WorldWideScience

Sample records for environmental technology education

  1. Partnership for Environmental Technology Education

    International Nuclear Information System (INIS)

    Dickinson, Paul R.; Fosse, Richard

    1992-01-01

    The need for broad cooperative effort directed toward the enhancement of science and mathematics education, including environmental science and technology has been recognized as a national priority by government, industry, and the academic community alike. In an effort to address this need, the Partnership for Environmental Technology Education (PETE) has been established in the five western states of Arizona, California, Hawaii, Nevada and Utah. PETE'S overall objectives are to link the technical resources of the DOE, ERA, and NASA Laboratories and private industry with participating community colleges to assist in the development and presentation of curricula for training environmental-Hazardous Materials Technicians and to encourage more transfer students to pursue studies in environmental science at four-year institutions. The program is co-sponsored by DOE and EPA. DoD participation is proposed. PETE is being evaluated by its sponsors as a regional pilot with potential for extension nationally. (author)

  2. Technology and Environmental Education: An Integrated Curriculum

    Science.gov (United States)

    Willis, Jana M.; Weiser, Brenda

    2005-01-01

    Preparing teacher candidates to integrate technology into their future classrooms effectively requires experience in instructional planning that utilizes technology to enhance student learning. Teacher candidates need to work with curriculum that supports a variety of technologies. Using Project Learning Tree and environmental education (EE),…

  3. The Advanced Technology Environmental Education Center Summer Fellows Institute.

    Science.gov (United States)

    Depken, Diane E.; Zeman, Catherine L.; Lensch, Ellen Kabat; Brown, Edward J.

    2002-01-01

    Describes the background, activities, and outcomes of the Advanced Technology Environmental Education Center (ATEEC) and its Summer Fellows Institutes as a model for disciplinary and cross-disciplinary infusion of environmental science and technology content, curriculum, and methods into the classroom. Presents experiences, themes, and activities…

  4. The Use of Technology by Nonformal Environmental Educators

    Science.gov (United States)

    Peffer, Tamara Elizabeth; Bodzin, Alec M.; Smith, Judith Duffield

    2013-01-01

    This study examined the use of instructional and learning technologies by nonformal environmental educators. A 40-question survey was developed to inquire about practitioner demographics, technology use in practice, and beliefs about technology. The survey consisted of multiple choice, open-ended questions, and a Likert-type scale component--the…

  5. A new approach to environmental education: environment-challenge for science, technology and society

    International Nuclear Information System (INIS)

    Popovic, D.

    2002-01-01

    The paper presents a new approach to environmental education within the project Environment: Challenge for Science, Technology and Education, realized on the Alternative Academic Education Network (AAEN) in Belgrade. The project is designed for graduate or advanced undergraduate students of science, medicine, engineering, biotechnology, political and law sciences. It is multidisciplinary and interdisciplinary project aimed to support students interest in different areas of the environmental sciences through strong inter-connection between modern scientific ideas, technological achievements and society. The project contains four basic courses (Living in the Environment; Physical and Chemical Processes in the Environment; Industrial Ecology and Sustainable Development; Environmental Philosophy and Ethics) and a number of elective courses dealing with environmental biology, adaptation processes , global eco politics, environmental ethics, scientific and public policy, environmental consequences of warfare, environmental pollution control, energy management, environmental impact assessment, etc. The standard ex catedra teaching is replaced with active student-teacher communication method enabling students to participate actively in the subject through seminars, workshops, short essays and individual research projects

  6. Investigating Elementary School Students' Technology Acceptance by Applying Digital Game-Based Learning to Environmental Education

    Science.gov (United States)

    Cheng, Yuh-Ming; Lou, Shi-Jer; Kuo, Sheng-Huang; Shih, Ru-Chu

    2013-01-01

    In order to improve and promote students' environmental knowledge, attitudes, and behaviour, integrating environmental education into the primary education curriculum has become a key issue for environmental education. For this reason, this study aimed to investigate elementary school students' acceptance of technology applying digital game-based…

  7. Mitigation and Adaptation: Critical Perspectives toward Digital Technologies in Place-Conscious Environmental Education

    Science.gov (United States)

    Greenwood, David A.; Hougham, R. Justin

    2015-01-01

    This paper explores the tension for educators between the proliferation of mobile, digital technologies, and the widely held belief that environmental learning is best nurtured through place-based approaches that emphasize direct experience. We begin by offering a general critique of technology in culture and education, emphasizing what is at…

  8. Teaching Professionals Environmental Management and Cleaner Technology Combining Educational Learning and Practice Learning

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik; Jørgensen, Michael Søgaard; Rasmussen, Bent Hesse

    2001-01-01

    -ordinating efficient management of environmental problems and technological processes of change in companies, and within the area of planning and co-ordinating relevant public regulation. Two of the major cornerstones in the education of Environmental Management are 1) the education should provide the students......The objective of the education of Environmental Manager is to make the student able to understand and co-ordinate solutions of environmental problems within the industrial sector and the public authorities. As such the education aims at qualifying the student both within the area of planning and co...... with new scientific theories and methods that relate to their field of practice. And 2) the education should bring in and develop new competencies and perspectives that can act as renewable elements in the students’ practical work. Among other things this means that the education becomes a place where...

  9. Environmental Education Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    This document is designed to guide the Environmental Education and Development Branch (EM-522) of the EM Office of Technology (OTD) Development, Technology Integration and Environmental Education Division (EM-52) in planning and executing its program through EM staff, Operations Offices, National Laboratories, contractors, and others.

  10. Environmental Education through Inquiry and Technology

    Science.gov (United States)

    Markaki, Vassiliki

    2014-01-01

    In the transformative world of today, the role of environmental education has become a much-debated issue. The experience from various EU countries shows lack of a concrete policy for the advancement of those strategic skills that correspond to the identified need for the connection of environmental education to green career choices. This paper…

  11. Technology and Environmental Education: Friend or Foe?

    Science.gov (United States)

    Athman, Julie; Bates, Tim

    1998-01-01

    Discusses the pros and cons often mentioned concerning technology in education. Describes measures of effectiveness of technology-enhanced educational programs, ranging from active learning and multidisciplinary tasks to performance-based assessments. Argues that technology should enhance rather than replace direct experiences. (PVD)

  12. Innovative Approaches in Distance Education in the Field of Environmental Management and Environmental Technologies

    Directory of Open Access Journals (Sweden)

    Leontev Mikhail

    2016-01-01

    Full Text Available This article discusses the innovative structures and components of distance learning and education, discusses the results of application of approaches to teaching in the electronic environment based on the proposed andragogic and pedagogical models of teaching in cyberspace, for adult learners, bachelor graduates of “Management” for the training program “Introduction to environmental management systems”. This program particularly addresses the role of environmental managers in a company activity, the implementation of ecologically clean technologies. The author proposed an innovative nonlinear andragogic model of learning. The model was mediated by the constructive approach and problem-oriented learning.

  13. Emerging environmental technologies and environmental technology policy

    Science.gov (United States)

    Clarke, Leon Edward

    This dissertation explores the role and design of environmental technology policy when environmental innovation is embodied in emerging environmental technologies such as photovoltaic cells or fuel cells. The dissertation consists of three individual studies, all of which use a simplified, general model industry between an emerging environmental technology and an entrenched, more-polluting technology. It clarifies the situations in which environmental technology policy can achieve high welfare and those in which it cannot; and it separates the possible situations an emerging environmental technology might face into four scenarios, each with its own technology policy recommendations. The second study attempts to clarify which of two factors is having a larger limiting effect on private investment in photovoltaics: the failure to internalize the environmental costs of fossil fuel electricity generation or a broad set of innovation market failures that apply to innovation irrespective of environmental concerns. The study indicates that innovation market failures are probably having a significantly larger impact than incomplete internalization. The third study explores the effectiveness of adoption subsidies at encouraging private-sector innovation. The conclusion is that adoption subsidies probably have only a limited effect on long-term, private-sector research. Two important general conclusions of the dissertation are (1) that optimal technology policy should begin with technology-push measures and end with demand-pull measures; and (2) that the technological response to internalization instruments, such as emissions taxes, may be highly nonlinear.

  14. Activist Environmental Education and Moral Philosophy

    Science.gov (United States)

    Burns, David Patrick; Norris, Stephen P.

    2012-01-01

    In this article the authors respond to a recent special issue of the "Canadian Journal of Science, Mathematics and Technology Education" (Alsop & Bencze, 2010) in which the role of environmental activism in science, mathematics, and technology education (SMTE) was addressed. Although they applaud this Special Issue's invitation to begin a new…

  15. A System Approach to Environmental Education

    Directory of Open Access Journals (Sweden)

    Z. Kostova

    2007-09-01

    Full Text Available A system approach to environmental education (EE is developed. By making use of it the educators will be able to introduce successfully ecological principles and global environmental problems in the educational system for the development of environmental culture, consciousness and behavior. It embraces a long period of thinking, designing, experimenting and rethinking in the light of the new ideas, concerning humanity-nature relationships. The core of the system approach is represented by environmental consciousness, which is the driving force of environmentally responsible behavior. The system approach is concerned with constructing an innovative model of EE, which consists of three elements: didactical, conceptual and technological and six integrating concepts, uniting the studies of the different school subjects under the global movement for sustainable development. EE is regarded to be an essential part of the education for sustainable development (ESD.

  16. FACTORS OF NANOTECHNOLOGY AND BIODIVERSITY: ENVIRONMENTAL AND EDUCATIONAL ASPECTS

    Directory of Open Access Journals (Sweden)

    A. V. Kozachek

    2015-01-01

    Full Text Available The aim is to consider the features of impact of nanotechnology on biodiversity in the future.Methods. We suggest an approach, according to which nanotechnologies are viewed as key technologies of the sixth technological order. It is assumed that nanotechnology may be a potential source of environmental problems of the future, and the basis for the creation of new advanced types of environmental engineering and technology. Since all of the above is important both within the actual environmental performance and for the purposes of professional engineering and environmental training. We suggest in this paper to view the problem of the impact of nanotechnology on biodiversity and the state of the environment through environmental and educational aspects.Results. We considered and analyzed the environmental and educational aspects of the application of nanotechnology in the period of the sixth technological order. Implementing procedures for their analysis has contributed to the identification and systematization of the various impacts of nanotechnology on biodiversity and the state of the environment, and identification of options for the prevention of such factors. Based on the results of such studies we have identified educational aspects of training environmental engineers during the sixth technological order; defined a new focus of the training in the sixth technological order, which involves, in our opinion, the study of features of a rational and prudent use of natural resources with the use of appropriate innovative eco-oriented nanotechnology, education of students in terms of the understanding of the causes, consequences and ways to prevent the global resource crisis on the planet due to the emergence of a new class of nano-contamination.Main conclusions. The results can be recommended to be used in practice for more in-depth analysis of the specific environmental challenges of nanotechnology, and revising approaches to the design of the

  17. A Review of Technology Education in Ireland; a Changing Technological Environment Promoting Design Activity

    Science.gov (United States)

    Leahy, Keelin; Phelan, Pat

    2014-01-01

    In Ireland, Technology Education's structure and organisation across the levels of education is not delivered or governed in a coherent manner. Technology Education in primary level education, for students between 5 and 12 years of age, does not explicitly exist as a separate subject. In primary level education, Social, Environmental and…

  18. Exploring Use of New Media in Environmental Education Contexts: Introducing Visitors' Technology Use in Zoos Model

    Science.gov (United States)

    Yocco, Victor; Danter, Elizabeth H.; Heimlich, Joseph E.; Dunckel, Betty A.; Myers, Chris

    2011-01-01

    Modern zoological gardens have invested substantial resources in technology to deliver environmental education concepts to visitors. Investment in these media reflects a currently unsubstantiated belief that visitors will both use and learn from these media alongside more traditional and less costly displays. This paper proposes a model that…

  19. (Environmental technology)

    Energy Technology Data Exchange (ETDEWEB)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  20. Efficacy of the World Wide Web in K-12 environmental education

    Science.gov (United States)

    York, Kimberly Jane

    1998-11-01

    Despite support by teachers, students, and the American public in general, environmental education is not a priority in U.S. schools. Teachers face many barriers to integrating environmental education into K--12 curricula. The focus of this research is teachers' lack of access to environmental education resources. New educational reforms combined with emerging mass communication technologies such as the Internet and World Wide Web present new opportunities for the infusion of environmental content into the curriculum. New technologies can connect teachers and students to a wealth of resources previously unavailable to them. However, significant barriers to using technologies exist that must be overcome to make this promise a reality. Web-based environmental education is a new field and research is urgently needed. If teachers are to use the Web meaningfully in their classrooms, it is essential that their attitudes and perceptions about using this new technology be brought to light. Therefore, this exploratory research investigates teachers' attitudes toward using the Web to share environmental education resources. Both qualitative and quantitative methods were used to investigate this problem. Two surveys were conducted---self-administered mail survey and a Web-based online survey---to elicit teachers perceptions and comments about environmental education and the Web. Preliminary statistical procedures including frequencies, percentages and correlational measures were performed to interpret the data. In-depth interviews and participant-observation methods were used during an extended environmental education curriculum development project with two practicing teachers to gain insights into the process of creating curricula and placing it online. Findings from the both the mail survey and the Web-based survey suggest that teachers are interested in environmental education---97% of respondents for each survey agreed that environmental education should be taught in K

  1. Educação Ambiental e as Novas Tecnologias de Informação e Comunicação / Environmental education and the new comunication and information technologies

    Directory of Open Access Journals (Sweden)

    Marlene Teresinha Muno Colesanti

    2008-06-01

    Full Text Available In the last twenty years, the development of modern information and communication technologies, aswell as the enlarging of their use have created enormous expectations and possibilities on schoolteaching. Related to the Environmental Education, the use of modern information and communicationtechnologies represents an advance, since the integration of information technology and multimediaallows the sensitive and knowledge of different environments and their specific problems, by the viewof students, as far as they can be.Through of the conception of Environmental Education linked to the complexity pedagogy, this articlelooked for argue the potentiality of work with principles of Environmental Education on support digital,using images, texts and sounds, implemented by hypermedia, no sequential technology, which informationare accessed in associative way.Keywords: Environmental Education. Hypermedia. Modern information and comunication.

  2. Educators Using Information Technology. GIS Video Series. [Videotape].

    Science.gov (United States)

    A M Productions Inc., Vancouver (British Columbia).

    This 57-minute videotape covers the "Florida Educators Using Information Technology" session of the "Eco-Informa '96" conference. Two speakers presented examples of environmental educators using information technology. The first speaker, Brenda Maxwell, is the Director and Developer of the Florida Science Institute based at…

  3. Practical Environmental Education and Local Contribution in the Environmental Science Laboratory Circle in the College of Science and Technology in Nihon University

    Science.gov (United States)

    Taniai, Tetsuyuki; Ito, Ken-Ichi; Sakamaki, Hiroshi

    In this paper, we presented a method and knowledge about a practical and project management education and local contribution obtained through the student activities of “Environmental science laboratory circle in the College of Science and technology in Nihon University” from 1991 to 2001. In this circle, four major projects were acted such as research, protection, clean up and enlightenment projects. Due to some problems from inside or outside of this circle, this circle projects have been stopped. The diffusion and popularization of the internet technology will help to resolve some of these problems.

  4. Program of Teacher Education for Environmental Technology (POTEET).

    Science.gov (United States)

    National Sanitation Foundation, Ann Arbor, MI.

    The environmental technician, a new but necessary subordinate of a professional environmentalist, might be employed by a health department, natural resources commission, state agriculture department, municipal water plant, or by business or industry in self-inspection and corrective activities. The Program of Teacher Education for Environmental…

  5. The 10th Anniversary Of Daejeon Environmental Technology Development Center

    International Nuclear Information System (INIS)

    2010-12-01

    This book describes the Daejeon Environment Technology Development Center with pictures for ten years. It also introduces the purpose of the foundation and background of center, structure of the center, main project and role of the center, center logo, current situation of cost of project, research business for 10 years, business supporting the environmental corporate, environment education, public relations activity and vision and prospect of the Daejeon Environmental Technology Development Center.

  6. Educational technology in medical education.

    Science.gov (United States)

    Han, Heeyoung; Resch, David S; Kovach, Regina A

    2013-01-01

    This article aims to review the past practices of educational technology and envision future directions for medical education. The discussion starts with a historical review of definitions and perspectives of educational technology, in which the authors propose that educators adopt a broader process-oriented understanding of educational technology. Future directions of e-learning, simulation, and health information technology are discussed based on a systems view of the technological process. As new technologies continue to arise, this process-oriented understanding and outcome-based expectations of educational technology should be embraced. With this view, educational technology should be valued in terms of how well the technological process informs and facilitates learning, and the acquisition and maintenance of clinical expertise.

  7. Environmental Education and Development Division (EM-522). Annual report, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The Environmental Education and Development Division (EM-522) is one of three divisions within the Office of Technology Integration and Environmental Education and Development (EM-52) in Environmental Restoration and Waste Management`s (EM`s) Office of Technology Development (EM-50). The primary design criterion for EM-522 education activities is directly related to meeting EM`s goal of environmental compliance on an accelerated basis and cleanup of the 1989 inventory of inactive sites and facilities by the year 2019. Therefore, EM-522`s efforts are directed specifically toward stimulating knowledge and capabilities to achieve the goals of EM while contributing to DOE`s overall goal of increasing scientific, mathematical, and technical literacy and competency. This report discusses fiscal year 1993 activities.

  8. Education and Environmentalism: Ecological World Views and Environmentally Responsible Behaviour.

    Science.gov (United States)

    Blaikie, Norman

    1993-01-01

    Examined a subsample of students from the Royal Melbourne Institute of Technology to determine the extent to which an Ecological World View (EWV) has been adapted, an EWV related to environmental behavior, and the role education plays in the type of EWV adapted. Includes the Ecological World View Scale. (Contains 21 references.) (MDH)

  9. Technological Literacy Education and Technological and Vocational Education in Taiwan

    Science.gov (United States)

    Lee, Lung-Sheng Steven

    2010-01-01

    Technology education in Taiwan is categorized into the following two types: (1) technological literacy education (TLE)--the education for all people to become technological literates; and (2) technological specialty education (TSE)--the education for specific people to become technicians and professionals for technology-related jobs. This paper…

  10. Software support for environmental measurement in quality at educational institutions

    Directory of Open Access Journals (Sweden)

    Alena Pauliková

    2016-03-01

    Full Text Available The analysed theme of this article is based on the training of environmental measurements for workplaces. This is very important for sustainable quality in technical educational institutions. Applied kinds of software, which are taught at technical educational institutions, have to offer the professional and methodical knowledge concerning conditions of working ambient for students of selected technical specialisations. This skill is performed in such a way that the graduates, after entering the practical professional life, will be able to participate in solutions for actual problems that are related to environmental protection by means of software support. Nowadays, during the training processit is also obligatory to introduce technical science. Taking into consideration the above-mentioned facts it is possible to say that information technology support for environmental study subjects is a relevant aspect, which should be integrated into the university educational process. There is an effective progress that further highlights the focus on the quality of university education not only for environmental engineers. Actual trends require an increasing number of software/hardware educated engineers who can participate in qualitative university preparation, i.e.IT environmentalists. The Department of Environmental Engineering at the Faculty of Mechanical Engineering, TechnicalUniversity in Košice, Slovakia is an institution specified and intended for quality objectivisation. This institution introduced into the study programmes (“Environmental Management” and “Technology of Environmental Protection” study subjects with the software support, which are oriented towards outdoor and indoor ambient and in this way the Department of Process and Environmental Engineering is integrated effectively and intensively into the area of measurement training with regard to the requirement of quality educational processes.

  11. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The environmental Science and Technology Program was structured based on the continuous growth of environmental activities on areas related to nuclear programs at IPEN. The program comprehends five main areas: Environmental analysis: Chemical technology; Polymer technology nucleus: Chemical and Isotope characterization and Analytical Chemistry for the Nuclear Fuel Cycle samples.

  12. Advance Planning, Programming and Production Control as key Activities Now the Environmental Education

    Directory of Open Access Journals (Sweden)

    Geraldo Cardoso de Oliveira Neto

    2015-06-01

    Full Text Available This work addresses the evolution of Planning, Programming and Control of Production (PPCP as essential activities of the company towards the insertion of environmental education. The approach is based on an exploratory research and a critical bibliographic revision. Two main objectives were established: i a new way of production organization, by considering cleaner production from company utilities to production capacity, technology and outsourcing and ii infrastructure changes related to market attendance and environmental education dissemination. Needs that arise can be grouped as follows: utilities adequacy, cleaner technologies and ecochains implementation; instruction and dissemination of environmental education; and necessity of the adoption of new paradigms.

  13. Green Curriculum Analysis in Technological Education

    Science.gov (United States)

    Chakraborty, Arpita; Singh, Manvendra Pratap; Roy, Mousumi

    2018-01-01

    With rapid industrialization and technological development, India is facing adverse affects of unsustainable pattern of production and consumption. Education for sustainable development has been widely recognized to reduce the threat of environmental degradation and resource depletion. This paper used the content analysis method to explore the…

  14. Environmental technology foresight : New horizons for technology management

    NARCIS (Netherlands)

    Den Hond, Frank; Groenewegen, Peter

    1996-01-01

    Decision-making in corporate technology management and government technology policy is increasingly influenced by the environmental impact of technologies. Technology foresight (TF) and environmental impact assessment (EIA) are analyzed with regard to the roles they can play in developing long-term

  15. Environmental Education and Small Business Environmental Activity

    Science.gov (United States)

    Redmond, Janice; Walker, Beth

    2011-01-01

    Environmental education is seen as a key driver of small business environmental management, yet little is known about the activities small business owner-managers are undertaking to reduce their environmental impact or in what areas they may need education. Therefore, research that can identify environmental management activities being undertaken…

  16. U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: ARSENIC MONITORING TECHNOLOGIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency Environmental Technology Verification (ETV) program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This technology ...

  17. Environmental Policy and Technological Change

    International Nuclear Information System (INIS)

    Jaffe, Adam B.; Newell, Richard G.; Stavins, Robert N.

    2002-01-01

    The relationship between technological change and environmental policy has received increasing attention from scholars and policy makers alike over the past ten years. This is partly because the environmental impacts of social activity are significantly affected by technological change, and partly because environmental policy interventions themselves create new constraints and incentives that affect the process of technological developments. Our central purpose in this article is to provide environmental economists with a useful guide to research on technological change and the analytical tools that can be used to explore further the interaction between technology and the environment. In Part 1 of the article, we provide an overview of analytical frameworks for investigating the economics of technological change, highlighting key issues for the researcher. In Part 2, we turn our attention to theoretical analysis of the effects of environmental policy on technological change, and in Part 3, we focus on issues related to the empirical analysis of technology innovation and diffusion. Finally, we conclude in Part 4 with some additional suggestions for research

  18. Environmental technology verification methods

    CSIR Research Space (South Africa)

    Szewczuk, S

    2016-03-01

    Full Text Available Environmental Technology Verification (ETV) is a tool that has been developed in the United States of America, Europe and many other countries around the world to help innovative environmental technologies reach the market. Claims about...

  19. University of Tennessee and Oak Ridge environmental restoration education program

    International Nuclear Information System (INIS)

    Yalcintas, M.G.; Swindle, D.W. Jr.

    1992-01-01

    A joint program of the Oak Ridge National Laboratory (ORNL) and the University of Tennessee at Knoxville (UTK) has been initiated to provide education and research on environmental restoration and waste management. The program will provide opportunity for formal education and research for area businesses, while integrating their efforts in mixed-waste management with those of UTK and ORNL. Following successful results demonstrated at ORNL and UTK, the program will be integrated with other universities and research institutions in the country. During this presentation, the programs's objective, scope, and goals will be described, and details of the program structure will be explained. Also, it will be demonstrated how experience gained in environmental restoration technology transfer activities could be applied in an educational program, providing a focal point for technology transfer and information exchange. Expected accomplishments and industry benefits will also be discussed

  20. Environmental science and technology

    International Nuclear Information System (INIS)

    2014-01-01

    The Program on Environmental Science and Technology developed at the Chemical and Environmental Technology Center comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalysts) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization). The Chemical and Environmental Technology Center was established in 1995, as an evolution of the former Department of Chemistry Engineering (1970). The program on environment science and technology was structured as consequence of the continuous growth of environmental activities on areas related to nuclear programs of IPEN. Moreover, it was an answer to the society concerning the climate changes and biodiversity preservation. All activities of research and development, services, supervision of graduate and under graduated students and courses performance at the center were related to the development, improvement and establishment of new technologies. The highlights of this period (2011 - 2013) were: - Development and use of modern analytical technology for the characterization of persistent pollutants and endocrine disrupters (metals, PAHA’s, PCBs, Pesticides, hormones, surfactants, plasticizer and human pharmaceuticals) in order to evaluate water quality and/or sediments; - Atmospheric chemistry and greenhouse gases: Evaluating an estimation of surface trace gas fluxes from aircraft measurements above the Amazon; - Cooperation with SABESP (Water and Sewage Company) and CETESB (State Environment Agency) in program for the development of public policies; - Studies and development in biodegradable polymers, polyolefins and advanced methods for polymer and rubber recycling and re-use; - Studies

  1. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Environmental Science and Technology developed at the Chemical and Environmental Technology Center comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalysts) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization). The Chemical and Environmental Technology Center was established in 1995, as an evolution of the former Department of Chemistry Engineering (1970). The program on environment science and technology was structured as consequence of the continuous growth of environmental activities on areas related to nuclear programs of IPEN. Moreover, it was an answer to the society concerning the climate changes and biodiversity preservation. All activities of research and development, services, supervision of graduate and under graduated students and courses performance at the center were related to the development, improvement and establishment of new technologies. The highlights of this period (2011 - 2013) were: - Development and use of modern analytical technology for the characterization of persistent pollutants and endocrine disrupters (metals, PAHA’s, PCBs, Pesticides, hormones, surfactants, plasticizer and human pharmaceuticals) in order to evaluate water quality and/or sediments; - Atmospheric chemistry and greenhouse gases: Evaluating an estimation of surface trace gas fluxes from aircraft measurements above the Amazon; - Cooperation with SABESP (Water and Sewage Company) and CETESB (State Environment Agency) in program for the development of public policies; - Studies and development in biodegradable polymers, polyolefins and advanced methods for polymer and rubber recycling and re-use; - Studies

  2. Environmental Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The Program on Environmental Science and Technology comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalyzers) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization)

  3. SLICEIT and TAHMO Partnerships: Students Local and International Collaboration for Climate and Environmental Monitoring, Technology Development, Education, Adaptation and Mitigation

    Science.gov (United States)

    Aishlin, P. S.; Selker, J. S.

    2015-12-01

    Climate change understanding and impacts vary by community, yet the global nature of climate change requires international collaboration to address education, monitoring, adaptation and mitigation needs. We propose that effective climate change monitoring and education can be accomplished via student-led local and international community partnerships. By empowering students as community leaders in climate-environmental monitoring and education, as well as exploration of adaptation/mitigation needs, well-informed communities and young leadership are developed to support climate change science moving forward. Piloted 2013-2015, the SLICEIT1 program partnered with TAHMO2 to connect student leaders in North America, Europe and Africa. At the international level, schools in the U.S.A and Netherlands were partnered with schools in Ghana, Kenya, and Uganda for science and cultural exchange. Each school was equipped with a climate or other environmental sensing system, real-time data publication and curricula for both formal and informal science, technology, engineering and math education and skill development. African counterparts in TAHMO's School-2-School program collect critically important data for enhanced on-the-ground monitoring of weather conditions in data-scarce regions of Africa. In Idaho, student designed, constructed and installed weather stations provide real time data for classroom and community use. Student-designed formal educational activities are disseminated to project partners, increasing hands-on technology education and peer-based learning. At the local level, schools are partnered with a local agency, research institute, nonprofit organization, industry and/or community partner that supplies a climate science expert mentor to SLICEIT program leaders and teachers. Mentor engagement is facilitated and secured by program components that directly benefit the mentor's organization and local community via climate/environment monitoring, student workforce

  4. Encouraging environmentally strategic technologies

    International Nuclear Information System (INIS)

    Heaton, G.R.

    1994-01-01

    Having moved beyond its initial absorption with controlling new technology, environmental policy today must focus more strongly on promoting the development and adoption of new technologies. World Resource Institute's (WRI) ongoing study of 'environmentally strategic technology' is addressed to this fundamental policy issue. The study proposes criteria for identifying such technology, offers a specific list, suggests the kinds of public policy changes necessary to encourage their development and finally presents a comparison of critical technology lists (from the White House, the European Community, Japan and the US Department of Defense). (TEC)

  5. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report draft, 1995--1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The HBCU/MI ET Consortium was established in January 1990, through a memorandum of Understanding (MOU) among its member institutions. This group of research-oriented Historically Black Colleges and Universities and Minority Institutions (HBCUs/MIs) agreed to work together to initiate or revise educational programs, develop research partnerships with public and private sector organizations, and promote technology development and transfer to address the nation`s critical environmental problems. While the Consortium`s Research, Education and Technology Transfer (RETT) Plan is the cornerstone of its overall program efforts, the initial programmatic activities of the Consortium focused on environmental education at all levels with the objective of addressing the underrepresentation of minorities in the environmental professions. This 1996 Annual Report provides an update on the activities of the Consortium with a focus on environmental curriculum development for the Technical Qualifications Program (TQP) and Education for Sustainability.

  6. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    Directory of Open Access Journals (Sweden)

    Durán-García Martín Enrique

    2014-07-01

    Full Text Available Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the transfer of chemical technology requires technological-environmental criteria defining, in conjunction with other criteria, an adequate process for the selection, acquisition and incorporation of technology in a holistic perspective, so it provides feasible solutions the chemical industry in pursuit of their goals. Then the criterion becomes a benchmark for assessing an appropriate technology transfer process. We performed a theoretical analysis of the technological and environmental criteria, proposing thirty-six (36 technological-environmental criteria interrelated under a systemic approach in the process of transfer of chemical technology, focused on a methodological cycle first run, based primarily on the research-action method. Future research is expected to make a refinement of the criteria from the formulation and validation of metrics so that necessary adjustments are made to optimize the process of transfer of chemical technology.

  7. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    International Nuclear Information System (INIS)

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. WETO's environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies

  8. Using the Case Study Technology in Developing the Students’ Environmental Competence

    Directory of Open Access Journals (Sweden)

    S. B. Ignatov

    2012-01-01

    Full Text Available The case study technology is considered to be an effective tool for developing the students’ environmental competence. Numerous modern interactive techniques, facilitating the competence approach, can be fitted into its framework. The essence of the case-study is defined as the teaching method of problem-solving. The technology in question makes it possible to use the so called triad of «training – education – development», and provides such teaching opportunities as streaming the students according to their interests, skills, abilities and psychological peculiarities; and, therefore, assigning the relevant and motivating individual tasks.The paper traces the history of the case-study, as well as some theoretical and methodological aspects of its implementation in teaching process; the pedagogic goals fulfilled by means of the given technology are listed along with its advantages compared to other methods. The «case-study» term, its structure and working algorithms are defined. The application examples relating to environmental education at different levels are given. 

  9. Acceptability of health information technology aimed at environmental health education in a prenatal clinic.

    Science.gov (United States)

    Rosas, Lisa G; Trujillo, Celina; Camacho, Jose; Madrigal, Daniel; Bradman, Asa; Eskenazi, Brenda

    2014-11-01

    To describe the acceptability of an interactive computer kiosk that provides environmental health education to low-income Latina prenatal patients. A mixed-methods approach was used to assess the acceptability of the Prenatal Environmental Health Kiosk pregnant Latina women in Salinas, CA (n=152). The kiosk is a low literacy, interactive touch-screen computer program with an audio component and includes graphics and an interactive game. The majority had never used a kiosk before. Over 90% of women reported that they learned something new while using the kiosk. Prior to using the kiosk, 22% of women reported their preference of receiving health education from a kiosk over a pamphlet or video compared with 57% after using the kiosk (peducation; and (3) popularity of the interactive game. The Prenatal Environmental Health Kiosk is an innovative patient health education modality that was shown to be acceptable among a population of low-income Latino pregnant women in a prenatal care clinic. This pilot study demonstrated that a health education kiosk was an acceptable strategy for providing Latina prenatal patients with information on pertinent environmental exposures. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

  11. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The member institutions of the Consortium continue to play a significant role in increasing the number of African Americans who enter the environmental professions through the implementation of the Consortium`s RETT Plan for Research, Education, and Technology Transfer. The four major program areas identified in the RETT Plan are as follows: (1) minority outreach and precollege education; (2) undergraduate education and postsecondary training; (3) graduate and postgraduate education and research; and (4) technology transfer.

  12. Relationship between Pre-School Preservice Teachers' Environmental Literacy and Science and Technology Literacy Self Efficacy Beliefs

    Science.gov (United States)

    Surmeli, Hikmet

    2013-01-01

    This study examined the relationship between preschool teachers' environmental literacy and their science and technology self efficacy beliefs. 120 preschool teachers from teacher education programme at one university participated in this study. Data were collected by using Environmental Literacy Scale and Science and Technology Literacy Self…

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: GREEN BUILDING TECHNOLOGIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) Program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techno...

  14. The Center for Environmental Technology Innovative Technology Screening Process

    International Nuclear Information System (INIS)

    Bertrand, C.M.

    1995-02-01

    The Center for Environmental Technology's (CET) mission is to provide a fully integrated system for accelerated evaluation, development, commercialization, and public acceptance of creative environmental solutions which match the foremost demands in today's environmentally sensitive world. In short, CET will create a means to provide quick, effective solutions for environmental needs. To meet this mission objective, CET has created a unique and innovative approach to eliminating the usual barriers in developing and testing environmental technologies. The approach paves the way for these emerging, cutting-edge technologies by coordinating environmental restoration and waste management activities of industry, universities, and the government to: efficiently and effectively transfer technology to these users, provide market-driven, cost-effective technology programs to the public and DOE, and aid in developing innovative ideas by initiating efforts between DOE facilities and private industry. The central part to this mission is selecting and evaluating specific innovative technologies for demonstration and application at United States Department of Energy (DOE) installations. The methodology and criteria used for this selection, which is called the CET Innovative Technology Screening Process, is the subject of this paper. The selection criteria used for the screening process were modeled after other DOE technology transfer programs and were further developed by CET's Technology Screening and Evaluation Board (TSEB). The process benefits both CET and the proposing vendors by providing objective selection procedures based on predefined criteria. The selection process ensures a rapid response to proposing vendors, all technologies will have the opportunity to enter the selection process, and all technologies are evaluated on the same scale and with identical criteria

  15. U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: ARSENIC TREATMENT TECHNOLOGIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techn...

  16. Pre-Service Teachers' Mind Maps and Opinions on STEM Education Implemented in an Environmental Literacy Course

    Science.gov (United States)

    Sümen, Özlem Özçakir; Çalisici, Hamza

    2016-01-01

    This study aims to implement a science, technology, engineering, and mathematics (STEM) education approach in an environmental education course. The research involved the design and implementation of STEM activities by researchers, as part of the environmental education course taught in the second year of a Primary School Teaching undergraduate…

  17. Investigation of Environmental Topics in the Science and Technology Curriculum and Textbooks in Terms of Environmental Ethics and Aesthetics

    Science.gov (United States)

    Lacin Simsek, Canan

    2011-01-01

    In order to solve environmental problems, it is thought that education should be connected with values. For this reason, it is emphasized that environmental issues should be integrated with ethical and aesthetic values. In this study, 6th, 7th and 8th grade science and technology curriculum and textbooks were investigated to find out how much…

  18. Environmental Education: The African Dimension.

    Science.gov (United States)

    W'O Okot-Uma, Rogers; Wereko-Brobby, Charles

    1985-01-01

    Presents a historical perspective of educational and environmental curricula orientation in Africa. Examines environmentally-related problem areas (such as deforestation, pesticides, and endangered species) and lists the benefits and advantages of environmental education. A restructuring of Africa's formal education curriculum is recommended. (ML)

  19. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States)

    1998-12-31

    This complete survey of modern environmental science covers the four traditional spheres of the environment: water, air, earth, and life, and introduces a fifth sphere -- the anthrosphere -- which the author defines as the sphere of human activities, especially technology, that affect the earth. The book discusses how technology can be used in a manner that minimizes environmental disruption.

  20. Technology enhanced learning for occupational and environmental health nursing: a global imperative.

    Science.gov (United States)

    Olson, D K; Cohn, S; Carlson, V

    2000-04-01

    One strategy for decreasing the barriers to higher education and for increasing the competency and performance of the occupational and environmental health nurse in the information age is technology enhanced learning. Technology enhanced learning encompasses a variety of technologies employed in teaching and learning activities of presentation, interaction, and transmission to on campus and distant students. Web based learning is growing faster than any other instructional technology, offering students convenience and a wealth of information.

  1. Education Technology Transformation

    Science.gov (United States)

    Kennedy, Mike

    2012-01-01

    Years ago, as personal computers and other technological advancements began to find their way into classrooms and other educational settings, teachers and administrators sought ways to use new technology to benefit students. The potential for improving education was clear, but the limitations of the available education technology made it difficult…

  2. Corporate environmental management and information technology

    DEFF Research Database (Denmark)

    Rikhardsson, Pall M.

    2001-01-01

    software, the Internet, computer networks, telecommunications devices, etc. Information technology also has an impact on how companies perform environmental management. This paper looks at the relations between corporate environmental management and information technology. First it presents a framework...... for mapping information technology. Using this framework it focuses on the use of information technology in corporate environmental management, describes the market for standard environmental management information systems and implementation experiences from one large international company.......Information technology has changed, is changing and will continue to change the face of business as we further enter the Information Society. Today it would be difficult for a company to function effectively without the aid of various information technologies such as accounting software, production...

  3. Optimisation of quality in environmental education by means of software support

    Directory of Open Access Journals (Sweden)

    Katarína Čekanová

    2015-12-01

    Full Text Available The main topic of this article is based on the fact that environmental education and edification have got an irreplaceable and preferred position within the framework of a sustainable socio-economic development. Environmental education, which is performed at technical universities, has to offer professional and methodical knowledge concerning questions of environment for students of various technical branches. This education is performed in such way that the graduates, after entering the practical professional life, will be able to participate in solutions to the new actual problems that are related to environment and its protection, as well. Nowadays, during the educational proces it is also necessary to introduce technical development in a more extended rate. Taking into consideration the above-mentioned facts it is possible to say that the educational support for environmental studies is a relevant aspect, which should be integrated into the university educational process. It is a positive development trend that greater emphasis is focused on the quality of university education for the environmental engineers. Our society requires an increasing number of environmentally educated engineers who are able to participate in qualitative academic preparation, i.e. the so-called environmentalists. But the worldwide phenomena of technical development and globalisation also pose high claims for quality of their preparations including devices and computers skills. The Department of Process and Environmental Engineering at the Faculty of Mechanical Engineering, Technical University in Košice, the Slovak Republic is the institution specified and intended for quality optimisation. This Department introduced into the study programmes (“Environmental Management” and “Technology of Environmental Protection” study subjects with software support, which are oriented towards the indoor and outdoor environment and in this way the Department of Process and

  4. Definition: Conservation Education, Environmental Education, Outdoor Education.

    Science.gov (United States)

    1970

    Conservation education, outdoor education, and environmental education all have as a common goal the understanding and appreciation of the natural world. Outdoor education is a method of teaching wherein established disciplines, topics, and concepts which can best be taught outdoors are taught outdoors. Conservation education is the study of man's…

  5. Educational Technology in China

    Science.gov (United States)

    Meifeng, Liu; Jinjiao, Lv; Cui, Kang

    2010-01-01

    This paper elaborates the two different academic views of the identity of educational technology in China at the current time--advanced-technology-oriented cognition, known as Electrifying Education, and problem-solving-oriented cognition, known as Educational Technology. It addresses five main modes of educational technology in China: as a…

  6. Technology Strategy for 'Environmental Technology for the Future'; Technology Target Areas; TTA1 - environmental technology for the future

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The OG21 Technology Target Area 1 (TTA 1) group has produced a strategy for 'Environmental Technology for the Future'. A key aim of this work is to ensure that the operators on the Norwegian Continental Shelf (NCS) remain in a leading position with respect to environmental performance, while contributing to optimised resource recovery and value creation. This strategy focuses on environmental technology, which includes hardware, methods, software and knowledge. The TTA 1 group has agreed on a common vision: 'Norwegian oil and gas activities shall be leading in environmental performance, and Norway shall have the world leading knowledge and technology cluster within environmental technologies to support the zero harmful impact goals of the oil and gas industry.' Priorities have been made with emphasis on gaps that are considered most important to close and that will benefit from public research and development funding either for initialisation (primarily via the Petromaks and Climit programs) or acceleration (via Petromaks / Climit and particularly Demo 2000 where demonstration or piloting is required). The priorities aim to avoid technology gaps that are expected to be closed adequately through existing projects / programs or which are covered in other TTA strategies. The priority areas as identified are: Environmental impact and risk identification / quantification for new areas: Make quality assured environmental baseline data available on the web. Develop competence necessary to quantify and monitor the risks and risk reductions to the marine environment in new area ecosystems; Carbon capture and storage: Quantify environmental risks and waste management issues associated with bi-products from carbon capture processes and storage solutions. Develop and demonstrate effective carbon storage risk management, monitoring and mitigation technologies. Develop more cost and energy efficient power-from-shore solutions to reduce / eliminate CO{sub 2

  7. Teacher Educator Technology Competencies

    Science.gov (United States)

    Foulger, Teresa S.; Graziano, Kevin J.; Schmidt-Crawford, Denise A.; Slykhuis, David A.

    2017-01-01

    The U.S. National Educational Technology Plan recommends the need to have a common set of technology competencies specifically for teacher educators who prepare teacher candidates to teach with technology (U.S. Department of Education, Office of Educational Technology, 2017). This study facilitated the co-creation of the Teacher Educator…

  8. Community Environmental Education as a Model for Effective Environmental Programmes

    Science.gov (United States)

    Blair, Morag

    2008-01-01

    The benefits of community environmental education outlined in environmental education literature are supported by the findings and implications of a research study undertaken in New Zealand. Evidence from a two-case case study suggests that environmental programmes guided by the key principles and practices of community environmental education,…

  9. Environmental engineering education: examples of accreditation and quality assurance

    Science.gov (United States)

    Caporali, E.; Catelani, M.; Manfrida, G.; Valdiserri, J.

    2013-12-01

    Environmental engineers respond to the challenges posed by a growing population, intensifying land-use pressures, natural resources exploitation as well as rapidly evolving technology. The environmental engineer must develop technically sound solutions within the framework of maintaining or improving environmental quality, complying with public policy, and optimizing the utilization of resources. The engineer provides system and component design, serves as a technical advisor in policy making and legal deliberations, develops management schemes for resources, and provides technical evaluations of systems. Through the current work of environmental engineers, individuals and businesses are able to understand how to coordinate society's interaction with the environment. There will always be a need for engineers who are able to integrate the latest technologies into systems to respond to the needs for food and energy while protecting natural resources. In general, the environment-related challenges and problems need to be faced at global level, leading to the globalization of the engineering profession which requires not only the capacity to communicate in a common technical language, but also the assurance of an adequate and common level of technical competences, knowledge and understanding. In this framework, the Europe-based EUR ACE (European Accreditation of Engineering Programmes) system, currently operated by ENAEE - European Network for Accreditation of Engineering Education can represent the proper framework and accreditation system in order to provide a set of measures to assess the quality of engineering degree programmes in Europe and abroad. The application of the accreditation model EUR-ACE, and of the National Italian Degree Courses Accreditation System, promoted by the Italian National Agency for the Evaluation of Universities and Research Institutes (ANVUR), to the Environmental Engineering Degree Courses at the University of Firenze is presented. In

  10. Universities' New Role in Professional Training - Combining Education and Practice Learning in Environmental Management and Cleaner Technology

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik

    2002-01-01

    The article presents the experiences from the continued academic education in Environmental Management at DTU and identifies the demands that these types of professional educations forces on universities.......The article presents the experiences from the continued academic education in Environmental Management at DTU and identifies the demands that these types of professional educations forces on universities....

  11. Corporate Environmental Management and Information Technology

    DEFF Research Database (Denmark)

    Rikhardsson, Pall M.

    2000-01-01

    software, the internet, computer networks, telecommunications devices, etc. Information technology also has an impact on how companies perform environmental management. This paper explores the relations between environmental management and information technology in general terms. It offers a classification...... framework for the use of information technology in corporate environmental management (CEM), describes the market for standard environmental management information systems solutions, what main functionalities are available and what main trends are visible.......Information technology has changed, is changing and will continue to change the face of business as we further enter the Information Society. Today it would be difficult for a company to function effectively without the aid of various information technologies such as accounting software, production...

  12. European workshop on technologies for environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Buesing, J H; Pippich, B [eds.

    1996-12-31

    Current European research activities in the field of environmental technologies are discussed under the following headings: photocatalysis; emission abatement - catalytic processes (mainly NO{sub x} reduction catalysts for vehicles and industrial boilers); emission abatement - biological and chemical processes; biological wastewater treatment; chemical and physical wastewater treatment; integrated wastewater treatment; environmental technologies in pulp and paper industry; environmental technologies in surface treatment; selected examples of `clean technologies`; environmental technologies in ceramic and cement industry and policy and strategies.

  13. A Study on the Teachers' Professional Knowledge and Competence in Environmental Education

    Science.gov (United States)

    Yuan, Kuo-Shu; Wu, Tung-Ju; Chen, Hui-Bing; Li, Yi-Bin

    2017-01-01

    The rapid development of technology and economy has largely enhanced the quality of life. Nevertheless, various social and environmental problems have emerged. It would be the key solution to develop environmental education in order to have people present the environmental knowledge and the attitudes and value to concern about the environment and…

  14. "Back to the Basics" Through Environmental Education.

    Science.gov (United States)

    Christian, Adelaide

    Environmental education is proposed as a viable means of improving the educational system. The rationale for teaching environmental education is based in part upon White's principles of education for Seventh-day Adventists and upon Noel McInnis's views of what makes education environmental. An overview of environmental education characterizes it…

  15. The politics of federal environmental education policy

    Science.gov (United States)

    Crouch, Richard Craig

    Both environmental governance1 and education governance 2 occupy contested territory in contemporary US political discourse. Environmental education (EE) policy has emerged at this intersection and taken on aspects of both controversies. Central to debates surrounding environmental education are still unresolved issues concerning the role of the federal government in education, the role of education in citizen-making, and the role of the public in environmental governance. As a case study of the politics of environmental education policy, I explore these issues as they relate to the National Environmental Education Act of 1990,3 attempts at its reauthorization, its continued appropriations, and its current state of policy stasis. The political controversy over the federal role in environmental education is an appropriate case study of environmental education politics insofar as it reflects the different positions held by actor groups with regard to the definition, efficacy, and legitimacy of environmental education. At the core of these debates, as we will see, is a definitional crisis---that is, there is no common understanding across the relevant actor groups as to what environmental education is, or should be. I suggest here that this definitional issue can be best understood as having technical, ideological, and structural components4---all of which are mutually reinforcing and thus perpetuate the stasis in federal environmental education policy. 1I rely on Durant, Fiorino and O'leary's definition of environmental governance in Environmental Governance Reconsidered ; "In the term environmental governance, we refer to the increasingly collaborative nature of [environmental and natural resource] policy formulation and implementation. In this vein, a wide array of third parties (for example, actors in the profit sector, the nonprofit sector, and civic society), in addition to government agencies, comprise non hierarchical networks of actors wielding a variety of

  16. An environmental assessment system for environmental technologies

    DEFF Research Database (Denmark)

    Clavreul, Julie; Baumeister, Hubert; Christensen, Thomas Højlund

    2014-01-01

    A new model for the environmental assessment of environmental technologies, EASETECH, has been developed. The primary aim of EASETECH is to perform life-cycle assessment (LCA) of complex systems handling heterogeneous material flows. The objectives of this paper are to describe the EASETECH...

  17. Technology based Education System

    DEFF Research Database (Denmark)

    Kant Hiran, Kamal; Doshi, Ruchi; Henten, Anders

    2016-01-01

    Abstract - Education plays a very important role for the development of the country. Education has multiple dimensions from schooling to higher education and research. In all these domains, there is invariably a need for technology based teaching and learning tools are highly demanded in the acad......Abstract - Education plays a very important role for the development of the country. Education has multiple dimensions from schooling to higher education and research. In all these domains, there is invariably a need for technology based teaching and learning tools are highly demanded...... in the academic institutions. Thus, there is a need of comprehensive technology support system to cater the demands of all educational actors. Cloud Computing is one such comprehensive and user-friendly technology support environment that is the need of an hour. Cloud computing is the emerging technology that has...

  18. Self-efficacy in Environmental Education: Experiences of elementary education preservice teachers

    Science.gov (United States)

    Gardner, Cynthia Crompton

    Despite research showing Environmental Education can provide positive student outcomes in academic achievement, critical thinking, motivation and engagement (Ernst, 2007; Lieberman & Hoody, 1998; Orr, 1992; Palmer, 1998; Powers, 2004; Volk & Cheak, 2003), Environmental Education is currently not a critical element in American public school K-12 education. The present study investigates self-efficacy in Environmental Education through a mixed methods research approach. The data reveal the participants' perspectives of their sense of self-efficacy in Environmental Education. It adds to the body of work on Environmental Education and self-efficacy by specifically investigating the topics through interviews with preservice teachers. Purposeful sampling is used to identify preservice elementary education teachers in their senior year of college with a high measure of self-efficacy. Self-efficacy is measured using the Environmental Education Efficacy Belief Instrument (Sia, 1992). Forty-six preservice teachers completed the instrument. Six preservice teachers were interviewed to determine experiences that impact their self-efficacy in Environmental Education. Continual comparison and cross-case analysis are used to analyze the data. The results reveal a relationship between personal experiences with nature as a young child and current beliefs toward their personal efficacy and teaching outcome efficacy in Environmental Education. Similar to the findings of Sia (1992), the researcher discovered that preservice teachers realize that they lack sufficient knowledge and skill in Environmental Education but believe that effective teaching can increase students understanding of Environmental Education. While the preservice teachers do not believe they will teach Environmental Education as well as other subjects, they will continually seek out better ways to teach Environmental Education. Interviews with participants who had a high self-efficacy revealed the importance of

  19. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2000-07-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs.

  20. Environmental management technology demonstration and commercialization

    International Nuclear Information System (INIS)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H.

    1995-01-01

    The Energy ampersand Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD ampersand C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE's Office of Environmental Science and Technology (EM-50) under DOE's EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies

  1. Environmental management technology demonstration and commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H. [Energy & Environmental Research Center, Grand Forks, ND (United States)] [and others

    1995-10-01

    The Energy & Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD&C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE`s Office of Environmental Science and Technology (EM-50) under DOE`s EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies.

  2. Conceptual Challenges for Environmental Education: Advocacy, Autonomy, Implicit Education and Values

    Science.gov (United States)

    Schlottmann, Christopher

    2012-01-01

    "Conceptual Challenges for Environmental Education" is a critical analysis of environmental education from the perspective of educational ethics. It spells out elements of the conceptual foundations of an environmental education theory--among them implicit education, advocacy, Decade of Education for Sustainable Development, and climate…

  3. Integrating technology education concepts into China's educational system

    Science.gov (United States)

    Yang, Faxian

    The problem of this study was to develop a strategy for integrating technology education concepts within the Chinese mathematics and science curricula. The researcher used a case study as the basic methodology. It included three methods for collecting data: literature review, field study in junior and senior secondary schools in America and China, and interviews with experienced educators who were familiar with the status of technology education programs in the selected countries. The data came from the following areas: Japan, Taiwan, the United Kingdom, China, and five states in the United States: Illinois, Iowa, Maryland, Massachusetts, and New York. The researcher summarized each state and country's educational data, identified the advantages and disadvantages of their current technology education program, and identified the major concepts within each program. The process determined that identified concepts would be readily acceptable into the current Chinese educational system. Modernization of, industry, agriculture, science and technology, and defense have been recent objectives of the Chinese government. Therefore, Chinese understanding of technology, or technology education, became important for the country. However, traditional thought and culture curb the implementation of technology education within China's current education system. The proposed solution was to integrate technology education concepts into China's mathematics and science curricula. The purpose of the integration was to put new thoughts and methods into the current educational structure. It was concluded that the proposed model and interventions would allow Chinese educators to carry out the integration into China's education system.

  4. Technology needs assessment for DOE environmental restoration programs

    International Nuclear Information System (INIS)

    Duray, J.R.; Carlson, T.J.; Carpenter, C.E.; Cummins, L.E.; Daub, G.J.

    1992-01-01

    The 'Technology Needs Assessment Final Report' describes current and planned environmental restoration activity, identifies technologies intended to be used or under consideration, and ranks technology deficiencies in the U.S. Department of Energy's environmental restoration program. Included in the ranking are treatment technologies, characterization technologies, and non-technology issues that affect environmental restoration. Data used for the assessment was gathered during interviews in the spring of 1991 with DOE site personnel responsible for the environmental restoration work. (author)

  5. Research priorities in environmental education

    Science.gov (United States)

    George H. Moeller

    1977-01-01

    Although natural processes operate in urban areas, they are difficult to observe. Much discussion during the symposium-fair was devoted to finding ways to improve urban children's environmental understanding through environmental education programs. But before effective environmental education programs can be developed, research is needed to: test the...

  6. Technology in Education

    Science.gov (United States)

    Roden, Kasi

    2011-01-01

    This paper was written to support a position on using technology in education. The purpose of this study was to support the use of technology in education by synthesizing previous research. A variety of sources including books and journal articles were studied in order to compile an overview of the benefits of using technology in elementary,…

  7. Educational technology, reimagined.

    Science.gov (United States)

    Eisenberg, Michael

    2010-01-01

    "Educational technology" is often equated in the popular imagination with "computers in the schools." But technology is much more than merely computers, and education is much more than mere schooling. The landscape of child-accessible technologies is blossoming in all sorts of directions: tools for communication, for physical construction and fabrication, and for human-computer interaction. These new systems and artifacts allow educational designers to think much more creatively about when and where learning takes place in children's lives, both within and outside the classroom.

  8. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy's (DOE's) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID's technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID

  9. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  10. Engineering Education: Environmental and Chemical Engineering or Technology Curricula--A European Perspective

    Science.gov (United States)

    Glavic, Peter; Lukman, Rebeka; Lozano, Rodrigo

    2009-01-01

    Over recent years, universities have been incorporating sustainable development (SD) into their systems, including their curricula. This article analyses the incorporation of SD into the curricula of chemical and environmental engineering or technology bachelor degrees at universities in the European Union (EU) and European Free Trade Association…

  11. Technology diffusion, product differentiation and environmental subsidies

    Energy Technology Data Exchange (ETDEWEB)

    McGinty, M. [Univ. of Wisconsin, Milwaukee, WI (United States). Dept. of Economics; Vries, F.P. de [Univ. of Groningen (Netherlands). Dept. of Law and Economics

    2007-07-01

    Technological change is often seen as the promising device that will mitigate or solve environmental problems. Policy intervention that spurs the development, adoption and diffusion of new, environmentally benign technologies therefore holds great appear for environmental authorities. Policymakers have various instruments at their disposal to affect technological diffusion, ranging from direct regulation (command-and-control strategies) to market-based instruments, such as taxes, subsidies and tradable pollution permits. This paper examines environmental subsidies as a technology diffusion policy. The authors apply evolutionary game theory to explore the relationship between subsidies for clean technology, the diffusion of that technology and the degree of product differentiation in an imperfectly competitive market. They show that the subsidy succeeds in reducing environmental damage only when the substitution effect (the reduction in pollution associated with the clean technology) exceeds the output effect (the extent that the subsidy increases output). When the substitution effect does dominate, environmental damage decreases monotonically during the diffusion process. The extent of diffusion (the degree to which clean technolgy replaces dirty) and the likelihood that the substitution effect will dominate both decrease with the extent of product differentiation. Finally, the subsidy for clean technology will spill over to the remaining dirty producers increasing their profit as well.

  12. Education for Sustainable Living: An International Perspective on Environmental Education.

    Science.gov (United States)

    Fien, John

    1993-01-01

    Analyzes the nature of sustainable development and the role that environmental education can play in a transformation toward a sustainable society. Discusses three rules for teaching environmental education: a child-centered education, objectivity on matters of values, and creation of environmentally responsible behavior. Provides a checklist of…

  13. Sense of Place in Environmental Education

    Science.gov (United States)

    Kudryavtsev, Alex; Stedman, Richard C.; Krasny, Marianne E.

    2012-01-01

    Although environmental education research has embraced the idea of sense of place, it has rarely taken into account environmental psychology-based sense of place literature whose theory and empirical studies can enhance related studies in the education context. This article contributes to research on sense of place in environmental education from…

  14. Global environmental technologies in the future

    International Nuclear Information System (INIS)

    Takahashi, M.

    1994-01-01

    This paper outlines the activities of New Energy and industrial Technology Development Organization's (NEDO) 'Research and Development of Industrial Technology' projects which are related to global environmental technologies. Then, it describes four new material programs and two biotechnology ones, and presents a list of a few environmentally-friendly technologies. These national projects are carried out by private companies which are consigned by NEDO in conformity with MITI's fundamental Research and Development policy. (TEC)

  15. An Environmental Ethical Conceptual Framework for Research on Sustainability and Environmental Education

    Science.gov (United States)

    Kronlid, David O.; Ohman, Johan

    2013-01-01

    This article suggests that environmental ethics can have great relevance for environmental ethical content analyses in environmental education and education for sustainable development research. It is based on a critique that existing educational research does not reflect the variety of environmental ethical theories. Accordingly, we suggest an…

  16. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report 1994--1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The HBCU/MI ET Consortium was established in January 1990, through a Memorandum of Understanding (MOU) among its member institutions. This group of research oriented Historically Black Colleges and Universities and Minority Institutions (HBCU/MIs) agreed to work together to initiate or revise education programs, develop research partnerships with public and private sector organizations, and promote technology development to address the nation`s critical environmental contamination problems. The Consortium`s Research, Education and Technology Transfer (RETT) Plan became the working agenda. The Consortium is a resource for collaboration among the member institutions and with federal an state agencies, national and federal laboratories, industries, (including small businesses), majority universities, and two and four-year technical colleges. As a group of 17 institutions geographically located in the southern US, the Consortium is well positioned to reach a diverse group of women and minority populations of African Americans, Hispanics and American Indians. This Report provides a status update on activities and achievements in environmental curriculum development, outreach at the K--12 level, undergraduate and graduate education, research and development, and technology transfer.

  17. THE ENVIRONMENTAL TECHNOLOGIES ACCEPTANCE (ETA) PROGRAM

    International Nuclear Information System (INIS)

    Behr-Andres, Christina B.

    2001-01-01

    The Environmental Technologies Acceptance (ETA) Program at the Energy and Environmental Research Center (EERC) is intended to advance the development, commercial acceptance, and timely deployment of selected private sector technologies for the cleanup of sites in the nuclear defense complex as well as the greater market. As shown in Table 1, this cooperative agreement funded by the National Energy Technology Laboratory (NETL) consists of three tasks: Technology Selection, Technology Development, and Technology Verification. As currently conceived, the ETA will address the needs of as many technologies as appropriate under its current 3-year term. This report covers activities during the first 6 months of the 3-year ETA program

  18. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999; TOPICAL

    International Nuclear Information System (INIS)

    Hazen, Terry C.

    2000-01-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs

  19. Education in Environmental Chemistry: Setting the Agenda and Recommending Action. A Workshop Report Summary

    Science.gov (United States)

    Zoller, Uri

    2005-08-01

    Worldwide, the essence of the current reform in science education is a paradigm shift from algorithmic, lower-order cognitive skills (LOCS) teaching to higher-order cognitive skills (HOCS) learning. In the context of education in environmental chemistry (EEC), the ultimate goal is to educate students to be science technology environment society (STES)-literate, capable of evaluative thinking, decision making, problem solving and taking responsible action accordingly. Educators need to translate this goal into effective courses that can be implemented: this includes developing teaching strategies and assessment methodologies that are consonant with the goal of HOCS learning. An international workshop—"Environmental Chemistry Education in Europe: Setting the Agenda"—yielded two main recommendations for those undertaking educational reform in science education, particularly to promote meaningful EEC. The first recommendation concerns integration of environmental sciences into core chemistry courses as well as the development and implementation of HOCS-promoting teaching strategies and assessment methodologies in chemical education. The second emphasizes the development of students' HOCS for transfer, followed by performance assessment of HOCS. This requires changing the way environmental chemistry is typically taught, moving from a narrowly focused approach (applied analytical, ecotoxicological, or environmental engineering chemistry) to an interdisciplinary and multidisciplinary approach.

  20. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-10-31

    The Deactivation and Decommissioning (D&D) Technology Assessment Program (TAP) was developed to provide detailed, comparable data for environmental technologies and to disseminate this data to D&D professionals in a manner that will facilitate the review and selection of technologies to perform decontamination and decommissioning. The objectives for this project include the following: Determine technology needs through review of the Site Technology Coordination Group (STCG) information and other applicable websites and needs databases; Perform a detailed review of industries that perform similar activities as those required in D&D operations to identify additional technologies; Define the technology assessment program for characterization and waste management problem sets; Define the data management program for characterization, dismantlement, and waste management problem sets; Evaluate baseline and innovative technologies under standard test conditions at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) and other locations and collect data in the areas of performance, cost, health and safety, operations and maintenance, and primary and secondary waste generation; Continue to locate, verify, and incorporate technology performance data from other sources into the multimedia information system; and Develop the conceptual design for a dismantlement technology decision analysis tool for dismantlement technologies.

  1. Integrating technology into radiologic science education.

    Science.gov (United States)

    Wertz, Christopher Ira; Hobbs, Dan L; Mickelsen, Wendy

    2014-01-01

    To review the existing literature pertaining to the current learning technologies available in radiologic science education and how to implement those technologies. Only articles from peer-reviewed journals and scholarly reports were used in the research for this review. The material was further restricted to those articles that emphasized using new learning technologies in education, with a focus on radiologic science education. Teaching in higher education is shifting from a traditional classroom-based lecture format to one that incorporates new technologies that allow for more varied and diverse educational models. Radiologic technology educators must adapt traditional education delivery methods to incorporate current technologies. Doing so will help engage the modern student in education in ways in which they are already familiar. As students' learning methods change, so must the methods of educational delivery. The use of new technologies has profound implications for education. If implemented properly, these technologies can be effective tools to help educators.

  2. Timeline: environmental education in Colombia

    Directory of Open Access Journals (Sweden)

    Luz Adriana Pita-Morales

    2016-12-01

    Full Text Available The environmental education is a process that allows the individual to understand the relations of interdependence with the environment in the one that develops, is like that, since the reality bears biophysics in mind, social, political, economic in this respect it is necessary to generate in the company activities of valuation and respect for the environment. The environmental education is a dynamic and participative process orientated to the formation of critical and reflexive persons with aptitude to understand the environmental problematics of the local, regional and national context. In this frame the need is born of contextualized the labor that has become national in the construction of instruments that allow him the condition to look at the environmental education as a fundamental tool for the care of the natural resources and not as an isolated concept foreign to the community. In the present review their approaches the historical frame of the environmental education in Colombia his challenges, challenges and the way like are opening formative spaces and of projection for the suitable managing of the environment. In conclusion environmental education is a participatory process that must be born of the group in order to give management the natural resources of a region and community where professionals to do is oriental these processes in society.

  3. On School Educational Technology Leadership

    Science.gov (United States)

    Davies, Patricia M.

    2010-01-01

    This analysis of the literatures on school educational technology leadership addresses definitions of school technology leaders and leadership, their role in educational change, and why schools are now changing as a result of 21st century advancements in technology. The literatures disagree over the definition of educational technology leadership.…

  4. Environmental education in an Egyptian university: The role of teacher educators

    Science.gov (United States)

    Goueli, Solafa

    Drawing on a holistic critical paradigm of ecological sustainability, this study examined the role of teacher educators in environmental education in the Faculty of Education of one Egyptian university. The study sought to critically and collaboratively explore with a sample of six teacher educators their answers, perceptions and perspectives in relation to their knowledge and understanding of environmental problems in local/global contexts and their meanings of curriculum and pedagogical practices for fostering environmental education in their teacher education programs. The participants generally demonstrated a considerable amount of knowledge of the environmental realities and problems facing Egypt encompassing air, water and solid waste sectors. Their views concurred with national and official studies identifying these issues as the most pressing environmental problems in the country. The exploration of the institutional, social and cultural causes and developmental and/or global causes of environmental problems in Egypt led us to articulate different themes relating environmental crisis in Egypt to different issues. These issues included poverty, education, religion and development. One of the major findings of the study was the participants' view that development was the major contributor to the environmental crisis in Egypt. They all stressed that, in its pursuit of economic growth, the government did not pay due attention to the environmental costs. Sharing perspectives from a critical paradigm of ecological sustainability, the participants felt that the government needed to clearly address the economic and ecological dimensions of development. In addition, a few participants affirmed that development is the thread that ties all the different factors together bringing into the conversations other dimensions of development like the social, values, and political dimensions. Addressing the future dimension of development, all of them expressed the need for a

  5. Political measures for promoting environmental technology

    International Nuclear Information System (INIS)

    2006-01-01

    Environmental technology can contribute to solving many environmental challenges and to industrial development. Measures to support the development and use of such technologies can be regulatory, economic or administrative, and usually one needs to use a combination of different measures in order to reach both a better environment and industrial development. For industrial development other measures than those administered by environmental authorities will be of importance. The environmental authorities therefore need to acquire knowledge about these measures and the bodies administering them, and develop an operative cooperation with these actors

  6. Environmental impacts of modern agricultural technology diffusion in Bangladesh: an analysis of farmers' perceptions and their determinants.

    Science.gov (United States)

    Rahman, Sanzidur

    2003-06-01

    Farmers' perception of the environmental impacts of modern agricultural technology diffusion and factors determining such awareness were examined using survey data from 21 villages in three agro-ecological regions of Bangladesh. Results reveal that farmers are well aware of the adverse environmental impacts of modern agricultural technology, although their awareness remains confined within visible impacts such as soil fertility, fish catches, and health effects. Their perception of intangible impacts such as, toxicity in water and soils is weak. Level and duration of modern agricultural technology adoption directly influence awareness of its adverse effects. Education and extension contacts also play an important role in raising awareness. Awareness is higher among farmers in developed regions, fertile locations and those with access to off-farm income sources. Promotion of education and strengthening extension services will boost farmers' environmental awareness. Infrastructure development and measures to replenish depleting soil fertility will also play a positive role in raising awareness.

  7. Romanian - Swiss cooperative research programme "Environmental Science and Technology in Romania" (ESTROM)

    OpenAIRE

    PANIN, Nicolae; GIGER, Walter

    2008-01-01

    The Romanian Ministry for Education, Research and Youth (MECT), the Swiss Agency for Development and Cooperation (SDC) and the Swiss National Science Foundation had launched in 2004 the Romanian-Swiss research programme known as “Environmental Science and Technology in Romania” (ESTROM). ESTROM was established as a pilot programme of scientific co-operation between Swiss Research and Education Units with similar ones from Romania in the framework of SCOPES – a Swiss national programme for sup...

  8. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - PORTABLE GAS CHROMATOGRAPH ELECTRONIC SENSOR TECHNOLOGY MODEL 4100

    Science.gov (United States)

    The U.S. Environmental Protection Agency, through the Environmental Technology Verification Program, is working to accelerate the acceptance and use of innovative technologies that improve the way the United States manages its environmental problems. As part of this program, the...

  9. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This document has been prepared by the US Department of Energy`s (DOE`s) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE`s Operations Office and Energy Technology Centers.

  10. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    International Nuclear Information System (INIS)

    1996-03-01

    This document has been prepared by the US Department of Energy's (DOE's) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT ampersand E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE's Operations Office and Energy Technology Centers

  11. Toward Fostering Environmental Political Participation: Framing an Agenda for Environmental Education Research

    Science.gov (United States)

    Levy, Brett L. M.; Zint, Michaela T.

    2013-01-01

    Scholars of environmental education (EE) and education for sustainable development (ESD) have been among the environmental leaders calling for individuals to become increasingly engaged in political action aimed at addressing environmental and sustainability issues. Few, however, have studied how educational experiences might foster greater…

  12. CEO Education and Corporate Environmental Footprint

    DEFF Research Database (Denmark)

    Amore, Mario Daniele; Bennedsen, Morten; Larsen, Birthe

    We analyze the effect of CEO education on environmental decision-making. Using a unique sample of Danish firms from 1996 to 2012, we find that CEO education significantly improves firms’ energy efficiency. We derive causality using health shocks: the hospitalization of highly educated CEOs induces...... a drop in energy efficiency, whereas the hospitalization of less educated CEOs does not have any significant effect. Exploring the mechanisms at play, we show that our results are driven by the length rather than the field of education. CEO education improves corporate energy efficiency through personal...... environmental awareness: highly educated CEOs exhibit greater concerns for climate change, as measured by a survey of social preferences, and drive more environmentally-efficient cars. Taken together, our findings suggest that education shapes managerial styles giving rise to greater sustainability in corporate...

  13. Environmental Education Policy Development in Zimbabwe: An ...

    African Journals Online (AJOL)

    National environmental education policy is essential for guiding and coordinating environmental education activities within a country. The Zimbabwean Environmental Education Policy development process took place between 2000 and 2001.This paper looks at stages in the policy development process, the factors that ...

  14. Ecotourism and Environmental Education: Relationships.

    Science.gov (United States)

    Eagles, Paul F. J.

    1999-01-01

    Examines relationships among environmental education, ecotourism, and public attitudes toward conservation. The global ecotourism industry and the worldwide growth of national parks and other protected areas reflect the long-term impact of environmental education. The entire cycle of protection, ecotourism use of protected areas, and more positive…

  15. Heterogeneous technologies, strategic groups and environmental efficiency technology gaps for European countries

    International Nuclear Information System (INIS)

    Kounetas, Konstantinos

    2015-01-01

    This paper measures technology (TG) and environmental efficiency technology gaps (EETGs) in 25 European countries over two distinct periods 2002 and 2008 examining the possible effect of adopted environmental regulations and the Kyoto protocol commitments on environmental efficiency technology gaps. However, the introduction of the metafrontier in our analysis puts into our discussion the role of heterogeneous technologies and its effect on the above-mentioned measures. Employing a directional distance function, we investigate whether there is an actual difference, in terms of environmental efficiency and efficiency performance, among European countries considering the technological frontiers under which they operate. The construction of individual frontiers has been realized employing a large number of variables that are highly correlated with countries' learning and absorbing capacity, new technological knowledge and using economic theory and classical frontier discrimination like developed vs. developing, North vs. South and participation in the Eurozone or not. The overall results indicate a crucial role of heterogeneous technologies for technology gaps in both periods. Moreover, a significant decrease for both measures, although in different percent, has been recorded emphasizing the key role of knowledge spillovers. -- Highlights: •We estimate technology gaps (TGs) for 25 EU countries in two distinct periods. •We estimate environmental efficiency technology gaps (EETGs). •We consider countries' technological capabilities with R&D, innovation and eco-innovation. •We test the effect of different frontier constitutions on TGs-EETGs. •We denote the specific role of knowledge spillovers

  16. Development of environmental radiation control technology

    International Nuclear Information System (INIS)

    Kim, Ingyu; Kim, Enhan; Keum, Dongkwon

    2012-04-01

    To develop the comprehensive environmental radiation management technology, - An urban atmospheric dispersion model and decision-aiding model have been developed. - The technologies for assessing the radiation impact to non-human biota and the environmental medium contamination have developed. - The analytical techniques of the indicator radionuclides related to decommissioning of nuclear facilities and nuclear waste repository have been developed. - The national environmental radiation impact has been assessed, and the optimum management system of natural radiation has been established

  17. Technology Education and Societal Change.

    Science.gov (United States)

    Gilberti, Anthony F.

    1994-01-01

    Citizens in a democracy should understand the relationship of technological development to societal change. The rationale for universal technological education stems from the ideals of cultural education, the responsibilities of democratic life, and the need for economic security. Technology education furthers understanding of our technological…

  18. Reimagining the Role of Technology in Education: 2017 National Education Technology Plan Update

    Science.gov (United States)

    Office of Educational Technology, US Department of Education, 2017

    2017-01-01

    The National Education Technology Plan (NETP) sets a national vision and plan for learning enabled by technology through building on the work of leading education researchers; district, school, and higher education leaders; classroom teachers; developers; entrepreneurs; and nonprofit organizations. The principles and examples provided in this…

  19. Environmental education policy research

    DEFF Research Database (Denmark)

    Læssøe, Jeppe; Feinstein, Noah Weeth; Blum, Nicole

    2013-01-01

    in the areas of Environmental Education (EE), Education for Sustainable Development and Climate Change Education. It especially makes a case for two kinds of research on EE policy: (1) a multi-sited approach to empirical documentation and theory development which explores the relationships between...

  20. Increasing Teacher Confidence in Teaching and Technology Use through Vicarious Experiences within an Environmental Education Context

    Science.gov (United States)

    Willis, Jana; Weiser, Brenda; Smith, Donna

    2016-01-01

    Providing teacher candidates opportunities to engage in experiences modeling effective technology integration could improve confidence/comfort in using technology and support skill development and transfer. A purposeful sample of 424 candidates in an educational technology course was administered the Technology and Teaching Efficacy Scale to…

  1. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The HBCU/MI Consortium was formed (1) to respond to national R and D, policy formulation and minority manpower needs in environmental technology, hazardous, solid and mixed waste materials management, environmental restoration, and environmental health; and (2) to address limited minority participation in the public, private and non-profit environmental industries; limited environmental awareness among minorities; minimal interaction between HBCUs/MIs and majority universities, industry and interest groups; limited institutional development in environmental education and research; and lack of minority technical businesses in the environmental industry. This report gives progress made for the 92--93 period.

  2. Development of decontamination, decommissioning and environmental restoration technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Kwon, H S; Kim, G N. and others

    1999-03-01

    Through the project of 'Development of decontamination, decommissioning and environmental restoration technology', the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  3. Development of decontamination, decommissioning and environmental restoration technology

    International Nuclear Information System (INIS)

    Lee, Byung Jik; Kwon, H. S.; Kim, G. N. and others

    1999-03-01

    Through the project of D evelopment of decontamination, decommissioning and environmental restoration technology , the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  4. Education Technology Success Stories

    Science.gov (United States)

    West, Darrell M.; Bleiberg, Joshua

    2013-01-01

    Advances in technology are enabling dramatic changes in education content, delivery, and accessibility. Throughout history, new technologies have facilitated the exponential growth of human knowledge. In the early twentieth century, the focus was on the use of radios in education. But since then, innovators have seen technology as a way to improve…

  5. Animals in Environmental Education Research

    Science.gov (United States)

    Spannring, Reingard

    2017-01-01

    Over the past few decades, the increase in public and scholarly attention to human-animal relations has inspired an animal turn in a number of academic disciplines including environmental education research. This paper reviews the literature on animals in environmental education with respect to its theoretical foundations in critical pedagogy,…

  6. Beyond the Limitations of Environmental Education in Japan

    Science.gov (United States)

    Imamura, Mitsuyuki

    2017-01-01

    Environmental education has not spread as widely in Japan as expected and therefore has not had any significant impact on environmental problems, even though many educators and researchers have devoted themselves to environmental educational practice. Why is environmental education not popular in Japan, and what does this tell us? The purpose of…

  7. 12th annual conference of the National Association for Environmental Education (ANEE)

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, J. H.

    1984-10-01

    More than 200 people, from twenty-five states and several foreign nations (including Australia, Canada, India, and Switzerland) attended this event which featured ten keynote addresses (including the banquet one by Nicholas Polunin) and over thirty invited speakers. Five symposia were presented on topics related to the conference theme of Crossroads: Society and Technology. In addition, more than seventy papers were presented in the areas of Environmental Education/Citizen Action, Culture and Technology, Ecological Effects of Technology, Energy, The Great Lakes, and International Environmental Issues. To take full advantage of the Eastern Michigan site, the conference featured five field-trips-to the Henry Ford Museum, Waterloo Nature Center, Huron River Canoe Trip, GM Proving Ground, and the Fermi II Nuclear Reactor.

  8. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    OpenAIRE

    Durán-García Martín Enrique

    2014-01-01

    Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the ...

  9. Development of decontamination, decommissioning and environmental restoration technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Kwon, H. S.; Kim, G. N. and others

    1999-03-01

    Through the project of 'Development of decontamination, decommissioning and environmental restoration technology', the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  10. 75 FR 18482 - Environmental Technologies Trade Advisory Committee (ETTAC)

    Science.gov (United States)

    2010-04-12

    ... DEPARTMENT OF COMMERCE Environmental Technologies Trade Advisory Committee (ETTAC) AGENCY... Environmental Technologies Trade Advisory Committee (ETTAC) will hold its quarterly meeting to discuss environmental technologies trade liberalization, industry competitiveness issues, and general Committee...

  11. Reconceptualizing Environmental Education: Taking Account of Reality.

    Science.gov (United States)

    Dillon, Justin; Teamey, Kelly

    2002-01-01

    Investigates the pros and cons of integrating environmental education into the school curriculum. Focusing solely on environmental education's role in the school curriculum ignores a range of factors that affect its efficacy in the majority of the world. Suggests a conceptualization of environmental education that takes into account a range of…

  12. Technology development and transfer in environmental management

    International Nuclear Information System (INIS)

    Katz, J.; Karnovitz, A.; Yarbrough, M.

    1994-01-01

    Federal efforts to develop and employ the innovative technologies needed to clean up contaminated facilities would greatly benefit from a greater degree of interaction and integration with the energies and resources of the private sector. Yet there are numerous institutional, economic, and regulatory obstacles to the transfer and commercialization of environmental restoration and waste management technologies. These obstacles discourage private sector involvement and investment in Federal efforts to develop and use innovative technologies. A further effect is to impede market development even where private sector interest is high. Lowering these market barriers will facilitate the commercialization of innovative environmental cleanup technologies and expedite the cleanup of contaminated Federal and private facilities. This paper identifies the major barriers to transfer and commercialization of innovative technologies and suggests possible strategies to overcome them. Emphasis is placed on issues particularly relevant to the Department of Energy's Environmental Restoration and Waste Management (EM) program, but which are applicable to other Federal agencies confronting complex environmental cleanup problems

  13. 75 FR 52716 - Environmental Technologies Trade Advisory Committee (ETTAC)

    Science.gov (United States)

    2010-08-27

    ... DEPARTMENT OF COMMERCE Environmental Technologies Trade Advisory Committee (ETTAC) AGENCY... Environmental Technologies Trade Advisory Committee (ETTAC) will hold its quarterly meeting to discuss environmental technologies industry competitiveness issues, the National Export Initiative, and general...

  14. Environmental Sustainability and Quality Education: Perspectives ...

    African Journals Online (AJOL)

    Environmental Sustainability and Quality Education: Perspectives from a community living in a context of poverty. ... Southern African Journal of Environmental Education. Journal Home · ABOUT THIS ... AJOL African Journals Online. HOW TO ...

  15. Future Ready Learning: Reimagining the Role of Technology in Education. 2016 National Education Technology Plan

    Science.gov (United States)

    Thomas, Susan

    2016-01-01

    The National Education Technology Plan is the flagship educational technology policy document for the United States. The 2016 Plan, "Future Ready Learning: Reimagining the Role of Technology in Education," articulates a vision of equity, active use, and collaborative leadership to make everywhere, all-the-time learning possible. While…

  16. Analytical review of modern information education technologies

    OpenAIRE

    Светлана Викторовна Зенкина; О П Панкратова

    2014-01-01

    This article discusses and analyzes the modern information education technologies, which are seen as the priority to use in the modern information educational environment (Internet-based educational technologies, distance education, media education, e-Learning technologies, smart-education technologies).

  17. 75 FR 1590 - Environmental Technologies Trade Advisory Committee (ETTAC)

    Science.gov (United States)

    2010-01-12

    ... DEPARTMENT OF COMMERCE Environmental Technologies Trade Advisory Committee (ETTAC) AGENCY... Environmental Technologies Trade Advisory Committee (ETTAC) will hold its first plenary meeting of 2010 to discuss environmental technologies trade liberalization, industry competitiveness issues, and general...

  18. ATBU Journal of Environmental Technology

    African Journals Online (AJOL)

    The journal of environmental technology is devoted to the publication of papers ... research results of both the natural; the technological; and the built environment. ... Assessment of multipath and shadowing effects on UHF band in built-up ...

  19. Improvement of logistics education from the point of view environmental management

    Science.gov (United States)

    Bányai, Á.

    2009-04-01

    The paper briefly presents the influence of environmental management on the improvement of the logistics education and research structure of the Department of Materials Handling and Logistics at the University of Miskolc, Hungary. The logistics, as an integrated science offers a very good possibility to demonstrate the effect of new innovative knowledge on the migration of the priorities of education and research of sciences. The importance of logistics in the field of recycling (or in wider sense in the field of environmental management) can be justified by the high proportion of logistic costs (as investment and operation costs) and these costs show that optimum logistic solutions are able to decrease the financial outcomes and lead to the establishment of a profitable system. Technological change constantly creates new demands on both education and research. The most important objective of the department is to create a unique logistics education in the country. For this reason the department offered up-to-date integrated knowledge at all level: undergraduate, master degree and PhD education. The integration of logistics means traditionally the joint use of technology of material handling, method of material flow, technology method of traffic, information technology, management sciences, production technology, marketing, market research, technology of services, mathematics and optimization, communication technology, system engineering, electronics and automation, mechatronics [1, 3]. The education and research portfolio of the department followed this tradition till 1993. The new lectures in the field of sustainability (logistics of recycling, logistics of quality management and recycling, closed loop economy, EU logistics or global logistics) became more and more important in the logistics education. The results of fast developments in closed loop economy, recycling, waste management, environmental protection are more and more used in the industry and this

  20. Exploration of mobile educational technology

    OpenAIRE

    Hosny, W.

    2007-01-01

    Recent advances in mobile and wireless technology could be utilised to enhance the delivery of educational programmes. The use of this technology is known as “Mobile Education”. Mobile education technology provides unique opportunities for educators to flexibly deliver their educational material to learners via mobile services anywhere at any time. Moreover, the material delivered could be adapted to the learners’ needs and preferences. Examples of mobile devices which could be used in mobile...

  1. Learning and teaching for an ecological sense of place: Toward environmental/science education praxis

    Science.gov (United States)

    Hug, J. William

    1998-09-01

    This research presents a teaching model designed to enable learners to construct a highly developed ecological perspective and sense of place. The contextually-based research process draws upon scientific and indigenous knowledge from multiple data sources including: autobiographical experiences, environmental literature, science and environmental education research, historical approaches to environmental education, and phenomenological accounts from research participants. Data were analyzed using the theoretical frameworks of qualitative research, hermeneutic phenomenology, heuristics, and constructivism. The resulting model synthesizes and incorporates key educational philosophies and practices from: nature study, resident outdoor education, organized camping, conservation education, environmental education, earth education, outdoor recreation, sustainability, bio-regionalism, deep ecology, ecological and environmental literacy, science and technology in society, and adventure/challenge/experiential education. The model's four components--environmental knowledge, practicing responsible environmental behaviors, community-focused involvement, and direct experience in outdoor settings--contribute in a synergistic way to the development of ecological perspective and a sense of place. The model was honed through experiential use in an environmental science methods course for elementary and secondary prospective science teachers. The instructor/researcher employed individualized instruction, community-based learning, service learning, and the modeling of reflective teaching principles in pursuit of the model's goals. The resulting pedagogical knowledge extends the model's usefulness to such formal and non-formal educational contexts as: elementary/secondary classrooms, nature centers, museums, youth groups, and community organizations. This research has implications for the fields of education, geography, recreation/leisure studies, science teaching, and environmental

  2. Southern African Journal of Environmental Education

    African Journals Online (AJOL)

    The Southern African Journal of Environmental Education (SAJEE) is an accredited and ... It is published at least once a year, by the Environmental Education Association of Southern Africa (EEASA). ... AJOL African Journals Online. HOW TO ...

  3. EnviroTRADE: A technical perspective on the development of an information system providing data on environmental technologies and needs worldwide

    International Nuclear Information System (INIS)

    Harrington, M.W.; Harlan, C.P.

    1992-01-01

    In support of the US Department of Energy's commitment to the remediation of waste sites throughout its complex, the DOE has recognized that it can accelerate its technology development efforts and leverage the expenditure of available funds through an international cooperation among government entities, private industry, and educational institutions. To support the technology transfer of environmental information, the DOE has sponsored the development of EnviroTRADE - an international information system that will facilitate the exchange of environmental restoration and waste management technologies worldwide. The system will contain profiles on both environmental restoration / waste management needs and foreign / domestic technologies. Users will be able to identify matches between worldwide needs and available or emerging technologies. Where matches between needs and existing technologies are not found, the system will identify the potential for development of new and innovative technologies to address environmental problems. EnviroTRADE will also provide general information on international environmental restoration and waste management organizations, sites, activities, and contacts

  4. A Methodological Evaluation of an Environmental Education Survey: Is There a Technological Advantage

    Science.gov (United States)

    Sharp, Ryan L.; Bradley, Michael J.; Maples, James N.

    2017-01-01

    Environmental education represents a conceivable way to counter the effects of youth's lack of exposure to the natural environment. However, the effectiveness of these programs is often not evaluated, and when they are, the methods for doing so are not consistent. Without proper and reliable methods of data collection, the results may be…

  5. Environmental characteristics of clean coal technologies

    International Nuclear Information System (INIS)

    Bossart, S.J.

    1992-01-01

    The Department of Energy's (DOE) Clean Coal Technology (CCT) Program is aimed at demonstrating the commercial readiness of advanced coal-based technologies. A major goal of the CCT program is to introduce into the US energy marketplace those coal-based power generation technologies that have superior economic and environmental performance over the current suite of commercial coal-based power generation technologies. The commercialization of CCTs will provide the electric utility industry with technology options for replacing aging power plants and meeting future growth in electricity demand. This paper discusses the environmental advantages of two CCTs used for electric power generation: pressurized fluidized-bed combustion (PFBC) and integrated gasification combined-cycle (IGCC). These CCTs are suitable for repowering existing power plants or for grassroots construction. Due to their high efficiency and advanced environmental control systems, they emit less sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), particulate matter, and carbon dioxide (CO 2 ) than a state-of-the-art, pulverized coal power plant with flue gas desulfurization (PC/FGD)

  6. Critical materialism: science, technology, and environmental sustainability.

    Science.gov (United States)

    York, Richard; Clark, Brett

    2010-01-01

    There are widely divergent views on how science and technology are connected to environmental problems. A view commonly held among natural scientists and policy makers is that environmental problems are primarily technical problems that can be solved via the development and implementation of technological innovations. This technologically optimistic view tends to ignore power relationships in society and the political-economic order that drives environmental degradation. An opposed view, common among postmodernist and poststructuralist scholars, is that the emergence of the scientific worldview is one of the fundamental causes of human oppression. This postmodernist view rejects scientific epistemology and often is associated with an anti-realist stance, which ultimately serves to deny the reality of environmental problems, thus (unintentionally) abetting right-wing efforts to scuttle environmental protection. We argue that both the technologically optimistic and the postmodernist views are misguided, and both undermine our ability to address environmental crises. We advocate the adoption of a critical materialist stance, which recognizes the importance of natural science for helping us to understand the world while also recognizing the social embeddedness of the scientific establishment and the need to challenge the manipulation of science by the elite.

  7. New Swedish environmental and sustainable education research

    Directory of Open Access Journals (Sweden)

    Johan Öhman

    2011-01-01

    Full Text Available This special issue of Education & Democracy presents examples froma new generation of Swedish research on environmental and sustainability education and thereby complement the picture of the current Swedish environmental and sustainability education research outlined in the recent Danish-Swedish special issue of Environmental EducationResearch (Vol 16, No 1 and the anthology Democracy and Values inEducation for Sustainable Development – Contributions from Swedish Research (Öhman 2008. All the contributors to this issue are associatedwith the Graduate School in Education and Sustainable Development (GRESD, either as PhD students or as supervisors.

  8. Tourism and Environmental Education.

    Science.gov (United States)

    Mason, Peter

    1994-01-01

    Proposes that tourism should be part of the environmental education curriculum. Discusses the significance of tourism, the impacts of tourism on the environment, the concept of sustainable tourism, and tourism in education in the United Kingdom. (MDH)

  9. Environmental and process monitoring technologies

    International Nuclear Information System (INIS)

    Vo-Dinh, Tuan

    1993-01-01

    The objective of this conference was to provide a multidisciplinary forum dealing with state-of-the-art methods and instrumentation for environmental and process monitoring. In the last few years, important advances have been made in improving existing analytical methods and developing new techniques for trace detection of chemicals. These monitoring technologies are a topic of great interest for environmental and industrial control in a wide spectrum of areas. Sensitive detection, selective characterization, and cost-effective analysis are among the most important challenges facing monitoring technologies. This conference integrating interdisciplinary research and development was aimed to present the most recent advances and applications in the important areas of environmental and process monitoring. Separate abstracts have been prepared for 34 papers for inclusion in the appropriate data bases

  10. Educational technology: a facilitating instrument for the elderly care.

    Science.gov (United States)

    Cardoso, Rachel da Silva Serejo; Sá, Selma Petra Chaves; Domingos, Ana Maria; Sabóia, Vera Maria; Maia, Tauan Nunes; Padilha, Joviria Marcia Ferreira de Oliveira; Nogueira, Glycia de Almeida

    2018-01-01

    To develop educational technology with caregivers of older people based on the needs, difficulties and concerns related to the elderly care expressed by the caregivers themselves. Research of qualitative nature, with participant observation, based on concepts used by Paulo Freire. Data collection and analysis used the "World Cafe" methodology and the thematic content analysis, respectively. The needs of these caregivers refer to their training and information on aging. The difficulties highlighted are deterrents to quality assistance to older adults, such as: insufficient resources, environmental factor and relationship with the family. The interests are evident in relation to the care and to its more subjective relationship. Final considerations: Educational technologies, printed matter and media, developed along with the caregivers, contribute to orientation and information of caregiver, population and professionals as facilitating instruments, regarding elderly care.

  11. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology and Waste Management Consortium annual report, 1990--1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    The HBCU/MI Environmental Technology and Waste Management Consortium was established in January 1990, through a Memorandum of Understanding (MOU) among the member institutions. This group of research-oriented Historically Black Colleges and Universities and Minority Institutions (HBCU/MI) agreed to work together to initiate research, technology development and education programs to address the nation`s critical environmental problems. As a group the HBCU/MI Consortium is uniquely positioned to reach women and the minority populations of African Americans, Hispanics and American Indians. As part of their initial work, they developed the Research, Education, and Technology Transfer (RETT) Plan to actualize the Consortium`s guiding principles. In addition to developing a comprehensive research agenda, four major programs were begun to meet these goals. This report summarizes the 1990--1991 progress.

  12. Overview of emerging environmental technologies

    International Nuclear Information System (INIS)

    Olson, D.C.

    2000-01-01

    DOD is executing environmental restoration projects in accordance with compliance regulations from many federal agencies. With the passage of amendments to the Superfund law in 1986 that stated a preference for treatment instead of disposal, demand developed for alternative methods that provided more permanent and less costly solutions for dealing with contaminated materials. The Army files environmental impact statements on major programs and specific projects that are currently affecting, or have the potential to affect the environment. Personnel conducting those studies may find it helpful to learn about current environmental assessment methods and the outcomes of previous environmental studies. The Army currently spends almost 2.4% of its total budget on environmental programs. As the future budget picture continues to decline, new technologies offer the potential to provide a lower cost means of achieving the same level of environmental protection. This paper will provide an overview of environmental restoration planning and procedures, discuss information capabilities available on the Internet, provide summaries of recent technological literature and field studies; and identifies areas of informational 'gaps'. It concludes by urging closer ties between industry and the Army, as well as the need to pursue new and innovative techniques to solve old problems. (author)

  13. GENERAL ENVIRONMENTAL CORPORATION; CURE ELECTROCOAGULATION TECHNOLOGY: INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    The CURE electrocoagulation technology was demonstrated under the Superfund Innovative Technology Evaluation (SITE) program at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS), where water from the solar evaporation ponds (SEPs) was contaminat...

  14. The Savannah River environmental technology field test platform

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The Savannah River technology Center (SRTC) has been developing a program to rigorously field test promising environmental technologies that have not undergone EPA equivalency testing. The infrastructure and staff expertise developed as part of the activities of the Savannah River Integrated Demonstration Program allows field testing of technologies without the difficulties of providing remote field support. By providing a well-characterized site and a well-developed infrastructure, technologies are tested in actual field scenarios to determine their appropriate applications in environmental characterization and monitoring activities. The field tests provide regulatory organizations, potential industrial partners, and potential users with the opportunity to evaluate the technology's performance and its utility for implementation in environmental characterization and monitoring programs. This program has resulted in the successful implementation of several new technologies

  15. A New Vision for Chemistry Education Students: Environmental Education

    Science.gov (United States)

    Teksoz, Gaye; Sahin, Elvan; Ertepinar, Hamide

    2010-01-01

    The present study aimed to determine level of pre-service chemistry teachers' environmental literacy and their perceptions on environmental education. This study was realized during the fall semester of 2006-2007 academic year with the participation of 60 students enrolled in five-year chemistry teacher education program. The data collected by…

  16. Technological Innovation in Primary Education

    Directory of Open Access Journals (Sweden)

    Luisana Sleny López Alvarado

    2018-05-01

    Full Text Available The purpose of this essay is to reflect on technological innovation in Primary Education. In this idea, information processing was used to support the analysis of the theoretical approaches related to the relevance of education that is based on a significant pedagogical practice capable of developing the capacities and interests, so that they can appropriate the global and local content in the vision of access to information, considering social opportunities. The restructuring to which education has been subjected has been influenced by advances in science, technology and the demands of a complex, dynamic and uncertain society in the processes of educational innovation, which involves the introduction of something new in education. the educational system, modifying its teaching-learning structures through the incorporation of Information and Communication Technologies (ICT in the curricular design of primary education in its intention to train for incursion into science and technology from use of a wide range of didactic resources that lead to pedagogical innovation. It was concluded that technological innovation in the educational praxis of primary education, requires in addition to the vocation of service, to study the new didactic paradigms to display their reflective capacity and assume the commitment to acquire digital literacy to assume the requirements of a knowledge society which is increasingly globalized.

  17. Overcoming regulatory barriers: DOE environmental technology development program

    International Nuclear Information System (INIS)

    Kurtyka, B.M.; Clodfelter-Schumack, K.; Evans, T.T.

    1995-01-01

    The potential to improve environmental conditions via compliance or restoration is directly related to the ability to produce and apply innovative technological solutions. However, numerous organizations, including the US General Accounting Office (GAO), the EPA National Advisory Council for Environmental Policy and Technology (NACEPT), the DOE Environmental Management Advisory Board (EMAB), and the National Science and Technology Council (NSTC) have determined that significant regulatory barriers exist that inhibit the development and application of these technologies. They have noted the need for improved efforts in identifying and rectifying these barriers for the purpose of improving the technology development process, providing innovative alternatives, and enhancing the likelihood of technology acceptance by all. These barriers include, among others, regulator and user bias against ''unknown/unproven'' technologies; multi-level/multi-media permit disincentives; potential liability of developers and users for failed implementation; wrongly defined or inadequate data quality objectives: and lack of customer understanding and input. The ultimate goal of technology development is the utilization of technologies. This paper will present information on a number of regulatory barriers hindering DOE's environmental technology development program and describe DOE efforts to address these barriers

  18. Brownfield Action: An education through an environmental science simulation experience for undergraduates

    Science.gov (United States)

    Kelsey, Ryan Daniel

    Brownfield Action is a computer simulation experience used by undergraduates in an Introduction to Environmental Science course for non-science majors at Barnard College. Students play the role of environmental consultants given the semester-long task of investigating a potentially contaminated landsite in a simulated town. The simulation serves as the integration mechanism for the entire course. The project is a collaboration between Professor Bower and the Columbia University Center for New Media Teaching and Learning (CCNMTL). This study chronicles the discovery, design, development, implementation, and evaluation of this project over its four-year history from prototype to full-fledged semester-long integrated lecture and lab experience. The complete project history serves as a model for the development of best practices in contributing to the field of educational technology in higher education through the study of fully designed and implemented projects in real classrooms. Recommendations from the project focus on linking the laboratory and lecture portions of a course, the use of simulations (especially for novice students), instructor adaptation to the use of technology, general educational technology project development, and design research, among others. Findings from the study also emphasize the uniqueness of individual student's growth through the experience, and the depth of understanding that can be gained from embracing the complexity of studying sophisticated learning environments in real classrooms.

  19. The Extent of Educational Technology's Influence on Contemporary Educational Practices

    OpenAIRE

    Kim, Bradford-Watts

    2005-01-01

    This paper investigates how advances in educational technologies have influenced contemporary educational practices.It discusses the nature of educational technology, the limitations imposed by the digital divide and other factors of uptake, and the factors leading to successful implementation of educational technologies.The extent of influence is then discussed,together with the probable implications for educational sites for the future.

  20. Technology Education Benefits from the Inclusion of Pre-Engineering Education

    Science.gov (United States)

    Rogers, Steve; Rogers, George E.

    2005-01-01

    Technology education is being taught today in almost every high school and middle school in America. Over 1000 technology education departments are now including pre-engineering education in their programs. According to these authors, the time has come for the profession to agree that including pre-engineering education in technology education…

  1. TECHNOLOGY OF EDUCATIONAL EVENTS DESIGNING

    Directory of Open Access Journals (Sweden)

    N. V. Volkova

    2017-01-01

    Full Text Available The aim of the article is to prove and disclose the essence of the author’s technology of educational events designing.Methodology and methods of research. Methodological basis of work is humanitarian approach. The method of pedagogical modeling was used for the model development of educational events influence on pedagogical activity formation. The content analysis of texts descriptions, case-study method, expert estimations of event projects were applied as the main methods of efficiency confirmation of the technology of educational events design.Results and scientific novelty. The characteristics of an educational event are emphasized by means of an empirical way: opening (what a person opens for himself; generation (a result of a personal action; and participation in creation of something "new" (new communications, relations and experience. The structure of technology of educational events design including work with concepts (an educational event, substantial and procedural components is presented. The technology of educational events designing is considered as the process of the well-grounded choice of designing technologies, mutual activity, pedagogical communication, components of educational activity: contents, methods, means, and organizational forms depending on educational aims due to age-specific peculiarities of participants of the educational event. The main conditions providing successful use of the technology are the involvement into joint cognitive activity of all its participants and importance of the events for each of them that qualitatively change the nature of a cognitive process and generate real transformations of the reality.Practical significance. The author’s experience in teaching testifies to introduction of the module «Technology of Design of Educational Events» into the basic educational subject-module «Design Competence of the Teacher» (degree program «Pedagogical Education», considering this module as

  2. Technology for Education and Learning

    CERN Document Server

    2012 international conference on Technology for Education and Learning (ICTEL 2012)

    2012-01-01

    This volume contains 108 selected papers presented at the 2012 international conference on Technology for Education and Learning (ICTEL 2012), Macau, China, March 1-2, 2012. The conference brought together researchers working in various different areas of Technology for Education and Learning with a main emphasis on technology for business and economy in order to foster international collaborations and exchange of new ideas. This proceedings book has its focus on Technology for Economy, Finance and Education representing some of the major subareas presented at the conference.

  3. [Information technology in medical education].

    Science.gov (United States)

    Ramić, A

    1999-01-01

    The role of information technology in educational models of under-graduate and post-graduate medical education is growing in 1980's influenced by PC's break-in in medical practice and creating relevant data basis, and, particularly, in 1990's by integration of information technology on international level, development of international network, Internet, Telemedicin, etc. The development of new educational information technology is evident, proving that information in transfer of medical knowledge, medical informatics and communication systems represent the base of medical practice, medical education and research in medical sciences. In relation to the traditional approaches in concept, contents and techniques of medical education, new models of education in training of health professionals, using new information technology, offer a number of benefits, such as: decentralization and access to relevant data sources, collecting and updating of data, multidisciplinary approach in solving problems and effective decision-making, and affirmation of team work within medical and non-medical disciplines. Without regard to the dynamics of change and progressive reform orientation within health sector, the development of modern medical education is inevitable for all systems a in which information technology and available data basis, as a base of effective and scientifically based medical education of health care providers, give guarantees for efficient health care and improvement of health of population.

  4. Activity and Action: Bridging Environmental Sciences and Environmental Education

    Science.gov (United States)

    Tal, Tali; Abramovitch, Anat

    2013-01-01

    The main goal of this study was to examine the Environmental Workshop unit taught to Environmental Sciences majors in the high schools in Israel and learn if, and in what ways, this unit could become a model for environmental education throughout the high school curriculum. We studied the special characteristics of the Environmental Workshop (EW)…

  5. Environmental issues affecting clean coal technology deployment

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-31

    The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mention many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.

  6. Driving forces and barriers for environmental technology development

    International Nuclear Information System (INIS)

    2005-01-01

    Driving forces and barriers behind development and usage of environmental technology is discussed, and also whether there are certain characteristics related to environmental innovations compared to other innovations in general. The development of environmental technology is in principle dominated by the same drivers and barriers as any other technology, but the order and strength of the various factors may be different. This examination as well as other empirical studies shows that regulations play a greater part for environmental technology than 'pure market forces'. To many participants it is important to be one step ahead of the regulations, i.e. the expected regulations are equally important as the factual ones in driving the technology development. Players in the business community express that it is important that the authorities cooperate with them when introducing new regulations. This will increase acceptance for the regulations and facilitate the necessary adjustments. The most important barrier in the development and use of the technologies studied is probably the lack of demand

  7. Whatever became of educational technology? the implications for teacher education

    Directory of Open Access Journals (Sweden)

    Colin Latchem

    2013-12-01

    Full Text Available The paper explores the reasons for educational technology principles and practices not being more widely accepted and successfully applied in everyday teaching and learning. It argues that these are: an over-emphasis on new technology; a failure to learn from the lessons of the past; and a lack of meta-analysis and collaborative research to evidence the benefits. The paper also brings out the point that the literature fails to acknowledge the important role of educational technology in informal learning and non-formal education. It concludes with recommendations for future research into the broader aspects of educational technology and the employment of more longitudinal and collaborative action research and the nature of pre- service, in-service and postgraduate teacher education in educational technology.

  8. ATBU Journal of Environmental Technology: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. The journal of environmental technology is devoted to the publication of papers which advance knowledge of practical and theoretical issues of the environmental technology. Selection of papers for publication is based on their relevance, clarity, topicality and individuality; the extent to which they advance ...

  9. THE PROFESSIONAL IMPROVEMENT OF THE PRESCHOOL EDUCATION FOR THE WORK WITH THE ENVIRONMENTAL EDUCATIONSUSTAINABLE DEVOLOPMENT

    Directory of Open Access Journals (Sweden)

    Teresa Elena Pérez-Borroto

    2016-07-01

    Full Text Available At the present time the protection of the environment is of great value, and it becomes a priority, a necessity and an imperative to ensure economic, social development, health and survival of the human species on the planet. In Cuba there is the National Strategy on Environment, guiding document that not only conceptualizes holistically Environment, but also traces patterns of how to develop the Environmental Education for Sustainable Development, considering education, as the most viable alternative to achieve this purpose. Therefore it is required a professional education that is guidance counselor, who owns preparation and manifests a comprehensive education that allows to educate environmentally from the context in which they work, meeting the needs of learners, notes that are considered valid for professional Early Childhood Education. As was stated above, the importance of professional development as essential for the preparation of preschool educator pathway is clear, however educational practice has shown weaknesses in the knowledge, skills and attitudes that present the professional of this education to provide treatment to environmental Education in early childhood (known in Cuba as the stage of zero to six years old, so that the objective of the research was focused on determing the needs for improvement of professional Preschool for working with Environmental Education. The results presented were the initial phase of a research project implemented, validated and generalized in educational practice. To determine the needs of professional the "Technology for Training Needs Assessment", which sustained the implementation of research, such as applied methods: documentary analysis; observation, surveys and interviews and triangulation of sources to reveal the broader trends of overcoming Early Childhood Education professionals working with environmental education. The research process reaffirmed the importance of working with

  10. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.

  11. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    International Nuclear Information System (INIS)

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO's environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO's areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation's largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST's Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management

  12. What Is Educational Technology?

    Science.gov (United States)

    Ingle, Henry T.

    1975-01-01

    Featured in this issue are the English translations of two speeches delivered to graduate students in educational technology at Pontificia Universidade, Porto Alegre, Brazil. Henry Ingle defines educational technology in the traditional as well as modern sense, describes its essential elements, and discusses situations in which the use of…

  13. Can postpositivist research in environmental education engender ...

    African Journals Online (AJOL)

    In this article we contend that postpositivist research in environmental education can contribute towards promoting ethical activity within higher education. We argue that postpositivist inquiry breaks with utilitarian and uncritical assumptions about research in environmental education and also creates unconfined spaces for ...

  14. Environmental management and monitoring for education building development

    Science.gov (United States)

    Masri, R. M.

    2018-05-01

    The purpose of research were (1) a conceptual, functional model designed and implementation for environmental management and monitoring for education building development, (2) standard operational procedure made for management and monitoring for education building development, (3) assessed physic-chemical, biological, social-economic environmental components so that fulfilling sustainable development, (4) environmental management and monitoring program made for decreasing negative and increasing positive impact in education building development activities. Descriptive method is used for the research. Cibiru UPI Campus, Bandung, West Java, Indonesia was study location. The research was conducted on July 2016 to January 2017. Spatial and activities analysis were used to assess physic-chemical, biological, social-economic environmental components. Environmental management and monitoring for education building development could be decreasing water, air, soil pollution and environmental degradation in education building development activities.

  15. Disruptive Technologies in Higher Education

    Science.gov (United States)

    Flavin, Michael

    2012-01-01

    This paper analyses the role of "disruptive" innovative technologies in higher education. In this country and elsewhere, Higher Education Institutions (HEIs) have invested significant sums in learning technologies, with Virtual Learning Environments (VLEs) being more or less universal, but these technologies have not been universally…

  16. Game-like Technology Innovation Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2011-01-01

    scenario designed for technology education in grades 7 - 9 in Danish schools. In the paper, methodological challenges of doing design-based research into technology innovation education are discussed. The preliminary results from the first studies of a game-inspired technology innovation camp are also...

  17. From Practice to Policy in Environmental Education

    African Journals Online (AJOL)

    practical skills that are needed to solve them. While infusion was the main focus of the country's environmental ... innovative work in the field of environmental education, thus recognising that additional thinking and experimentation are necessary to future policy formulation.The Uttarakhand. Environmental Education Centre ...

  18. Using Smartphone Technology in Environmental Sustainability Education: The Case of the Maasai Mara Region in Kenya

    Science.gov (United States)

    Dogbey, James; Quigley, Cassie; Che, Megan; Hallo, Jeffrey

    2014-01-01

    This study engaged key stakeholders in an economically and environmentally fragile region in Kenya in a unique, interdisciplinary, and integrative approach to explore the extent to which the use of smartphone technology helps access the environmental values and sustainability perspectives of the people of the Maasai land. The results of the study…

  19. Environmental Consequences of Pig Slurry Treatment Technologies

    DEFF Research Database (Denmark)

    ten Hoeve, Marieke

    occur during manure storage and after field application. The main emissions are ammonia, nitrous oxide, methane, carbon dioxide, nitrate, phosphorus and odour. Slurry treatment technologies have been and are being developed in order to reduce the environmental impacts of manure. However, it is important...... and excluding biogenic carbon, marine and freshwater eutrophication potential, terrestrial acidification and eutrophication potential, and fossil resource depletion potential. The different types of treatment technologies showed varying environmental profiles, meaning that one type of technology was beneficial...... technology, or co-substrate for anaerobic digestion). With respect to odorous emissions, an LCIA method was developed, but due to a lack of data it proved difficult to include odour in LCA. Regulations appear to have an influence on the environmental impacts of slurry treatment. A decrease in N application...

  20. Distance Education in Technological Age

    Directory of Open Access Journals (Sweden)

    R .C. SHARMA

    2005-04-01

    Full Text Available Distance Education in Technological AgeRomesh Verma (Editor, New Delhi: Anmol Publications, 2005, ISBN 81-261-2210-2, pp. 419 Reviewed by R C SHARMARegional DirectorIndira Gandhi National Open University-INDIA The advancements in information and communication technologies have brought significant changes in the way the open and distance learning are provided to the learners. The impact of such changes is quite visible in both developed and developing countries. Switching over to online mode, joining hands with private initiatives and making a presence in foreign waters, are some of the hallmarks of the open and distance education (ODE institutions in developing countries. The compilation of twenty six essays on themes as applicable to ODE has resulted in the book, “Distance Education in Technological Age”. These essays follow a progressive style of narration, starting from describing conceptual framework of distance education, how the distance education was emerged on the global scene and in India, and then goes on to discuss emergence of online distance education and research aspects in ODE. The initial four chapters provide a detailed account of historical development and growth of distance education in India and State Open University and National Open University Model in India . Student support services are pivot to any distance education and much of its success depends on how well the support services are provided. These are discussed from national and international perspective. The issues of collaborative learning, learning on demand, life long learning, learning-unlearning and re-learning model and strategic alliances have also given due space by the authors. An assortment of technologies like communication technology, domestic technology, information technology, mass media and entertainment technology, media technology and educational technology give an idea of how these technologies are being adopted in the open universities. The study

  1. The Development of Environmental Conservation Youth Camping Using Environmental Education Process

    Directory of Open Access Journals (Sweden)

    Okrit Tee-ngarm

    2016-12-01

    Full Text Available The purposes of this research were: to make youths camp activities using environmental education process, to study and to compare the knowledge and attitude before and after the camp activities for conserving environment by using the process of environmental education. The sample were 30 youths in Mueng district, Sisaket province. The tools used in the research including activity manual, knowledge test, attitudes test and participation measurement. The data were analyzed by percentage, mean, standard deviation, and Paired t-test at significant level .05. The result showed that After camp activities for conserving environment by using the process of environmental education, the participats had mean score of knowledge and attitude toward environmental conservation at was higher than before the activities at statistical significantly level .05. And they had participation in youths camp activities for environmental conservation at the most level.

  2. 298 The Importance of Environmental Education to Secondary ...

    African Journals Online (AJOL)

    First Lady

    2013-01-28

    Jan 28, 2013 ... also discussed Environmental Education (EE) as a key to creating environmental .... The Development of Modern Education in Nigeria, ... of traditional education on Nigerian education system in Olukoya,. O. (Ed.) Culture and ...

  3. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    Energy Technology Data Exchange (ETDEWEB)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B. [and others

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

  4. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    International Nuclear Information System (INIS)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B.

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management

  5. Hydrogen Technology Education Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-12-01

    This document outlines activities for educating key target audiences, as suggested by workshop participants. Held December 4-5, 2002, the Hydrogen Technology Education Workshop kicked off a new education effort coordinated by the Hydrogen, Fuel Cells, & Infrastructure Technologies Program of the Office of Energy Efficiency and Renewable Energy.

  6. Marginalized Student Access to Technology Education

    Science.gov (United States)

    Kurtcu, Wanda M.

    The purpose of this paper is to investigate how a teacher can disrupt an established curriculum that continues the cycle of inequity of access to science, technology, engineering, and math (STEM) curriculum by students in alternative education. For this paper, I will focus on the technology components of the STEM curriculum. Technology in the United States, if not the world economy, is developing at a rapid pace. Many areas of day to day living, from applying for a job to checking one's bank account online, involve a component of science and technology. The 'gap' in technology education is emphasized between the 'haves and have-nots', which is delineated along socio-economic lines. Marginalized students in alternative education programs use this equipment for little else than remedial programs and credit recovery. This level of inequity further widens in alternative education programs and affects the achievement of marginalized students in credit recovery or alternative education classes instead of participation technology classes. For the purposes of this paper I focus on how can I decrease the inequity of student access to 21st century technology education in an alternative education program by addressing the established curriculum of the program and modifying structural barriers of marginalized student access to a technology focused curriculum.

  7. Enhancing Environmental Higher Education in Eastern Europe

    Science.gov (United States)

    Palmisano, E.; Caporali, E.; Valdiserri, J.

    2010-12-01

    Higher Education plays a central role in the development of both human beings and modern societies as it enhances social, cultural and economic development, active citizenship, ethical values and expertises for a sustainable growth. Different initiatives are taking place at world level to guarantee accessibility and right to higher education. The sustainability of human development has, as relevant key factors, environment protection and natural resources enhancement. Environment is therefore becoming more and more important at global level. The Environmental policy is object of discussions, in different prime minister summits and conferences, and constitutes a priority of policy in an increasing number of countries. The European Higher Education institutions, to achieve the objectives above, and to encourage cooperation between countries, may take part in a wide range of European Commission funded programmes, such as TEMPUS, which supports the modernisation of higher education and creates an area of co-operation in countries surrounding the EU. Some important projects run by the University of Florence are the TEMPUS DEREC-Development of Environmental and Resources Engineering Curriculum (2005-2008) and its spin-off called DEREL-Development of Environment and Resources Engineering Learning (2010-2013), recently recommended for funding by the European Commission. Through the co-operation of all project consortium members (Universities in Austria, Germany, Greece, FYR Macedonia, Albania and Serbia) they are aimed at the development and introduction of first and second level curricula in “Environmental and Resources Engineering” at the Ss. Cyril and Methodius University in Skopje (FYR Macedonia). In the DEREC Project the conditions for offering a joint degree title in the field of Environmental Engineering between the University of Florence and the Ss. Cyril and Methodius University in Skopje were fulfilled and a shared educational programme leading to the mutual

  8. Staying connected: online education engagement and retention using educational technology tools.

    Science.gov (United States)

    Salazar, Jose

    2010-01-01

    The objective of this article is to inform educators about the use of currently available educational technology tools to promote student retention, engagement and interaction in online courses. Educational technology tools include content management systems, podcasts, video lecture capture technology and electronic discussion boards. Successful use of educational technology tools requires planning, organization and use of effective learning strategies.

  9. Environmental Education.

    Science.gov (United States)

    Heiser, Ed

    Furnished in this comprehensive report is a resume of a five-year experimental program in environmental education conducted by the Eastern Montana College Laboratory School in conjunction with Eastern Montana College and the Billings School District #2. The basic purpose of the program is to make teachers, and in turn students, aware of the…

  10. Sensory Perception, Rationalism and Outdoor Environmental Education

    Science.gov (United States)

    Auer, Matthew R.

    2008-01-01

    There is a strong emphasis on sensory perception and "hands-on" learning in the outdoor environmental education of children. In addition, normative concerns infuse children's environmental curricula, and in particular, the notion that environmental education is not a passive undertaking; when one appreciates the essential value of the…

  11. Environmental Education Research: To What Ends?

    Science.gov (United States)

    Jickling, Bob

    2009-01-01

    This paper engages questions about ends in environmental education research. In doing so, I argue that such questions are essentially normative, and that normative questions are underrepresented in this field. After cautioning about perils of prescribing research agendas, I gently suggest that in environmental education key normative questions…

  12. Environmental Decision Making and Information Technology: Issues Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Barg, S.; Fletcher, T.; Mechling, J.; Tonn, B.; Turner, R.

    1999-05-01

    This report presents a summary of the Information Technology and Environmental Decision Making Workshop that was held at Harvard University, October 1-3, 1998. Over sixty participants from across the US took part in discussions that focused on the current practice of using information technology to support environmental decision making and on future considerations of information technology development, information policies, and data quality issues in this area. Current practice is focusing on geographic information systems and visualization tools, Internet applications, and data warehousing. In addition, numerous organizations are developing environmental enterprise systems to integrate environmental information resources. Plaguing these efforts are issues of data quality (and public trust), system design, and organizational change. In the future, much effort needs to focus on building community-based environmental decision-making systems and processes, which will be a challenge given that exactly what needs to be developed is largely unknown and that environmental decision making in this arena has been characterized by a high level of conflict. Experimentation and evaluation are needed to contribute to efficient and effective learning about how best to use information technology to improve environmental decision making.

  13. Archives: African Journal of Environmental Science and Technology

    African Journals Online (AJOL)

    Items 1 - 50 of 117 ... Archives: African Journal of Environmental Science and Technology. Journal Home > Archives: African Journal of Environmental Science and Technology. Log in or Register to get access to full text downloads.

  14. 78 FR 21909 - Environmental Technologies Trade Advisory Committee; Public Meeting

    Science.gov (United States)

    2013-04-12

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The teleconference....S. exports of environmental technologies, goods, services, and products. The ETTAC was originally...

  15. Democratizing science and technology education: Perspectives from the philosophy of education

    Science.gov (United States)

    Pierce, Clayton Todd

    This study examines conceptualizations of science and technology and their relation to ideas of democratic education in the history of philosophy of education. My genealogical analysis begins by tracing the anti-democratic emergence of ideas and values of science and technology that have evolved through ancient and modern periods within the philosophy of education and continue to shape the ways science and technology are understood and treated in educational settings. From my critical engagement with Plato's Republic and Rousseau's Emile, I argue that anti-democratic structures and values have been embedded in philosophy of education through Plato's educational theory of techne and Rousseau's pedagogical theory that involves science and technology as important educational force. Following this theme, I analyze the work of John Dewey and Herbert Marcuse and their shared project for democratizing science and technology through education. Through a critical comparison of both theorists' models, I suggest that each provides positive legacies for philosophy of education to draw upon in rethinking the intersection of science, technology, and education: a strong model for understanding public problems associated with a highly technological and scientific society and a reconstructive framework for values and sensibilities that demands a new value relationship to be developed between humans and science and technology. Finally, I situate my critique and assessment of this history in the philosophy of education within the current science and technology education reform movement in the United States. I claim that the official models of science and technological literacy and inquiry, as constructed by the National Academy of Sciences and a host of governmental policies, shape science and technology education with a decidedly neo-liberal focus and purpose. In response to this anti-democratic movement I offer an alternative position that utilizes a counter-epistemology to the

  16. Game-like Technology Innovation Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2011-01-01

      The aim of this paper is to discuss the first results and methodological challenges and perspectives of designing game-inspired scenarios for implementation of innovation processes into schools' science education. This paper comprises and report on a case study of a game-inspired innovation...... scenario designed for technology education in grades 7 - 9 in Danish schools. In the paper, methodological challenges of doing design-based research into technology innovation education are discussed. The preliminary results from the first studies of a game-inspired technology innovation camp are also...... presented, along with discussions of the future of development of these educational spaces....

  17. 76 FR 66912 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2011-10-28

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The teleconference... expand U.S. exports of environmental technologies, goods, services, and products. The ETTAC was...

  18. Environmental regulation and the export dynamics of energy technologies

    International Nuclear Information System (INIS)

    Costantini, Valeria; Crespi, Francesco

    2008-01-01

    The pollution haven hypothesis affirms that an open market regime will encourage the flow of low-technology polluting industries towards developing countries because of potential comparative advantages related to low environmental standards. In contrast, the hypothesis suggested by Porter and van der Linde claims that innovating firms operate in a dynamic competitive situation which allows global diffusion of environmental-friendly technologies. Environmental regulation may represent a relevant mechanism through which technological change is induced. In this way, countries that are subject to more stringent environmental regulations may become net exporters of environmental technologies. This paper provides new evidence on the evolution of export flows of environmental technologies across different countries for the energy sector. Advanced economies, particularly the European Union, have increasingly focused on the role of energy policies as tools for sustaining the development path. The Kyoto Protocol commitments, together with growing import dependence on energy products, have brought attention to the analysis of innovation processes in this specific sector. The analysis uses a gravity model in order to test the determinants and the transmission channels through which environmental technologies for renewable energies and energy efficiency are exported to advanced and developing countries. Our results are consistent with the Porter and van der Linde hypothesis where environmental regulation represents a significant source of comparative advantages. What strongly emerges is that the stringency of environmental regulation supplemented by the strength of the National Innovation System is a crucial driver of export performance in the field of energy technologies. (author)

  19. KSC Education Technology Research and Development Plan

    Science.gov (United States)

    Odell, Michael R. L.

    2003-01-01

    Educational technology is facilitating new approaches to teaching and learning science, technology, engineering, and mathematics (STEM) education. Cognitive research is beginning to inform educators about how students learn providing a basis for design of more effective learning environments incorporating technology. At the same time, access to computers, the Internet and other technology tools are becoming common features in K-20 classrooms. Encouraged by these developments, STEM educators are transforming traditional STEM education into active learning environments that hold the promise of enhancing learning. This document illustrates the use of technology in STEM education today, identifies possible areas of development, links this development to the NASA Strategic Plan, and makes recommendations for the Kennedy Space Center (KSC) Education Office for consideration in the research, development, and design of new educational technologies and applications.

  20. Education modifies genetic and environmental influences on BMI

    DEFF Research Database (Denmark)

    Johnson, Wendy; Kyvik, Kirsten Ohm; Skytthe, Axel

    2011-01-01

    environmental correlations between education and BMI differed by level of education, analyzing women and men separately. Correlations between education and BMI were -.13 in women, -.15 in men. High BMI's were less frequent among well-educated participants, generating less variance. In women, this was due...... to restriction of all forms of variance, overall by a factor of about 2. In men, genetic variance did not vary with education, but results for shared and nonshared environmental variance were similar to those for women. The contributions of the shared environment to the correlations between education and BMI......Obesity is more common among the less educated, suggesting education-related environmental triggers. Such triggers may act differently dependent on genetic and environmental predisposition to obesity. In a Danish Twin Registry survey, 21,522 twins of same-sex pairs provided zygosity, height, weight...

  1. 77 FR 35941 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2012-06-15

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... promotion programs; and issues related to innovation in the environmental technology sector. Background: The...

  2. 77 FR 6064 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2012-02-07

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The teleconference... administration of programs to expand U.S. exports of environmental technologies, goods, services, and products...

  3. SRS environmental technology development field test platform

    International Nuclear Information System (INIS)

    Riha, B.D.; Rossabi, J.; Eddy-Dilek, C.A.

    1995-01-01

    A critical and difficult step in the development and implementation of new technologies for environmental monitoring and characterization is successfully transferring these technologies to industry and government users for routine assessment and compliance activities. The Environmental Sciences Section of the DOE Savannah River Technology Center provides a forum for developers, potential users, and regulatory organizations to evaluate new technologies in comparison with baseline technologies in a well characterized field test bed. The principal objective of this project is to conduct comprehensive, objective field tests of monitoring and characterization technologies that are not currently used in EPA standard methods and evaluate their performance during actual operating conditions against baseline methods. This paper provides an overview of the field test site and a description of some of the technologies demonstrated at the site including their field applications

  4. Environmental control technology in petroleum drilling and production

    International Nuclear Information System (INIS)

    Wojtanowicz, A.K.

    1997-01-01

    Environmental control technology (ECT) is process integrated and relates mainly to pollution prevention and risk assessment. Mechanisms of environmental impact in petroleum drilling, well completion and production, include the generation of waste, induction of toxicity or the creation of pathways for pollutant migration. The identification and evaluation of these mechanisms constitute two parts of the scope of ECT. A third part is the development of new techniques to comply with environmental requirements without prejudicing productivity. The basic concepts of the ECT approach are presented in this chapter. The approach is then used to analyse oilfield drilling and production processes. Environmental control components developed in these technologies are described. These include: the control of the volume and toxicity of drilling fluids; source separation technology in produced water cleaning; subsurface injection of oilfield waste slurries; containment technology in the integrity of petroleum wells; subsurface reduction of produced water; oilfield pit closure technology. (37 figures; 26 tables; 227 references) (UK)

  5. THE MUSEUM: A PARTNER IN ENVIRONMENTAL EDUC.ATION

    African Journals Online (AJOL)

    . Museum resources are generally underutil ised by educational establishments, not least of all by environmental educators. Some museum activities are explained and ... What is their true mission in society? There are many descriptions of the ...

  6. still in an environmental education curriculum research story

    African Journals Online (AJOL)

    The Environmental Education Curriculum Initiative (EECI) in partnership with the .... adoption of an integrated system of lifelong learning ... environmental education in the country and has played .... Environmental Affairs and Tourism, Pretoria.

  7. Educational Technology: Kindergarten through Twelfth Grade.

    Science.gov (United States)

    Steinhaus, Kurt A.

    This report presents the findings and conclusions of a study of educational technology in New Mexico schools. Designed to provide baseline information to the New Mexico Education Technology Planning Committee, the results of the study will also be used to help make statewide planning decisions concerning educational technology. The findings…

  8. The 2D Hyperlink/Geocaching hybrid as a New Method for Improving Communication and Educational Delivery in Environmental Science

    Science.gov (United States)

    Graham, J.; Byrne, J. M.

    2009-12-01

    Geocaching is a game of hiding and locating caches (treasures), usually with the aid of a GPS-enabled device, and then posting the locations online for others to discover. Its remarkable success as a cultural phenomenon - transcending the traditional boundaries of age, gender, race and culture, while seamlessly combining the elements of technology, mental challenge, travel, geography, orienteering and entertainment - has been well documented. One would expect, therefore, that something so accessible and so physically, mentally and technologically engaging could also have great potential as an educational tool; specifically for the teaching of environmental science in situ. The attempts to date, however, have been disappointing. It will be the purpose of this poster to demonstrate a new and effective approach to educational environmental science-based geocaching; one which treats discreet elements of the living landscape as caches (rather than obstacles), and which combines several commonly available technologies so as to create a rich, immersive experience for viewers of many ages and backgrounds. Specifically, our poster will demonstrate how traditional geocaching methods can be dramatically improved, for the purposes of education, by combining it with 2D hyperlinking technologies in such a way as to allow the viewer to access a variety of different online and/or offline media elements - documentaries, texts, websites, animations, and images, while immersed in the physical environment to which they relate. It will be shown that this site-specific approach to environmental education has considerable potential for improving the meaningful dialogue between environmental scientists and the general public.

  9. [The effects of an environmental education with newspaper in education (NIE) on the environmental concern and practice].

    Science.gov (United States)

    Sung, Ki-Wol

    2008-12-01

    The purpose of this study was to develop an environmental education program using newspaper articles in education (NIE) and to evaluate changes in concern and practice for environmental protection after NIE. The design was a nonequivalent control group pretest-posttest design. The participants were university students in nursing, of which 31 were assigned to the experimental group and 43 to the control group. The education was carried out for 2 hr, once a week for 7 weeks. Data were analyzed with SPSS WIN 14 program, and included chi2 test, independent t-test, and repeated measure ANOVA. NIE showed significant differences in the changes of attitude toward environment (F=4.461, p=.036). Findings suggest that this NIE in environmental education was effective in changing students' attitudes toward the environment. Therefore this NIE is recommended for inclusion in education for university students in nursing.

  10. Technological transfer to the education

    Directory of Open Access Journals (Sweden)

    Enrique Melamed-Varela

    2016-12-01

    Full Text Available One of the most efficient strategies related to generation of differentiation factors which contribute to stability and sustainability in time as well as the  momentum of technological development in different territories is represented by the growth in scientific, technological and innovative development based on the structure of economic systems. Education is considered a fundamental element because it is the essence in the formation and fortification of the capacities, skills and competencies in human capital. This is needed for the management of research projects, development and innovation that will contribute to technology transfer and the progress of scientific knowledge that is encouraged from the inside of the organizational structures of the national economic sectors One of the most influential and conceptual tendencies of economic thinking in the countries (Gomez, Ibagón& Forero, 2014 are represented by the theories based on endogenous development in Latin America.  In addition,  the scientific development of a nation brewing from a process of internal learning and strengthening of the technical and technological capabilities that support the processes of education and research as generators of knowledge (Amar &Diazgranados, 2006, this principle is supported by Mazzucato´s (2014 theory,  who considers states as  capable of generating a platform for enabling capabilities of resources for the scientific and technological development entrepreneurs ;fact that are continuously supported by education. Starting from this series of concepts, the following question arises: do different levels of modern educational institutions use technological access? It must be taken into account that the scientific and technological progress results of the research, development and innovation (RDI is not indifferent for educational organizations, an activity that is mostly awarded to the universities and technological development centers (Ortiz, 2012

  11. Advanced Environmental Monitoring Technologies

    Science.gov (United States)

    Jan, Darrell

    2004-01-01

    Viewgraphs on Advanced Environmental Monitoring Technologies are presented. The topics include: 1) Monitoring & Controlling the Environment; 2) Illustrative Example: Canary 3) Ground-based Commercial Technology; 4) High Capability & Low Mass/Power + Autonomy = Key to Future SpaceFlight; 5) Current Practice: in Flight; 6) Current Practice: Post Flight; 7) Miniature Mass Spectrometer for Planetary Exploration and Long Duration Human Flight; 8) Hardware and Data Acquisition System; 9) 16S rDNA Phylogenetic Tree; and 10) Preview of Porter.

  12. 78 FR 21911 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2013-04-12

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... review the role of the U.S. government in supporting the early adoption of environmental technologies and...

  13. Environmental control technology

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    During this report period, Chem Tech identified environmental control technology (ECT) as an area of emphasis for future planning and resource allocation. The Division plans to continue to perform R and D activities in ECT for external sponsors such as the DOE Office of Fossil Energy (DOE/FE), the Electric Power Research Institute (EPRI), and the Environmental Protection Agency (EPA) while striving for recognition as an R and D center for ECT within the Martin Marietta Energy Systems' Complex. Chem Tech has already played supporting roles in this area for the Y-12 Plant and the Oak Ridge Gaseous Diffusion Plant (ORGDP) and is currently expanding its support to organizations within ORNL responsible for environmental matters. Over the long term, the Division hopes to achieve recognition as a center for R and D in ECT within the wider DOE system. Recent initiatives supporting these plans are discussed below

  14. The Danish technology foresight on environmentally friendly agriculture

    DEFF Research Database (Denmark)

    Borch, Kristian

    2013-01-01

    A premise that is necessary for agriculture to develop into an environmentally friendly direction is that research is undertaken into environmentally friendly technologies and methods and how they can be brought into use. There is a need for a prioritised research effort that focuses on those...... without any plan or with some thought. Therefore the National Forest and Nature Agency in Denmark initiated the Green Technological foresight on environmentally friendly agriculture with the aim of examining the agricultural environmental challenges and suggesting technological and structural solutions....... problems which are related to minimising environmental problems affected by the agricultural production’s negative influence on the surroundings, improving animal welfare and finding new ways and products for agriculture. Future directions of agriculture can derive with or without dialogue; it can occur...

  15. 77 FR 14734 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2012-03-13

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... proposed agenda of a meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The... innovation in the environmental technology sector. Background: The ETTAC is mandated by Public Law 103-392...

  16. Motion sensor technologies in education

    Directory of Open Access Journals (Sweden)

    T. Bratitsis

    2014-05-01

    Full Text Available This paper attempts to raise a discussion regarding motion sensor technologies, mainly seen as peripherals of contemporary video game consoles, by examining their exploitation within educational context. An overview of the existing literature is presented, while attempting to categorize the educational approaches which involve motion sensor technologies, in two parts. The first one concerns the education of people with special needs. The utilization of motion sensor technologies, incorporated by game consoles, in the education of such people is examined. The second one refers to various educational approaches in regular education, under which not so many research approaches, but many teaching ideas can be found. The aim of the paper is to serve as a reference point for every individual/group, willing to explore the Sensor-Based Games Based Learning (SBGBL research area, by providing a complete and structured literature review.

  17. 1992 yearbook of environmental and technology-related law

    International Nuclear Information System (INIS)

    Schroeder, M.

    1992-01-01

    The 1992 and sixth edition of this yearbook contains papers on environmental and technology-related law in the European Communities and the Federal Republic of Germany including among other things information on the latest jurisdiction by the European Court of Justice; insurability of environmental damage; scientific aspects of limit values. There are also treatises on non-German and comparative as well as international environmental and technology- related law which deal among other things with atomic and immission protection law and on harmonization and codification from a general point of view. Finally, some papers report on developments of national and European environmental and technology-related law. Three of the fifteen contributions have been abstracted separately. (HSCH) [de

  18. THE IMPORTANCE OF EDUCATIONAL TECHNOLOGY IN TEACHING

    Directory of Open Access Journals (Sweden)

    Lazar Stošić

    2015-06-01

    Full Text Available Today, more than ever, the role of educational technology in teaching is of great importance because of the use of information and communication technologies. With the help of various applications for distance education, the Internet, teachers, and students themselves, they see the advantage of educational technology. The question is whether schools and teachers themselves are ready for the use of technology in education and whether they are aware of its benefits? In this paper, we try to give an overview of the importance and use of educational technology in the classroom.

  19. Educational Technology and Distance Supervision in Counselor Education

    Science.gov (United States)

    Carlisle, Robert Milton; Hays, Danica G.; Pribesh, Shana L.; Wood, Chris T.

    2017-01-01

    The authors used a nonexperimental descriptive design to examine the prevalence of distance supervision in counselor education programs, educational technology used in supervision, training on technology in supervision, and participants' (N = 673) perceptions of legal and ethical compliance. Program policies are recommended to guide the training…

  20. Proceedings of Opportunity '95 -- Environmental technology through small business

    International Nuclear Information System (INIS)

    Kothari, V.P.

    1994-11-01

    The Opportunity '95--Environmental Technology Through Small Business conference was held November 16--17, 1994, at the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. The overall objective of this conference was to review the latest environmental and waste management technologies being developed under the sponsorship of the Environmental Management--Office of Technology Development (EM-OTD) Program at METC. The focus of this conference was also to address the accomplishments and barriers affecting small businesses, and lay the groundwork for future technology development initiatives and opportunities. Twenty papers were presented in three EM-OTD focus areas: mixed waste characterization, treatment and disposal (6 papers); contaminant plume containment and remediation (6 papers); and facility transitioning, decommissioning and final disposition (8 papers). In addition to the presentations, nine posters of environmental management areas were displayed. A panel discussion was also held on technology development assistance to small businesses. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  1. Environmental radiation sensing technologies

    International Nuclear Information System (INIS)

    Nishizawa, Hiroshi; Inomata, Kenji; Tamuro, Masaru; Fujita, Kazuhiko

    2013-01-01

    After the Fukushima nuclear accident, environmental radiation monitoring and radioactivity measurement of contamination of wastes, soils, food and drinking water were needed in accurate and reliable way. Based on radiation sensing technologies and radiation and light coupled analysis method, new environmental radiation measurement system for simple monitoring post without exclusive house and also portable monitoring post for temporary use were developed with low cost. Measurement accuracy was improved by real-time processing of detected pulses and corrected non-linearity of low-energy range by analysis. Environmental performance was upgraded to assure detector gain with compensated against temperature change and aging. Inspection and maintenance were also simplified using touch panel display with standardized application menu and data format. (T. Tanaka)

  2. Uptake of Space Technologies - An Educational Programme

    Science.gov (United States)

    Bacai, Hina; Zolotikova, Svetlana; Young, Mandy; Cowsill, Rhys; Wells, Alan; Monks, Paul; Archibald, Alexandra; Smith, Teresa

    2013-04-01

    Earth Observation data and remote sensing technologies have been maturing into useful tools that can be utilised by local authorities and businesses to aid in activates such as monitoring climate change trends and managing agricultural land and water uses. The European Earth observation programme Copernicus, previously known as GMES (Global Monitoring for Environment and Security), provides the means to collect and process multi-source EO and environmental data that supports policy developments at the European level. At the regional and local level, the Copernicus programme has been initiated through Regional Contact Office (RCO), which provide knowledge, training, and access to expertise both locally and at a European level through the network of RCOs established across Europe in the DORIS_Net (Downstream Observatory organised by Regions active In Space - Network) project (Grant Agreement No. 262789 Coordination and support action (Coordinating) FP7 SPA.2010.1.1-07 "Fostering downstream activities and links with regions"). In the East Midlands UK RCO, educational and training workshops and modules have been organised to highlight the wider range of tools and application available to businesses and local authorities in the region. Engagement with businesses and LRA highlighted the need to have a tiered system of training to build awareness prior to investigating innovative solutions and space technology uses for societal benefits. In this paper we outline education and training programmes which have been developed at G-STEP (GMES - Science and Technology Education Partnership), University of Leicester, UK to open up the Copernicus programme through the Regional Contact Office to downstream users such as local businesses and LRAs. Innovative methods to introduce the operational uses of Space technologies in real cases through e-learning modules and web-based tools will be described and examples of good practice for educational training in these sectors will be

  3. Educational Technologies in Health Science Libraries: Teaching Technology Skills

    Science.gov (United States)

    Hurst, Emily J.

    2014-01-01

    As technology rapidly changes, libraries remain go-to points for education and technology skill development. In academic health sciences libraries, trends suggest librarians provide more training on technology topics than ever before. While education and training have always been roles for librarians, providing technology training on new mobile devices and emerging systems requires class creation and training capabilities that are new to many. To appeal to their users, many health sciences librarians are interested in developing technology-based classes. This column explores the question: what skills are necessary for developing and teaching technology in an academic health sciences library setting? PMID:24528269

  4. Educational technologies in health sciences libraries: teaching technology skills.

    Science.gov (United States)

    Hurst, Emily J

    2014-01-01

    As technology rapidly changes, libraries remain go-to points for education and technology skill development. In academic health sciences libraries, trends suggest librarians provide more training on technology topics than ever before. While education and training have always been roles for librarians, providing technology training on new mobile devices and emerging systems requires class creation and training capabilities that are new to many librarians. To appeal to their users, many health sciences librarians are interested in developing technology-based classes. This column explores the question: what skills are necessary for developing and teaching technology in an academic health sciences library setting?

  5. Current Trends In Educational Technology: Implication On ...

    African Journals Online (AJOL)

    This paper presents the current trends in educational technology and the implication on educational managers in Nigeria. The current trends in the field of educational technology are centred on the influence of information and communication technology on the development of educational management. Various challenges ...

  6. Educational technology and the new technologies

    NARCIS (Netherlands)

    Verhagen, Pleunes Willem; Plomp, T.

    1989-01-01

    Like everywhere in our culture, new technologies gradually penetrate the field of education. This may be seen as a problem area, which asks for appropriate, actions by teachers, curriculum experts, instructional designers and others. As "technology" seems to be the main issue,one may quation whether

  7. Transforming environmental permitting and compliance policies to promote pollution prevention: Removing barriers and providing incentives to foster technology innovation, economic productivity, and environmental protection. Final report

    International Nuclear Information System (INIS)

    Berg, D.R.; Kerr, R.L.; Fleischer, S.; Gorsen, M.; Harris, E.

    1993-04-01

    The Technology Innovation and Economics (TIE) Committee, a standing committee of EPA's National Advisory Council for Environmental Policy and Technology (NACEPT), has concluded that major changes are needed in federal and state permitting and compliance programs to encourage adoption of practical pollution prevention approaches to environmental protection. The Committee recommends seven major areas for improvement, including: (1) Redesigning permit procedures to encourage regulated facilities to expand multi-media and pollution prevention environmental improvement efforts; (2) Accelerating development and use of innovative pollution prevention technologies and techniques through special permitting and review procedures during RD ampersand D and commercialization phases; (3) Developing and expanding federal and state pollution prevention enforcement initiative; (4) Supporting state initiatives in pollution prevention facility planning; (5) Expanding pollution prevention-related training, educational and technology diffusion efforts to better reach managers in all sectors of the economy; (6) Altering personnel reward systems to encourage EPA staff to champion pollution prevention; (7) Expanding and publicizing the system of national awards honoring outstanding pollution prevention research, training and technology implementation

  8. Embracing uncertainties: The paradox of environmental education ...

    African Journals Online (AJOL)

    This paper is a pair of binoculars which I have used to scan the last two years that I have been studying environmental education, the focus being on the research I did on Theatre for Development for environmental education in formal education. The paper aims to bring into view some on the paradoxes of doing ...

  9. QuEST: Qualifying Environmentally Sustainable Technologies

    Science.gov (United States)

    Lewis, Pattie

    2012-01-01

    Articles in this issue inlude: (1) Foundation of Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) Technology Evaluation is Testing and Qualification, (2) Materials Management and Substitution Efforts, (3 Recycling and Pollution Control Efforts, and (4) Remediation Efforts

  10. INFORMATION TECHNOLOGIES IN ECONOMIC EDUCATION

    OpenAIRE

    I.A. Kinash

    2011-01-01

    In the article the basic aspects of the use of modern information technologies in an educational process are examined. Described directions of introduction of information technologies in economic education. Problems which are related to practice of professional preparation of specialists of economic specialities are examined. The role of information technologies in professional activity of specialists of economic type is underlined.

  11. INFORMATION TECHNOLOGIES IN ECONOMIC EDUCATION

    Directory of Open Access Journals (Sweden)

    I.A. Kinash

    2011-11-01

    Full Text Available In the article the basic aspects of the use of modern information technologies in an educational process are examined. Described directions of introduction of information technologies in economic education. Problems which are related to practice of professional preparation of specialists of economic specialities are examined. The role of information technologies in professional activity of specialists of economic type is underlined.

  12. 78 FR 74129 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2013-12-10

    ... for Environmental Policy and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT members represent academia...

  13. Identifying barriers to Science, Technology, Society and environment (STSE) educational goals and pedagogy in science education: A case study of UMASS Lowell undergraduate engineering

    Science.gov (United States)

    Phaneuf, Tiffany

    The implementation of sustainable development in higher education is a global trend. Engineers, as gatekeepers of technological innovation, confront increasingly complex world issues ranging from economic and social to political and environmental. Recently, a multitude of government reports have argued that solving such complex problems requires changes in the pedagogy of engineering education, such as that prescribed by the Science, Technology, Society, and education (STS) movement that grew out of the environmental movement in the 70s. In STS students are engaged in the community by understanding that scientific progress is innately a sociopolitical process that involves dimensions of power, wealth and responsibility. United States accreditation criteria now demand "the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context" (ABET Engineering Accreditation Commission 2005). With such emphasis on STS education as necessary to address complex world issues, it is vital to assess the barriers in the traditional engineering curriculum that may inhibit the success of such educational reform. This study identifies barriers to STS goals and pedagogy in post secondary science education by using the Francis College of Engineering at UMASS Lowell as a single case study. The study draws on existing literature to develop a theoretical framework for assessing four hypothesized barriers to STS education in undergraduate engineering. Identification of barriers to STS education in engineering generates a critical reflection of post secondary science education and its role in preparing engineers to be active citizens in shaping a rapidly globalizing world. The study offers policy recommendations for enabling post secondary science education to incorporate STS education into its curriculum.

  14. SIHTI 2 - Energy and environmental technology

    International Nuclear Information System (INIS)

    Saviharju, K.; Johansson, A.

    1993-01-01

    The programme is divided into system and technology parts. The aim of system studies is to determine, on the basis of lifecycle analyses, long-term environmental-technological aims for various fields (energy, industry) and to find out an optimum strategy for reaching these aims. The analysis will give data on emission reduction costs and on fields, where technical improvements are required, and will determine the limits set by environmental factors for future technical development. Environmental impacts will be discussed from national and economic viewpoints. Technological development is dependent on new ideas. The aim is to indicate possibilities for reducing emissions from energy use of peat and wood, for low-emission production at least on one industrial field (wood-processing industry), to establish emission measuring and control methods, to indicate utilization alternatives for solid matter separated at power plants, and to find out operable alternatives for the energy use of wastes. Other ventures of significance will also be financed: survey of 'new' emissions and development of their measuring and purification methods. The field of the programme will be divided into synergic sub-fields: systematics of emission chains, fields of operation (energy and environment problems in the wood-processing industries), development of flue gas purification technology, measuring and control technology, by-products of power plants, emissions from peat production, etc

  15. 76 FR 73632 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2011-11-29

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Request for Nominations to the National Advisory Council for Environmental Policy and Technology (NACEPT). SUMMARY: The U.S. Environmental... appointment to the National Advisory Council for Environmental Policy and Technology (NACEPT). Vacancies are...

  16. 75 FR 25240 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2010-05-07

    ... ENVIRONMENTAL PROTECTION AGENCY National Advisory Council for Environmental Policy and Technology... for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT is a committee of...

  17. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, GROUNDWATER SAMPLING TECHNOLOGIES, GEOPROBE INC., PNEUMATIC BLADDER PUMP GW 1400 SERIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) design efficient processes for conducting has created the Environmental Technology perfofl1lance tests of innovative technologies. Verification Program (E TV) to facilitate the deployment of innovative or improved environmental techn...

  18. 78 FR 47316 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2013-08-05

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Request for nominations to the National Advisory Council for Environmental Policy and Technology (NACEPT). SUMMARY: The U.S. Environmental... Environmental Policy and Technology (NACEPT). Vacancies are anticipated to be filled by February, 2014. Sources...

  19. Gender-Based Motivational Differences in Technology Education

    Science.gov (United States)

    Virtanen, Sonja; Räikkönen, Eija; Ikonen, Pasi

    2015-01-01

    Because of a deeply gendered history of craft education in Finland, technology education has a strong gender-related dependence. In order to motivate girls into pursuing technological studies and to enable them to see their own potential in technology, gender sensitive approaches should be developed in technology education. This study explores…

  20. Environmental Education in Action in Secondary Teacher Training in ...

    African Journals Online (AJOL)

    Jenny

    In secondary and tertiary education, most environmental education is ... Teacher educators were very supportive of the policy development process because they .... relevant environmental education issues, while the same subjects, together ...

  1. Environmental Science and Technology Department annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Bjergbakke, E.; Oestergaard, H.; Aarkrog, A. [eds.

    1996-03-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1995 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The department`s contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 40 ills., 163 refs.

  2. Environmental Science and Technology Department annual report 1992

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A. [eds.

    1993-03-01

    Through basic and strategic research, the Environmental Science and Technology Department aspires to develop new ideas for industrial and agricultural production thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department in predominantly experimental. Selected department research activities during 1992 are introduced and reviewed in seven chapters: 1. Introduction. 2. The Atmospheric Environment. 3. Plant Genetics and Resistance Biology. 4. Plant Nutrition and Mineral Cycling. 5. Chemistry of the Geosphere. 6. Ecology and Mineral Cycling. 7. Other Activities. The department`s contribution to national and international collaborative research programmes in presented in addition in formation about large research and development facilities used and management by the department. The department`s educational and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technological staff members, visiting scientists, Post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au).

  3. Environmental Science and Technology Department annual report 1992

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1993-03-01

    Through basic and strategic research, the Environmental Science and Technology Department aspires to develop new ideas for industrial and agricultural production thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department in predominantly experimental. Selected department research activities during 1992 are introduced and reviewed in seven chapters: 1. Introduction. 2. The Atmospheric Environment. 3. Plant Genetics and Resistance Biology. 4. Plant Nutrition and Mineral Cycling. 5. Chemistry of the Geosphere. 6. Ecology and Mineral Cycling. 7. Other Activities. The department's contribution to national and international collaborative research programmes in presented in addition in formation about large research and development facilities used and management by the department. The department's educational and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technological staff members, visiting scientists, Post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au)

  4. Environmental Science and Technology Department annual report 1996

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1997-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The Department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the Department is mainly experimental. Selected departmental research activities during 1996 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace Analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The Department's contribution to national and international collaborative research programmes are presented together with information about the use of its large experimental facilities. Information about the Department's contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 63 ills., 207 refs

  5. Environmental Science and Technology Department annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O. J.; Oestergaard, H.; Aarkrog, A. [eds.

    1997-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The Department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the Department is mainly experimental. Selected departmental research activities during 1996 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace Analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The Department`s contribution to national and international collaborative research programmes are presented together with information about the use of its large experimental facilities. Information about the Department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 63 ills., 207 refs.

  6. Environmental Science and Technology Department annual report 1995

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Bjergbakke, E.; Oestergaard, H.; Aarkrog, A.

    1996-03-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1995 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The department's contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department's contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 40 ills., 163 refs

  7. ADVANCED TECHNOLOGIES OF ELECTRONIC EDUCATIONAL SYSTEMS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. Shishkina

    2011-11-01

    Full Text Available Actual problems and contradictions of electronic educational systems development are described: availability of education, quality of educational services; individualization of education; exposures and advantages in using of computer technology; standardization of technologies and resources. Tendencies of their solution in the view of development of new advanced technologies of e-education are specified. The essence and advantages of using the cloud computing technologies as a new platform of distributed learning are specified. Advanced directions of cloud-based data usage in executive system of education are declared: access management, content management, asset management, communications management.

  8. Can Environmental Education Increase Student-Athletes' Environmental Behaviors?

    Science.gov (United States)

    Mullenbach, Lauren E.; Green, Gary T.

    2018-01-01

    Environmental education was incorporated within a mentoring program (i.e. treatment group) for student-athletes at the University of Georgia. These student-athletes' environmental attitudes, behavioral intent, knowledge, self-efficacy, self-regulatory learning, motivation, and learning strategies were assessed before and after their environmental…

  9. Environmental Monitoring of Agro-Ecosystem Using Environmental Isotope Tracer Technology

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jae Sung; Cho, Jae Young

    2004-10-01

    This report has provided the counterparts the knowledge and skills on the use of environmental isotope tracer technology for obtaining valuable information on agricultural non-point pollution source in agro-ecosystem. The contamination from agricultural watersheds has been brought into attention as a potential contaminant of streams and tributaries, since majority of them caused water quality degradation, eutrophication of reservoir and negative effect on agro-environment. To prevent the contamination from these watersheds, it is necessary to find out the source of the contamination. However, accurate contaminants outflows from various types of non-point sources have not yet been elucidated due to the fact that the extent of non-point source contaminants related to uncontrollable climatic events and irrigation conditions may differ greatly from place to place and year to year. The dominant use of isotopes in environmental ecosystem research in the last few decades has been to trace sources of waters and solutes. The environmental isotope tracer technology using stable isotopes such as oxygen, hydrogen, carbon, nitrogen, and sulfur has extensively been used for tracing the fate of environmental pollutants and for identification of environmental pollutants sources in agro-ecosystems

  10. Environmental science and technology: An overview

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is intended to provide an overview of the scientific and technological effort to meet the environmental goals identified in the Green Plan. The report gives a sense of the range of scientific and technological efforts that are being devoted to issues as diverse as conserving our wildlife and national parks and developing innovative technologies to clean-up polluted sites.

  11. 76 FR 77776 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2011-12-14

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... Energy & Environmental Industries (OEEI), International Trade Administration, Room 4053, 1401...

  12. 76 FR 51001 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2011-08-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... Energy & Environmental Industries (OEEI), International Trade Administration, Room 4053, 1401...

  13. 77 FR 58356 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2012-09-20

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... Energy & Environmental Industries (OEEI), International Trade Administration, Room 4053, 1401...

  14. 78 FR 4834 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2013-01-23

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... Energy & Environmental Industries (OEEI), International Trade Administration, Room 4053, 1401...

  15. 77 FR 50987 - Environmental Technologies Trade Advisory Committee, Request for Nominations

    Science.gov (United States)

    2012-08-23

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... Commerce. ACTION: Solicitation of Nominations for Membership on the Environmental Technologies Trade...) is requesting nominations for memberships on the Environmental Technologies Trade Advisory Committee...

  16. Higher Education Students’ Perceptions of Environmental Issues and Media Coverage

    Directory of Open Access Journals (Sweden)

    Keinonen Tuula

    2016-12-01

    Full Text Available This study aims to find higher education students’ perceptions about environmental issues and how the perceptions are related to perceptions of media coverage. This study investigates higher education students’ perceptions of the seriousness of environmental issues and their relation to perceptions of media coverage. Higher education students perceived a global problem, lack of clean water, as most serious environmental problem. Media has had an effect on students’ perceptions on environmental issues: when students perceived the problem as serious they also perceived the information in media concerning it appropriate. Students perceived that the media underestimate and obscure some environmental problems such as biological diversity and global warming. It was concluded that higher education educators need more knowledge of students’, future decision makers’ concerns and perceptions about environmental issues to develop more effective teaching practices in higher education. Through education environmental issues literacy, which is a precursor for engaged protection of the environment, can be fostered. This study offers some insights into higher education students’ perceptions of the media’s role in environmental issues.

  17. Qualitative Education Management Based on Information Technologies

    OpenAIRE

    Natal'ya M. Obolyaeva

    2012-01-01

    The article deals with the qualitative education management through information technologies. Different approaches to defining the quality of education are considered. The interpretation for qualitative assessment of education is analyzed. The qualitative education management in details on the basis of information technologies is shown. The key advantages of appliance such technologies at the institutions of higher learning are analyzed.

  18. ENVIRONMENTAL REGULATIONS AND TECHNOLOGY - THE ELECTROPLATING INDUSTRY

    Science.gov (United States)

    This 44-page Technology Transfer Environmental Regulations and Technology publication is an update of a 1980 EPA publication that has been revised to reflect changes in the EPA regulations, as well as in the pollution control technologies that affect the electroplating industry. ...

  19. Technology-based management of environmental organizations using an Environmental Management Information System (EMIS): Design and development

    Science.gov (United States)

    Kouziokas, Georgios N.

    2016-01-01

    The adoption of Information and Communication Technologies (ICT) in environmental management has become a significant demand nowadays with the rapid growth of environmental information. This paper presents a prototype Environmental Management Information System (EMIS) that was developed to provide a systematic way of managing environmental data and human resources of an environmental organization. The system was designed using programming languages, a Database Management System (DBMS) and other technologies and programming tools and combines information from the relational database in order to achieve the principal goals of the environmental organization. The developed application can be used to store and elaborate information regarding: human resources data, environmental projects, observations, reports, data about the protected species, environmental measurements of pollutant factors or other kinds of analytical measurements and also the financial data of the organization. Furthermore, the system supports the visualization of spatial data structures by using geographic information systems (GIS) and web mapping technologies. This paper describes this prototype software application, its structure, its functions and how this system can be utilized to facilitate technology-based environmental management and decision-making process.

  20. The promises of educational technology: a reassessment

    NARCIS (Netherlands)

    Ely, Donald P.; Plomp, T.

    1986-01-01

    The claims made for educational technology have not always been realized. Many programmes in education based on media and technology have produced useful documentation and supportive research; others have failed. The current, comprehensive definition of educational technology is a helpful key to

  1. Development of environmental education in the Korean kindergarten context

    Science.gov (United States)

    Shin, Keum Ho

    Many environmental educators insist that environmental education (EE) should be started from a young age. The Korean Ministry of Education (1999) has also emphasized the importance of environmental education in early childhood by including content and objectives regarding EE in the 1999 National Curriculum of Kindergarten. However, many Korean kindergarten teachers do not sufficiently implement environmental education in their teaching practice. To address this issue, this study aimed at investigating and overcoming barriers to fully implement EE in the Korean kindergarten context. Four experienced Korean kindergarten teachers were involved in a fourteen-week critical action research project that included weekly group meetings. At these group meetings, teachers reflected on the barriers preventing the full implementation of EE in their classrooms and discussed possible environmental education actions to be attempted in the following week. These actions, individually implemented in teachers' classrooms, were reviewed at subsequent group meetings. Data from group meetings and teacher lessons were used to analyze the effectiveness of this critical action research project for developing environmental education. At the beginning stages of this study, Korean kindergarten teachers felt strongly uncomfortable participating in group communication. However, through the continuous encouragement of the researcher and with the involvement of participants who have similar educational backgrounds, age, and working experiences, participants came to actively engage in group communication. Participants in this study identified the following barriers to fully implement EE in kindergartens: insufficient understandings and awareness of EE, reluctant attitudes towards the environment, lack of educational support and resources, low parental involvement, and discomfort about going on a field trip to environments. Teachers came to understand the importance, objectives, potential topics

  2. Franchising Technology Education: Issues and Implications.

    Science.gov (United States)

    Daniel, Dan; Newcomer, Cynthia

    1993-01-01

    Describes educational technology franchises that sell services to students, either through schools or directly through retail centers, to educate them about and with technology. Topics addressed include the emphasis on personalized instruction; cooperative learning; curriculum; cost effectiveness; site-based management in public education; and…

  3. Studying Innovation Technologies in Modern Education

    Science.gov (United States)

    Stukalenko, Nina M.; Zhakhina, Bariya B.; Kukubaeva, Asiya K.; Smagulova, Nurgul K.; Kazhibaeva, Gulden K.

    2016-01-01

    In modern society, innovation technologies expand to almost every field of human activity, including such wide field as education. Due to integrating innovation technologies into the educational process practice, this phenomenon gained special significance within improvement and modernization of the established educational system. Currently, the…

  4. Technology management for environmentally sound and sustainable development

    International Nuclear Information System (INIS)

    Zaidi, S.M.J.

    1992-01-01

    With the evolutionary change in the production activities of human societies, the concept of development has also been changing. In the recent years the emphasis has been on the environmentally sound and sustainable development. The environmentally sound and sustainable development can be obtained through judicious use of technology. Technology as a resource transformer has emerged as the most important factor which can constitute to economic growth. But technology is not an independent and autonomous force, it is only an instrument which needs to be used carefully, properly and appropriately which necessitates technology management. (author)

  5. 76 FR 26247 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2011-05-06

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... & Environmental Industries (OEEI), International Trade Administration, Room 4053, 1401 Constitution Ave, NW...

  6. 78 FR 46921 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2013-08-02

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... Hinman, Office of Energy & Environmental Industries (OEEI), International Trade Administration, Room 4053...

  7. Educational Scholarship and Technology: Resources for a Changing Undergraduate Medical Education Curriculum.

    Science.gov (United States)

    Kyle, Brandon N; Corral, Irma; John, Nadyah Janine; Shelton, P G

    2017-06-01

    Returning to the original emphasis of higher education, universities have increasingly recognized the value and scholarship of teaching, and medical schools have been part of this educational scholarship movement. At the same time, the preferred learning styles of a new generation of medical students and advancements in technology have driven a need to incorporate technology into psychiatry undergraduate medical education (UGME). Educators need to understand how to find, access, and utilize such educational technology. This article provides a brief historical context for the return to education as scholarship, along with a discussion of some of the advantages to this approach, as well as several recent examples. Next, the educational needs of the current generation of medical students, particularly their preference to have technology incorporated into their education, will be discussed. Following this, we briefly review the educational scholarship of two newer approaches to psychiatry UGME that incorporate technology. We also offer the reader some resources for accessing up-to-date educational scholarship for psychiatry UGME, many of which take advantage of technology themselves. We conclude by discussing the need for promotion of educational scholarship.

  8. A survey of environmental needs and innovative technologies in Germany

    International Nuclear Information System (INIS)

    Voss, C.F.; Roberds, W.J.

    1995-05-01

    The International Technology Program (IT?), formerly the international Technology Exchange Program (ITEP), of the Department of Energy's (DOE's) Office of Environmental Restoration and Waste Management (EM) is responsible for promoting: (1) the import of innovative technologies to better address EM's needs; and (2) the export of US services into foreign markets to enhance US competitiveness. Under this program: (1) the environmental restoration market in Germany was evaluated, including the description of the general types of environmental problems, the environmental regulations, and specific selected contaminated sites; and (2) potentially innovative environmental restoration technologies, either commercially available or under development in Germany, were identified, described and evaluated. It was found that: (1) the environmental restoration market in Germany is very large, on the order of several billion US dollars per year, with a significant portion possibly available to US businesses; and (2) a large number (54) of innovative environmental restoration technologies, which are either commercially available or under development in Germany, may have some benefit to the DOE EM program and should be considered for transfer to the US

  9. Disruptive technologies in higher education

    Directory of Open Access Journals (Sweden)

    Michael Flavin

    2012-08-01

    Full Text Available This paper analyses the role of “disruptive” innovative technologies in higher education. In this country and elsewhere, Higher Education Institutions (HEIs have invested significant sums in learning technologies, with Virtual Learning Environments (VLEs being more or less universal, but these technologies have not been universally adopted and used by students and staff. Instead, other technologies not owned or controlled by HEIs are widely used to support learning and teaching. According to Christensen's theory of Disruptive Innovation, these disruptive technologies are not designed explicitly to support learning and teaching in higher education, but have educational potential. This study uses Activity Theory and Expansive Learning to analyse data regarding the impact of disruptive technologies. The data were obtained through a questionnaire survey about awareness and use of technologies, and through observation and interviews, exploring participants’ actual practice. The survey answers tended to endorse Disruptive Innovation theory, with participants establishing meanings for technologies through their use of them, rather than in keeping with a designer's intentions. Observation revealed that learners use a narrow range of technologies to support learning, but with a tendency to use resources other than those supplied by their HEIs. Interviews showed that participants use simple and convenient technologies to support their learning and teaching. This study identifies a contradiction between learning technologies made available by HEIs, and technologies used in practice. There is no evidence to suggest that a wide range of technologies is being used to support learning and teaching. Instead, a small range of technologies is being used for a wide range of tasks. Students and lecturers are not dependent on their HEIs to support learning and teaching. Instead, they self-select technologies, with use weighted towards established brands. The

  10. Influencing Technology Education Teachers to Accept Teaching Positions

    Science.gov (United States)

    Steinke, Luke Joseph; Putnam, Alvin Robert

    2008-01-01

    Technology education is facing a significant teacher shortage. The purpose of this study was to address the technology education teacher shortage by examining the factors that influence technology education teachers to accept teaching positions. The population for the study consisted of technology education teachers and administrators. A survey…

  11. Qualitative Education Management Based on Information Technologies

    Directory of Open Access Journals (Sweden)

    Natal'ya M. Obolyaeva

    2012-12-01

    Full Text Available The article deals with the qualitative education management through information technologies. Different approaches to defining the quality of education are considered. The interpretation for qualitative assessment of education is analyzed. The qualitative education management in details on the basis of information technologies is shown. The key advantages of appliance such technologies at the institutions of higher learning are analyzed.

  12. Education for sustainable development in technology education in Irish schools: a curriculum analysis

    OpenAIRE

    McGarr, Oliver

    2010-01-01

    peer-reviewed This paper explores the integration of Education for Sustainable Development (ESD) in technology education and the extent to which it is currently addressed in curriculum documents and state examinations in technology education at post-primary level in Ireland. This analysis is conducted amidst the backdrop of considerable change in technology education at post-primary level. The analysis of the provision of technology education found, that among the range of technology relat...

  13. Digital Technologies as Education Innovation at Universities

    Science.gov (United States)

    Kryukov, Vladimir; Gorin, Alexey

    2017-01-01

    This paper analyses the use of digital technology-based education innovations in higher education. It demonstrated that extensive implementation of digital technologies in universities is the main factor conditioning the acceleration of innovative changes in educational processes, while digital technologies themselves become one of the key…

  14. Ubiquitous Computing Technologies in Education

    Science.gov (United States)

    Hwang, Gwo-Jen; Wu, Ting-Ting; Chen, Yen-Jung

    2007-01-01

    The prosperous development of wireless communication and sensor technologies has attracted the attention of researchers from both computer and education fields. Various investigations have been made for applying the new technologies to education purposes, such that more active and adaptive learning activities can be conducted in the real world.…

  15. Expanding Nuclear Power Programmes - Romanian experience: Master - Nuclear Materials and Technologies Educational Plan

    International Nuclear Information System (INIS)

    Valeca, S.; Valeca, M.

    2012-01-01

    The main objectives of the Master Nuclear Materials and Technologies Educational Plan are: 1. To deliver higher education and training in the following specific domains, such as: Powders Technology and Ceramic Materials, Techniques of Structural Analysis, Composite Materials, Semiconductor Materials and Components, Metals and Metallic Alloys, Optoelectronic Materials and Devices, Nuclear Materials, The Engineering of Special Nuclear Materials, 2. To train managers of the Nuclear Waste Products and Nuclear Safety, 3. To qualify in ICT Systems for Nuclear Process Guidance, 4. To qualify in Environmental Protection System at the Level of Nuclear Power Stations, 5. To train managers for Quality Assurance of Nuclear Energetic Processes, 6. To deliver higher education and training regarding the International Treatises, Conventions and Settlements in force in the field of nuclear related activities. (author)

  16. Higher Education Beyond Faculties: Interdisciplinary Education in Care and Technology.

    Science.gov (United States)

    Sponselee, Anne-Mie A G; Van Hoof, Joost

    2017-01-01

    A Centre of Healthcare and Technology of a Dutch University of Applied Sciences, is presented - and illustrated by project examples - to show how the transitions in the sectors of health care and technology can result in interdisciplinary education in care and technology by means of higher education beyond faculties.

  17. Environmental education strategies for decentralized schools in the Colombian educative system: the Medellin experience

    Directory of Open Access Journals (Sweden)

    Yunia S. Rentería

    2008-02-01

    Full Text Available Environmental education is a condition to enable an attitudinal and aptitudinal generation of change, a condition that facilitates the balance between man and his surroundings. Environmental education needs the support of almost every discipline. In order to solve environmental problems, one must count on the active participation of a wide set of people and institutions. This article examines environmental education in Colombia focusing on the case of training programs, making emphasis on a case study that took place in Medellín, capital of the department of Antioquia. Results show there is a lack of clear conceptualization about the reasons and ultimate purposes concerning why environmental education is finally accomplished. That situation has conducted to the formulation of objectives and strategies that are too general to be properly fulfilled, and the implementation of detailed, and isolated actions.Lack of coordination between institutions and groups has resulted in duplicity of functions and efforts, which in turn result in a far from rational use of scarce resources. The conclusion is that environmental education in Colombia is still inefficient and must advance to higher levels, taking into account these three main perspectives: environmental, educative and pedagogic.

  18. Cultivating Environmental Citizenship in Teacher Education

    Science.gov (United States)

    Green, Carie; Medina-Jerez, William; Bryant, Carol

    2016-01-01

    Research on environmental action projects in teacher education is limited. Furthermore, projects that emphasize the role of citizens and governments in environmental problem-solving are scarce. The purpose of this study was to explore how participating in a political environmental action project influenced pre-service teachers' environmental…

  19. Nano-enabled environmental products and technologies - opportunities and drawbacks

    DEFF Research Database (Denmark)

    Møller Christensen, Frans; Brinch, Anna; Kjølholt, Jesper

    The project aims to investigate the benefits for health and environment that the use of nanomaterials in products and technologies may have. More specifically, the project provides an overview of the most relevant nano-enabled environmental technologies, different types of products and technologies...... on the (Danish) market, as well as products and technologies, which are still in R&D and it will provide a qualitative overview of health and environmental pros and cons of these technologies. The project has focused on technologies applied in: 1) purification of water and wastewater, 2) remediation of soil...

  20. 77 FR 39705 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2012-07-05

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Advisory Committee... meeting of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management...

  1. 76 FR 1431 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2011-01-10

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Meeting. SUMMARY... National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT...

  2. 75 FR 52941 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2010-08-30

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of meeting. SUMMARY... National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT...

  3. 76 FR 24481 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2011-05-02

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of meeting. SUMMARY... National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT...

  4. 76 FR 68183 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2011-11-03

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of meeting. SUMMARY... National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT...

  5. 77 FR 1931 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2012-01-12

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Advisory Committee... meeting of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management...

  6. 75 FR 38810 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2010-07-06

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of meeting. SUMMARY... of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management...

  7. 77 FR 3475 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2012-01-24

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of advisory committee... teleconference of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management...

  8. 76 FR 37112 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2011-06-24

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of meeting. SUMMARY... of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management...

  9. Thesaurus Dataset of Educational Technology in Chinese

    Science.gov (United States)

    Wu, Linjing; Liu, Qingtang; Zhao, Gang; Huang, Huan; Huang, Tao

    2015-01-01

    The thesaurus dataset of educational technology is a knowledge description of educational technology in Chinese. The aims of this thesaurus were to collect the subject terms in the domain of educational technology, facilitate the standardization of terminology and promote the communication between Chinese researchers and scholars from various…

  10. Health Educational Potentials of Technologies.

    OpenAIRE

    Magnussen, Rikke; Aagaard-Hansen, Jens

    2012-01-01

    The field of health promotion technology has been in an exponential growth in recent years and smart phone applications, exer-games and self-monitoring devices has become part of fitness activities and health education. In this work-in-progress-paper theoretical perspectives for categorising and analysing health educational potentials of technologies are presented.

  11. A Contemporary Preservice Technology Education Program

    Science.gov (United States)

    Flanigan, Rod; Becker, Kurt; Stewardson, Gary

    2012-01-01

    In order to teach engineering education, today's engineering and technology education teachers must be equipped with lesson plans to teach engineering design, among other principles, to the 6th-12th grade levels. At Utah State University (USU), curriculum has been developed for preservice engineering and technology education teachers that…

  12. 77 FR 8859 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2012-02-15

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Cancellation and Rescheduling of National Advisory Council for Environmental Policy and Technology (NACEPT) Committee Meeting. SUMMARY: EPA... Environmental Policy and Technology (NACEPT) Meeting to be held at the EPA Potomac Yard Conference Center, One...

  13. The importance of educational theories for facilitating learning when using technology in medical education.

    Science.gov (United States)

    Sandars, John; Patel, Rakesh S; Goh, Poh Sun; Kokatailo, Patricia K; Lafferty, Natalie

    2015-01-01

    There is an increasing use of technology for teaching and learning in medical education but often the use of educational theory to inform the design is not made explicit. The educational theories, both normative and descriptive, used by medical educators determine how the technology is intended to facilitate learning and may explain why some interventions with technology may be less effective compared with others. The aim of this study is to highlight the importance of medical educators making explicit the educational theories that inform their design of interventions using technology. The use of illustrative examples of the main educational theories to demonstrate the importance of theories informing the design of interventions using technology. Highlights the use of educational theories for theory-based and realistic evaluations of the use of technology in medical education. An explicit description of the educational theories used to inform the design of an intervention with technology can provide potentially useful insights into why some interventions with technology are more effective than others. An explicit description is also an important aspect of the scholarship of using technology in medical education.

  14. Social Adjustment of At-Risk Technology Education Students

    Science.gov (United States)

    Ernst, Jeremy V.; Moye, Johnny J.

    2013-01-01

    Individual technology education students' subgroup dynamic informs progressions of research while apprising technology teacher educators and classroom technology education teachers of intricate differences between students. Recognition of these differences help educators realize that classroom structure, instruction, and activities must be…

  15. ENVIRONMENTAL IMPACT ASSESSMENT OF A HEALTH TECHNOLOGY: A SCOPING REVIEW.

    Science.gov (United States)

    Polisena, Julie; De Angelis, Gino; Kaunelis, David; Gutierrez-Ibarluzea, Iñaki

    2018-06-13

    The Health Technology Expert Review Panel is an advisory body to Canadian Agency for Drugs and Technologies in Health (CADTH) that develops recommendations on health technology assessments (HTAs) for nondrug health technologies using a deliberative framework. The framework spans several domains, including the environmental impact of the health technology(ies). Our research objective was to identify articles on frameworks, methods or case studies on the environmental impact assessment of health technologies. A literature search in major databases and a focused gray literature search were conducted. The main search concepts were HTA and environmental impact/sustainability. Eligible articles were those that described a conceptual framework or methods used to conduct an environmental assessment of health technologies, and case studies on the application of an environmental assessment. From the 1,710 citations identified, thirteen publications were included. Two articles presented a framework to incorporate environmental assessment in HTAs. Other approaches described weight of evidence practices and comprehensive and integrated environmental impact assessments. Central themes derived include transparency and repeatability, integration of components in a framework or of evidence into a single outcome, data availability to ensure the accuracy of findings, and familiarity with the approach used. Each framework and methods presented have different foci related to the ecosystem, health economics, or engineering practices. Their descriptions suggested transparency, repeatability, and the integration of components or of evidence into a single outcome as their main strengths. Our review is an initial step of a larger initiative by CADTH to develop the methods and processes to address the environmental impact question in an HTA.

  16. Searching for Educational Technology Faculty.

    Science.gov (United States)

    Barrow, Lloyd H.

    2003-01-01

    Identifies the types of positions available at domestic four-year institutions of higher education for faculty whose specialty is educational technology. Analyzes educational job postings listed in the "Chronicle of Higher Education" from August, 2000, through July, 2001. (Author/SOE)

  17. Leveraging mobile computing and communication technologies in education

    DEFF Research Database (Denmark)

    Annan, Nana Kofi

    education and technology have evolved in tandem over the past years, this dissertation recognises the lapse that there is, in not being able to effectively leverage technology to improve education delivery by most educators. The study appreciates the enormousness of mobile computing and communication...... technologies in contributing to the development of tertiary education delivery, and has taken keen interest to investigate how the capacities of these technologies can be leveraged and incorporated effectively into the pedagogic framework of tertiary education. The purpose is to research into how...... of the results conducted after rigorous theoretical and empirical research unveiled the following: Mobile technologies can be incorporated into tertiary education if it has a strong theoretical underpinning, which links technology and pedagogy; the technology would not work if the user’s concerns in relation...

  18. The Technological Dimension of Educational Technology in Europe

    Science.gov (United States)

    Dimitriadis, Yannis

    2012-01-01

    This article describes some of the main technological trends and issues of the European landscape of research and innovation in educational technology. Although several innovative technologies (tools, architectures, platforms, or approaches) emerge, such as intelligent support to personalization, collaboration or adaptation in mobile, game-based,…

  19. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-04-30

    The final data package has been completed for the Mississippi State University, DIAL FTP Wall Depth Removal Characterization Technology. The package has been sent to DIAL for comments. Work is progressing on completing the transfer of glove boxes and tanks from Rocky Flats to FIU-HCET for the purpose of performing size reduction technology assessments. Vendors are being identified and security measures are being put in place to meet the High Risk Property criteria required by Rocky Flats. The FIU-HCET Technology Assessment Program has been included as one of 11 verification programs across the US and Canada described in the Interstate Technology Regulatory Cooperation (ITRC) document, ''Multi-state Evaluation of Elements Important to the Verification of Remediation Technologies'', dated January 1999. FIU-HCET will also participate in a panel discussion on technology verification programs at the International Environmental Technology Expo '99.

  20. Physical Education Teacher's Attitudes towards Philosophy of Education and Technology

    Science.gov (United States)

    Turkeli, Anil; Senel, Omer

    2016-01-01

    The current study was carried out to find out the attitudes of physical education teachers towards educational philosophy and technology, and to determine the relationship between the philosophy of education that they adopt and their attitudes toward technology. With this aim, the study was conducted on 22 female and 69 male physical education…

  1. Environmental consequences of new energy technology

    International Nuclear Information System (INIS)

    Svensson, Torbjoern

    1991-09-01

    This report summarises and assesses the environmental consequences associated with new energy technologies, with particular emphasis on their use for space heating supplies in the built environment. In the case of solar heating, it is primarily the processes associated with the production of the necessary materials and ground use requirements that can adversely affect the environment. There is also a certain risk associated with the leakage of heat transfer fluid. For heat stores, problem areas are primarily those associated with heating of the ground, discharge of foreign substances in connection with water treatment and conflicts of other users of ground water. The main adverse effects of heat pumps are their emissions of CFCs, which damage the ozone layer, utilisation of certain types of heat sources and the need to provide primary energy for mechanical drive of the pumps. All three of these new energy technologies are regarded as having less environmental consequences than conventional alternatives, although this assumes a change to less hazardous working media in heat pumps. A mutual comparison of the three technologies indicates that solar heating and heat stores have somewhat better environmental characteristics than heat pumps

  2. Divison of Environmental Control Technology program, 1978

    International Nuclear Information System (INIS)

    1979-06-01

    This report covers Division of Environmental Control Technology projects in progress during FY 1978, within the Office of the Assistant Secretary for Environment, Department of Energy. It is the second in a planned series of annual reports. The Division of Environmental Control Technology (ECT) continues to support the Assistant Secretary for Environment (EV) in discharging two primary responsibilities: (1) under the Environmental Engineering (EE) Program, the independent overview and assessment of environmental control aspects of both the U.S. Department of Energy's (DOE) research, development, and demonstration (RD and D) programs and the Nation's energy policies, and (2) under the Decontamination and Decommissioning Program, the reduction of potential environmental hazards at the radioactively contaminated sites that are presently owned or were formerly used by the Government. This report presents a short summary of objectives, approach, progress and results, future plans, and a reference bibliography for each research, development, or assessment project within the program areas described above

  3. Divison of Environmental Control Technology program, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Mott, William E.

    1979-06-01

    This report covers Division of Environmental Control Technology projects in progress during FY 1978, within the Office of the Assistant Secretary for Environment, Department of Energy. It is the second in a planned series of annual reports. The Division of Environmental Control Technology (ECT) continues to support the Assistant Secretary for Environment (EV) in discharging two primary responsibilities: (1) under the Environmental Engineering (EE) Program, the independent overview and assessment of environmental control aspects of both the U.S. Department of Energy's (DOE) research, development, and demonstration (RD and D) programs and the Nation's energy policies, and (2) under the Decontamination and Decommissioning Program, the reduction of potential environmental hazards at the radioactively contaminated sites that are presently owned or were formerly used by the Government. This report presents a short summary of objectives, approach, progress and results, future plans, and a reference bibliography for each research, development, or assessment project within the program areas described above.

  4. Division of Environmental Control Technology program, 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    Environmental engineering programs are reviewed for the following technologies; coal; petroleum and gas; oil shale; solar; geothermal and energy conservation; nuclear energy; and decontamination and decommissioning. Separate abstracts were prepared for each technology. (MHR)

  5. The Western Environmental Technology Office (WETO) Butte, Montana

    International Nuclear Information System (INIS)

    1994-10-01

    This document has been prepared to highlight the research, development, demonstration, testing and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. This information has been assembled from recently produced Office of Technology Development (OTD) documents which highlight technology development activities within each of the OTD program elements. Projects include: Heavy metals contaminated soil project; In Situ remediation integrated program; Minimum additive waste stabilization program; Resource recovery project; Buried waste integrated demonstration; Mixed waste integrated program; Pollution prevention program; and Mine waste technology program

  6. Environmental Science and Technology Department annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A. [eds.

    1994-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1993 are presented and reviewed in seven chapters: 1. Introduction, 2. The Atmospheric Environment, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Applied Geochemistry, 6. Ecology and Mineral Cycling, 7. Other Activities. The Department`s contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc students are also listed. (au).

  7. Environmental Science and Technology Department annual report 1993

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1994-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1993 are presented and reviewed in seven chapters: 1. Introduction, 2. The Atmospheric Environment, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Applied Geochemistry, 6. Ecology and Mineral Cycling, 7. Other Activities. The Department's contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department's contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc students are also listed. (au)

  8. Improving Educational Outcomes by Providing Educational Services through Mobile Technology

    OpenAIRE

    Hosam Farouk El-Sofany

    2013-01-01

    The use of Computers, Networks, and Internet has successfully enabled educational institutions to provide their students and instructors with various online educational services. With the recent developments in M-learning and mobile technology, further possibilities are emerging to provide such services through mobile devices such as mobile phones and PDAs. By providing the educational services using wireless and mobile technologies, the educational institutions can potentially bring great co...

  9. Environmental Education and Behavioral Change: An Identity-Based Environmental Education Model

    Science.gov (United States)

    McGuire, Nicholas M.

    2015-01-01

    In this paper, the effectiveness of environmental education (EE) programs at fostering ecologically responsible behavior is analyzed through the lens of psychology. In section 1, a critique of knowledge and attitude appeals is presented using contemporary psychological understandings of these constructs to show why many EE programs have been met…

  10. A Cross-Cultural Study on Environmental Risk Perception and Educational Strategies: Implications for Environmental Education in China

    Science.gov (United States)

    Duan, Hongxia; Fortner, Rosanne

    2010-01-01

    This cross-cultural study examined college students' environmental risk perception and their preference in terms of risk communication and educational strategies in China and the United States. The results indicated that the Chinese respondents were more concerned about environmental risk, and they perceived the environmental issues to be more…

  11. Technology Education and the Arts

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    One hears quite frequently how the arts continually suffer in the academic day. Many long-time technology education champions certainly know what this is all about; but there may be some ways to use technology education to bring the arts into the classroom. This article offers a series of activities and suggestions that will help students better…

  12. Teaching Professionals Environmental Management and Cleaner Technology

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik; Jørgensen, Michael Søgaard; Thorsen, Nils

    -ters. The target groups are professional environmental managers working in businesses including consultants, governmental institutions and organizations. To get access to the education the students must have a technical/nature science competence at master level or bachelor level combined with relevant job...... experience. Generally participants have had 5-15 years of practical experience and are in the position of a internal or external job change towards new tasks that require new knowledge, methodologies or management/co-ordination skills. The education of "Masters of Environmental Management" (MEM) started...

  13. The Multistability of Technological Breakdowns in Education

    DEFF Research Database (Denmark)

    Andersen, Bjarke Lindsø; Tafdrup, Oliver Alexander

    2017-01-01

    Introduction Everyone who is involved with modern technological artefacts such as computers, software and tablets has experienced situations where the artefacts suddenly cease to function properly. This is commonly known as a technological breakdown. Within education and the praxis of teaching...... technological breakdowns become a more and more ubiquitous phenomenon due to the rapid increase of technological artefacts utilized for educational purposes (Riis, 2012). The breakdowns impact the educational practice with consequences ranging from creating small obstacles to rendering it impossible to conduct...... successful teaching. Thus, knowing how to cope with technological breakdowns is a pivotal part of being a technological literate....

  14. Problematic of the Environmental Education in Educational Institutions

    Directory of Open Access Journals (Sweden)

    Liliana Hayde Gutierrez Sabogal

    2016-01-01

    Full Text Available The following article sketches the understanding of the actual situation of environmental education in Colombian educational institutions, taking in to account the aspects that seem to have an impact on this problematic and the possible interrelationships between them like the first stage of the doctoral research lead by Doctor Francisco González.

  15. New technology in everyday life - social processes and environmental impact

    DEFF Research Database (Denmark)

    Røpke, Inge

    2001-01-01

    aspect both of changes in everyday life and of the environmental impact of everyday-life activities. Technological change is often seen as an important part of the solutions to environmental problems, however, when technological change is seen from the perspective of everyday life, this image becomes...... more complex. In this paper technological changes are explored from the perspective of consumption and everyday life, and it is argued that environmental impacts arise through the interplay of technology, consumption and everyday life. Firstly, because technological renewals form integral parts...... influence the environment in the long run. The paper points to the need for further studies of the long term interplay between new technologies, everyday life and the environment....

  16. The State of Educational Technology: Responses to Mitchell.

    Science.gov (United States)

    Agostino, Andrew; And Others

    1989-01-01

    Presents eight responses to an article in a previous issue by Mitchell, "The Future of Educational Technology Is Past." Highlights include the theory of educational technology, the future of the field of educational technology, cybernetics, educational psychology, systems theory, the role of teachers, control systems, computer assisted…

  17. Situating trends in environmental education within the ecological debate

    International Nuclear Information System (INIS)

    Faulconer, T.

    1992-01-01

    For centuries there have been two philosophical orientations toward nature; one assumes humans to be the rightful owners and managers of nature, and the other is founded on a belief that humans are equal citizens within the earth's biotic community. Today these two approaches are located within reform environmentalism and deep ecology. In 1948, Aldo Leopold wrote an essay entitled open-quotes The Land Ethicclose quotes which proposed that humans include the land and its inhabitants within their circle of ethical concern. This essay has become a focal point of the debate between these two philosophies. The purpose of this study is to discover and describe the conceptual trends in environmental education since Leopold published open-quotes The Land Ethic.close quotes Eighty-two articles, published in educational journals from 1950 to 1990, were analyzed to determine whether they expressed a reform environmentalism orientation or a deep ecology perspective. Articles were selected which provided a statement of the purposes and goals of conservation education and environmental education. Until 1969, articles were drawn from a wide variety of educational journals. After 1969, the selection was limited to articles in The Journal of Environmental Education when that journal became the leading forum for environmental education discourse. The results showed that in the 1950s and 1960s the focus was almost entirely on wise-use conservation and reform environmentalism. In the last two decades, however, even though reform environmentalism remained a dominant influence, there has been a definite trend toward incorporating deep ecology concepts in this educational discourse. Further research is needed to determine how these ideas influence curriculum design and instructional practice

  18. Technology Leadership of Education Administrators and Innovative Technologies in Education: A Case Study of Çorum City

    Science.gov (United States)

    Kör, Hakan; Erbay, Hasan; Engin, Melih

    2016-01-01

    In this global world in which educational technologies have developed at such a great pace, it is possible to say that administrators in the education sector are obliged with serious roles with regard to keeping up with the evolving technology and the management of education in this virtual environment. In the present study utilizing screening…

  19. "Nuestra Tierra Dinamica" Global Climate Change STEM Education Fostering Environmental Stewardship

    Science.gov (United States)

    La Grave, M.; de Valenzuela, M.; Russell, R.

    2012-12-01

    CLUB ECO LÓGICO is a democratic and participatory program that provides active citizenship in schools and community, placing climate change into context for the Latino Community. The program's objectives focus on: 1. The Environment. Reducing the school and community impact on the environment through environmental footprint through stewardship actions. 2. Empowerment. Engaging participants through project and service learning and make decisions about how to improve their schools, their homes and their community's environment. 3. Community and Research Partnerships. Fostering collaborations with local community, stakeholders, government, universities, research organizations, and businesses that have expertise in environmental research, management, education and climate change. 4. Awareness. Increasing environmental and climate science knowledge of participants through STEM activities and hands-on access to technology. 5. Research and evaluation. Assessing the relevance of program activities through the engagement of the Latino community in planning and the effectiveness and impact of STEM activities through formative and summative evaluation. To address these objectives, the program has several inter related components in an after school setting: SUN EARTH Connections: Elementary (grades K to 2) students learn the basic climate change concepts through inquiry and hands on STEM activities. Bilingual 8 facilitators adapt relevant NASA educational resources for use in inquiry based, hands on activities. Drama and the arts provide unique experiences as well as play a key role in learning, participation and facilitation. GREEN LABS: Elementary students (grades 3 to 5) participate in stations where each Lab is staffed by at least two professionals: a College level fully bilingual Latin American Professional and a stakeholder representing either a research organization or other relevant environmental organization. Our current Green Lab themes include: Air, Soils, Water

  20. Energetic technologies and environmental impact

    International Nuclear Information System (INIS)

    2001-01-01

    This monograph is a collective work by scientist from CIEMAT (Spanish centre for research on energy, environment and technology). By reviewing the central topics of their own work, the authors present a world-wide update of the state of the arts of the different technologies involved in energy production. The chapters fo through the more promising technologies related to the diverse energy sources, from the nuclear to the renewable and chemical a large gamut of energy supply ways is revised. The analysis of the production technologies is accompanied by considerations of the environmental implications, an aspect to wich a whole part of the volume is devoted. The book begins with a foreword by Dr. Felix Yndurain, former General Director of CIEMAT and follows with a general introduction to the main topics, that are presented in three parts, with specific introductions. There is also a closing fourth part that includes some additional activities where more basic and technical developments are included. The first part is devoted to energy of nuclear origin. In two separate sections, fission and fusion technologies are covered. The fission section points towards the present day problems of nuclear plants (ageing, accidents, risk analysis, etc.), reprocessing of the nuclear fuel, radioactive wastes and environmental radioactivity. The fusion section contains a critical account of the present and expected developments of the fusion reactors together with an exposition of the related plasma physics problems. The second part comprises two sections devoted to energy generation of renewable and chemical origin, respectively. Tehcnologies for solar, wind and biomass energies are thoroughly exposed along the renewable energy section whereas the chemical energy section is devoted to the modern technologies of clean fossil fuel combustion and gasification, as well as to the new appealing subject of direct electric generation with fuel cells. The main environmental and social

  1. International Conference on Computers and Advanced Technology in Education

    CERN Document Server

    Advanced Information Technology in Education

    2012-01-01

    The volume includes a set of selected papers extended and revised from the 2011 International Conference on Computers and Advanced Technology in Education. With the development of computers and advanced technology, the human social activities are changing basically. Education, especially the education reforms in different countries, has been experiencing the great help from the computers and advanced technology. Generally speaking, education is a field which needs more information, while the computers, advanced technology and internet are a good information provider. Also, with the aid of the computer and advanced technology, persons can make the education an effective combination. Therefore, computers and advanced technology should be regarded as an important media in the modern education. Volume Advanced Information Technology in Education is to provide a forum for researchers, educators, engineers, and government officials involved in the general areas of computers and advanced technology in education to d...

  2. OCETA: services for environmental companies an technology developers

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, A.; Ozdemir, B. [Ontario Centre for Environmental Technology Advancement, Toronto, ON (Canada)

    1995-12-31

    Services provided by OCETA (Ontario Centre for Environmental Technology Advancement) to Ontario-based developers of environmental technologies, were described. While OCETA is not a granting agency, it is prepared to provide seed funding, in combination with private and government funding for client projects, and is committed to sharing risks and rewards for successful commercialization. The agency is also in a position to provide technology services at agreed discounts and to maximize in-kind contributions in order to extend project funding. Other services that the agency is equipped to provide, are described. These include information services, technology demonstration and assessment, business services, funding identification and sourcing, marketing, partnerships, and export market development.

  3. A Delphi forecast of technology in education

    Science.gov (United States)

    Robinson, B. E.

    1973-01-01

    The results are reported of a Delphi forecast of the utilization and social impacts of large-scale educational telecommunications technology. The focus is on both forecasting methodology and educational technology. The various methods of forecasting used by futurists are analyzed from the perspective of the most appropriate method for a prognosticator of educational technology, and review and critical analysis are presented of previous forecasts and studies. Graphic responses, summarized comments, and a scenario of education in 1990 are presented.

  4. Improving Educational Outcomes by Providing Educational Services through Mobile Technology

    Directory of Open Access Journals (Sweden)

    Hosam Farouk El-Sofany

    2013-01-01

    Full Text Available The use of Computers, Networks, and Internet has successfully enabled educational institutions to provide their students and instructors with various online educational services. With the recent developments in M-learning and mobile technology, further possibilities are emerging to provide such services through mobile devices such as mobile phones and PDAs. By providing the educational services using wireless and mobile technologies, the educational institutions can potentially bring great convenience to those off-campus students who do not always have time to find Internet enabled computers to get the important educational information from their academic institutions. With the mobile or M-educational services, both the students and the instructors can access the services anytime and anywhere they want. This paper discusses those M-educational services that can be moved to the mobile platform and then presents the system prototype and architecture that integrate these services into the mobile technology platform. The paper will conclude with a description of the formative evaluation of the system prototype.

  5. What can information technology do for environmental protection?

    International Nuclear Information System (INIS)

    Trauboth, H.

    1987-01-01

    Information technology plays an important role in the accomplishment of an effective environmental protection. Prerequisite for its comprehensive implementation is the legal and economic achievement of closed material cycles for supply and waste discharge in production and consumption as well as in nuclear technology. Modern information processing may be used for the inventory of natural and emission sources, to gain knowledge on the functioning mechanisms of nature, for the planning of a considerate exploitation of natural recources and for the ecology-oriented monitoring and control of industrial plants. The state of the art of the corresponding information technology and new areas of research especially in measurement technology are shown. The breadth of the great opportunities of information technology for environmental protection is discribed. (orig.) [de

  6. A Novel Conceptual Model of Environmental Communal Education: Content Analysis Based on Distance Education Approach

    Science.gov (United States)

    Hafezi, Soheila; Shobeiri, Seyed Mohammad; Sarmadi, Mohammad Reza; Ebadi, Abbas

    2013-01-01

    Environmental education as a learning process increases people's knowledge and awareness about the environment. Although in some countries, the Environmental Communal Education (ECE) is the core of the environmental education by formal and informal organizations and groups, but, it has not clarified the meaning of the ECE's concept. Therefore the…

  7. Advanced Technology for Engineering Education

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  8. Practice of environmental education

    International Nuclear Information System (INIS)

    Takagi, Yoshio

    2005-01-01

    The author worked at Ishikawa Prefectural Takahama Senior High School until the last fiscal year and practiced environmental education. The syllabus of the class was as follows: (1) examination of river water quality (transparency, pH, dissolved oxygen, chemical oxygen demand, concentrations of phosphoric and chloride ions, and biological water qualification), (2) examination of air pollution (measurement of blocking of pine needle stoma with air-dust and measurement of atmospheric NO 2 concentration), (3) examination of environmental radioactivity and radiation (radon measurement by electrostatic collection of radon daughters and measurement of environmental radiation by using pocket dose-rate-meter), and (4) visitation to waste treatment center. (author)

  9. Technological literacy and innovation education

    DEFF Research Database (Denmark)

    Hansbøl, Mikala

    Lately, in Denmark and internationally, there has been an increased focus on welfare technology and innovation. The Danish healthcare system is being fundamentally restructured and re-formed, the health professions are dealing with increased speed on the introductions of new political strategies...... on innovation education and educational activities fostering technological literacy. While focus on technological literacy has often (historically) taken a functionalist direction, and mainly been related to ICT and development of non- vocational curricula, more recent developments of approaches...... to technological literacy emphasizes profession oriented relational technological literacy. Furthermore, new definitions of 21st century competencies and skills emphasize creative learning and innovation skills and competencies as central ingredients in the 21st century labor market, and call for innovation...

  10. Inclusion of the Environmental Practices in Audits Performed at the Federal Institution of Education

    Directory of Open Access Journals (Sweden)

    Lilian Campagnin Luiz

    2014-08-01

    Full Text Available This article investigates whether an environmental audit has been conducted at a Federal Institution of Education. The specific objectives are to: i verify the environmental controls held at the institution, ii investigate the environmental audits within the institution; and, iii prepare a list containing the main environmental factors that could be monitored by the institution. The research has a descriptive purpose; the procedures we used are bibliographic, document review, and case study. The research instrument is documentary research or primary sources to approach the problem in the qualitative way. The study sample is a federal institution of professional and technological education, and temporal analysis includes the years 2011, 2012 and 2013. Based upon the annual plan for internal audit activities, and on the annual report of the internal audit activities, we found that the institution has not conducted any environmental audits in the investigated period. The result was that, in relation to internal control, there is the obligation for the adoption of a Plan of Sustainable Logistics (PSL and its publicity on the institutional web page. We found the absence of the PSL at the institution, making it impossible to assert that the institution conducts internal environmental controls. We observed only a self-assessment in the institutional management report, in which one of its topics included information on sustainable procurement, awareness campaigns, and waste separation. Within the absence of the environmental controls and audits, we prepared a list containing the main factors that can be seen on environmental audits in the public educational institutions.

  11. Technologies for improved soil carbon management and environmental quality

    Energy Technology Data Exchange (ETDEWEB)

    Reicosky, D.C. [USDA-Agricultural Research Service, Morris, MN (United States)

    1997-12-31

    The objective of this paper is to create an environmental awareness of and to provide insight into the future balance of environment and economic issues in developing new technologies that benefit the farmer, the public, and agricultural product sales. Agricultural impacts of tillage-induced CO{sub 2} losses are addressed along with new and existing technologies to minimize tillage-induced flow of CO{sub 2} to the atmosphere, Emphasis is placed on the carbon cycle and the cost of environmental damage to illustrate the need for improved technologies leading to reduced environmental impacts by business ventures. New technologies and concepts related to methods of tillage and stover management for carbon sequestration with the agricultural production systems are presented. 16 refs., 3 figs.

  12. Environmental Science and Technology department. Annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gunderson, V.; Hansen, H.; Gissel Nielsen, G.; Nielsen, O.J.; Oestergaard, H. [eds.

    1992-06-01

    Selected activities in the Environmental Science and Technology Department during 1991 are presented. The research approach in the department is predominantly experimental. The research topics emphasized are introduced and reviewed in chapters one to seven: 1. Introduction, 2. The Atmosphere, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition, 5. Geochemistry, 6. Ecology, 7. Other activities. The Department`s contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department. Information about the department`s education and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations. Further, names of the scientific and technical staff members, Ph.D. students and visiting scientists are listed. (au) (23 ills., 58 refs.).

  13. Environmental Science and Technology department. Annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gunderson, V.; Hansen, H.; Gissel Nielsen, G.; Nielsen, O.J.; Oestergaard, H. (eds.)

    1992-06-01

    Selected activities in the Environmental Science and Technology Department during 1991 are presented. The research approach in the department is predominantly experimental. The research topics emphasized are introduced and reviewed in chapters one to seven: 1. Introduction, 2. The Atmosphere, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition, 5. Geochemistry, 6. Ecology, 7. Other activities. The Department's contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department. Information about the department's education and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations. Further, names of the scientific and technical staff members, Ph.D. students and visiting scientists are listed. (au) (23 ills., 58 refs.).

  14. Environmental Science and Technology department. Annual report 1991

    International Nuclear Information System (INIS)

    Jensen, A.; Gunderson, V.; Hansen, H.; Gissel Nielsen, G.; Nielsen, O.J.; Oestergaard, H.

    1992-06-01

    Selected activities in the Environmental Science and Technology Department during 1991 are presented. The research approach in the department is predominantly experimental. The research topics emphasized are introduced and reviewed in chapters one to seven: 1. Introduction, 2. The Atmosphere, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition, 5. Geochemistry, 6. Ecology, 7. Other activities. The Department's contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department. Information about the department's education and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations. Further, names of the scientific and technical staff members, Ph.D. students and visiting scientists are listed. (au) (23 ills., 58 refs.)

  15. 75 FR 70215 - Environmental Technologies Trade Advisory Committee (ETTAC), Request for Nominations

    Science.gov (United States)

    2010-11-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade...: Notice of solicitation of nominations for membership on the Environmental Technologies Trade Advisory Committee (ETTAC). SUMMARY: The Environmental Technologies Trade Advisory Committee (ETTAC) was established...

  16. Educational Technology--The White Elephant.

    Science.gov (United States)

    Molnar, Andrew R.

    A ten year experiment in educational technology sponsored under Title VII of the National Defense Education Act (NDEA) demonstrated the feasibility of large-scale educational systems which can extend education to all while permitting the individualization of instruction without significant increase in cost (through television, computer systems,…

  17. Environmental engineering education enhancement

    Science.gov (United States)

    Caporali, E.

    2012-04-01

    Since higher education plays a central role in the development of both human beings and modern societies, enhancing social, cultural and economic development, active citizenship, ethical values and expertises for a sustainable growth, environment respectful, the European Commission promotes a wide range of programmes. Among the EC programmes, the TEMPUS - Trans European Mobility Programme for University Studies, with the support of the DG EAC of the European Commission, has contributed to many aspects of general interest for higher education. Curricula harmonization, LifeLong Learning Programme development, ICT use, quality assessment, accreditation, innovation learning methods, growth of networks of institutions trusting each other, are the focused aspects. Such a solid cooperation framework is surely among the main outcomes of the TEMPUS Projects leaded by the University of Firenze UNIFI (Italy), DEREC - Development of Environment and Resources Engineering Curriculum (2005-2008), and its spin-off DEREL - Development of Environment and Resources Engineering Learning (2010-2013), and VICES - Videoconferencing Educational Services (2009-2012). DEREC and DEREL TEMPUS projects, through the co-operation of Universities in Italy, Austria, Germany, Greece, Macedonia, Albania and Serbia, are aimed at the development of first and second level curricula in "Environment and Resources Engineering" at the Ss. Cyril and Methodius University - UKIM Skopje (MK). In the DEREC Project the conditions for offering a joint degree title in the field of Environmental Engineering between UNIFI and UKIM Skopje were fulfilled and a shared educational programme leading to the mutual recognition of degree titles was defined. The DEREL project, as logical continuation of DEREC, is aimed to introduce a new, up-to-date, postgraduate second level curriculum in Environment and Resources Engineering at UKIM Skopje, University of Novi Sad (RS) and Polytechnic University of Tirana (AL). following

  18. I feel disconnected: learning technologies in resident education.

    Science.gov (United States)

    Armstrong, April D; Jarvis-Selinger, Sandra

    2013-01-01

    With the rapid development of technology in medical education, orthopaedic educators are recognizing that the way residents learn and access information is profoundly changing. Residency programs are faced with the challenging problem that current educational methods are not designed to take full advantage of the information explosion and rapid technologic changes. This disconnection is often seen in the potentially separate approaches to education preferred by residents and orthopaedic educators. Becoming connected with residents requires understanding the possible learning technologies available and the learners' abilities, needs, and expectations. It is often assumed that approaches to strategic lifelong learning are developed by residents during their training; however, without the incorporation of technology into the learning environment, residents will not be taught the digital literacy and information management strategies that will be needed in the future. To improve learning, it is important to highlight and discuss current technologic trends in education, the possible technologic disconnection between educators and learners, the types of learning technologies available, and the potential opportunities for getting connected.

  19. Application of radiation technology for industry and environmental protection

    International Nuclear Information System (INIS)

    Sueo Machi

    1996-01-01

    The world population today is 5.7 billion and increasing by 94 million per year. In order to meet the increasing consumption of food and energy due to the tremendous population growth, unproved technologies which are environmentally friendly, are indispensable. In this context. a number of advanced technologies have been brought about by the LISC of radiation and isotopes. This paper highlights radiation technology, applications in industry, environmental conservation, and agriculture

  20. Energy technologies and the environment: environmental information handbook

    International Nuclear Information System (INIS)

    1981-06-01

    This manual draws together information on the environmental consequences of energy technologies that will be in use in the United States during the next 20 years. We hope it will prove useful to planners, policymakers, legislators, researchers, and environmentalists. The information on environmental issues, control technologies, and energy production and conservation processes should also be a convenient starting point for deeper exploration. Published references are given for the statements, data, and conclusions so that the interested reader can obtain more detailed information where necessary. Environmental aspects of energy technologies are presented in a form suitable for government and public use and are intended to assist decisionmakers, researchers, and the public with basic information and references that can be relied upon through changing policies and changing world energy prices

  1. A Study on Environmental Education Films.

    Science.gov (United States)

    Gerba, Diana

    The degree of communication between the film industry and educators and its effect on the future directions of environmental education films are the focus of this report. Separate surveys were mailed to 100 film industry producers and distributors and 150 elementary and secondary educators in Maine, Kansas, Pennsylvania, California, and Alabama.…

  2. Continuing education for Physical Education teachers: Assistive Technology in inclusive education

    Directory of Open Access Journals (Sweden)

    Maria Luiza Salzani Fiorini

    2017-05-01

    Full Text Available This study aimed at describing the development of continuing education for physical education teachers towards the incorporation of Assistive Technology and the creation of favorable conditions to an inclusive school. The methodology employed was reflective and collaborative research. Two teachers who were facing difficulties to include a physically disabled student and one student with global developmental delay took part in the study. The continuing education plan comprised three steps: 1 reflecting on their own practice after watching a video and planning one lesson, together with the researcher, seeking to incorporate Assistive Technology and favor inclusion; 2 videoing the lesson; 3 evaluating and reflecting on what was planned and what was executed and planning a new lesson. Some factors were seen to be essential to the development of continuing education: considering the teacher’s demand, developing collaborative work, promoting reflection on the practices and having Assistive Technology as a support to the human element.

  3. Female Technology Education Teachers' Experiences of Finnish Craft Education

    Science.gov (United States)

    Niiranen, Sonja; Hilmola, Antti

    2016-01-01

    In order to introduce a more equitable gender balance in education and consequently in the labour market, it is highly relevant to continue to expand our knowledge of technology education and to give attention to gender related issues. The ultimate purpose of this study was to contribute to efforts to get more women to study technology and pursue…

  4. Sustaining an Environmental Ethic: Outdoor and Environmental Education Graduates' Negotiation of School Spaces

    Science.gov (United States)

    Preston, Lou

    2011-01-01

    In this article, I draw on interviews with graduates from an Outdoor and Environmental Education course to explore the ways in which their environmental ethics changed since leaving university. I do this in relation to the graduates' personal and professional experiences, particularly in the context of teaching Outdoor Education and Physical…

  5. The Effects of Animation Supported Environmental Education on Achievement, Retention of Ecology and Environmental Attitude

    Directory of Open Access Journals (Sweden)

    Hülya ASLAN EFE

    2015-06-01

    Full Text Available Environmental problems continue to increase environmental education has become more and more important. The goal of environmental education is to train environmentally literate individuals who are aware of and sensitive to environmental problems and try to solve these problems. The present study aims at examining the influence of the Animation-Supported Instruction Method on environmental literacy compared to the traditional method. The research process of the present study started with 2nd grade teacher candidates attending the Department of Elementary School Teaching in the Education Faculty of Dicle University. The research process will continue for 8 weeks in the Fall Term of the 2010-2011 academic year. In this experimental study, the post-test model with experimental and a control group is applied. The control and experimental groups were chosen on random basis among equivalent groups. Students control group were taught through the traditional method, while the animation-supported instruction method was used in the experimental group. The environmental education attitude scale and successful test were used as the data collection tool in the study.

  6. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    International Nuclear Information System (INIS)

    1995-09-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R ampersand D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)

  7. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R&D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

  8. ENVIRONMENTAL PROTECTION AND EDUCATION SYSTEM IN POLAND

    Directory of Open Access Journals (Sweden)

    Małgorzata Falencka-Jabłońska

    2017-10-01

    Full Text Available Pro-environmental education and the effectiveness of its methods are a necessity, decisive for preserving natural resources for successive generations. Educating proper attitudes towards the surrounding nature must be based on sound knowledge gained, supported by observation, experience and experiment. Teaching conducted at all levels environmental science should be based not on boxed knowledge, but on causal thinking skills. Establishing hypotheses and their verification, as well as the variety of methods of understanding the laws of nature, will influence the effective prevention of environmental degradation in the 21st century.

  9. The Utilization of Education Technology in Higher Education

    Science.gov (United States)

    Brooks, Angela

    2017-01-01

    With the rise of technology, many educational organizations are scrambling to find ways to incorporate technology into effective learning strategies. Although there is a significant need to equip curriculum with active learning technology objectives, the challenges that are sometimes overlooked lies within faculty perceived barriers and how they…

  10. Public policy and clean technology promotion. The synergy between environmental economics and evolutionary economics of technological change

    Energy Technology Data Exchange (ETDEWEB)

    Rio Gonzalez, Pablo del [Universidad de Castilla-La Mancha, Toledo (Spain). Facultad de Ciencias Juridicas y Sociales de Toledo

    2004-07-01

    Obstacles to clean technology development, innovation and diffusion are not only related to the lack of internalisation of environmental externalities in production costs, as defended by traditional environmental economics. Empirical studies show that many other obstacles prevent these technologies from penetrating the market. The relevance of these obstacles differs between sectors, firms and technologies. Consequently, a more focused approach is proposed. By taking a look at the specific, real-world barriers to clean technologies, a policy framework as well as some specific measures that target those barriers are suggested. These instruments are useful and complementary in a policy framework that, in addition to specific instruments, takes into account the influence of the style of regulation and the configuration of actors in the environmental technological change process. This paper proposes a coherent framework integrating environmental policy and technology policy instruments. This is deemed necessary in the technological transition to sustainable development. (author)

  11. ENVIRONMENTAL EDUCATION VIA TELEVISION: Eskisehir Camlica District Case

    Directory of Open Access Journals (Sweden)

    Nedim GURSES

    2009-10-01

    Full Text Available We define an environmentally aware individual as: someone who has knowledge about the ecological principles and relations, who cares about environmental problems and events, who knows the meaning and significance of the social, political and economic aspects of environmental problems, and who can organize their close environment to solve these problems. However, we encountered a target society that was only partially aware of the environmental problems and events. The individuals of this society had very little knowledge regarding ecological principles and their social, political and economic aspects and relationships. A study was conducted on women aged 15 and above who live in the Camlica district of central Eskisehir. These women were unemployed and uneducated housewives. As these women were not aware of environmental problems, they were distant to any solutions. This is the basic cause of their inability to organize their neighborhood. As a result of the aforementioned study, it can be inferred that education is an inevitable necessity to carry the targeted society to the position of environmentally aware individuals. Television is considered to be a good educational tool regarding education in environmental matters, especially when targeted towards a group with a high ratio of television watching habits as opposed to reading habits. With these considerations, the properties of an environmental education program must be determined. To summarize, an environmental education television program which appeals to the target society in a sequence from simple to complex, general to specific is capable of captivating the interest of the target society for a duration long enough to achieve its objectives. This program must be presented clearly and understandably by an aurally and visually appealing and effective host for the audience to be able to comprehend the program.

  12. The Short Term Effectiveness of an Outdoor Environmental Education on Environmental Awareness and Sensitivity of In-Service Teachers

    Science.gov (United States)

    Okur-Berberoglu, Emel; Ozdilek, Hasan Göksel; Yalcin-Ozdilek, Sükran

    2015-01-01

    Outdoor education is mostly mentioned in terms of environmental education. The aim of this research is to determine the short term effectiveness of an outdoor environmental education program on biodiversity awareness, environmental awareness and sensitivity to natural environment. The data is collected from an outdoor environmental education…

  13. Environmental Engineering Talent Demand and Undergraduate Education in China

    Science.gov (United States)

    Zhang, Huan-zhen; Li, Jian-bo; Luo, Xiang-nan; Zhao, Bin-yan; Luo, Ren-ming; Wang, Qiao-ling

    2004-01-01

    In Chinese higher environmental education, undergraduate education of environmental engineering starts earliest and develops fastest. The undergraduate has been playing an important role in controlling pollution for more than twenty years. The setting and distribution of the environmental engineering major was analyzed, the conditions of the…

  14. EDUCATIONAL TECHNOLOGIES TO EMPOWER HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    J. C.V. Garzón

    2014-08-01

    Full Text Available Introduction and objectives: The New Media Consortium (NMC Horizon Project defines educational technology in a broad sense as tools and resources that are used to improve teaching, learning, and creative inquiry. Each technology has been carefully researched and framed in the context of its potential impact on higher education. Within the Horizon Project there are currently seven categories of technologies, tools, and strategies for their use that the NMC monitors continuously. All they have the potential to foster real changes in education, particularly in the development of progressive pedagogies and learning strategies; the organization of teachers’ work; and the arrangement and delivery of content. Following the recommendations of NMC experts panel, we design an application named Augmented Reality Metabolic Pathways (ARMET in order to improve motivation and to promote student interactivity to the development of skills needed to learn the metabolic pathways. Materials and methods: The ARMET app was developed using Unity, 3D molecules obtained from Protein Data Bank and ChemSpider-chemical structure database, the usage data are stored into a database (MySQL and are analyzed using the statistical software R. Results and conclusions: ARMET mixes several technologies out of seven categories recommend in the NMC Horizon Report: Mobile app, Bring Your Own Device, Flipped Classroom, Learning Analytics and Augmented Reality. The principal criterion for the inclusion of those technologies into the app was its potential relevance to teaching and learning biochemistry. ARMET is available for iOS and Android platforms, and includes PDF files with a set of cards, the game board and classroom worksheet’s. The students and teachers can register for free. Teachers can create classes and track student performance. ARMET collects data for personalizing learning experiences addressing the challenge to build better pedagogical tools to establish effective

  15. Environmental impacts from the solar energy technologies

    International Nuclear Information System (INIS)

    Tsoutsos, Theocharis; Frantzeskaki, Niki; Gekas, Vassilis

    2005-01-01

    Solar energy systems (photovoltaics, solar thermal, solar power) provide significant environmental benefits in comparison to the conventional energy sources, thus contributing, to the sustainable development of human activities. Sometimes however, their wide scale deployment has to face potential negative environmental implications. These potential problems seem to be a strong barrier for a further dissemination of these systems in some consumers. To cope with these problems this paper presents an overview of an Environmental Impact Assessment. We assess the potential environmental intrusions in order to ameliorate them with new technological innovations and good practices in the future power systems. The analysis provides the potential burdens to the environment, which include - during the construction, the installation and the demolition phases, as well as especially in the case of the central solar technologies - noise and visual intrusion, greenhouse gas emissions, water and soil pollution, energy consumption, labour accidents, impact on archaeological sites or on sensitive ecosystems, negative and positive socio-economic effects

  16. Outdoor Education and the Development of Environmental Responsibility Revisited.

    Science.gov (United States)

    Yerkes, Rita; Biederman, Kobe

    2003-01-01

    Six research studies are reviewed that examine the ability of environmental education programs in schools and resident camps to positively affect the environmental awareness and attitudes of children and adolescents. Outdoor educators must enable students to develop internal locus of control, critical thinking, and environmental action skills.…

  17. Environmental concern of university students in the federal education institute in rural Goiás, Brazil

    Directory of Open Access Journals (Sweden)

    Aurélio Ferreira Borges

    2013-11-01

    Full Text Available In this research the adaptation and validation of the Environmental Concern Scale (ECS for Brazilian Portuguese and the environmental concerns of students were described. After being translated with the assistance of an expert teacher in Spanish language, the ECS was administered to two samples: one of university students (N=153 from Federal Institute of Education Goiano (IF GOIANO, Rio Verde campus, and another of public servants evaluators (N=13 from Federal Institute of Education, Science and Technology of Rondônia (IFRO, Colorado do Oeste campus. Content validity, reliability and construct validity were evaluated. Statistical properties obtained proved the quality of the measurement instrument of Environmental Concern. The agreement style of evaluators with the ECS admitted values for average central tendency, median and mode close to 4.00, in a scale of values from 1.00 to 5.00. The environmental concern of students was low.

  18. The environmental effect of subsidies for clean technologies

    International Nuclear Information System (INIS)

    De Vries, F.P.; Nentjes, A.

    2001-01-01

    Environmental subsidies for clean technology result in a larger diffusion of such technology. However, as a result emissions can increase in imperfect markets for products. When several companies compete each other with clean and dirty technologies, production and emission will rise because of price competition.This effect will be even larger in case subsidies are applied. Therefore, subsidies are not advisable for every market. In this article an evolutionary game theory has been used with respect to the diffusion of environment-friendly innovation of products and the role of environmental policy instruments (in particular subsidies). 7 refs

  19. 77 FR 2719 - National Advisory Council for Environmental Policy and Technology; Meeting

    Science.gov (United States)

    2012-01-19

    ... and Technology; Meeting AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Advisory... a public meeting of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology...

  20. Technology and Educational Structure

    Science.gov (United States)

    Boocock, Sarane S.

    2012-01-01

    Most current debate on instructional technology is characterized either by grandiose speculation on the salvation of education through automation (without specification of "what" and "how" technological innovations will actually be introduced in specific classroom situations, and how the changes will be financed), or by jargon-filled hairsplitting…

  1. Strategies for Evaluating Complex Environmental Education Programs

    Science.gov (United States)

    Williams, V.

    2011-12-01

    Evidence for the effectiveness of environmental education programs has been difficult to establish for many reasons. Chief among them are the lack of clear program objectives and an inability to conceptualize how environmental education programs work. Both can lead to evaluations that make claims that are difficult to substantiate, such as significant changes in student achievement levels or behavioral changes based on acquisition of knowledge. Many of these challenges can be addressed by establishing the program theory and developing a logic model. However, claims of impact on larger societal outcomes are difficult to attribute solely to program activities. Contribution analysis may offer a promising method for addressing this challenge. Rather than attempt to definitively and causally link a program's activities to desired results, contribution analysis seeks to provide plausible evidence that can reduce uncertainty regarding the 'difference' a program is making to observed outcomes. It sets out to verify the theory of change behind a program and, at the same time, takes into consideration other influencing factors. Contribution analysis is useful in situations where the program is not experimental-there is little or no scope for varying how the program is implemented-and the program has been funded on the basis of a theory of change. In this paper, the author reviews the feasibility of using contribution analysis as a way of evaluating the impact of the GLOBE program, an environmental science and education program. Initially conceptualized by Al Gore in 1995, the program's implementation model is based on worldwide environmental monitoring by students and scientists around the globe. This paper will make a significant and timely contribution to the field of evaluation, and specifically environmental education evaluation by examining the usefulness of this analysis for developing evidence to assess the impact of environmental education programs.

  2. Science and Technology Education in the STES Context in Primary Schools: What Should It Take?

    Science.gov (United States)

    Zoller, Uri

    2011-10-01

    Striving for sustainability requires a paradigm shift in conceptualization, thinking, research and education, particularly concerning the science-technology-environment-society (STES) interfaces. Consequently, `STES literacy' requires the development of students' question asking, critical, evaluative system thinking, decision making and problem solving capabilities, in this context, via innovative implementable higher-order cognitive skills (HOCS)-promoting teaching, assessment and learning strategies. The corresponding paradigms shift in science and technology education, such as from algorithmic teaching to HOCS-promoting learning is unavoidable, since it reflects the social pressure, worldwide, towards more accountable socially- and environmentally-responsible sustainable development. Since most of the STES- and, recently STEM (science-technology-engineering-mathematics)-related research in science education has been focused on secondary and tertiary education, it is vital to demonstrate the relevance of this multifaceted research to the science and technology teaching in primary schools. Our longitudinal STES education-related research and curriculum development point to the very little contribution, if any, of the traditional science teaching to "know", to the development of students' HOCS capabilities. On the other hand, there appears to be a `general agreement', that the contemporary dominant lower-order cognitive skills (LOCS) teaching and assessment strategies applied in science and technology education are, in fact, restraining the natural curiosity and creativity of primary school (and younger?) pupils/children. Since creative thinking as well as evaluative system thinking, decision making, problem solving and … transfer constitute an integral part of the HOCS conceptual framework, the appropriateness of "HOCS promoting" teaching, and the relevance of science and technology, to elementary education in the STES context, is apparent. Therefore, our

  3. What Is Technology Education? A Review of the "Official Curriculum"

    Science.gov (United States)

    Brown, Ryan A.; Brown, Joshua W.

    2010-01-01

    Technology education, not to be confused with educational technology, has an "official curriculum." This article explores this "official curriculum" and answers the following questions; what are the goals of technology education, what should technology education look like in classrooms, and why technology education is important. This article…

  4. Environmental education and indigenous approach

    International Nuclear Information System (INIS)

    Babar, S.M.; Hussain, M.; Mahmood, T.

    2005-01-01

    Environmental pollution control is the most important and highly discussed issue at the international level. Our and our's next generation survival highly depends on environment. Environmental security is not less important than territorial security. Living in the Competitive trade, Business and Commerce era. WTO threats of globalization to countries like Pakistan require sharp and immediate actions. SOS(Save our Sole) steps should be taken in Environmental Education in order to reorganizing values and clarifying Concepts to develop the necessary skills and attitude necessary to understand and appreciate the interrelatidness among masses, the Cultures and Ecosystem. Historical backgrounds along with different approaches were discussed particularly reference to Pakistan. In this presentation a new but indigenous idea is flashed to improve the environment education system in poor third world countries including Pakistan. Instead of imported ideas, previous implemented as such, indigenous approach highly Perfumed with Islamic, Ideological and cultural blends will do the right job in right direction if employed with true sense of commitment. (author)

  5. Environmental implications of wireless technologies: news delivery and business meetings.

    Science.gov (United States)

    Toffel, Michael W; Horvath, Arpad

    2004-06-01

    Wireless information technologies are providing new ways to communicate, and are one of several information and communication technologies touted as an opportunity to reduce society's overall environmental impacts. However, rigorous system-wide environmental impact comparisons of these technologies to the traditional applications they may replace have only recently been initiated, and the results have been mixed. In this paper, the environmental effects of two applications of wireless technologies are compared to those of conventional technologies for which they can substitute. First, reading newspaper content on a personal digital assistant (PDA) is compared to the traditional way of reading a newspaper. Second, wireless teleconferencing is compared to business travel. The results show that for both comparisons wireless technologies create lower environmental impacts. Compared to reading a newspaper, receiving the news on a PDA wirelessly results in the release of 32-140 times less CO2, several orders of magnitude less NOx and SOx, and the use of 26-67 times less water. Wireless teleconferencing results in 1-3 orders of magnitude lower CO2, NOx, and SO2 emissions than business travel.

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: DUST SUPPRESSANT PRODUCTS: SYNTECH PRODUCTS CORPORATION'S PETROTAC

    Science.gov (United States)

    Dust suppressant products used to control particulate emissions from unpaved roads are among the technologies evaluated by the Air Pollution Control Technology (APCT) Verification Center, part of the U.S. Environmental Protection Agency's Environmental Technology Verification (ET...

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: DUST SUPPRESSANT PRODUCTS: SYNTECH PRODUCTS CORPORATION'S TECHSUPPRESS

    Science.gov (United States)

    Dust suppressant products used to control particulate emissions from unpaved roads are among the technologies evaluated by the Air Pollution Control Technology (APCT) Verification Center, part of the U.S. Environmental Protection Agency's Environmental Technology Verification (ET...

  8. A Systems Definition of Educational Technology in Society

    Science.gov (United States)

    Luppicini, Rocci

    2005-01-01

    Conceptual development in the field of Educational Technology provides crucial theoretical grounding for ongoing research and practice. This essay draws from theoretical developments both within and external to the field of Educational Technology to articulate a systems definition of Educational Technology in Society. A systems definition of…

  9. A Model of Leadership in Integrating Educational Technology in Higher Education

    Science.gov (United States)

    Markova, Mariya

    2014-01-01

    The potential impacts and implications of technology on the professional lives of instructors in higher education, and the role of leadership in integrating educational technology, present a variety of complexities and challenges. The purpose of this paper is to identify the reasons why faculty members are not fully embracing technology and what…

  10. New Theoretical Approach Integrated Education and Technology

    Science.gov (United States)

    Ding, Gang

    2010-01-01

    The paper focuses on exploring new theoretical approach in education with development of online learning technology, from e-learning to u-learning and virtual reality technology, and points out possibilities such as constructing a new teaching ecological system, ubiquitous educational awareness with ubiquitous technology, and changing the…

  11. Information Technologies (ITs) in Medical Education.

    Science.gov (United States)

    Masic, Izet; Pandza, Haris; Toromanovic, Selim; Masic, Fedja; Sivic, Suad; Zunic, Lejla; Masic, Zlatan

    2011-09-01

    Advances in medicine in recent decades are in significant correlation with the advances in the information technology. Modern information technologies (IT) have enabled faster, more reliable and comprehensive data collection. These technologies have started to create a large number of irrelevant information, which represents a limiting factor and a real growing gap, between the medical knowledge on one hand, and the ability of doctors to follow its growth on the other. Furthermore, in our environment, the term technology is generally reserved for its technical component. Education means, learning, teaching, or the process of acquiring skills or behavior modification through various exercises. Traditionally, medical education meant the oral, practical and more passive transferring of knowledge and skills from the educators to students and health professionals. For the clinical disciplines, of special importance are the principles, such as, "learning at bedside," aided by the medical literature. In doing so, these techniques enable students to contact with their teachers, and to refer to the appropriate literature. The disadvantage of these educational methods is in the fact, that teachers often do not have enough time. Additionally they are not very convenient to the horizontal and vertical integration of teaching, create weak or almost no self education, as well as, low skill levels and poor integration of education with a real social environment. In this paper authors describe application of modern IT in medical education - their advantages and disadvantages comparing with traditional ways of education.

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - TETRATEC PTFE TECHNOLOGIES TETRATEX 8005

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  13. Environmental literacy based on educational background

    Science.gov (United States)

    Agfar, A.; Munandar, A.; Surakusumah, W.

    2018-05-01

    This research aims to examine attitude, knowledge and cognitive skill. To collect data we used survey method, was conducted in Pahawang, Lampung. Respondents of this research are coastal society of Pahawang, 114 participants determined using purposive sampling, from two areas in the village, Pahawang and Penggetahan. Data were analyzed using both quantitative and descriptive. Environmental literacy of the society which is primary school graduate is moderate category (85.61), consist of 38.90% in low category and 61.10% in moderate category. Environmental literacy of junior high school graduate is moderate (99.36), consist of 12% in low category, 76% in moderate category and 12% in high category. Environmental literacy of senior high school graduate is moderate (108.85), consist of 84.90% moderate category and 15.10% in high category. But, undergraduate society is high category (118.53). Details 0% low category 52.94% moderate category and 47.06% in high category. This finding research has revelaed that the educational background affects the level of environmental literacy. This finding research has revealed that the educational background affects the level of environmental literacy.

  14. Educational Technology Funding Models

    Science.gov (United States)

    Mark, Amy E.

    2008-01-01

    Library and cross-disciplinary literature all stress the increasing importance of instructional technology in higher education. However, there is a dearth of articles detailing funding for library instructional technology. The bulk of library literature on funding for these projects focuses on one-time grant opportunities and on the architecture…

  15. Outdoor Education and Environmental Responsibility. ERIC Digest.

    Science.gov (United States)

    Yerkes, Rita; Haras, Kathy

    Outdoor education programs provide opportunities for students to become environmentally conscious citizens. However, awareness of environmental issues is not enough to preserve our world of limited natural resources. Students must also recognize their environmental responsibilities and change their behaviors accordingly. This digest reviews the…

  16. environments, peoiple and environmental education: a story of ...

    African Journals Online (AJOL)

    People's Education and Environmental Education as sensitising forums. ... You might think that I could have avoided this ex- planatory ... and 60's environmental change was already taking its toll. .... arguing from a biophysical, human survival perspec- tive that .... robot-in-rran then becomes servant rather than master, and ...

  17. Implementing Educational Technology in Higher Education: A Strategic Approach

    Directory of Open Access Journals (Sweden)

    Cynthia C. Roberts

    2008-01-01

    Full Text Available Although the move toward implementing technology in higher education is driven by an increasing number of competitors as well as student demand, there is still considerable resistance to embracing it. Adoption of technology requires more that merely installing a product. This paper outlines a framework for a strategic change process that can be utilized by educators for the purpose of the selection as well as successful implementation of educational technologies within their setting, in particular, online course management systems. The four steps of this process include strategic analysis, strategy making, strategic plan design, and strategic plan implementation. The choice to embrace a new system and the extent and speed of its implementation depends upon internal factors such as resources, organizational culture, faculty readiness, anticipated degree of resistance, and the degree of variance from the status quo. A case from the author’s experience provides one example of how the use of distance learning technology was strategically implemented.

  18. Distance Technology in Nursing Education. AACN White Paper.

    Science.gov (United States)

    American Association of Colleges of Nursing, Washington, DC.

    Careful use of technology in education may enhance the ability of the nursing education profession to educate nurses for practice, prepare future nurse educators, and advance nursing science. To take full advantage of technology, several factors must be addressed. Superior distance education programs require substantial institutional financial…

  19. UNIVERSITY TEACHERS’ READINESS TO APPLY THE MODERN EDUCATIONAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Irina O. Kotlyarova

    2015-01-01

    Full Text Available The aim of the research is to investigate the readiness of the university teachers to apply the modern educational technologies. Methods. The methods include theoretical: analysis of existing modern educational technologies, the concept «readiness» and its components, abstraction of signs and kinds of modern educational technologies based on the scientific literature and in the Federal State Educational Standards (FSES; empirical: questionnaires and testing methods for detecting levels of university teachers’ skills and readiness to use modern educational technology. Results. The main features of modern educational technologies are identified and justified that are to comply with modern methodology of the theory and practice of education study and the latest FSES requirements; the level of science, manufacturing, and modern rules of human relations. The components of readiness of university teachers to use modern educational technology are structured. The linguistic component is included along with the cognitive, psychological, operational, connotative components; its necessity is proved. The average level of readiness for the use of modern educational technology by university teachers is identified. Scientific novelty. The author specifies the features of the modern educational technology. The most significant components of higher-education teaching personnel readiness to use technological innovations are identified. As a whole, these results form the indicative framework for the development and measurement of readiness of the university teachers to use the modern educational technology. The development of the readiness of the university teachers to apply the modern educational technologies is proved to be an issue of current interest. Practical significance. The research findings can be used as the basis of techniques and methods designing for its further development and measurement of the training, retraining and advanced training of

  20. Technology Education Professional Enhancement Project

    Science.gov (United States)

    Hughes, Thomas A., Jr.

    1996-01-01

    The two goals of this project are: the use of integrative field of aerospace technology to enhance the content and instruction delivered by math, science, and technology teachers through the development of a new publication entitled NASA Technology Today, and to develop a rationale and structure for the study of technology, which establishes the foundation for developing technology education standards and programs of the future.

  1. Technology of environmental pollution control, 2nd edition

    International Nuclear Information System (INIS)

    Shaheen, E.I.

    1991-01-01

    The final decade of the 20th century is truly the environmental decade of the century because of the gravity of environmental challenges we are facing. This book covers the environmental spectrum in an attempt to update the reader on new technologies and topics regarding pollution control. Engineers, scientists, plant operators, and students studying the subject of pollution control will use the comprehensive text as a reference for technological advances, regulations, and pollution control. The major disasters witnessed in the last few years, such as the Bhopal gas tragedy, the Chernobyl nuclear disaster, the Exxon Valdez oil spill and the Ashland of tank collapse are described in detail

  2. Environmental education

    International Nuclear Information System (INIS)

    Abdulhaye, F.

    2005-01-01

    The environment is an intricate mixture of natural, built and social components. The natural environment includes air, water, land, climate, flora and fauna, while the built environment consists of the fabric of building infrastructure and open space. The social component of the environment embraces the aesthetics, amenity quality, architectural style, heritages, law behavior, values and traditions of the society. In ecological terms the environment is a distortion of natural ecosystems or an ecosystem in its own right. A characteristic of the urban area is their fast changing nature with respect to their size, form, density and activity. This dynamism stems out of the basic functions of economic, social and cultural developments. The complexity and multiplicity of urban activities gives rise to a variety of environmental problems. Given their different level of economic and social development and the geography, not all the cities have identical problems, yet they have much in common. While the large cities of developed countries have long suffered the problem of pollution, inner city decay and neighborhood collapse, those in the less developed countries face more varied complex problems due to their overpopulation, poverty, inadequacy and poor quality of urban services, infrastructure, transportation, and changing life style. However the increasing pollution is common to the most of the cities and is the major cause of environmental degradation. Given the very serious nature of this problem it is essential to tackle this issue by incorporating the environmental concerns in the education system of Pakistan. This paper would give a brief overview of the environmental problems, and a detailed analysis of the status environmental issues in Pakistan. (author)

  3. Review of information technologies and their importance in the educational directory of education

    Directory of Open Access Journals (Sweden)

    Андрей Викторович Иванов

    2018-12-01

    Full Text Available The article focuses on the fact that the need for education is continuous and ongoing process therefore anytime anywhere access to it is becoming a necessity. The need for information is constantly increasing phenomenon. Education should meet the needs of different groups of learners, and therefore, modern information technologies are important to meet this need. Discusses the requirements of society, which consist in the fact that all the members of this society have the necessary level of technological literacy. Thus, increasing access and reducing the cost of education with the aim of achieving the planned quality of education possible to implement cloud-based IT technologies. Sets out the specifics of cloud computing, which imposes special requirements for training in their use, including the management of educational process. Draws conclusions about what information and communication technologies, understanding the capabilities of cloud technologies and their impact on the management efficiency of the education system, are the main prerequisites for the development of professional competence of the head of the educational organization in the field of information technology.

  4. "We Don't Know Enough": Environmental Education and Pro-Environmental Behaviour Perceptions

    Science.gov (United States)

    Ajaps, Sandra; McLellan, Ros

    2015-01-01

    This study sought to understand environmental knowledge and attitudes among young people to explain the relationship between environmental education (EE) and reported pro-environmental behaviours (PEB). A mixed-methods design was employed: 88 university students in the UK and Nigeria were surveyed and 6 were subsequently interviewed. The findings…

  5. Educational Cognitive Technologies as Human Adaptation Strategies

    Directory of Open Access Journals (Sweden)

    Marja Nesterova

    2017-07-01

    Full Text Available Modernity is characterized by profound changes in all spheres of human life caused by the global transformations on macro and micro levels of social reality. These changes allow us to speak about the present as the era of civilizational transition in the mode of uncertainty. Therefore, this situation demands qualitative transformations of human adaptive strategies and educational technologies accordingly. The dominant role in the dynamics of pedagogics and andragogy’s landscape belongs to transformative learning. The transformative learning theory is considered as the relevant approach to education of the individual, which is able to become an autonomous communicative actor of the social complexity. The article considers the cognitive technologies of social cohesion development and perspectives of their implementation in the educational dimension. In addition to implementing the principles of inclusion, equity in education, an important factor for improving social cohesion, stability and unity of society is the development of cognitive educational technologies. The key factors and foundations for the cognitive educational technologies are transversal competencies. They create the conditions for civil, public dialogue, non-violent type of communication. These “21st century skills” are extremely important for better human adaptation. One of the aspects and roots of social adaptation is social cohesion. Mutual determinations and connections between social cohesion development and transversal competences have been shown. The perspective direction of further researches is to find a methodological base for the further development of cognitive education technologies and platform for realization of innovative services for educational programs. New educational paradigm offers the concept of human adaptation as cognitive effectiveness and how to reach it through educational technologies. The article includes topics of creative thinking, teambuilding

  6. Environmental assessment of solid waste systems and technologies: EASEWASTE

    DEFF Research Database (Denmark)

    Kirkeby, Janus Torsten; Birgisdottir, Harpa; Hansen, Trine Lund

    2006-01-01

    A new model has been developed for evaluating the overall resource consumption and environmental impacts of municipal solid waste management systems by the use of life cycle assessment. The model is named EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies) and is able...... may not always be the most environmentally friendly. The EASEWASTE model can identify the most environmentally sustainable solution, which may differ among waste materials and regions and can add valuable information about environmental achievements from each process in a solid waste management system....... to compare different waste management strategies, waste treatment methods and waste process technologies. The potential environmental impacts can be traced back to the most important processes and waste fractions that contribute to the relevant impacts. A model like EASEWASTE can be used by waste planners...

  7. An Educational Tool for Outdoor Education and Environmental Concern

    Science.gov (United States)

    Sandell, Klas; Ohman, Johan

    2013-01-01

    The purpose of this paper is to suggest an outdoor education model that respects the need to critically discuss the general belief in a causal relationship between experiences of nature, environmentally-friendly attitudes and behavioural change, but that at the same time respects the legitimate claims on the part of outdoor education practice for…

  8. The Role of Environmental Education in Increasing the Awareness of Primary School Students and Reducing Environmental Risks

    Directory of Open Access Journals (Sweden)

    Mohsen Hesami Arani

    2016-06-01

    Conclusion: Schools environmental management plays an important role in preparing students for environmental education that the results of this study showed a significant relationship between education and promotion of students' environmental awareness.

  9. Challenges and Opportunities for Evaluating Environmental Education Programs

    Science.gov (United States)

    Carleton-Hug, Annelise; Hug, J. William

    2010-01-01

    Environmental education organizations can do more to either institute evaluation or improve the quality of their evaluation. In an effort to help evaluators bridge the gap between the potential for high quality evaluation systems to improve environmental education, and the low level of evaluation in actual practice, we reviewed recent…

  10. Historiography in Graduate Technology Teacher Education

    Science.gov (United States)

    Flowers, Jim; Hunt, Brian

    2012-01-01

    A proposal is made suggesting the inclusion of historiography (i.e., historical research and the writing of history) into graduate technology teacher education. In particular, a strategy is forwarded to have graduate students in technology teacher education, who are working at schools in different locations, conduct historical research and write…

  11. Information Technology in project-organized electronic and computer technology engineering education

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Nielsen, Jens Frederik Dalsgaard

    1999-01-01

    This paper describes the integration of IT in the education of electronic and computer technology engineers at Institute of Electronic Systems, Aalborg Uni-versity, Denmark. At the Institute Information Technology is an important tool in the aspects of the education as well as for communication...

  12. Educational Technology: Effective Leadership and Current Initiatives

    Science.gov (United States)

    Courville, Keith

    2011-01-01

    (Purpose) This article describes the basis for effective educational technology leadership and a few of the current initiatives and impacts that are a result of the aforementioned effective leadership. (Findings) Topics addressed in this paper include: (1) the role of the educational technology leader in an educational setting; (2) an examination…

  13. Technology Education Teacher Supply and Demand--A Critical Situation

    Science.gov (United States)

    Moye, Johnny J.

    2009-01-01

    Technology education is an excellent format to integrate science, technology, engineering, and mathematics (STEM) studies by employing problem-based learning activities. However, the benefits of technology education are still generally "misunderstood by the public." The effects of technology education on increased student mathematics…

  14. Environmental Ethics: Questions for Adult Education.

    Science.gov (United States)

    Parker, Jenneth

    1993-01-01

    Presents a series of questions through which adult educators can explore controversial questions of environmental values and moral behavior in their programs. The subjects include geography, local history, natural history, economics, politics, business, labor education, world affairs, literature, women's studies, psychology, and courses for the…

  15. Environmental Education: From Policy to Practice.

    Science.gov (United States)

    Barraza, Laura; Duque-Aristizabal, Ana M.; Rebolledo, Geisha

    2003-01-01

    Details a seminar held at King's College in London in March, 2001. Presents a reading and reflection upon two major aspects of the discussion, the meanings of environmental education and education for sustainable development in different cultures and contexts. (Contains 20 references.) (Author/NB)

  16. Early Learning and Educational Technology Policy Brief

    Science.gov (United States)

    Lee, Joan

    2016-01-01

    Recognizing the growth of technology use in early learning settings, the U.S. Department of Education and U.S. Department of Health and Human Services collaborated in the development of the "Early Learning and Educational Technology Policy Brief" to promote developmentally appropriate use of technology in homes and early learning…

  17. Are clean technology and environmental quality conflicting policy goals?

    OpenAIRE

    Brechet, Thierry; Meunier, Guy; Institut National de la Recherche Agronomique UR 1303 Alimentation et Sciences Sociales

    2012-01-01

    In this paper we analyze the effects of an environmental policy on the diffusion of a clean technology in an economy where firms compete on the output market. We show that the share of adopting firms is non-monotonic with the stringency of the environmental policy, and that the adoption of the clean technology may well increase the pollution level. We also compare the effects of an emission tax and tradable pollution permits on welfare, technology adoption, and pollution level. We show that, ...

  18. Are Clean Technology and Environmental Quality Conflicting Policy Goals?

    OpenAIRE

    Thierry Brechet; Guy Meunier

    2012-01-01

    In this paper we analyze the effects of an environmental policy on the diffusion of a clean technology in an economy where firms compete on the output market. We show that the share of adopting firms is non-monotonic with the stringency of the environmental policy, and that the adoption of the clean technology may well increase the pollution level. We also compare the effects of an emission tax and tradable pollution permits on welfare, technology adoption, and pollution level. We show that, ...

  19. Environmental Education and Sustainability

    Science.gov (United States)

    Chapman, Paul

    2014-01-01

    In the fall of 2013, Inverness Associates conducted a comprehensive national survey of environmental education and sustainability among private independent schools. The National Association of Independent Schools (NAIS) and 14 regional and state associations supported the research. The survey sought to understand how schools' environmental…

  20. Technology Evaluation for Environmental Risk Mitigation Compendium

    Science.gov (United States)

    Meinhold, A.; Greene, B.; Dussich, J.; Sorkin, A.; Olsen, W.

    2017-01-01

    The Technology Evaluation for Environmental Risk Mitigation (TEERM) Principal Center and its predecessor organization the Acquisition Pollution Prevention Program (AP2) supported the National Aeronautics and Space Administration (NASA) in identifying technology solutions to risks and costs to NASA programs driven by environmental regulations and requirements. TEERM researched the commercial and government marketplace to locate viable and available technologies that met NASAs needs. TEERM focused on addressing environmentally-driven risks of direct concern to NASA programs and facilities, including hazardous materials in NASA operations and materials that became obsolescent because of environmental regulations. TEERM projects aimed to reduce cost; ensure the health and safety of people, assets, and the environment; promote efficiency; and minimize duplication. Major TEERM and AP2 projects focused on waste minimization and hazardous waste treatment, recycling, corrosion prevention and control, solvent and ozone depleting substances substitution, and aqueous based cleaners. In 2017, NASA made the decision to terminate the TEERM Principal Center. This Compendium Report documents TEERM and AP2 project successes. The Compendium Report traces the evolution of TEERM based on evolving risks and requirements for NASA and its relationship to the Space Shuttle Program, the United States Department of Defense, the European Space Agency, and other public and private stakeholders. This Compendium Report also documents project details from Project Summaries and Joint Test Plans and describes project stakeholders and collaborative effort results.

  1. Radiologic technology educators and andragogy.

    Science.gov (United States)

    Galbraith, M W; Simon-Galbraith, J A

    1984-01-01

    Radiologic technology educators are in constant contact with adult learners. However, the theoretical framework that radiologic educators use to guide their instruction may not be appropriate for adults. This article examines the assumptions of the standard instructional theory and the most modern approach to adult education-- andragogy . It also shows how these assumptions affect the adult learner in a radiologic education setting.

  2. Environmental Education Policy Processes in the Southern African ...

    African Journals Online (AJOL)

    implementation of environmental education policy. Further questions .... for Environmental Management (in Ketlhoilwe, 2003) calls for an informed and environmentally ..... As priority issues such as HIV/AIDS, poverty, water resources and solid.

  3. Planning and Organizing an Adult Environmental Education Program.

    Science.gov (United States)

    Soil Conservation Society of America, Ankeny, IA.

    This publication is based on a symposium organized by the Environmental Conservation Education Division of the Soil Conservation Society of America. The major purpose of the symposium was to bring together practical and theoretical information that would be helpful to a local group that wants to initiate an adult environmental education course in…

  4. Online Experiential Education for Technological Entrepreneurs

    Science.gov (United States)

    Ermolovich, Thomas R.

    2011-01-01

    Technological Entrepreneurship is both an art and a science. As such, the education of a technological entrepreneur requires both an academic and an experiential component. One form of experiential education is creating real new ventures with student teams. When these ventures are created in an online modality, students work in virtual teams and…

  5. Environmental education and socioresponsive engineering. Report of an educational initiative in Hyderabad, India.

    Science.gov (United States)

    Ansari, Ali Uddin; Jafari, Ashfaque; Mirzana, Ishrat Meera; Imtiaz, Zulfia; Lukacs, Heather

    2003-07-01

    A recent initiative at Muffakham Jah College of Engineering and Technology, Hyderabad, India, has resulted in setting up a program called Centre for Environment Studies and Socioresponsive Engineering which seeks to involve undergraduate students in studying and solving environmental problems in and around the city of Hyderabad, India. Two pilot projects have been undertaken--one focusing on design and construction of an eco-friendly house, The Natural House, and another directed at improving environmental and general living conditions in a slum area. The paper describes our attempts and experience of motivating our students to take interest in such projects. In an interesting development we invited a member of a student-faculty team at Massachusetts Institute of Technology (M.I.T.) that is doing a project in Nepal on safe drinking water. We report in our paper how the presentation by the guest from M.I.T. served as a catalyst for generating interest among civil and mechanical engineering students in our own projects. The paper includes contributions from one of our students and the M.I.T. staff member, reporting on their experiences related to the slum development project. We also discuss the Natural House project and its international and educational significance as a means of inculcating sensitivity and interest in nature among engineering students. We propose a pledge for engineers similar to the Hippocratic Oath for medical professionals.

  6. Training and Education of Environmental Managers

    DEFF Research Database (Denmark)

    Ulhøi, John Parm; Sinding, Knud; Madsen, Henning

    An analysis of the training backgrounds of environmental managers in a range of environmentally advanced European companies reveals the very broad qualifications ideally required of these managers. At the same time, however, it is found that the provision of training opportunities relevant...... for this important category of managers is both limited in scope and foundation, and highly dependent on the randomly distributed efforts of educators with an environmental interest....

  7. Overview: Applicability of U.S. environmental control technologies for Korea

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S.W. [DOE Pittsburgh Energy Technology Center, PA (United States)

    1994-12-31

    A review of the applicability of US environmental control technologies for Korea is presented in outline form. The following topics are discussed: PETC coal research activities, environmental costs, environmental challenges, Clean Air Act requirements, additional regulations for air toxics, clean coal technologies (CCT) approach, CCT help meet environmental challenges, utility options, research goals for advanced power systems, PETC Programs, the NO{sub x} SO process, flue gas cleanup program, air toxics emissions, and retrofit NO{sub x} control for coal-burning boilers.

  8. Environmental aspects of battery and fuel cell technologies

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The PA Consulting Group was commissioned by the Longer Term Studies Unit, Research and Technology Policy Division and Information and Manufacturing Technologies Division, Dept. of Trade and Industry to investigate possible environmental initiatives which might be driven by the European Commission and which could promote interest in alternative energy sources, particularly batteries and fuel cells. Findings confirmed that there is a role for fuel cells in power generation, the most commercially advanced technology being the phosphoric acid fuel cell (PAFC). Development of other systems such as Proton Exchange Membrane technology (PEMFC) and solid oxide fuel cells (SOFC) should also continue. Emissions from fuel cells are lower than those of gas turbines, their main competitors for power generation applications below 100 MW. The study concluded that there is a role for both batteries or fuel cells in powering electric vehicles. Battery powered retrofitted vehicles have an environmental impact comparable to that of internal combustion engine powered vehicles and they could become commercially viable in the context of a carbon tax scenario. Purpose built electric vehicles would be even more attractive. From an environmental viewpoint, fuels cells based on proton membrane membrane technology seemed the best option for powering vehicles if the technical targets could be met.

  9. Habituation Model of Implementing Environmental Education in Elementary School

    DEFF Research Database (Denmark)

    Zaenuri, Z.; Sudarmin, S.; Utomo, Y.

    2017-01-01

    is designed using a qualitative approach. This study is focused on the implementation of environmental education in primary schools. Data collection uses observation sheet instrument (observation), focused interview, and Focus Group Discussion (FGD). The research data were analyzed descriptively. The results......The purpose of this study is to analyze the implementation of environmental education in Elementary School. The study was conducted at SDN 1 Kota Banda Aceh. The research subjects are school residents (students, teachers, education personnel, principals, and school committees). This research...... show that the implementation of environmental education can be realized in habituation to maintain personal hygiene, class cleanliness, and worship together according to his beliefs and sports....

  10. International Environmental Institute

    International Nuclear Information System (INIS)

    DiSibio, R.R.

    1992-01-01

    The International Environmental Institute is being established at the Hanford Site to provide training and education in environmental restoration and waste management technologies and to serve as an interface for exchange of information among government laboratories, regional and federal governments, universities, and US industries. Recognized as the flagship of the nation's environmental management effort, the Hanford Site provides a unique living environmental laboratory that represents the most extensive, complex, and diverse cleanup challenges anywhere. An Environmental Institute director has been selected, the organizational structure has been established, and initial phases of operation have begun. The combined resources of the Hanford Site and the Environmental Institute offer unprecedented technological capabilities for dealing with the nation's environmental issues

  11. Using modern information technologies in continuing education

    Directory of Open Access Journals (Sweden)

    Магомедхан Магомедович Ниматулаев

    2012-06-01

    Full Text Available Article opens problems of formation of system of continuous education and improvement of professional skill for effective realization of professional work of the teacher in the conditions of use of modern information technology. Possibilities and necessities of use of information-communication technologies, Web-technologies for an intensification and giving of additional dynamics to educational process are considered. In this connection new forms and methods of the organization of educational activity for development and perfection of this activity are defined.

  12. Environmental aspects of battery and fuel cell technologies

    International Nuclear Information System (INIS)

    1992-10-01

    This report was commissioned by the UK Department of Trade and Industry in order to understand the policy, infrastructural and standards implications of increased use of batteries and fuel cells. In order to meet these requirements, the following areas have been examined: environmental initiatives related to power generation and transport in a pan-European context; the status of alternative technologies, specifically batteries and fuel cells; the market potential of battery and fuel cell based technologies in transport and power generation; environmental life cycle and cost benefit analyses of these technologies; the implications of the use of alternative technologies on the UK infrastructure. Each of these areas is covered briefly in the main body of the report and discussed in greater detail in six appendices. Overall there are 51 figures, 38 tables and 20 references. (UK)

  13. Environmental Art as an Innovative Medium for Environmental Education in Biosphere Reserves

    Science.gov (United States)

    Marks, M.; Chandler, L.; Baldwin, C.

    2017-01-01

    A key goal of Biosphere Reserves (BR) is to foster environmental education for sustainable development. In this study we systematically analyse two cases in which environmental art is used as a mechanism to engage communities in "building environmental understanding", in Noosa BR in Australia and North Devon BR in the United Kingdom.…

  14. Preparation of environmental analyses for synfuel and unconventional gas technologies

    Energy Technology Data Exchange (ETDEWEB)

    Reed, R.M. (ed.)

    1982-09-01

    Government agencies that offer financial incentives to stimulate the commercialization of synfuel and unconventional gas technologies usually require an analysis of environmental impacts resulting from proposed projects. This report reviews potentially significant environmental issues associated with a selection of these technologies and presents guidance for developing information and preparing analyses to address these issues. The technologies considered are western oil shale, tar sand, coal liquefaction and gasification, peat, unconventional gas (western tight gas sands, eastern Devonian gas shales, methane from coal seams, and methane from geopressured aquifers), and fuel ethanol. Potentially significant issues are discussed under the general categories of land use, air quality, water use, water quality, biota, solid waste disposal, socioeconomics, and health and safety. The guidance provided in this report can be applied to preparation and/or review of proposals, environmental reports, environmental assessments, environmental impact statements, and other types of environmental analyses. The amount of detail required for any issue discussed must, by necessity, be determined on a case-by-case basis.

  15. Virtually Nursing: Emerging Technologies in Nursing Education.

    Science.gov (United States)

    Foronda, Cynthia L; Alfes, Celeste M; Dev, Parvati; Kleinheksel, A J; Nelson, Douglas A; OʼDonnell, John M; Samosky, Joseph T

    Augmented reality and virtual simulation technologies in nursing education are burgeoning. Preliminary evidence suggests that these innovative pedagogical approaches are effective. The aim of this article is to present 6 newly emerged products and systems that may improve nursing education. Technologies may present opportunities to improve teaching efforts, better engage students, and transform nursing education.

  16. A National Investigation of Teachers' Environmental Literacy as a Reference for Promoting Environmental Education in Taiwan

    Science.gov (United States)

    Liu, Shiang-Yao; Yeh, Shin-Cheng; Liang, Shi-Wu; Fang, Wei-Ta; Tsai, Huei-Min

    2015-01-01

    Taiwan's government enacted the Environmental Education Act in June 2011. In the beginning of the implementation of the Act, a national assessment of schoolteachers' environmental literacy was performed in order to establish the baseline for evaluating the effectiveness of environmental education policy. This large-scale assessment involved a…

  17. Increased growth in environmental technology; Oekad tillvaext inom miljoeteknik

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    The Swedish Energy Agency has received a government commission, after consultation with the Swedish Agency for Economic and Regional Growth, Swedish Governmental Agency for Innovation Systems (VINNOVA) and other relevant actors. The commission is to develop proposals on how the actions for strengthening collaboration and increased communication between agencies, innovators, entrepreneurs and business angels and venture capitalists among others can be designed in environmental technology with a focus on early commercial stages. The largest part of the environmental technology sector consists of energy related technology

  18. Education, Technology and Health Literacy

    DEFF Research Database (Denmark)

    Lindgren, Kurt; Sølling, Ina Koldkjær; Carøe, Per

    The purpose of this study is to develop an interdisciplinary learning environment between education in technology, business, and nursing. This collaboration contributes to the creation of a natural interest and motivation for welfare technology. The aim of establishing an interaction between the 3...... as a theoretical and practical learning center. The mission of the Student Academy is to support and facilitate education in order to maintain and upgrade knowledge and skills in information technology and information management in relation to e-health and Health Literacy. The Student Academy inspires students...... areas of expertise is to create an understanding for each other's skills and cultural differences. Futhermore enabling future talents to gain knowledge and skills to improve Health Literacy among senior citizens. Based on a holistic view on welfare technology a Student Academy was created...

  19. Education, Technology and Health Literacy

    DEFF Research Database (Denmark)

    Lindgren, Kurt; Sølling, Ina Koldkjær; Carøe, Per

    2016-01-01

    Abstract The purpose of this study is to develop an interdisciplinary learning environment between education in technology, business, and nursing. This collaboration contributes to the creation of a natural interest and motivation for welfare technology. The aim of establishing an interaction...... as a theoretical and practical learning center. The mission of the Student Academy is to support and facilitate education in order to maintain and upgrade knowledge and skills in information technology and information management in relation to e-health and Health Literacy. The Student Academy inspires students...... between the 3 areas of expertise is to create an understanding for each other's skills and cultural differences. Futhermore enabling future talents to gain knowledge and skills to improve Health Literacy among senior citizens. Based on a holistic view on welfare technology a Student Academy was created...

  20. Developing innovative environmental technologies for DOE needs

    International Nuclear Information System (INIS)

    Devgun, J.S.; Sewell, I.O.; DeGregory, J.

    1995-01-01

    Environmental restoration and waste management activities at US Department of Energy (DOE) facilities are diverse and complex. Contamination at DOE sites and facilities includes radionuclides, chlorinated hydrocarbons, volatile organic compounds, non-aqueous phase liquids, and heavy metals, among others. Soil and groundwater contamination are major areas of concern and DOE has focused very significant efforts in these areas. Relevant technology development activities are being conducted at DOE's own national laboratories, as well as through collaborative efforts with other federal agencies and the private sector. These activities span research and development (R ampersand D) of new concepts and techniques to demonstration and commercialization of mature technologies. Since 1990, DOE has also supported R ampersand D of innovative technologies through interagency agreements with US Environmental Protection Agency (EPA), US Department of Defense, the National Science Foundation, and others

  1. Education for Sustainable Development (ESD): The Turn away from "Environment" in Environmental Education?

    Science.gov (United States)

    Kopnina, Helen

    2012-01-01

    This article explores the implications of the shift of environmental education (EE) towards education for sustainable development (ESD) in the context of environmental ethics. While plural perspectives on ESD are encouraged both by practitioners and researchers of EE, there is also a danger that such pluralism may sustain dominant political…

  2. Predictive Power of Prospective Physical Education Teachers' Attitudes towards Educational Technologies for Their Technological Pedagogical Content Knowledge

    Science.gov (United States)

    Varol, Yaprak Kalemoglu

    2015-01-01

    The aim of the research is to determine the predictive power of prospective physical education teachers' attitudes towards educational technologies for their technological pedagogical content knowledge. In this study, a relational research model was used on a study group that consisted of 529 (M[subscript age]=21.49, SD=1.44) prospective physical…

  3. Environmental Management Guide for Educational Facilities

    Science.gov (United States)

    APPA: Association of Higher Education Facilities Officers, 2017

    2017-01-01

    Since 1996, APPA and CSHEMA, the Campus Safety Health and Environmental Management Association, have collaborated to produce guidance documents to help educational facilities get ahead of the moving target that is environmental compliance. This new 2017 edition will help you identify which regulations pertain to your institution, and assist in…

  4. Environmental Engineering in Mining Engineering Education

    Science.gov (United States)

    Mahamud-Lopez, Manuel Maria; Menendez-Aguado, Juan Maria

    2005-01-01

    In this paper, the current profile of the environmental engineer and the programming of the subject "Environmental Engineering and Technology" corresponding to the studies of Mining Engineering at the University of Oviedo in Spain, is discussed. Professional profile, student knowledge prior to and following instruction as well as…

  5. Educational Technology and the Enclosure of Academic Labour inside Public Higher Education

    Science.gov (United States)

    Hall, Richard

    2013-01-01

    Across higher education in the United Kingdom, the procurement and deployment of educational technology increasingly impacts the practices of academic labour, in terms of administration, teaching and research. Moreover the relationships between academic labour and educational technology are increasingly framed inside the practices of neoliberal,…

  6. “We don’t know enough”: Environmental education and pro-environmental behaviour perceptions

    Directory of Open Access Journals (Sweden)

    Sandra Ajaps

    2015-12-01

    Full Text Available This study sought to understand environmental knowledge and attitudes among young people to explain the relationship between environmental education (EE and reported pro-environmental behaviours (PEB. A mixed-methods design was employed: 88 university students in the UK and Nigeria were surveyed and 6 were subsequently interviewed. The findings indicate that the participants believe humans are abusing the earth and are very concerned about the consequences but do not know enough about environmental problems, especially global warming. Also, those who had more environmental knowledge reported more PEB. Generally, participants want more EE content to be taught in schools and in more engaging ways such as field trips. These findings offer important insights for both theory and practice related to the use of education to develop PEB for a healthier environment.

  7. Mobile technologies in medical education: AMEE Guide No. 105.

    Science.gov (United States)

    Masters, Ken; Ellaway, Rachel H; Topps, David; Archibald, Douglas; Hogue, Rebecca J

    2016-06-01

    Mobile technologies (including handheld and wearable devices) have the potential to enhance learning activities from basic medical undergraduate education through residency and beyond. In order to use these technologies successfully, medical educators need to be aware of the underpinning socio-theoretical concepts that influence their usage, the pre-clinical and clinical educational environment in which the educational activities occur, and the practical possibilities and limitations of their usage. This Guide builds upon the previous AMEE Guide to e-Learning in medical education by providing medical teachers with conceptual frameworks and practical examples of using mobile technologies in medical education. The goal is to help medical teachers to use these concepts and technologies at all levels of medical education to improve the education of medical and healthcare personnel, and ultimately contribute to improved patient healthcare. This Guide begins by reviewing some of the technological changes that have occurred in recent years, and then examines the theoretical basis (both social and educational) for understanding mobile technology usage. From there, the Guide progresses through a hierarchy of institutional, teacher and learner needs, identifying issues, problems and solutions for the effective use of mobile technology in medical education. This Guide ends with a brief look to the future.

  8. Analysis of Engineering Content within Technology Education Programs

    Science.gov (United States)

    Fantz, Todd D.; Katsioloudis, Petros J.

    2011-01-01

    In order to effectively teach engineering, technology teachers need to be taught engineering content, concepts, and related pedagogy. Some researchers posit that technology education programs may not have enough content to prepare technology teachers to teach engineering design. Certain technology teacher education programs have responded by…

  9. Revolution in Communication Technologies: Impact on Distance Education

    Science.gov (United States)

    Rajesh, M.

    2015-01-01

    Information and Communication Technologies have transformed the way the world lives and thinks. Education, especially, Distance Education is no different. While the technologies per se are an important factor, the social milieus in which these technologies are implemented are equally important. Technological convergence in the Indian context…

  10. Technology of interdisciplinary open-ended designing in engineering education

    Science.gov (United States)

    Isaev, A. P.; Plotnikov, L. V.; Fomin, N. I.

    2017-11-01

    Author’s technology of interdisciplinary open-ended engineering is presented in this article. This technology is an integrated teaching method that significantly increases the practical component in the educational program. Author’s technology creates the conditions to overcome the shortcomings in the engineering education. The basic ideas of the technology of open-ended engineering, experience of their implementation in higher education and the author’s vision of the teaching technology are examined in the article. The main stages of development process of the author’s technology of open-ended engineering to prepare students (bachelor) of technical profile are presented in the article. Complex of the methodological tools and procedures is shown in the article. This complex is the basis of the developed training technology that is used in educational process in higher school of engineering (UrFU). The organizational model of the technology of open-ended engineering is presented. Organizational model integrates the functions in the creation and implementation of all educational program. Analysis of the characteristics of educational activity of students working on author’s technology of interdisciplinary open-ended engineering is presented. Intermediate results of the application of author’s technology in the educational process of the engineering undergraduate are shown.

  11. Reducing Students' Carbon Footprints Using Personal Carbon Footprint Management System Based on Environmental Behavioural Theory and Persuasive Technology

    Science.gov (United States)

    Lin, Shyh-ming

    2016-01-01

    This study applied environmental behavioural theories to develop a personal carbon footprint management system and used persuasive technology to implement it. The system serves as an educational system to improve the determinants of students' low-carbon behaviours, to promote low-carbon concepts and to facilitate their carbon management. To assess…

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: EXEL INDUSTRIAL AIRMIX SPRAY GUN

    Science.gov (United States)

    The Environmental Technology Verification Program has partnered with Concurrent Technologies Corp. to verify innovative coatings and coating equipment technologies for reducing air emissions. This report describes the performance of EXEL Industrial's Kremlin Airmix high transfer ...

  13. environmental education and outcomes-based education in south

    African Journals Online (AJOL)

    The infusion of environmental education into a new South African curriculum marks a historic shift from the past where it was ... was not broadly inclusive and resulted in little implementation .... in the classroom that reconstruction must start for.

  14. Toward Political Ecologies of Environmental Education

    Science.gov (United States)

    Henderson, Joseph A.; Zarger, Rebecca K.

    2017-01-01

    Drawing a causal line between educational practice and ecological impact is a difficult intellectual task given the complexity of variables at work between educational event and ecological effect. This is further complicated by the anthropological fact that diverse peoples interact with nature in myriad ways. Our environmental interactions are…

  15. The Educational Technology Myth

    Science.gov (United States)

    Stansfield, David

    2012-01-01

    If one wants to teach youth to think, one has to restrain himself from doing all their thinking for them. One has to refrain from specifying in advance what they are going to think. Yet, this is just what educational technologists are consistently guilty of doing. Educational technology is committed to excluding the possibility of anything new or…

  16. Environmental Education, a Way to Introduce and Improve Urban Environmental Pollution

    Directory of Open Access Journals (Sweden)

    Karami

    2015-06-01

    Full Text Available Background In this study, high school students in Tehran were selected to investigate the role of environmental education in the prevention and control of pollution. Objectives In this regard, 10 high schools from different areas of Tehran City were used to implement an Environmental Education (EE intervention program. Patients and Methods The students of 5 high schools (first group were trained by the paper-based guidebook and students of other 5 high schools (second group trained by a teacher (EE expert. This study has been designed as a quasi-experimental pretest/posttest design with comparison groups. The impact on the participant’s environmental literacy was assessed by measuring a number of environmental literacy components, including knowledge, attitude, values, and concerns as well as behavioral intention/behavior. The results were presented in a bipolar 5-point Likert response format, with an "undecided" category. Relationships among variables were examined using the general linear model formulation with subsequent ANOVA analyses. Results Results for the participants show a significant increase in the scores of knowledge and attitude about air pollution. Educational program and training tools had no effect on the concern indexes, values, and behavior toward air pollution. Review of the score changes toward waste component, shows that posttest scores (in comparison with pretest ones increases in 4 indicators of knowledge, attitude, concern, and behavior, however the value index did not change so much. Conclusions We can conclude that educational program can be used to convey the knowledge of the environment and in this regard, its implementation is necessary.

  17. Environmental and Financial Evaluation of Passenger Vehicle Technologies in Belgium

    OpenAIRE

    Messagie, Maarten; Lebeau, Kenneth; Coosemans, Thierry; Macharis, Cathy; Mierlo, Joeri van

    2013-01-01

    Vehicles with alternative drive trains are regarded as a promising substitute for conventional cars, considering the growing concern about oil depletion and the environmental impact of our transportation system. However, “clean” technologies will only be viable when they are cost-efficient. In this paper, the environmental impacts and the financial costs of different vehicle technologies are calculated for an average Belgian driver. Environmentally friendly vehicles are compared with conventi...

  18. Information technologies and the transformation of nursing education.

    Science.gov (United States)

    Skiba, Diane J; Connors, Helen R; Jeffries, Pamela R

    2008-01-01

    Higher education is facing new challenges with the emergence of the Internet and other information and communication technologies. The call for the transformation of higher education is imperative. This article describes the transformation of higher education and its impact on nursing education. Nursing education, considered by many a pioneer in the use of educational technologies, still faces 3 major challenges. The first challenge is incorporation of the Institute of Medicine's recommendation of 5 core competencies for all health professionals. The second challenge focuses on the preparation of nurses to practice in informatics-intensive healthcare environments. The last challenge is the use of emerging technologies, such as Web 2.0 tools, that will help to bridge the gap between the next generation and faculty in nursing schools. Nurse educators need to understand and use the power of technologies to prepare the next generation of nurses.

  19. Understanding Technology Literacy: A Framework for Evaluating Educational Technology Integration

    Science.gov (United States)

    Davies, Randall S.

    2011-01-01

    Federal legislation in the United States currently mandates that technology be integrated into school curricula because of the popular belief that learning is enhanced through the use of technology. The challenge for educators is to understand how best to teach with technology while developing the technological expertise of their students. This…

  20. Strategic Alliance to Advanced Technological Education through Enhanced Mathematics, Science, Technology, and English Education at the Secondary Level

    Science.gov (United States)

    Scarborough, Jule Dee

    2004-01-01

    This document (book) reports on the Strategic Alliance to Advance Technological Education through Enhanced Mathematics, Science, Technology, and English Education at the Secondary Level, funded by National Science Foundation. It was a collaborative partnership involving the Rockford Public Schools, Rock Valley College, and Northern Illinois…

  1. Informatics and Technology in Resident Education.

    Science.gov (United States)

    Niehaus, William

    2017-05-01

    Biomedical or clinical informatics is the transdisciplinary field that studies and develops effective uses of biomedical data, information technology innovations, and medical knowledge for scientific inquiry, problem solving, and decision making, with an emphasis on improving human health. Given the ongoing advances in information technology, the field of informatics is becoming important to clinical practice and to residency education. This article will discuss how informatics is specifically relevant to residency education and the different ways to incorporate informatics into residency education, and will highlight applications of current technology in the context of residency education. How informatics can optimize communication for residents, promote information technology use, refine documentation techniques, reduce medical errors, and improve clinical decision making will be reviewed. It is hoped that this article will increase faculty and trainees' knowledge of the field of informatics, awareness of available technology, and will assist practitioners to maximize their ability to provide quality care to their patients. This article will also introduce the idea of incorporating informatics specialists into residency programs to help practitioners deliver more evidenced-based care and to further improve their efficiency. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  2. Environmental restoration/waste management-applied technology semiannual report, January--June 1992

    International Nuclear Information System (INIS)

    Adamson, M.; Kline-Simon, K.

    1992-01-01

    This is the first issue from the Lawrence Livermore National Laboratory of The Environmental Restoration/Waste Management-Applied Technology (ER/WM-AT) Semiannual Report, a continuation of the Advanced Processing Technology (APT) Semiannual Report. The name change reflects the consolidation of the APT Program with the Environmental Restoration and Waste Management Program to form the Environmental Restoration/Waste Management-Applied Technology (ER/WM-AT) Program. The Livermore site mirrors, on a small scale, many of the environmental and waste management problems of the DOE Complex. The six articles in this issue cover incineration- alternative technologies, process development for waste minimization, the proposed Mixed Waste Management Facility, dynamic underground stripping, electrical resistance tomography, and Raman spectroscopy for remote characterization of underground tanks

  3. Anthropocentric and Ecocentric: An Application of Environmental Philosophy to Outdoor Recreation and Environmental Education

    Science.gov (United States)

    Cocks, Samuel; Simpson, Steven

    2015-01-01

    Sometimes environmental philosophers write only for other environmental philosophers, and their insights on the nature-human relationship do not reach environmental educators and adventure programmers. This article investigates one aspect of environmental philosophy and the differences between anthropocentric and ecocentric thinking, and applies…

  4. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, ENVIRONMENTAL DECISION SUPPORT SOFTWARE, UNIVERSITY OF TENNESSEE RESEARCH CORPORATION, SPATIAL ANALYSIS AND DECISION ASSISTANCE (SADA)

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification Program (ETV) to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the...

  5. Emerging educational technologies: Tensions and synergy

    Directory of Open Access Journals (Sweden)

    J. Michael Spector

    2014-01-01

    Full Text Available A review of high level sources with regard to new and emerging technologies was conducted. Three technologies, according to these sources, appear especially promising: (a massive open online courses (MOOCs, (b personalized learning, and (c game-based learning. This paper will review information from the US National Science Foundation, the US Department of Education, the New Media Consortium, and two European Networks of Excellence with regard to new and emerging technologies. A critique will then be provided using established principles pertaining to learning and instruction and a recommended curriculum for advanced learning technologies. The general result is that it appears that some educational technology advocates are overstating the likelihood of these three technologies having a significant and sustained impact in the near future, although there are promising aspects to each of these technologies in the long term.

  6. Approaches to technology education and the role of advanced educational technologies: an international orientation

    NARCIS (Netherlands)

    Vries, de M.J.; Gordon, A.; Hacker, M.; Vries, de M.J.

    1993-01-01

    To be able to understand the value of integrating advanced technologies into existing technology education programmes, it is necessary to look at the features of various approaches that can be distinguished in various countries. Here eight approaches are described: the craft oriented approach, the

  7. Aviation environmental technology and science

    Institute of Scientific and Technical Information of China (English)

    Zhang Yanzhong

    2008-01-01

    Expatiating on the impact of aviation on the environment and aviation environmental protection projects are ex- pounded, and analyzing on the atmosphere pollution and effects on the aviation noise of aircraft discharge. Researching the approach to control aircraft exhaust pollution and noise pollution, and proposing the technology and management measures to reduce air pollution.

  8. 75 FR 26272 - Final Environmental Impact Statement; Environmental Education Center, Yosemite National Park...

    Science.gov (United States)

    2010-05-11

    ... DEPARTMENT OF THE INTERIOR National Park Service Final Environmental Impact Statement; Environmental Education Center, Yosemite National Park, Mariposa County, CA; Notice of Approval of Record of Decision SUMMARY: Pursuant to Sec. 102(2)(C) of the National Environmental Policy Act of 1969 (Pub. L. 91...

  9. Proceedings of the International Conferences on Internet Technologies & Society (ITS), Education Technologies (ICEduTECH), and Sustainability, Technology and Education (STE) (Melbourne, Australia, December 6-8, 2016)

    Science.gov (United States)

    Kommers, Piet, Ed.; Issa, Tomayess, Ed.; Issa, Theodora, Ed.; McKay, Elspeth, Ed.; Isias, Pedro, Ed.

    2016-01-01

    These proceedings contain the papers and posters of the International Conferences on Internet Technologies & Society (ITS 2016), Educational Technologies (ICEduTech 2016) and Sustainability, Technology and Education (STE 2016), which have been organised by the International Association for Development of the Information Society and…

  10. Technology and Technique: An Educational Perspective

    Science.gov (United States)

    Isman, Aytekin

    2012-01-01

    Today, technology is developing very fast around the world. This technological development (hardware and software) affects our life. There is a relationship among technology, society, culture, organization, machines, technical operation, and technical phenomenon. Educators should know this relationship because technology begins to affect teaching…

  11. Integration of Environmental Education and Environmental Law Enforcement for Police Officers

    Science.gov (United States)

    Bovornkijprasert, Sravoot; Rawang, Wee

    2016-01-01

    The purpose of this research was to establish an integrated model of environmental education (EE) and environmental law enforcement (ELE) to improve the efficiency of functional competency for police officers in Bangkok Metropolitan Police Division 9 (MBP Div. 9). The research design was mixed methods of quantitative and qualitative approaches…

  12. Engineering Technology Education: Bibliography, 1988.

    Science.gov (United States)

    Dyrud, Marilyn A.

    1989-01-01

    Lists articles and books related to engineering technology education published in 1988. Items are grouped administration, aeronautical, architectural, CAD/CAM, civil, computers, curriculum, electrical/electronics, industrial, industry/government/employers, instructional technology, laboratories, lasers, liberal studies, manufacturing, mechanical,…

  13. A Cross-Cultural Study on Environmental Risk Perception and Educational Strategies: Implications for Environmental Education in China

    OpenAIRE

    Duan, Hongxia; Fortner, Rosanne

    2010-01-01

    This cross-cultural study examined college students’ environmental risk perception and their preference in terms of risk communication and educational strategies in China and the U.S. The results indicated that the Chinese respondents were more concerned about environmental risk, and they perceived the environmental issues to be more harmful to health, to the environment, and to social economic development of the nation than did the American respondents. Both groups desired transpar...

  14. Utilizing the right mix of environmental cleanup technologies

    International Nuclear Information System (INIS)

    Whitaker, Wade; Bergren, Chris; Flora, Mary

    2007-01-01

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990's), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical / pH-adjusting injection, phyto-remediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baro-balls, electrical resistance heating, soil vapor extraction, and micro-blowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works pro-actively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  15. UTILIZING THE RIGHT MIX OF ENVIRONMENTAL CLEANUP TECHNOLOGIES

    International Nuclear Information System (INIS)

    Bergren, C; Wade Whitaker, W; Mary Flora, M

    2007-01-01

    The Savannah River Site (SRS) Figure 1 is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990s), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical/pH-adjusting injection, phytoremediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baroballs, electrical resistance heating, soil vapor extraction, and microblowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works proactively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  16. Women Technology Leaders: Gender Issues in Higher Education Information Technology

    Science.gov (United States)

    Drury, Marilyn

    2011-01-01

    Women working in higher education information technology (IT) organizations and those seeking leadership positions in these organizations face a double challenge in overcoming the traditionally male-dominated environments of higher education and IT. Three women higher education chief information officers (CIOs) provided their perspectives,…

  17. Workshop on Learning Technology for Education in Cloud

    CERN Document Server

    Rodríguez, Emilio; Santana, Juan; Prieta, Fernando

    2012-01-01

    Learning Technology for Education in Cloud investigates how cloud computing can be used to design applications to support real time on demand learning using technologies. The workshop proceedings provide opportunities for delegates to discuss the latest research in TEL (Technology Enhanced Learning) and its impacts for learners and institutions, using cloud.   The Workshop on Learning Technology for Education in Cloud (LTEC '12) is a forum where researchers, educators and practitioners came together to discuss ideas, projects and lessons learned related to the use of learning technology in cloud, on the 11th-13th July at Salamanca in Spain.

  18. The application of wiki technology in medical education.

    Science.gov (United States)

    Rasmussen, Andrew; Lewis, Melanie; White, Jonathan

    2013-01-01

    BACKGROUND, AIMS AND METHODS: Recent years have seen the introduction of web-based technologies such as the 'wiki', which is a webpage whose content can be edited in real time using a web browser. This article reviews the current state of knowledge about the use of wikis in education, and considers whether wiki technology has features that might prove useful in medical education. Advantages and challenges of the technology are discussed, and recommendations for use are provided. We believe that wiki technology offers a number of potential benefits for administrators, students and instructors, including the ability to share information online, to construct knowledge together, to facilitate collaboration and to enable social learning and peer feedback. We believe that with proper planning and instructional design, wiki technology can be usefully employed in medical education. We intend to continue to study the impact of wiki technology in our own programme, and we encourage others to evaluate the application of wiki technology in other areas of medical education.

  19. Positioning Technology and Engineering Education as a Key Force in STEM Education

    Science.gov (United States)

    Strimel, Greg; Grubbs, Michael E.

    2016-01-01

    As the presence of engineering content and practices increases in science education, the distinction between the two fields of science and technology education becomes even more vague than previously theorized. Furthermore, the addition of engineering to the title of the profession raises the question of the true aim of technology education. As a…

  20. Advancing Environmental Education and Training for Sustainable Management of Environmental Resources in Palestine

    Science.gov (United States)

    Al-Sa'ed, Rashed; Abu-Madi, Maher; Heun, Jetze

    2009-01-01

    This article describes the various capacity-building activities at the Institute of Environmental and Water Studies of Birzeit University during the past 10 years. It highlights the gained experience in advancing environmental science and engineering education and training programs as components of sustainable water and environmental management…

  1. 77 FR 7131 - Addendum to Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2012-02-10

    ... DEPARTMENT OF COMMERCE International Trade Administration Addendum to Environmental Technologies... agenda of a meeting of the Environmental Technologies Trade Advisory Committee (ETTAC) will be changed to... & Environmental Industries, International Trade Administration, Room 4053, 1401 Constitution Avenue NW...

  2. Cost effectiveness studies of environmental technologies: Volume 1

    International Nuclear Information System (INIS)

    Silva, E.M.; Booth, S.R.

    1994-02-01

    This paper examines cost effectiveness studies of environmental technologies including the following: (1) In Situ Air Stripping, (2) Surface Towed Ordinance Locator System, (3) Ditch Witch Horizontal Boring Technology, (4) Direct Sampling Ion Trap Mass Spectrometer, (5) In Situ Vitrification, (6) Site Characterization and Analysis Penetrometer System, (7) In Situ Bioremediation, and (8) SEAMIST Membrane System Technology

  3. Education for Sustainable Development (ESD) : The turn away from ‘environment’ in environmental education?

    NARCIS (Netherlands)

    Kopnina, H.N.

    2012-01-01

    This article explores the implications of the shift of environmental education (EE) towards education for sustainable development (ESD) in the context of environmental ethics. While plural perspectives on ESD are encouraged both by practitioners and researchers of EE, there is also a danger that

  4. The incidence of technological stress among baccalaureate nurse educators using technology during course preparation and delivery.

    Science.gov (United States)

    Burke, Mary S

    2009-01-01

    The concept of technology-related stress was first introduced in the 1980s when computers became more prevalent in the business and academic world. Nurse educators have been impacted by the rapid changes in technology in recent years. A review of the literature revealed no research studies that have been conducted to investigate the incidence of technological stress among nurse educators. The purpose of this descriptive-correlational study was to describe the technological stressors that Louisiana baccalaureate nurse educators experienced while teaching nursing theory courses. A researcher-developed questionnaire, the nurse educator technostress scale (NETS) was administered to a census sample of 311 baccalaureate nurse educators in Louisiana. Findings revealed that Louisiana baccalaureate nurse educators are experiencing technological stress. The variable, perceived administrative support for use of technology in the classroom, was a significant predictor in a regression model predicting Louisiana baccalaureate nurse educators' technological stress (F=14.157, p<.001).

  5. Higher Education Students' Perceptions of Environmental Issues and Media Coverage

    Science.gov (United States)

    Keinonen, Tuula; Palmberg, Irmeli; Kukkonen, Jari; Yli-Panula, Eija; Persson, Christel; Vilkonis, Rytis

    2016-01-01

    This study aims to find higher education students' perceptions about environmental issues and how the perceptions are related to perceptions of media coverage. This study investigates higher education students' perceptions of the seriousness of environmental issues and their relation to perceptions of media coverage. Higher education students…

  6. Environmental Impact from Outdoor/Environmental Education Programs: Effects of Frequent Stream Classes on Aquatic Macroinvertebrates

    Science.gov (United States)

    Bossley, Jon P.

    2016-01-01

    Environmental stewardship is an underlying theme in outdoor education (OE) and environmental education (EE), but maintaining natural areas in a sustainable balance between conservation and preservation requires knowledge about how natural areas respond to anthropogenic disturbance. My five-part study investigated the effects of disturbance on…

  7. Technology-assisted education in graduate medical education: a review of the literature

    OpenAIRE

    Jwayyed, Sharhabeel; Stiffler, Kirk A; Wilber, Scott T; Southern, Alison; Weigand, John; Bare, Rudd; Gerson, Lowell W

    2011-01-01

    Studies on computer-aided instruction and web-based learning have left many questions unanswered about the most effective use of technology-assisted education in graduate medical education. Objective We conducted a review of the current medical literature to report the techniques, methods, frequency and effectiveness of technology-assisted education in graduate medical education. Methods A structured review of MEDLINE articles dealing with "Computer-Assisted Instruction," "Internet or World W...

  8. e-Leadership in Higher Education: The Fifth "Age" of Educational Technology Research

    Science.gov (United States)

    Jameson, Jill

    2013-01-01

    A discussion of the relative lack of research into e-leadership in educational technology in education is followed by an outline of selected prior literature in the field. The paper proposes that, as part of a natural evolution of educational technology research, considerably more attention needs to be focused on research and development in…

  9. Journal of Technology and Education in Nigeria

    African Journals Online (AJOL)

    The Journal of Technology and Education in Nigeria focuses on the following areas: Agriculture, Food Science, Technology/Engineering, Science and Applied Science, Vocational/Technical Education. Vol 17, No 2 (2012). DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access ...

  10. Communities of practice: pedagogy and internet-based technologies to support educator's continuing technology professional development in higher education

    OpenAIRE

    Schols, Maurice

    2011-01-01

    Advances in information and communication technologies (ICTs) as well as modern pedagogical perspectives have created new possibilities to facilitate and support learning in higher education (HE). Emerging technologies bring opportunities to reconsider teaching and learning. New ideas and concepts about the educational use of new technologies transform the roles of teachers. In this context the key question of this study is: whether learning as part of a (virtual) community of practice suppor...

  11. Technologies for environmental cleanup: Toxic and hazardous waste management

    International Nuclear Information System (INIS)

    Ragaini, R.C.

    1993-12-01

    This is the second in a series of EUROCOURSES conducted under the title, ''Technologies for Environmental Cleanup.'' To date, the series consist of the following courses: 1992, soils and groundwater; 1993, Toxic and Hazardous Waste Management. The 1993 course focuses on recent technological developments in the United States and Europe in the areas of waste management policies and regulations, characterization and monitoring of waste, waste minimization and recycling strategies, thermal treatment technologies, photolytic degradation processes, bioremediation processes, medical waste treatment, waste stabilization processes, catalytic organic destruction technologies, risk analyses, and data bases and information networks. It is intended that this course ill serve as a resource of state-of-the-art technologies and methodologies for the environmental protection manager involved in decisions concerning the management of toxic and hazardous waste

  12. Digital Learning Resources and Ubiquitous Technologies in Education

    Science.gov (United States)

    Camilleri, Mark Anthony; Camilleri, Adriana Caterina

    2017-01-01

    This research explores the educators' attitudes and perceptions about their utilisation of digital learning technologies. The methodology integrates measures from "the pace of technological innovativeness" and the "technology acceptance model" to understand the rationale for further ICT investment in compulsory education. A…

  13. A computerized program to educate adults about environmental health risks

    International Nuclear Information System (INIS)

    Adams, M.; Dewey, J.; Schur, P.

    1993-01-01

    A computerized program called Environmental Risk Appraisal (ERA) has been developed to educate adults about environmental health risks and to motivate positive behavior change. A questionnaire addresses issues such as radon, environmental tobacco smoke, pesticides, lead, air and water pollution, and work-site risks. Responses are computer processed in seconds to produce an individualized computer printout containing a score, educational messages, and phone numbers to call for more information. A variety of audiences including environmental groups, worksites, women's organizations and health professionals were represented in this study of 269 participants. Many respondents indicated they were exposed to important environmental hazards and nearly 40 percent reported they had, or might have had, an environmental related illness at some time. Preliminary evaluation indicates the program is effective as an educational tool in raising awareness of environmental health risks

  14. Environmental Behavior and Gender: An Emerging Area of Concern for Environmental Education Research

    Science.gov (United States)

    Sakellari, Maria; Skanavis, Constantina

    2013-01-01

    Ecofeminism suggests that women are more active than men regarding environmental issues for a variety of social, cultural, and biological reasons. In support to these arguments, women predominate within the overall grassroots of the Environmental Justice movement. However, claims have been made that environmental education theory and research are…

  15. Technology and Education: Theoretical Reflections Exemplified in Religious Education

    Science.gov (United States)

    Reader, John; Freathy, Rob

    2016-01-01

    How do recent technological advances impact upon the field of education? This article examines the work of the philosopher of technology Bernard Stiegler and his interpretation of technology as pharmakon (both remedy and poison). This is linked to threshold concept theory which advocates more creative ways of learning, and illustrated through a…

  16. Environmental Science and Technology Department annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A; Gissel Nielsen, G; Gundersen, V; Nielsen, O J; Oestergaard, H; Aarkrog, A [eds.

    1995-02-01

    The Environmental Science and Technology Department engage in research to improve the scientific basis for new methods in industrial and agricultural production. Through basic and applied research in chemistry, biology and ecology the department aspires to develop methods and technology for the future industrial and agricultural production exerting less stress and strain on the environment. The research approach in the department is predominantly experimental. The research activities are organized in five research programmes and supported by three special facility units. In this annual report the main research activities during 1993 are introduced and reviewed in eight chapters. Chapter 1. Introduction. The five research programmes are covered in chapter 2-7: 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Mineral Cycling, 5. Trace Analysis and reduction of Pollution in the Geosphere, 6. Ecology, 7. Other Research Activities. The three special activity units in chapter 8. Special Facilities. The department`s contribution to national and international collaborative research projects and programmes is presented in addition to information about large research and development facilities used and managed by the department. The department`s educational and training activites are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. Names of the scientific and technical staff members, visiting scientists, post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au) (9 tabs., 43 ills., 167 refs.).

  17. Environmental Science and Technology Department annual report 1994

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1995-02-01

    The Environmental Science and Technology Department engage in research to improve the scientific basis for new methods in industrial and agricultural production. Through basic and applied research in chemistry, biology and ecology the department aspires to develop methods and technology for the future industrial and agricultural production exerting less stress and strain on the environment. The research approach in the department is predominantly experimental. The research activities are organized in five research programmes and supported by three special facility units. In this annual report the main research activities during 1993 are introduced and reviewed in eight chapters. Chapter 1. Introduction. The five research programmes are covered in chapter 2-7: 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Mineral Cycling, 5. Trace Analysis and reduction of Pollution in the Geosphere, 6. Ecology, 7. Other Research Activities. The three special activity units in chapter 8. Special Facilities. The department's contribution to national and international collaborative research projects and programmes is presented in addition to information about large research and development facilities used and managed by the department. The department's educational and training activites are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. Names of the scientific and technical staff members, visiting scientists, post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au) (9 tabs., 43 ills., 167 refs.)

  18. What Is Educational Technology? An Inquiry into the Meaning, Use, and Reciprocity of Technology

    Science.gov (United States)

    Lakhana, Arun

    2014-01-01

    This position paper explores the ambiguity of technology, toward refined understanding of Educational Technology. The purpose of education is described by John Dewey as growing, or habitual learning. Two philosophical conceptions of technology are reviewed. Dewey positions inquiry as a technology that creates knowledge. Val Dusek offers a…

  19. Information Literacy Education on College of Technology at Kyushu Area

    Science.gov (United States)

    Kozono, Kazutake; Ikeda, Naomitsu; Irie, Hiroki; Fujimoto, Yoichi; Oshima, Shunsuke; Murayama, Koichi; Taguchi, Hirotsugu

    Recently, the importance of an engineering education increases by the development of the information technology (IT) . Development of the information literacy education is important to deal with new IT in the education on college of technology. Our group investigated the current state of information literacy education on college of technology at Kyushu area and the secondary education. In addition, we investigated about the talent whom the industrial world requested. From these investigation results, this paper proposed cooperation with the elementary and secondary education, enhancement of intellectual property education, introduction of information ethics education, introduction of career education and enhancement of PBL to information literacy education on college of technology.

  20. 77 FR 39705 - National Advisory Council for Environmental Policy and Technology; Charter Renewal

    Science.gov (United States)

    2012-07-05

    ... and Technology; Charter Renewal AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. Notice... Advisory Council for Environmental Policy and Technology (NACEPT) is a necessary committee which is in the... environmental policy, technology and management issues. Inquiries may be directed to Mark Joyce, U.S. EPA, (Mail...

  1. Technological Knowledge and Reasoning in Finnish and Estonian Technology Education

    Science.gov (United States)

    Autio, Ossi; Soobik, Mart

    2017-01-01

    The main idea of this research was to find out if there is a relationship between students' undertakings within Craft and Technology education and their ability to understand technological concepts. Study participants' technological knowledge and reasoning was measured with a questionnaire regarding mechanical systems connected with simple…

  2. Innovative Technology in Engineering Education.

    Science.gov (United States)

    Fishwick, Wilfred

    1991-01-01

    Discusses the impact that computer-assisted technologies, including applications to software, video recordings, and satellite broadcasts, have had upon the conventions and procedures within engineering education. Calls for the complete utilization of such devices through their appropriate integration into updated education activities effectively…

  3. Lines of Thought that Influence the Teaching of Environmental Education

    Directory of Open Access Journals (Sweden)

    Flávio Roberto Chaddad

    2014-12-01

    Full Text Available This study verified that the teaching of environmental education has not escaped from the great narratives: Parmenídica, which influenced positivism, Heraclitean, which influenced the dialectics, as well as the Sophist speech, which is influencing the postmodern discourse. According to the positivist bias, environmental education would be considered naturalistic, and would only aim at intervening in the natural environment. According to the post-modern bias, environmental education would be a way to reconnect man with nature. These currents do not make an internal criticism to the capitalist system. On the other hand, marxist dialectics appears as one of the only sane means of proposing a new environmental education that criticizes the capitalist system and contributes to the building of a new society.

  4. STEM Career Cluster Engineering and Technology Education pathway in Georgia: Perceptions of Georgia engineering and technology education high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education survey

    Science.gov (United States)

    Crenshaw, Mark VanBuren

    This study examined the perceptions held by Georgia Science, Technology, Engineering, and Mathematics (STEM) Career Cluster Engineering and Technology Education (ETE) high school pathway teachers and Georgia's Career, Technical and Agriculture Education (CTAE) administrators regarding the ETE pathway and its effect on implementation within their district and schools. It provides strategies for ETE teaching methods, curriculum content, STEM integration, and how to improve the ETE pathway program of study. Current teaching and curricular trends were examined in ETE as well as the role ETE should play as related to STEM education. The study, using the Characteristics of Engineering and Technology Education Survey, was conducted to answer the following research questions: (a) Is there a significant difference in the perception of ETE teaching methodology between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (b) Is there a significant difference in the perception of ETE curriculum content between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (c) Is there a significant difference in the perception of STEM integration in the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? and (d) Is there a significant difference in the perception of how to improve the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? Suggestions for further research also were offered.

  5. IMPLEMENTATION OF INFORMATION TECHNOLOGIES AS A HARMONIC COMPONENT OF IMPROVING THE ENVIRONMENTAL EDUCATION

    Directory of Open Access Journals (Sweden)

    N.V. Semenyuk

    2012-10-01

    Full Text Available The article shows author’s point of view for forming of the ecological thinking, ecological consciousness of the young generations. That is one of the main tasks on the way of overcoming of global ecological crisis. There are scientific editions and other sources on the basis of the personally conducted analysis that are specify the impotents of problem, and also attempt to find the ways of its decision and solutions. It is necessary for education system to be ready for accepting challenges of XXI centuries certain transformations of the system on the base of the use of modern information technologies.

  6. Socio-environmental education, imaginary and Visual Arts

    Directory of Open Access Journals (Sweden)

    Graciela René Ormezzano

    2013-01-01

    Full Text Available This article is a bibliographic research that chooses the Maffesoli aesthetic worldview and speaks about social imaginary as a foundation for this study. In addition, it does a little speech about some educational politics that promote the environmental education and the mainstreaming and, finally, it discusses the relevance of visual arts in the transdisciplinary teaching-learning process doing a methodological approach that considers that it is able to be developed at various levels of formal education or non-formal education. The suggested mode of execution is based on the use of workshops as teaching methodology, joining the visual arts with various fields of knowledge with which they can relate to address the issue of socio-environmental education. The proposal addresses the need to return to the inventive experience for the purpose of (rediscover the action of raising and educating yourself without losing sight of all. This research looks for the meaning of life in society, transforming the human perception of the Cosmos, respecting the natural environment and complementarity of multiple cultures.

  7. Interdisciplinarity in Paulo Freire: Political-pedagogical approximations for critical environmental education

    Directory of Open Access Journals (Sweden)

    César Augusto Costa

    2017-03-01

    Full Text Available This article addresses the pedagogical contribution of Brazilian educator Paulo Freire to interdisciplinarity and its relevance for Critical Environmental Education. It reiterates the thinking of Paulo Freire as an interdisciplinary educator. It then addresses the radical political nature of the concept of liberation and reflects on educational and political interdisciplinarity. Finally, it indicates the relationship of Freire’s thinking with critical environmental education, based on categories such as totality, contradiction, praxis, dialectics and dialogical. The Freirian reading of interdisciplinarity supports the maturing of critical environmental education as educational-political action, seeking to overcome alienated social relations under capitalism.

  8. Environmental engineering education - summary report of the 1st European Seminar

    DEFF Research Database (Denmark)

    Alha, K; Holliger, C.; Larsen, Bo Skjold

    2000-01-01

    This paper summarizes the discussions of the 1st European Seminar on Environmental Engineering Education (E3), which was held at EAWAG, Zurich, Switzerland in August 1999. Although the emerging discipline of environmental engineering, which was once viewed as being a sub-set of civil or chemical...... engineering, has established a status in its own right, a definition of environmental engineering is still not agreed among European engineering educators. This report discusses the variation between European countries and the way in which higher education institutions in these countries address...... the educational needs of environmental engineers. A review of the acceptance of this new discipline by employers and the status of environmental engineering as a profession throughout Europe is presented. The question of how to achieve greater compatibility and comparability of the systems of environmental...

  9. Informational technologies in modern educational structure

    Science.gov (United States)

    Fedyanin, A. B.

    2017-01-01

    The article represents the structure of informational technologies complex that is applied in modern school education, describes the most important educational methods, shows the results of their implementation. It represents the forms and methods of educational process informative support usage, examined in respects of different aspects of their using that take into account also the psychological features of students. A range of anxious facts and dangerous trends connected with the usage and distribution of the informational technologies that are to be taken into account in the educational process of informatization is also indicated in the article. Materials of the article are based on the experience of many years in operation and development of the informational educational sphere on the basis of secondary school of the physics and mathematics specialization.

  10. A centralized information management system for environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Namboodiri, K. [Martin Marietta Technical Services, Inc., Bay City, MI (United States)

    1995-12-31

    During the past few decades there have been several serious initiatives focusing on the applications of computational technology towards understanding the diverse fields of environmental research such as environmental monitoring, pollution prevention, and hazardous chemical mitigation. Recently, due to the widespread application of high performance computer technology and the renewed interest of the industrial community in environmental protection, we are witnessing an era of environmental information explosion. In light of these large-scale computer-driven developments, the author identifies a highly desirable initiative for this field, which is solely devoted to a centralized environmental database and information management system. This talk will focus on some design aspects of such an information management system.

  11. Educational Technologies in Problem-Based Learning in Health Sciences Education: A Systematic Review

    Science.gov (United States)

    Jin, Jun

    2014-01-01

    Background As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being recognized as a major research area in student learning and pedagogical innovation in health sciences education. A new area of research interest has been the role of emerging educational technologies in PBL. Although this field is growing, no systematic reviews of studies of the usage and effects of educational technologies in PBL in health sciences education have been conducted to date. Objective The aim of this paper is to review new and emerging educational technologies in problem-based curricula, with a specific focus on 3 cognate clinical disciplines: medicine, dentistry, and speech and hearing sciences. Analysis of the studies reviewed focused on the effects of educational technologies in PBL contexts while addressing the particular issue of scaffolding of student learning. Methods A comprehensive computerized database search of full-text articles published in English from 1996 to 2014 was carried out using 3 databases: ProQuest, Scopus, and EBSCOhost. Eligibility criteria for selection of studies for review were also determined in light of the population, intervention, comparison, and outcomes (PICO) guidelines. The population was limited to postsecondary education, specifically in dentistry, medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and curriculum design. Three types of educational technologies were identified as interventions used to support student inquiry: learning software and digital learning objects; interactive whiteboards (IWBs) and plasma screens; and learning management systems (LMSs). Results Of 470 studies, 28 were selected for analysis. Most studies examined the effects of learning software and digital learning objects (n=20) with integration of IWB (n=5) and LMS (n=3) for PBL receiving relatively less attention. The educational technologies examined in these studies were seen as potentially fit for

  12. Educational technologies in problem-based learning in health sciences education: a systematic review.

    Science.gov (United States)

    Jin, Jun; Bridges, Susan M

    2014-12-10

    As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being recognized as a major research area in student learning and pedagogical innovation in health sciences education. A new area of research interest has been the role of emerging educational technologies in PBL. Although this field is growing, no systematic reviews of studies of the usage and effects of educational technologies in PBL in health sciences education have been conducted to date. The aim of this paper is to review new and emerging educational technologies in problem-based curricula, with a specific focus on 3 cognate clinical disciplines: medicine, dentistry, and speech and hearing sciences. Analysis of the studies reviewed focused on the effects of educational technologies in PBL contexts while addressing the particular issue of scaffolding of student learning. A comprehensive computerized database search of full-text articles published in English from 1996 to 2014 was carried out using 3 databases: ProQuest, Scopus, and EBSCOhost. Eligibility criteria for selection of studies for review were also determined in light of the population, intervention, comparison, and outcomes (PICO) guidelines. The population was limited to postsecondary education, specifically in dentistry, medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and curriculum design. Three types of educational technologies were identified as interventions used to support student inquiry: learning software and digital learning objects; interactive whiteboards (IWBs) and plasma screens; and learning management systems (LMSs). Of 470 studies, 28 were selected for analysis. Most studies examined the effects of learning software and digital learning objects (n=20) with integration of IWB (n=5) and LMS (n=3) for PBL receiving relatively less attention. The educational technologies examined in these studies were seen as potentially fit for problem-based health sciences education

  13. Applying Sustainable Systems Development Approach to Educational Technology Systems

    Science.gov (United States)

    Huang, Albert

    2012-01-01

    Information technology (IT) is an essential part of modern education. The roles and contributions of technology to education have been thoroughly documented in academic and professional literature. Despite the benefits, the use of educational technology systems (ETS) also creates a significant impact on the environment, primarily due to energy…

  14. Memories as Useful Outcomes of Residential Outdoor Environmental Education

    Science.gov (United States)

    Liddicoat, Kendra R.; Krasny, Marianne E.

    2014-01-01

    Residential outdoor environmental education (ROEE) programs for youth have been shown to yield lasting autobiographical episodic memories. This article explores how past program participants have used such memories, and draws on the memory psychology literature to offer a new perspective on the long-term impacts of environmental education.…

  15. The Development of Trust in Residential Environmental Education Programs

    Science.gov (United States)

    Ardoin, Nicole M.; DiGiano, Maria L.; O'Connor, Kathleen; Podkul, Timothy E.

    2017-01-01

    Trust, a relational phenomenon that is an important building block of interpersonal relationships and within society, can also be an intermediary outcome of field-based environmental education programs. Trust creates a foundation for collaboration and decision-making, which are core to many ultimate outcomes of environmental education. Yet,…

  16. Curricular Critique of an Environmental Education Policy Framework: Acting Today, Shaping Tomorrow

    Directory of Open Access Journals (Sweden)

    Douglas D. Karrow

    2015-10-01

    Full Text Available The following paper is a curricular critique of an environmental education policy framework called Acting Today, Shaping Tomorrow (2009. It is founded upon: (a an examination of the conventional argument for integrated curriculum models and its relevance to K-12 environmental education; and (b utilization of a typology of integrated curriculum models to analyze an environmental education policy framework within the jurisdiction of Ontario, Canada. In conclusion, Ontario’s environmental education policy framework tends toward an integrated curriculum model referred to as ‘selective infusion.’  The implications for integrated curricular practice are identified, with recommendations for improving the policy framework from an integrated curricular perspective.     Key Words: environmental education, integrated curriculum, curriculum critique, education policy.

  17. Bridge to a sustainable future: National environmental technology strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    For the past two years the Administration has sought the views of Congress, the states, communities, industry, academia, nongovernmental organizations, and interested citizens on ways to spur the development and use of a new generation of environmental technologies. This document represents the views of thousands of individuals who participated in events around the country to help craft a national environmental technology strategy that will put us on the path to sustainable development.

  18. Partnership of Environmental Education and Research-A compilation of student research, 1999-2008

    Science.gov (United States)

    Bradley, Michael W.; Armstrong, Patrice; Byl, Thomas D.

    2011-01-01

    The U.S. Geological Survey (USGS) Tennessee Water Science Center and the College of Engineering and Technology at Tennessee State University developed a Partnership in Environmental Education and Research (PEER) to support environmental research at TSU and to expand the environmental research capabilities of the USGS in Tennessee. The PEER program is driven by the research needs to better define the occurrence, fate, and transport of contaminants in groundwater and surface water. Research in the PEER program has primarily focused on the transport and remediation of organic contamination in karst settings. Research conducted through the program has also expanded to a variety of media and settings. Research areas include contaminant occurrence and transport, natural and enhanced bioremediation, geochemical conditions in karst aquifers, mathematical modeling for contaminant transport and degradation, new methods to evaluate groundwater contamination, the resuspension of bacteria from sediment in streams, the use of bioluminescence and chemiluminescence to identify the presence of contaminants, and contaminant remediation in wetlands. The PEER program has increased research and education opportunities for students in the College of Engineering, Technology, and Computer Science and has provided students with experience in presenting the results of their research. Students in the program have participated in state, regional, national and international conferences with more than 140 presentations since 1998 and more than 40 student awards. The PEER program also supports TSU outreach activities and efforts to increase minority participation in environmental and earth science programs at the undergraduate and graduate levels. TSU students and USGS staff participate in the TSU summer programs for elementary and high school students to promote earth sciences. The 2007 summer camps included more than 130 students from 20 different States and Washington DC.

  19. Environmental Behavior of Secondary Education Students: A Case Study at Central Greece

    Directory of Open Access Journals (Sweden)

    Stamatios Ntanos

    2018-05-01

    Full Text Available During the last three decades, human behavior has been becoming energy alarming towards environmental sustainability. One of the most influential initiatives towards environmental protection and increased environmental consciousness is the solidification of primary and secondary environmental education. The purpose of this paper is to investigate different environmental profiles amongst secondary education students, in light of a multi-parametric analysis that involved the contributive role of school and family towards environmental awareness and participation. By reviewing relevant studies, the benefits offered by environmental education are presented. Accordingly, a questionnaire survey was deployed using a sample of 270 secondary education students, from schools situated in the prefecture of Larissa, central Greece. The statistical methods included factor analysis and cluster analysis. Particularly, four groups of different environmental characteristics are identified and interviewed. Results suggest that most students are environmental affectionate, although there is a need for more solidified environmental education and motivation from out-of-school societal opportunities, such as in the contexts of family and public socialization. The deployed research method and analysis can be proven supportive in adopting and scheduling school environmental programs after an initial identification of the various environmental attitudes among the student population.

  20. Aligning Technology Education Teaching with Brain Development

    Science.gov (United States)

    Katsioloudis, Petros

    2015-01-01

    This exploratory study was designed to determine if there is a level of alignment between technology education curriculum and theories of intellectual development. The researcher compared Epstein's Brain Growth Theory and Piaget's Status of Intellectual Development with technology education curriculum from Australia, England, and the United…