado to offer written comment on the EA. Comments were received from the State of Colorado and the U.S. Environmental Protection Agency. A response to the agency comments is included in the Final EA

  5. Comparing energy technology alternatives from an environmental perspective

    International Nuclear Information System (INIS)

    House, P.W.; Coleman, J.A.; Shull, R.D.; Matheny, R.W.; Hock, J.C.

    1981-02-01

    A number of individuals and organizations advocate the use of comparative, formal analysis to determine which are the safest methods for producing and using energy. Some have suggested that the findings of such analyses should be the basis upon which final decisions are made about whether to actually deploy energy technologies. Some of those who support formal comparative analysis are in a position to shape the policy debate on energy and environment. An opposing viewpoint is presented, arguing that for technical reasons, analysis can provide no definitive or rationally credible answers to the question of overall safety. Analysis has not and cannot determine the sum total of damage to human welfare and ecological communities from energy technologies. Analysis has produced estimates of particular types of damage; however, it is impossible to make such estimates comparable and commensurate across different classes of technologies and environmental effects. As a result of the deficiencies, comparative analysis connot form the basis of a credible, viable energy policy. Yet, without formal comparative analysis, how can health, safety, and the natural environment be protected. This paper proposes a method for improving the Nation's approach to this problem. The proposal essentially is that health and the environment should be considered as constraints on the deployment of energy technologies, constraints that are embodied in Government regulations. Whichever technologies can function within these constraints should then compete among themselves. This competition should be based on market factors like cost and efficiency and on political factors like national security and the questions of equity

  6. Heavy-Section Steel Technology Program: Recent developments in crack initiation and arrest research

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1991-01-01

    Technology for the analysis of crack initiation and arrest is central to the reactor pressure vessel fracture-margin-assessment process. Regulatory procedures for nuclear plants utilize this technology to assure the retention of adequate fracture-prevention margins throughout the plant operating license period. As nuclear plants age and regulatory procedures dictate that fracture-margin assessments be performed, interest in the fracture-mechanics technology incorporated into those procedures has heightened. This has led to proposals from a number of sources for development and refinement of the underlying crack-initiation and arrest-analysis technology. This paper presents an overview of ongoing Heavy-Section Steel Technology (HSST) Program research aimed at refining the fracture toughness data used in the analysis of fracture margins under pressurized-thermal-shock loading conditions. 33 refs., 13 figs

  7. Analysis of Big Data technologies for use in agro-environmental science

    NARCIS (Netherlands)

    Lokers, Rob; Knapen, Rob; Janssen, Sander; Randen, van Yke; Jansen, Jacques

    2016-01-01

    Recent developments like the movements of open access and open data and the unprecedented growth of data, which has come forward as Big Data, have shifted focus to methods to effectively handle such data for use in agro-environmental research. Big Data technologies, together with the increased

  8. Non-transboundary pollution and the efficiency of international environmental co-operation

    Energy Technology Data Exchange (ETDEWEB)

    Kox, H.L.M.; Van der Tak, C.M. [Economics Department, Faculty of Economics and Econometrics, Vrije Universiteit, Amsterdam (Netherlands)

    1995-10-01

    The increased awareness of the transboundary pollution problems resulted in a number of international treaties, such as the Montreal protocol on ozone-depleting substances (1987), and the Basel Convention on hazardous waste (1989). Most authors writing on efficient environmental instruments make a sharp distinction between domestic and transboundary environmental problems. While the former should be abated by domestic environmental instruments, an efficient treatment of the latter requires international instruments. The underlying logic is that in case of non-transboundary pollution both the costs and benefits of environmental policies are strictly domestic, the trade-off between benefits and costs of abatement should also be a strictly domestic issue. In contrast, with transboundary pollution the trade-off between abatement costs and benefits becomes an international issue. In this paper we analyse four cases where international environmental co-ordination is required to achieve an efficient outcome, even though the environmental externality is non-transboundary in nature. Section two sketches the standard view on efficient intervention levels with regard to transborder and non-transborder pollution. In the third section we deal with cases where environmental policy is used in a trade-strategic way. The section pays attention to the motives for using domestic environmental policy as a disguise for trade policies. It will be argued that the resulting allocative efficiency can be improved upon by international co-operation. Sections 4-6 analyse three cases where international co-operation may improve the international outcome on the basis of non-coordinated domestic allocation decisions. These cases refer in particular to the situation of developing countries, when there is a high export dependency on the polluting good in combination with the existence of discrete technologies, set-up costs of environment-friendly technologies, and the existence of increasing

  9. Non-transboundary pollution and the efficiency of international environmental co-operation

    International Nuclear Information System (INIS)

    Kox, H.L.M.; Van der Tak, C.M.

    1995-10-01

    The increased awareness of the transboundary pollution problems resulted in a number of international treaties, such as the Montreal protocol on ozone-depleting substances (1987), and the Basel Convention on hazardous waste (1989). Most authors writing on efficient environmental instruments make a sharp distinction between domestic and transboundary environmental problems. While the former should be abated by domestic environmental instruments, an efficient treatment of the latter requires international instruments. The underlying logic is that in case of non-transboundary pollution both the costs and benefits of environmental policies are strictly domestic, the trade-off between benefits and costs of abatement should also be a strictly domestic issue. In contrast, with transboundary pollution the trade-off between abatement costs and benefits becomes an international issue. In this paper we analyse four cases where international environmental co-ordination is required to achieve an efficient outcome, even though the environmental externality is non-transboundary in nature. Section two sketches the standard view on efficient intervention levels with regard to transborder and non-transborder pollution. In the third section we deal with cases where environmental policy is used in a trade-strategic way. The section pays attention to the motives for using domestic environmental policy as a disguise for trade policies. It will be argued that the resulting allocative efficiency can be improved upon by international co-operation. Sections 4-6 analyse three cases where international co-operation may improve the international outcome on the basis of non-coordinated domestic allocation decisions. These cases refer in particular to the situation of developing countries, when there is a high export dependency on the polluting good in combination with the existence of discrete technologies, set-up costs of environment-friendly technologies, and the existence of increasing

  10. Techno-economic and environmental analysis of low carbon energy technologies: Indian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Vijay Prakash; Kumar, Rahul; Kumar, Manish; Deswal, Surinder; Chandna, Pankaj

    2010-09-15

    In this paper, techno-economic and an environmental investigation and analysis of Low Carbon Technologies (LCTs) has been presented, with special emphasis on India. The paper identify, analyze and recommend, on the basis of available and collected / collated information and data, the promising and potential low carbon energy technology options suited to Indian conditions for grid connected power generation. The evaluation criteria adopted include - emission reduction potential, technological feasibility, and economic viability; and on its basis recommend a detailed action plan and strategy for guiding future research and development with a more focused approach considering current Indian policy framework.

  11. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2003-01-01

    This Site Environmental Report was prepared by the Environmental, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at NETL sites in Morgantown (MGN), West Virginia, Pittsburgh (PGH), Pennsylvania, Tulsa, Oklahoma, and Fairbanks, Alaska. This report contains the most accurate information that could be collected during the period between January 1, 2002, and December 31, 2002. As stated in DOE Orders 450.1 and 231.1, the purpose of the report is to: (1) Characterize site environmental management performance. (2) Confirm compliance with environmental standards and requirements. (3) Highlight significant facility programs and efforts

  12. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2003-10-30

    This Site Environmental Report was prepared by the Environmental, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at NETL sites in Morgantown (MGN), West Virginia, Pittsburgh (PGH), Pennsylvania, Tulsa, Oklahoma, and Fairbanks, Alaska. This report contains the most accurate information that could be collected during the period between January 1, 2002, and December 31, 2002. As stated in DOE Orders 450.1 and 231.1, the purpose of the report is to: (1) Characterize site environmental management performance. (2) Confirm compliance with environmental standards and requirements. (3) Highlight significant facility programs and efforts.

  13. Heavy-Section Steel Technology Program: Recent developments in crack initiation and arrest research

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1991-01-01

    Technology for the analysis of crack initiation and arrest is central to the reactor pressure vessel fracture-margin-assessment process. Regulatory procedures for nuclear plants utilize this technology to assure the retention of adequate fracture-prevention margins throughout the plant operating license period. As nuclear plants age and regulatory procedures dictate that fracture-margin assessments be performed, interest in the fracture-mechanics technology incorporated into those procedures has heightened. This has led to proposals from a number of sources for development and refinement of the underlying crack-initiation and arrest-analysis technology. An important element of the Heavy-Section Steel Technology (HSST) Program is devoted to the investigation and evaluation of these proposals. This paper presents the technological bases and fracture-margin assessment objectives for some of the recently proposed crack-initiation and arrest-technology developments. The HSST Program approach to the evaluation of the proposals is described and the results and conclusions obtained to date are presented

  14. The application of nuclear science technology to understanding and solving environmental problems

    International Nuclear Information System (INIS)

    Zuk, W.M.

    1997-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has for many years been involved in applying nuclear science-based and related technologies to the understanding of environmental processes and to the development and implementation of practical and effective solutions to site specific problems, for a broad spectrum of industry, government regulatory agencies, and other organisations in Australia, Europe, North and South America and South East Asia. ANSTO's environmental science program arose out of the need for research to predict, measure, evaluate and monitor the environmental impacts associated with : uranium mining and processing in Australia; the operation of the research reactor at Lucas Heights; and the safe treatment and disposal of radioactive and conventional wastes associated with these activities. The expertise developed in these activities, has found application to a much broader range of environmental concerns. This paper will present an overview of ANSTO's application of nuclear science-based techniques to, inter alia: coastal and marine studies; minesite rehabilitation; transport and geochemical modelling of radionuclides, heavy metals and organic chemicals in the geosphere; the application of naturally-occurring radionuclides and radioactive tracers to corrosion and sedimentation studies in the coastal environment; dating sediments, fish corals and archaeological samples; the understanding of the kinetics and the physiological responses of aquatic organisms to radionuclides and metals in the environment: and the use of aquatic organism as archival and 'realtime' monitors of pollutants

  15. Flexible Friction Stir Joining Technology

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lim, Yong Chae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mahoney, Murray [MegaStir Technologies LLC, Orem, UT (United States); Sanderson, Samuel [MegaStir Technologies LLC, Orem, UT (United States); Larsen, Steve [MegaStir Technologies LLC, Orem, UT (United States); Steel, Russel [MegaStir Technologies LLC, Orem, UT (United States); Fleck, Dale [MegaStir Technologies LLC, Orem, UT (United States); Fairchild, Doug P [ExxonMobil, Upstream Research Company (URC), Houston, TX (United States); Wasson, Andrew J [ExxonMobil, Upstream Research Company (URC), Houston, TX (United States); Babb, Jon [MegaStir Technologies LLC, Orem, UT (United States); Higgins, Paul [MegaStir Technologies LLC, Orem, UT (United States)

    2015-07-23

    Reported herein is the final report on a U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) project with industry cost-share that was jointly carried out by Oak Ridge National Laboratory (ORNL), ExxonMobil Upstream Research Company (ExxonMobil), and MegaStir Technologies (MegaStir). The project was aimed to advance the state of the art of friction stir welding (FSW) technology, a highly energy-efficient solid-state joining process, for field deployable, on-site fabrications of large, complex and thick-sectioned structures of high-performance and high-temperature materials. The technology innovations developed herein attempted to address two fundamental shortcomings of FSW: 1) the inability for on-site welding and 2) the inability to weld thick section steels, both of which have impeded widespread use of FSW in manufacturing. Through this work, major advance has been made toward transforming FSW technology from a “specialty” process to a mainstream materials joining technology to realize its pervasive energy, environmental, and economic benefits across industry.

  16. Comprehensive research cooperation in environmental technology in fiscal 1995; 1995 nendo kankyo gijutsu sogo kenkyu kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Cooperative study was conducted on research subjects concerning water pollution preventive technologies in China and Thailand. In China, straw pulp mills were studied which were in the Institute of Light Industry Environmental Protection and the Environmental Engineering Course of Jinghua University. The following studies were jointly conducted: survey of the water quality pollution caused by waste water, investigational study on production technology and waste water treatment technology, extraction of technologies effective to preserve water quality, study/evaluation of economical efficiency of the said technologies, etc. In Thailand, cooperative research was conducted on automatic measuring technology for factory waste water in a model industrial estate of the Thai National Industrial Estate Corporation. Items for the study were a study on measuring technology for water quality environment, an investigation on the status of water quality environment in the model industrial estate, a study on automatic measuring technology for plant waste water, a study on how to use measuring data in the model industrial estate, etc. Every study enabled technical data accumulation at every research institute through field research exchanges. 24 refs., 91 figs., 45 tabs.

  17. Eleventh annual coal preparation, utilization, and environmental control contractors conference: Proceedings

    International Nuclear Information System (INIS)

    1995-01-01

    The 75 papers contained in this volume are divided into the following sections: compliance technology; technology base activities; high efficiency preparation; air toxics (especially mercury); air toxics and CO 2 control; superclean emissions; Combustion 2000; advanced research; commercial and industrial combustion systems; alternative fuels; environmental control; and coal utilization. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  18. Decision and coordination of low-carbon supply chain considering technological spillover and environmental awareness.

    Science.gov (United States)

    Xu, Lang; Wang, Chuanxu; Li, Hui

    2017-06-08

    We focus on the impacts of technological spillovers and environmental awareness in a two-echelon supply chain with one-single supplier and one-single manufacturer to reduce carbon emission. In this supply chain, carbon abatement investment becomes one of key factors of cutting costs and improving profits, which is reducing production costs in the components and products-the investment from players in supply chain. On the basis of optimality theory, the centralized and decentralized models are respectively established to investigate the optimal decisions and profits. Further, setting the players' profits of the decentralized scenario as the disagreement points, we propose a bargaining-coordination contract through revenue-cost sharing to enhance the performance. Finally, by theoretical comparison and numerical analysis, the results show that: (i) The optimal profits of players and supply chain improve as technological spillovers and environmental awareness increase, and the profits of them in the bargaining-coordination contract are higher than that in the decentralized scenario; (ii) Technological spillovers between the players amplify the impact of "free-ride" behavior, in which the supplier always incentives the manufacturer to improve carbon emission intensity, but the cooperation will achieves and the profits will improve only when technological spillovers and environmental awareness are great; (iii) The contract can effectively achieve coordinated supply chain, and improve carbon abatement investment.

  19. Investigation of Environmental-friendly Technology for a Paint Industry Wastewater Plant in Turkey

    Directory of Open Access Journals (Sweden)

    Pelin YAPICIOĞLU

    2018-02-01

    Full Text Available Paint manufacturing process has several unfavorable aspects to the environment in Turkey. One of these impacts is wastewater treatment. Paint wastewater contains huge amounts of toxic chemical substances, bio refractory compounds, pigments and microorganisms. So, advanced treatment requirement is available to dispose of colour, microorganisms and chemical oxygen demand (COD. The high organic content of wastewater causes serious environmental challenges and contamination for the living organisms and the ecosystem in the receiver media unless it is treated adequately. In this context, the treatment process to be implemented should be preferred in such a way as to give the least damage to the environment. In this study, three treatment scenarios that contain electrocoagulation (Scenario-1, Fenton process (Scenario-2 and membrane distillation (Scenario-3 have been created for wastewater treatment facility of a paint industry in Turkey. For three scenarios, environmental impact assessment has been carried out with Fine-Kinney method. It is aimed to choose best environmental technology before investment. The evaluation results revealed that Scenario-2 has the less environmental impacts that total impact value is 556. Scenario-1 has the highest total impact value as 756, relatively. Total impact value related to Scenario-3 is 637. According to the evaluation results, Fenton process is the best environmental-friendly treatment technology for wastewater treatment of a paint industry in Turkey.

  20. Environmental Survey preliminary report, Morgantown Energy Technology Center, Morgantown, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Morgantown Energy Technology Center (METC) conducted November 30 through December 4, 1987. In addition, the preliminary findings of the Laramie Project Office (LPO) Survey, which was conducted as part of the METC Survey on January 25 through 29, 1988, are presented in Appendices E and F. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with METC. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at METC, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities at METC. The Sampling and Analysis Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the results will be incorporated into the METC Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Survey METC. 60 refs., 28 figs., 43 tabs.