WorldWideScience

Sample records for environmental technology development

  1. Development of environmental radiation control technology

    International Nuclear Information System (INIS)

    Kim, Ingyu; Kim, Enhan; Keum, Dongkwon

    2012-04-01

    To develop the comprehensive environmental radiation management technology, - An urban atmospheric dispersion model and decision-aiding model have been developed. - The technologies for assessing the radiation impact to non-human biota and the environmental medium contamination have developed. - The analytical techniques of the indicator radionuclides related to decommissioning of nuclear facilities and nuclear waste repository have been developed. - The national environmental radiation impact has been assessed, and the optimum management system of natural radiation has been established

  2. Development of decontamination, decommissioning and environmental restoration technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Kwon, H S; Kim, G N. and others

    1999-03-01

    Through the project of 'Development of decontamination, decommissioning and environmental restoration technology', the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  3. Development of decontamination, decommissioning and environmental restoration technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Kwon, H. S.; Kim, G. N. and others

    1999-03-01

    Through the project of 'Development of decontamination, decommissioning and environmental restoration technology', the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  4. Development of decontamination, decommissioning and environmental restoration technology

    International Nuclear Information System (INIS)

    Lee, Byung Jik; Kwon, H. S.; Kim, G. N. and others

    1999-03-01

    Through the project of D evelopment of decontamination, decommissioning and environmental restoration technology , the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  5. Technology development and transfer in environmental management

    International Nuclear Information System (INIS)

    Katz, J.; Karnovitz, A.; Yarbrough, M.

    1994-01-01

    Federal efforts to develop and employ the innovative technologies needed to clean up contaminated facilities would greatly benefit from a greater degree of interaction and integration with the energies and resources of the private sector. Yet there are numerous institutional, economic, and regulatory obstacles to the transfer and commercialization of environmental restoration and waste management technologies. These obstacles discourage private sector involvement and investment in Federal efforts to develop and use innovative technologies. A further effect is to impede market development even where private sector interest is high. Lowering these market barriers will facilitate the commercialization of innovative environmental cleanup technologies and expedite the cleanup of contaminated Federal and private facilities. This paper identifies the major barriers to transfer and commercialization of innovative technologies and suggests possible strategies to overcome them. Emphasis is placed on issues particularly relevant to the Department of Energy's Environmental Restoration and Waste Management (EM) program, but which are applicable to other Federal agencies confronting complex environmental cleanup problems

  6. Overcoming regulatory barriers: DOE environmental technology development program

    International Nuclear Information System (INIS)

    Kurtyka, B.M.; Clodfelter-Schumack, K.; Evans, T.T.

    1995-01-01

    The potential to improve environmental conditions via compliance or restoration is directly related to the ability to produce and apply innovative technological solutions. However, numerous organizations, including the US General Accounting Office (GAO), the EPA National Advisory Council for Environmental Policy and Technology (NACEPT), the DOE Environmental Management Advisory Board (EMAB), and the National Science and Technology Council (NSTC) have determined that significant regulatory barriers exist that inhibit the development and application of these technologies. They have noted the need for improved efforts in identifying and rectifying these barriers for the purpose of improving the technology development process, providing innovative alternatives, and enhancing the likelihood of technology acceptance by all. These barriers include, among others, regulator and user bias against ''unknown/unproven'' technologies; multi-level/multi-media permit disincentives; potential liability of developers and users for failed implementation; wrongly defined or inadequate data quality objectives: and lack of customer understanding and input. The ultimate goal of technology development is the utilization of technologies. This paper will present information on a number of regulatory barriers hindering DOE's environmental technology development program and describe DOE efforts to address these barriers

  7. Driving forces and barriers for environmental technology development

    International Nuclear Information System (INIS)

    2005-01-01

    Driving forces and barriers behind development and usage of environmental technology is discussed, and also whether there are certain characteristics related to environmental innovations compared to other innovations in general. The development of environmental technology is in principle dominated by the same drivers and barriers as any other technology, but the order and strength of the various factors may be different. This examination as well as other empirical studies shows that regulations play a greater part for environmental technology than 'pure market forces'. To many participants it is important to be one step ahead of the regulations, i.e. the expected regulations are equally important as the factual ones in driving the technology development. Players in the business community express that it is important that the authorities cooperate with them when introducing new regulations. This will increase acceptance for the regulations and facilitate the necessary adjustments. The most important barrier in the development and use of the technologies studied is probably the lack of demand

  8. SRS environmental technology development field test platform

    International Nuclear Information System (INIS)

    Riha, B.D.; Rossabi, J.; Eddy-Dilek, C.A.

    1995-01-01

    A critical and difficult step in the development and implementation of new technologies for environmental monitoring and characterization is successfully transferring these technologies to industry and government users for routine assessment and compliance activities. The Environmental Sciences Section of the DOE Savannah River Technology Center provides a forum for developers, potential users, and regulatory organizations to evaluate new technologies in comparison with baseline technologies in a well characterized field test bed. The principal objective of this project is to conduct comprehensive, objective field tests of monitoring and characterization technologies that are not currently used in EPA standard methods and evaluate their performance during actual operating conditions against baseline methods. This paper provides an overview of the field test site and a description of some of the technologies demonstrated at the site including their field applications

  9. Technology management for environmentally sound and sustainable development

    International Nuclear Information System (INIS)

    Zaidi, S.M.J.

    1992-01-01

    With the evolutionary change in the production activities of human societies, the concept of development has also been changing. In the recent years the emphasis has been on the environmentally sound and sustainable development. The environmentally sound and sustainable development can be obtained through judicious use of technology. Technology as a resource transformer has emerged as the most important factor which can constitute to economic growth. But technology is not an independent and autonomous force, it is only an instrument which needs to be used carefully, properly and appropriately which necessitates technology management. (author)

  10. OCETA: services for environmental companies an technology developers

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, A.; Ozdemir, B. [Ontario Centre for Environmental Technology Advancement, Toronto, ON (Canada)

    1995-12-31

    Services provided by OCETA (Ontario Centre for Environmental Technology Advancement) to Ontario-based developers of environmental technologies, were described. While OCETA is not a granting agency, it is prepared to provide seed funding, in combination with private and government funding for client projects, and is committed to sharing risks and rewards for successful commercialization. The agency is also in a position to provide technology services at agreed discounts and to maximize in-kind contributions in order to extend project funding. Other services that the agency is equipped to provide, are described. These include information services, technology demonstration and assessment, business services, funding identification and sourcing, marketing, partnerships, and export market development.

  11. Developing innovative environmental technologies for DOE needs

    International Nuclear Information System (INIS)

    Devgun, J.S.; Sewell, I.O.; DeGregory, J.

    1995-01-01

    Environmental restoration and waste management activities at US Department of Energy (DOE) facilities are diverse and complex. Contamination at DOE sites and facilities includes radionuclides, chlorinated hydrocarbons, volatile organic compounds, non-aqueous phase liquids, and heavy metals, among others. Soil and groundwater contamination are major areas of concern and DOE has focused very significant efforts in these areas. Relevant technology development activities are being conducted at DOE's own national laboratories, as well as through collaborative efforts with other federal agencies and the private sector. These activities span research and development (R ampersand D) of new concepts and techniques to demonstration and commercialization of mature technologies. Since 1990, DOE has also supported R ampersand D of innovative technologies through interagency agreements with US Environmental Protection Agency (EPA), US Department of Defense, the National Science Foundation, and others

  12. Environmental policy and technological development in the Dutch economy

    International Nuclear Information System (INIS)

    Vollebergh, H.; Van Groenendaal, W.; Hofkes, M.; Kemp, R.

    2004-01-01

    An analysis is given of recent insights into technological development and the environment. In particular, attention is paid to the question whether it is possible or not to combine continuous economic development with a release of the environmental burden. In several chapters the authors provide insight and discuss theories with regard to innovation and adoption of new technologies, the concept of transition management and the importance of uncertainty with respect to the decision to invest in environment-friendly techniques or not. Also, much attention is paid to characteristics of the Dutch economy and their consequences for technology and environmental policy and related interactions [nl

  13. Roadmapping or development of future investments in environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Wilburn, D. (Dianne)

    2002-01-01

    This paper will summarize efforts in roadmapping SCFA technical targets, which could be used for selection of future projects. The timely lessons learned and insights will be valuable to other programs desiring to roadmap large amounts of workscope, but unsure how to successfully complete it, by adequately defining a strategy to develop alternatives and core technologies to ensure needed environmental technologies are available and allow delivery of viable alternatives. In early FY02, Los Alamos National Laboratory's Environmental Science and Waste Technology Program Office was working jointly with Idaho National Environmental Engineering Laboratory to define and develop science and technology mini-roadmaps. We were defining and developing these mini-roadmaps to provide direction and guidance for DOE's Environmental Management's (DOE-EM) Subsurface Contaminants Focus Area (SCFA) in their development of target technologies. DOE EM's Strategic Plan for Science and Technology provides guidance for meeting science and technology needs with a view of the desired future and the long-term strategy to attain it. Program and technology mini-roadmapping were to be used to establish priorities, set program and project direction, and identify the high-priority science and technology need areas according to this document. In the past, EM science and technology needs collection is achieved through the DOE Site Technology Coordination Groups (STCG) across the complex. A future system for needs collection has not been defined. However, there is a need for gap analyses and a technical approach for the prioritization of these needs for DOE-EM to be strategic and successful in their technology research, development, demonstration, and deployments. To define the R&D projects needed to solve particular problems and select the project with the largest potential payoff will require analysis for project selection. Mini-roadmaps could be used for setting goals and

  14. The 10th Anniversary Of Daejeon Environmental Technology Development Center

    International Nuclear Information System (INIS)

    2010-12-01

    This book describes the Daejeon Environment Technology Development Center with pictures for ten years. It also introduces the purpose of the foundation and background of center, structure of the center, main project and role of the center, center logo, current situation of cost of project, research business for 10 years, business supporting the environmental corporate, environment education, public relations activity and vision and prospect of the Daejeon Environmental Technology Development Center.

  15. Technology-based management of environmental organizations using an Environmental Management Information System (EMIS): Design and development

    Science.gov (United States)

    Kouziokas, Georgios N.

    2016-01-01

    The adoption of Information and Communication Technologies (ICT) in environmental management has become a significant demand nowadays with the rapid growth of environmental information. This paper presents a prototype Environmental Management Information System (EMIS) that was developed to provide a systematic way of managing environmental data and human resources of an environmental organization. The system was designed using programming languages, a Database Management System (DBMS) and other technologies and programming tools and combines information from the relational database in order to achieve the principal goals of the environmental organization. The developed application can be used to store and elaborate information regarding: human resources data, environmental projects, observations, reports, data about the protected species, environmental measurements of pollutant factors or other kinds of analytical measurements and also the financial data of the organization. Furthermore, the system supports the visualization of spatial data structures by using geographic information systems (GIS) and web mapping technologies. This paper describes this prototype software application, its structure, its functions and how this system can be utilized to facilitate technology-based environmental management and decision-making process.

  16. Technology development for nuclear fuel cycle waste treatment - Decontamination, decommissioning and environmental restoration (1)

    International Nuclear Information System (INIS)

    Lee, Byung Jik; Won, Hui Jun; Yoon, Ji Sup and others

    1997-12-01

    Through the project of D econtamination, decommissioning and environmental restoration technology development , the following were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Environmental remediation technology development. (author). 95 refs., 45 tabs., 163 figs

  17. Development of environmental radiation control technology

    International Nuclear Information System (INIS)

    Han, M. H.; Kim, E. H.; Keum, D. K.; Kang, M. J.; Jang, B. W.

    2010-04-01

    The objectives of the study are to development of an urban atmospheric dispersion model and data assimilation technique for improving the reliability, to develop the technology for assessing the radiation impact to biota and the surface water transport model, to develop the analytical techniques for the indicator radionuclides on decommissioning of nuclear facilities and nuclear waste disposal sites and to assess of the national environmental radiation impact and establish the optimum management bases of natural radiation. The obtained results might be used; for assessing the radiological effects due to and radiological incident in an urban area, for assessing radiation doses on biota for the environmental protection from ionizing radiation with the application of new concept of the ICP new recommendation, for analyzing the indicator radionuclides on decommissioning of nuclear facilities and nuclear waste disposal sites, and for providing the natural radionuclide database of Korea to international organizations such as UNSCEAR. It can be used for emphasizing relative nuclear safety

  18. The GETE approach to facilitating the commercialization and use of DOE-developed environmental technologies

    International Nuclear Information System (INIS)

    Harvey, T.N.

    1995-01-01

    The Global Environmental Technology Enterprise (GETE) was conceived to develop and implement strategies to facilitate the commercialization of innovative, cost-effective Department of Energy (DOE)-developed environmental technologies. These strategies are needed to aid DOE's clean-up mission; to break down barriers to commercialization; and to build partnerships between the federal government and private industry in order to facilitate the development and use of innovative environmental technologies

  19. The GETE approach to facilitating the commercialization and use of DOE-developed environmental technologies

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, T.N. [Global Environment & Technology Foundation, Annandale, VA (United States)

    1995-10-01

    The Global Environmental Technology Enterprise (GETE) was conceived to develop and implement strategies to facilitate the commercialization of innovative, cost-effective Department of Energy (DOE)-developed environmental technologies. These strategies are needed to aid DOE`s clean-up mission; to break down barriers to commercialization; and to build partnerships between the federal government and private industry in order to facilitate the development and use of innovative environmental technologies.

  20. Commercial development of environmental technologies for the automotive industry towards a new model of technological innovation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, W.W. II [Office of Planning and Research, Sacramento, CA (United States); Paolucci, E. [Politecnico di Torino University (Italy). Production and Economics Dept.

    2001-07-01

    Economic importance of environmental issues is increasing, and new technologies are expected to reduce pollution derived both from productive processes and products, with costs that are still unknown. Until now there is still little knowledge concerning the process of technological innovation in this field. What does exist, is outdated due to rapid change in technology. In this paper we analyse the development of Zinc Air Fuel Cells (ZAFC) and their transfer from research laboratories to large mass production. ZAFC are a new environmental technology, proved to have a commercial value, that can be used for building Zero Emission Vehicles (ZEV). Although ZAFC performances are higher than traditional lead-acid batteries ones, difficulties in funding ZAFC engineering and moving them from laboratories to production caused some years delay in their diffusion. On the bases of this paradigmatic case, we argue that existing economic and organizational literature concerning technological innovation is not able to fully explain steps followed in developing environmental technologies. Existing models mainly consider adoption problems as due to market uncertainty, weak appropriability regime, lack of a dominant design, and difficulties in reconfiguring organizational routines. Additionally, the following aspects play a fundamental role in developing environmental technologies, pointing out how technological trajectories depend both on exogenous market conditions and endogenous firm competencies: 1 regulations concerning introduction of ZEV create market demand and business development for new technologies; they impose constraints that can be met only by segmenting transportation market at each stage of technology development; 2 each stage of technology development requires alternative forms of division and coordination of innovative labour; upstream and downstream industries are involved in new forms of inter-firm relationships, causing a reconfiguration of product architecture

  1. Environmental science and technology

    International Nuclear Information System (INIS)

    2014-01-01

    The Program on Environmental Science and Technology developed at the Chemical and Environmental Technology Center comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalysts) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization). The Chemical and Environmental Technology Center was established in 1995, as an evolution of the former Department of Chemistry Engineering (1970). The program on environment science and technology was structured as consequence of the continuous growth of environmental activities on areas related to nuclear programs of IPEN. Moreover, it was an answer to the society concerning the climate changes and biodiversity preservation. All activities of research and development, services, supervision of graduate and under graduated students and courses performance at the center were related to the development, improvement and establishment of new technologies. The highlights of this period (2011 - 2013) were: - Development and use of modern analytical technology for the characterization of persistent pollutants and endocrine disrupters (metals, PAHA’s, PCBs, Pesticides, hormones, surfactants, plasticizer and human pharmaceuticals) in order to evaluate water quality and/or sediments; - Atmospheric chemistry and greenhouse gases: Evaluating an estimation of surface trace gas fluxes from aircraft measurements above the Amazon; - Cooperation with SABESP (Water and Sewage Company) and CETESB (State Environment Agency) in program for the development of public policies; - Studies and development in biodegradable polymers, polyolefins and advanced methods for polymer and rubber recycling and re-use; - Studies

  2. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Environmental Science and Technology developed at the Chemical and Environmental Technology Center comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalysts) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization). The Chemical and Environmental Technology Center was established in 1995, as an evolution of the former Department of Chemistry Engineering (1970). The program on environment science and technology was structured as consequence of the continuous growth of environmental activities on areas related to nuclear programs of IPEN. Moreover, it was an answer to the society concerning the climate changes and biodiversity preservation. All activities of research and development, services, supervision of graduate and under graduated students and courses performance at the center were related to the development, improvement and establishment of new technologies. The highlights of this period (2011 - 2013) were: - Development and use of modern analytical technology for the characterization of persistent pollutants and endocrine disrupters (metals, PAHA’s, PCBs, Pesticides, hormones, surfactants, plasticizer and human pharmaceuticals) in order to evaluate water quality and/or sediments; - Atmospheric chemistry and greenhouse gases: Evaluating an estimation of surface trace gas fluxes from aircraft measurements above the Amazon; - Cooperation with SABESP (Water and Sewage Company) and CETESB (State Environment Agency) in program for the development of public policies; - Studies and development in biodegradable polymers, polyolefins and advanced methods for polymer and rubber recycling and re-use; - Studies

  3. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    International Nuclear Information System (INIS)

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. WETO's environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies

  4. Environmental technology foresight : New horizons for technology management

    NARCIS (Netherlands)

    Den Hond, Frank; Groenewegen, Peter

    1996-01-01

    Decision-making in corporate technology management and government technology policy is increasingly influenced by the environmental impact of technologies. Technology foresight (TF) and environmental impact assessment (EIA) are analyzed with regard to the roles they can play in developing long-term

  5. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

  6. Encouraging environmentally strategic technologies

    International Nuclear Information System (INIS)

    Heaton, G.R.

    1994-01-01

    Having moved beyond its initial absorption with controlling new technology, environmental policy today must focus more strongly on promoting the development and adoption of new technologies. World Resource Institute's (WRI) ongoing study of 'environmentally strategic technology' is addressed to this fundamental policy issue. The study proposes criteria for identifying such technology, offers a specific list, suggests the kinds of public policy changes necessary to encourage their development and finally presents a comparison of critical technology lists (from the White House, the European Community, Japan and the US Department of Defense). (TEC)

  7. Driving forces and barriers for environmental technology development; Drivkrefter og barrierer for utvikling av miljoeteknologi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Driving forces and barriers behind development and usage of environmental technology is discussed, and also whether there are certain characteristics related to environmental innovations compared to other innovations in general. The development of environmental technology is in principle dominated by the same drivers and barriers as any other technology, but the order and strength of the various factors may be different. This examination as well as other empirical studies shows that regulations play a greater part for environmental technology than 'pure market forces'. To many participants it is important to be one step ahead of the regulations, i.e. the expected regulations are equally important as the factual ones in driving the technology development. Players in the business community express that it is important that the authorities cooperate with them when introducing new regulations. This will increase acceptance for the regulations and facilitate the necessary adjustments. The most important barrier in the development and use of the technologies studied is probably the lack of demand.

  8. Emerging environmental technologies and environmental technology policy

    Science.gov (United States)

    Clarke, Leon Edward

    This dissertation explores the role and design of environmental technology policy when environmental innovation is embodied in emerging environmental technologies such as photovoltaic cells or fuel cells. The dissertation consists of three individual studies, all of which use a simplified, general model industry between an emerging environmental technology and an entrenched, more-polluting technology. It clarifies the situations in which environmental technology policy can achieve high welfare and those in which it cannot; and it separates the possible situations an emerging environmental technology might face into four scenarios, each with its own technology policy recommendations. The second study attempts to clarify which of two factors is having a larger limiting effect on private investment in photovoltaics: the failure to internalize the environmental costs of fossil fuel electricity generation or a broad set of innovation market failures that apply to innovation irrespective of environmental concerns. The study indicates that innovation market failures are probably having a significantly larger impact than incomplete internalization. The third study explores the effectiveness of adoption subsidies at encouraging private-sector innovation. The conclusion is that adoption subsidies probably have only a limited effect on long-term, private-sector research. Two important general conclusions of the dissertation are (1) that optimal technology policy should begin with technology-push measures and end with demand-pull measures; and (2) that the technological response to internalization instruments, such as emissions taxes, may be highly nonlinear.

  9. Technology Strategy for 'Environmental Technology for the Future'; Technology Target Areas; TTA1 - environmental technology for the future

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The OG21 Technology Target Area 1 (TTA 1) group has produced a strategy for 'Environmental Technology for the Future'. A key aim of this work is to ensure that the operators on the Norwegian Continental Shelf (NCS) remain in a leading position with respect to environmental performance, while contributing to optimised resource recovery and value creation. This strategy focuses on environmental technology, which includes hardware, methods, software and knowledge. The TTA 1 group has agreed on a common vision: 'Norwegian oil and gas activities shall be leading in environmental performance, and Norway shall have the world leading knowledge and technology cluster within environmental technologies to support the zero harmful impact goals of the oil and gas industry.' Priorities have been made with emphasis on gaps that are considered most important to close and that will benefit from public research and development funding either for initialisation (primarily via the Petromaks and Climit programs) or acceleration (via Petromaks / Climit and particularly Demo 2000 where demonstration or piloting is required). The priorities aim to avoid technology gaps that are expected to be closed adequately through existing projects / programs or which are covered in other TTA strategies. The priority areas as identified are: Environmental impact and risk identification / quantification for new areas: Make quality assured environmental baseline data available on the web. Develop competence necessary to quantify and monitor the risks and risk reductions to the marine environment in new area ecosystems; Carbon capture and storage: Quantify environmental risks and waste management issues associated with bi-products from carbon capture processes and storage solutions. Develop and demonstrate effective carbon storage risk management, monitoring and mitigation technologies. Develop more cost and energy efficient power-from-shore solutions to reduce / eliminate CO{sub 2

  10. Environmental technology verification methods

    CSIR Research Space (South Africa)

    Szewczuk, S

    2016-03-01

    Full Text Available Environmental Technology Verification (ETV) is a tool that has been developed in the United States of America, Europe and many other countries around the world to help innovative environmental technologies reach the market. Claims about...

  11. AECL's research and development program in environmental science and technology

    International Nuclear Information System (INIS)

    Cornett, R.J.

    1998-07-01

    AECL's radiological research and development (R and D) program encompasses work on sources of radiation exposure, radionuclide transport through the environment and potential impacts on biota and on human health. The application of the radiation protection knowledge and technology developed in this program provides cradle-to-grave management for CANDU and related nuclear technologies. This document provides an overview of the Environmental Science and Technology (ES and T) program which is one of the technical areas of R and D within the radiological R and D program. The ES and T program uses science from three main areas: radiochemistry, mathematical modelling and environmental assessment. In addition to providing an overview of the program, this summary also gives specific examples of recent technical work in each of the three areas. These technical examples illustrate the applied nature of the ES and T program and the close coupling of the program to CANDU customer requirements. (author)

  12. The Center for Environmental Technology Innovative Technology Screening Process

    International Nuclear Information System (INIS)

    Bertrand, C.M.

    1995-02-01

    The Center for Environmental Technology's (CET) mission is to provide a fully integrated system for accelerated evaluation, development, commercialization, and public acceptance of creative environmental solutions which match the foremost demands in today's environmentally sensitive world. In short, CET will create a means to provide quick, effective solutions for environmental needs. To meet this mission objective, CET has created a unique and innovative approach to eliminating the usual barriers in developing and testing environmental technologies. The approach paves the way for these emerging, cutting-edge technologies by coordinating environmental restoration and waste management activities of industry, universities, and the government to: efficiently and effectively transfer technology to these users, provide market-driven, cost-effective technology programs to the public and DOE, and aid in developing innovative ideas by initiating efforts between DOE facilities and private industry. The central part to this mission is selecting and evaluating specific innovative technologies for demonstration and application at United States Department of Energy (DOE) installations. The methodology and criteria used for this selection, which is called the CET Innovative Technology Screening Process, is the subject of this paper. The selection criteria used for the screening process were modeled after other DOE technology transfer programs and were further developed by CET's Technology Screening and Evaluation Board (TSEB). The process benefits both CET and the proposing vendors by providing objective selection procedures based on predefined criteria. The selection process ensures a rapid response to proposing vendors, all technologies will have the opportunity to enter the selection process, and all technologies are evaluated on the same scale and with identical criteria

  13. Integrating environmental impact assessment into new product development and processing-technology selection

    NARCIS (Netherlands)

    Depping, Verena; Grunow, Martin; Middelaar, van Corina; Dumpler, Joseph

    2017-01-01

    Environmental-impact reduction potential is great early in new product development. To exploit this potential, this study evaluates novel combinations of existent processing technologies. Process engineering is combined with an environmental product assessment along the supply chain. In the dairy

  14. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy's (DOE's) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID's technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID

  15. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  16. Analysis of the environmental control technology for oil shale development

    Energy Technology Data Exchange (ETDEWEB)

    de Nevers, N.; Eckhoff, D.; Swanson, S.; Glenne, B.; Wagner, F.

    1978-02-01

    The environmental control technology proposed in the various oil shale projects which are under development are examined. The technologies for control of air pollution, water pollution, and for the disposal, stabilization, and vegetation of the processed shale were thoroughly investigated. Although some difficulties may be encountered in any of these undertakings, it seems clear that the air and water pollution problems can be solved to meet any applicable standard. There are no published national standards against which to judge the stabilization and vegetation of the processed shale. However, based on the goal of producing an environmentally and aesthetically acceptable finished processed shale pile, it seems probable that this can be accomplished. It is concluded that the environmental control technology is available to meet all current legal requirements. This was not the case before Colorado changed their applicable Air Pollution regulations in August of 1977; the previous ones for the oil shale region were sufficiently stringent to have caused a problem for the current stage of oil shale development. Similarly, the federal air-quality, non-deterioration regulations could be interpreted in the future in ways which would be difficult for the oil shale industry to comply with. The Utah water-quality, non-deterioration regulations could also be a problem. Thus, the only specific regulations which may be a problem are the non-deterioration parts of air and water quality regulations. The unresolved areas of environmental concern with oil shale processing are mostly for the problems not covered by existing environmental law, e.g., trace metals, polynuclear organics, ground water-quality changes, etc. These may be problems, but no evidence is yet available that these problems will prevent the successful commercialization of oil shale production.

  17. Political measures for promoting environmental technology

    International Nuclear Information System (INIS)

    2006-01-01

    Environmental technology can contribute to solving many environmental challenges and to industrial development. Measures to support the development and use of such technologies can be regulatory, economic or administrative, and usually one needs to use a combination of different measures in order to reach both a better environment and industrial development. For industrial development other measures than those administered by environmental authorities will be of importance. The environmental authorities therefore need to acquire knowledge about these measures and the bodies administering them, and develop an operative cooperation with these actors

  18. Global environmental technologies in the future

    International Nuclear Information System (INIS)

    Takahashi, M.

    1994-01-01

    This paper outlines the activities of New Energy and industrial Technology Development Organization's (NEDO) 'Research and Development of Industrial Technology' projects which are related to global environmental technologies. Then, it describes four new material programs and two biotechnology ones, and presents a list of a few environmentally-friendly technologies. These national projects are carried out by private companies which are consigned by NEDO in conformity with MITI's fundamental Research and Development policy. (TEC)

  19. Using the Case Study Technology in Developing the Students’ Environmental Competence

    Directory of Open Access Journals (Sweden)

    S. B. Ignatov

    2012-01-01

    Full Text Available The case study technology is considered to be an effective tool for developing the students’ environmental competence. Numerous modern interactive techniques, facilitating the competence approach, can be fitted into its framework. The essence of the case-study is defined as the teaching method of problem-solving. The technology in question makes it possible to use the so called triad of «training – education – development», and provides such teaching opportunities as streaming the students according to their interests, skills, abilities and psychological peculiarities; and, therefore, assigning the relevant and motivating individual tasks.The paper traces the history of the case-study, as well as some theoretical and methodological aspects of its implementation in teaching process; the pedagogic goals fulfilled by means of the given technology are listed along with its advantages compared to other methods. The «case-study» term, its structure and working algorithms are defined. The application examples relating to environmental education at different levels are given. 

  20. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This space suit system architecture and technologies required based on human exploration (EVA) destinations will be discussed, and how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and nonenvironmental design drivers that will become increasingly important as humans venture farther from Earth. The presentation of destination environmental data demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  1. Environmental management technology demonstration and commercialization

    International Nuclear Information System (INIS)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H.

    1995-01-01

    The Energy ampersand Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD ampersand C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE's Office of Environmental Science and Technology (EM-50) under DOE's EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies

  2. Environmental management technology demonstration and commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H. [Energy & Environmental Research Center, Grand Forks, ND (United States)] [and others

    1995-10-01

    The Energy & Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD&C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE`s Office of Environmental Science and Technology (EM-50) under DOE`s EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies.

  3. Environmental and institutional considerations in the development and implementation of biomass energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, C.

    1979-09-01

    The photosynthetic energy stored in plant and organic waste materials in the United States amounts to approximately 40% of the nation's total energy consumption. Conversion of this energy to usable power sources is a complex process, involving many possible materials, conversion technologies, and energy products. Near-term biomass technologies are predominantly based on traditional fuel use and have the advantage over other solar technologies of fitting into existing tax and business practices. However, no other solar technology has the potential for such large environmental impacts. Unlike the conversion of sun, wind, and ocean thermal energy, the conversion of the biomass energy source, in the form of biomass residues and wastes, can create problems. Environmental impacts may be significant, and legal responses to these impacts are a key determinant to the widespread adoption of biomass technologies. This paper focuses on the major legal areas which will impact on biomass energy conversion. These include (1) the effect of existing state and federal legislation, (2) the role of regulatory agencies in the development of biomass energy, (3) governmental incentives to biomass development, and (4) legal issues surrounding the functioning of the technologies themselves. Emphasis is placed on the near-term technologies whose environmental impacts and institutional limitations are more readily identified. If biomass energy is to begin to achieve its apparently great potential, these questions must receive immediate attention.

  4. Environmental Policy and Technological Change

    International Nuclear Information System (INIS)

    Jaffe, Adam B.; Newell, Richard G.; Stavins, Robert N.

    2002-01-01

    The relationship between technological change and environmental policy has received increasing attention from scholars and policy makers alike over the past ten years. This is partly because the environmental impacts of social activity are significantly affected by technological change, and partly because environmental policy interventions themselves create new constraints and incentives that affect the process of technological developments. Our central purpose in this article is to provide environmental economists with a useful guide to research on technological change and the analytical tools that can be used to explore further the interaction between technology and the environment. In Part 1 of the article, we provide an overview of analytical frameworks for investigating the economics of technological change, highlighting key issues for the researcher. In Part 2, we turn our attention to theoretical analysis of the effects of environmental policy on technological change, and in Part 3, we focus on issues related to the empirical analysis of technology innovation and diffusion. Finally, we conclude in Part 4 with some additional suggestions for research

  5. SIHTI - The research and development program of energy and environmental technology

    International Nuclear Information System (INIS)

    Pietilae, S.

    1991-01-01

    The SIHTI programme consists of the environmental part of the energy research programmes in Finland funded by the Ministry of Trade and Industry. Also industry participates in the funding of the projects especially the development projects. The main subject areas of the SIHTI programme are: Monitoring of international energy and environmental technology and national solution models, emissions from energy production, traffic emissions and emissions and discharges from fuel chains

  6. Radiation safety assessment and development of environmental radiation monitoring technology

    CERN Document Server

    Choi, B H; Kim, S G

    2002-01-01

    The Periodic Safety Review(PSR) of the existing nuclear power plants is required every ten years according to the recently revised atomic energy acts. The PSR of Kori unit 1 and Wolsong unit 1 that have been operating more than ten years is ongoing to comply the regulations. This research project started to develop the techniques necessary for the PSR. The project developed the following four techniques at the first stage for the environmental assessment of the existing plants. 1) Establishment of the assessment technology for contamination and accumulation trends of radionuclides, 2) alarm point setting of environmental radiation monitoring system, 3) Development of Radiation Safety Evaluation Factor for Korean NPP, and 4) the evaluation of radiation monitoring system performance and set-up of alarm/warn set point. A dynamic compartment model to derive a relationship between the release rates of gas phase radionuclides and the concentrations in the environmental samples. The model was validated by comparing ...

  7. An environmental assessment system for environmental technologies

    DEFF Research Database (Denmark)

    Clavreul, Julie; Baumeister, Hubert; Christensen, Thomas Højlund

    2014-01-01

    A new model for the environmental assessment of environmental technologies, EASETECH, has been developed. The primary aim of EASETECH is to perform life-cycle assessment (LCA) of complex systems handling heterogeneous material flows. The objectives of this paper are to describe the EASETECH...

  8. (Environmental technology)

    Energy Technology Data Exchange (ETDEWEB)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  9. THE ENVIRONMENTAL TECHNOLOGIES ACCEPTANCE (ETA) PROGRAM

    International Nuclear Information System (INIS)

    Behr-Andres, Christina B.

    2001-01-01

    The Environmental Technologies Acceptance (ETA) Program at the Energy and Environmental Research Center (EERC) is intended to advance the development, commercial acceptance, and timely deployment of selected private sector technologies for the cleanup of sites in the nuclear defense complex as well as the greater market. As shown in Table 1, this cooperative agreement funded by the National Energy Technology Laboratory (NETL) consists of three tasks: Technology Selection, Technology Development, and Technology Verification. As currently conceived, the ETA will address the needs of as many technologies as appropriate under its current 3-year term. This report covers activities during the first 6 months of the 3-year ETA program

  10. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    Directory of Open Access Journals (Sweden)

    Durán-García Martín Enrique

    2014-07-01

    Full Text Available Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the transfer of chemical technology requires technological-environmental criteria defining, in conjunction with other criteria, an adequate process for the selection, acquisition and incorporation of technology in a holistic perspective, so it provides feasible solutions the chemical industry in pursuit of their goals. Then the criterion becomes a benchmark for assessing an appropriate technology transfer process. We performed a theoretical analysis of the technological and environmental criteria, proposing thirty-six (36 technological-environmental criteria interrelated under a systemic approach in the process of transfer of chemical technology, focused on a methodological cycle first run, based primarily on the research-action method. Future research is expected to make a refinement of the criteria from the formulation and validation of metrics so that necessary adjustments are made to optimize the process of transfer of chemical technology.

  11. Three Mass. Firms Awarded EPA Research Grants to Develop Environmental Technologies by Small Businesses

    Science.gov (United States)

    Three small businesses in Massachusetts are among 15 firms nationwide selected by the U.S. Environmental Protection Agency to share $1.6 million in funding that is helping to develop technologies that provide sustainable solutions for environmental issues.

  12. The Savannah River environmental technology field test platform

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The Savannah River technology Center (SRTC) has been developing a program to rigorously field test promising environmental technologies that have not undergone EPA equivalency testing. The infrastructure and staff expertise developed as part of the activities of the Savannah River Integrated Demonstration Program allows field testing of technologies without the difficulties of providing remote field support. By providing a well-characterized site and a well-developed infrastructure, technologies are tested in actual field scenarios to determine their appropriate applications in environmental characterization and monitoring activities. The field tests provide regulatory organizations, potential industrial partners, and potential users with the opportunity to evaluate the technology's performance and its utility for implementation in environmental characterization and monitoring programs. This program has resulted in the successful implementation of several new technologies

  13. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This document has been prepared by the US Department of Energy`s (DOE`s) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE`s Operations Office and Energy Technology Centers.

  14. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    International Nuclear Information System (INIS)

    1996-03-01

    This document has been prepared by the US Department of Energy's (DOE's) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT ampersand E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE's Operations Office and Energy Technology Centers

  15. US Department of Energy Environmental Cleanup Technology Development program: Business and research opportunities guide

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The US Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) is charged with overseeing a multi-billion dollar environmental cleanup effort. EM leads an aggressive national research, development, demonstration, testing, and evaluation program to provide environmental restoration and waste management technologies to DOE sites, and to manage DOE-generated waste. DOE is firmly committed to working with industry to effectuate this cleanup effort. We recognize that private industry, university, and other research and development programs are valuable sources of technology innovation. The primary purpose of this document is to provide you with information on potential business opportunities in the following technical program areas: Remediation of High-Level Waste Tanks; Characterization, Treatment, and Disposal of Mixed Waste; Migration of Contaminants; Containment of Existing Landfills; Decommissioning and Final Disposition, and Robotics.

  16. EnviroTRADE: A technical perspective on the development of an information system providing data on environmental technologies and needs worldwide

    International Nuclear Information System (INIS)

    Harrington, M.W.; Harlan, C.P.

    1992-01-01

    In support of the US Department of Energy's commitment to the remediation of waste sites throughout its complex, the DOE has recognized that it can accelerate its technology development efforts and leverage the expenditure of available funds through an international cooperation among government entities, private industry, and educational institutions. To support the technology transfer of environmental information, the DOE has sponsored the development of EnviroTRADE - an international information system that will facilitate the exchange of environmental restoration and waste management technologies worldwide. The system will contain profiles on both environmental restoration / waste management needs and foreign / domestic technologies. Users will be able to identify matches between worldwide needs and available or emerging technologies. Where matches between needs and existing technologies are not found, the system will identify the potential for development of new and innovative technologies to address environmental problems. EnviroTRADE will also provide general information on international environmental restoration and waste management organizations, sites, activities, and contacts

  17. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-10-31

    The Deactivation and Decommissioning (D&D) Technology Assessment Program (TAP) was developed to provide detailed, comparable data for environmental technologies and to disseminate this data to D&D professionals in a manner that will facilitate the review and selection of technologies to perform decontamination and decommissioning. The objectives for this project include the following: Determine technology needs through review of the Site Technology Coordination Group (STCG) information and other applicable websites and needs databases; Perform a detailed review of industries that perform similar activities as those required in D&D operations to identify additional technologies; Define the technology assessment program for characterization and waste management problem sets; Define the data management program for characterization, dismantlement, and waste management problem sets; Evaluate baseline and innovative technologies under standard test conditions at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) and other locations and collect data in the areas of performance, cost, health and safety, operations and maintenance, and primary and secondary waste generation; Continue to locate, verify, and incorporate technology performance data from other sources into the multimedia information system; and Develop the conceptual design for a dismantlement technology decision analysis tool for dismantlement technologies.

  18. Environmental and process monitoring technologies

    International Nuclear Information System (INIS)

    Vo-Dinh, Tuan

    1993-01-01

    The objective of this conference was to provide a multidisciplinary forum dealing with state-of-the-art methods and instrumentation for environmental and process monitoring. In the last few years, important advances have been made in improving existing analytical methods and developing new techniques for trace detection of chemicals. These monitoring technologies are a topic of great interest for environmental and industrial control in a wide spectrum of areas. Sensitive detection, selective characterization, and cost-effective analysis are among the most important challenges facing monitoring technologies. This conference integrating interdisciplinary research and development was aimed to present the most recent advances and applications in the important areas of environmental and process monitoring. Separate abstracts have been prepared for 34 papers for inclusion in the appropriate data bases

  19. Proceedings of Opportunity '95 -- Environmental technology through small business

    International Nuclear Information System (INIS)

    Kothari, V.P.

    1994-11-01

    The Opportunity '95--Environmental Technology Through Small Business conference was held November 16--17, 1994, at the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. The overall objective of this conference was to review the latest environmental and waste management technologies being developed under the sponsorship of the Environmental Management--Office of Technology Development (EM-OTD) Program at METC. The focus of this conference was also to address the accomplishments and barriers affecting small businesses, and lay the groundwork for future technology development initiatives and opportunities. Twenty papers were presented in three EM-OTD focus areas: mixed waste characterization, treatment and disposal (6 papers); contaminant plume containment and remediation (6 papers); and facility transitioning, decommissioning and final disposition (8 papers). In addition to the presentations, nine posters of environmental management areas were displayed. A panel discussion was also held on technology development assistance to small businesses. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  20. Analysis of the environmental control technology for tar sand development

    Energy Technology Data Exchange (ETDEWEB)

    de Nevers, N.; Glenne, B.; Bryner, C.

    1979-06-01

    The environmental technology for control of air pollution, water pollution, and for the disposal, stabilization, and vegetation of the waste tar sand were thoroughly investigated. Although some difficulties may be encountered in any of these undertakings, it seems clear that the air and water pollution problems can be solved to meet any applicable standard. Currently there are two large-scale plants producing liquid fuels from tar sands in Alberta, Canada which use similar technology involving surface mining, hot water extraction, and surface disposal of waste sand. These projects all meet the Canadian environmental control regulations in force at the time they began. The largest US deposits of tar sands are much smaller than the Canadian; 95 percent are located in the state of Utah. Their economics do not appear as attractive as the Canadian deposits. The environmental control costs are not large enough to make an otherwise economic project uneconomic. The most serious environmental conflict likely to occur over the recovery of liquid fuels from the US deposits of tar sands is that caused by the proximity of the deposits to national parks, national monuments, and a national recreation area in Utah. These areas have very stringent air pollution requirements; and even if the air pollution control requirements can be met, there may still be adequate opposition to large-scale mining ventures in these areas to prevent their commercial exploitation. Another environmental constraint may be water rights availability.Essentially all of the water running in the Colorado river basin is now legally allocated. Barring new interpretations of the legality of water rights purchase, Utah tar sands developments should be able to obtain water by purchasing existing irrigation water rights.

  1. INTERNATIONAL ENVIRONMENTAL TECHNOLOGY IDENTIFICATION, DEVELOPMENT, DEMONSTRATION, DEPLOYMENT AND EXCHANGE

    Energy Technology Data Exchange (ETDEWEB)

    Roy C. Herndon

    2001-02-28

    Cooperative Agreement (DE-FC21-95EW55101) between the U.S. Department of Energy (DOE) and the Florida State University's Institute for International Cooperative Environmental Research (IICER) was designed to facilitate a number of joint programmatic goals of both the DOE and the IICER related to international technology identification, development, demonstration and deployment using a variety of mechanisms to accomplish these goals. These mechanisms included: laboratory and field research; technology demonstrations; international training and technical exchanges; data collection, synthesis and evaluation; the conduct of conferences, symposia and high-level meetings; and other appropriate and effective approaches. The DOE utilized the expertise and facilities of the IICER at Florida State University to accomplish its goals related to this cooperative agreement. The IICER has unique and demonstrated capabilities that have been utilized to conduct the tasks for this cooperative agreement. The IICER conducted activities related to technology identification, development, evaluation, demonstration and deployment through its joint centers which link the capabilities at Florida State University with collaborating academic and leading research institutions in the major countries of Central and Eastern Europe (e.g., Czech Republic, Hungary, Poland) and Russia. The activities and accomplishments for this five-year cooperative agreement are summarized in this Final Technical Report.

  2. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    Energy Technology Data Exchange (ETDEWEB)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B. [and others

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

  3. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    International Nuclear Information System (INIS)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B.

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management

  4. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    OpenAIRE

    Durán-García Martín Enrique

    2014-01-01

    Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the ...

  5. Heterogeneous technologies, strategic groups and environmental efficiency technology gaps for European countries

    International Nuclear Information System (INIS)

    Kounetas, Konstantinos

    2015-01-01

    This paper measures technology (TG) and environmental efficiency technology gaps (EETGs) in 25 European countries over two distinct periods 2002 and 2008 examining the possible effect of adopted environmental regulations and the Kyoto protocol commitments on environmental efficiency technology gaps. However, the introduction of the metafrontier in our analysis puts into our discussion the role of heterogeneous technologies and its effect on the above-mentioned measures. Employing a directional distance function, we investigate whether there is an actual difference, in terms of environmental efficiency and efficiency performance, among European countries considering the technological frontiers under which they operate. The construction of individual frontiers has been realized employing a large number of variables that are highly correlated with countries' learning and absorbing capacity, new technological knowledge and using economic theory and classical frontier discrimination like developed vs. developing, North vs. South and participation in the Eurozone or not. The overall results indicate a crucial role of heterogeneous technologies for technology gaps in both periods. Moreover, a significant decrease for both measures, although in different percent, has been recorded emphasizing the key role of knowledge spillovers. -- Highlights: •We estimate technology gaps (TGs) for 25 EU countries in two distinct periods. •We estimate environmental efficiency technology gaps (EETGs). •We consider countries' technological capabilities with R&D, innovation and eco-innovation. •We test the effect of different frontier constitutions on TGs-EETGs. •We denote the specific role of knowledge spillovers

  6. Environmental Decision Making and Information Technology: Issues Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Barg, S.; Fletcher, T.; Mechling, J.; Tonn, B.; Turner, R.

    1999-05-01

    This report presents a summary of the Information Technology and Environmental Decision Making Workshop that was held at Harvard University, October 1-3, 1998. Over sixty participants from across the US took part in discussions that focused on the current practice of using information technology to support environmental decision making and on future considerations of information technology development, information policies, and data quality issues in this area. Current practice is focusing on geographic information systems and visualization tools, Internet applications, and data warehousing. In addition, numerous organizations are developing environmental enterprise systems to integrate environmental information resources. Plaguing these efforts are issues of data quality (and public trust), system design, and organizational change. In the future, much effort needs to focus on building community-based environmental decision-making systems and processes, which will be a challenge given that exactly what needs to be developed is largely unknown and that environmental decision making in this arena has been characterized by a high level of conflict. Experimentation and evaluation are needed to contribute to efficient and effective learning about how best to use information technology to improve environmental decision making.

  7. United States Department Of Energy Office Of Environmental Management Waste Processing Annual Technology Development Report 2008

    International Nuclear Information System (INIS)

    Bush, S.

    2009-01-01

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5

  8. Technology development and applications at Fernald

    International Nuclear Information System (INIS)

    Pettit, P.J.; Skriba, M.C.; Warner, R.D.

    1995-01-01

    At the Fernald Environmental Management Project (FEMP) northwest of Cincinnati, Ohio, the U.S. Department of Energy and contractor Fernald Environmental Restoration Management Corporation (FERMCO) are aggressively pursuing both the development and the application of improved, innovative technology to the environmental restoration task. Application of emerging technologies is particularly challenging in a regulatory environment that places pressure on operational managers to develop and meet tight schedules. The regulatory and operational needs make close communication essential between technology developers and technology users (CERCLA/RCRA Unit managers). At Fernald this cooperation and communication has led, not only to the development and demonstration of new technologies with applications at other sites, but also to application of new technologies directly to the Fernald clean up. New technologies have been applied to improve environmental safety and health, improve the effectiveness of restoration efforts, and to cut restoration costs. The paper will describe successful efforts to develop and apply new technologies at the FEMP and will emphasize those technologies that have been applied and are planned for use in the clean up of this former uranium production facility

  9. Environmental Consequences of Pig Slurry Treatment Technologies

    DEFF Research Database (Denmark)

    ten Hoeve, Marieke

    occur during manure storage and after field application. The main emissions are ammonia, nitrous oxide, methane, carbon dioxide, nitrate, phosphorus and odour. Slurry treatment technologies have been and are being developed in order to reduce the environmental impacts of manure. However, it is important...... and excluding biogenic carbon, marine and freshwater eutrophication potential, terrestrial acidification and eutrophication potential, and fossil resource depletion potential. The different types of treatment technologies showed varying environmental profiles, meaning that one type of technology was beneficial...... technology, or co-substrate for anaerobic digestion). With respect to odorous emissions, an LCIA method was developed, but due to a lack of data it proved difficult to include odour in LCA. Regulations appear to have an influence on the environmental impacts of slurry treatment. A decrease in N application...

  10. Dynamics of FDI, Technological Transformation and Environmental Degradation in Developing Countries: A Panel Analysis

    Directory of Open Access Journals (Sweden)

    Farwa Amjad

    2016-03-01

    Full Text Available This paper examines the relationship between FDI, technology and environment with an assessment of aggregated relationship, by technical composition and the mode of technology transferability through FDI. A panel data for 19 developing countries has been used to for 14 years of data. The empirical results have suggested that FDI is the significant variable in explaining the carbon emission in developing countries followed by energy consumption and technology transformation. Our findings suggest that to manage both energy consumption and FDI flows via investment in research and development (RDY or energy efficiency demand to reduce CO2 emissions is not possible without stringent environmental regulations and without retaining the developing countries’ competitiveness.

  11. SIHTI 2 - Energy and environmental technology

    International Nuclear Information System (INIS)

    Saviharju, K.; Johansson, A.

    1993-01-01

    The programme is divided into system and technology parts. The aim of system studies is to determine, on the basis of lifecycle analyses, long-term environmental-technological aims for various fields (energy, industry) and to find out an optimum strategy for reaching these aims. The analysis will give data on emission reduction costs and on fields, where technical improvements are required, and will determine the limits set by environmental factors for future technical development. Environmental impacts will be discussed from national and economic viewpoints. Technological development is dependent on new ideas. The aim is to indicate possibilities for reducing emissions from energy use of peat and wood, for low-emission production at least on one industrial field (wood-processing industry), to establish emission measuring and control methods, to indicate utilization alternatives for solid matter separated at power plants, and to find out operable alternatives for the energy use of wastes. Other ventures of significance will also be financed: survey of 'new' emissions and development of their measuring and purification methods. The field of the programme will be divided into synergic sub-fields: systematics of emission chains, fields of operation (energy and environment problems in the wood-processing industries), development of flue gas purification technology, measuring and control technology, by-products of power plants, emissions from peat production, etc

  12. Environmental issues affecting clean coal technology deployment

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-31

    The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mention many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.

  13. Technology diffusion, product differentiation and environmental subsidies

    Energy Technology Data Exchange (ETDEWEB)

    McGinty, M. [Univ. of Wisconsin, Milwaukee, WI (United States). Dept. of Economics; Vries, F.P. de [Univ. of Groningen (Netherlands). Dept. of Law and Economics

    2007-07-01

    Technological change is often seen as the promising device that will mitigate or solve environmental problems. Policy intervention that spurs the development, adoption and diffusion of new, environmentally benign technologies therefore holds great appear for environmental authorities. Policymakers have various instruments at their disposal to affect technological diffusion, ranging from direct regulation (command-and-control strategies) to market-based instruments, such as taxes, subsidies and tradable pollution permits. This paper examines environmental subsidies as a technology diffusion policy. The authors apply evolutionary game theory to explore the relationship between subsidies for clean technology, the diffusion of that technology and the degree of product differentiation in an imperfectly competitive market. They show that the subsidy succeeds in reducing environmental damage only when the substitution effect (the reduction in pollution associated with the clean technology) exceeds the output effect (the extent that the subsidy increases output). When the substitution effect does dominate, environmental damage decreases monotonically during the diffusion process. The extent of diffusion (the degree to which clean technolgy replaces dirty) and the likelihood that the substitution effect will dominate both decrease with the extent of product differentiation. Finally, the subsidy for clean technology will spill over to the remaining dirty producers increasing their profit as well.

  14. Developing an Environmental Performance Index (EPI: a focus on impacts of information and communication technology use

    Directory of Open Access Journals (Sweden)

    C Mbohwa

    2011-07-01

    Full Text Available There is a growing need for environmental performance measures that can be used by all stakeholders like surrounding communities, customers, suppliers and shareholders to gauge the environmental performance of organizations. The environmental performance measures that are used worldwide are normally not suitable for benchmarking organizations. This paper develops an environmental performance index using indicator and weight matrices of the full life cycle phases of an organization’s energy use for environmental management system activities. This work is transdisciplinary in nature and applies mathematical matrices and environmental productivity approaches, and borrows from the development of quality indices to consider a variety of impacts that cut across various phases of a product life cycle and different functions within an organization. The focus is on information and communication technology use in these systems. The model is applied to the Japanese automotive industry and the findings show that it is feasible and effective for comparing the environmental performance of companies in the same sector using the same weight matrices and indicators agreed to. The work informs decision making on the development of environmental performance measures that have worldwide applications, across many disciplines, in situations where suitable data are recorded. It also contributes to efforts on economic and social sustainability. Research efforts in similar areas in Southern Africa can benefit from the development and improvement of the proposed methodology. Keywords: Environmental performance index, indicator and weight matrices, benchmarking Disciplines: Information and Communications Technology Studies (ICT, Environmental Studies, Economics, Sustainability Studies

  15. Environmental regulation and the export dynamics of energy technologies

    International Nuclear Information System (INIS)

    Costantini, Valeria; Crespi, Francesco

    2008-01-01

    The pollution haven hypothesis affirms that an open market regime will encourage the flow of low-technology polluting industries towards developing countries because of potential comparative advantages related to low environmental standards. In contrast, the hypothesis suggested by Porter and van der Linde claims that innovating firms operate in a dynamic competitive situation which allows global diffusion of environmental-friendly technologies. Environmental regulation may represent a relevant mechanism through which technological change is induced. In this way, countries that are subject to more stringent environmental regulations may become net exporters of environmental technologies. This paper provides new evidence on the evolution of export flows of environmental technologies across different countries for the energy sector. Advanced economies, particularly the European Union, have increasingly focused on the role of energy policies as tools for sustaining the development path. The Kyoto Protocol commitments, together with growing import dependence on energy products, have brought attention to the analysis of innovation processes in this specific sector. The analysis uses a gravity model in order to test the determinants and the transmission channels through which environmental technologies for renewable energies and energy efficiency are exported to advanced and developing countries. Our results are consistent with the Porter and van der Linde hypothesis where environmental regulation represents a significant source of comparative advantages. What strongly emerges is that the stringency of environmental regulation supplemented by the strength of the National Innovation System is a crucial driver of export performance in the field of energy technologies. (author)

  16. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The environmental Science and Technology Program was structured based on the continuous growth of environmental activities on areas related to nuclear programs at IPEN. The program comprehends five main areas: Environmental analysis: Chemical technology; Polymer technology nucleus: Chemical and Isotope characterization and Analytical Chemistry for the Nuclear Fuel Cycle samples.

  17. China’s Pursuit of Environmentally Sustainable Development: Harnessing the New Engine of Technological Innovation

    OpenAIRE

    Jin, Wei; Zhang, ZhongXiang

    2016-01-01

    Whether China continues its business-as-usual investment-driven, environment-polluting growth pattern or adopts an investment and innovation-driven, environmentally sustainable development holds important implications for both national and global environmental governance. Building on a Ramsey-Cass-Koopmans growth model that features endogenous technological change induced by R&D and knowledge stock accumulation, this paper presents an exposition, both analytically and numerically, of the mech...

  18. The EM technology development strategy

    International Nuclear Information System (INIS)

    Frank, C.W.; Barainca, M.; Kubo, A.S.

    1992-01-01

    The Office of Technology Development (TD) supports research and development of technologies that will lower cost, reduce risk, improve safety, and accelerate cleanup of the Nuclear Weapons Complex and provide solutions to currently untractable environmental problems. The TD strategic plan outlines Applied Research, Development, Demonstration, Testing, and Evaluation (RDDT and E) that will provide needed technology products to be used by Environmental Restoration and Waste Management operations (i.e., our customers). The TD strategic plan is derived from EM Goals, Objectives, and Strategy and is incorporated into DOE'S Five-Year Plan for Environmental Restoration and Waste Management. The TD strategic plan is developed based on integrating customer requirements, and is complemented by a top-down, bottom-up analysis of Site Specific Technology Needs and environmental problems. The execution of TD's strategic plan is implemented largely through Integrated Programs (IP) and Integrated Demonstrations (ID). IDs have proven to be a cost-effective method of managing technology development, testing and evaluation, and implementation of successful technology systems into the DOE Environmental Restoration and Waste Management Programs. The Savannah River ID for Volatile Organic Compounds (VOCs) in Saturated Soils resulted in a 51 percent cost savings over stand-alone demonstrations, saving over $8 million. The IPs and IDs are selected based on customer needs, technical complexity, and complex-wide regulatory and compliance agreements. New technology systems are selected for incorporation into an IP or ID from offerings of the DOE laboratories, industry, and the universities. A major TD initiative was announced in August 1991, with the release of a Program Research and Development Announcement (PRDA) requesting industry and universities to propose innovative new technologies to clean up the Weapons Complex. (author)

  19. Environmental control technology in petroleum drilling and production

    International Nuclear Information System (INIS)

    Wojtanowicz, A.K.

    1997-01-01

    Environmental control technology (ECT) is process integrated and relates mainly to pollution prevention and risk assessment. Mechanisms of environmental impact in petroleum drilling, well completion and production, include the generation of waste, induction of toxicity or the creation of pathways for pollutant migration. The identification and evaluation of these mechanisms constitute two parts of the scope of ECT. A third part is the development of new techniques to comply with environmental requirements without prejudicing productivity. The basic concepts of the ECT approach are presented in this chapter. The approach is then used to analyse oilfield drilling and production processes. Environmental control components developed in these technologies are described. These include: the control of the volume and toxicity of drilling fluids; source separation technology in produced water cleaning; subsurface injection of oilfield waste slurries; containment technology in the integrity of petroleum wells; subsurface reduction of produced water; oilfield pit closure technology. (37 figures; 26 tables; 227 references) (UK)

  20. The Western Environmental Technology Office (WETO) Butte, Montana

    International Nuclear Information System (INIS)

    1994-10-01

    This document has been prepared to highlight the research, development, demonstration, testing and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. This information has been assembled from recently produced Office of Technology Development (OTD) documents which highlight technology development activities within each of the OTD program elements. Projects include: Heavy metals contaminated soil project; In Situ remediation integrated program; Minimum additive waste stabilization program; Resource recovery project; Buried waste integrated demonstration; Mixed waste integrated program; Pollution prevention program; and Mine waste technology program

  1. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bush, S.

    2009-11-05

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5

  2. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan

    International Nuclear Information System (INIS)

    1991-01-01

    This plan covers robotics Research, Development, Demonstration, Testing and Evaluation activities in the Program for the next five years. These activities range from bench-scale R ampersand D to full-scale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development Program (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management (ER ampersand WM) operations at DOE sites to be safer, faster and cheaper. Five priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER ampersand WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. In July 1990 a forum was held announcing the robotics program. Over 60 organizations (industrial, university, and federal laboratory) made presentations on their robotics capabilities. To stimulate early interactions with the ER ampersand WM activities at DOE sites, as well as with the robotics community, the RTDP sponsored four technology demonstrations related to ER ampersand WM needs. These demonstrations integrated commercial technology with robotics technology developed by DOE in support of areas such as nuclear reactor maintenance and the civilian reactor waste program. 2 figs

  3. United States Department Of Energy Office Of Environmental Management Technology Development Report Fiscal Year 2010

    International Nuclear Information System (INIS)

    Bush, S.

    2010-01-01

    The mission of the Department of Energy's (DOE's) Office of Environmental Management (EM) is to clean up the environmental legacy of nuclear weapons research and production during the Cold War. That mission includes cleaning up nuclear waste, contaminated groundwater and soil, nuclear materials, and contaminated facilities covering two million acres of land in thirty-five states. EM's principal program goals include timely completion of tank waste treatment facilities, reduction of the life-cycle costs and acceleration of the cleanup of the Cold War legacy, and reduction of the EM footprint. The mission of the EM Technology Innovation and Development program is to transform science and innovation into practical solutions to achieve the EM mission. During fiscal year 2010 (October 2009-September 2010), EM focused upon accelerating environmental cleanup by expeditiously filling identified gaps in available knowledge and technology in the EM program areas. This report describes some of the approaches and transformational technologies in tank waste processing, groundwater and soil remediation, nuclear materials disposition, and facility deactivation and decommissioning developed during fiscal year 2010 that will enable EM to meet its most pressing program goals.

  4. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT TECHNOLOGY DEVELOPMENT REPORT FISCAL YEAR 2010

    Energy Technology Data Exchange (ETDEWEB)

    Bush, S.

    2010-10-22

    The mission of the Department of Energy's (DOE's) Office of Environmental Management (EM) is to clean up the environmental legacy of nuclear weapons research and production during the Cold War. That mission includes cleaning up nuclear waste, contaminated groundwater and soil, nuclear materials, and contaminated facilities covering two million acres of land in thirty-five states. EM's principal program goals include timely completion of tank waste treatment facilities, reduction of the life-cycle costs and acceleration of the cleanup of the Cold War legacy, and reduction of the EM footprint. The mission of the EM Technology Innovation and Development program is to transform science and innovation into practical solutions to achieve the EM mission. During fiscal year 2010 (October 2009-September 2010), EM focused upon accelerating environmental cleanup by expeditiously filling identified gaps in available knowledge and technology in the EM program areas. This report describes some of the approaches and transformational technologies in tank waste processing, groundwater and soil remediation, nuclear materials disposition, and facility deactivation and decommissioning developed during fiscal year 2010 that will enable EM to meet its most pressing program goals.

  5. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.

  6. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    International Nuclear Information System (INIS)

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO's environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO's areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation's largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST's Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management

  7. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan

    International Nuclear Information System (INIS)

    1991-01-01

    This plan covers robotics Research, Development, Demonstration, Testing, activities in the Program for the next five years. These activities range from bench-scale R ampersand D to fullscale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and an initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management operations at DOE sites to be safer, faster and cheaper. Five priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER ampersand WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. This 5-Year Program Plan discusses the overall approach to be adopted by the RTDP to aggressively develop robotics technology and contains discussions of the Program Management Plan, Site Visit and Needs Summary, Approach to Needs-Directed Technical Development, Application-Specific Technical Development, and Cross-Cutting and Advanced Technology. Integrating application-specific ER ampersand WM needs, the current state of robotics technology, and the potential benefits (in terms of faster, safer, and cheaper) of new technology, the Plan develops application-specific road maps for robotics RDDT ampersand E for the period FY 1991 through FY 1995. In addition, the Plan identifies areas where longer-term research in robotics will have a high payoff in the 5- to 20-year time frame. 12 figs

  8. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with

  9. Partnership for Environmental Technology Education

    International Nuclear Information System (INIS)

    Dickinson, Paul R.; Fosse, Richard

    1992-01-01

    The need for broad cooperative effort directed toward the enhancement of science and mathematics education, including environmental science and technology has been recognized as a national priority by government, industry, and the academic community alike. In an effort to address this need, the Partnership for Environmental Technology Education (PETE) has been established in the five western states of Arizona, California, Hawaii, Nevada and Utah. PETE'S overall objectives are to link the technical resources of the DOE, ERA, and NASA Laboratories and private industry with participating community colleges to assist in the development and presentation of curricula for training environmental-Hazardous Materials Technicians and to encourage more transfer students to pursue studies in environmental science at four-year institutions. The program is co-sponsored by DOE and EPA. DoD participation is proposed. PETE is being evaluated by its sponsors as a regional pilot with potential for extension nationally. (author)

  10. EPA-developed, patented technologies related to miscellaneous areas of environmental experties and invention that are available for licensing

    Data.gov (United States)

    U.S. Environmental Protection Agency — Under the Federal Technology Transfer Act (FTTA), Federal Agencies can patent inventions developed during the course of research. These technologies can then be...

  11. The Clean Development Mechanism and neglected environmental technologies

    International Nuclear Information System (INIS)

    Kim, Jung Eun; Popp, David; Prag, Andrew

    2013-01-01

    The Clean Development Mechanism (CDM) provides an institutional framework for developed countries to support projects that reduce greenhouse gas emissions in developing countries. Are the technologies promoted those most needed by the recipient countries? We address this question by first reviewing Technology Needs Assessments prepared by developing countries, and then comparing the stated needs to the technologies most frequently promoted via CDM. While there appears to be a good match between requested technologies and those used in CDM, desired technologies such as solar energy for remote locations, biofuels, improved cooking stoves, and efficient lighting appear “neglected” by CDM. Nonetheless, a review of costs for these technologies suggests that many could be cost effective for developing countries. For projects requiring wide dispersal of household items, such as cooking stoves or lighting, the administrative burdens of CDM provide a hurdle. In other cases, difficulties quantifying the ancillary benefits of these projects hinder the promotion of these technologies. We conclude with possible explanations for why these technologies are neglected and suggestions for future research. - Highlights: ► We identify technologies desired by developing countries but not provided via CDM. ► Solar PV is neglected due to high costs. ► The CDM process provides a hurdle for improved cooking stoves and efficient lighting. ► Implications for CDM and climate policy are discussed

  12. Development of advanced treatment technologies of radio-aqueous waste by an environmental friendly decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Wook; Lee, E. H.; Moon, J. K. and others

    2006-01-15

    This project was aimed at the technology developments of electrode fabrication, electrolytic reactor design and fabrication, electrolytic processes and the analyses of electroytic reaction mechanisms, which were essential elements for the development of electrolytic systems to decompose or teat environmentally- friendly the several salts contained in waste solutions which are to be generated in the fields of nuclear/non-nuclear industries. Major research items carried our in this project were as follows; - Development of technologies to choose and fabricate the anodes and cathodes for the treatments of waste solutions containing nitrogen compounds and organics. - Development of a membrane electrolyzer stacked by mono-polar unit cells with independent series flow path of electrolytes - Development of an electrolyzer with a self-pH adjustment and an electrolytic process for ammonia decomposition by using the electrolyzer - Analysis of electrolytic reaction mechanism of ammonia - Development of an ion exchange membrane electrolyzer with only one discharge of pH-controlled electrolyte solution - Development of electrolytic dechlorination technology for the treatment of chloride molten salt waste salt from pyroprocess. - Development of technologies for treatment of high concentration nitric acid and recovery of waste organic solvent.

  13. Development of monitoring technology for environmental radioactivity

    International Nuclear Information System (INIS)

    Lee, Chang Woo; Cho, Young Hyun; Lee, M. H.; Choi, K. S.; Hong, K. H.; Sin, H. S.; Kim, M. K.; Pak, J. H.

    2000-05-01

    The accurate and reliable determination techniques of the radioactive isotopes in environmental samples are very important to protect public health from the potential hazards of radiation. Isolation and purification of radiostrontium from environmental aqueous sample was performed by using strontium selectively binding resin (Sr-spec) and strontium selectively permeable liquid membrane. Radioactivity of radiostrontium was measured by liquid scintillation counter coupled with dual counting window and spectrum unfolding method. With combustion apparatus a new determination of Tc-99 in the environmental samples was developed for overcoming demerits of conventional TBP extraction method. An optimized method for determining beta-emitting 2 41Pu in the presence of alpha-emitting nuclides was developed using a liquid scintillation counting system. A method for measuring Rn-222 and Ra-226 in aqueous sample using liquid scintillation counting technique has studied. On-line measurement system coupled with ion chromatography and portable liquid scintillation detector was developed. U and Th measured by inductively coupled plasma mass spectrometry (ICP-MS). The mehtod of flow-injection preconcentration for the analysis of U and Th in seawater was developed. A new electrodeposition method for alpha spectrometry was developed

  14. Development of monitoring technology for environmental radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo; Cho, Young Hyun; Lee, M. H.; Choi, K. S.; Hong, K. H.; Sin, H. S.; Kim, M. K.; Pak, J. H

    2000-05-01

    The accurate and reliable determination techniques of the radioactive isotopes in environmental samples are very important to protect public health from the potential hazards of radiation. Isolation and purification of radiostrontium from environmental aqueous sample was performed by using strontium selectively binding resin (Sr-spec) and strontium selectively permeable liquid membrane. Radioactivity of radiostrontium was measured by liquid scintillation counter coupled with dual counting window and spectrum unfolding method. With combustion apparatus a new determination of Tc-99 in the environmental samples was developed for overcoming demerits of conventional TBP extraction method. An optimized method for determining beta-emitting {sup 2}41Pu in the presence of alpha-emitting nuclides was developed using a liquid scintillation counting system. A method for measuring Rn-222 and Ra-226 in aqueous sample using liquid scintillation counting technique has studied. On-line measurement system coupled with ion chromatography and portable liquid scintillation detector was developed. U and Th measured by inductively coupled plasma mass spectrometry (ICP-MS). The mehtod of flow-injection preconcentration for the analysis of U and Th in seawater was developed. A new electrodeposition method for alpha spectrometry was developed.

  15. Environmental science and technology: An overview

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is intended to provide an overview of the scientific and technological effort to meet the environmental goals identified in the Green Plan. The report gives a sense of the range of scientific and technological efforts that are being devoted to issues as diverse as conserving our wildlife and national parks and developing innovative technologies to clean-up polluted sites.

  16. A survey of environmental needs and innovative technologies in Germany

    International Nuclear Information System (INIS)

    Voss, C.F.; Roberds, W.J.

    1995-05-01

    The International Technology Program (IT?), formerly the international Technology Exchange Program (ITEP), of the Department of Energy's (DOE's) Office of Environmental Restoration and Waste Management (EM) is responsible for promoting: (1) the import of innovative technologies to better address EM's needs; and (2) the export of US services into foreign markets to enhance US competitiveness. Under this program: (1) the environmental restoration market in Germany was evaluated, including the description of the general types of environmental problems, the environmental regulations, and specific selected contaminated sites; and (2) potentially innovative environmental restoration technologies, either commercially available or under development in Germany, were identified, described and evaluated. It was found that: (1) the environmental restoration market in Germany is very large, on the order of several billion US dollars per year, with a significant portion possibly available to US businesses; and (2) a large number (54) of innovative environmental restoration technologies, which are either commercially available or under development in Germany, may have some benefit to the DOE EM program and should be considered for transfer to the US

  17. Critical materialism: science, technology, and environmental sustainability.

    Science.gov (United States)

    York, Richard; Clark, Brett

    2010-01-01

    There are widely divergent views on how science and technology are connected to environmental problems. A view commonly held among natural scientists and policy makers is that environmental problems are primarily technical problems that can be solved via the development and implementation of technological innovations. This technologically optimistic view tends to ignore power relationships in society and the political-economic order that drives environmental degradation. An opposed view, common among postmodernist and poststructuralist scholars, is that the emergence of the scientific worldview is one of the fundamental causes of human oppression. This postmodernist view rejects scientific epistemology and often is associated with an anti-realist stance, which ultimately serves to deny the reality of environmental problems, thus (unintentionally) abetting right-wing efforts to scuttle environmental protection. We argue that both the technologically optimistic and the postmodernist views are misguided, and both undermine our ability to address environmental crises. We advocate the adoption of a critical materialist stance, which recognizes the importance of natural science for helping us to understand the world while also recognizing the social embeddedness of the scientific establishment and the need to challenge the manipulation of science by the elite.

  18. Divison of Environmental Control Technology program, 1978

    International Nuclear Information System (INIS)

    1979-06-01

    This report covers Division of Environmental Control Technology projects in progress during FY 1978, within the Office of the Assistant Secretary for Environment, Department of Energy. It is the second in a planned series of annual reports. The Division of Environmental Control Technology (ECT) continues to support the Assistant Secretary for Environment (EV) in discharging two primary responsibilities: (1) under the Environmental Engineering (EE) Program, the independent overview and assessment of environmental control aspects of both the U.S. Department of Energy's (DOE) research, development, and demonstration (RD and D) programs and the Nation's energy policies, and (2) under the Decontamination and Decommissioning Program, the reduction of potential environmental hazards at the radioactively contaminated sites that are presently owned or were formerly used by the Government. This report presents a short summary of objectives, approach, progress and results, future plans, and a reference bibliography for each research, development, or assessment project within the program areas described above

  19. Divison of Environmental Control Technology program, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Mott, William E.

    1979-06-01

    This report covers Division of Environmental Control Technology projects in progress during FY 1978, within the Office of the Assistant Secretary for Environment, Department of Energy. It is the second in a planned series of annual reports. The Division of Environmental Control Technology (ECT) continues to support the Assistant Secretary for Environment (EV) in discharging two primary responsibilities: (1) under the Environmental Engineering (EE) Program, the independent overview and assessment of environmental control aspects of both the U.S. Department of Energy's (DOE) research, development, and demonstration (RD and D) programs and the Nation's energy policies, and (2) under the Decontamination and Decommissioning Program, the reduction of potential environmental hazards at the radioactively contaminated sites that are presently owned or were formerly used by the Government. This report presents a short summary of objectives, approach, progress and results, future plans, and a reference bibliography for each research, development, or assessment project within the program areas described above.

  20. U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: ARSENIC MONITORING TECHNOLOGIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency Environmental Technology Verification (ETV) program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This technology ...

  1. 1992 yearbook of environmental and technology-related law

    International Nuclear Information System (INIS)

    Schroeder, M.

    1992-01-01

    The 1992 and sixth edition of this yearbook contains papers on environmental and technology-related law in the European Communities and the Federal Republic of Germany including among other things information on the latest jurisdiction by the European Court of Justice; insurability of environmental damage; scientific aspects of limit values. There are also treatises on non-German and comparative as well as international environmental and technology- related law which deal among other things with atomic and immission protection law and on harmonization and codification from a general point of view. Finally, some papers report on developments of national and European environmental and technology-related law. Three of the fifteen contributions have been abstracted separately. (HSCH) [de

  2. Overview of emerging environmental technologies

    International Nuclear Information System (INIS)

    Olson, D.C.

    2000-01-01

    DOD is executing environmental restoration projects in accordance with compliance regulations from many federal agencies. With the passage of amendments to the Superfund law in 1986 that stated a preference for treatment instead of disposal, demand developed for alternative methods that provided more permanent and less costly solutions for dealing with contaminated materials. The Army files environmental impact statements on major programs and specific projects that are currently affecting, or have the potential to affect the environment. Personnel conducting those studies may find it helpful to learn about current environmental assessment methods and the outcomes of previous environmental studies. The Army currently spends almost 2.4% of its total budget on environmental programs. As the future budget picture continues to decline, new technologies offer the potential to provide a lower cost means of achieving the same level of environmental protection. This paper will provide an overview of environmental restoration planning and procedures, discuss information capabilities available on the Internet, provide summaries of recent technological literature and field studies; and identifies areas of informational 'gaps'. It concludes by urging closer ties between industry and the Army, as well as the need to pursue new and innovative techniques to solve old problems. (author)

  3. Environmental radiation sensing technologies

    International Nuclear Information System (INIS)

    Nishizawa, Hiroshi; Inomata, Kenji; Tamuro, Masaru; Fujita, Kazuhiko

    2013-01-01

    After the Fukushima nuclear accident, environmental radiation monitoring and radioactivity measurement of contamination of wastes, soils, food and drinking water were needed in accurate and reliable way. Based on radiation sensing technologies and radiation and light coupled analysis method, new environmental radiation measurement system for simple monitoring post without exclusive house and also portable monitoring post for temporary use were developed with low cost. Measurement accuracy was improved by real-time processing of detected pulses and corrected non-linearity of low-energy range by analysis. Environmental performance was upgraded to assure detector gain with compensated against temperature change and aging. Inspection and maintenance were also simplified using touch panel display with standardized application menu and data format. (T. Tanaka)

  4. The Relationship Between Technological Development and Environmental Effects

    DEFF Research Database (Denmark)

    Madsen, Henning

    Consumption of energy for private and commercial purposes is a factor which has many effects in our daily life and thus on our environment and our society as such. And since energy can be produced by a variety of methods some of which have larger effects on the environment than other it is obvious...... to consider how the effect of the damaging methods can be avoided. But it is not possible just to change production methods over night as the existing power plants and the related distribution networks are of a considerable size so long term strategic evaluations must be carried out. Such considerations...... include e.g. when a new technological substitute with less environmental damaging effect can be expected to be available from a technological as well a commercial point of view. The presentatio focuses on how technological forecasting can be applied to evaluate the future performance of a potential...

  5. Political measures for promoting environmental technology; Virkemidler for aa fremme miljoeteknologi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Environmental technology can contribute to solving many environmental challenges and to industrial development. Measures to support the development and use of such technologies can be regulatory, economic or administrative, and usually one needs to use a combination of different measures in order to reach both a better environment and industrial development. For industrial development other measures than those administered by environmental authorities will be of importance. The environmental authorities therefore need to acquire knowledge about these measures and the bodies administering them, and develop an operative cooperation with these actors.

  6. The Danish technology foresight on environmentally friendly agriculture

    DEFF Research Database (Denmark)

    Borch, Kristian

    2013-01-01

    A premise that is necessary for agriculture to develop into an environmentally friendly direction is that research is undertaken into environmentally friendly technologies and methods and how they can be brought into use. There is a need for a prioritised research effort that focuses on those...... without any plan or with some thought. Therefore the National Forest and Nature Agency in Denmark initiated the Green Technological foresight on environmentally friendly agriculture with the aim of examining the agricultural environmental challenges and suggesting technological and structural solutions....... problems which are related to minimising environmental problems affected by the agricultural production’s negative influence on the surroundings, improving animal welfare and finding new ways and products for agriculture. Future directions of agriculture can derive with or without dialogue; it can occur...

  7. Development and Substantiation of Parameters of Environmentally Friendly Technology for Filling the Vertical Mine Workings with Autoclaved Slag-Concrete

    Directory of Open Access Journals (Sweden)

    Uglyanitca Andrey

    2017-01-01

    Full Text Available The environmentally friendly technology for filling the vertical mine workings with autoclaved slag-concrete, prefabricated on the surface of the mine is presented in the article; the optimal parameters of filling technology are proposed. The developed technology for filling the abandoned vertical mine workings allows ensuring the environmental safety of the territories adjacent to the abandoned mine, utilizing slag dumps and providing the possibility of shaft recovery, if necessary, with minimal labor and material costs.

  8. Environmental Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The Program on Environmental Science and Technology comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalyzers) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization)

  9. Public policy and clean technology promotion. The synergy between environmental economics and evolutionary economics of technological change

    Energy Technology Data Exchange (ETDEWEB)

    Rio Gonzalez, Pablo del [Universidad de Castilla-La Mancha, Toledo (Spain). Facultad de Ciencias Juridicas y Sociales de Toledo

    2004-07-01

    Obstacles to clean technology development, innovation and diffusion are not only related to the lack of internalisation of environmental externalities in production costs, as defended by traditional environmental economics. Empirical studies show that many other obstacles prevent these technologies from penetrating the market. The relevance of these obstacles differs between sectors, firms and technologies. Consequently, a more focused approach is proposed. By taking a look at the specific, real-world barriers to clean technologies, a policy framework as well as some specific measures that target those barriers are suggested. These instruments are useful and complementary in a policy framework that, in addition to specific instruments, takes into account the influence of the style of regulation and the configuration of actors in the environmental technological change process. This paper proposes a coherent framework integrating environmental policy and technology policy instruments. This is deemed necessary in the technological transition to sustainable development. (author)

  10. Phase 2 environmental site investigation procedures and technologies for property transfer and PS and E development

    Science.gov (United States)

    1999-05-01

    The purpose of this project is to provide TxDOT with an improved procedure for conducting environmental site investigations at various stages during transportation infrastructure development. The project seeks to identify modern assessment technologi...

  11. Development of Radioisotope Tracer Technology

    International Nuclear Information System (INIS)

    Jung, Sung Hee; Jin, Joon Ha; Kim, Jong Bum; Kim, Jin Seop; Kim, Jae Jo; Park, Soon Chul; Lim, Don Soon; Choi, Byung Jong; Jang, Dong Soon; Kim, Hye Sook

    2007-06-01

    The project is aimed to develop the radiotracer technology for process optimization and trouble-shooting to establish the environmental and industrial application of radiation and radioisotopes. The advanced equipment and software such as high speed data acquisition system, RTD model and high pressure injection tool have developed. Based on the various field application to the refinery/petrochemical industries, the developed technology was transfer to NDT company for commercial service. For the environmental application of radiotracer technology, injector, detector sled, core sampler, RI and GPS data logging system are developed and field tests were implemented successfully at Wolsung and Haeundae beach. Additionally tracer technology were also used for the performance test of the clarifier in a wastewater treatment plant and for the leak detection in reservoirs. From the experience of case studies on radiotracer experiment in waste water treatment facilities, 'The New Excellent Technology' is granted from the ministry of environment. For future technology, preliminary research for industrial gamma transmission and emission tomography which are new technology combined with radioisotope and image reconstruction are carried out

  12. ABC Technology Development Program

    International Nuclear Information System (INIS)

    1994-01-01

    The Accelerator-Based Conversion (ABC) facility will be designed to accomplish the following mission: 'Provide a weapon's grade plutonium disposition capability in a safe, economical, and environmentally sound manner on a prudent schedule for [50] tons of weapon's grade plutonium to be disposed on in [20] years.' This mission is supported by four major objectives: provide a reliable plutonium disposition capability within the next [15] years; provide a level of safety and of safety assurance that meets or exceeds that afforded to the public by modern commercial nuclear power plants; meet or exceed all applicable federal, state, and local regulations or standards for environmental compliance; manage the program in a cost effective manner. The ABC Technology Development Program defines the technology development activities that are required to accomplish this mission. The technology development tasks are related to the following topics: blanket system; vessel systems; reactivity control systems; heat transport system components; energy conversion systems; shutdown heat transport systems components; auxiliary systems; technology demonstrations - large scale experiments

  13. [Methodological approaches to the development of environmentally benign technology for the use of solid waste in iron metallurgy].

    Science.gov (United States)

    Pugin, K G; Vaĭsman, Ia I

    2013-01-01

    On the basis of the life cycle of materials, containing wastes of iron and steel industry, new methodological approaches to the assessment of technologies of the secondary use of wastes are developed A complex criteria for selection of the technology for the use of resource potential of solid waste of iron and steel industry are developed with taking into account environmental, technological and economic indices. The technology of the use of wastes of ferrovanadium industry as bulk solid materials at the solid waste landfill is shown.

  14. Energy technologies and the environment: Environmental information handbook

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    This revision of Energy Technologies and the Environment reflects the changes in energy supply and demand, focus of environmental concern, and emphasis of energy research and development that have occurred since publication of the earlier edition in 1980. The increase in availability of oil and natural gas, at least for the near term, is responsible in part for a reduced emphasis on development of replacement fuels and technologies. Trends in energy development also have been influenced by an increased reliance on private industry initiatives, and a correspondingly reduced government involvement, in demonstrating more developed technologies. Environmental concerns related to acid rain and waste management continue to increase the demand for development of innovative energy systems. The basic criteria for including a technology in this report are that (1) the technology is a major current or potential future energy supply and (2) significant changes in employing or understanding the technology have occurred since publication of the 1980 edition. Coal is seen to be a continuing major source of energy supply, and thus chapters pertaining to the principal coal technologies have been revised from the 1980 edition (those on coal mining and preparation, conventional coal-fired power plants, fluidized-bed combustion, coal gasification, and coal liquefaction) or added as necessary to include emerging technologies (those on oil shale, combined-cycle power plants, coal-liquid mixtures, and fuel cells).

  15. ENVIRONMENTAL IMPACT ASSESSMENT OF A HEALTH TECHNOLOGY: A SCOPING REVIEW.

    Science.gov (United States)

    Polisena, Julie; De Angelis, Gino; Kaunelis, David; Gutierrez-Ibarluzea, Iñaki

    2018-06-13

    The Health Technology Expert Review Panel is an advisory body to Canadian Agency for Drugs and Technologies in Health (CADTH) that develops recommendations on health technology assessments (HTAs) for nondrug health technologies using a deliberative framework. The framework spans several domains, including the environmental impact of the health technology(ies). Our research objective was to identify articles on frameworks, methods or case studies on the environmental impact assessment of health technologies. A literature search in major databases and a focused gray literature search were conducted. The main search concepts were HTA and environmental impact/sustainability. Eligible articles were those that described a conceptual framework or methods used to conduct an environmental assessment of health technologies, and case studies on the application of an environmental assessment. From the 1,710 citations identified, thirteen publications were included. Two articles presented a framework to incorporate environmental assessment in HTAs. Other approaches described weight of evidence practices and comprehensive and integrated environmental impact assessments. Central themes derived include transparency and repeatability, integration of components in a framework or of evidence into a single outcome, data availability to ensure the accuracy of findings, and familiarity with the approach used. Each framework and methods presented have different foci related to the ecosystem, health economics, or engineering practices. Their descriptions suggested transparency, repeatability, and the integration of components or of evidence into a single outcome as their main strengths. Our review is an initial step of a larger initiative by CADTH to develop the methods and processes to address the environmental impact question in an HTA.

  16. Assessment and evaluation of technologies for environmental restoration. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Uzochukwu, G. A. [North Carolina A and T State Univ., Greensboro, NC (United States)

    2000-06-30

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration objectives of the Department of Energy are being evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objective of the environmental restoration effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.

  17. Assessment and evaluation of technologies for environmental restoration. Progress report

    International Nuclear Information System (INIS)

    Uzochukwu, G. A.

    2000-01-01

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration objectives of the Department of Energy are being evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objective of the environmental restoration effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.

  18. Assessment and evaluation of technologies for environmental restoration. Progress report

    International Nuclear Information System (INIS)

    Uzochukwu, G.A.

    1999-01-01

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration objectives of the Department of Energy are being evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objective of the environmental restoration effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites

  19. Bridge to a sustainable future: National environmental technology strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    For the past two years the Administration has sought the views of Congress, the states, communities, industry, academia, nongovernmental organizations, and interested citizens on ways to spur the development and use of a new generation of environmental technologies. This document represents the views of thousands of individuals who participated in events around the country to help craft a national environmental technology strategy that will put us on the path to sustainable development.

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: GREEN BUILDING TECHNOLOGIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) Program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techno...

  1. U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: ARSENIC TREATMENT TECHNOLOGIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techn...

  2. Environmental development plan for transportation programs: FY80 update

    Energy Technology Data Exchange (ETDEWEB)

    Saricks, C.L.; Singh, M.K.; Bernard, M.J. III; Bevilacqua, O.M.

    1980-09-01

    This is the second annual update of the environmental development plan (EDP) for transportation programs. It has been prepared as a cooperative effort of the Assistant Secretaries for Conservation and Solar Energy (ASCS) Office of Transportation Programs (CS/TP) and the Environment (ASEV) Office of Environmental Assessments. EDPs identify the ecosystem, resource, physical environment, health, safety, socioeconomic, and environmental control concerns associated with DOE programs. The programs include the research, development, demonstration, and assessment (RDD and A) of 14 transportation technologies and several strategy implementation projects. This EDP update presents a research and assessment plan for resolving any potentially adverse environmental concerns arising from these programs. The EDP process provides a framework for: incorporating environmental concerns into CS/TP planning and decision processes early to ensure they are assigned the same importance as technological, fiscal, and institutional concerns in decision making; resolving environmental concerns concurrently with energy technology and strategy development; and providing a research schedule that mitigates adverse environmental effects through sound technological design or policy analysis. This EDP also describes the status of each environmental concern and the plan for its resolution. Much of ongoing DOE reseirch and technology development is aimed at resolving concerns identified in this EDP. Each EDP is intended to be so comprehensive that no concerns escape notice. Care is taken to include any CS/TP action that may eventually require an Environmental Impact Statement. Because technology demonstration and commercialization tend to raise more environmental concerns than other portions of the transportation program, most of this EDP addresses these concerns.

  3. NASA Technology Evaluation for Environmental Risk Mitigation Remediation Technology Collaboration Development

    Science.gov (United States)

    Romeo, James

    2013-01-01

    NASA is committed to finding solutions to agency cleanup problems that are better, cheaper, and more effective than the status quo. Unfortunately, some potential solutions involve innovative technologies for which NASA remediation managers may not have a high level of understanding or confidence. Since 2004, NASA's Stennis Space Center (SSC) in Mississippi has been pumping groundwater contaminated with trichloroethylene (TCE) and other halogenated volatile organic compounds (HVOC) from their cleanup location designated "Area G" through extraction wells to an aboveground treatment system. Over time, however, the effectiveness of this treatment strategy has diminished and an alternative approach is needed. In 2012, professionals from NASA's Principal Center for Technology Evaluation for Environmental Risk Mitigation (TEERM) introduced SSC managers to an innovative technology for enhancing the performance of SSC's existing pump and treat system. The technology, generally referred to as in situ chemical oxidation (ISCO), involves slowly and continuously injecting a strong but safe chemical oxidant into the groundwater. Treatment is enhanced by a "surfactant-type effect" which causes residual contamination from saturated soil to be released into the dissolved-phase where it can be readily oxidized. Any dissolved-phase contamination that was not oxidized can be collected by the extraction well network and treated aboveground. SSC was not familiar with the technology so to increase their confidence, TEERM identified a contractor who was willing to demonstrate their product and process at a significantly reduced price. An initial, small-scale demonstration of ISCO began at sse in March 2012 and completed in August 2012. This successful demonstration was followed by three larger-scale ISCO demonstrations between August and December 2012. The contractor's innovative Continuous Injection System (CIS) incorporated "green" and sustainable technologies and practices. A slow

  4. The Use of Technology by Nonformal Environmental Educators

    Science.gov (United States)

    Peffer, Tamara Elizabeth; Bodzin, Alec M.; Smith, Judith Duffield

    2013-01-01

    This study examined the use of instructional and learning technologies by nonformal environmental educators. A 40-question survey was developed to inquire about practitioner demographics, technology use in practice, and beliefs about technology. The survey consisted of multiple choice, open-ended questions, and a Likert-type scale component--the…

  5. Environmental Development Plan (EDP): magnetohydrodynamics program, FY 1977

    International Nuclear Information System (INIS)

    1978-03-01

    This magnetohydrodynamics (MHD) EDP identifies and examines the environmental, health, and safety issues concerning the development of the ERDA Magnetohydrodynamics Program, the environmental activities needed to resolve these issues, applicable ongoing and completed research, and a time-phased action plan for the evaluation and mitigation of environmental impacts. A schedule for environmental research, assessment, and other activities is laid out. The purpose of the EDP is to identify environmental issues and to specify actions to ensure the environmental acceptability of commercial energy technologies being developed by ERDA. The EDP also will assist in coordinating ERDA's environmental activities with those of other government agencies. This document addresses the following technologies associated with ERDA's MHD program: (1) open-cycle magnetohydrodynamics; (2) closed-cycle plasma magnetohydrodynamics; and (3) closed-cycle liquid metal magnetohydrodynamics. The proposed environmental action plan is designed to meet the following objectives: (1) develop methods for monitoring and measuring emissions; (2) characterize air emissions, water effluents, and solid wastes from MHD; (3) determine potential environmental impacts and health hazards associated with MHD; (4) model pollutant transport and transformation; (5) ensure adequate control of pollutant emissions; (6) identify and minimize occupational health and safety hazards; (7) prepare NEPA compliance documents; and (8) assess the environmental, health, and safety impacts of the commercialized industry. This EDP will be updated and revised annually to take into account the progress of technologies toward commercialization, the environmental work accomplished, and the resolution of outstanding environmental issues concerning the technologies

  6. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States)

    1998-12-31

    This complete survey of modern environmental science covers the four traditional spheres of the environment: water, air, earth, and life, and introduces a fifth sphere -- the anthrosphere -- which the author defines as the sphere of human activities, especially technology, that affect the earth. The book discusses how technology can be used in a manner that minimizes environmental disruption.

  7. ISV technology development plan for buried waste

    International Nuclear Information System (INIS)

    Nickelson, D.F.; Callow, R.A.; Luey, J.K.

    1992-07-01

    This report identifies the main technical issues facing the in situ vitrification (ISV) application to buried waste, and presents a plan showing the top-level schedule and projected resources needed to develop and demonstrate the technology for meeting Environmental Restoration Department (ERD) needs. The plan also proposes a model strategy for the technology transfer from the Department of Energy's Office of Technology Development (DOE-OTD) to the Office of Environmental Restoration (DOE-ER) as the technology proceeds from issues resolution (development) to demonstration and remedial readiness. Implementation of the plan would require $34,91 1K in total funding to be spread in the years FY-93 through FY-98. Of this amount, $10,183K is planned to be funded by DOE-OTD through the ISV Integrated Program. The remaining amount, $24,728K, is recommended to be split between the Department of Energy (DOE) Office of Technology Development ($6,670K) and DOE Office of Environmental Restoration ($18,058K)

  8. Corporate environmental management and information technology

    DEFF Research Database (Denmark)

    Rikhardsson, Pall M.

    2001-01-01

    software, the Internet, computer networks, telecommunications devices, etc. Information technology also has an impact on how companies perform environmental management. This paper looks at the relations between corporate environmental management and information technology. First it presents a framework...... for mapping information technology. Using this framework it focuses on the use of information technology in corporate environmental management, describes the market for standard environmental management information systems and implementation experiences from one large international company.......Information technology has changed, is changing and will continue to change the face of business as we further enter the Information Society. Today it would be difficult for a company to function effectively without the aid of various information technologies such as accounting software, production...

  9. Environmental control technology activities of the Department of Energy in FY 1977

    International Nuclear Information System (INIS)

    1977-11-01

    The Department of Energy is responsible for the research, development, and demonstration of emerging energy technologies and the promotion of energy conservation. An integral and significant part of that responsibility includes the balancing of energy goals with environmental requirements to protect and enhance the general health, safety, and welfare of the nation. This requires that environmental effects be considered and mitigating measures be taken in all energy processes through incorporation of environmental and safety controls which are developed as an integral part of energy system design. This inventory of environmental control technology activities was initiated by the Administrator, ERDA, prior to the incorporation of that administration within the Department of Energy. This compilation of total Energy Research and Development Administration (ERDA) environmental control technology activities, and associated funding, related to environmental control technology identifies the resources committed by ERDA to demonstrate its objective to protect and enhance the general health, safety, and welfare of the nation in the research, development, and demonstration of energy systems. Only ERDA research, development, and demonstration activities are covered in this report. The compilation for FY 1978 will encompass all of the DOE activities

  10. Applications of microwave radiation environmental remediation technologies

    International Nuclear Information System (INIS)

    Krause, T.R.; Helt, J.E.

    1993-01-01

    A growing number of environmental remediation technologies (e.g., drying, melting, or sintering) utilize microwave radiation as an integral part of the process. An increasing number of novel applications, such as sustaining low-temperature plasmas or enhancing chemical reactivity, are also being developed. An overview of such technologies being developed by the Department of Energy is presented. A specific example being developed at Argonne National Laboratory, microwave-induced plasma reactors for the destruction of volatile organic compounds, is discussed in more detail

  11. The Savannah River environmental technology field test platform: Phase II

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.; May, C.P.; Pemberton, B.E.; Jarosch, T.R.; Eddy-Dilek, C.A.; Looney, B.B.; Raymond, R.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The DOE complex has devised several strategies to facilitate this transfer including joint research projects between private industries and government laboratories or universities (CRADAs), and streamlined licensing procedures. One strategy that has been under-utilized is a planned sequence gradually moving from laboratory development and field demonstration to long term evaluation and onsite use. Industrial partnership and commercial production can be initiated at any step based on the performance, market, user needs, and costs associated with the technology. The Savannah River Technology Center (SRTC) has been developing a program to rigorously field test promising environmental technologies that have not undergone EPA equivalency testing. The infrastructure and staff expertise developed as part of the activities of the Savannah River Integrated Demonstration Program (i.e., wells, available power, conventional baseline characterization and monitoring equipment, shelter structures) allows field testing of technologies without the difficulties of providing remote field support. By providing a well-characterized site and a well-developed infrastructure, technologies can be tested for long periods of time to determine their appropriate applications in environmental characterization and monitoring activities. Situation specific evaluations of the technology following stringent test plans can be made in comparison with simultaneous baseline methods and historical data. This program is designed to help expedite regulatory approval and technology transfer to manufacturers and the user community

  12. The law as an instrument of technology control and as a basis for technological development

    International Nuclear Information System (INIS)

    Kloepfer, M.

    1998-01-01

    In public debates about German industry's global competitiveness it becomes evident that environmental law and the technology-related law are almost exclusively perceived as systems of law which - for reasons of environmental protection and protection of public health - are setting restraints to technological development. This is a narrow perspective neglecting the functions of the law as an instrument providing legal security and a reliable framework for developments. In a democratic, constitutional state, the environmental law and the technology-related law are instruments providing for protection of the basic, general rights and requirements of technology, and contribute to ensuring general acceptance of technologic development. (orig./CB) [de

  13. Assessment and prognosis of environmental state and development of environmentally effective technologies

    International Nuclear Information System (INIS)

    Golovko, A.; Polichtchouk, Y.; Ivanov, V.

    2002-01-01

    Despite of the decrease in oil production in Russia, the negative effects of the oil industry wastes on the environment still remain. The authors examine the main sources of the environmental pollution and suggest the assessment of technogenic impact which requires large volumes of ecological, cartographic and other data through the application of geographic information systems (GIS). Suggested technology includes software means for simulating the technogenic impact on natural environment. By overlapping the zones of technogenic impact on the landscape map using GIS, the relative areas of the polluted landscape complexes can be calculated. A developed method for oil product containment in water surface based on natural and synthetic fibrous adsorbents is presented. The isotherms of adsorption of oil, diesel fuel and gasoline are given. The efficiency of water purification from the oil products in solutions depends of their initial concentrations. The efficiency of adsorption from the microemulsions, however, increases with increasing adsorbent-solution ratio. The efficiency of the purification of oily sewage may be evaluated using the data in the Table obtained for oil products adsorption on multilayered adsorbents. (YU-INIS Centre)

  14. Meeting the nation's environmental restoration and waste management challenges through the accelerated development of innovative technologies: A report on the DOIT initiative

    International Nuclear Information System (INIS)

    Prestwich, S.; Chee, T.

    1994-01-01

    New environmental technologies are needed to meet the Nation's environmental restoration and waste management challenges. However, in the past environmental technology development and commercialization process has been hampered by the absence of critical intergovernmental linkages and broad public acceptability. If the Nation can create cooperative linkages among levels of government and stakeholders, there is a tremendous opportunity not only to accelerate the pace of site cleanups but also to capture a larger share of the growing international market for remediation and waste management technologies. Recognizing this opportunity not only to accelerate the pace of site cleanups but also to capture a larger share of the growing international market for remediation and waste management technologies. Recognizing this opportunity, western governors and the U.S. Departments of Defense, Interior, Energy, and U.S. Environmental Protection Agency have established a partnership to test ways to expedite the deployment and testing of innovative cleanup technologies. This partnership, which was formalized through the creation of the Federal Advisory Committee to Develop On-Site Innovative Technologies (the DOIT initiative), will soon test models for speeding up the deployment, testing, evaluation, and commercialization of environmental technologies at selected demonstration sites primarily in the western United States. This evaluation process will be pursued in a manner that poses no additional risks to the environment, encourages innovative public participation, and helps ensure financial feasibility, insurability, and eventual commercialization of new technologies

  15. Technologies for improved soil carbon management and environmental quality

    Energy Technology Data Exchange (ETDEWEB)

    Reicosky, D.C. [USDA-Agricultural Research Service, Morris, MN (United States)

    1997-12-31

    The objective of this paper is to create an environmental awareness of and to provide insight into the future balance of environment and economic issues in developing new technologies that benefit the farmer, the public, and agricultural product sales. Agricultural impacts of tillage-induced CO{sub 2} losses are addressed along with new and existing technologies to minimize tillage-induced flow of CO{sub 2} to the atmosphere, Emphasis is placed on the carbon cycle and the cost of environmental damage to illustrate the need for improved technologies leading to reduced environmental impacts by business ventures. New technologies and concepts related to methods of tillage and stover management for carbon sequestration with the agricultural production systems are presented. 16 refs., 3 figs.

  16. SIHTI - Energy and environmental technology

    International Nuclear Information System (INIS)

    Estlander, A.; Pietilae, S.

    1993-01-01

    The research and development program SIHTI was carried out during 1991-1992, mainly concentrating on energy and environmental technology. SIHTI focused on examining emissions from various sources of energy in all stages of the production chain. The objective was to create new methods and equipment, with which the environmental drawbacks of energy production can be reduced. Also a development work aiming at reduced traffic emissions was included in the program. Totally the program included 53 projects, which were divided into the following subsections: energy production, traffic, fuel chains and other projects. In the energy production projects the main attention was paid to reduction of sulphur dioxide, nitrogen oxide and particulate emissions. Furthermore waste utilization and possibilities of reducing carbon dioxide emissions were studied. The traffic study was focused on developing of more environmental-friendly liquid fuels. The research of emissions at low ambient temperatures was developed to an international level. Further the use of gases and the rape seed oil ester as traffic fuel was studied in practical tests. In the fuel chain study the emissions from the most important fuel chains were examined all the way from the purchase of the primary energy to the final end product. Methods for further reduction of water discharges from peat production were developed. The other projects were concentrated on modelling development, environmental impact assessment and emission surveys

  17. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    International Nuclear Information System (INIS)

    1995-09-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R ampersand D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)

  18. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R&D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

  19. Corporate Environmental Management and Information Technology

    DEFF Research Database (Denmark)

    Rikhardsson, Pall M.

    2000-01-01

    software, the internet, computer networks, telecommunications devices, etc. Information technology also has an impact on how companies perform environmental management. This paper explores the relations between environmental management and information technology in general terms. It offers a classification...... framework for the use of information technology in corporate environmental management (CEM), describes the market for standard environmental management information systems solutions, what main functionalities are available and what main trends are visible.......Information technology has changed, is changing and will continue to change the face of business as we further enter the Information Society. Today it would be difficult for a company to function effectively without the aid of various information technologies such as accounting software, production...

  20. Fusion development and technology

    International Nuclear Information System (INIS)

    Montgomery, D.B.

    1991-01-01

    This report discusses the following topics: superconducting magnet technology high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies -- Aries; ITER physics; ITER superconducting PF scenario and magnet analysis; and safety, environmental and economic factors in fusion development

  1. Energetic technologies and environmental impact

    International Nuclear Information System (INIS)

    2001-01-01

    This monograph is a collective work by scientist from CIEMAT (Spanish centre for research on energy, environment and technology). By reviewing the central topics of their own work, the authors present a world-wide update of the state of the arts of the different technologies involved in energy production. The chapters fo through the more promising technologies related to the diverse energy sources, from the nuclear to the renewable and chemical a large gamut of energy supply ways is revised. The analysis of the production technologies is accompanied by considerations of the environmental implications, an aspect to wich a whole part of the volume is devoted. The book begins with a foreword by Dr. Felix Yndurain, former General Director of CIEMAT and follows with a general introduction to the main topics, that are presented in three parts, with specific introductions. There is also a closing fourth part that includes some additional activities where more basic and technical developments are included. The first part is devoted to energy of nuclear origin. In two separate sections, fission and fusion technologies are covered. The fission section points towards the present day problems of nuclear plants (ageing, accidents, risk analysis, etc.), reprocessing of the nuclear fuel, radioactive wastes and environmental radioactivity. The fusion section contains a critical account of the present and expected developments of the fusion reactors together with an exposition of the related plasma physics problems. The second part comprises two sections devoted to energy generation of renewable and chemical origin, respectively. Tehcnologies for solar, wind and biomass energies are thoroughly exposed along the renewable energy section whereas the chemical energy section is devoted to the modern technologies of clean fossil fuel combustion and gasification, as well as to the new appealing subject of direct electric generation with fuel cells. The main environmental and social

  2. Proceedings of the Conference on Industry Partnerships to Deploy Environmental Technology

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-01-01

    Three goals were accomplished at the meeting: review of the latest environmental and waste-management technologies being developed under FETC sponsorship; addressing the accomplishments in, and barriers affecting, private-sector development of these technologies; and laying the groundwork for future technology development initiatives and opportunities.

  3. European workshop on technologies for environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Buesing, J H; Pippich, B [eds.

    1996-12-31

    Current European research activities in the field of environmental technologies are discussed under the following headings: photocatalysis; emission abatement - catalytic processes (mainly NO{sub x} reduction catalysts for vehicles and industrial boilers); emission abatement - biological and chemical processes; biological wastewater treatment; chemical and physical wastewater treatment; integrated wastewater treatment; environmental technologies in pulp and paper industry; environmental technologies in surface treatment; selected examples of `clean technologies`; environmental technologies in ceramic and cement industry and policy and strategies.

  4. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan

    International Nuclear Information System (INIS)

    1991-01-01

    In FY 1990 Robotics Technology Development Program (RTDP) planning teams visited five DOE sites. These sites were selected by the Office of Technology Development to provide a needs basis for developing a 5-Year Plan. Visits to five DOE sites provided identification of needs for robotics technology development to support Environmental Restoration and Waste Management (ER ampersand WM) projects at those sites. Additional site visits will be conducted in the future to expand the planning basis. This volume summarizes both the results of the site visits and the needs and requirements of the priority ER ampersand WM activities at the sites, including potential needs for robotics and remote systems technology. It also discusses hazards associated with the site activities and any problems or technical uncertainties associated with dealing with the hazards in the performance of the ER ampersand WM work. Robotic or remote systems currently under development for remediation projects or waste operations are also discussed. The information in this document is organized principally by site, activity, and priority. Section 2.0, Site Needs, is based on information from the site visit reports and provides a summary which focuses on the site needs and requirements for each priority activity. Section 2.0 also records evaluations and discussions by the RTDP team following the site visit. Section 3.0, Commonality Assessment, documents similar site needs where common, or cross-cutting, robotics technology might be applied to several activities. Section 4.0 contains a summary of the site needs and requirements in tabular form. 1 tab

  5. Increased growth in environmental technology; Oekad tillvaext inom miljoeteknik

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    The Swedish Energy Agency has received a government commission, after consultation with the Swedish Agency for Economic and Regional Growth, Swedish Governmental Agency for Innovation Systems (VINNOVA) and other relevant actors. The commission is to develop proposals on how the actions for strengthening collaboration and increased communication between agencies, innovators, entrepreneurs and business angels and venture capitalists among others can be designed in environmental technology with a focus on early commercial stages. The largest part of the environmental technology sector consists of energy related technology

  6. LCA as an environmental technology development performance indicator of engineered nano-materials and their application in polymers

    DEFF Research Database (Denmark)

    Miseljic, Mirko; Olsen, Stig Irving; Hauschild, Michael Zwicky

    project is aimed to be holistic and thereby include the entire life cycle of the nano‐polymer products and not be like the current frequently applied nano‐material LCA case study approaches where the life cycle is reduced and system boundaries substantially limited. In order to perform accurate......Engineered nano‐material (ENM) application in products has in recent years developed to an important market segment but with rising environmental concerns, as the environmental life cycle impacts, especially toxicity of nanoparticles, are not assessed. Life cycle assessment (LCA) is a holistic tool...... to the conventional ways of attaining these in the polymer product industry. To assure environmental sustainability LCA will be performed within the MINANO project and more precisely comparing the new ENM technology and the conventional technology approach to attain the same functionalities. The LCA in the MINANO...

  7. Technology certification and technology acceptance: Promoting interstate cooperation and market development for innovative technologies

    International Nuclear Information System (INIS)

    Brockbank, B.R.

    1995-03-01

    In the past two years, public and private efforts to promote development and deployment of innovative environmental technologies have shifted from the analysis of barriers to the implementation of a variety of initiatives aimed at surmounting those barriers. Particular attention has been directed at (1) streamlining fragmented technology acceptance processes within and among the states, and (2) alleviating disincentives, created by inadequate or unverified technology cost and performance data, for users and regulators to choose innovative technologies. Market fragmentation currently imposes significant cost burdens on technology developers and inhibits the investment of private capital in environmental technology companies. Among the responses to these problems are state and federal technology certification/validation programs, efforts to standardize cost/performance data reporting, and initiatives aimed at promoting interstate cooperation in technology testing and evaluation. This paper reviews the current status of these initiatives, identifies critical challenges to their success, and recommends strategies for addressing those challenges

  8. Learning from the social construction of environmental indicators: From the retrospective to the pro-active use of SCOT in technology development

    DEFF Research Database (Denmark)

    Elle, Morten; Darnmann, Sven; Lentsch, Justus

    2010-01-01

    This article explores the challenges, advantages and limitations of the pro-active use of the social construction of technology (SCOT) to improve the methods applied in the development of technology for use by a broad range of actors. Our example is the development of environmental indicators...

  9. The Savannah River Environmental Technology Field Test Platform: Phase 2

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.; Eddy-Dilek, C.A.; Pemberton, B.E.; May, C.P.; Jarosch, T.R.; Looney, B.B.; Raymond, R.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The DOE complex has devised several strategies to facilitate this transfer including joint research projects between private industries and government laboratories or universities (CRADAs) and streamlined licensing procedures. One strategy that has been under-utilized is a planned sequence gradually moving from laboratory development and field demonstration to long term evaluation and onsite use. Industrial partnership and commercial production can be initiated at any step based on the performance, market, user needs, and costs associated with the technology. This approach allows use of the technology by onsite groups for compliance monitoring tasks (e.g. Environmental Restoration and Waste Management), while following parallel research and development organizations the opportunity to evaluate the long term performance and to make modifications or improvements to the technology. This probationary period also provides regulatory organizations, potential industrial partners, and potential users with the opportunity to evaluate the technology's performance and its utility for implementation in environmental characterization and monitoring programs

  10. Strategic Environmental Assessment and Sustainable Development

    Science.gov (United States)

    Tian, Mingjing; Gao, Qingjun; Wang, Nan; Yang, Xigen; Xu, Xin; Zhang, Lu

    2018-04-01

    The development of social science and technology economy, the international community more and more attention to environmental and development issues. So the main goal pursued by people is not only to meet the needs of social and natural resources, while at the same time being able to protect the needs of future generations. This is the path of sustainable development. Therefore, this paper is a detailed study of strategic environmental assessment and sustainable development.

  11. Environmental Evaluation of Soil Salinity with Various Watering Technologies Assessment.

    Science.gov (United States)

    Seitkaziev, Adeubay; Shilibek, Kenzhegali; Fakhrudenova, Idiya; Salybayev, Satybaldy; Zhaparova, Sayagul; Duisenbayeva, Saule; Bayazitova, Zulfia; Aliya, Maimakova; Seitkazieva, Karlygash; Aubakirov, Hamit

    2018-01-01

      The purpose of this study is to develop mathematical tools for evaluating the level of environmental safety of various watering technologies. A set of indicators, was developed with regard to the natural factors, the nature of the man-induced load, degradation type, and characteristics of the disruption of humification conditions. Thermal and physical characteristics of the soil, the state of its surface, and meteorological factors, including air temperature, relative humidity, precipitation, wind speed, solar radiation, etc. were studied with a view to determining the heat and air exchange in the soil. An environmental evaluation of the methods for saline land development was conducted with regard to the heat and moisture supply. This tool can be used to determine the level of environmental safety of soil salinization during the environmental evaluation of the investigation of soil salinity with various watering technologies.

  12. Environmental assessment of solid waste systems and technologies: EASEWASTE

    DEFF Research Database (Denmark)

    Kirkeby, Janus Torsten; Birgisdottir, Harpa; Hansen, Trine Lund

    2006-01-01

    A new model has been developed for evaluating the overall resource consumption and environmental impacts of municipal solid waste management systems by the use of life cycle assessment. The model is named EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies) and is able...... may not always be the most environmentally friendly. The EASEWASTE model can identify the most environmentally sustainable solution, which may differ among waste materials and regions and can add valuable information about environmental achievements from each process in a solid waste management system....... to compare different waste management strategies, waste treatment methods and waste process technologies. The potential environmental impacts can be traced back to the most important processes and waste fractions that contribute to the relevant impacts. A model like EASEWASTE can be used by waste planners...

  13. Environmental impacts from the solar energy technologies

    International Nuclear Information System (INIS)

    Tsoutsos, Theocharis; Frantzeskaki, Niki; Gekas, Vassilis

    2005-01-01

    Solar energy systems (photovoltaics, solar thermal, solar power) provide significant environmental benefits in comparison to the conventional energy sources, thus contributing, to the sustainable development of human activities. Sometimes however, their wide scale deployment has to face potential negative environmental implications. These potential problems seem to be a strong barrier for a further dissemination of these systems in some consumers. To cope with these problems this paper presents an overview of an Environmental Impact Assessment. We assess the potential environmental intrusions in order to ameliorate them with new technological innovations and good practices in the future power systems. The analysis provides the potential burdens to the environment, which include - during the construction, the installation and the demolition phases, as well as especially in the case of the central solar technologies - noise and visual intrusion, greenhouse gas emissions, water and soil pollution, energy consumption, labour accidents, impact on archaeological sites or on sensitive ecosystems, negative and positive socio-economic effects

  14. Environmental measurements and technology for non-proliferation objectives. Final report

    International Nuclear Information System (INIS)

    Broadway, J.A.

    1998-01-01

    The purpose of this study is to identify multi-disciplinary and single focus laboratories from the environmental and public health communities that can serve as technical center of opportunity for nuclear, inorganic and organic analyses. The objectives of the Office of Research and Development effort are twofold: (1) to identify the technology shortcomings and technologies gaps (thus requirements) within these communities that could benefit from state-of-the-art infield analysis technologies currently under development and (2) to promote scientist-to-scientist dialog and technical exchange under such existing US government internship programs (eg SABIT/USDOC) to improve skills and work relationships. Although the data analysis will focus on environmentally sensitive signatures and materials, the office of Research and Development wishes to further its nuclear non-proliferation objectives by assessing the current technical skill and ingenious analytical tools in less-developed countries so as to broaden the base of capability for multi-species measurement technology development

  15. Nanotechnology development in Denmark - Environmental opportunities and risk

    DEFF Research Database (Denmark)

    Andersen, M.M.; Rasmussen, B.

    2006-01-01

    The present report represents the nanostudy part of a larger study entitled “Green Technology Foresight about Environmentally Friendly Products and Materials – Challenges from Nanotechnology, Biotechnology and ICT” (Jørgensen et al. 2006). The study wasmade for the Danish Environmental Protection...... (forthcoming in summer 2006). The analysis focuses not only on the environmental impact but even more on the dynamics involved in nanotechnology development ofwhich we currently know very little. Applying an innovation economic perspective focus is placed on analysing the direction of the nano search...... and technology development processes and how environmental issues enter into these. Hereby, the futuretrajectories of nanotechnology development is sought captured, indicating likely long-term perspectives of the Danish nanotechnology development. The content of the report is as follows: What is nanotechnology...

  16. SIHTI 2. Energy and environmental technology. Yearbook 1994 of the research programme. Project reports

    International Nuclear Information System (INIS)

    Korhonen, M.; Saviharju, K.

    1995-01-01

    The SIHTI 2 research programme on energy and environmental technology is concentrating on areas of environmental technology that are vital to Finland or in which Finns can engage in pioneering research. The promotion of product development within the environmental technology industry produces solutions for reducing the emissions of the energy sector. It is also a way of boosting Finland's share of the world market for such technology. The objectives of the programme are to cut down harmful emissions, recycle raw materials, reduce the amount of byproducts and wastes and achieve a greater utilisation of wastes. In additions, an objective is to create basic information about the effects of environmental protection technology for the other national research programmes. The development of internationally comparable research, monitoring and measurement methods creates a basis for wide-ranging international cooperation. The area of research also covers environmental problems connected with energy in the forest and base metal industries as well as the systematic development of life-cycle analyses. The programme will be carried out in 1993 - 1998. As of 1 January 1995 the Technology development Centre TEKES took over the responsibility for energy technology research and development activities, which were previously administered by the Energy Department of the Ministry of Trade and Industry. This yearbook 1994 contains project reports of the research and joint development projects and information about the participating institutions. (orig.)

  17. Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology

    Science.gov (United States)

    Griffin, D. E. (Editor); Stanley, D. C. (Editor)

    2001-01-01

    The next millennium challenges us to produce innovative materials, processes, manufacturing, and environmental technologies that meet low-cost aerospace transportation needs while maintaining US leadership. The pursuit of advanced aerospace materials, manufacturing processes, and environmental technologies supports the development of safer, operational, next-generation, reusable, and expendable aeronautical and space vehicle systems. The Aerospace Materials, Processes, and Environmental Technology Conference (AMPET) provided a forum for manufacturing, environmental, materials, and processes engineers, scientists, and managers to describe, review, and critically assess advances in these key technology areas.

  18. Technology needs assessment for DOE environmental restoration programs

    International Nuclear Information System (INIS)

    Duray, J.R.; Carlson, T.J.; Carpenter, C.E.; Cummins, L.E.; Daub, G.J.

    1992-01-01

    The 'Technology Needs Assessment Final Report' describes current and planned environmental restoration activity, identifies technologies intended to be used or under consideration, and ranks technology deficiencies in the U.S. Department of Energy's environmental restoration program. Included in the ranking are treatment technologies, characterization technologies, and non-technology issues that affect environmental restoration. Data used for the assessment was gathered during interviews in the spring of 1991 with DOE site personnel responsible for the environmental restoration work. (author)

  19. Environmental restoration/waste management-applied technology semiannual report, January--June 1992

    International Nuclear Information System (INIS)

    Adamson, M.; Kline-Simon, K.

    1992-01-01

    This is the first issue from the Lawrence Livermore National Laboratory of The Environmental Restoration/Waste Management-Applied Technology (ER/WM-AT) Semiannual Report, a continuation of the Advanced Processing Technology (APT) Semiannual Report. The name change reflects the consolidation of the APT Program with the Environmental Restoration and Waste Management Program to form the Environmental Restoration/Waste Management-Applied Technology (ER/WM-AT) Program. The Livermore site mirrors, on a small scale, many of the environmental and waste management problems of the DOE Complex. The six articles in this issue cover incineration- alternative technologies, process development for waste minimization, the proposed Mixed Waste Management Facility, dynamic underground stripping, electrical resistance tomography, and Raman spectroscopy for remote characterization of underground tanks

  20. Technologies for a sustainable development; Technologies pour un developpement durable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The European Event on Technology (EET), a recurrent annual event since 1992, is a major meeting opportunity for researchers and engineers as well as private and public decision-makers, on technologies, their evolution and their industrial and social implications. In less than a decade, sustainable development has become both an economic and a political priority. It was urgent and legitimate that those who are the mainsprings should take hold of the subject and give it technological content, estimate its costs and define clear timetables. The debates consist of: plenary sessions on environmental, social and economic stakes of sustainable development and the challenges for, and commitment of engineers, managers and politicians with respect to these goals; and workshops, which provide an overview of recently acquired or upcoming technologies developed by sector: energy, transports, new information technologies, new industrial manufacturing technologies (materials, products, services), waste management, global environment monitoring, water management, bio-technologies, and innovation management. This document brings together the different talks given by the participants. Among these, the following ones fall into the energy and environment scope: energy efficiency of buildings: towards energy autonomy; superconductors enable in new millennium for electric power industry; advanced gas micro-turbine-driven generator technology; environmental and technical challenges of an offshore wind farm; future nuclear energy systems; modelling combustion in engines: progress and prospects for reducing emissions; on-board computers: reduction in consumption and emissions of engine-transmission units for vehicles; polymer-lithium batteries: perspectives for zero-emission traction; hybrid vehicles and energy/environmental optimization: paths and opportunities; fuel cells and zero-emission: perspectives and developments; global change: causes, modeling and economic issues; the GMES

  1. Innovative characterization, monitoring and sensor technologies for environmental radioactivity at USDOE sites

    International Nuclear Information System (INIS)

    Hutter, A.; Weeks, S.

    2001-01-01

    The mission of the U.S. Department of Energy Office of Environmental Management (EM) is to clean up its contaminated sites from the past production of nuclear weapons. Within EM, the Office of Science and Technology (OST) is responsible for providing a full range of science and technology resources needed to support resolution of EM cleanup and long-term environmental stewardship problems. This responsibility includes implementation of a technology development pathway from basic research to development, demonstration, and deployment of scientific and technological solutions needed by DOE sites. One OST Program is the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP), which aims to provide innovative technologies (i.e., faster, better, cheaper, and/or safer) for environmental characterization and monitoring. Several technologies are described that CMST-CP has supported for development with significant benefits realized or projected over the baseline characterization and monitoring practices. Examples of these technologies include mapping of subsurface radioactivity using Cone Penetrometer and drilling techniques; a Rapid Liquid Sampler for Sr, Ra, Tc, and Cs using 3M Empore TM Rad Disks; Long-Range Alpha Detectors; a Compact High Resolution Spectrometer; BetaScint TM for determination of Sr in soil; Laser-Induced Fluorescence Imaging techniques for mapping U on surfaces; the Environmental Measurements While Drilling System; and the Expedited Site Characterization methodology. (author)

  2. Environmental technology strongholds. A business analysis of cluster creation; Miljoeteknologiske styrkepositioner. En erhvervsanalyse af klyngedannelse

    Energy Technology Data Exchange (ETDEWEB)

    Rosted, J.; Andersen, Torsten; Degn Bertelsen, M. [FORA (Denmark)

    2006-08-31

    Global focus on environmental responsibility has increased interest in new environmental technology solutions, and environmental technologies will see impressive global growth rates in the coming decades. Environmental technologies make important contributions to solving global environmental challenges. But they are only part of the solution. The development of ground-braking environmental technology solutions should go hand in hand with political decisions on binding environmental goals, public environmental regulation and economic incentives that promote an appropriate behaviour among companies and consumers. The environmental technology market is a highly competitive market that focuses on utilising new and emerging technologies. A large number of Danish companies are active participants in the global competition. There are several examples of government institutions taking an active part in the competition. More and more, new environmental technologies are developed in a binding and strategic collaboration involving companies, universities, research laboratories and government authorities. The level of Danish government authority participation is a critical element. However, this is not the focus of this analysis. The purpose of the analysis is to identify environmental technology areas where Denmark potentially could create new strongholds, if strategic and binding collaboration involving companies, knowledge institutions and government authorities is carried out. The actual level of co-operation should be decided among the relevant stake holders. (au)

  3. Preparation of environmental analyses for synfuel and unconventional gas technologies

    Energy Technology Data Exchange (ETDEWEB)

    Reed, R.M. (ed.)

    1982-09-01

    Government agencies that offer financial incentives to stimulate the commercialization of synfuel and unconventional gas technologies usually require an analysis of environmental impacts resulting from proposed projects. This report reviews potentially significant environmental issues associated with a selection of these technologies and presents guidance for developing information and preparing analyses to address these issues. The technologies considered are western oil shale, tar sand, coal liquefaction and gasification, peat, unconventional gas (western tight gas sands, eastern Devonian gas shales, methane from coal seams, and methane from geopressured aquifers), and fuel ethanol. Potentially significant issues are discussed under the general categories of land use, air quality, water use, water quality, biota, solid waste disposal, socioeconomics, and health and safety. The guidance provided in this report can be applied to preparation and/or review of proposals, environmental reports, environmental assessments, environmental impact statements, and other types of environmental analyses. The amount of detail required for any issue discussed must, by necessity, be determined on a case-by-case basis.

  4. ITEP: A survey of innovative environmental restoration technologies in the Netherlands and France

    International Nuclear Information System (INIS)

    Roberds, W.J.; Voss, C.F.; Hitchcock, S.A.

    1995-05-01

    The International Technology Exchange Program (ITEP) of the Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for promoting the import of innovative technologies to better address EM's needs and the export of US services into foreign markets to enhance US competitiveness. Under this program, potentially innovative environmental restoration technologies, either commercially available or under development in the Netherlands and France, were identified, described, and evaluated. It was found that 12 innovative environmental restoration technologies, which are either commercially available or under development in the Netherlands and France, may have some benefit for the DOE EM program and should be considered for transfer to the United States

  5. Strategic Environmental Research and Development Project FY 1994: Assessing national remote sensing technologies for use in US Department of Energy Environmental Restoration Activities, Oak Ridge Solid Waste Storage Area 4 case study

    International Nuclear Information System (INIS)

    King, A.L.; Smyre, J.L.; Evers, T.K.

    1995-02-01

    During FY 1994, the Oak Ridge Environmental Restoration (ER) Remote Sensing Program teamed with members of the Oak Ridge National Security Program Office (NSPO), the Environmental Research Institute of Michigan (ERIM) under contract to the National Exploitation Laboratory (NEL), the Oak Ridge Waste Area Group 4 (WAG 4) ER Program, and the US Department of Energy (DOE), Offices of Technology Development, Nonproliferation and National Security, and Environmental Restoration, to conduct a test and demonstration of the uses of national remote sensing technologies at DOE hazardous waste sites located in Oak Ridge, Tennessee. Objectives of the Oak Ridge study were to determine if national remote sensing technologies are useful in conducting prescreening, characterization, and/or monitoring activities to expedite the clean-up process at hazardous waste sites and to cut clean-up costs wherever possible. This project was sponsored by the Strategic Environmental Research and Development Project (SERDP)

  6. A centralized information management system for environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Namboodiri, K. [Martin Marietta Technical Services, Inc., Bay City, MI (United States)

    1995-12-31

    During the past few decades there have been several serious initiatives focusing on the applications of computational technology towards understanding the diverse fields of environmental research such as environmental monitoring, pollution prevention, and hazardous chemical mitigation. Recently, due to the widespread application of high performance computer technology and the renewed interest of the industrial community in environmental protection, we are witnessing an era of environmental information explosion. In light of these large-scale computer-driven developments, the author identifies a highly desirable initiative for this field, which is solely devoted to a centralized environmental database and information management system. This talk will focus on some design aspects of such an information management system.

  7. Technologies for environmental cleanup: Toxic and hazardous waste management

    International Nuclear Information System (INIS)

    Ragaini, R.C.

    1993-12-01

    This is the second in a series of EUROCOURSES conducted under the title, ''Technologies for Environmental Cleanup.'' To date, the series consist of the following courses: 1992, soils and groundwater; 1993, Toxic and Hazardous Waste Management. The 1993 course focuses on recent technological developments in the United States and Europe in the areas of waste management policies and regulations, characterization and monitoring of waste, waste minimization and recycling strategies, thermal treatment technologies, photolytic degradation processes, bioremediation processes, medical waste treatment, waste stabilization processes, catalytic organic destruction technologies, risk analyses, and data bases and information networks. It is intended that this course ill serve as a resource of state-of-the-art technologies and methodologies for the environmental protection manager involved in decisions concerning the management of toxic and hazardous waste

  8. Radiation technology for environmental conservation

    International Nuclear Information System (INIS)

    Machi, Sueo; Tokunaga, Okihiro; Arai, Hidehiko; Hashimoto, Shoji

    1991-01-01

    This paper reviews research and development of radiation technology application for environmental conservation. Our group in cooperation with Ebara Mfg. co., Ltd. first found and studied removals of sulfur dioxide and nitrogen oxides from flue gases by electron beam irradiation. Most of sulfer dioxide and nitrogen oxides are converted to ammonium sulfate and nitrate by radiation with the addition of ammonia. Feasibility studies of this technology by pilot scale experiments have been carried out in Japan, USA and Germany for flue gases from iron-ore sintering furnace and coal fire power station. About 90 % of CO 2 and NO X are removed with 15 kGy. Organic pollutants in wastewater, drinking water and ground water have been found to be reduced by radiation technology. Synergetic effect of radiation and ozone to remove pollutants was also found. Disinfection of water effluent from sewage water treatment plant by radiation instead of using chlorine to avoid formation of chlorinated organic compounds has been studied by our group. Efficient composting of sewage sludge using radiation disinfection followed by fermentation has been developed and produced compost can be used as fertilizer. In conclusion, radiation technology can provide new efficient treatment method for wastes. (author)

  9. Financial development and environmental quality: The way forward

    International Nuclear Information System (INIS)

    Shahbaz, Muhammad; Shahzad, Syed Jawad Hussain; Ahmad, Nawaz; Alam, Shaista

    2016-01-01

    The present paper re-examines the asymmetric impact of financial development on environmental quality in Pakistan for the period 1985Q1 to 2014Q4. A comprehensive index of financial development is generated using Bank- and Stock market-based financial development indicators. The results show that inefficient use of energy adversely affects the environmental quality. This suggests adoption of energy efficient technology at both production and consumption levels. These technologies would be helpful to improve environmental quality, enhance the productivity in long-run and save energy. Bank-based financial development also impedes the environment. The government should encourage lenders to ease the funding for energy sector and allocate financial resources for environment friendly businesses rather than wasting them in consumer financing. - Highlights: • A positive shock in economic growth leads carbon emissions. • Energy consumption and financial development add in environmental degradation. • Financial resources should be allocated to environment friendly ventures.

  10. Transferable site remediation technologies developed by U.S. DOE Office of Science and Technology

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1996-01-01

    To provide needed technologies for site remediation, the US Department of Energy's Office of Environmental Management, Office of Science and Technology (OST) is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater. The Technology Investment Decision model serves as a framework for technology management in OST. Seven technology maturation stages are used in the model. These stages run from basic research through implementation. The Innovative Technology Summary Reports (ITSRs) provide a technical synopsis of an individual technology that has been developed. An ITSR is prepared for each technology that is successfully demonstrated in the field. The information required to produce an ITSR is collected as the technology matures through the Technology Investment Decision Process. As of July 1996 there have been thirteen ITSRs completed. This paper describes those thirteen technologies

  11. Climate Change and Requirement of Transfer of Environmentally Sound Technology

    DEFF Research Database (Denmark)

    Uddin, Mahatab

    that developed the technology, to another that adopts, adapts, and uses it. As different kinds of threats posed by climate change are continuously increasing all over the world the issue of “technology transfer” especially the transfer of environmentally sound technologies has become one of the key topics...

  12. Mechanism Of Environmental Franchising In The Sustainable Development Potential

    OpenAIRE

    Inna Illyashenko

    2011-01-01

    Reveals the types of environmental franchising: franchise environmental goods, manufacturing, service and environmental business format. Presents the methodological principles for the formation mechanisms of environmental franchise in implementing sustainable development potential. Proved economic, legal and organizational technology contractual relations regarding environmental franchise.

  13. Environmental ethics and regional sustainable development

    Institute of Scientific and Technical Information of China (English)

    ZHENG Du; DAI Erfu

    2012-01-01

    The scientific environmental ethics plays a key role in the recognition of the human-environment interactions.Modern environmental ethics is the philosophical re-thinking of modern human race environmental behavior.The development of environmental ethics theory,as well as its application in reality,determines the viewpoints of environmental ethics.Sustainable development implies harmony on human-environment interactions and inter-generation responsibility,with emphasis on a harmonious relationship among population,resources,environment and development,so as to lay a sustainable and healthy foundation of resources and environment for future generations.The harmonious society construction in China that is raised by the Chinese central government should be covered by environmental ethics.The connotation of open environmental ethics includes a respect for nature,care for the individual human race,and respect for the development of future generations,which means giving consideration to natural values,individual and human race benefits and welfare across generations.The role of environmental ethics in regional development consists of cognition,criticism,education,inspiration,adjusting,legislation and promoting environmental regulations.The major problems in regional development are extensive resource exploration,fast population growth,irrational industrial structure,unfair welfare distribution and the twofold effects of science and technology development.The formulation of environmental ethics that aims at regional sustainable development,can not only harmonize the relationship of population,resource,environment and economic development,but also guide behavior selection,push social and political system transformation,strengthen the legal system,and raise environmental awareness of the public.

  14. EPA-developed, patented technologies available for licensing

    Data.gov (United States)

    U.S. Environmental Protection Agency — Under the Federal Technology Transfer Act (FTTA), Federal Agencies can patent inventions developed during the course of research. These technologies can then be...

  15. Environmental aspects of battery and fuel cell technologies

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The PA Consulting Group was commissioned by the Longer Term Studies Unit, Research and Technology Policy Division and Information and Manufacturing Technologies Division, Dept. of Trade and Industry to investigate possible environmental initiatives which might be driven by the European Commission and which could promote interest in alternative energy sources, particularly batteries and fuel cells. Findings confirmed that there is a role for fuel cells in power generation, the most commercially advanced technology being the phosphoric acid fuel cell (PAFC). Development of other systems such as Proton Exchange Membrane technology (PEMFC) and solid oxide fuel cells (SOFC) should also continue. Emissions from fuel cells are lower than those of gas turbines, their main competitors for power generation applications below 100 MW. The study concluded that there is a role for both batteries or fuel cells in powering electric vehicles. Battery powered retrofitted vehicles have an environmental impact comparable to that of internal combustion engine powered vehicles and they could become commercially viable in the context of a carbon tax scenario. Purpose built electric vehicles would be even more attractive. From an environmental viewpoint, fuels cells based on proton membrane membrane technology seemed the best option for powering vehicles if the technical targets could be met.

  16. Database created with the operation of environmental monitoring program from the Nuclear Technology Development Center (CDTN) - Brazilian CNEN

    International Nuclear Information System (INIS)

    Peixoto, C.M.

    1995-01-01

    The environmental control from the Nuclear Technology Development Center (CDTN - Brazilian CNEN) is done through a Program of Environmental Monitoring-PMA, which has been in operation since 1985. To register all the analytic results of the several samples, samples, a database was created. In this work, this database structure as well as the information used in the evaluation of the results obtained from the operation of the above-mentioned PMA are presented. (author). 5 refs, 1 fig, 3 tabs

  17. Economic and environmental impacts of alternative transportation technologies.

    Science.gov (United States)

    2013-04-01

    This project has focused on comparing alternative transportation technologies in terms of their : environmental and economic impacts. The research is data-driven and quantitative, and examines the : dynamics of impact. We have developed new theory an...

  18. NASA Environmental Control and Life Support Technology Development and Maturation for Exploration: 2015 to 2016 Overview

    Science.gov (United States)

    Schneider, Walter F.; Gatens, Robyn L.; Anderson, Molly S.; Broyan, James L.; MaCatangay, Ariel V.; Shull, Sarah A.; Perry, Jay L.; Toomarian, Nikzad

    2016-01-01

    Over the last year, the National Aeronautics and Space Administration (NASA) has continued to refine the understanding and prioritization of technology gaps that must be closed in order to achieve Evolvable Mars Campaign objectives and near term objectives in the cislunar proving ground. These efforts are reflected in updates to the technical area roadmaps released by NASA in 2015 and have guided technology development and maturation tasks that have been sponsored by various programs. This paper provides an overview of the refined Environmental Control and Life Support (ECLS) strategic planning, as well as a synopsis of key technology and maturation project tasks that occurred in 2014 and early 2015 to support the strategic needs. Plans for the remainder of 2015 and subsequent years are also described.

  19. Fusion development and technology

    International Nuclear Information System (INIS)

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R ampersand D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development

  20. Internet of Things technology-based management methods for environmental specimen banks.

    Science.gov (United States)

    Peng, Lihong; Wang, Qian; Yu, Ang

    2015-02-01

    The establishment and management of environmental specimen banks (ESBs) has long been a problem worldwide. The complexity of specimen environment has made the management of ESB likewise complex. Through an analysis of the development and management of ESBs worldwide and in light of the sophisticated Internet of Things (IOT) technology, this paper presents IOT technology-based ESB management methods. An IOT technology-based ESB management system can significantly facilitate ESB ingress and egress management as well as long-term storage management under quality control. This paper elaborates on the design of IOT technology-based modules, which can be used in ESB management to achieve standardized, smart, information-based ESB management. ESB management has far-reaching implications for environmental management and for research in environmental science.

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - PORTABLE GAS CHROMATOGRAPH ELECTRONIC SENSOR TECHNOLOGY MODEL 4100

    Science.gov (United States)

    The U.S. Environmental Protection Agency, through the Environmental Technology Verification Program, is working to accelerate the acceptance and use of innovative technologies that improve the way the United States manages its environmental problems. As part of this program, the...

  2. EASETECH – A LCA model for assessment of environmental technologies

    DEFF Research Database (Denmark)

    Damgaard, Anders; Baumeister, Hubert; Astrup, Thomas Fruergaard

    2014-01-01

    EASETECH is a new model for the environmental assessment of environmental technologies developed in collaboration between DTU Environment and DTU Compute. EASETECH is based on experience gained in the field of waste management modelling over the last decade and applies the same concepts to systems...

  3. Tailings technology. Decommissioning and rehabilitation remedial action technology development

    International Nuclear Information System (INIS)

    Ramsey, R.W. Jr.

    1982-01-01

    This paper is to provide an overview of technology requirements for long-term uranium mill tailings disposal and remedial actions for existing tailings to ensure their adequate disposal. The paper examines the scientific disciplines that are the basis for the technology of uranium mill tailings stabilization and the design of barriers to control radiological exposure or environmental degradation at the location of tailings disposal. The discussion is presented as a hypothetical course of instruction at a fictitious university. Features of six mechanisms of dispersal or intrusion are examined with brief discussion of the applicable technology development for each. The paper serves as an introduction to subsequent specific technology development papers in the session. (author)

  4. Radiation technology for environmental conservation

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo; Tokunaga, Okihiro; Arai, Hidehiko; Hashimoto, Shoji [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1991-01-01

    This paper reviews research and development of radiation technology application for environmental conservation. Our group in cooperation with Ebara Mfg. co., Ltd. first found and studied removals of sulfur dioxide and nitrogen oxides from flue gases by electron beam irradiation. Most of sulfer dioxide and nitrogen oxides are converted to ammonium sulfate and nitrate by radiation with the addition of ammonia. Feasibility studies of this technology by pilot scale experiments have been carried out in Japan, USA and Germany for flue gases from iron-ore sintering furnace and coal fire power station. About 90 % of CO{sub 2} and NO{sub X} are removed with 15 kGy. Organic pollutants in wastewater, drinking water and ground water have been found to be reduced by radiation technology. Synergetic effect of radiation and ozone to remove pollutants was also found. Disinfection of water effluent from sewage water treatment plant by radiation instead of using chlorine to avoid formation of chlorinated organic compounds has been studied by our group. Efficient composting of sewage sludge using radiation disinfection followed by fermentation has been developed and produced compost can be used as fertilizer. In conclusion, radiation technology can provide new efficient treatment method for wastes. (author).

  5. Environmental Management Technology Leveraging Initiative. Topical report, October 1, 1995--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The ``Environmental Management Technology Leveraging Initiative,`` a cooperative agreement between the Global Environment and Technology Foundation and the Department of Energy-Morgantown Energy Technology Center, has completed its second year. This program, referred to as the Global Environmental Technology Enterprise (GETE) is an experiment to bring together the public and private sectors to identify, formulate, promote and refine methods to develop more cost-effective clean-up treatments. Working closely with Department of Energy officials, National Laboratory representatives, business people, academia, community groups, and other stakeholders, this program attempts to commercialize innovative, DOE-developed technologies. The methodology to do so incorporates three elements: business assistance, information, and outreach. A key advance this year was the development of a commercialization guidance document which can be used to diagnose the commercialization level and needs for innovative technologies.

  6. Environmental Management Technology Leveraging Initiative. Topical report, October 1, 1995 - September 30, 1996

    International Nuclear Information System (INIS)

    1996-01-01

    The ''Environmental Management Technology Leveraging Initiative,'' a cooperative agreement between the Global Environment and Technology Foundation and the Department of Energy-Morgantown Energy Technology Center, has completed its second year. This program, referred to as the Global Environmental Technology Enterprise (GETE) is an experiment to bring together the public and private sectors to identify, formulate, promote and refine methods to develop more cost-effective clean-up treatments. Working closely with Department of Energy officials, National Laboratory representatives, business people, academia, community groups, and other stakeholders, this program attempts to commercialize innovative, DOE-developed technologies. The methodology to do so incorporates three elements: business assistance, information, and outreach. A key advance this year was the development of a commercialization guidance document which can be used to diagnose the commercialization level and needs for innovative technologies

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION: TEST/QA PLAN FOR THE VERIFICATION TESTING OF SELECTIVE CATALYTIC REDUCTION CONTROL TECHNOLOGIES FOR HIGHWAY, NONROAD, AND STATIONARY USE DIESEL ENGINES

    Science.gov (United States)

    The U.S. Environmental Protection Agency established the Environmental Technology Verification Program to accelerate the development and commercialization of improved environmental technology through third party verification and reporting of product performance. Research Triangl...

  8. Abandonment: Technological, organisational and environmental challenges

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, B.G. [Reverse Engineering Ltd., (United Kingdom)

    1996-12-31

    The paper deals with the abandonment of offshore wells. Decommissioning of offshore installations is a complex multi-disciplined issue, which raises a number of technical, organisational and environmental challenges. The success of a planned decommissioning operation depends on the development of a clear understanding of the complex blend of drivers which control the decommissioning process and their inter-relationship. Due to the complexity of the inter-relationship between the primary drivers one cannot separate the technological, organisational and environmental issues raised by the decommissioning of offshore installations. The optimal solution will be a compromise between all the decommissioning drivers mentioned in this paper. 5 figs., 3 tabs.

  9. Abandonment: Technological, organisational and environmental challenges

    International Nuclear Information System (INIS)

    Twomey, B.G.

    1996-01-01

    The paper deals with the abandonment of offshore wells. Decommissioning of offshore installations is a complex multi-disciplined issue, which raises a number of technical, organisational and environmental challenges. The success of a planned decommissioning operation depends on the development of a clear understanding of the complex blend of drivers which control the decommissioning process and their inter-relationship. Due to the complexity of the inter-relationship between the primary drivers one cannot separate the technological, organisational and environmental issues raised by the decommissioning of offshore installations. The optimal solution will be a compromise between all the decommissioning drivers mentioned in this paper. 5 figs., 3 tabs

  10. Framework for development of environmental technology; Rammeverk for utvikling av miljoeteknologi

    Energy Technology Data Exchange (ETDEWEB)

    2010-02-15

    This report discusses principles and approaches for public support toward the development of clean technology. The study also presents the results of five country case studies in the rationale, approach, and organisation of public support for clean technology development in the case countries. Finally, we propose a framework for identifying, prioritising and supporting clean technology development in Norway. (Author)

  11. A standard methodology for cost-effectiveness analysis of new environmental technologies

    International Nuclear Information System (INIS)

    Booth, S.R.; Trocki, L.K.; Bowling, L.

    1994-01-01

    This paper outlines a methodology that is being applied to assess the cost-effectiveness of new environmental technologies under development by EM-50, DOE. Performance, total system effects, and life-cycle costs are all considered in the methodology to compare new technologies with existing or base-line technologies. An example of performance characterization is given in the paper. Sources of data for cost estimates and technology characterizations also appear in the paper. The Department of Energy (DOE) is facing a massive clean up effort of waste sites that contain hazardous, radioactive, or mixed materials. DOE has recognized that improvements in environmental restoration and waste management methods can potentially save the taxpayers billions of dollars as older, less-effective technologies are displaced. Consequently, DOE has targeted significant funding to search for new technologies and to test and demonstrate them in rapid and cost-effective manner with the goal of applying them quickly to address environmental problems

  12. FY-95 technology catalog. Technology development for buried waste remediation

    International Nuclear Information System (INIS)

    1995-01-01

    The US Department of Energy's (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described

  13. FY-95 technology catalog. Technology development for buried waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  14. 75 FR 18482 - Environmental Technologies Trade Advisory Committee (ETTAC)

    Science.gov (United States)

    2010-04-12

    ... DEPARTMENT OF COMMERCE Environmental Technologies Trade Advisory Committee (ETTAC) AGENCY... Environmental Technologies Trade Advisory Committee (ETTAC) will hold its quarterly meeting to discuss environmental technologies trade liberalization, industry competitiveness issues, and general Committee...

  15. Analysis of technical alternative technologies for the development of context-driven composable environmental representations for JSB

    Science.gov (United States)

    Hummel, John R.; Bergenthal, Jeff J.; Seng, William F.; Moulton, Joseph R., Jr.; Prager, S. D.

    2004-08-01

    The Joint Synthetic Battlespace for the Air Force (JSB-AF) is being developed to provide realistic representations of friendly and threat capabilities and the natural environmental conditions to support a variety of Department of Defense missions including training, mission rehearsal, decision support, acquisition, deployment, employment, operations, and the development of Courses of Action. This paper addresses three critical JSB issues associated with providing environ-mental representations to Modeling and Simulation (M&S) applications. First, how should the requirements for envi-ronmental functionality in a JSB-AF application be collected, analyzed, and used to define an Authoritative Environ-mental Representation (AER)? Second, how can JSB-AF AERs be generated? Third, once an AER has been generated, how should it be "served up" to the JSB-AF components? Our analyses of these issues will be presented from a general M&S perspective, with examples given from a JSB-AF centered view. In the context of this effort, the term "representa-tions" is meant to incorporate both basic environmental "data" (e.g., temperature, pressure, slope, elevation, etc.) and "effects", properties that can be derived from these data using physics-based models or empirical relationship from the fundamental data (e.g., extinction coefficients, radiance, soil moisture strength, etc.) We present a state-of-the-art review of the existing processes and technologies that address these questions.

  16. 75 FR 52716 - Environmental Technologies Trade Advisory Committee (ETTAC)

    Science.gov (United States)

    2010-08-27

    ... DEPARTMENT OF COMMERCE Environmental Technologies Trade Advisory Committee (ETTAC) AGENCY... Environmental Technologies Trade Advisory Committee (ETTAC) will hold its quarterly meeting to discuss environmental technologies industry competitiveness issues, the National Export Initiative, and general...

  17. Applying environmental externalities to US Clean Coal Technologies for Asia

    International Nuclear Information System (INIS)

    Szpunar, C.B.; Gillette, J.L.

    1993-01-01

    The United States is well positioned to play an expanding role in meeting the energy technology demands of the Asian Pacific Basin, including Indonesia, Thailand, and the Republic of China (ROC-Taiwan). The US Department of Energy Clean Coal Technology (CCT) Demonstration Program provides a proving ground for innovative coal-related technologies that can be applied domestically and abroad. These innovative US CCTs are expected to satisfy increasingly stringent environmental requirements while substantially improving power generation efficiencies. They should also provide distinct advantages over conventional pulverized coal-fired combustors. Finally, they are expected to be competitive with other energy options currently being considered in the region. This paper presents potential technology scenarios for Indonesia, Thailand, and the ROC-Taiwan and considers an environmental cost-benefit approach employing a newly developed method of applying environmental externalities. Results suggest that the economic benefits from increased emission control can indeed be quantified and used in cost-benefit comparisons, and that US CCTs can be very cost effective in reducing emissions

  18. Symposium proceedings: environmental aspects of fuel conversion technology, IV (April 1979, Hollywood, FL)

    Energy Technology Data Exchange (ETDEWEB)

    Ayer, F.A.; Jones, N.S. (comps.)

    1979-09-01

    The proceedings document presentations made at the symposium on Environmental Aspects of Fuel Conversion Technology are presented. The symposium acted as a colloquium for discussion of environmentally related information on coal gasification and liquefaction. The program included sessions on program approach, environmental assessment, and control technology development. Process developers, process users, research scientists and state and federal government officials participated in this symposium, the fourth to be conducted by IERL-RTP on the subject since 1974. Separate abstracts have been prepared of individual presentations for inclusion in the Energy Data Base.

  19. 75 FR 1590 - Environmental Technologies Trade Advisory Committee (ETTAC)

    Science.gov (United States)

    2010-01-12

    ... DEPARTMENT OF COMMERCE Environmental Technologies Trade Advisory Committee (ETTAC) AGENCY... Environmental Technologies Trade Advisory Committee (ETTAC) will hold its first plenary meeting of 2010 to discuss environmental technologies trade liberalization, industry competitiveness issues, and general...

  20. ATBU Journal of Environmental Technology

    African Journals Online (AJOL)

    The journal of environmental technology is devoted to the publication of papers ... research results of both the natural; the technological; and the built environment. ... Assessment of multipath and shadowing effects on UHF band in built-up ...

  1. Environmental Development Plan (EDP): space applications

    International Nuclear Information System (INIS)

    1978-04-01

    This Environmental Development Plan (EDP) identifies and examines the environmental, safety, health, and socioeconomic (ES and H) issues associated with the ongoing DOE Space Applications Program and the associated research, development, and demonstration programs. The EDP presents an ES and H research and development (R/D) program and strategy for timely resolutions of the issues and satisfaction of the associated requirements necessary for precluding impediments to the space nuclear systems technology. The EDP has been limited to the consideration of: (1) space nuclear power system nuclear fuel fabrication; (2) space nuclear power system heat source fabrication; (3) testing of subsystems and assembled systems; (4) R and D in support of space nuclear system development; (5) nuclear system responses to launch and reentry accidents; and (6) nuclear system environmental behavior and recovery

  2. SIHTI 2 - Energy and environmental technology. Yearbook 1993 of the research programme. Project reports

    International Nuclear Information System (INIS)

    Korhonen, M.; Saviharju, K.

    1994-01-01

    The SIHTI 2 research programme on energy and environmental technology, established by the Finnish Ministry of Trade and Industry, is concentrating on areas of environmental technology that are vital to Finland or in which Finns can engage in pioneering research. The promotion of product development within the environmental technology industry produces solutions for reducing the emissions of the energy sector. It is also a way of boosting Finland's share of the world market for such technology. The objectives of the programme are to cut down harmful emissions, recycle raw materials, reduce the amount of byproducts and wastes and achieve a greater utilization of wastes. In addition, an objective is to create basic information about the effects of environmental protection technology for the other research programmes financed by the Ministry of Trade and Industry. The development of internationally comparable research, monitoring and measurement methods creates a basis for wide-ranging international cooperation. The programme, to be carried out in 1993 - 1998, is in part a continuation of the previous SIHTI programme. New areas of research are environmental problems connected with energy in the forest and base metal industries as well as the systematic development of life-cycle analyses. This publication is yearbook 1993 of the programme. It contains the project reports of the research and joint development projects and information about the participating institutions

  3. 5th Conference on Aerospace Materials, Processes, and Environmental Technology

    Science.gov (United States)

    Cook, M. B. (Editor); Stanley, D. Cross (Editor)

    2003-01-01

    Records are presented from the 5th Conference on Aerospace Materials, Processes, and Environmental Technology. Topics included pollution prevention, inspection methods, advanced materials, aerospace materials and technical standards,materials testing and evaluation, advanced manufacturing,development in metallic processes, synthesis of nanomaterials, composite cryotank processing, environmentally friendly cleaning, and poster sessions.

  4. Applications of information technology in the environmental area

    International Nuclear Information System (INIS)

    Jaeschke, A.; Page, B.

    1987-03-01

    The state of events in the environment are described by physical, chemical, meteorological and biological data. The spatially distributed information cannot be managed without technical help from automatic measuring devices, data telecommunication and process data processing. The computer-aided creation of models and simulation represent an aid involving environmental problems. One considerable extension of the possibilities will be provided by the introduction of the methods of artificial intelligence, especially expert systems. The use of information technology therefore forms an important precondition for environmental protection. The contributions illustrate the state of development of communication between scientists in the field of environmental protection. (DG) [de

  5. A-State-of-the-Art Report on Application of Radiation Technology to Environmental Pollution Control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Kwang; Lee, Myun Joo

    2004-06-15

    Radiation technology has been rapidly developed for decades and its applicability also enlarged to many fields such as environmental protection, medical care, manufacturing industry, agriculture, and bio technology. In this report, we focused on the present situation of the development of radiation facilities and state-of-the-art on application of radiation to environmental pollution control including purification of flue gas, waste water treatment, and recycling of biological waste. We especially discussed the radiation technology for environmental pollution control and described the capability of its application to the industrial plants in Korea.

  6. International technology catalogue: Foreign technologies to support the environmental restoration and waste management needs of the DOE complex

    International Nuclear Information System (INIS)

    Matalucci, R.V.

    1995-07-01

    This document represents a summary of 27 foreign-based environmental restoration and waste management technologies that have been screened and technically evaluated for application to the cleanup problems of the Department of Energy (DOE) nuclear weapons complex. The evaluation of these technologies was initiated in 1992 and completed in 1995 under the DOE's International Technology Coordination Program of the Office of Technology Development. A methodology was developed for conducting a country-by-country survey of several regions of the world where specific environmental technology capabilities and market potential were investigated. The countries that were selected from a rank-ordering process for the survey included: then West Germany, the Netherlands, France, Japan, Taiwan, the Czech and Slovak Republics, and the Former Soviet Union. The notably innovative foreign technologies included in this document were screened initially from a list of several hundred, and then evaluated based on criteria that examined for level of maturity, suitability to the DOE needs, and for potential cost effective application at a DOE site. Each of the selected foreign technologies that were evaluated in this effort for DOE application were subsequently matched with site-specific environmental problem units across the DOE complex using the Technology Needs Assessment CROSSWALK Report. For ease of tracking these technologies to site problem units, and to facilitate their input into the DOE EnviroTRADE Information System, they were categorized into the following three areas: (1) characterization, monitoring and sensors, (2) waste treatment and separations, and (3) waste containment. Technical data profiles regarding these technologies include title and description, performance information, development status, key regulatory considerations, intellectual property rights, institute and contact personnel, and references

  7. Environmental characteristics of clean coal technologies

    International Nuclear Information System (INIS)

    Bossart, S.J.

    1992-01-01

    The Department of Energy's (DOE) Clean Coal Technology (CCT) Program is aimed at demonstrating the commercial readiness of advanced coal-based technologies. A major goal of the CCT program is to introduce into the US energy marketplace those coal-based power generation technologies that have superior economic and environmental performance over the current suite of commercial coal-based power generation technologies. The commercialization of CCTs will provide the electric utility industry with technology options for replacing aging power plants and meeting future growth in electricity demand. This paper discusses the environmental advantages of two CCTs used for electric power generation: pressurized fluidized-bed combustion (PFBC) and integrated gasification combined-cycle (IGCC). These CCTs are suitable for repowering existing power plants or for grassroots construction. Due to their high efficiency and advanced environmental control systems, they emit less sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), particulate matter, and carbon dioxide (CO 2 ) than a state-of-the-art, pulverized coal power plant with flue gas desulfurization (PC/FGD)

  8. Environmental regulation and technological innovation

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, A.E. [Carnegie Mellon Electricity Industry Center, Pittsburg, PA (United States)

    2002-07-01

    Government policies are a major factor in the determination of structural conditions of competition. The innovative activity comprises the following: invention, adoption, and diffusion. Invention involves research and development activities such as patenting, research and development budgets. The adoption phase is concerned with deployment. As for the diffusion phase, it involves commercialization, and scale-economies. The process of introducing new technologies that are adopted by small numbers of customers in a niche market was explained. Once costs are lowered through experience gained in designing, manufacturing and servicing the new technology, mew applications generally lead to larger markets. Environmental technologies have no early adopters, implying that governments have an important role to play. However, commercial processes are not normally as well known to government as it is to the private sector. The electoral cycle also interferes with long term research and development efforts for technological clusters. A look at sulphur dioxide control at United States power plants illustrated the problem. The author then explained the reasons behind low allowance prices. Low-sulphur western coal was rendered economic in large areas of the United States by rail deregulation. Electricity restructuring was also a factor. The author indicated that binding government regulation must come before adoption and diffusion of emission controls. A summary of recent research was provided, in which the author stated that no single policy instrument was likely to properly stimulate innovative activity. In those cases where both supply and demand are stimulated by government, the technological innovation is greatest. Stringent regulations induce innovation, as do greater flexibility and greater regulatory certainty. Knowledge transfer within the industry is vital. 8 refs., 3 figs.

  9. Using information technology to measure, monitor and report on environmental performance

    Energy Technology Data Exchange (ETDEWEB)

    Ford, G.

    1999-07-01

    This article provides an overview of the process of environmental performance evaluation (EPE), including a discussion of the rationale and context for EPE as a key component of environmental management and sustainability metrics for businesses around the world. New and emerging developments, such as environmental performance benchmarking and standardized reporting, are highlighted. The ISO 14000 model for EPE and its environmental performance indicators is described. The article then discusses the need for new technology, including the Internet, to meet these new demands, and examines the important role of information technology in creating an efficient and effective system for the EPE process. In this regard, issues such as scaleability, data identification, data collection, reporting, user interface, integration and data warehousing are explored, and examples of the application of information technology to address these issues are provided. The article concludes with a discussion of the need to use emerging information technology to integrate various key types of performance information, including environmental, according to the balanced scorecard model for integrated business sustainability metrics. It concludes that such technology should be used now, even in the absence of global standards for performance metrics, and in spite of the theoretical and practical challenges in doing so, in order to move toward the important goal of achieving comprehensive sustainability metrics.

  10. Cure electrocoagulation demonstration at Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Bridges, J.L.; Jones, J.; Ball, T.

    1996-01-01

    A demonstration of an innovative technology for remediating radionuclide contamination in water took place at the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado, during the summer of 1995. The demonstration was part of the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) program and was conducted by EPA, the U.S. Department of Energy (DOE), and General Environmental Corporation (GEC). The SITE program encourages the development and demonstration of innovative treatment and monitoring technologies. The purpose of the demonstration was to evaluate the ability of GEC's innovative CURE technology to remove uranium, plutonium, and americium from water taken from the A and B solar evaporation ponds at RFETS. The CURE electrocoagulation process uses an anode and cathode in a patented geometry to remove contaminants, including radionuclides, from wastewater in a continuous flow process. Electrocoagulation has been recognized as a method of removing a variety of contaminants from wastewaters. With the CURE process, GEC has refined the technology and adapted it to hazardous waste cleanup. Bench scale treatability testing conducted in April 1995 indicated 99 percent removal efficiencies were possible for uranium, plutonium-239/240, and americium-241. During the field scale demonstration in August and September 1995, samples were collected from four demonstration runs at RFETS. A removal efficiency of approximately 50 percent was achieved for uranium and nearly 99 percent for plutonium and americium

  11. Cure electrocoagulation demonstration at Rocky Flats Environmental Technology Site

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, J.L.; Jones, J.; Ball, T. [PRC Environmental Management, Inc., Denver, CO (United States)] [and others

    1996-12-31

    A demonstration of an innovative technology for remediating radionuclide contamination in water took place at the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado, during the summer of 1995. The demonstration was part of the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) program and was conducted by EPA, the U.S. Department of Energy (DOE), and General Environmental Corporation (GEC). The SITE program encourages the development and demonstration of innovative treatment and monitoring technologies. The purpose of the demonstration was to evaluate the ability of GEC`s innovative CURE technology to remove uranium, plutonium, and americium from water taken from the A and B solar evaporation ponds at RFETS. The CURE electrocoagulation process uses an anode and cathode in a patented geometry to remove contaminants, including radionuclides, from wastewater in a continuous flow process. Electrocoagulation has been recognized as a method of removing a variety of contaminants from wastewaters. With the CURE process, GEC has refined the technology and adapted it to hazardous waste cleanup. Bench scale treatability testing conducted in April 1995 indicated 99 percent removal efficiencies were possible for uranium, plutonium-239/240, and americium-241. During the field scale demonstration in August and September 1995, samples were collected from four demonstration runs at RFETS. A removal efficiency of approximately 50 percent was achieved for uranium and nearly 99 percent for plutonium and americium.

  12. Technologies development for environmental restoration and waste management: International university and research institution and industry partnerships

    International Nuclear Information System (INIS)

    Herndon, R.C.; Moerlins, J.E.; Kuperberg, J.M.

    1996-01-01

    The Institute for Central and Eastern European Cooperative Environmental Research (ICEECER) at Florida State University was formed in 1990 soon after the end of the Cold War. ICEECER consists of a number of joint centers which link FSU, and US as well as international funding agencies, to academic and research institutions in Hungary, Poland, the Czech Republic, Russia, and the other countries of Central and Eastern Europe and the Newly Independent States. Areas of interest include risk assessment, toxicology, contaminated site remediation/characterization, waste management, emergency response, environmental technology development/demonstration/transfer, and some specialized areas of research (e.g., advanced chemical separations). Through ICEECER, numerous international conferences, symposia, training courses, and workshops have also been conducted on a variety of environmental topics. This paper summarizes the mission, structure, and administration of ICEECER and provides information on the projects conducted through this program at FSU

  13. GENERAL ENVIRONMENTAL CORPORATION; CURE ELECTROCOAGULATION TECHNOLOGY: INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    The CURE electrocoagulation technology was demonstrated under the Superfund Innovative Technology Evaluation (SITE) program at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS), where water from the solar evaporation ponds (SEPs) was contaminat...

  14. Development of clean environment conservation technology by radiation

    International Nuclear Information System (INIS)

    Lee, Myunjoo; Kim, Tak Hyun; Jung, In Ha

    2012-04-01

    This report is aim to develop the technology for environmental conservation by radiation. It is consisted of two research parts. One is development of wastewater disinfection technology by radiation and the other is development of livestock waste treatment technology by radiation. For the development of wastewater disinfection technology disinfect ion process, technology for treatment of toxic organic chemicals and assessment of ecological toxicity, technology for treatment of endocrine disrupting chemicals and assessment of genetic safety were developed. For the development of livestock waste treatment technology, process for simultaneous removal of nutrients, technology for disinfection and quality enhancement of livestock waste compost, technology for reduction of composting periods, monitoring of toxic organic compounds, pretreatment technology for organic toxic chemicals and enhancement of biological treatment efficiencies were developed. Based on basic research, advanced livestock wastewater treatment process using radiation was established

  15. Public participation in the evaluation of innovative environmental cleanup technology

    International Nuclear Information System (INIS)

    Peterson, T.; McCabe, G.; Serie, P.; Niesen, K.

    1994-08-01

    Technologies for remediation of contamination are urgently needed to clean up US Department of Energy (DOE) sites across the country. DOE is managing a national program to develop, demonstrate, and deploy new technologies with promise to expedite this cleanup. The Integrated Demonstration for Cleanup of Volatile Organic Compounds at Arid Sites (VOC-Arid ID) is one such effort. Time and resources, however, are too limited to be invested in methods of remediation that will never be deployed because they have not been rigorously evaluated or because they face the withering opposition of stakeholders. Therefore the VOC-Arid ID is assessing technology both in terms of its technical effectiveness and its stakeholder acceptability. Only if a technology performs as required and is acceptable to regulators, users of technology, and the public will the VOC-Arid ID recommend its use. What distinguishes public involvement in the VOC-Arid ID is the direct influence stakeholders have on the design of technology demonstrations by working directly with technology developers. Stakeholders participated in defining the criteria with which innovative environmental cleanup technology is being evaluated. The integrated demonstration is committed to providing stakeholders with the information they've indicated they need to reach reasoned judgments about the use of specific cleanup technologies. A guiding principle of the VOC-Arid ID is that stakeholder participation improves the technologies being developed, enhances the acceptance of the technologies, and will lead to the broad and timely deployment of appropriate and effective methods of environmental remediation. The VOC-Arid ID has involved stakeholders from the host demonstration site, Hanford, Washington, and from other and sites where the ID technologies may be deployed

  16. Advanced coal combustion technologies and their environmental impact

    International Nuclear Information System (INIS)

    Bozicevic, Maja; Feretic, Danilo; Tomsic, Zeljko

    1997-01-01

    Estimations of world energy reserves show that coal will remain the leading primary energy source for electricity production in the foreseeable future. In order to comply with ever stricter environmental regulations and to achieve efficient use of limited energy resources, advanced combustion technologies are being developed. The most promising are the pressurised fluidized bed combustion (PFBC) and the integrated gasification combined cycle (IGCC). By injecting sorbent in the furnace, PFBC removes more than 90 percent of SO 2 in flue gases without additional emission control device. In addition, due to lower combustion temperature, NO x emissions are around 90 percent lower than those from pulverised coal (PC) plant. IGCC plant performance is even more environmentally expectable and its high efficiency is a result of a combined cycle usage. Technical, economic and environmental characteristics of mentioned combustion technologies will be presented in this paper. Comparison of PFBC, IGCC and PC power plants economics and air impact will also be given. (Author)

  17. Development of isotope hydrology technology in China

    International Nuclear Information System (INIS)

    Li Zhangsu

    1988-01-01

    The development of isotope hydrology technology in China is described. The isotope technology provides an independent approach for solving hydrological problems. Isotope hydrology is applied in three ways: the use of change in environmental isotopic composition of water (especially used in water resources exploitation), the use of artificial radioactive tracers and the use of redioisotope instruments. Many important achievements have been obtained in application of isotopic hydrology technology. For the sake of promoting rapid development of isotope hydrology the topics on management, technology and others are commented

  18. The diffusion of patented oil and gas technology with environmental uses: A forward patent citation analysis

    International Nuclear Information System (INIS)

    Duch-Brown, Néstor; Costa-Campi, María Teresa

    2015-01-01

    Relevant advances in the mitigation of environmental impact could be obtained by the appropriate diffusion of existing environmental technologies. In this paper, we look at the diffusion of knowledge related to environmental technologies developed within the oil and gas industry. To assess knowledge spillovers from oil and gas inventions as a measure of technology diffusion, we rely on forward patent citations methodology. Results show that there is a strong likelihood that the citing patent will be eventually linked to environmental technologies if the original oil and gas invention has already environmental uses. Moreover, both intra and intersectoral spillovers produce a “turnabout” effect, meaning that citing patents show the opposite quality level of the cited patent. Our results support the idea that more sector-specific environmental policies, with an emphasis on diffusion, would significantly improve the use of environmental technologies developed within the oil and gas industry. -- Highlights: •Knowledge spillovers from oil and gas inventions are of an intrasectoral nature. •Environmental uses in original patents diffuse to patents with environmental uses. •The “turnabout” effect converts low quality patents into high quality citing patents. •Diffusion of oil and gas inventions need more ad hoc instruments

  19. Dematerialization, development and environmental quality

    International Nuclear Information System (INIS)

    Bernardini, O.; Galli, R.

    1992-01-01

    An analysis of post WW II trends in intensity of materials use (materials consumption versus gross national product) in industrialized countries indicates significant reductions due to the saturation of market demand, materials recycling (in Japan, 60% of some metals used in production processes come from recycled scrap), technological innovations, materials substitution and energy efficiency programs (e.g., the ratio between materials content and power in industrial boilers has been greatly reduced, fiber optics cables, with up to 40 times greater capacity than copper cables, are replacing the latter in telecommunications). The reduced demand for prime materials, a major source of income for developing countries, and uncontrolled population dynamics now makes it increasingly more difficult for these countries to improve their standards of living and convert to clean energy and production technologies being developed and used in the industrialized countries. Greater international cooperation is needed to enable and ensure the transfer of innovative technologies favouring economic development and environmental quality to developing countries

  20. Policy issues inherent in advanced technology development

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, P.D.

    1994-12-31

    In the development of advanced technologies, there are several forces which are involved in the success of the development of those technologies. In the overall development of new technologies, a sufficient number of these forces must be present and working in order to have a successful opportunity at developing, introducing and integrating into the marketplace a new technology. This paper discusses some of these forces and how they enter into the equation for success in advanced technology research, development, demonstration, commercialization and deployment. This paper limits itself to programs which are generally governmental funded, which in essence represent most of the technology development efforts that provide defense, energy and environmental technological products. Along with the identification of these forces are some suggestions as to how changes may be brought about to better ensure success in a long term to attempt to minimize time and financial losses.

  1. Policy issues inherent in advanced technology development

    International Nuclear Information System (INIS)

    Baumann, P.D.

    1994-01-01

    In the development of advanced technologies, there are several forces which are involved in the success of the development of those technologies. In the overall development of new technologies, a sufficient number of these forces must be present and working in order to have a successful opportunity at developing, introducing and integrating into the marketplace a new technology. This paper discusses some of these forces and how they enter into the equation for success in advanced technology research, development, demonstration, commercialization and deployment. This paper limits itself to programs which are generally governmental funded, which in essence represent most of the technology development efforts that provide defense, energy and environmental technological products. Along with the identification of these forces are some suggestions as to how changes may be brought about to better ensure success in a long term to attempt to minimize time and financial losses

  2. Electron Beam Technology for Environmental Pollution Control.

    Science.gov (United States)

    Chmielewski, Andrzej G; Han, Bumsoo

    2016-10-01

    Worldwide, there are over 1700 electron beam (EB) units in commercial use, providing an estimated added value to numerous products, amounting to 100 billion USD or more. High-current electron accelerators are used in diverse industries to enhance the physical and chemical properties of materials and to reduce undesirable contaminants such as pathogens, toxic byproducts, or emissions. Over the past few decades, EB technologies have been developed aimed at ensuring the safety of gaseous and liquid effluents discharged to the environment. It has been demonstrated that EB technologies for flue gas treatment (SO x and NO x removal), wastewater purification, and sludge hygienization can be effectively deployed to mitigate environmental degradation. Recently, extensive work has been carried out on the use of EB for environmental remediation, which also includes the removal of emerging contaminants such as VOCs, endocrine disrupting chemicals (EDCs), and potential EDCs.

  3. NEDO environmental technology subcommittee. 18th project report meeting; NEDO kankyo gijutsu bunkakai. Dai 18 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    In relation with the 'recent trends of global warming problems and the outline of environmental technology development office activities,' Hiroshi Mitsukawa, a NEDO (New Energy and Industrial Technology Development Organization) director, delivers a report on Japan's policy toward the international commitments of the Kyoto session of the Conference of the Parties to the United Nations Framework Convention on Climate Change and NEDO's approach in this connection to new energy technology development. Furthermore, global environment-related industry technology research and development projects are explained, which involve environmentally friendly production technology, reduction in substances that cause environmental impacts, effective use of CO2 fixation, recycling of wastes, environment restoration technology, international relationship, and so forth. In relation with the 'promotion of global warming prevention projects by the environmental technology development office,' researches for the promotion of joint implementation, climate technology initiative, international joint projects for CO2 isolation in the ocean, and IEA (International Energy Agency) agreement on the research and development of technologies related to greenhouse gas, are explained. Concerning the development of eco-cement production technology utilizing urbane type general wastes, a verification research project on the manufacture of cement from incinerated urbane waste residue and sewage sludge is reported. (NEDO)

  4. The Chemical Technology Division at Argonne National Laboratory: Applying chemical innovation to environmental problems

    International Nuclear Information System (INIS)

    1995-01-01

    The Chemical Technology Division is one of the largest technical divisions at Argonne National Laboratory, a leading center for research and development related to energy and environmental issues. Since its inception in 1948, the Division has pioneered in developing separations processes for the nuclear industry. The current scope of activities includes R ampersand D on methods for disposing of radioactive and hazardous wastes and on energy conversion processes with improved efficiencies, lower costs, and reduced environmental impact. Many of the technologies developed by CMT can be applied to solve manufacturing as well as environmental problems of industry

  5. Corporate Social Responsibility and Environmentally Sound Technology in Endogenous Firm Growth

    Directory of Open Access Journals (Sweden)

    Angela C. Chao

    2017-02-01

    Full Text Available We have entered the “New Normal” economy, with more emphasis on economic growth driven by innovation than resource. This paper investigates the impacts of firms considering corporate social responsibility and environmentally sound technology by building a three-stage Cournot competition model with asymmetric cost. The sustainable development of economic and endogenous firm growth achieves the win–win result in the theoretical model. Using data from 31 firms in China, this paper empirically researches on the relationships among corporate social responsibility, environmentally sound technology and firm endogenous growth. The results show that: (1 Marginal cost decreased with the increase of innovation, as well as getting government research and development subsidy, which has a positive effect on firm growth. (2 Consumers respond positively to corporate social responsibility initiative, the reputation of the firm can be improved. At the same time, environmentally sound technology objectively reduces the marginal cost of competitors because of the technology spillover. (3 Profit of a firm undertaking corporate social responsibility partly decreases, which has a negative effect on firm growth. The contradiction between corporate social responsibility and profit of firm could be adjusted, such as socially responsible investment fund hosed by institutional investors.

  6. Environmental technologies of woody crop production systems

    Science.gov (United States)

    Ronald S. Zalesny Jr.; John A. Stanturf; Emile S. Gardiner; Gary S. Ba??uelos; Richard A. Hallett; Amir Hass; Craig M. Stange; James H. Perdue; Timothy M. Young; David R. Coyle; William L. Headlee

    2016-01-01

    Soil erosion, loss of productivity potential, biodiversity loss, water shortage, and soil and water pollution are ongoing processes that decrease or degrade provisioning (e.g., biomass, freshwater) and regulating (e.g., carbon sequestration, soil quality) ecosystem services. Therefore, developing environmental technologies that maximize these services is essential for...

  7. Environmental Development Plan (EDP). Enhanced gas recovery, FY 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-01

    This Enhanced Gcs Recovery EDP addresses the environmental impacts of enhanced gas recovery processes in shale and sandstone, methane drainage from coalbeds, and methane recovery from geopressured aquifers. The EDP addresses planning in two basic areas: environmental research and environmental assessment. Environmental research can be categorized as follows: characterization of pollutants from EGR processes; selective application of monitoring and measuring techniques; evaluation of control/mitigation techniques; and evaluation of the synergistic impacts of the development of EGR techniques. Environmental assessment activities scheduled by EDP include: assessment of ecological impacts; assessment of socioeconomic effects; EIA/EIS preparation; evaluation of control technology needs; and analysis of applicable and proposed emission, effluent, and health and safety standards. The EGR EDP includes an EGR technology overview (Section 2), a discussion of EGR environmental issues and requirements (Section 3), an environmental action plan (Section 4), an environmental management strategy for the EGR program (Section 5), and supporting appendices which present information on Federal legislation applicable to EGR technology, a summary of ongoing and completed research, and future research and assessment projects.

  8. Technological challenges for boosting coal production with environmental sustainability.

    Science.gov (United States)

    Ghose, Mrinal K

    2009-07-01

    The global energy requirement has grown at a phenomenon rate and the consumption of primary energy sources has been a very high positive growth. This paper focuses on the consumption of different primary energy sources and it identifies that coal will continue to remain as the prime energy source in foreseeable future. It examines the energy requirement perspective for India and demand of coal as the prime energy source. Economic development and poverty alleviation depend on securing affordable energy sources and Indian coal mining industry offers a bright future for the country's energy security, provided the industry is allowed to develop by supportive government policies and adopts latest technologies for mining. It is an irony that in-spite of having a plentiful reserves, India is not able to jack up coal production to meet its current and future demand. It discusses the strategies to be adopted for growth and meeting the coal demand. But such energy are very much concerned with environmental degradation and must be driven by contemporary managerial acumen addressing environmental and social challenges effectively The paper highlights the emissions of greenhouse gases due to burning of fossil fuels and environmental consequences of global warming and sea-level rise. Technological solutions for environment friendly coal mining and environmental laws for the abatement of environmental degradation are discussed in this paper.

  9. Developments in environmental and engineering law in 1990

    International Nuclear Information System (INIS)

    Brandner, T.

    1991-01-01

    The detailed and clear compilation for the period 1.1.1990-31.1.1991 covers the following topics: Environmental and engineering law in the German unification process; superordinate developments in the EG and in Germany, in particular: Draft Federal Environmental Code, Civil Environmental Liability Act, EIA, German Federal Environmental Foundation; technological safety; climate protection - international agreements, EC law, developments in Germany; air and noise pollution control law; atomic and radiation protection law - point of departure, legislation, individual questions: Federal supervision, nuclear disposal and recycling. Moreover: Environmental concerns in regional planning; the law of nature conservation, water protection, waste management, hazardous materials, genetic engineering and soil protection. (HSCH) [de

  10. ATBU Journal of Environmental Technology: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. The journal of environmental technology is devoted to the publication of papers which advance knowledge of practical and theoretical issues of the environmental technology. Selection of papers for publication is based on their relevance, clarity, topicality and individuality; the extent to which they advance ...

  11. The Savannah River Technology Center environmental monitoring field test platform

    International Nuclear Information System (INIS)

    Rossabi, J.

    1993-01-01

    Nearly all industrial facilities have been responsible for introducing synthetic chemicals into the environment. The Savannah River Site is no exception. Several areas at the site have been contaminated by chlorinated volatile organic chemicals. Because of the persistence and refractory nature of these contaminants, a complete clean up of the site will take many years. A major focus of the mission of the Environmental Sciences Section of the Savannah River Technology Center is to develop better, faster, and less expensive methods for characterizing, monitoring, and remediating the subsurface. These new methods can then be applied directly at the Savannah River Site and at other contaminated areas in the United States and throughout the world. The Environmental Sciences Section has hosted field testing of many different monitoring technologies over the past two years primarily as a result of the Integrated Demonstration Program sponsored by the Department of Energy's Office of Technology Development. This paper provides an overview of some of the technologies that have been demonstrated at the site and briefly discusses the applicability of these techniques

  12. Developments in lubricant technology

    CERN Document Server

    Srivastava, S P

    2014-01-01

    Provides a fundamental understanding of lubricants and lubricant technology including emerging lubricants such as synthetic and environmentally friendly lubricants Teaches the reader to understand the role of technology involved in the manufacture of lubricants Details both major industrial oils and automotive oils for various engines Covers emerging lubricant technology such as synthetic and environmentally friendly lubricants Discusses lubricant blending technology, storage, re-refining and condition monitoring of lubricant in equipment

  13. Integration of environmentally compatible soldering technologies for waste minimization

    International Nuclear Information System (INIS)

    Hosking, F.M.

    1992-01-01

    There has been a concentrated effort throughout the international microelectronics industry to phase out chlorofluorocarbon (CFC) materials and alleviate the serious problem of ozone depletion created by the release of CFCS. The development of more environmentally compatible manufacturing technologies is the cornerstone of this effort. Alternative materials and processes for cleaning and soldering have received special attention. Electronic. soldering typically utilizes rosin-based fluxes to promote solder wettability. Flux residues must be removed from the soldered parts when high product reliability is essential. Halogenated or CFC solvents have been the principle chemicals used to clean the residues. With the accelerated push to eliminate CFCs in the US by 1995, CFC-free solvents, aqueous-based cleaning, water soluble or ''no clean'' fluxes, and fluxless soldering technologies are being developed and quickly integrated into manufacturing practice. Sandia's Center for Solder Science and Technology has been ch g a variety of fluxless and alternative soldering technologies for DOE's waste minimization program. The work has focused on controlled atmosphere, laser, and ultrasonic fluxless soldering, protective metallic and organic coatings, and fluxes which have water soluble or low solids-based chemistries. With the increasing concern that Pb will also be banned from electronic soldering, Sandia has been characterizing the wetting, aging, and mechanical properties of Pb-fire solder alloys. The progress of these integrated studies will be discussed. Their impact on environmentally compatible manufacturing will be emphasized. Since there is no universal solution to the various environmental, safety, and health issues which currently face industry, the proposed technologies offer several complementary materials and processing options from which one can choose

  14. Combustion technology developments in power generation in response to environmental challenges

    Energy Technology Data Exchange (ETDEWEB)

    BeerBeer, J.M. [Massachusetts Inst. of Technology, Dept. of Chemical Engineering, Cambridge, MA (United States)

    2000-07-01

    Combustion system development in power generation is discussed ranging from the pre-environmental era in which the objectives were complete combustion with a minimum of excess air and the capability of scale up to increased boiler unit performances, through the environmental era (1970-), in which reduction of combustion generated pollution was gaining increasing importance, to the present and near future in which a combination of clean combustion and high thermodynamic efficiency is considered to be necessary to satisfy demands for CO{sub 2} emissions mitigation. From the 1970's on, attention has increasingly turned towards emission control technologies for the reduction of oxides of nitrogen and sulfur, the so-called acid rain precursors. By a better understanding of the NO{sub x} formation and destruction mechanisms in flames, it has become possible to reduce significantly their emissions via combustion process modifications, e.g. by maintaining sequentially fuel-rich and fuel-lean combustion zones in a burner flame or in the combustion chamber, or by injecting a hydrocarbon rich fuel into the NO{sub x} bearing combustion products of a primary fuel such as coal. Sulfur capture in the combustion process proved to be more difficult because calcium sulfate, the reaction product of SO{sub 2} and additive lime, is unstable at the high temperature of pulverised coal combustion. It is possible to retain sulfur by the application of fluidised combustion in which coal burns at much reduced combustion temperatures. Fluidised bed combustion is, however, primarily intended for the utilisation of low grade, low volatile coals in smaller capacity units, which leaves the task of sulfur capture for the majority of coal fired boilers to flue gas desulfurisation. During the last decade, several new factors emerged which influenced the development of combustion for power generation. CO{sub 2} emission control is gaining increasing acceptance as a result of the international

  15. Do Voluntary Pollution Reduction Programs (VPRs) Spur Innovation in Environmental Technology

    OpenAIRE

    Carrion-Flores, Carmen E.; Innes, Robert; Sam, Abdoul G.

    2006-01-01

    In the context of the EPA's 33/50 program, we study whether a VPR can prompt firms to develop new environmental technologies that yield future emission reduction benefits. Because pollutant reductions generally require costly reformulations of products and/or production processes, environmental over-compliance induced by a VPR may potentially spur environmental innovation that can reduce these costs. Conversely, a VPR may induce a participating firm to divert resources from environmental rese...

  16. FY 1998 survey report on the feasibility study of environmental cooperation in environmental protection technology, system, etc. for spread to developing countries; 1998 nendo kankyo taisaku gijutsu seidonado no tojokoku fukyu ni kakawaru kankyo kyoryoku kanosei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper arranged the present situation and the problems of environmental cooperation for developing countries, and studied based thereon how to cooperate in environmental protection for developing countries in the future. At the same time, it arranged the problems/subjects posed when environment-related companies in Japan try to transfer environmental technology to developing countries, for the purpose of using them as data in studying possibility of reviewing the environmental cooperation presently conducted. A view on environmental cooperation is that as security of mankind, it is necessary to help developing countries in technology/knowledge/fund. However, a trial calculation indicated that the initial investment of 11.1 trillion yen is needed only for desulfurization and water treatment in China and ASEAN countries. Such a huge amount of money cannot be paid at all even by developed countries. As the support of environmental protection measures, the one also including energy and resource is needed. Further, the support of environmental protection measures should be the one that has the exhibition effect and influential effect, promotes efforts of developing countries' own, and pushes independent environmental measures forward. From this point of view, a study was made on what the details of the environmental cooperation should be like. (NEDO)

  17. Beyond Science and Technology: The need to incorporate Environmental Ethics to solve Environmental Problems

    Directory of Open Access Journals (Sweden)

    Fesseha Mulu

    2018-01-01

    Full Text Available The emergence and development of science and technology has been critical in improving the lives of mankind. It helps mankind to cope with a number of manmade and natural challenges and disasters. Science cannot totally diminish the level of human dependency on nature; but, with the existing availability of natural resources, science has increased our productivity. However, science and technology can also have its own negative impacts on the natural environment. For the purpose of increasing productivity and satisfying human needs, humans have been egoistically exploiting nature but disregarding the effects of their activities on nature. Science has also been trying its level best to mitigate the negative effects that results from mankind’s exploitation of nature. However, science alone is incapable of solving all environmental problems. This desk research employs secondary sources of data, and argues that environmental ethics should come to the fore in order to address the gap left by science with regard to resolving environmental problems that mankind faces today.

  18. Cleaner production - a tool for sustainable environmental development

    International Nuclear Information System (INIS)

    Ahmad, I.; Batool, S.

    2005-01-01

    Industrial Development and Production with no regard for environmental impacts creates water and air pollution, soil degradation, and large-scale global impacts such as acid rain, global warming and ozone depletion. To create more sustainable methods of industrial production, there needs to be a shift in attitudes away from control towards pollution prevention and management. Cleaner Production (CP) refers to a management process that seeks out and eliminates the causes of pollution, waste generation and resource consumption at their source through input reductions or substitutions, pollution prevention, internal recycling and more efficient production technology and processes for sustainable environmental development. The objective of cleaner production is to avoid generating pollution in the first place, which frequently cuts costs, reduces risks associated with liability, and identifies new market opportunities. Introducing cleaner production has become a goal to improve the competitiveness through increased eco-efficiency. CP is a business strategy for enhancing productivity and environmental performance for overall socio-economic development. The environmental and economic benefits can only be achieved by implementing cleaner production tools. The CP assessment methodology is used to systematically identify and evaluate the waste minimization opportunities and facilitate their implementation in industries. It refers to how goods and services are produced with the minimum environmental impact under present technological and economic limits. CP shares characteristics with many environmental management tools such as Environmental Assessment or Design for Environment by including them among the technological options for reducing material and energy intensiveness in production, as well as facilitating ruse trough remanufacturing and recycling. It is thus an extension of the total quality management process. The CP program has been successfully implemented in

  19. Employee participation and cleaner technology: learning processes in environmental teams

    DEFF Research Database (Denmark)

    Remmen, Arne; Lorentzen, Børge

    2000-01-01

    The approach to pollution prevention in Danish industries in the late-1980s and in the beginning of the 1990s met criticism, because the cleaner technology projects focused too narrowly on technical solutions implemented by experts. The objective of the project “Employee Participation in the Impl...... to improve the firms' environmental activities (e.g. setting up environmental policies, targets and action plans, implementing new procedures and technologies).......The approach to pollution prevention in Danish industries in the late-1980s and in the beginning of the 1990s met criticism, because the cleaner technology projects focused too narrowly on technical solutions implemented by experts. The objective of the project “Employee Participation...... in the Implementation of Cleaner Technology” was to develop a more active role for employees in the environmental activities of companies. Based on practical experiments in five Danish firms within different industrial sectors, the project concluded that employee participation can have a strong effect on changing...

  20. Development of the destruction technology for radioactive organic solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Park, H.S.; Lee, K.W. [and others

    1999-04-01

    The followings were studied through the project entitled 'Technology development for nuclear fuel cycle waste treatment'. 1. Organic waste decomposition technology development A. Destruction technology for organic wastes using Ag(2)-mediated electrochemical oxidation B. Recovery and regeneration technology for the spent chemicals used in the MEO process 2. Radioactive metal waste recycling technology A. Surface decontamination processes B. Decontamination waste treatment technology 3. Volume reduction technology nuclear fuel cycle (NFC) technology A. Estimation of the amount of radwastes and the optimum volume reduction methodology of domestic NFC B. Pretreatment of spent fuel cladding by electrochemical decontamination C. Hot cell process technology for the treatment of NFC wastes 4. Design and fabrication of the test equipment of volume reduction and reuse of alpha contaminated wastes 5. Evaluation on environmental compatibility of NFC A. Development of evaluation methodology on environmental friendliness of NFC B. Residual activity assessment of recycling wastes. (author). 321 refs., 54 tabs., 183 figs.

  1. Development of the destruction technology for radioactive organic solid wastes

    International Nuclear Information System (INIS)

    Oh, Won Zin; Park, H.S.; Lee, K.W.

    1999-04-01

    The followings were studied through the project entitled 'Technology development for nuclear fuel cycle waste treatment'. 1. Organic waste decomposition technology development A. Destruction technology for organic wastes using Ag(2)-mediated electrochemical oxidation B. Recovery and regeneration technology for the spent chemicals used in the MEO process 2. Radioactive metal waste recycling technology A. Surface decontamination processes B. Decontamination waste treatment technology 3. Volume reduction technology nuclear fuel cycle (NFC) technology A. Estimation of the amount of radwastes and the optimum volume reduction methodology of domestic NFC B. Pretreatment of spent fuel cladding by electrochemical decontamination C. Hot cell process technology for the treatment of NFC wastes 4. Design and fabrication of the test equipment of volume reduction and reuse of alpha contaminated wastes 5. Evaluation on environmental compatibility of NFC A. Development of evaluation methodology on environmental friendliness of NFC B. Residual activity assessment of recycling wastes. (author). 321 refs., 54 tabs., 183 figs

  2. Atoms in industry: Radiation technology supports development [Foreword

    International Nuclear Information System (INIS)

    Amano, Yukiya

    2015-01-01

    Cutting-edge industrial technologies underpin the success of strong economies, in developed and developing countries alike. Nuclear science and technology, in particular, can make a major contribution to economic growth and competitiveness, and have an important role to play in support of sustainable development. The IAEA helps to make nuclear science and technology available to enable countries to pursue wider development objectives in areas including human health, agriculture, natural resource management and environmental protection. This edition of the IAEA Bulletin highlights some of the ways in which the technology is being put to effective use in industry.

  3. ANIMAL WASTE IMPACT ON SOURCE WATERSAIDED BY EPA/NSF ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) SOURCE WATER PROTECTION PILOT

    Science.gov (United States)

    The Environmental Technology Verification Program (ETV) was established in 1995 by the U.S. Environmental Protection Agency to encourage the development and commercialization of new environmental technologies through third part testing and reporting of performance data. By ensur...

  4. Archives: African Journal of Environmental Science and Technology

    African Journals Online (AJOL)

    Items 1 - 50 of 117 ... Archives: African Journal of Environmental Science and Technology. Journal Home > Archives: African Journal of Environmental Science and Technology. Log in or Register to get access to full text downloads.

  5. 78 FR 21909 - Environmental Technologies Trade Advisory Committee; Public Meeting

    Science.gov (United States)

    2013-04-12

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The teleconference....S. exports of environmental technologies, goods, services, and products. The ETTAC was originally...

  6. The Office of Technology Development technical reports. A bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The US Department of Energy`s Office of Technology Development (OTD) within the Office of Environmental Management was established in 1989 to conduct an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT&E) for innovative environmental cleanup solutions that are safer and more time- and cost-effective than those currently available. In many cases, the development of new technology presents the best hope for ensuring a substantive reduction in risk to the environment and improved worker/public safety within realistic financial constraints. Five major remediation and waste management problem areas have been identified to date within the DOE weapons complex; Contaminant Plume Containment and Remediation; Mixed Waste Characterization, Treatment, and Disposal; High-Level Waste Tank Remediation; Landfill Stabilization; and Facility Transitioning, Decommissioning, and Final Disposition. New technologies to address these problem areas are demonstrated to the point that they are proven to work and that they can be transferred to the private sector end-users. This bibliography contains information on scientific and technical reports sponsored by the Office of Environmental Management from its inception in 1989 through June 1994. Future issues contain reports from Technology Development activities and will be published biannually.

  7. FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation

    International Nuclear Information System (INIS)

    1994-10-01

    The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE's goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT and E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD's RDDT and E

  8. 76 FR 66912 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2011-10-28

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The teleconference... expand U.S. exports of environmental technologies, goods, services, and products. The ETTAC was...

  9. 77 FR 35941 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2012-06-15

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... promotion programs; and issues related to innovation in the environmental technology sector. Background: The...

  10. 77 FR 6064 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2012-02-07

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The teleconference... administration of programs to expand U.S. exports of environmental technologies, goods, services, and products...

  11. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Hugh W. Rimmer

    2004-05-12

    This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

  12. Remediation Technology Collaboration Development

    Science.gov (United States)

    Mahoney, John; Olsen, Wade

    2010-01-01

    This slide presentation reviews programs at NASA aimed at development at Remediation Technology development for removal of environmental pollutants from NASA sites. This is challenging because there are many sites with different environments, and various jurisdictions and regulations. There are also multiple contaminants. There must be different approaches based on location and type of contamination. There are other challenges: such as costs, increased need for resources and the amount of resources available, and a regulatory environment that is increasing.

  13. Demonstrating and implementing innovative technologies: Case studies from the USDOE Office of Technology Development

    International Nuclear Information System (INIS)

    Brouns, T.M.; Koegler, K.J.; Mamiya, L.S.

    1995-02-01

    This paper describes elements of success for demonstration, evaluation, and transfer for deployment of innovative technologies for environmental restoration. They have been compiled from lessons learned through the US Department of Energy (DOE) Office of Technology Development's Volatile Organic Compounds in Arid Soil Integrated Demonstration (VOC-Arid ID). The success of the VOC-Arid ID program was determined by the rapid development demonstration, and transfer for deployment of technologies to operational sites that improve on safety, cost, and/or schedule of performance over baseline technologies. The VOC-Arid ID successfully fielded more than 25 innovative technology field demonstrations; several of the technologies demonstrated have been successfully transferred for deployment Field demonstration is a critical element in the successful transfer of innovative technologies into environmental restoration operations. The measures of success for technology demonstrations include conducting the demonstration in a safe and controlled environment and generating the appropriate information by which to evaluate the technology. However, field demonstrations alone do not guarantee successful transfer for deployment There are many key elements throughout the development and demonstration process that have a significant impact on the success of a technology. This paper presents key elements for a successful technology demonstration and transfer for deployment identified through the experiences of the VOC-Arid ID. Also, several case studies are provided as examples

  14. Single-cell technologies in environmental omics

    KAUST Repository

    Kodzius, Rimantas

    2015-10-22

    Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.

  15. Single-cell technologies in environmental omics

    KAUST Repository

    Kodzius, Rimantas; Gojobori, Takashi

    2015-01-01

    Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.

  16. Mixed Waste Integrated Program emerging technology development

    International Nuclear Information System (INIS)

    Berry, J.B.; Hart, P.W.

    1994-01-01

    The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. Over the next 5 years, DOE will manage over 1.2 m 3 of MLLW and mixed transuranic (MTRU) wastes. In order to successfully manage and treat these mixed wastes, DOE must adapt and develop characterization, treatment, and disposal technologies which will meet performance criteria, regulatory approvals, and public acceptance. Although technology to treat MLLW is not currently available without modification, DOE is committed to developing such treatment technologies and demonstrating them at the field scale by FY 1997. The Office of Research and Development's Mixed Waste Integrated Program (MWIP) within the DOE Office of Environmental Management (EM), OfFice of Technology Development, is responsible for the development and demonstration of such technologies for MLLW and MTRU wastes. MWIP advocates and sponsors expedited technology development and demonstrations for the treatment of MLLW

  17. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2005-01-20

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

  18. Advanced Environmental Monitoring Technologies

    Science.gov (United States)

    Jan, Darrell

    2004-01-01

    Viewgraphs on Advanced Environmental Monitoring Technologies are presented. The topics include: 1) Monitoring & Controlling the Environment; 2) Illustrative Example: Canary 3) Ground-based Commercial Technology; 4) High Capability & Low Mass/Power + Autonomy = Key to Future SpaceFlight; 5) Current Practice: in Flight; 6) Current Practice: Post Flight; 7) Miniature Mass Spectrometer for Planetary Exploration and Long Duration Human Flight; 8) Hardware and Data Acquisition System; 9) 16S rDNA Phylogenetic Tree; and 10) Preview of Porter.

  19. 78 FR 21911 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2013-04-12

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... review the role of the U.S. government in supporting the early adoption of environmental technologies and...

  20. Environmental control technology

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    During this report period, Chem Tech identified environmental control technology (ECT) as an area of emphasis for future planning and resource allocation. The Division plans to continue to perform R and D activities in ECT for external sponsors such as the DOE Office of Fossil Energy (DOE/FE), the Electric Power Research Institute (EPRI), and the Environmental Protection Agency (EPA) while striving for recognition as an R and D center for ECT within the Martin Marietta Energy Systems' Complex. Chem Tech has already played supporting roles in this area for the Y-12 Plant and the Oak Ridge Gaseous Diffusion Plant (ORGDP) and is currently expanding its support to organizations within ORNL responsible for environmental matters. Over the long term, the Division hopes to achieve recognition as a center for R and D in ECT within the wider DOE system. Recent initiatives supporting these plans are discussed below

  1. Application of environmental isotope tracing technology to geothermal geochemistry

    International Nuclear Information System (INIS)

    Shang Yingnan

    2006-01-01

    This paper reviews the recent application and development of environmental isotope tracing technology to geothermal geochemistry in the following aspects: gas isotopes (He, C) tracing of warm springs; H, O isotope tracing on the origin and cause of geothermal water, environmental isotope dating of geothermal water, and the advantage of excess parameter of deuterium (d) in geothermal research. The author also suggests that isotope method should combine with other geological methods to expand its advantage. (authors)

  2. DOE low-level waste long term technology development

    International Nuclear Information System (INIS)

    Barainca, M.J.

    1982-01-01

    The objective of the Department of Energy's Low-Level Waste Management Program is to provide a low-level waste management system by 1986. Areas of concentration are defined as: (1) Waste Generation Reduction Technology, (2) Process and Handling Technology, (3) Environmental Technology, (4) Low-Level Waste Disposal Technology. A program overview is provided with specific examples of technical development. 2 figures

  3. 77 FR 14734 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2012-03-13

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... proposed agenda of a meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The... innovation in the environmental technology sector. Background: The ETTAC is mandated by Public Law 103-392...

  4. Robotics Technology Development Program

    International Nuclear Information System (INIS)

    1994-02-01

    The Robotics Technology Development Program (RTDP) is a ''needs-driven'' effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE's Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination ampersand Dismantlement (D ampersand D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D ampersand D and CC ampersand AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas

  5. On the environmental impact of energy market liberalisation: Environmental policy, economic reform and endogenous technology

    NARCIS (Netherlands)

    D.P. van Soest (Daan); H.L.F. de Groot (Henri)

    2003-01-01

    textabstractIn the literature, attention has been paid to the environmental consequences of lower energy prices caused by market liberalisation: the drop in energy prices reduces the attractiveness of investing in energy-saving technologies. In this paper we develop a simple model of investment

  6. Innovative Technology Development Program. Final summary report

    International Nuclear Information System (INIS)

    Beller, J.

    1995-08-01

    Through the Office of Technology Development (OTD), the U.S. Department of Energy (DOE) has initiated a national applied research, development, demonstration, testing, and evaluation program, whose goal has been to resolve the major technical issues and rapidly advance technologies for environmental restoration and waste management. The Innovative Technology Development (ITD) Program was established as a part of the DOE, Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) Program. The plan is part of the DOE's program to restore sites impacted by weapons production and to upgrade future waste management operations. On July 10, 1990, DOE issued a Program Research and Development Announcement (PRDA) through the Idaho Operations Office to solicit private sector help in developing innovative technologies to support DOE's clean-up goals. This report presents summaries of each of the seven projects, which developed and tested the technologies proposed by the seven private contractors selected through the PRDA process

  7. Development of technology performance specifications for volatile organic compounds

    International Nuclear Information System (INIS)

    Purdy, C.; Schutte, W.E.

    1993-01-01

    The Office of Technology Development (OTD) within the Office of Environmental Restoration and Waste Management of the Department of Energy has a mission to deliver needed and usable technologies to its customers. The primary customers are individuals and organizations performing environmental characterization and remediation, waste cleanup, and pollution prevention at DOE sites. DOE faces a monumental task in cleaning up the dozen or so major sites and hundreds of smaller sites that were or are used to produce the US nuclear weapons arsenal and to develop nuclear technologies for national defense and for peaceful purposes. Contaminants and waste materials include the radionuclides associated with nuclear weapons, such as plutonium and tritium, and more common pollutants and wastes of industrial activity such as chromium, chlorinated solvents, and polychlorinated biphenyls (PCBs). Quite frequently hazardous wastes regulated by the Environmental Protection Agency are co-mingled with radioactive wastes regulated by the Nuclear Regulatory Commission to yield a open-quotes mixed waste,close quotes which increases the cleanup challenges from several perspectives. To help OTD and its investigators meet DOE's cleanup goal, technology performance specifications are being implemented for research and development and DT ampersand E projects. Technology performance specifications or open-quotes performance goalsclose quotes describe, quantitatively where possible, the technology development needs being addressed. These specifications are used to establish milestones, evaluate the status of ongoing projects, and determine the success of completed projects

  8. Technological developments for environmental monitoring and assessment at PETROBRAS; O desenvolvimento de tecnologia de avaliacao e monitoramento ambiental na PETROBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Pedro Penido D.; Veiga, Leticia Falcao [PETROBRAS, Rio de Janeiro, RJ (Brazil); Borges, Heloisa V.

    2004-07-01

    Since 2000 PETROBRAS adopted strategies and actions to establish excellence in Environmental Management and Operational Safety - PEGASO, having invested around 6.1 billions of reais in the last four years to reduce emissions, residues, effluents, and to improve prevention and accident control in its units. In this context, PETROBRAS Research and Development Center has been expanding knowledge about the ecosystems where the company operates, providing essential information to evaluate viability and sustainability on its enterprises, as well as for environmental licensing. Reinforcing its corporative strategy, it was created in 2002 the Environmental Assessment and Monitoring Section, a group that counts nowadays with 48 professionals. This group develops technology and methodology for monitoring in social and environmental context for the petroleum industry, gas and energy, evaluating the impacts of PETROBRAS activities and products life cycle, contributing for reduction of negative effects and to improve the company's environmental management. The research areas are: land, coastal and marine ecosystems monitoring, atmospheric monitoring and air quality, environmental chemistry, ecotoxicology, social and economic evaluation and environmental damage valuation. Working partnerships with the scientific community established several contacts with Brazilian and international universities. Among these various projects related to activities in the Brazilian offshore we present some aspects of the project Campos Basin Deep Sea Environmental Monitoring. (author)

  9. QuEST: Qualifying Environmentally Sustainable Technologies

    Science.gov (United States)

    Lewis, Pattie

    2012-01-01

    Articles in this issue inlude: (1) Foundation of Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) Technology Evaluation is Testing and Qualification, (2) Materials Management and Substitution Efforts, (3 Recycling and Pollution Control Efforts, and (4) Remediation Efforts

  10. 78 FR 74129 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2013-12-10

    ... for Environmental Policy and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT members represent academia...

  11. Mixed Waste Integrated Program emerging technology development

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.B. [Oak Ridge National Lab., TN (United States); Hart, P.W. [USDOE, Washington, DC (United States)

    1994-06-01

    The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. Over the next 5 years, DOE will manage over 1.2 m{sup 3} of MLLW and mixed transuranic (MTRU) wastes. In order to successfully manage and treat these mixed wastes, DOE must adapt and develop characterization, treatment, and disposal technologies which will meet performance criteria, regulatory approvals, and public acceptance. Although technology to treat MLLW is not currently available without modification, DOE is committed to developing such treatment technologies and demonstrating them at the field scale by FY 1997. The Office of Research and Development`s Mixed Waste Integrated Program (MWIP) within the DOE Office of Environmental Management (EM), OfFice of Technology Development, is responsible for the development and demonstration of such technologies for MLLW and MTRU wastes. MWIP advocates and sponsors expedited technology development and demonstrations for the treatment of MLLW.

  12. Current status of JAERI program on development of ultra-trace-analytical technology for safeguards environmental samples

    International Nuclear Information System (INIS)

    Adachi, T.; Usuda, S.; Watanabe, K.

    2001-01-01

    Full text: In order to contribute to the strengthened safeguards system based on the Program 93+2 of the IAEA, Japan Atomic Energy Research Institute (JAERI) is developing analytical technology for ultra-trace amounts of nuclear materials in environmental samples, and constructed the CLEAR facility (Clean Laboratory for Environmental Analysis and Research) for this purpose. The development of the technology is carried out, at existing laboratories for time being, in the following fields: screening, bulk analysis and particle analysis. The screening aims at estimating the amounts of nuclear materials in environmental samples to be introduced into the clean rooms, and is the first step to avoid cross-contamination among the samples and contamination of the clean rooms themselves. In addition to ordinary radiation spectrometry, Compton suppression technique was applied to low energy γ- and X-ray measurements, and sufficient reduction in background level has been demonstrated. Another technique in examination is imaging-plate method, which is a kind of autoradiography and suitable for determination of radioactive-particle distribution in the samples as well as for semiquantitative determination. As for the bulk analysis, the efforts are temporally made on uranium in swipe samples. Preliminary examination for optimization of sample pre-treatment conditions is in progress. At present, ashing by low-temperature-plasma method gives better results than high-temperature ashing or acid leaching. For the isotopic ratio measurement, instrumental performance of inductively-coupled plasma mass spectrometry (ICP-MS) are mainly examined because sample preparation for ICP-MS is simpler than that for thermal ionization mass spectrometry (TIMS). It was found by our measurement that the swipe material (TexWipe TX304, usually used by IAEA) contains un-negligible uranium blank with large deviation (2-6 ng/sheet). This would introduce significant uncertainty in the trace analysis. JAERI

  13. 76 FR 73632 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2011-11-29

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Request for Nominations to the National Advisory Council for Environmental Policy and Technology (NACEPT). SUMMARY: The U.S. Environmental... appointment to the National Advisory Council for Environmental Policy and Technology (NACEPT). Vacancies are...

  14. 75 FR 25240 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2010-05-07

    ... ENVIRONMENTAL PROTECTION AGENCY National Advisory Council for Environmental Policy and Technology... for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT is a committee of...

  15. FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT and E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.

  16. Leading trends in environmental regulation that affect energy development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Steele, R V; Attaway, L D; Christerson, J A; Kikel, D A; Kuebler, J D; Lupatkin, B M; Liu, C S; Meyer, R; Peyton, T O; Sussin, M H

    1980-01-01

    Major environmental issues that are likely to affect the implementation of energy technologies between now and the year 2000 are identified and assessed. The energy technologies specifically addressed are: oil recovery and processing; gas recovery and processing; coal liquefaction; coal gasification (surface); in situ coal gasification; direct coal combustion; advanced power systems; magnetohydrodynamics; surface oil shale retorting; true and modified in situ oil shale retorting; geothermal energy; biomass energy conversion; and nuclear power (fission). Environmental analyses of these technologies included, in addition to the main processing steps, the complete fuel cycle from resource extraction to end use. A comprehensive survey of the environmental community (including environmental groups, researchers, and regulatory agencies) was carried out in parallel with an analysis of the technologies to identify important future environmental issues. Each of the final 20 issues selected by the project staff has the following common attributes: consensus of the environmental community that the issue is important; it is a likely candidate for future regulatory action; it deals with a major environmental aspect of energy development. The analyses of the 20 major issues address their environmental problem areas, current regulatory status, and the impact of future regulations. These analyses are followed by a quantitative assessment of the impact on energy costs and nationwide pollutant emissions of possible future regulations. This is accomplished by employing the Strategic Environmental Assessment System (SEAS) for a subset of the 20 major issues. The report concludes with a more general discussion of the impact of environmental regulatory action on energy development.

  17. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, GROUNDWATER SAMPLING TECHNOLOGIES, GEOPROBE INC., PNEUMATIC BLADDER PUMP GW 1400 SERIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) design efficient processes for conducting has created the Environmental Technology perfofl1lance tests of innovative technologies. Verification Program (E TV) to facilitate the deployment of innovative or improved environmental techn...

  18. Quantification of environmental impacts of various energy technologies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Selfors, A [ed.

    1994-10-01

    This report discusses problems related to economic assessment of the environmental impacts and abatement measures in connection with energy projects. Attention is called to the necessity of assessing environmental impacts both in the form of reduced economic welfare and in the form of costs of abatement measures to reduce the impact. In recent years, several methods for valuing environmental impacts have been developed, but the project shows that few empirical studies have been carried out. The final report indicates that some important factors are very difficult to evaluate. In addition environmental impacts of energy development in Norway vary considerably from project to project. This makes it difficult to obtain a good basis for comparing environmental impacts caused by different technologies, for instance hydroelectric power versus gas power or wind versus hydroelectric power. It might be feasible however to carry out more detailed economic assessments of environmental impacts of specific projects. 33 refs., 1 fig., 4 tabs.

  19. SIHTI 2. Energy and environmental technology. Yearbook 1995. Project presentations

    International Nuclear Information System (INIS)

    Korhonen, M.; Thun, R.

    1997-01-01

    Detrimental impacts of various energy production forms, their prevention and costs to enterprises and to the society are studied in the National Research Programme on Energy and Environmental Technology - SIHTI 2. For this evaluation work databases on Finland's energy production, fuels and boilers and emissions of various production forms are needed. This is one of the main subtasks of the SIHTI Programme. Development of methods and tools required for environmental decision making and for the assessment of environmental costs and testing of their usability and reliability are equally important. Emission measurements are a problem field that continuously sets new challenges. In addition to energy production and its environmental impacts, environmental issues of the woodprocessing industries form another important research field of SIHTI 2 programme. A common aim of both fields is to reduce emissions of detrimental substances, to recycle raw materials, and to minimise and reuse wastes. Research and development projects are being carried out by a number of universities of different fields of science and technology, by research organisations and enterprises, and many projects are realised in close co-operation. In 1995, the programme comprised 28 R and D projects by universities and 22 enterprise-led projects. Results of these projects are presented in this yearbook. Part of the research projects continued from the preceding year and part were new projects continuing in 1996

  20. 78 FR 47316 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2013-08-05

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Request for nominations to the National Advisory Council for Environmental Policy and Technology (NACEPT). SUMMARY: The U.S. Environmental... Environmental Policy and Technology (NACEPT). Vacancies are anticipated to be filled by February, 2014. Sources...

  1. The application of GIS and remote sensing technologies for site characterization and environmental assessment

    International Nuclear Information System (INIS)

    Durfee, R.C.; McCord, R.A.; Dobson, J.E.

    1993-01-01

    Environmental cleanup and restoration of hazardous waste sites are major activities at federal facilities around the US. Geographic information systems (GIS) and remote sensing technologies are very useful computer tools to aid in site characterization, monitoring, assessment, and remediation efforts. Results from applying three technologies are presented to demonstrate examples of site characterization and environmental assessment for a federal facility. The first technology involves the development and use of GIS within the comprehensive Oak Ridge Environmental Information System (OREIS) to integrate facility data, terrain models, aerial and satellite imagery, demographics, waste area information, and geographic data bases. The second technology presents 3-D subsurface analyses and displays of groundwater and contaminant measurements within waste areas. In the third application, aerial survey information is being used to characterize land cover and vegetative patterns, detect change, and study areas of previous waste activities and possible transport pathways. These computer technologies are required to manage, analyze, and display the large amounts of environmental and geographic data that must be handled in carrying out effective environmental restoration

  2. Task 10 -- Technology development integration. Semi-annual report, April 1--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, T.A.; Daly, D.J.; Jones, M.L.

    1997-12-31

    Task 10 activities by the Energy and Environmental Research Center (EERC) have focused on the identification and integration of new cleanup technologies for use in the US Department of Energy (DOE) Environmental Management Program to address environmental issues within the nuclear defense complex. Under Subtask 10A, activities focused on a review of technology needs compiled by the Site Technology Coordination Groups as part of an ongoing assessment of the relevance of the EM Cooperative Agreement Program activities to EM site needs. Work under this subtask was completed August 31. Work under Task 10B had as its goal assisting in the definition and development of specific models to demonstrate several approaches to be used by DOE to encourage the commercialization of environmental technologies. This activity included identification and analysis of economic and regulatory factors affecting feasibility of commercial development of two specific projects and two general models to serve as a mechanism for the transfer of federally supported or developed environmental technologies to the private sector or for rapid utilization in the federal government`s efforts to clean up the weapons complex.

  3. Development of improved technology for decommissioning operations

    International Nuclear Information System (INIS)

    Allen, R.P.

    1982-07-01

    This paper describes the technology development activities conducted at Pacific Northwest Laboratory under US Department of Energy sponsorship to help ensure the availability of safe, cost-effective and environmentally sound decommissioning technology for radioactively contaminated facilities. These improved decommissioning technologies include techniques for the removal of contaminated concrete surfaces and coatings, adaptation of electropolishing and vibratory finishing decontamination techniques for field decommissioning applications, development of sensitive field instrumentation and methods for the monitoring of large surface areas, techniques for the field sectioning of contaminated components, improved contamination-stabilizing coatings and application methods, and development of a small solidification system for the field solidification of liquid waste. The results of cost/benefit studies for some of these technologies are also reported

  4. How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review.

    Science.gov (United States)

    Arduini, Fabiana; Cinti, Stefano; Scognamiglio, Viviana; Moscone, Danila; Palleschi, Giuseppe

    2017-03-22

    Through the years, scientists have developed cutting-edge technologies to make (bio)sensors more convenient for environmental analytical purposes. Technological advancements in the fields of material science, rational design, microfluidics, and sensor printing, have radically shaped biosensor technology, which is even more evident in the continuous development of sensing systems for the monitoring of hazardous chemicals. These efforts will be crucial in solving some of the problems constraining biosensors to reach real environmental applications, such as continuous analyses in field by means of multi-analyte portable devices. This review (with 203 refs.) covers the progress between 2010 and 2015 in the field of technologies enabling biosensor applications in environmental analysis, including i) printing technology, ii) nanomaterial technology, iii) nanomotors, iv) biomimetic design, and (v) microfluidics. Next section describes futuristic cutting-edge technologies that are gaining momentum in recent years, which furnish highly innovative aspects to biosensing devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Technology development risk assessment and mixed interests

    International Nuclear Information System (INIS)

    Borrelli, G.; Sartori, S.

    1992-05-01

    The main purpose of this work is to demonstrate by means of a critical analysis of the state-of-the-art in technological and environmental risk analysis and decision making, that risk and environmental management decisions involve heterogeneous groups of social actors, each representing conflicting interests. It is argued that risk analyses should therefore be based on social interaction and communication paradigma, as well as, on a new rational way of thinking concerning the optimum choice of suitable technological development strategies leading towards a publicly acceptable balance between national energy-economic strategic necessities and social and individual perception of risk

  6. Environmental Monitoring of Agro-Ecosystem Using Environmental Isotope Tracer Technology

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jae Sung; Cho, Jae Young

    2004-10-01

    This report has provided the counterparts the knowledge and skills on the use of environmental isotope tracer technology for obtaining valuable information on agricultural non-point pollution source in agro-ecosystem. The contamination from agricultural watersheds has been brought into attention as a potential contaminant of streams and tributaries, since majority of them caused water quality degradation, eutrophication of reservoir and negative effect on agro-environment. To prevent the contamination from these watersheds, it is necessary to find out the source of the contamination. However, accurate contaminants outflows from various types of non-point sources have not yet been elucidated due to the fact that the extent of non-point source contaminants related to uncontrollable climatic events and irrigation conditions may differ greatly from place to place and year to year. The dominant use of isotopes in environmental ecosystem research in the last few decades has been to trace sources of waters and solutes. The environmental isotope tracer technology using stable isotopes such as oxygen, hydrogen, carbon, nitrogen, and sulfur has extensively been used for tracing the fate of environmental pollutants and for identification of environmental pollutants sources in agro-ecosystems

  7. 81 options. Technology for sustainable development; 81 mogelijkheden. Technologie voor duurzame ontwikkeling

    Energy Technology Data Exchange (ETDEWEB)

    Weterings, R.; Kuijper, J.; Smeets, E. [TNO Studiecentrum voor Technologie en Beleid TNO-STB, Apeldoorn (Netherlands); Annokee, G.J. [TNO Milieu, Energie en Procesinnovatie TNO-MEP, Apeldoorn (Netherlands); Minne, B. [Centraal Planbureau CPB, The Hague (Netherlands)

    1997-03-01

    An outline is given of the chances and threats of technological developments for the environment in the next 25 years. First, the most important technological supply-side developments were inventorized and assessed for their environmental relevance and in the light of three CPB-scenarios. From the results of the analysis it appears that their are many options to improve the environmental efficiency of products and processes. An important motive to develop environment-efficient technology is the price of energy. A higher price for energy will stimulate the development of energy efficient products and processes. Also the interest for dematerialization will increase while the processing of basic materials and the use of materials requires energy too. A second important motive is the demand for environment-efficient products. The market introduction of new environment-friendly products strongly depends on the quality consciousness (including the environmental quality) of the consumer. With respect to the environmental policy it can be concluded that technological innovation is important in the transfer of a decontamination-based policy to a prevention-based policy. 95 refs.

  8. Sustainable development, clean technology and knowledge from industry

    Directory of Open Access Journals (Sweden)

    Sokolović Slobodan M.

    2012-01-01

    Full Text Available Clean technology or clean production is the most important factor for the economic growth of a society and it will play the main role not only in the area of cleaner production, but also in sustainable development. The development of clean technology will be the main factor of the company’s strategy in the future. Each company, which wants to reach the competitive position at the market and wants to be environmentally friendly, has to accept the new approach in corporate management and the strategy of new clean technology. The main principles of clean technology are based on the concept of maximum resource and energy productivity and virtually no waste. This approach may be limited by human resources and the level of their environmental knowledge. Companies are committed to the development of the workers’ skills, and thus to the improvement of the company for the full implementation of the environmental legislation and clean production concept. Based on this commitment, one of Tempus projects is designed to improve the university-enterprise cooperation in the process of creating sustainable industry in Serbia, Bosnia and Herzegovina and the Former Yugoslav Republic of Macedonia. To achieve this goal, partner universities will create special courses on sustainable industry and thus enhance the lifelong learning process and cooperation between industry and universities in the Western Balkan countries.

  9. 76 FR 77776 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2011-12-14

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... Energy & Environmental Industries (OEEI), International Trade Administration, Room 4053, 1401...

  10. 76 FR 51001 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2011-08-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... Energy & Environmental Industries (OEEI), International Trade Administration, Room 4053, 1401...

  11. 77 FR 58356 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2012-09-20

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... Energy & Environmental Industries (OEEI), International Trade Administration, Room 4053, 1401...

  12. 78 FR 4834 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2013-01-23

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... Energy & Environmental Industries (OEEI), International Trade Administration, Room 4053, 1401...

  13. 77 FR 50987 - Environmental Technologies Trade Advisory Committee, Request for Nominations

    Science.gov (United States)

    2012-08-23

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... Commerce. ACTION: Solicitation of Nominations for Membership on the Environmental Technologies Trade...) is requesting nominations for memberships on the Environmental Technologies Trade Advisory Committee...

  14. Environmental Education and Development Division (EM-522). Annual report, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The Environmental Education and Development Division (EM-522) is one of three divisions within the Office of Technology Integration and Environmental Education and Development (EM-52) in Environmental Restoration and Waste Management`s (EM`s) Office of Technology Development (EM-50). The primary design criterion for EM-522 education activities is directly related to meeting EM`s goal of environmental compliance on an accelerated basis and cleanup of the 1989 inventory of inactive sites and facilities by the year 2019. Therefore, EM-522`s efforts are directed specifically toward stimulating knowledge and capabilities to achieve the goals of EM while contributing to DOE`s overall goal of increasing scientific, mathematical, and technical literacy and competency. This report discusses fiscal year 1993 activities.

  15. ENVIRONMENTAL REGULATIONS AND TECHNOLOGY - THE ELECTROPLATING INDUSTRY

    Science.gov (United States)

    This 44-page Technology Transfer Environmental Regulations and Technology publication is an update of a 1980 EPA publication that has been revised to reflect changes in the EPA regulations, as well as in the pollution control technologies that affect the electroplating industry. ...

  16. 76 FR 26247 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2011-05-06

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... & Environmental Industries (OEEI), International Trade Administration, Room 4053, 1401 Constitution Ave, NW...

  17. 78 FR 46921 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2013-08-02

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... Hinman, Office of Energy & Environmental Industries (OEEI), International Trade Administration, Room 4053...

  18. EPA-developed, patented technologies related to vehicles and fuel emissions

    Data.gov (United States)

    U.S. Environmental Protection Agency — Under the Federal Technology Transfer Act (FTTA), Federal Agencies can patent inventions developed during the course of research. These technologies can then be...

  19. Technology and Environmental Education: An Integrated Curriculum

    Science.gov (United States)

    Willis, Jana M.; Weiser, Brenda

    2005-01-01

    Preparing teacher candidates to integrate technology into their future classrooms effectively requires experience in instructional planning that utilizes technology to enhance student learning. Teacher candidates need to work with curriculum that supports a variety of technologies. Using Project Learning Tree and environmental education (EE),…

  20. Technological Development in Carbon Sequestration at Petrobras

    Energy Technology Data Exchange (ETDEWEB)

    Castello Branco, R.; Vazquez Sebastian, G.; Murce, T.; Cunha, P.; Dino, R.; Sartori Santarosa, C.

    2007-07-01

    Petrobras defined, in its mission, the intention to act in a safe and profitable way, with social and environmental responsibility. In its vision, the company decided to be an oil and energy company, taking into account climate change mitigation. These changes were partially caused, without the company's knowledge, for many years, by the burning of fossil fuels. Among many technologies available for this mitigation, carbon sequestration is the one that, in a short space of time, can avoid the collapse of earth's climate. In order to meet this carbon sequestration challenge, there has been established, at CENPES, three strategies for its technological development: (i) establishment of a Systemic Project for Carbon Sequestration within the scope of the Environmental Technology Program - PROAMB; (ii) creation of a Group of Carbon Sequestration Technologies for Climate Change Mitigation - formation of team and qualification program, which includes the realization of the International Seminar on Carbon Sequestration and Climate Change at Petrobras in October 2006; and (iii) Implementation of the Technological Network of Technologies for Climate Change Mitigation. (auth)

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: MOBILE SOURCE RETROFIT AIR POLLUTION CONTROL DEVICES: CLEAN CLEAR FUEL TECHNOLOGIES, INC.’S, UNIVERSAL FUEL CELL

    Science.gov (United States)

    The U.S. EPA's Office of Research and Development operates the Environmental Technology Verification (ETV) program to facilitate the deployment of innovative technologies through performance verification and information dissemination. Congress funds ETV in response to the belief ...

  2. Nano-enabled environmental products and technologies - opportunities and drawbacks

    DEFF Research Database (Denmark)

    Møller Christensen, Frans; Brinch, Anna; Kjølholt, Jesper

    The project aims to investigate the benefits for health and environment that the use of nanomaterials in products and technologies may have. More specifically, the project provides an overview of the most relevant nano-enabled environmental technologies, different types of products and technologies...... on the (Danish) market, as well as products and technologies, which are still in R&D and it will provide a qualitative overview of health and environmental pros and cons of these technologies. The project has focused on technologies applied in: 1) purification of water and wastewater, 2) remediation of soil...

  3. Environmental Literacy Development: A Comparison between Online and Traditional Campus Courses

    Science.gov (United States)

    Taylor, James Young

    As traditional educational efforts expand into the online environment, academic research is needed to determine if effective environmental education could be replicated in the virtual classroom in higher education. Although previous research showed that the online course delivery could be an effective means of teaching environmental facts, what had yet to be determined is if there was a significance difference in the development of an environmental literacy, represented by attitudes and behaviors between online and traditional campus students, at a university within the Western United States. To determine if there was a measured statistical difference in environmental literacy following course completion this causal comparative quantitative study built on the theoretical foundations of environmental literacy development and used the Measures of Ecological Attitudes and Knowledge Scale and New Ecological Paradigm. From a sample of 205 undergraduate environmental science students it was determined, through the use of two tailed t tests at the 0.05 significance level, that no statistical difference in environmental knowledge, actual commitment, and global environmental awareness were evident. However, statistical differences existed in verbal commitment and emotional connection to the environment. Both the online and the traditional campus classroom are shown to be effective in the development of environmental literacy. As technology continues to be incorporated in higher education, environmental educators should see technology as an additional tool in environmental literacy development. However, the identified differences in emotional and verbal commitment should be further investigated.

  4. Some implications of in situ uranium mining technology development

    International Nuclear Information System (INIS)

    Cowan, C.E.; Parkhurst, M.A.; Cole, R.J.; Keller, D.; Mellinger, P.J.; Wallace, R.W.

    1980-09-01

    A technology assessment was initiated in March 1979 of the in-situ uranium mining technology. This report explores the impediments to development and deployment of this technology and evaluates the environmental impacts of a generic in-situ facility. The report is divided into the following sections: introduction, technology description, physical environment, institutional and socioeconomic environment, impact assessment, impediments, and conclusions

  5. 77 FR 39705 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2012-07-05

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Advisory Committee... meeting of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management...

  6. 76 FR 1431 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2011-01-10

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Meeting. SUMMARY... National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT...

  7. 75 FR 52941 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2010-08-30

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of meeting. SUMMARY... National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT...

  8. 76 FR 24481 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2011-05-02

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of meeting. SUMMARY... National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT...

  9. 76 FR 68183 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2011-11-03

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of meeting. SUMMARY... National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT...

  10. 77 FR 1931 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2012-01-12

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Advisory Committee... meeting of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management...

  11. 75 FR 38810 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2010-07-06

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of meeting. SUMMARY... of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management...

  12. 77 FR 3475 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2012-01-24

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of advisory committee... teleconference of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management...

  13. 76 FR 37112 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2011-06-24

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of meeting. SUMMARY... of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management...

  14. Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-03-01

    Renewable energy technologies offer the promise of non-polluting alternatives to fossil and nuclear-fueled power plants to meet growing demand for electrical energy. Two emerging categories of renewable energy technologies, hydrokinetic and wave energy conversion devices, offer ways to tap the energy of moving water without impoundment (dams) or diversion required by many conventional hydroelectric facilities. These technologies include devices designed for deployment in natural streams, tidal estuaries, ocean currents, and constructed waterways, as well as devices designed to capture the energy of ocean waves. On October 26-28, 2005, 54 representatives from government, non-governmental organizations, and private business met to (1) identify the varieties of hydrokinetic energy and wave technology devices, their stages of development, and the projected cost to bring each to market; (2) identify where these technologies can best operate; (3) identify the potential environmental issues associated with these technologies and possible mitigation measures; (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. These workshop proceedings include detailed summaries of the 24 presentations made and the discussions that followed.

  15. Emerging Technologies for Environmental Remediation: Integrating Data and Judgment.

    Science.gov (United States)

    Bates, Matthew E; Grieger, Khara D; Trump, Benjamin D; Keisler, Jeffrey M; Plourde, Kenton J; Linkov, Igor

    2016-01-05

    Emerging technologies present significant challenges to researchers, decision-makers, industry professionals, and other stakeholder groups due to the lack of quantitative risk, benefit, and cost data associated with their use. Multi-criteria decision analysis (MCDA) can support early decisions for emerging technologies when data is too sparse or uncertain for traditional risk assessment. It does this by integrating expert judgment with available quantitative and qualitative inputs across multiple criteria to provide relative technology scores. Here, an MCDA framework provides preliminary insights on the suitability of emerging technologies for environmental remediation by comparing nanotechnology and synthetic biology to conventional remediation methods. Subject matter experts provided judgments regarding the importance of criteria used in the evaluations and scored the technologies with respect to those criteria. The results indicate that synthetic biology may be preferred over nanotechnology and conventional methods for high expected benefits and low deployment costs but that conventional technology may be preferred over emerging technologies for reduced risks and development costs. In the absence of field data regarding the risks, benefits, and costs of emerging technologies, structuring evidence-based expert judgment through a weighted hierarchy of topical questions may be helpful to inform preliminary risk governance and guide emerging technology development and policy.

  16. Technological development with reference to hydro-power, nuclear, and alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Burns, T R; Baumgartner, T

    1985-01-01

    This report outlines a theoretical framework for describing and analyzing the introduction of new technologies and the development of socio-technical systems associated with such innovations. While the report is largely theoretical in nature, it refers to certain strategic aspects of the development of nuclear, hydro-power and alternative energy systems. The ease with which technological innovation and development occur, the directions they take, and the impacts they have on the social and physical environments depend not only on purely technical and economic factors. Barriers, regulators and facilitators are inherent in the socio-political, institutional and cultural structures within which any attempts at innovation and technological development take place. The final section of the report explores some of the implications of the theory for policy and strategy, including consideration of environmental policy.

  17. 77 FR 8859 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2012-02-15

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Cancellation and Rescheduling of National Advisory Council for Environmental Policy and Technology (NACEPT) Committee Meeting. SUMMARY: EPA... Environmental Policy and Technology (NACEPT) Meeting to be held at the EPA Potomac Yard Conference Center, One...

  18. Proceedings of the international symposium on environmental technologies: Plasma systems and applications. Volume 1

    International Nuclear Information System (INIS)

    Mayne, P.W.; Mulholland, J.A.

    1995-01-01

    Plasma technology is an extremely versatile and powerful means of obtaining very high temperatures that can be used in a variety of environmental situations. Since most types of waste products and contaminants can be treated effectively and efficiently, plasma systems have been developed to address the disposal and annihilation domestic of medical, hazardous, radioactive, military, and miscellaneous wastes. Plasma technologies can also be implemented to recycle and recover usable materials from metallic wastes. The International Symposium on Environmental Technologies: Plasma Systems and Applications was held at the Omni Hotel in Atlanta, Georgia on October 8--12, 1995 to bring together a large group of technical experts working on the use of plasma for solving environmental problems. The Symposium is a sequel to the 1994 Metatechnies Conference on Stabilization and Volarization of Ultimate Waste by Plasma Processes that was held in September of 1994 at Bordeaux Lac, France. The proceedings to this second international conference contain the written contributions from eleven sessions and are published in two volumes. A total of 65 papers address the use of plasma systems for environmental applications and include topics concerning the development and use of innovative technologies for waste treatment, environmental remediation, recycling, characterization of the plasma and solid residue, off-gas analyses, as well as case studies and regulatory policies

  19. Final Project Summary Report Bechtel Nevada and Fiberchem Environmental, Inc., Cooperative Research and Technology Development Project

    Energy Technology Data Exchange (ETDEWEB)

    R. J. Pollina

    1999-04-01

    This is a report summarizing work on a small project dedicated to adapting a new chemical sensing platform for the US Department of Energy and its customers. At the same time and in the spirit of technology transfer, FCI Environmental, Inc., would receive technical support in the form of expertise from the US Department of Energy to assist in developing this product. The sensor is a hybrid integrated-circuit, optical waveguide, chemical sensor that is patented by FCI Environmental, Inc., and manufactured under license by Texas Instruments, Inc. A down-hole penetrometer probe was designed for use in hot, 60 C, hydrocarbon-saturated, saline environment at a depth of 200 feet. The probe design includes three chemical sensing, hybrid integrated-circuits with chemical reference and measurement channels, a water seal, output electronics, and a removable measurement head for replacement in the field. A hand-held chemical detector prototype--containing a hybrid integrated-circuit chemical sensor with reference channel, user alarm, and level display--was designed and constructed, and a software interface developed to operate the hand-held sensor interfaced with a laboratory data acquisition system.

  20. The environmental impact and cost efficiency of combustible waste utilization - the potential and impact of ongoing technology developments

    Energy Technology Data Exchange (ETDEWEB)

    Zevenhoven, M.; Hupa, M.

    2008-08-15

    Driving forces in development of waste to energy (WtE) have and will be often related to political decisions, i.e. emission limits are determined by politicians as a compromise between best available and best acceptable technologies against a background of health and environmental effects of ongoing or planned activities. This means that legislation may be the main driving force for development of new cleaner technologies and emission control. Currently the EU directive on waste conversion sets limits for emissions that can be met with existing technology and no break through developments may be expected in this area. More development may be expected from development of technologies for CO{sub 2} capture and storage or from shifting from fossil fuels to waste derived fuels. A secondary force may be political decisions whether waste will be treated in centralized, large scale facilities or decentralized, small scale tailor made solutions near the place of waste production. If technologies are developed, either small or large scale, these often have as main goal to reach higher profitability or as a solution of encountered problems. Small scale solutions for WtE will be advantageous in case a choice is made for decentralized waste treatment. In that case a new development could be the use of 'Fuel cell CHP'. However, at this moment this technology has not been applied widely. Large scale solutions will be the choice in case centralized WtE is chosen. In this case waste quality will define the technology used. Fluidized beds are preferred for well defined fuel quality. Fluidized bed WtE for unsorted waste is still challenging and may encounter fuel feeding and ash related problems. Grate firing will remain a well proven technology. Higher steam values may increase boiler efficiency in traditional grate boilers. Higher steam values in fluidized beds may be achieved by in situ heat exchange in the bed. Co-firing of high quality waste may become more common in

  1. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-04-30

    The final data package has been completed for the Mississippi State University, DIAL FTP Wall Depth Removal Characterization Technology. The package has been sent to DIAL for comments. Work is progressing on completing the transfer of glove boxes and tanks from Rocky Flats to FIU-HCET for the purpose of performing size reduction technology assessments. Vendors are being identified and security measures are being put in place to meet the High Risk Property criteria required by Rocky Flats. The FIU-HCET Technology Assessment Program has been included as one of 11 verification programs across the US and Canada described in the Interstate Technology Regulatory Cooperation (ITRC) document, ''Multi-state Evaluation of Elements Important to the Verification of Remediation Technologies'', dated January 1999. FIU-HCET will also participate in a panel discussion on technology verification programs at the International Environmental Technology Expo '99.

  2. How can help nuclear technology the developing countries?

    International Nuclear Information System (INIS)

    Boeck, H.; Buchtela, K.; Karimzadeh, S.; Musilek, A.

    2004-01-01

    Nuclear technology offers unique tools in the quest for sustainable development, such technology is often the best to gather information and provide solutions that would not otherwise be possible or practical for example diagnosis and therapy, to breed better crops and fight insect pests; to assess new sources of fresh water; and to assess sources of environmental pollution. The International Atomic Energy Agency (IAEA) provides support to 134 member states for using this technology to solve the important challenges they face. These scientific and technical co-operations based on the peaceful use of nuclear techniques (isotopes, stable and radioactive forms of chemical elements, human health, food, agriculture, water and environmental protection, capacity building, future energy needs) are described. (nevyjel)

  3. Environmental consequences of new energy technology

    International Nuclear Information System (INIS)

    Svensson, Torbjoern

    1991-09-01

    This report summarises and assesses the environmental consequences associated with new energy technologies, with particular emphasis on their use for space heating supplies in the built environment. In the case of solar heating, it is primarily the processes associated with the production of the necessary materials and ground use requirements that can adversely affect the environment. There is also a certain risk associated with the leakage of heat transfer fluid. For heat stores, problem areas are primarily those associated with heating of the ground, discharge of foreign substances in connection with water treatment and conflicts of other users of ground water. The main adverse effects of heat pumps are their emissions of CFCs, which damage the ozone layer, utilisation of certain types of heat sources and the need to provide primary energy for mechanical drive of the pumps. All three of these new energy technologies are regarded as having less environmental consequences than conventional alternatives, although this assumes a change to less hazardous working media in heat pumps. A mutual comparison of the three technologies indicates that solar heating and heat stores have somewhat better environmental characteristics than heat pumps

  4. Division of Environmental Control Technology program, 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    Environmental engineering programs are reviewed for the following technologies; coal; petroleum and gas; oil shale; solar; geothermal and energy conservation; nuclear energy; and decontamination and decommissioning. Separate abstracts were prepared for each technology. (MHR)

  5. Low-rank coal study: national needs for resource development. Volume 3. Technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    Technologies applicable to the development and use of low-rank coals are analyzed in order to identify specific needs for research, development, and demonstration (RD and D). Major sections of the report address the following technologies: extraction; transportation; preparation, handling and storage; conventional combustion and environmental control technology; gasification; liquefaction; and pyrolysis. Each of these sections contains an introduction and summary of the key issues with regard to subbituminous coal and lignite; description of all relevant technology, both existing and under development; a description of related environmental control technology; an evaluation of the effects of low-rank coal properties on the technology; and summaries of current commercial status of the technology and/or current RD and D projects relevant to low-rank coals.

  6. Innovative Technologies for the Solution of Environmental Problems in the World Community

    Directory of Open Access Journals (Sweden)

    T. K. Usmanova

    2017-01-01

    Full Text Available Purpose: the purpose of the article is the disclosure of environmental problems and prospects commercialization of intellectual property within development of innovative information technologies in the conditions of integration of economies into the world economy, identification of opportunities of forming, organization, financing, management, ownership, commercialization and protection of innovative technologies and intellectual property. Relevance of the chosen subject is caused by the current state of ecology and problems of commercialization of intellectual property in development of innovative information technologies within the conditions of integration of economies into the world economy. The existing changes of the current legislation and tendencies of development of the industry of innovative information technologies in field of ecology in the Russian Federation require cardinal review because of its low competitiveness. Ensuring sustainable development of the country directly depends on implementation of innovative information technologies, not only within the sphere of ecology, but also in all industries of the national economy of Russia. Especially important direction of development of innovations is the field of information technologies with its further implementation in innovative productions and provision of services with a focus on protection of ecology and healthcare. Methods: the methodology of the solution of objectives is based on usage of a method of dialectic research, methods of the economic analysis, forecasting, the situational and systemic analysis, expert evaluations and the analysis of empirical data. Results: in the process of researching the direction of solving environmental problems, the author studied foreign and Russian programs based on innovative technologies in this field and identified current proposals regarding the practical implementation of partnerships in the form of Public Private Partnerships PPPs

  7. Pacific Northwest Laboratory environmental technologies available for deployment

    International Nuclear Information System (INIS)

    Slate, S.C.

    1994-07-01

    The Department of Energy created the Office of Environmental Management (EM) to conduct a 30-year plus, multi-billion dollar program to manage the wastes and cleanup the legacy from over fifty years of nuclear material production. Across the DOE System there are thousands of sites containing millions of metric tons of buried wastes and contaminated soils and groundwater. Additionally, there are nearly 400,000 m 3 of highly radioactive wastes in underground storage tanks, over 1,400 different mixed-waste streams, and thousands of contaminated surplus facilities, some exceeding 200,000 m 2 in size. Costs to remediate all these problems have been estimated to be as much as several hundred billion dollars. The tremendous technical challenges with some of the problems and the high costs of using existing technologies has led the Department to create the Office of Technology Development (TD) to lead an aggressive, integrated national program to develop and deploy the needed advanced, cost-effective technologies. This program is developing technologies for all major cleanup steps: assessment, characterization, retrieval, treatment, final stabilization, and disposal. Work is focused on the Department's five major problem areas: High-Level Waste Tank Remediation; Contaminant Plume Containment and Remediation; Mixed Waste Characterization, Treatment, and Disposal; Contaminated Soils and Buried Wastes Facility Transitioning, Decommissioning, and Final Disposal

  8. Risk analysis and technology assessment in support of technology development: Putting responsible innovation in practice in a case study for nanotechnology.

    Science.gov (United States)

    van Wezel, Annemarie P; van Lente, Harro; van de Sandt, Johannes Jm; Bouwmeester, Hans; Vandeberg, Rens Lj; Sips, Adrienne Jam

    2018-01-01

    Governments invest in "key enabling technologies," such as nanotechnology, to solve societal challenges and boost the economy. At the same time, governmental agencies demand risk reduction to prohibit any often unknown adverse effects, and industrial parties demand smart approaches to reduce uncertainties. Responsible research and innovation (RRI) is therefore a central theme in policy making. Risk analysis and technology assessment, together referred to as "RATA," can provide a basis to assess human, environmental, and societal risks of new technological developments during the various stages of technological development. This assessment can help both governmental authorities and innovative industry to move forward in a sustainable manner. Here we describe the developed procedures and products and our experiences to bring RATA in practice within a large Dutch nanotechnology consortium. This is an example of how to put responsible innovation in practice as an integrated part of a research program, how to increase awareness of RATA, and how to help technology developers perform and use RATA. Integr Environ Assess Manag 2018;14:9-16. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  9. The energy consumption and environmental impacts of SCR technology in China

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zengying; Ma, Xiaoqian; Lin, Hai; Tang, Yuting [School of Electric Power, Guangdong Key Laboratory of Clean Energy Technology, South China University of Technology, Guangzhou 510640 (China)

    2011-04-15

    Energy and environment are drawing greater attention today, particularly with the rapid development of the economy and increase consumption of energy in China. At present, coal-fired power plants are mainly responsible for atmospheric air pollution. The selective catalytic reduction (SCR) technology is a highly effective method for NO{sub X} control. The present study identified and quantified the energy consumption and the environmental impacts of SCR system throughout the whole life cycle, including production and transportation of manufacturing materials, installation and operation of SCR technology. The analysis was conducted with the utilization of life cycle assessment (LCA) methodology which provided a quantitative basis for assessing potential improvements in the environmental performance of the system. The functional unit of the study was 5454 t NO{sub X} emission from an existing Chinese pulverized coal power plant for 1 year. The current study compared life cycle emissions from two types of de-NO{sub X} technologies, namely the SCR technology and the selective non-catalytic reduction (SNCR) technology, and the case that NO{sub X} was emitted into atmosphere directly. The results showed that the environmental impact loading resulting from SCR technology (66810 PET{sub 2000}) was smaller than that of flue gas emitted into atmosphere directly (164121 PET{sub 2000}) and SNCR technology (105225 PET{sub 2000}). More importantly, the SCR technology is much more effective at the elimination of acidification and nutrient enrichment than SNCR technology and the case that NO{sub X} emitted into atmosphere directly. This SCR technology is more friendly to the environment, and can play an important role in NO{sub X} control for coal-fired power plants as well as industrial boilers. (author)

  10. Animal manure separation technologies diminish the environmental burden of steroid hormones

    DEFF Research Database (Denmark)

    Hansen, Martin; Björklund, Erland; Popovic, Olga

    2015-01-01

    environmental risks associated with the release of steroid hormones to adjacent waterways. To assess the potential benefit of these technologies in reducing the level of release of steroid hormones to adjacent waterways, distribution profiles of nine steroid hormones (pregnenolone, progesterone......Newly developed treatment technologies are capable of separating livestock manure into a liquid fraction and a solid fraction using sedimentation, mechanical, and/or chemical methods. These technologies offer a potential means of distributing nutrients to agricultural lands without the unwanted...

  11. MICROBIAL SURFACTANTS IN ENVIRONMENTAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2015-08-01

    Full Text Available It was shown literature and own experimental data concerning the use of microbial surface active glycolipids (rhamno-, sophoro- and trehalose lipids and lipopeptides for water and soil purification from oil and other hydrocarbons, removing toxic heavy metals (Cu2+, Cd2+, Ni2+, Pb2+, degradation of complex pollution (oil and other hydrocarbons with heavy metals, and the role of microbial surfactants in phytoremediation processes. The factors that limit the use of microbial surfactants in environmental technologies are discussed. Thus, at certain concentrations biosurfactant can exhibit antimicrobial properties and inhibit microorganisms destructing xenobiotics. Microbial biodegradability of surfactants may also reduce the effectiveness of bioremediation. Development of effective technologies using microbial surfactants should include the following steps: monitoring of contaminated sites to determine the nature of pollution and analysis of the autochthonous microbiota; determining the mode of surfactant introduction (exogenous addition of stimulation of surfactant synthesis by autochthonous microbiota; establishing an optimal concentration of surfactant to prevent exhibition of antimicrobial properties and rapid biodegradation; research both in laboratory and field conditions.

  12. New technology in everyday life - social processes and environmental impact

    DEFF Research Database (Denmark)

    Røpke, Inge

    2001-01-01

    aspect both of changes in everyday life and of the environmental impact of everyday-life activities. Technological change is often seen as an important part of the solutions to environmental problems, however, when technological change is seen from the perspective of everyday life, this image becomes...... more complex. In this paper technological changes are explored from the perspective of consumption and everyday life, and it is argued that environmental impacts arise through the interplay of technology, consumption and everyday life. Firstly, because technological renewals form integral parts...... influence the environment in the long run. The paper points to the need for further studies of the long term interplay between new technologies, everyday life and the environment....

  13. Incorporating regulatory considerations into waste treatment technology development

    International Nuclear Information System (INIS)

    Siegel, M.R.; Powell, J.A.; Williams, T.A.; Kuusinen, T.L.; Lesperance, A.M.

    1991-02-01

    It is generally recognized that the development of new and innovative waste treatment technologies can significantly benefit the US Department of Energy's (DOE) environmental restoration and waste management program. DOE has established a research, development, demonstration, testing, and evaluation (RDDT ampersand E) program, managed by its Office of Technology Development, to encourage and direct the development of new waste treatment and management technologies. The treatment, storage, and disposal of hazardous and radioactive waste is heavily regulated both at the federal and state levels. In order to achieve the goals of applying the best new technologies in the fastest and most cost-effective manner possible, it is essential that regulatory factors be considered early and often during the development process. This paper presents a number of regulatory issues that are relevant to any program intended to encourage the development of new waste treatment and management technologies. It will also address how the use of these basic regulatory considerations can help ensure that technologies that are developed are acceptable to regulators and can therefore be deployed in the field. 2 refs

  14. The Use of Space Technology for Environmental Security, Disaster Rehabilitation and Sustainable Development in Afghanistan and Iraq

    Science.gov (United States)

    Lovett, Kian

    Since the dawn of time, humans have engaged in war. In the last 5,600 years of recorded history 14,600 wars have been waged1. The United Nations has sought to save succeeding generations from the scourge of war and to foster peace. Wars have recently taken place in Afghanistan and Iraq. Both countries are now faced with a range of complex problems. In-depth country assessments reveal significant shortcomings in the areas of water, sanitation, health, security and natural resource management. These are key factors when examining environmental security, sustainable development and trans-boundary problems, all of which are issues relevant to the Middle East and Central Asian states. Space technology can be applied to support the reconstruction and development plans for Afghanistan and Iraq; however, there needs to be an investigation and open discussion of how these resources can best be used. Already, agencies within the United Nations possess considerable expertise in the use of space technologies in the area of disaster management. If this capability is to be used, there will need to be inter-agency coordination, not to mention a further expansion and development of the United Nations role in both Afghanistan and Iraq.

  15. Mixed waste focus area Department of Energy technology development needs identification and prioritization

    International Nuclear Information System (INIS)

    Roach, J.A.

    1995-11-01

    The Assistant Secretary for the Office of Environmental Management (EM) at the US DOE initiated a new approach in August, 1993 to environmental research and technology development. The key features of this new approach included establishment of five focus areas and three crosscutting technology programs, which overlap the boundaries of the focus areas. The five focus areas include the Contaminant Plumes Containment and Remediation; Mixed Waste Characterization, Treatment, and Disposal; High-Level Waste Tank Remediation, Landfill Stabilization, and Decontamination and Decommissioning Focus Areas. The three crosscutting technologies programs include Characterization, Monitoring, and Sensor Technology; Efficient Separations and Processing; and Robotics. The DOE created the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop and facilitate implementation of technologies required to meet its commitments for treatment of mixed wastes. To accomplish this goal, the technology deficiencies must be identified and categorized, the deficiencies and needs must be prioritized, and a technical baseline must be established that integrates the requirements associated with these needs into the planned and ongoing environmental research and technology development activities supported by the MWFA. These steps are described

  16. How to consistently make your product, technology or system more environmentally-sustainable?

    DEFF Research Database (Denmark)

    Laurent, Alexis; Cosme, Nuno Miguel Dias; Molin, Christine

    Human activities are currently uns ustainable, causing many damages to ecosystems, human health and natural resources. In this setting, the development of new products and technologies has been increasingly required to relate to sustainability and ensure that such development goes hand -in-hand w...... of the system. We rely on state-of -the-art science in the food sector, the aquaculture sector and the energy sector to showcase and illustrate the potential of LCA to undertake the environmental sustainability challenge and support product/technology/system development....

  17. The Advanced Technology Environmental Education Center Summer Fellows Institute.

    Science.gov (United States)

    Depken, Diane E.; Zeman, Catherine L.; Lensch, Ellen Kabat; Brown, Edward J.

    2002-01-01

    Describes the background, activities, and outcomes of the Advanced Technology Environmental Education Center (ATEEC) and its Summer Fellows Institutes as a model for disciplinary and cross-disciplinary infusion of environmental science and technology content, curriculum, and methods into the classroom. Presents experiences, themes, and activities…

  18. Performance planning and measurement for DOE EM-International Technology Integration Program. A report on a performance measurement development workshop for DOE's environmental management international technology integration program

    International Nuclear Information System (INIS)

    Jordan, G.B.; Reed, J.H.; Wyler, L.D.

    1997-03-01

    This report describes the process and results from an effort to develop metrics for program accomplishments for the FY 1997 budget submission of the U.S. Department of Energy Environmental Management International Technology Integration Program (EM-ITI). The four-step process included interviews with key EM-ITI staff, the development of a strawman program logic chart, and all day facilitated workshop with EM-ITI staff during which preliminary performance plans and measures were developed and refined, and a series of follow-on discussions and activities including a cross-organizational project data base. The effort helped EM-ITI to crystallize and develop a unified vision of their future which they can effectively communicate to their own management and their internal and external customers. The effort sets the stage for responding to the Government Performance and Results Act. The metrics developed may be applicable to other international technology integration programs. Metrics were chosen in areas of eight general performance goals for 1997-1998: (1) number of forums provided for the exchange of information, (2) formal agreements signed, (3) new partners identified, (4) customers reached and satisfied, (5, 6) dollars leveraged by EM technology focus area and from foreign research, (7) number of foreign technologies identified for potential use in remediation of DOE sites, and (8) projects advanced through the pipeline

  19. Involving stakeholders in evaluating environmental restoration technologies

    International Nuclear Information System (INIS)

    McCabe, G.H.; Serie, P.J.

    1993-02-01

    Involving citizens, interest groups, and regulators in environmental restoration and waste management programs is a challenge for government agencies and the organizations that support them. To be effective, such involvement activities must identify all individuals and groups who have a stake in the cleanup. Their participation must be early, substantive, and meaningful. Stockholders must be able to see how their input was considered and used, and feel that a good- faith effort was made to reconcile conflicting objectives. The Integrated Demonstration for Cleanup of Volatile Organic Compounds at Arid Sites (VOC-Arid ID) is a Department of Energy Office of Technology Development project located at Hanford. Along with technical evaluation of innovative cleanup technologies, the program is conducting an institutional assessment of regulatory and public acceptance of new technologies. Through a series of interviews and workshops, and use of a computerized information management tool, stakeholders are having a voice in the evaluation. Public and regulatory reaction has been positive

  20. What can information technology do for environmental protection?

    International Nuclear Information System (INIS)

    Trauboth, H.

    1987-01-01

    Information technology plays an important role in the accomplishment of an effective environmental protection. Prerequisite for its comprehensive implementation is the legal and economic achievement of closed material cycles for supply and waste discharge in production and consumption as well as in nuclear technology. Modern information processing may be used for the inventory of natural and emission sources, to gain knowledge on the functioning mechanisms of nature, for the planning of a considerate exploitation of natural recources and for the ecology-oriented monitoring and control of industrial plants. The state of the art of the corresponding information technology and new areas of research especially in measurement technology are shown. The breadth of the great opportunities of information technology for environmental protection is discribed. (orig.) [de

  1. A thermodynamic perspective on technologies in the Anthropocene : analyzing environmental sustainability

    NARCIS (Netherlands)

    Liao, Wenjie

    2012-01-01

    Technologies and sustainable development are interrelated from a thermodynamic perspective, with industrial ecology (IE) as a major point of access for studying the relationship in the Anthropocene. To offer insights into the potential offered by thermodynamics in the environmental sustainability

  2. Canadian nuclear desalination/cogeneration technology development

    International Nuclear Information System (INIS)

    Humphries, J.R.

    1996-01-01

    The goal of the CANDESAL program has been to develop innovative applications of existing technologies that would offer an energy efficient, cost effective mechanism for the production of potable water and electricity. Large scale seawater desalination will be an important element in the solution of the global water shortage problem. For nuclear desalination to capture a significant share of this growing market, it must be economically competitive, as well as offer other advantages over more traditional fossil-fueled alternatives. The focus of activities in Canada has been on development of the technology in directions that would result in improved water production efficiency, reduced energy consumption, reduced environmental burden and reduced costs

  3. Investigations on an environmental technology transfer information network; Kankyo gijutsu iten joho network chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    With developing countries (APEC countries) as the main objects, investigations were carried out to issue environmental technology transfer information that Japan has accumulated, and advance exchanges of technical information with persons related inside and outside Japan. As a result of the investigations, it was found that the environmental technology information that serves more effectively for the developing countries is the technical information that has been developed by repeating improvements, has provided actual results in work sites, and is actually used, rather than the state-of-art technologies. Based on this result, business entities having factories and operation centers located in Mie Prefecture and the city of Yokkaichi were asked to provide data for the actually used environmental technologies. Out of 51 items provided by 17 companies, nine items were selected to be used as prototype database materials for an information network. The objects of information sources will be expanded to a nationwide scale in the future to improve the contents of the database. Problems of handling information copyrights and technical know-hows were presented in the course of data collection, urging the necessity of due considerations on the matter. Necessity was indicated on maintenance and management of data base as well as its quantitative expansion. 1 ref., 4 figs.

  4. Environmental Science and Technology Department annual report 1992

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A. [eds.

    1993-03-01

    Through basic and strategic research, the Environmental Science and Technology Department aspires to develop new ideas for industrial and agricultural production thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department in predominantly experimental. Selected department research activities during 1992 are introduced and reviewed in seven chapters: 1. Introduction. 2. The Atmospheric Environment. 3. Plant Genetics and Resistance Biology. 4. Plant Nutrition and Mineral Cycling. 5. Chemistry of the Geosphere. 6. Ecology and Mineral Cycling. 7. Other Activities. The department`s contribution to national and international collaborative research programmes in presented in addition in formation about large research and development facilities used and management by the department. The department`s educational and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technological staff members, visiting scientists, Post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au).

  5. Environmental Science and Technology Department annual report 1992

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1993-03-01

    Through basic and strategic research, the Environmental Science and Technology Department aspires to develop new ideas for industrial and agricultural production thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department in predominantly experimental. Selected department research activities during 1992 are introduced and reviewed in seven chapters: 1. Introduction. 2. The Atmospheric Environment. 3. Plant Genetics and Resistance Biology. 4. Plant Nutrition and Mineral Cycling. 5. Chemistry of the Geosphere. 6. Ecology and Mineral Cycling. 7. Other Activities. The department's contribution to national and international collaborative research programmes in presented in addition in formation about large research and development facilities used and management by the department. The department's educational and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technological staff members, visiting scientists, Post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au)

  6. 75 FR 70215 - Environmental Technologies Trade Advisory Committee (ETTAC), Request for Nominations

    Science.gov (United States)

    2010-11-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade...: Notice of solicitation of nominations for membership on the Environmental Technologies Trade Advisory Committee (ETTAC). SUMMARY: The Environmental Technologies Trade Advisory Committee (ETTAC) was established...

  7. Identification of remediation needs and technology development focus areas for the Environmental Restoration (ER) Project at Sandia National Laboratories/New Mexico (SNL/NM)

    International Nuclear Information System (INIS)

    Tucker, M.D.

    1995-06-01

    The Environmental Restoration (ER) Project has been tasked with the characterization, assessment, remediation and long-term monitoring of contaminated waste sites at Sandia National Laboratories/New Mexico (SNL/NM). Many of these sites will require remediation which will involve the use of baseline technologies, innovative technologies that are currently under development, and new methods which will be developed in the near future. The Technology Applications Program (TAP) supports the ER Project and is responsible for development of new technologies for use at the contaminated waste sites, including technologies that will be used for remediation and restoration of these sites. The purpose of this report is to define the remediation needs of the ER Project and to identify those remediation needs for which the baseline technologies and the current development efforts are inadequate. The area between the remediation needs and the existing baseline/innovative technology base represents a technology gap which must be filled in order to remediate contaminated waste sites at SNL/NM economically and efficiently. In the first part of this report, the remediation needs of the ER Project are defined by both the ER Project task leaders and by TAP personnel. The next section outlines the baseline technologies, including EPA defined Best Demonstrated Available Technologies (BDATs), that are applicable at SNL/NM ER sites. This is followed by recommendations of innovative technologies that are currently being developed that may also be applicable at SNL/NM ER sites. Finally, the gap between the existing baseline/innovative technology base and the remediation needs is identified. This technology gap will help define the future direction of technology development for the ER Project

  8. Report on International Symposium for the Promotion of APEC Environmental Technology Exchange and Experts; APEC kankyogijutsu koryusokushin kokusai shinpojium jisshi hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The above event took place at Nagoya City, Japan, on December 5, 2000. Taken up were the response of developing nations to the problem of environmental protection, their needs for environmental technologies, examples of the transfer of environmental technologies carried out by Japan's environment related businesses or organizations, introduction of technologies Japan was able to present, and so forth. Introduced also were the current state and future outlook of such activities as the exchange of environmental technologies and business through the utilization of the virtual center for APEC (Asia-Pacific Economic Cooperation Conference) environmental technology exchange now in service, and so forth. At the symposium, a keynote address entitled Toward the Realization of Sustainable Society was delivered by Professor Yamamoto of the Institute of Industrial Science of the University of Tokyo. Panel discussions were held on the exchange of environmental technologies and business making use of the international network APEC-VC (virtual center) at Session 1, on some front-line cases of environmental technology transfer at Session 2, and on the transfer of technologies useful for developing nations as it ought to be at Session 3. (NEDO)

  9. Application of radiation technology for industry and environmental protection

    International Nuclear Information System (INIS)

    Sueo Machi

    1996-01-01

    The world population today is 5.7 billion and increasing by 94 million per year. In order to meet the increasing consumption of food and energy due to the tremendous population growth, unproved technologies which are environmentally friendly, are indispensable. In this context. a number of advanced technologies have been brought about by the LISC of radiation and isotopes. This paper highlights radiation technology, applications in industry, environmental conservation, and agriculture

  10. Energy technologies and the environment: environmental information handbook

    International Nuclear Information System (INIS)

    1981-06-01

    This manual draws together information on the environmental consequences of energy technologies that will be in use in the United States during the next 20 years. We hope it will prove useful to planners, policymakers, legislators, researchers, and environmentalists. The information on environmental issues, control technologies, and energy production and conservation processes should also be a convenient starting point for deeper exploration. Published references are given for the statements, data, and conclusions so that the interested reader can obtain more detailed information where necessary. Environmental aspects of energy technologies are presented in a form suitable for government and public use and are intended to assist decisionmakers, researchers, and the public with basic information and references that can be relied upon through changing policies and changing world energy prices

  11. A new approach to environmental education: environment-challenge for science, technology and society

    International Nuclear Information System (INIS)

    Popovic, D.

    2002-01-01

    The paper presents a new approach to environmental education within the project Environment: Challenge for Science, Technology and Education, realized on the Alternative Academic Education Network (AAEN) in Belgrade. The project is designed for graduate or advanced undergraduate students of science, medicine, engineering, biotechnology, political and law sciences. It is multidisciplinary and interdisciplinary project aimed to support students interest in different areas of the environmental sciences through strong inter-connection between modern scientific ideas, technological achievements and society. The project contains four basic courses (Living in the Environment; Physical and Chemical Processes in the Environment; Industrial Ecology and Sustainable Development; Environmental Philosophy and Ethics) and a number of elective courses dealing with environmental biology, adaptation processes , global eco politics, environmental ethics, scientific and public policy, environmental consequences of warfare, environmental pollution control, energy management, environmental impact assessment, etc. The standard ex catedra teaching is replaced with active student-teacher communication method enabling students to participate actively in the subject through seminars, workshops, short essays and individual research projects

  12. Advanced technology development reducing CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sup

    2010-09-15

    Responding to Korean government policies on green growth and global energy/ environmental challenges, SK energy has been developing new technologies to reduce CO2 emissions by 1) CO2 capture and utilization, 2) efficiency improvement, and 3) Li-ion batteries. The paper introduces three advanced technologies developed by SK energy; GreenPol, ACO, and Li-ion battery. Contributing to company vision, a more energy and less CO2, the three technologies are characterized as follows. GreenPol utilizes CO2 as a feedstock for making polymer. Advanced Catalytic Olefin (ACO) reduces CO2 emission by 20% and increase olefin production by 17%. Li-ion Batteries for automotive industries improves CO2 emission.

  13. Nano-scale Materials and Nano-technology Processes in Environmental Protection

    International Nuclear Information System (INIS)

    Vissokov, Gh; Tzvetkoff, T.

    2003-01-01

    A number of environmental and energy technologies have benefited substantially from nano-scale technology: reduced waste and improved energy efficiency; environmentally friendly composite structures; waste remediation; energy conversion. In this report examples of current achievements and paradigm shifts are presented: from discovery to application; a nano structured materials; nanoparticles in the environment (plasma chemical preparation); nano-porous polymers and their applications in water purification; photo catalytic fluid purification; hierarchical self-assembled nano-structures for adsorption of heavy metals, etc. Several themes should be considered priorities in developing nano-scale processes related to environmental management: 1. To develop understanding and control of relevant processes, including protein precipitation and crystallisation, desorption of pollutants, stability of colloidal dispersion, micelle aggregation, microbe mobility, formation and mobility of nanoparticles, and tissue-nanoparticle interaction. Emphasis should be given to processes at phase boundaries (solid-liquid, solid-gas, liquid-gas) that involve mineral and organic soil components, aerosols, biomolecules (cells, microbes), bio tissues, derived components such as bio films and membranes, and anthropogenic additions (e.g. trace and heavy metals); 2. To carry out interdisciplinary research that initiates Noel approaches and adopts new methods for characterising surfaces and modelling complex systems to problems at interfaces and other nano-structures in the natural environment, including those involving biological or living systems. New technological advances such as optical traps, laser tweezers, and synchrotrons are extending examination of molecular and nano-scale processes to the single-molecule or single-cell level; 3. To integrate understanding of the roles of molecular and nano-scale phenomena and behaviour at the meso- and/or macro-scale over a period of time

  14. The Effect of Government Actions on Environmental Technology Innovation: Applications to the Integrated Assessment of Carbon Sequestration Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E. S.; Hounshell, D. A.; Yeh, S.; Taylor, M.; Schrattenholzer, L.; Riahi, K.; Barreto, L.; Rao, S.

    2004-01-15

    This project seeks to improve the ability of integrated assessment models (IA) to incorporate changes in technology, especially environmental technologies, cost and performance over time. In this report, we present results of research that examines past experience in controlling other major power plant emissions that might serve as a reasonable guide to future rates of technological progress in carbon capture and sequestration (CCS) systems. In particular, we focus on U.S. and worldwide experience with sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) control technologies over the past 30 years, and derive empirical learning rates for these technologies. The patterns of technology innovation are captured by our analysis of patent activities and trends of cost reduction over time. Overall, we found learning rates of 11% for the capital costs of flue gas desulfurization (FGD) system for SO{sub 2} control, and 13% for selective catalytic reduction (SCR) systems for NO{sub x} control. We explore the key factors responsible for the observed trends, especially the development of regulatory policies for SO{sub 2} and NO{sub x} control, and their implications for environmental control technology innovation.

  15. Urban Maglev Technology Development Program : Colorado Maglev Project : part 2 final report

    Science.gov (United States)

    2004-06-01

    The overall objective of the urban maglev transit technology development program is to develop magnetic levitation technology that is a cost effective, reliable, and environmentally sound transit option for urban mass transportation in the United Sta...

  16. Learning in renewable energy technology development

    International Nuclear Information System (INIS)

    Junginger, M.

    2005-01-01

    The main objectives of this thesis are: to investigate technological change and cost reduction for a number of renewable electricity technologies by means of the experience curve approach; to address related methodological issues in the experience curve approach, and, based on these insights; and to analyze the implications for achieving the Dutch renewable electricity targets for the year 2020 within a European context. In order to meet these objectives, a number of research questions have been formulated: What are the most promising renewable electricity technologies for the Netherlands until 2020 under different technological, economic and environmental conditions?; To what extent is the current use of the experience curve approach to investigate renewable energy technology development sound, what are differences in the utilization of this approach and what are possible pitfalls?; How can the experience curve approach be used to describe the potential development of partially new energy technologies, such as offshore wind energy? Is it possible to describe biomass fuel supply chains with experience curves? What are the possibilities and limits of the experience curve approach when describing non-modular technologies such as large (biomass) energy plants?; What are the main learning mechanisms behind the cost reduction of the investigated technologies?; and How can differences in the technological progress of renewable electricity options influence the market diffusion of renewable electricity technologies, and what implications can varying technological development and policy have on the implementation of renewable electricity technologies in the Netherlands? The development of different renewable energy technologies is investigated by means of some case studies. The possible effects of varying technological development in combination with different policy backgrounds are illustrated for the Netherlands. The thesis focuses mainly on the development of investment

  17. Radiation technology for environmental conservation

    International Nuclear Information System (INIS)

    Machi, S.

    1983-01-01

    The use of radiation technology for environmental conservation is becoming increasingly important. Commercial plants for the radiation treatment of sewage sludge to reduce pathogenic micro-organisms have been operating in the Federal Republic of Germany for the past ten years and their technical and economical feasibility has been demonstrated. Irradiation of dried sludge has been developed at the Sandia National Laboratory (USA) using Cs-137, and the construction of a commercial plant is planned in Albuquerque. At the Japan Atomic Energy Research Institute (JAERI), efforts are under way to increase the rate of composting of sludge by radiation. Regarding waste water treatment, a significant synergistic effect of radiation and ozone was found in the reduction of TOC. The construction of a gamma irradiation plant is in the planning stage in Canada, for the disinfection of virus-contaminated waste effluents from the Canadian Animal Disease Research Institute. The treatment of exhaust gases by electron beam has been studied in Japan using a large pilot plant which demonstrated that 90% of SO 2 and 80% of NOsub(x) can be removed from the flue gas of iron ore sintering furnaces. The US Department of Energy is assisting in projects for the further development of this technology for combined removal of SO 2 and NOsub(x) in flue gas from coal burning power stations. (author)

  18. A state of the art on coastal environmental protection using radioisotope tracer technology

    International Nuclear Information System (INIS)

    Jung, Sung Hee; Jin, Joon Ha; Kim, Jong Bum; Choi, Byung Jong

    2002-04-01

    Construction of artificial structures has caused a sediment process change due to the variation of hydraulic condition in Korea. Subsequently we have a serious problem of shoaling for shoreline deformation, siltation of the harbor and shipping channel. To protect those abnormal environmental changes, a large estimate has been spent for additional construction such as outer wall facilities, littoral nourishment and dredging. Systematic long-term studies should be carried out to understand the causes of environmental change. In addition, comprehensive plan is required for its monitoring and prevention. The radioisotope application studies for coastal environmental protection have not been actively performed only in the developed countries like France, Canada, and Australia etc., but also in many developing countries like Poland, India. Since KAERI has performed two experiments in costal area of Korea in 1960s, no more study has been reported. Recently the studies of radiotracer application technology is getting more interested in terms of on-line data acquisition and analysis for the validation of the numerical simulation models. The experiment using radiotracer becomes an important part of the method to solve the problems happening in coastal environment, as it supplies data with high confidence in the field. On the basis of the experience obtained from the researches for industrial application of radiotracer technology, KAERI is going to make its first step to the development of the radiotracer technology for costal environmental studies

  19. Technology development needs summary, FY 1995

    International Nuclear Information System (INIS)

    1994-03-01

    Historic activities of DOE during the period of nuclear weapons development, and disposal practices of that time, resulted in the discharge of chemical and radioactive materials to the environment at many DOE facilities and sites. DOE has now focused a major technical effort on mitigating the effects of those discharges through an environmental restoration program. Since this could lead to prohibitive costs if conventional technology is applied for remedial action, a national program will be initiated to develop and demonstrate faster, better, cheaper, and safer means of restoring the DOE sites to conditions that will meet state and federal environment regulations. Key elements of the initiative are the Integrated Programs and Integrated Demonstrations, which work together to identify possible solutions to major environmental problems. Needed statements are given for the following programs: mixed waste landfill, uranium in soils, VOC-arid, decontamination and decommissioning of facilities, buried waste, characterization/monitoring/sensor technology, mixed waste, in situ remediation, efficient separations/processing, minimum additive waste stabilization, supercritical water oxidation. A section on how to get involved is included

  20. Technology development needs summary, FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    Historic activities of DOE during the period of nuclear weapons development, and disposal practices of that time, resulted in the discharge of chemical and radioactive materials to the environment at many DOE facilities and sites. DOE has now focused a major technical effort on mitigating the effects of those discharges through an environmental restoration program. Since this could lead to prohibitive costs if conventional technology is applied for remedial action, a national program will be initiated to develop and demonstrate faster, better, cheaper, and safer means of restoring the DOE sites to conditions that will meet state and federal environment regulations. Key elements of the initiative are the Integrated Programs and Integrated Demonstrations, which work together to identify possible solutions to major environmental problems. Needed statements are given for the following programs: mixed waste landfill, uranium in soils, VOC-arid, decontamination and decommissioning of facilities, buried waste, characterization/monitoring/sensor technology, mixed waste, in situ remediation, efficient separations/processing, minimum additive waste stabilization, supercritical water oxidation. A section on how to get involved is included.

  1. Environmental assessment report: Nuclear Test Technology Complex

    International Nuclear Information System (INIS)

    Tonnessen, K.; Tewes, H.A.

    1982-08-01

    The US Department of Energy (USDOE) is planning to construct and operate a structure, designated the Nuclear Test Technology Complex (NTTC), on a site located west of and adjacent to the Lawrence Livermore National Laboratory. The NTTC is designed to house 350 nuclear test program personnel, and will accommodate the needs of the entire staff of the continuing Nuclear Test Program (NTP). The project has three phases: land acquisition, facility construction and facility operation. The purpose of this environmental assessment report is to describe the activities associated with the three phases of the NTTC project and to evaluate potential environmental disruptions. The project site is located in a rural area of southeastern Alameda County, California, where the primary land use is agriculture; however, the County has zoned the area for industrial development. The environmental impacts of the project include surface disturbance, high noise levels, possible increases in site erosion, and decreased air quality. These impacts will occur primarily during the construction phase of the NTTC project and can be mitigated in part by measures proposed in this report

  2. The environmental effect of subsidies for clean technologies

    International Nuclear Information System (INIS)

    De Vries, F.P.; Nentjes, A.

    2001-01-01

    Environmental subsidies for clean technology result in a larger diffusion of such technology. However, as a result emissions can increase in imperfect markets for products. When several companies compete each other with clean and dirty technologies, production and emission will rise because of price competition.This effect will be even larger in case subsidies are applied. Therefore, subsidies are not advisable for every market. In this article an evolutionary game theory has been used with respect to the diffusion of environment-friendly innovation of products and the role of environmental policy instruments (in particular subsidies). 7 refs

  3. Green technology innovation in a developing country

    Science.gov (United States)

    Treesubsuntorn, Chairat; Dolphen, Rujira; Dhurakit, Prapai; Siswanto, Dian; Thiravetyan, Paitip

    2017-11-01

    Developing countries rapidly grow when green technology, which is referred to as eco-friendly processes or methods, is developed in parallel. Here, some examples of green technology research and development in Thailand will be overviewed. A huge amount of agricultural waste is generated during agricultural processes. Applying these agricultural wastes in order to maximize the benefits for environmental cleanups of water, soil and air has been studied and commercialized. For example: 1) Application of agricultural waste and/or biochar developed from agricultural waste as biological adsorbents for wastewater treatment in some industries, such as textile/dye industries, and printing industries. In addition, this agricultural waste can also be applied in decolorization of sugar syrup from sugar industries; 2) The research on modified biomaterials as adsorbents and packing materials in biofilters would also be presented, and now, pilot scale biofilters have been developed and applied to solve air pollution problems in the field for future commercialization; 3) Some agricultural waste and/or biochar developed from agricultural waste in our laboratory can promote rice growth and improve rice quality via the reduction of Cd uptake and translocation in rice. Phytoremediation technology, in which plants are used to improve the environmental quality in water and air, has also been studied and would be presented. 1) Some species of native Thai plants can effectively remove heavy metals and dye from wastewater. For this research, a constructed wetland for wastewater treatment was developed and applied in a real contaminated site. 2) In air phytoremediation, some plant species harbor highly volatile organic compound (VOC) removal efficiency. In addition, plants do not only absorb organic pollutants, but also they have the innate ability to degrade organic compounds and use them as carbon sources for their growth. In addition, plant growth-promoting (PGP) bacteria inoculation

  4. 77 FR 2719 - National Advisory Council for Environmental Policy and Technology; Meeting

    Science.gov (United States)

    2012-01-19

    ... and Technology; Meeting AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Advisory... a public meeting of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology...

  5. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  6. Environmental implications of wireless technologies: news delivery and business meetings.

    Science.gov (United States)

    Toffel, Michael W; Horvath, Arpad

    2004-06-01

    Wireless information technologies are providing new ways to communicate, and are one of several information and communication technologies touted as an opportunity to reduce society's overall environmental impacts. However, rigorous system-wide environmental impact comparisons of these technologies to the traditional applications they may replace have only recently been initiated, and the results have been mixed. In this paper, the environmental effects of two applications of wireless technologies are compared to those of conventional technologies for which they can substitute. First, reading newspaper content on a personal digital assistant (PDA) is compared to the traditional way of reading a newspaper. Second, wireless teleconferencing is compared to business travel. The results show that for both comparisons wireless technologies create lower environmental impacts. Compared to reading a newspaper, receiving the news on a PDA wirelessly results in the release of 32-140 times less CO2, several orders of magnitude less NOx and SOx, and the use of 26-67 times less water. Wireless teleconferencing results in 1-3 orders of magnitude lower CO2, NOx, and SO2 emissions than business travel.

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: DUST SUPPRESSANT PRODUCTS: SYNTECH PRODUCTS CORPORATION'S PETROTAC

    Science.gov (United States)

    Dust suppressant products used to control particulate emissions from unpaved roads are among the technologies evaluated by the Air Pollution Control Technology (APCT) Verification Center, part of the U.S. Environmental Protection Agency's Environmental Technology Verification (ET...

  8. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: DUST SUPPRESSANT PRODUCTS: SYNTECH PRODUCTS CORPORATION'S TECHSUPPRESS

    Science.gov (United States)

    Dust suppressant products used to control particulate emissions from unpaved roads are among the technologies evaluated by the Air Pollution Control Technology (APCT) Verification Center, part of the U.S. Environmental Protection Agency's Environmental Technology Verification (ET...

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - TETRATEC PTFE TECHNOLOGIES TETRATEX 8005

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  10. ENVIRONMENTAL TECHNOLOGY PROTOCOL VERIFICATION REPORT, EMISSIONS OF VOCS AND ALDEHYDES FROM COMMERCIAL FURNITURE (WITH APPENDICES)

    Science.gov (United States)

    As part of a U.S. Environmental Protection Agency Environmental Technology Verification program, the Research Triangle Institute (RTI) developed a test protocol for measuring volatile organic compounds and aldehydes in a large chamber. RTI convened stakeholders for the commercial...

  11. Common Technologies for Environmental Research Infrastructures in ENVRIplus

    Science.gov (United States)

    Paris, Jean-Daniel

    2016-04-01

    Environmental and geoscientific research infrastructures (RIs) are dedicated to distinct aspects of the ocean, atmosphere, ecosystems, or solid Earth research, yet there is significant commonality in the way they conceive, develop, operate and upgrade their observation systems and platforms. Many environmental Ris are distributed network of observatories (be it drifting buoys, geophysical observatories, ocean-bottom stations, atmospheric measurements sites) with needs for remote operations. Most RIs have to deal with calibration and standardization issues. RIs use a variety of measurements technologies, but this variety is based on a small, common set of physical principles. All RIs have set their own research and development priorities, and developed their solution to their problems - however many problems are common across RIs. Finally, RIs may overlap in terms of scientific perimeter. In ENVRIplus we aim, for the first time, to identify common opportunities for innovation, to support common research and development across RIs on promising issues, and more generally to create a forum to spread state of the art techniques among participants. ENVRIplus activities include 1) measurement technologies: where are the common types of measurement for which we can share expertise or common development? 2) Metrology : how do we tackle together the diversified challenge of quality assurance and standardization? 3) Remote operations: can we address collectively the need for autonomy, robustness and distributed data handling? And 4) joint operations for research: are we able to demonstrate that together, RIs are able to provide relevant information to support excellent research. In this process we need to nurture an ecosystem of key players. Can we involve all the key technologists of the European RIs for a greater mutual benefit? Can we pave the way to a growing common market for innovative European SMEs, with a common programmatic approach conducive to targeted R&D? Can we

  12. Technology of environmental pollution control, 2nd edition

    International Nuclear Information System (INIS)

    Shaheen, E.I.

    1991-01-01

    The final decade of the 20th century is truly the environmental decade of the century because of the gravity of environmental challenges we are facing. This book covers the environmental spectrum in an attempt to update the reader on new technologies and topics regarding pollution control. Engineers, scientists, plant operators, and students studying the subject of pollution control will use the comprehensive text as a reference for technological advances, regulations, and pollution control. The major disasters witnessed in the last few years, such as the Bhopal gas tragedy, the Chernobyl nuclear disaster, the Exxon Valdez oil spill and the Ashland of tank collapse are described in detail

  13. Interpretation of Technology Diffusion Patterns for the U.S. Department of Energy's Environmental Management Program

    International Nuclear Information System (INIS)

    Cummings, M.A.

    1999-01-01

    The purpose of this paper is to provide a response to the general question as to why there has been so little actual application of new environmental technologies to on-the-ground cleanup. There are two sides to the issue that may at first seem unrelated, but taken together provide both a tactical and theoretical response to the question. EM-50 has provided a tactical response to the challenge of showing that expenditures in technology development are justified by implementation of its ASTD program. ASTD provides a fiscal incentive for the major DOE facilities to effect remedial actions using new technologies. The purpose of the ASTD is to demonstrate to stakeholders, including US Congress and concerned citizens, that environmental costs can be reduced and site cleanup accelerated by substituting new technologies for established baseline methods. The theoretical side looks at how historically, the substitution of new technologies for old in any given industry follows well-documented principles of diffusion; therefore, the aggregate adoption of new environmental technologies is predictive. It is not within the scope of this paper to accurately quantify the equations that result in the mathematical description of the S-shaped diffusion curve, but the overall concept of the innovation-development process is an important clue in understanding why new EM-50 technologies are not already in more widespread use

  14. Evaluation of Economic, Social and Environmental Effects of Low-Emission Energy Technologies Development in Poland: A Multi-Criteria Analysis with Application of a Fuzzy Analytic Hierarchy Process (FAHP

    Directory of Open Access Journals (Sweden)

    Magdalena Ligus

    2017-10-01

    Full Text Available The European Commission as well as the Polish government are promoting sustainable use of energy sources as a part of the dominating sustainable development paradigm. The development of low-emission energy sources engages the challenges of gradual depletion of coal, oil and natural gas reserves, as well as the intensification of the greenhouse effect. The energy policy should take into account development of low-emission energy technologies that contribute mostly to meeting the goals of sustainable development in three dimensions: economic, social and environmental. This study aims to assess the extent to which five low-emission energy technologies contribute to social welfare in the scope of the concept of sustainable development. Heuristic methods, including fuzzy analytic hierarchy process (FAHP are used to resolve the multi-goal problem in order to achieve the aim of this research. Research results show that economic goal is still the most important to the development of various low-emission energy technologies in Poland, followed by the social and environmental goals. Secondly, renewable energy technologies should be utilized instead of nuclear energy to meet sustainable development policy goals. Photovoltaics, followed by biomass and biogas are perceived as the most suitable renewable energy sources. Wind on-shore and wind of-shore are on third and fourth place, respectively.

  15. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report draft, 1995--1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The HBCU/MI ET Consortium was established in January 1990, through a memorandum of Understanding (MOU) among its member institutions. This group of research-oriented Historically Black Colleges and Universities and Minority Institutions (HBCUs/MIs) agreed to work together to initiate or revise educational programs, develop research partnerships with public and private sector organizations, and promote technology development and transfer to address the nation`s critical environmental problems. While the Consortium`s Research, Education and Technology Transfer (RETT) Plan is the cornerstone of its overall program efforts, the initial programmatic activities of the Consortium focused on environmental education at all levels with the objective of addressing the underrepresentation of minorities in the environmental professions. This 1996 Annual Report provides an update on the activities of the Consortium with a focus on environmental curriculum development for the Technical Qualifications Program (TQP) and Education for Sustainability.

  16. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.

  17. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    International Nuclear Information System (INIS)

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation's primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate

  18. Are clean technology and environmental quality conflicting policy goals?

    OpenAIRE

    Brechet, Thierry; Meunier, Guy; Institut National de la Recherche Agronomique UR 1303 Alimentation et Sciences Sociales

    2012-01-01

    In this paper we analyze the effects of an environmental policy on the diffusion of a clean technology in an economy where firms compete on the output market. We show that the share of adopting firms is non-monotonic with the stringency of the environmental policy, and that the adoption of the clean technology may well increase the pollution level. We also compare the effects of an emission tax and tradable pollution permits on welfare, technology adoption, and pollution level. We show that, ...

  19. Are Clean Technology and Environmental Quality Conflicting Policy Goals?

    OpenAIRE

    Thierry Brechet; Guy Meunier

    2012-01-01

    In this paper we analyze the effects of an environmental policy on the diffusion of a clean technology in an economy where firms compete on the output market. We show that the share of adopting firms is non-monotonic with the stringency of the environmental policy, and that the adoption of the clean technology may well increase the pollution level. We also compare the effects of an emission tax and tradable pollution permits on welfare, technology adoption, and pollution level. We show that, ...

  20. GREEN TECHNOLOGY COMPLIANCE IN MALAYSIA FOR SUSTAINABLE BUSINESS DEVELOPMENT

    OpenAIRE

    Kamarudin Abu Bakar; Mohd Fazli Mohd Sam; Md Nor Hayati Tahir; Ismi Rajiani; Norhana Muslan

    2011-01-01

    Economic growth, industrialization and growing population in developing countries such as Malaysia, demands a huge growth for renewable energy as global environmental problem call for drastic cuts on fossil fuel consumption. It has resulted in the promotion of green technology that presents the most viable way of meeting with the new green-related activities for environmental conservation. The Malaysian government has played a strong role in ensuring environmental sustainability by way of int...

  1. Technology Evaluation for Environmental Risk Mitigation Compendium

    Science.gov (United States)

    Meinhold, A.; Greene, B.; Dussich, J.; Sorkin, A.; Olsen, W.

    2017-01-01

    The Technology Evaluation for Environmental Risk Mitigation (TEERM) Principal Center and its predecessor organization the Acquisition Pollution Prevention Program (AP2) supported the National Aeronautics and Space Administration (NASA) in identifying technology solutions to risks and costs to NASA programs driven by environmental regulations and requirements. TEERM researched the commercial and government marketplace to locate viable and available technologies that met NASAs needs. TEERM focused on addressing environmentally-driven risks of direct concern to NASA programs and facilities, including hazardous materials in NASA operations and materials that became obsolescent because of environmental regulations. TEERM projects aimed to reduce cost; ensure the health and safety of people, assets, and the environment; promote efficiency; and minimize duplication. Major TEERM and AP2 projects focused on waste minimization and hazardous waste treatment, recycling, corrosion prevention and control, solvent and ozone depleting substances substitution, and aqueous based cleaners. In 2017, NASA made the decision to terminate the TEERM Principal Center. This Compendium Report documents TEERM and AP2 project successes. The Compendium Report traces the evolution of TEERM based on evolving risks and requirements for NASA and its relationship to the Space Shuttle Program, the United States Department of Defense, the European Space Agency, and other public and private stakeholders. This Compendium Report also documents project details from Project Summaries and Joint Test Plans and describes project stakeholders and collaborative effort results.

  2. Review and assessments of potential environmental, health and safety impacts of MHD technology. Final draft

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The purpose of this document is to develop an environmental, health and safety (EH and S) assessment and begin a site - specific assessment of these and socio - economic impacts for the magnetohydrodynamics program of the United States Department of Energy. This assessment includes detailed scientific and technical information on the specific EH and S issues mentioned in the MHD Environmental Development Plan. A review of current literature on impact-related subjects is also included. This document addresses the coal-fired, open-cycle MHD technology and reviews and assesses potential EH and S impacts resulting from operation of commercially-installed technology.

  3. Overview: Applicability of U.S. environmental control technologies for Korea

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S.W. [DOE Pittsburgh Energy Technology Center, PA (United States)

    1994-12-31

    A review of the applicability of US environmental control technologies for Korea is presented in outline form. The following topics are discussed: PETC coal research activities, environmental costs, environmental challenges, Clean Air Act requirements, additional regulations for air toxics, clean coal technologies (CCT) approach, CCT help meet environmental challenges, utility options, research goals for advanced power systems, PETC Programs, the NO{sub x} SO process, flue gas cleanup program, air toxics emissions, and retrofit NO{sub x} control for coal-burning boilers.

  4. Environmental Development Plan: uranium mining, milling, and conversion

    International Nuclear Information System (INIS)

    1979-08-01

    This Environmental Development Plan (EDP) identifies the planning and management requirements and schedules needed to evaluate and assess the environmental, health, and safety (EH and S) aspects of the uranium mining, milling, and conversion technologies. The plan represents the collective perceptions of EH and S concerns and requirements and knowledge of ongoing research programs of most of the Federal agencies involved in significant EH and S R and D program management, standards setting, or regulatory activities associated with uranium mining, milling, and conversion

  5. Analysis of Big Data technologies for use in agro-environmental science

    NARCIS (Netherlands)

    Lokers, Rob; Knapen, Rob; Janssen, Sander; Randen, van Yke; Jansen, Jacques

    2016-01-01

    Recent developments like the movements of open access and open data and the unprecedented growth of data, which has come forward as Big Data, have shifted focus to methods to effectively handle such data for use in agro-environmental research. Big Data technologies, together with the increased

  6. Transforming environmental permitting and compliance policies to promote pollution prevention: Removing barriers and providing incentives to foster technology innovation, economic productivity, and environmental protection. Final report

    International Nuclear Information System (INIS)

    Berg, D.R.; Kerr, R.L.; Fleischer, S.; Gorsen, M.; Harris, E.

    1993-04-01

    The Technology Innovation and Economics (TIE) Committee, a standing committee of EPA's National Advisory Council for Environmental Policy and Technology (NACEPT), has concluded that major changes are needed in federal and state permitting and compliance programs to encourage adoption of practical pollution prevention approaches to environmental protection. The Committee recommends seven major areas for improvement, including: (1) Redesigning permit procedures to encourage regulated facilities to expand multi-media and pollution prevention environmental improvement efforts; (2) Accelerating development and use of innovative pollution prevention technologies and techniques through special permitting and review procedures during RD ampersand D and commercialization phases; (3) Developing and expanding federal and state pollution prevention enforcement initiative; (4) Supporting state initiatives in pollution prevention facility planning; (5) Expanding pollution prevention-related training, educational and technology diffusion efforts to better reach managers in all sectors of the economy; (6) Altering personnel reward systems to encourage EPA staff to champion pollution prevention; (7) Expanding and publicizing the system of national awards honoring outstanding pollution prevention research, training and technology implementation

  7. Environmental aspects of battery and fuel cell technologies

    International Nuclear Information System (INIS)

    1992-10-01

    This report was commissioned by the UK Department of Trade and Industry in order to understand the policy, infrastructural and standards implications of increased use of batteries and fuel cells. In order to meet these requirements, the following areas have been examined: environmental initiatives related to power generation and transport in a pan-European context; the status of alternative technologies, specifically batteries and fuel cells; the market potential of battery and fuel cell based technologies in transport and power generation; environmental life cycle and cost benefit analyses of these technologies; the implications of the use of alternative technologies on the UK infrastructure. Each of these areas is covered briefly in the main body of the report and discussed in greater detail in six appendices. Overall there are 51 figures, 38 tables and 20 references. (UK)

  8. EPA-developed, patented technologies related to waste that are available for licensing

    Data.gov (United States)

    U.S. Environmental Protection Agency — Under the Federal Technology Transfer Act (FTTA), Federal Agencies can patent inventions developed during the course of research. These technologies can then be...

  9. Poverty Alleviation and Environmental Sustainability through Improved Regimes of Technology Transfer

    Directory of Open Access Journals (Sweden)

    Klaus Bosselmann

    2006-06-01

    Full Text Available To achieve the Millennium Development Goals, international technology transfer can play a major role for poverty alleviation and environmental sustainability. At present, there are economic, social and legal (rather than technical barriers preventing the transfer of environmentally sound technology (EST from a wider use in international regimes. Removing these barriers requires greater political and regulatory efforts both domestically and internationally. To enable EST transfer, developed States need to improve domestic market conditions such as removal of negative subsidies and barriers to foreign investment, targeted fiscal incentives and law reforms favouring sustainable production and use of energy. There is no realistic perspective for international EST transfer as long as it is disadvantaged domestically. A coherent EST transfer regime is only possible through greater governmental intervention at the national and international level, including environmental regulations, national systems of innovation, and creating an enabling environment for EST. Such intervention should include effective public-private partnerships, both within and between States. Partnerships, if guided by law, could ensure EST innovation more efficiently than purely State-driven or market-driven EST transfers. In search for a model, the EST transfer regime under the Vienna Ozone Layer Convention and the Montreal Protocol deserves recognition. For example, the clean development mechanism under the Kyoto Protocol allows for considerable scope for EST transfer. The potential of EST transfer for climate change and for meeting the Millennium Development Goals has yet to be realized.

  10. The Clean Development Mechanism as a Vehicle for Technology Transfer and Sustainable Development - Myth or Reality?

    Directory of Open Access Journals (Sweden)

    Gary Cox

    2010-09-01

    Full Text Available This paper critically examines the clean development mechanism (CDM established under Article 12 of the Kyoto Protocol in terms of its effectiveness as a vehicle for technology transfer to developing countries, a specific commitment under the UNFCCC. Fundamentally, the paper poses the question of whether technology transfer as part of the CDM is a myth or a reality in the broader context of sustainable development. Technology transfer between countries of the North and South is explored in a historical context and the emergence of technology transfer obligations is traced in multilateral environmental agreements. The architecture of the UNFCCC and the Kyoto Protocol are examined in relation to technology transfer obligations. Empirical studies are reviewed to gain an understanding of how CDM operates in practice, with a closer examination of a small number of recent CDM projects. There is an update on the Technology Mechanism being established under the Copenhagen Accord. The paper concludes with a summary of the benefits of CDM to date and its current limitations in achieving the scaling-up of affordable environmentally sound technology transfer envisaged in the Bali Action Plan. The conclusion is that technology transfer must be a much more explicit objective of CDM with better targeting of projects in order to achieve locally sustainable equitable outcomes. Furthermore, the link between CDM and technology transfer needs to be much more explicitly made in order that, in the long run, such interventions will lead to viable low emission development pathways in developing countries.

  11. A proposed framework for establishing integrated cost and performance criteria for environmental technologies. A summary report to the U.S. Department of Energy

    International Nuclear Information System (INIS)

    1994-05-01

    Through an Interagency Agreement between the US Environmental Protection Agency (EPA) and the US Department of Energy (DOE), EPA directed a project to establish a suite of standard cost and performance criteria to guide the evaluation of environmental cleanup technologies for DOE sites. Ideally, these criteria would be ''generic'' in that they could be used as a basis for evaluating any cleanup technology for any DOE site. To be most useful, however, these criteria would also reflect the interests of diverse decisionmakers who influence DOE technology evaluation. The project was conducted by the National Environmental Technology Applications Center (NETAC), a nonprofit organization specializing in the development and commercialization of new and innovative environmental technologies for national and international markets. To accomplish the project objective, NETAC (1) developed a data gathering questionnaire, (2) interviewed government and industry decisionmakers, (3) identified previous criteria development efforts, (4) conducted a workshop, (5) evaluated workshop discussions, and (6) applied its five years' experience in commercializing environmental technologies to analyze project findings. The project resulted in the development of a unique and comprehensive resource or tool to enhance communication among decisionmakers. This resource, a ''Proposed Framework for Establishing Integrated Cost and Performance Criteria for Evaluating Environmental Cleanup Technologies for DOE Sites,'' offers decisionmakers a first-time comprehensive assessment of major technology evaluation issues by a decisionmaker group

  12. Report on results for fiscal 1997 on development of coal liquefaction technology . Development of liquefaction base technology (studies on development and internationalization of environmentally benign coal liquefaction technology); 1997 nendo sekitan ekika gijutsu seika hokokusho. Ekika kiban gijutsu no kaihatsu (kankyo chowagata sekitan ekika gijutsu no kaihatsu oyobi kokusaika kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The research objective is the development of environmentally benign coal liquefaction technology and the studies on internationalization of coal liquefaction technology. Implemented for the former are (1) research on improvement and rationalization of liquefaction process and (2) research on advancement of liquefaction base technology. In (1), studies were made on in-oil preprocessing technology and scale suppressing measures for the purpose of obtaining reform/high grade of coal, and on improvement of liquefied oil collecting ratio, sophistication of coal slurry and attainment of light oil/high grade from liquefied crude oil for the purpose of optimizing liquefaction reactive conditions and improving a solvent. In (2), in developing high activity/high dispersion type new catalysts, catalytic sufurization behavior and activity manifestation mechanism were explored, as were iron hydroxide based iron ore properties and liquefaction reactive characteristics. The initial reactive characteristics of liquefaction for example were investigated for the purpose of collecting basic data for expanding kinds of coal. In order to attain the latter objective of the research, a feasibility study of liquefaction location was conducted, as were the investigation including sampling of iron ore for catalytic material and the investigation of coal gasification technology. After the completion of the Australian brown coal liquefaction project, the development of the coal liquefaction technology commenced in fiscal 1994 produced a number of useful records and ended in 1997. (NEDO)

  13. Transmutation Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Song, T. Y.; Park, W. S.; Kim, Y. H. (and others)

    2007-06-15

    The spent fuel coming from the PWR is one of the most difficult problems to be solved for the continuous use of nuclear power. It takes a few million years to be safe under the ground. Therefore, it is not easy to take care of the spent fuel for such a long time. Transmutation technology is the key technology which can solve the spent fuel problem basically. Transmutation is to transmute long-lived radioactive nuclides in the spent fuel into short-lived or stable nuclide through nuclear reactions. The long-lived radioactive nuclides can be TRU and fission products such as Tc-99 and I-129. Although the transmutation technology does not make the underground disposal totally unnecessary, the period to take care of the spent fuel can be reduced to the order of a few hundred years. In addition to the environmental benefit, transmutation can be considered to recycle the energy in the spent fuel since the transmutation is performed through nuclear fission reaction of the TRU in the spent fuel. Therefore, transmutation technology is worth being developed in economical aspect. The results of this work can be a basis for the next stage research. The objective of the third stage research was to complete the core conceptual design and verification of the key technologies. The final results will contribute to the establishment of Korean back end fuel cycle policy by providing technical guidelines.

  14. Environmental Science and Technology Department annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Bjergbakke, E.; Oestergaard, H.; Aarkrog, A. [eds.

    1996-03-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1995 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The department`s contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 40 ills., 163 refs.

  15. Environmental Science and Technology Department annual report 1996

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1997-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The Department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the Department is mainly experimental. Selected departmental research activities during 1996 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace Analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The Department's contribution to national and international collaborative research programmes are presented together with information about the use of its large experimental facilities. Information about the Department's contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 63 ills., 207 refs

  16. Environmental Science and Technology Department annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O. J.; Oestergaard, H.; Aarkrog, A. [eds.

    1997-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The Department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the Department is mainly experimental. Selected departmental research activities during 1996 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace Analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The Department`s contribution to national and international collaborative research programmes are presented together with information about the use of its large experimental facilities. Information about the Department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 63 ills., 207 refs.

  17. Environmental Science and Technology Department annual report 1995

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Bjergbakke, E.; Oestergaard, H.; Aarkrog, A.

    1996-03-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1995 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The department's contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department's contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 40 ills., 163 refs

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: EXEL INDUSTRIAL AIRMIX SPRAY GUN

    Science.gov (United States)

    The Environmental Technology Verification Program has partnered with Concurrent Technologies Corp. to verify innovative coatings and coating equipment technologies for reducing air emissions. This report describes the performance of EXEL Industrial's Kremlin Airmix high transfer ...

  19. Technology development in market networks

    International Nuclear Information System (INIS)

    Olerup, B.

    2001-01-01

    Technology procurement is used as an environmental control means in Sweden to promote the manufacturing and sale of energy-efficient technologies. The public authority in charge makes use of the market mechanism in alternating co-operative and competitive elements. The fragmented market, with its standardised products for many small customers, is brought together to specify desired product developments. These demands also include other qualities besides energy efficiency. A contest is announced in which a possible future market is indicated to manufacturers. Efforts are made to enlarge the market to motivate their investment and to keep down the unit cost. Each side in the deal is thus given an incentive to act in the desired direction. (author)

  20. Environmental and Financial Evaluation of Passenger Vehicle Technologies in Belgium

    OpenAIRE

    Messagie, Maarten; Lebeau, Kenneth; Coosemans, Thierry; Macharis, Cathy; Mierlo, Joeri van

    2013-01-01

    Vehicles with alternative drive trains are regarded as a promising substitute for conventional cars, considering the growing concern about oil depletion and the environmental impact of our transportation system. However, “clean” technologies will only be viable when they are cost-efficient. In this paper, the environmental impacts and the financial costs of different vehicle technologies are calculated for an average Belgian driver. Environmentally friendly vehicles are compared with conventi...

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, ENVIRONMENTAL DECISION SUPPORT SOFTWARE, UNIVERSITY OF TENNESSEE RESEARCH CORPORATION, SPATIAL ANALYSIS AND DECISION ASSISTANCE (SADA)

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification Program (ETV) to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the...

  2. Study on the development of geological environmental model

    International Nuclear Information System (INIS)

    Tsujimoto, Keiichi; Shinohara, Yoshinori; Ueta, Shinzo; Saito, Shigeyuki; Kawamura, Yuji; Tomiyama, Shingo; Ohashi, Toyo

    2002-03-01

    The safety performance assessment was carried out in potential geological environment in the conventional research and development of geological disposal, but the importance of safety assessment based on the repository design and scenario considering the concrete geological environment will increase in the future. The research considering the link of the major three fields of geological disposal, investigation of geological environment, repository design, and safety performance assessment, is the contemporary worldwide research theme. Hence it is important to organize information flow that contains the series of information process form the data production to analysis in the three fields, and to systemize the knowledge base that unifies the information flow hierarchically. The purpose of the research is to support the development of the unified analysis system for geological disposal. The development technology for geological environmental model studied for the second progress report by JNC are organized and examined for the purpose of developing database system with considering the suitability for the deep underground research facility. The geological environmental investigation technology and building methodology for geological structure and hydro geological structure models are organized and systemized. Furthermore, the quality assurance methods in building geological environment models are examined. Information which is used and stored in the unified analysis system are examined to design database structure of the system based on the organized methodology for building geological environmental model. The graphic processing function for data stored in the unified database are examined. furthermore, future research subjects for the development of detail models for geological disposal are surveyed to organize safety performance system. (author)

  3. Aviation environmental technology and science

    Institute of Scientific and Technical Information of China (English)

    Zhang Yanzhong

    2008-01-01

    Expatiating on the impact of aviation on the environment and aviation environmental protection projects are ex- pounded, and analyzing on the atmosphere pollution and effects on the aviation noise of aircraft discharge. Researching the approach to control aircraft exhaust pollution and noise pollution, and proposing the technology and management measures to reduce air pollution.

  4. Proceedings of the environmental technology through industry partnership conference. Volume 1

    International Nuclear Information System (INIS)

    Kothari, V.P.

    1995-10-01

    The overall objective of this conference was to review the latest environmental and waste management technologies being developed under the sponsorship of METC. The focus of this conference was also to address the accomplishments and barriers affecting private sector, and lay the groundwork for future technology development initiatives and opportunities. 26 presentations were presented in: Mixed waste characterization, treatment, and disposal; Contaminant plume containment and remediation; and Decontamination and decommissioning. In addition there were 10 Focus Area presentations, 31 Poster papers covering all Focus Areas, and two panel discussions on: Mixed waste characterization, treatment, and disposal issues; and the application, evaluation, and acceptance of in-situ and ex-situ plume remediation technologies. Volume 1 contains the keynote address, 15 poster papers, 5 papers on mixed waste characterization, treatment, and disposal, and 13 papers on decontamination and decommissioning. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  5. Proceedings of the environmental technology through industry partnership conference. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Kothari, V.P.

    1995-10-01

    The overall objective of this conference was to review the latest environmental and waste management technologies being developed under the sponsorship of METC. The focus of this conference was also to address the accomplishments and barriers affecting private sector, and lay the groundwork for future technology development initiatives and opportunities. 26 presentations were presented in: Mixed waste characterization, treatment, and disposal; Contaminant plume containment and remediation; and Decontamination and decommissioning. In addition there were 10 Focus Area presentations, 31 Poster papers covering all Focus Areas, and two panel discussions on: Mixed waste characterization, treatment, and disposal issues; and the Application, evaluation, and acceptance of in-situ and ex-situ plume remediation technologies. Volume 2 contains 16 papers in a poster session and 8 papers in the contaminant plume containment and remediation and landfill stabilization Focus Areas. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  6. Proceedings of the environmental technology through industry partnership conference. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Kothari, V.P.

    1995-10-01

    The overall objective of this conference was to review the latest environmental and waste management technologies being developed under the sponsorship of METC. The focus of this conference was also to address the accomplishments and barriers affecting private sector, and lay the groundwork for future technology development initiatives and opportunities. 26 presentations were presented in: Mixed waste characterization, treatment, and disposal; Contaminant plume containment and remediation; and Decontamination and decommissioning. In addition there were 10 Focus Area presentations, 31 Poster papers covering all Focus Areas, and two panel discussions on: Mixed waste characterization, treatment, and disposal issues; and the application, evaluation, and acceptance of in-situ and ex-situ plume remediation technologies. Volume 1 contains the keynote address, 15 poster papers, 5 papers on mixed waste characterization, treatment, and disposal, and 13 papers on decontamination and decommissioning. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  7. Environmental Survey preliminary report, Pittsburgh Energy Technology Center, Pittsburgh, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) conducted December 7--11, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with PETC. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at PETC, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain environmental problems identified during its on-site Survey activities at PETC. The S A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the Plan's results will be incorporated into the PETC Survey findings for inclusion into the Environmental Survey Summary Report. 64 refs., 23 figs., 29 tabs.

  8. Gamification - Environmental and Sustainable Development Organizations Could Do More

    Science.gov (United States)

    Ziegler, C. R.; Miller, C. A.; Kilaru, V.; French, R. A.; Costanza, R.; Brookes, A.

    2013-12-01

    The use of digital games to foster sustainable development and environmental goals has grown over the last 10 years. Innovative thinking and the origins of 'serious games,' 'games for change' and 'gamification' are partly rooted in movies and science fiction. Existing games illustrate a spectrum of approaches: for example, World Food Programme's FoodForce and University of Washington's Foldit. Environmental organizations globally (e.g. US EPA) have dabbled with game development and gamification, but have only touched the tip of the iceberg, particularly when compared to the success of the commercial gaming industry. We explore: 1) the intersection of environmental organization mission statements in the context of gamification efforts , 2) some examples of existing games, from simple to complex, 3) business model approaches (e.g. game development partnerships with academia, private industry, NGOs, etc.), 4) barriers, and 5) benefits of a more concerted and technologically-advanced approach to gamification for environmental organizations.

  9. Utilizing the right mix of environmental cleanup technologies

    International Nuclear Information System (INIS)

    Whitaker, Wade; Bergren, Chris; Flora, Mary

    2007-01-01

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990's), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical / pH-adjusting injection, phyto-remediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baro-balls, electrical resistance heating, soil vapor extraction, and micro-blowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works pro-actively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  10. UTILIZING THE RIGHT MIX OF ENVIRONMENTAL CLEANUP TECHNOLOGIES

    International Nuclear Information System (INIS)

    Bergren, C; Wade Whitaker, W; Mary Flora, M

    2007-01-01

    The Savannah River Site (SRS) Figure 1 is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990s), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical/pH-adjusting injection, phytoremediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baroballs, electrical resistance heating, soil vapor extraction, and microblowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works proactively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  11. Development and application of a probabilistic evaluation method for advanced process technologies

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H.C.; Rubin, E.S.

    1991-04-01

    The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

  12. Development of environmentally compatible tribosystems with PVD-technology

    International Nuclear Information System (INIS)

    Lugscheider, E.; Hornig, T.; Kienitz, S.; Klocke, F.; Krieg, T.

    2001-01-01

    PVD coatings offer a wide variety of applications. The focal point of this work is the development of an advanced type of PVD-hardcoating which allows machining with environmentally compatible lubricants. Representative examples for the investigations are the tribological systems 'turning of quenched and tempered steel 42CrMo4 V' and 'austenitic stainless steel X5CrNi18-10'. Ti-Hf-Cr-N and TiAlN/Al 2 O 3 were deposited by AIP- and H.I.S. TM - process respectively. These coating systems showed best results concerning oxidation wear and abrasive wear in former investigations. This was necessary because main cutting-edge life criterias are oxidation wear and abrasive wear at the minor cutting edge. Consequently, a high oxidation stability and a high hardness at high temperatures are required. (author)

  13. Increased growth in environmental technology - More capital in early stages; Oekad tillvaext inom miljoeteknik - Mer kapital i tidiga skeden

    Energy Technology Data Exchange (ETDEWEB)

    Stubelius, Andreas; Axelsson, Helene; Fjaellstroem, Mikael; Agnvall, Dag; Olsson, Erik

    2011-07-01

    Swedish environmental technology companies has great growth potential. The transition to a renewable and energy-efficient energy systems and greater attention to the ecosystem, creates a growing international demand for products and services. The Energy Agency has received a government commission to develop proposals that contribute to stronger collaboration and increased communication between those involved in environmental engineering with the aim of increasing environmental technology companies access to capital in the early commercial stages, with particular focus on small and medium-sized players. The Energy Agency submits proposals for action that will lead to increased growth of Swedish environmental technology companies

  14. 77 FR 7131 - Addendum to Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2012-02-10

    ... DEPARTMENT OF COMMERCE International Trade Administration Addendum to Environmental Technologies... agenda of a meeting of the Environmental Technologies Trade Advisory Committee (ETTAC) will be changed to... & Environmental Industries, International Trade Administration, Room 4053, 1401 Constitution Avenue NW...

  15. Cost effectiveness studies of environmental technologies: Volume 1

    International Nuclear Information System (INIS)

    Silva, E.M.; Booth, S.R.

    1994-02-01

    This paper examines cost effectiveness studies of environmental technologies including the following: (1) In Situ Air Stripping, (2) Surface Towed Ordinance Locator System, (3) Ditch Witch Horizontal Boring Technology, (4) Direct Sampling Ion Trap Mass Spectrometer, (5) In Situ Vitrification, (6) Site Characterization and Analysis Penetrometer System, (7) In Situ Bioremediation, and (8) SEAMIST Membrane System Technology

  16. Presentation of the 10. European Event on Technology: technologies for a sustainable development; Presentation des 10. Entretiens Europeens de la Technologie: technologies pour un developpement durable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-11-01

    The European Event on Technology (EET), is a major meeting on technologies, their evolution and their industrial and social implications. In less than a decade, sustainable development has become both an economic and a political priority. It was urgent and legitimate that those who are the mainsprings should take hold of the subject and give it technological content, estimate its costs and define clear timetables. The debates consist of: plenary sessions on environmental, social and economic stakes of sustainable development and the challenges for, and commitment of engineers, managers and politicians with respect to these goals; and workshops, which provide an overview on recently acquired or upcoming technologies developed by sector. These proceedings present several technologies of interest for the energy and environment sectors: Energy efficiency of buildings: towards energy autonomy; superconductors enable in new millennium for electric power industry; advanced gas micro-turbine-driven generator technology; environmental and technical challenges of an offshore wind farm; future nuclear energy system; transports and propulsion systems: modelling combustion in engines: progress and prospects for reducing emissions; on-board computers: reduction in consumption and emissions of engine-transmission units for vehicles; polymer-lithium batteries: perspectives for zero-emission traction; hybrid vehicles and energy/environmental optimization: paths and opportunities; fuel cells and zero-emission: perspectives and developments; urban goods transport: towards a drop in congestion and nuisance; new hybrid propulsion for buses: energy/environmental optimization; Tram-train: city-suburbs concept without transshipment; safety: computerization in controlling nuclear power plant processes (EPR architecture); refractory materials: a key factor for the increase in aero-turbo-engines output; the contribution of waste processing to the production of greenhouse gases; waste as a

  17. Assessment, evaluation, and testing of technologies for environmental restoration, decontamination, and decommissioning and high level waste management. Progress report

    International Nuclear Information System (INIS)

    Uzochukwu, G.A.

    1997-01-01

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration, decontamination and decommissioning, and high-level waste management objectives are being assessed and evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objectives of the environmental restoration, decontamination and decommissioning, and high-level waste management effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites

  18. Assessment, evaluation, and testing of technologies for environmental restoration, decontamination, and decommissioning and high level waste management. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Uzochukwu, G.A.

    1997-12-31

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration, decontamination and decommissioning, and high-level waste management objectives are being assessed and evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objectives of the environmental restoration, decontamination and decommissioning, and high-level waste management effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.

  19. Environmental aspects of natural resource intensive development: the case of agriculture

    DEFF Research Database (Denmark)

    Villumsen, Gert; Johnson, Bjørn Harold

    2018-01-01

    serious problems and for this reason we relate agriculture’s source and sink problems to the notion of planetary boundaries. It is also important to develop an environmental ethic that relates to the Anthropocene. In order to discuss policy options, we take departure in the so-called IPAT (Environmental...... Impact = Population × Affluence × Technology) equation and address the issues of population growth, increased material well-being and technological change. We conclude that it is not lack of information, goals or instruments that prevent effective policies to be implemented. The reasons are rather...

  20. Survey report of FY 1997 on the global environmental industry technology development promotion project. International research exchange project; 1997 nendo chosa hokokusho. Chikyu kankyo sangyo gijutsu kaihatsu suishin jigyo (kokusai kenkyu koryu jigyo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Exchange of personnel among foreign research organizations is significant for promoting research and development to create new research fields and to build new technological systems for the purpose of solving global environmental problems. For this purpose, researchers were sent/invited to/from international conferences and international symposiums related to global environmental technology and exchange of personnel with major foreign research organizations and universities was conducted under the cooperation of RITE and RITE-related researchers and related academic societies. Based on short-term invitation and sending of researchers as well as the feasibility study of researcher exchange, researchers were sent/invited on long- and mid-terms. As a result, exchange of personnel engaged in the latest research in Japan and overseas could be promoted. It was found that various researches are being conducted abroad in basic areas of global environmental technology. Since they are closely related to the research and development of industrial technology contributing to global environmental preservation promoted by RITE, it is important to establish a more efficient exchange system of researchers in the future. 91 refs., 38 figs., 14 tabs.

  1. 77 FR 39705 - National Advisory Council for Environmental Policy and Technology; Charter Renewal

    Science.gov (United States)

    2012-07-05

    ... and Technology; Charter Renewal AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. Notice... Advisory Council for Environmental Policy and Technology (NACEPT) is a necessary committee which is in the... environmental policy, technology and management issues. Inquiries may be directed to Mark Joyce, U.S. EPA, (Mail...

  2. Clean coal technologies: Research, development, and demonstration program plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  3. US Department of Energy, Office of Technology Development, mixed-waste treatment research, development, demonstration, testing, and evaluation

    International Nuclear Information System (INIS)

    Berry, J.B.; Backus, P.M.; Conley, T.B.; Coyle, G.J.; Lurk, P.W.; Wolf, S.M.

    1993-01-01

    Department of Energy (DOE) mixed waste is contaminated with both chemically hazardous and radioactive species. The DOE is responsible for regulating radioactive species while the Environmental Protection Agency (EPA) is responsible for regulating hazardous species. Dual regulations establish treatment standards and therefore affect the treatment technologies used to process mixed waste. This duality is reflected in technology development initiatives. Significant technology development has been conducted for either radioactive or hazardous waste, but limited technology development, specifically addressing mixed waste treatment issues, has been completed. Technology has not been designed, developed, demonstrated, or tested to produce a low-risk final waste form that increases the probability that the final waste form will be disposed

  4. Integrated wastewater management planning for DOE's Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Hopkins, J.; Barthel, J.; Wheeler, M.; Conroy, K.

    1996-01-01

    Rocky Mountain Remediation Services, L.L.C. (RMRS), jointly formed by Morrison Knudsen Corporation and BNFL Inc., provides international experience in the nuclear, environmental, waste management, decontamination and decommissioning (D ampersand D) , and project management industry. The company is currently the environmental restoration, waste management, and D ampersand D subcontractor for Kaiser-Hill Company at the Rocky Flats Environmental Technology Site (RFETS). RMRS offers unique solutions and state-of-the-art technology to assist in resolving the issues that face industries today. RMRS has been working on methods to improve cost savings recognized at RFETS, through application of unique technologies and process engineering. RMRS prepared and is implementing a strategy that focused on identifying an approach to improve cost savings in current wastewater treatment systems and to define a low-cost, safe and versatile wastewater treatment system for the future. Development of this strategy, was targeted by Department of Energy (DOE) Headquarters, DOE Rocky Flats Field Office and Kaiser-Hill as a ''Project Breakthrough'' where old concepts were thrown out the door and the project goals and objectives were developed from the groundup. The objectives of the strategy developed in a project break through session with DOE included lower lifecycle costs, shutdown of one of two buildings at RFETS, Building 374 or Building 774, reduced government capital investment, and support of site closure program goals, identified as the site's Accelerated Site Action Plan (ASAP). The recommended option allows for removal of water treatment functions from Building 374, the existing process wastewater treatment facility. This option affords the lowest capital cost, lowest unit operating cost, lowest technical management risk, greatest support of ASAP phasing and provides the greatest flexibility for design with unforeseen future needs

  5. Development of enrichment and reprocessing technologies in Japan

    International Nuclear Information System (INIS)

    Amanuma, Tsuyoshi

    1978-01-01

    The present status of the development of fuel cycle technologies for LWR systems in Japan is reviewed. As for the uranium enrichment technology, recent development of the centrifuge method is briefly explained. The construction schedule of the pilot plant at Ningyo-Toge is also shown. The completion of the plant is expected in 1980, and 7000 machines will be in full operation. Other methods such as gaseous diffusion, chemical separation, and laser method are shortly described. Comparisons among these different methods are also made in various economical aspects. As for the reprocessing technologies, those concerning with environmental problems, nuclear non-proliferation, and safeguard measures are explained. Recovery of krypton and xenon, method of co-process, and co-operative research and development with IAEA are the main topics here. Finally, the technological development in the field of high-level radioactive waste disposal is explained. The construction schedule of an experimental facility (CPF), development of solidification techniques, and the methods of final disposal are the main topics treated here. (Aoki, K.)

  6. THE ROLE OF EUROPEAN BANK FOR RECONSTRUCTION AND DEVELOPMENT IN PROMOTING ENVIRONMENTALLY SOUND AND SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    CONSTANTIN BRĂGARU

    2013-05-01

    Full Text Available One of the most important development banks which finances private initiatives in the Central and Eastern Europe countries is the European Bank for Reconstruction and Development (EBRD. EBRD as international financial institution plays a very important role in the development of many sectors such as agribusiness, energy efficiency, financial institutions, manufacturing, municipal and environmental infrastructure, natural resources, power and energy, property and tourism, telecommunications, information technology and media, transport. Its objectives aim to promote transition to market economies by investing mainly in the private sector, to mobilize significant foreign direct investment, to support privatization, restructuring and better municipal services to improve people’s lives and to encourage environmentally sound and sustainable development. The present scientific article focuses on the last objective respectively the bank commitment to promote environmentally sound and sustainable development and shortly presents EBRD environmental policy because EBRD, unlike other development banks, has strong and imperative regulations regarding this issue. This is why all the EBRD potential beneficiaries must prove that their projects are environmentally sound.

  7. Application of nuclear technology for sustainable development, and IAEA activities

    International Nuclear Information System (INIS)

    Machi, Sueo

    1998-01-01

    The role of radiation and isotopes for sustainable development in improving agriculture, industry and environmental conservation is presented. The radiation and isotope technology can increase productivity in a sustainable way. The IAEA programmes encompass mutation breeding, soil fertility and crop production, animal production, food irradiation, agrochemicals and insect pest control using nuclear technology

  8. Meeting United States re-licensing requirements related to environmental protection using innovative technologies

    International Nuclear Information System (INIS)

    Taft, E.P.; Winchell, F.C.; Cook, T.C.

    1998-01-01

    Procedure for meeting re-licensing requirements related to environmental protection and an overview of several new and emerging technologies regarding the development of ways to prevent fish passage through hydraulic turbines at hydroelectric power dams is described. Fish mortality and injury has long been a concern in the hydroelectric industry and research and development efforts have been ongoing since the 1970s to prevent fish passage through turbines. Several new and emerging technologies are examined that have the potential for wide-spread cost-effective applications

  9. IMPROVING THE ENVIRONMENTAL PERFORMANCE OF CHEMICAL PROCESSES THROUGH THE USE OF INFORMATION TECHNOLOGY

    Science.gov (United States)

    Efforts are currently underway at the USEPA to develop information technology applications to improve the environmental performance of the chemical process industry. These efforts include the use of genetic algorithms to optimize different process options for minimal environmenta...

  10. Engineering Education: Environmental and Chemical Engineering or Technology Curricula--A European Perspective

    Science.gov (United States)

    Glavic, Peter; Lukman, Rebeka; Lozano, Rodrigo

    2009-01-01

    Over recent years, universities have been incorporating sustainable development (SD) into their systems, including their curricula. This article analyses the incorporation of SD into the curricula of chemical and environmental engineering or technology bachelor degrees at universities in the European Union (EU) and European Free Trade Association…

  11. Overview Of Impacts Of Technology Deployment On The Mission Of The Department Of Energy Office Of Environmental Management

    International Nuclear Information System (INIS)

    McCabe, D.; Chamberlain, G.; Looney, B.; Gladden, J.

    2010-01-01

    The Environmental Management (EM) mission is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research. The EM program has embraced a mission completion philosophy based on reducing risk and environmental liability over a 40-50 year lifecycle. The Department has made great progress toward safely disposing of its legacy nuclear waste. EM Research and Development (R and D) program management strategies have driven numerous technology and engineering innovations to reduce risk, minimize cleanup costs, and reduce schedules. Engineering and technology investments have provided the engineering foundation, technical assistance, approaches, and technologies that have contributed to moving the cleanup effort forward. These successes include start-up and operation of several waste treatment facilities and processes at the sites.

  12. The application of nuclear science technology to understanding and solving environmental problems

    International Nuclear Information System (INIS)

    Zuk, W.M.

    1997-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has for many years been involved in applying nuclear science-based and related technologies to the understanding of environmental processes and to the development and implementation of practical and effective solutions to site specific problems, for a broad spectrum of industry, government regulatory agencies, and other organisations in Australia, Europe, North and South America and South East Asia. ANSTO's environmental science program arose out of the need for research to predict, measure, evaluate and monitor the environmental impacts associated with : uranium mining and processing in Australia; the operation of the research reactor at Lucas Heights; and the safe treatment and disposal of radioactive and conventional wastes associated with these activities. The expertise developed in these activities, has found application to a much broader range of environmental concerns. This paper will present an overview of ANSTO's application of nuclear science-based techniques to, inter alia: coastal and marine studies; minesite rehabilitation; transport and geochemical modelling of radionuclides, heavy metals and organic chemicals in the geosphere; the application of naturally-occurring radionuclides and radioactive tracers to corrosion and sedimentation studies in the coastal environment; dating sediments, fish corals and archaeological samples; the understanding of the kinetics and the physiological responses of aquatic organisms to radionuclides and metals in the environment: and the use of aquatic organism as archival and 'realtime' monitors of pollutants

  13. Environmental overview for the development of geothermal resources in the State of New Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

    1980-06-01

    A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies planned or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.

  14. Green technological foresight on environmental friendly agriculture: Executive summary

    DEFF Research Database (Denmark)

    Borch, K.; Christensen, S.; Jørgensen, U.

    2005-01-01

    Risø and the co-operators have on behalf of the Forest and Nature Agency completed a technological foresight on environmentally friendly agriculture based on green technologies. A technological foresight is a systematic dialogue on how one prepares forfuture challenges, which have not yet manifes...

  15. Continuation of Crosscutting Technology Development at Cast

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Roe-Hoan

    2012-03-31

    This Final Technical Report describes progress made on the sub-projects awarded in the Cooperative Agreement DE-FC26-05NT42457: Continuation of Crosscutting Technology Development at Center for Advanced Separation Technologies (CAST). The final reports for each sub-project are attached in the appendix. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: a) Solid-solid separation b) Solid-liquid separation c) Chemical/Biological Extraction d) Modeling and Control, and e) Environmental Control.

  16. Development of radioisotope tracer technology

    International Nuclear Information System (INIS)

    Jin, Joon Ha; Lee, Myun Joo; Jung, Sung Hee; Park, Soon Chul; Lim, Dong Soon; Kim, Jae Ho; Lee, Jae Choon; Lee, Doo Sung; Cho, Yong Suk; Shin, Sung Kuan

    2000-04-01

    The purpose of this study is to develop the radioisotope tracer technology, which can be used in solving industrial and environmental problems and to build a strong tracer group to support the local industries. In relation to the tracer technology in 1999, experiments to estimate the efficiencies of a sludge digester of a waste water treatment plant and a submerged biological reactor of a dye industry were conducted. As a result, the tracer technology for optimization of facilities related to wastewater treatment has been developed and is believed to contribute to improve their operation efficiency. The quantification of the experimental result was attempted to improve the confidence of tracer technology by ECRIN program which basically uses the MCNP simulation principle. Using thin layer activation technique, wear of tappet shim was estimated. Thin layer surface of a tappet shim was irradiated by proton beam and the correlation between the measured activity loss and the amount of wear was established. The equipment was developed to adjust the energy of proton which collides with the surface of tappet. The tracer project team has participated into the tracer test for estimating the efficiency of RFCC system in SK cooperation. From the experiment the tracer team has obtained the primary elements to be considered for judging the efficiency of RFCC unit. By developing the tracer techniques to test huge industrial units like RFCC, the tracer team will be able to support the local industries that require technical services to solve any urgent trouble. (author)

  17. EPA-developed, patented technologies related to pollution prevention that are available for licensing.

    Data.gov (United States)

    U.S. Environmental Protection Agency — Under the Federal Technology Transfer Act (FTTA), Federal Agencies can patent inventions developed during the course of research. These technologies can then be...

  18. EPA-developed, patented technologies related to air quality that are available for licensing

    Data.gov (United States)

    U.S. Environmental Protection Agency — Under the Federal Technology Transfer Act (FTTA), Federal Agencies can patent inventions developed during the course of research. These technologies can then be...

  19. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The HBCU/MI Consortium was formed (1) to respond to national R and D, policy formulation and minority manpower needs in environmental technology, hazardous, solid and mixed waste materials management, environmental restoration, and environmental health; and (2) to address limited minority participation in the public, private and non-profit environmental industries; limited environmental awareness among minorities; minimal interaction between HBCUs/MIs and majority universities, industry and interest groups; limited institutional development in environmental education and research; and lack of minority technical businesses in the environmental industry. This report gives progress made for the 92--93 period.

  20. Environmental research and environmental protection

    International Nuclear Information System (INIS)

    1975-01-01

    At the request of the Ministry for Research and Technology, the 'Arbeitsgemeinschaft der Grossforschungseinrichtungen' (AGF) presented in 1972 an information brochure called 'Activities in the field of environmental research and environmental protection', closely associated with the environmental programme of the Federal government (1971). The information brochure reports on those activities of the working group's members which are closely, or less closely, connected with questions concerning environmental research and protection, however, investments for the protection of the individual facilities in internal operation are excluded. The AGF programme 'Environmental research and environmental protection' comprises contributions, brought up to date, of member companies. From the 'AGF programme survey 1974' it contains 'Environmental research' as well as aspects of nuclear development with environmental relevance. Technologies not harmful to the environment developed by the research facilities are only mentioned very briefly. (orig.) [de

  1. The 'Environmental Manual for Power Development': a tool for GHG mitigation and cost analysis in developing countries

    International Nuclear Information System (INIS)

    Fritsche, Uwe R.; Liptow, Holger

    1999-01-01

    The Environmental Manual for Power Development (EM) is a computerised tool to include environmental and cost data into the decision-making for energy projects in developing countries. The EM is sponsored by German BMZ (Ministry for Economic Co-operation and Development), Dutch DGIS (Directorate General for International Co-operation), British DfID (Department for International Development), and the World Bank. The EM was developed by GTZ with scientific support from Oeko-Institut (Institute for applied ecology). The EM tracks down the emissions and costs of e.g. the existing power supply system in a country, region, or of a specific energy project, and compares those to alternative options to deliver the same energy service, e.g. electricity, or process heat, or transport services. To do so, the EM maintains a comprehensive database on environmental and cost impacts of energy technologies, and determines environmental impacts for life-cycles: All impacts from mining, transport, conversion etc. can be accounted for. To consistently handle all life-cycles, the EM database offers a variety of pre-defined fuel-and life-cycles to work with. The Em database covers generic energy technologies in developing countries, especially fossil-fueled electricity and heating systems, cogeneration, renewable energies, selected energy efficiency technologies, nuclear power systems, as well as data for upstream activities like mining, fuel benefication, transport, and emission control technologies like flue-gas desulfurisation, low-NO x burners, etc. The EM analyses and compares airborne and greenhouse gas emissions, solid wastes, and land use, as well as internal and external costs associated with investment and operation of energy technologies, including their life-cycle (upstream fuel-cycles, materials). The Em helps to check the compliance of energy processes with given emission standards - its database offers such standard for various countries and regions, and users can test if

  2. Advanced Technology Section semiannual progress report, April 1-September 30, 1977. Volume 1. Biotechnology and environmental programs. [Lead Abstract

    Energy Technology Data Exchange (ETDEWEB)

    Pitt, W.W. Jr.; Mrochek, J.E. (comps.)

    1980-06-01

    Research efforts in six areas are reported. They include: centrifugal analyzer development; advanced analytical systems; environmental research; bioengineering research;bioprocess development and demonstration; and, environmental control technology. Individual abstracts were prepared for each section for ERA/EDB. (JCB)

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT LASER TOUCH AND TECHNOLOGIES, LLC LASER TOUCH MODEL LT-B512

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of Laser Touch model LT-B512 targeting device manufactured by Laser Touch and Technologies, LLC, for manual spray painting operations. The relative transfer efficiency (TE) improved an avera...

  4. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new

  5. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report 1994--1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The HBCU/MI ET Consortium was established in January 1990, through a Memorandum of Understanding (MOU) among its member institutions. This group of research oriented Historically Black Colleges and Universities and Minority Institutions (HBCU/MIs) agreed to work together to initiate or revise education programs, develop research partnerships with public and private sector organizations, and promote technology development to address the nation`s critical environmental contamination problems. The Consortium`s Research, Education and Technology Transfer (RETT) Plan became the working agenda. The Consortium is a resource for collaboration among the member institutions and with federal an state agencies, national and federal laboratories, industries, (including small businesses), majority universities, and two and four-year technical colleges. As a group of 17 institutions geographically located in the southern US, the Consortium is well positioned to reach a diverse group of women and minority populations of African Americans, Hispanics and American Indians. This Report provides a status update on activities and achievements in environmental curriculum development, outreach at the K--12 level, undergraduate and graduate education, research and development, and technology transfer.

  6. Forty years of environmentally conscious building technology design

    Directory of Open Access Journals (Sweden)

    Lorenzo Matteoli

    2013-05-01

    Full Text Available This short essay analyzes the environmental approach throughout the history of Architectural Technology, starting from building details up to the present attention to the smart city, land maintenance and urban retrofit, seen as complex research activities, political strategies, design and entrepreneurial actions which have the scope to transform present day urban crusts into organic textures, climatologically consistent, reactive, user-friendly, efficient and with a low environmental impact. The exercise identifies some research and teaching trends for Architectural Technology in order to promote debate and the analysis of the historical perspective and present situation of the discipline.

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, SWINE WASTE ELECTRIC POWER AND HEAT PRODUCTION--CAPSTONE 30KW MICROTURBINE SYSTEM

    Science.gov (United States)

    Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, a combined heat and power system was evaluated based on the Capstone 30kW Microturbine developed by Cain Ind...

  8. Techno-economic and environmental analysis of low carbon energy technologies: Indian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Vijay Prakash; Kumar, Rahul; Kumar, Manish; Deswal, Surinder; Chandna, Pankaj

    2010-09-15

    In this paper, techno-economic and an environmental investigation and analysis of Low Carbon Technologies (LCTs) has been presented, with special emphasis on India. The paper identify, analyze and recommend, on the basis of available and collected / collated information and data, the promising and potential low carbon energy technology options suited to Indian conditions for grid connected power generation. The evaluation criteria adopted include - emission reduction potential, technological feasibility, and economic viability; and on its basis recommend a detailed action plan and strategy for guiding future research and development with a more focused approach considering current Indian policy framework.

  9. New technology in everyday life - social processes and environmental impact

    DEFF Research Database (Denmark)

    Røpke, Inge

    2001-01-01

    In the environmental debate it is increasingly acknowledged that our way of life has profound environmental consequences. Therefore, it becomes ever more important to focus on and to understand how everyday life is formed and how it changes over time. Changing technology constitutes an important...... of several of the dynamic forces behind consumption and thus contribute to the growing quantities of consumption, which counteract the environmental improvements. Secondly, because some of the technological changes are integrated with the processes which change everyday life more profoundly and thus...

  10. Environmental Development Plan for Transportation Energy Conservation. FY 79 update

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M. K.; Bernard, III, M. J.

    1978-12-15

    This is the first annual update of the Environment Development Plan (EDP) for the DOE Division of Transportation Energy Conservation program. It identifies the ecosystem, resource, physical environment, health, safety, and socioeconomic concerns associated with the division's transportation programs. These programs include the research, development, demonstration and assessment (RDD and A) of seventeen transportation technologies and several strategy and policy development and implementation projects. The transportation technologies projects deal with highway transport including electric vehicles, marine transport and pipeline transport. This EDP presents a research and assessment plan for resolving any potentially adverse environmental concerns stemming from these programs.

  11. Environmental Science and Technology Department annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A. [eds.

    1994-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1993 are presented and reviewed in seven chapters: 1. Introduction, 2. The Atmospheric Environment, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Applied Geochemistry, 6. Ecology and Mineral Cycling, 7. Other Activities. The Department`s contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc students are also listed. (au).

  12. Environmental Science and Technology Department annual report 1993

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1994-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1993 are presented and reviewed in seven chapters: 1. Introduction, 2. The Atmospheric Environment, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Applied Geochemistry, 6. Ecology and Mineral Cycling, 7. Other Activities. The Department's contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department's contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc students are also listed. (au)

  13. Environmental and economic benefits of sustainable development

    International Nuclear Information System (INIS)

    McKay, P.; Kelly, B.; Passmore, J.

    1997-01-01

    The panel on sustainable development was moderated by Paul McKay of the Wildside Foundation. Bryan Kelly, Director of Environment and Sustainable Development at Ontario Hydro, and Jeffrey Passmore of Passmore Associates International were the panel members. Bryan Kelly described the objectives of his group's program as reducing market barriers, and get renewables on a level playing field through technological advances to ensure that ' when Ontario Hydro or its successors make decisions about new capacity, renewables will be a viable option and will not be dismissed out of hand'. To illustrate the approach, he described several ongoing research and development projects. Jeffrey Passmore reported on a study he conducted for the Canadian Wind Energy Association and Environment Canada to determine the environmental and economic benefits of wind energy in Canada. He estimated achievable wind energy potential in Canada at around 6400 MW by 2010. He stressed wind energy's potential for job creation and CO 2 reduction as the principal economic and environmental benefits

  14. Impact of environmental constraints and aircraft technology on airline fleet composition

    Science.gov (United States)

    Moolchandani, Kushal A.

    This thesis models an airline's decisions about fleet evolution in order to maintain economic and regulatory viability. The aim is to analyze the fleet evolution under different scenarios of environmental policy and technology availability in order to suggest an optimal fleet under each case. An understanding of the effect of aircraft technologies, fleet size and age distribution, and operational procedures on airline performance may improve the quality of policies to achieve environmental goals. Additionally, the effect of decisions about fleet evolution on air travel is assessed as the change in market demand and profits of an abstracted, benevolent monopolist airline. Attention to the environmental impact of aviation has grown, and this has prompted several organizations such as ICAO (and, in response, NASA) to establish emissions reduction targets to reduce aviation's global climate impact. The introduction of new technology, change in operational procedures, etc. are some of the proposed means to achieve these targets. Of these, this thesis studies the efficacy of implementation of environmental policies in form of emissions constraints as a means to achieve these goals and assesses their impact on an airline's fleet evolution and technology use (along with resulting effects on air travel demand). All studies in this thesis are conducted using the Fleet-level Environmental Evaluation Tool (FLEET), a NASA sponsored simulation tool developed at Purdue University. This tool models airline operational decisions via a resource allocation problem and uses a system dynamics type approach to mimic airline economics, their decisions regarding retirement and acquisition of aircraft and evolution of market demand in response to the economic conditions. The development of an aircraft acquisition model for FLEET is a significant contribution of the author. Further, the author conducted a study of various environmental policies using FLEET. Studies introduce constraints on

  15. Innovation and Technology Dissemination in Clean Technology Markets and The Developing World: The Role of Trade, Intellectual Property Rights, and Uncertainty

    Directory of Open Access Journals (Sweden)

    Kristina M. Lybecker

    2014-01-01

    Full Text Available Innovation is an inherently risky and uncertain process. Many of the broader challenges to innovation in general are both mirrored and exaggerated in clean technology innovation. The development of environmental technologies is further complicated by the public goods nature of knowledge, environmental externalities, and uncertainty. This study on clean technology focuses on recent work on the role of uncertainty, the participation of emerging and developing nations, the controversy surrounding intellectual property rights, and the variety of market actors and strategies in place. The paper also considers the policy instruments that are available, the cost, benefits and consequences of their use. As scholars continue to analyze when, where, why and how clean technology innovations are developed and adopted, it is essential that government policymakers aim to reduce uncertainty and risk, incentivize innovation with effective intellectual property rights, and foster transparency in the market. This continues to be a field of increasing future importance, and a rich area for continued academic study and analysis. Consumers, government policymakers and innovators would all benefit from a greater understanding of the process of technological change in the development, diffusion and financing of clean technologies.

  16. Techno-economic viability assessments of greener propulsion technology under potential environmental regulatory policy scenarios

    International Nuclear Information System (INIS)

    Nalianda, D.K.; Kyprianidis, K.G.; Sethi, V.; Singh, R.

    2015-01-01

    Highlights: • An advanced method is presented for techno-economic assessment under potential environmental regulatory policy scenarios. • The viability of the contra-rotating open rotor concept is investigated under various environmental policies. • CO_2 taxation is needed to drive the aerospace industry towards greener solutions. - Abstract: Sustainability of the aviation industry, as any other industry, depends on the elasticity of demand for the product and profitability through minimising operating costs. Of paramount importance is assessing and understanding the interdependency and effects of environmentally optimised solutions and emission mitigation policies. This paper describes the development and application of assessment methodologies to better understand the effects of environmental taxation/energy policies aimed at environmental pollution reduction and the future potential economic impact they may have on the adaptation of “greener” novel technologies. These studies are undertaken using a Techno-economic Environmental Risk Assessment approach. The methodology demonstrated allows the assessment of the economic viability of new technologies compared to conventional technologies, for various CO_2 emission taxation and fuel price scenarios. It considers relative increases in acquisition price and maintenance costs. A study undertaken as a ‘proof of concept’ compares a Counter Rotating Open Rotor aircraft with a conventional aircraft for short range operations. It indicates that at current fuel price and with no carbon taxation, a highly fuel efficient technology, such as the one considered, could be rendered economically unviable. The work goes on to demonstrate that in comparison to the conventional aircraft, any economic benefits that may be accrued from improvement in fuel consumption through such a technology, may well be negated through increases in acquisition price and maintenance costs. The work further demonstrates that if policy

  17. Development of analytical techniques for safeguards environmental samples at JAEA

    International Nuclear Information System (INIS)

    Sakurai, Satoshi; Magara, Masaaki; Usuda, Shigekazu; Watanabe, Kazuo; Esaka, Fumitaka; Hirayama, Fumio; Lee, Chi-Gyu; Yasuda, Kenichiro; Inagawa, Jun; Suzuki, Daisuke; Iguchi, Kazunari; Kokubu, Yoko S.; Miyamoto, Yutaka; Ohzu, Akira

    2007-01-01

    JAEA has been developing, under the auspices of the Ministry of Education, Culture, Sports, Science and Technology of Japan, analytical techniques for ultra-trace amounts of nuclear materials in environmental samples in order to contribute to the strengthened safeguards system. Development of essential techniques for bulk and particle analysis, as well as screening, of the environmental swipe samples has been established as ultra-trace analytical methods of uranium and plutonium. In January 2003, JAEA was qualified, including its quality control system, as a member of the JAEA network analytical laboratories for environmental samples. Since 2004, JAEA has conducted the analysis of domestic and the IAEA samples, through which JAEA's analytical capability has been verified and improved. In parallel, advanced techniques have been developed in order to expand the applicability to the samples of various elemental composition and impurities and to improve analytical accuracy and efficiency. This paper summarizes the trace of the technical development in environmental sample analysis at JAEA, and refers to recent trends of research and development in this field. (author)

  18. Wind energy technology development and diffusion: a case study of Inner Mongolia, China

    International Nuclear Information System (INIS)

    Xiliang Zhang; Shuhua Gu; Wenqiang Liu; Lin Gan

    2001-01-01

    This article reviews the spread of small household wind generators and the development of wind farms in Inner Mongolia, China with emphasis on policy and institutional perspectives. It analyses the patterns of wind technology dissemination within social, economic, and environmental contexts. It also discusses international investment and technology transfer relating to wind energy technology. The economics of windfarm development are examined and the role of alternative policy instruments analysed. Major constraints to wind technology development are identified and relevant policy recommendations suggested. (Author)

  19. Wind energy technology development and diffusion: a case study of Inner Mongolia, China

    International Nuclear Information System (INIS)

    Zhang Xiliang; Liu Wenqiang; Gu Shuhua; Gan Lin

    2001-01-01

    This article reviews the spread of small household wind generators and the development of wind farms in Inner Mongolia, China with emphasis on policy and institutional perspectives. It analyzes the patterns of wind technology dissemination within social, economic, and environmental contexts. It also discusses international investment and technology transfer relating to wind energy technology. The economics of windfarm development are examined and the role of alternative policy instruments analyzed. Major constraints to wind technology development are identified and relevant policy recommendations suggested. (author)

  20. Life cycle assessment of nanoadsorbents at early stage technological development

    DEFF Research Database (Denmark)

    Kazemi, Ali; Bahramifar, Nader; Heydari, Akbar

    2018-01-01

    the process of the functionalization of nanoadsorbents leads to the increase of the adsorption capacity of nanoadsorbents, it is also paired with a significant enhancement of negative environmental impacts. The results of t-test comparing the cradle-to-use life cycle impacts of studied impact categories for 1...... in the control and removal of environmental pollutants. This application is still an emerging technology at the early stages of development. Hence, the heart of this study enables an environmental assessment of nanoadsorbents as an emerging product. In addition, the environmental impacts of synthesized...

  1. Scenario Development and Delphi Application in Life Cycle Assessment for Assessing Environmental Impact of New Technology Case Study: Removal of Wind Turbines Project

    Directory of Open Access Journals (Sweden)

    Devina Fitrika Dewi

    2016-05-01

    Full Text Available Certain technology is intended to create eco-efficient products or process or is developed as answer to the recent challenge. This kind of technology consequently can also create another impact therefore it shall be assessed and analyzed.The focus of the study is on assessment method namely Life Cycle Analysis (LCA, Scenario development and Delphi application. The objective is to understand benefits and drawbacks of the combined methodology and observe practicality of its implementation for assessing new technology. The distinctive feature comes from the combination of social and technological foresight (as Delphi application and future studies (as Scenario development which are applied in the environmental assessment of a product (by Life Cycle Analysis.The utilization of LCA-Scenario-Delphi case study as an explanatory example is presented in the Removal Wind Turbines Project by the Danish Energy Agency. The wind turbine is considered new technology with some of it phases are yet to occur, for example: removal of turbines after phase out stage. Technology Assessment by LCA-Scenario-Delphi is complicated procedure, but necessary to validate the results. The drawbacks of this procedure are extensive time it consumes and the dependency on public participation and/or expert willingness to participate. Nonetheless, its advantages are due to its interactive feature; integration of knowledge from different areas of expertise and its assessment’s characteristic which focuses on process.

  2. The market for environmental efficient technology; Markedet for miljoeeffektiv teknologi

    Energy Technology Data Exchange (ETDEWEB)

    Engbo Rasmussen, Peter; Madsen, Peter G. [COWI (Denmark)

    2006-08-31

    As part of governmental preparation of a Danish action plan for environmental efficient technology, COWI has made an analysis of the global market for technological solutions to important environmental challenges. The analysis focuses on technology for solving environmental challenges connected with climate changes, exploitation of water resources as well as pollution that poses a threat to health including air pollution and chemicals. The Analysis is based on reports made in Denmark, significant export countries, the European Union and different international organizations e.g. OECD and the International Energy Agency. This report presents results of the analysis. Due to the fact that the analysis was completed late in 2005 it is solely based on data and reports known at the time. (BA)

  3. New technologies - How to assess environmental effects

    Science.gov (United States)

    Sullivan, P. J.; Lavin, M. L.

    1981-01-01

    A method is provided for assessing the environmental effects of a room-and-pillar mining system (RP) and a new hydraulic borehole mining system (HBM). Before environmental assessment can begin, each technology is defined in terms of its engineering characteristics at both the conceptual and preliminary design stages. The mining sites are also described in order to identify the significant advantages and constraints for each system. This can be a basic physical and biological survey of the region at the conceptual stage, but a more specific representation of site characteristics is required at the preliminary stage. Assessment of potential environmental effects of each system at the conceptual design is critical to its hardware development and application. A checklist can be used to compare and identify the negative impacts of each method, outlining the resource affected, the type of impact involved, and the exact activity causing that impact. At the preliminary design stage, these impacts should be evaluated as a result of either utilization or alteration. Underground coal mining systems have three major utilization impacts - the total area disturbed, the total water resources withdrawn from other uses, and the overall energy efficiency of the process - and one major alteration impact - the degradation of water quality by sedimentation and acid contamination. A comparison of the RP and HBM systems shows the HBM to be an environmentally less desirable system for the Central Appalachia region.

  4. Supercritical fluid technology for energy and environmental applications

    CERN Document Server

    Anikeev, Vladimir

    2014-01-01

    Supercritical Fluid Technology for Energy and Environmental Applications covers the fundamental principles involved in the preparation and characterization of supercritical fluids (SCFs) used in the energy production and other environmental applications. Energy production from diversified resources - including renewable materials - using clean processes can be accomplished using technologies like SCFs. This book is focused on critical issues scientists and engineers face in applying SCFs to energy production and environmental protection, the innovative solutions they have found, and the challenges they need to overcome. The book also covers the basics of sub- and supercritical fluids, like the thermodynamics of phase and chemical equilibria, mathematical modeling, and process calculations. A supercritical fluid is any substance at a temperature and pressure above its critical point where distinct liquid and gas phases do not exist. At this state the compound demonstrates unique properties, which can be "fine...

  5. A technology developed at CERN captures the sun's energy

    CERN Multimedia

    Alizée Dauvergne

    2010-01-01

    A civil-engineering company has recently started using thermal solar panels based on ultra-high vacuum technology developed at CERN. By efficiently preventing heat loss, the technology allows water to be heated to several hundred degrees, even in a temperate climate.   The field of solar panels using technology developed at CERN. On Tuesday 15 June the Geneva branch of the civil-engineering company Colas opened a new solar power plant based on ultra-high vacuum technology developed at CERN. Measuring a total of 80 square metres, the environmentally friendly "solar field" heats close to 80,000 litres of bitumen to 180 degrees. "To be able to reach such a high temperature, I drew on the ultra-high vacuum technologies I learned about at CERN", explains Cristoforo Benvenuti, who invented the panels. The ultra-high vacuum is what makes these solar panels so innovative. "It's very attractive because it minimises heat loss", continues Benvenuti. &...

  6. Proposal of an environmental performance index to assess solid waste treatment technologies

    International Nuclear Information System (INIS)

    Goulart Coelho, Hosmanny Mauro; Lange, Liséte Celina; Coelho, Lineker Max Goulart

    2012-01-01

    Highlights: ► Proposal of a new concept in waste management: Cleaner Treatment. ► Development of an index to assess quantitatively waste treatment technologies. ► Delphi Method was carried out so as to define environmental indicators. ► Environmental performance evaluation of waste-to-energy plants. - Abstract: Although the concern with sustainable development and environment protection has considerably grown in the last years it is noted that the majority of decision making models and tools are still either excessively tied to economic aspects or geared to the production process. Moreover, existing models focus on the priority steps of solid waste management, beyond waste energy recovery and disposal. So, in order to help the lack of models and tools aiming at the waste treatment and final disposal, a new concept is proposed: the Cleaner Treatment, which is based on the Cleaner Production principles. This paper focuses on the development and validation of the Cleaner Treatment Index (CTI), to assess environmental performance of waste treatment technologies based on the Cleaner Treatment concept. The index is formed by aggregation (summation or product) of several indicators that consists in operational parameters. The weights of the indicator were established by Delphi Method and Brazilian Environmental Laws. In addition, sensitivity analyses were carried out comparing both aggregation methods. Finally, index validation was carried out by applying the CTI to 10 waste-to-energy plants data. From sensitivity analysis and validation results it is possible to infer that summation model is the most suitable aggregation method. For summation method, CTI results were superior to 0.5 (in a scale from 0 to 1) for most facilities evaluated. So, this study demonstrates that CTI is a simple and robust tool to assess and compare the environmental performance of different treatment plants being an excellent quantitative tool to support Cleaner Treatment implementation.

  7. Fiscal 1993 international research cooperation project. Feasibility study of finding out the seeds of international joint research (technology for environmental preservation using biotechnology, technology for effective use of unused hydrocarbon resource, technology for development of environmental harmony type catalyst); 1995 nendo kokusai kyoryoku jigyo. Kokusai kyodo kenkyu seeds hakkutsu no tame no FS chosa (biotechnology ni yoru kankyo taisaku gijutsu, miriyo tanka suiso shigen no yuko riyo gijutsu, kankyo chowagata shokubai kaihatsu gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This project is aimed at internationally cooperating in the R and D of industrial technology and improving industrial technology of Japan. For it, the following three technologies were investigated: 1) environmental preservation technology using biotechnology, 2) technology for effective use of unused hydrocarbon resource, 3) technology for development of environmental harmony type catalyst. In 1), a survey was conducted of applicability of biological surfactant to prevention measures of pollution by heavy distillate. It showed that part of the biological surfactants is reaching a stage of its being industrially produced by gene recombination bacteria, but as a whole, biosynthetic genes have hardly been elucidated. In 2), a survey of high-grade treatment technology of petroleum coke was made. It pointed out that it is necessary to develop a technology which makes the most of features of petroleum coke and allows defects. In 3), scientists and engineers of Japan and Europe searched for themes on which they can jointly study in the fields of NOx removal catalyst, up-grading of fuel, and development of catalyst combustion of fuel. 287 refs., 136 figs., 128 tabs.

  8. Innovations in Environmental Monitoring Using Mobile Phone Technology – A Review

    Directory of Open Access Journals (Sweden)

    Matt Aitkenhead

    2014-04-01

    Full Text Available In recent years, the use of mobile phones and tablets for personal communication has increased dramatically, with over 1 billion smartphones out of a total of 5 billion mobile phones worldwide. The infrastructure and technology underlying these devices has improved to a level where it is now possible to integrate sensor technology directly and use them to acquire new data. Given the available resources and the number of technical challenges that have already been overcome, it would seem a natural progression to use mobile communication technology for field-based environmental monitoring. In this work, we review existing technology for acquiring, processing and reporting on environmental data in the field. The objective is to demonstrate whether or not it is possible to use off-the-shelf technology for environmental monitoring. We show several levels at which this challenge is being approached, and discuss examples of technology that have been produced.

  9. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    International Nuclear Information System (INIS)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-01-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of approximately minus8 m (minus27 ft.), following a predetermined drill path, tracking the drill path to within a radius of approximately1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of ∼ -21 m (-70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned

  10. Information technologies in environmental engineering. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Athanasiadis, Ioannis N.; Rizzoli, Andrea E. [Istituto dalle Molle di Studi sull' Intelligenza Artificiale (IDSIA), Manno (Switzerland); Mitkas, Pericles A. [Aristotle Univ. of Thessaloniki (Greece); Marx Gomez, Jorge (eds.) [Oldenburg Univ. (Germany). Abt. Wirtschaftsinformatik

    2009-07-01

    Information technologies have evolved to an enabling science for natural resource management and conservation, environmental engineering, scientific simulation and integrated assessment studies. Computing plays a significant role in every day practices of environmental engineers, natural scientists, economists, and social scientists. The complexity of natural phenomena requires interdisciplinary approaches, where computing science offers the infrastructure for environmental data collection and management, scientific simulations, decision support documentation and reporting. Ecology, environmental engineering and natural resource management comprise an excellent real-world testbed for IT system demonstration, while raising new challenges for computer science. Complexity, uncertainty and scaling issues of natural systems form a demanding application domain for sensor networks and earth observation systems; modelling, simulation and scientific workflows, data management and reporting, decision support and intelligent systems, distributed computing environments, geographical information systems, heterogeneous systems integration, software engineering, accounting systems and control systems. This books offers a collection of papers presented at the 4th International Symposium on Environmental Engineering, held in May 2009, in Thessaloniki, Greece. Recent success stories in ecoinformatics, promising ideas and new challenges are discussed among computer scientists, environmental engineers, economists and social scientists, demonstrating new paradigms for problem solving and decision making. (orig.)

  11. Technology needs for environmental restoration remedial action. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.S.

    1992-11-01

    This report summarizes the current view of the most important technology needs for the US Department of Energy (DOE) facilities operated by Martin Marietta Energy Systems, Inc. These facilities are the Oak Ridge National Laboratory, the Oak Ridge K-25 Site, the Oak Ridge Y-12 Plant, the Paducah Gaseous Diffusion Plant, and the Portsmouth Gaseous Diffusion Plant. The sources of information used in this assessment were a survey of selected representatives of the Environmental Restoration (ER) programs at each facility, results from a questionnaire distributed by Geotech CWM, Inc., for DOE, and associated discussions with individuals from each facility. This is not a final assessment, but a brief look at an ongoing assessment; the needs will change as the plans for restoration change and, it is hoped, as some technical problems are solved through successful development programs.

  12. Environmental management practices, environmental technology portfolio, and environmental commitment: A content analytic approach for U.K. manufacturing firms

    OpenAIRE

    Nath, P; Ramanathan, R

    2016-01-01

    This study investigates how various aspects of environmental management practices EMPs (operational, strategic, and tactical) undertaken by firms influence their environmental technology portfolios ETPs (pollution control and pollution prevention). It also explores the role of environmental commitment of firms on the influence of EMPs on ETPs. This study uses data from content analysis of annual reports, and corporate social responsibility reports available from corporate websites of 76 UK ma...

  13. Implementation of the geoethics principal to environmental technologies by Biogeosystem Technique

    Science.gov (United States)

    Batukaev, Abdulmalik; Kalinitchenko, Valery; Minkina, Tatiana; Mandzhieva, Saglara; Sushkova, Svetlana

    2017-04-01

    The uncertainty and degradation of biosphere is a result of outdated industrial technologies. The incorrect principals of the nature resources use paradigm are to be radically changed corresponding to principals of Geoethics. Technological dead-end is linked to Philosophy of Technology. The organic protection and imitation of natural patterns are till now the theoretical base of technology. The technological and social determinism are proposed as the "inevitable" for humankind. One is forced to believe that the only way for humanity is to agree that the outdated way of technical development is the only possibility for humankind to survive. But rough imitation as a method of outdated technological platform is fruitless now. Survival under practice of industrial technology platform now has become extremely dangerous. The challenge for humanity is to overcome the chain of environmental hazards of agronomy, irrigation, industry, and other human activities in biosphere, which awkwardly imitate the natural processes: plowing leads to degradation of soil and greenhouse gases emission; irrigation leads to excessive moistening and degradation of soil, landscape, greenhouse gases emission, loss of freshwater - the global deficit; waste utilization leads to greenhouse gases emission, loss of oxigen and other ecological hazards. The fundamentally new technologies are to be generates for development of biosphere, food and resources renewing. Aristotle told that technique can go beyond nature and implement "what nature can't bring to a finish." To overcome fundamental shortcomings of industrial technologies, incorrect land use we propose the Biogeosystem Technique (BGT*) for biosphere sustainability. The BGT* key point is transcendent approach (not imitating of the natural processes) - new technical solutions for biosphere - soil construction, the fluxes of energy, matter, and water control and biological productivity of terrestrial systems. Intra-soil milling which provides the

  14. Lessons from patents. Using patents to measure technological change in environmental models

    International Nuclear Information System (INIS)

    Popp, David

    2005-01-01

    When studying solutions to long-term environmental problems such as climate change, it is important to consider the role that technological change may play. Nonetheless, to date few economic models of environmental policy explicitly model the link between policy and technological change. There is a growing body of evidence that the incentives offered by prices and environmental regulations have a strong influence on both the creation and adoption of new technologies. In several recent papers, I have used patent data to examine the links between environmental policy and technological change. In addition, I have used the results of this research to calibrate the ENTICE model (for ENdogenous Technological change) of climate change, which links energy-related R and D to changes in the price of carbon. Drawing on my experiences from empirical studies on innovation and from modeling the climate change problem, in this paper I review some of the key lessons from recent empirical work using patents to study environmental innovation and diffusion, and discuss its implications for modeling climate change policy. I conclude by offering suggestions for future research

  15. Geospatial Technology In Environmental Impact Assessments – Retrospective.

    Directory of Open Access Journals (Sweden)

    Goparaju Laxmi

    2015-10-01

    Full Text Available Environmental Impact Assessments are studies conducted to give us an insight into the various impacts caused by an upcoming industry or any developmental activity. It should address various social, economic and environmental issues ensuring that negative impacts are mitigated. In this context, geospatial technology has been used widely in recent times.

  16. Development and use of innovative approaches to waste management and environmental restoration: Potential liability and its implications

    Energy Technology Data Exchange (ETDEWEB)

    Owens, W.L.

    1990-12-01

    The US Department of Energy (DOE) has established as its goal to have all of its facilities cleaned up and in compliance with all applicable environmental laws by the year 2019. As part of its plan to achieve that goal, DOE created, in November 1989, an Office of Environmental Restoration and Waste Management (EM) and, within EM, an Office of Technology Development (OTD). Since the achievement of DOE's long-term objective in the area of waste management and environmental restoration is not possible utilizing only existing technology, the importance of OTD's mission is clear. A question has been raised regarding the nature of the potential liability associated with development, testing, and use of new technologies for waste management and environmental restoration; and the impact it may have on the ability or willingness of other parties to participate in DOE's technology development program. This report is intended to provide at least a preliminary answer to the question. Given the range of activities involved in the technology development process, there are many circumstances that could result in liability. Therefore, the discussion here is somewhat general. It may, however, provide a base for more detailed analysis, at a later time, of liability issues raised by specific circumstances.

  17. Development and use of innovative approaches to waste management and environmental restoration: Potential liability and its implications

    Energy Technology Data Exchange (ETDEWEB)

    Owens, W.L.

    1990-12-01

    The US Department of Energy (DOE) has established as its goal to have all of its facilities cleaned up and in compliance with all applicable environmental laws by the year 2019. As part of its plan to achieve that goal, DOE created, in November 1989, an Office of Environmental Restoration and Waste Management (EM) and, within EM, an Office of Technology Development (OTD). Since the achievement of DOE`s long-term objective in the area of waste management and environmental restoration is not possible utilizing only existing technology, the importance of OTD`s mission is clear. A question has been raised regarding the nature of the potential liability associated with development, testing, and use of new technologies for waste management and environmental restoration; and the impact it may have on the ability or willingness of other parties to participate in DOE`s technology development program. This report is intended to provide at least a preliminary answer to the question. Given the range of activities involved in the technology development process, there are many circumstances that could result in liability. Therefore, the discussion here is somewhat general. It may, however, provide a base for more detailed analysis, at a later time, of liability issues raised by specific circumstances.

  18. Environmental impacts of modern agricultural technology diffusion in Bangladesh: an analysis of farmers' perceptions and their determinants.

    Science.gov (United States)

    Rahman, Sanzidur

    2003-06-01

    Farmers' perception of the environmental impacts of modern agricultural technology diffusion and factors determining such awareness were examined using survey data from 21 villages in three agro-ecological regions of Bangladesh. Results reveal that farmers are well aware of the adverse environmental impacts of modern agricultural technology, although their awareness remains confined within visible impacts such as soil fertility, fish catches, and health effects. Their perception of intangible impacts such as, toxicity in water and soils is weak. Level and duration of modern agricultural technology adoption directly influence awareness of its adverse effects. Education and extension contacts also play an important role in raising awareness. Awareness is higher among farmers in developed regions, fertile locations and those with access to off-farm income sources. Promotion of education and strengthening extension services will boost farmers' environmental awareness. Infrastructure development and measures to replenish depleting soil fertility will also play a positive role in raising awareness.

  19. QuEST: Qualifying Environmentally Sustainable Technologies, Volume 5

    Science.gov (United States)

    Lewis, Pattie

    2010-01-01

    This edition of the QuEST newsletter contains brief articles that discuss the NASA Technology Evaluation for Environmental Risk Mitigation (TEERM) program, and the importance of collaboration, efforts in materials management and substitution for coatings for launch structures, Low volatile organic compound (VOC) Coatings Field Testing, Non-Chrome Coating Systems, Life Cycle Corrosion Testing, Lead-Free Electronics Testing and Corn Based Depainting and efforts in Pollution Control in the area of Hypergolic Propellant Destruction Evaluation, efforts in development of alternative energy in particular Hydrogen Sensors, Energy and Water Management, and efforts in remediation in the removal of Polychlorinated Biphenyl (PCB) contamination

  20. Environmental management for dredging sediments - the requirement of developing nations.

    Science.gov (United States)

    Manap, Norpadzlihatun; Voulvoulis, Nikolaos

    2015-01-01

    Scientific research has characterized the effects of dredging, an underwater excavation process for navigational purposes or material extraction, and has shown its association with a number of chemical, physical and biological impacts. Due to this, much environmental management has been applied in the dredging industry in order to manage its detrimental effects. However, developing nations may have different approaches towards their dredging environmental management to compare to their companions with higher economic strength. Moreover, scientific evidence to make an informed decision is often lacking, hence affecting the number of research executed at these nations, limiting their efforts to preserve the environment. This paper reviews the dredging environmental impacts and its two important factors, dredging technology and sediment characteristic, that determine the magnitude of impacts through literature review, and discusses the need for a more integrated dredging environmental management to be developed for developing nations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Environmental control technology for mining, milling, and refining thorium

    International Nuclear Information System (INIS)

    Weakley, S.A.; Blahnik, D.E.; Young, J.K.; Bloomster, C.H.

    1980-02-01

    The purpose of this report is to evaluate, in terms of cost and effectiveness, the various environmental control technologies that would be used to control the radioactive wastes generated in the mining, milling, and refining of thorium from domestic resources. The technologies, in order to be considered for study, had to reduce the radioactivity in the waste streams to meet Atomic Energy Commission (10 CFR 20) standards for natural thorium's maximum permissible concentration (MPC) in air and water. Further regulatory standards or licensing requirements, either federal, state, or local, were not examined. The availability and cost of producing thorium from domestic resources is addressed in a companion volume. The objectives of this study were: (1) to identify the major waste streams generated during the mining, milling, and refining of reactor-grade thorium oxide from domestic resources; and (2) to determine the cost and levels of control of existing and advanced environmental control technologies for these waste streams. Six potential domestic deposits of thorium oxide, in addition to stockpiled thorium sludges, are discussed in this report. A summary of the location and characteristics of the potential domestic thorium resources and the mining, milling, and refining processes that will be needed to produce reactor-grade thorium oxide is presented in Section 2. The wastes from existing and potential domestic thorium oxide mines, mills, and refineries are identified in Section 3. Section 3 also presents the state-of-the-art technology and the costs associated with controlling the wastes from the mines, mills, and refineries. In Section 4, the available environmental control technologies for mines, mills, and refineries are assessed. Section 5 presents the cost and effectiveness estimates for the various environmental control technologies applicable to the mine, mill, and refinery for each domestic resource

  2. Development of hydrogen production technology using FBR

    International Nuclear Information System (INIS)

    Ono, Kiyoshi; Otaki, Akira; Chikazawa, Yoshitaka; Nakagiri, Toshio; Sato, Hiroyuki; Sekine, Takashi; Ooka, Makoto

    2004-06-01

    This report describes the features of technology, the schedule and the organization for the research and development regarding the hydrogen production technology using FBR thermal energy. Now, the hydrogen production system is proposed as one of new business models for FBR deployment. This system is the production of hydrogen either thermal energy at approximately from 500degC to 550degC or electricity produced by a sodium cooled FBR. Hydrogen is expected to be one of the future clean secondary energies without carbon-dioxide emission. Meanwhile the global energy demand will increase, especially in Asian countries, and the energy supply by fossil fuels is not the best choice considering the green house effect and the stability of energy supply. The development of the hydrogen technology using FBR that satisfies 'sustainable energy development' and 'utilization of energies free from environmental pollution' will be one of the promising options. Based on the above mentioned recognition, we propose the direction of the development, the issues to be solved, the time schedule, the budget, and the organization for R and D of three hydrogen production technologies, the thermochemical hybrid process, the low temperature steam reforming process, and the high temperature steam electrolysis process in JNC. (author)

  3. Environmental control implications of generating electric power from coal. Technology status report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-12-01

    This is the first in a series of reports evaluating environmental control technologies applicable to the coal-to-electricity process. The technologies are described and evaluated from an engineering and cost perspective based upon the best available information obtained from utility experience and development work in progress. Environmental control regulations and the health effects of pollutants are also reviewed. Emphasis is placed primarily upon technologies that are now in use. For SO/sub 2/ control, these include the use of low sulfur coal, cleaned coal, or flue-gas desulfurization systems. Electrostatic precipitators and fabric filters used for the control of particulate matter are analyzed, and combustion modifications for NO/sub x/ control are described. In each area, advanced technologies still in the development stage are described briefly and evaluated on the basis of current knowledge. Fluidized-bed combustion (FBC) is a near-term technology that is discussed extensively in the report. The potential for control of SO/sub 2/ and NO/sub x/ emissions by use of FBC is analyzed, as are the resulting solid waste disposal problems, cost estimates, and its potential applicability to electric utility systems. Volume II presents the detailed technology analyses complete with reference citations. This same material is given in condensed form in Volume I without references. A brief executive summary is also given in Volume I.

  4. SLICEIT and TAHMO Partnerships: Students Local and International Collaboration for Climate and Environmental Monitoring, Technology Development, Education, Adaptation and Mitigation

    Science.gov (United States)

    Aishlin, P. S.; Selker, J. S.

    2015-12-01

    Climate change understanding and impacts vary by community, yet the global nature of climate change requires international collaboration to address education, monitoring, adaptation and mitigation needs. We propose that effective climate change monitoring and education can be accomplished via student-led local and international community partnerships. By empowering students as community leaders in climate-environmental monitoring and education, as well as exploration of adaptation/mitigation needs, well-informed communities and young leadership are developed to support climate change science moving forward. Piloted 2013-2015, the SLICEIT1 program partnered with TAHMO2 to connect student leaders in North America, Europe and Africa. At the international level, schools in the U.S.A and Netherlands were partnered with schools in Ghana, Kenya, and Uganda for science and cultural exchange. Each school was equipped with a climate or other environmental sensing system, real-time data publication and curricula for both formal and informal science, technology, engineering and math education and skill development. African counterparts in TAHMO's School-2-School program collect critically important data for enhanced on-the-ground monitoring of weather conditions in data-scarce regions of Africa. In Idaho, student designed, constructed and installed weather stations provide real time data for classroom and community use. Student-designed formal educational activities are disseminated to project partners, increasing hands-on technology education and peer-based learning. At the local level, schools are partnered with a local agency, research institute, nonprofit organization, industry and/or community partner that supplies a climate science expert mentor to SLICEIT program leaders and teachers. Mentor engagement is facilitated and secured by program components that directly benefit the mentor's organization and local community via climate/environment monitoring, student workforce

  5. Development of technology for reduction of radiotoxicity of uranium mixture

    International Nuclear Information System (INIS)

    Kim, Kwangwook; Lee, E. H.; Yang, H. B.

    2012-03-01

    The phase 1 of this research project was carried out as a project entitled 'Development of technology for reduction of actinide radiotoxicity' in 2007 to 2009. Its phase 2 was carried out as a project entitled 'Development of technology for reduction of radiotoxicity of uranium mixture' in 2010 to 2011. Five unit research items to accomplish it such as evaluation of dissolution and aquatic chemistry characteristics of U, TRU, RE, and etc elements evaluation of chemical and electrolytic dissolution characteristics of U and SIMFUEL oxides evaluation of removal of environmentally-detrimental elements, and high purity precipitation of uranium evaluation of salt-free electrolytic decarbonation characteristics, and recovery of used carbonate salt, and development of the process to treat uranium mixture materials and the relevant unit equipments and system with engineering concept. were carried out. The obtained results were as follows. -Evaluation of chemical characteristics of several uranium oxide materials and verification of insolubility properties of TRU oxides in carbonate media -Suggestion of the optimal conditions for dissolutions of uranium and SIMFUEL oxides - Development of technology for co-precipitation of environmentally-detrimental elements - Development of an electrolytic recycle way of used carbonate salt solution - Suggestion of a new conceptual process, named COL process to treat spent nuclear fuel, uranium-bearing wastes with high and low contents

  6. Project Management in the Field of Innovative Technologies of Environmental Management

    Directory of Open Access Journals (Sweden)

    Potasheva Galina

    2016-01-01

    Full Text Available The article deals with the application of project management in the field of innovative technologies of environmental management. This article examines the sustainability of integrated development environment, and society in the “three ones” concept, which covers all major aspects of development and global change: ecological, social, economic-based planning. But the transition from the national level to the practice of management in the real institutional environment revealed the unresolved systemic issues such as: economic development is considered at the national level; the management of social processes is in the area of responsibility of regions; environmental issues are concentrated at the local, municipal level. To solve this problem, this article discusses the design aspects of environmental management. So in designing the required high degree of understanding of interdependencies and patterns of organizing itself independently of the system that explains the differences between technical and social design. Technical design relies on mechanistic management, while social planning is understood as a system or organic project management. Hence it is safe to state the fact that project management in the environmental management of the country is concentrated in specific design, planning, technical and management solutions, as well as in the creation interested in these effects in all spheres and strata of society.

  7. Research of environmental bioecosensing technology using ecological information. Part 2; Seitaikei joho ni yoru kankyo bio ecosencing gijutsu ni kansuru chosa. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Basic considerations of exploring and cultivating environmental reporter organisms are summarized. Mechanism of genetic engineering amplification and molecular biological amplification, and approach to combining them to a hardware as a bioindicator system are investigated. For the current status of molecular biological measurement technology for measuring ecological environment and its application, environmental diagnosis from a phyropathological viewpoint, environmental diagnosis using microorganisms, test fabrication of genetic sensor, and overseas examples of environmental monitoring network are described. For the application of ecological information and functions for developing innovative environmental remediation technology, issues and potential areas for research and development regarding the bioremediation technology in which the US has achieved a progress for the benefit of soil environment remediation are summarized. For the phytoremediation, an area of bioremediation, the metabolism of microorganisms which live in the rhizosphere, and the technology for controlling the microorganisms in the soil through plants are investigated. 66 refs., 50 figs., 17 tabs.

  8. Adopting the Internet of Things technologies in environmental management in South Africa

    CSIR Research Space (South Africa)

    Dlodlo, N

    2012-04-01

    Full Text Available This paper reports on potential applications of IoT technologies that could contribute to sustainable environmental management (EM in South Africa). These technologies have been categorised under environmental quality and protection, natural...

  9. Evaluation of environmental impacts of cellulosic ethanol using life cycle assessment with technological advances over time

    International Nuclear Information System (INIS)

    Pawelzik, Paul F.; Zhang, Qiong

    2012-01-01

    Life Cycle Assessment (LCA) has been used in quantifying the environmental impacts of materials, processes, products, or systems across their entire lifespan from creation to disposal. To evaluate the environmental impact of advancing technology, Life Cycle Assessment with Technological Advances over Time (LCA-TAT) incorporates technology improvements within the traditional LCA framework. In this paper, the LCA-TAT is applied to quantify the environmental impacts of ethanol production using cellulosic biomass as a feedstock through the simultaneous saccharification and co-fermentation (SSCF) process as it improves over time. The data for the SSCF process are taken from the Aspen Plus ® simulation developed by the National Renewable Energy Lab (NREL). The Environmental Fate and Risk Assessment Tool (EFRAT) is used to calculate the fugitive emissions and SimaPro 7.1 software is used to quantify the environmental impacts of processes. The impact indicators of the processes are calculated using the Eco-indicator 95 method; impact categories analyzed include ozone layer depletion, heavy metals, carcinogens, summer smog, winter smog, pesticides, greenhouse effect, acidification, and eutrophication. Based on the LCA-TAT results, it is found that removal of the continuous ion exchange step within the pretreatment area increases the environmental impact of the process. The main contributor to the increase in the environmental impact of the process is the heavy metal indicator. In addition, a sensitivity analysis is performed to identify major inputs and outputs that affect environmental impacts of the overall process. Based on this analysis it is observed that an increase in waste production and acid use have the greatest effect on the environmental impacts of the SSCF process. Comparing economic analysis with projected technological advances performed by NREL, the improvement in environmental impact was not matched by a concomitant improvement in economic performance. In

  10. Cost decreases in environmental technology. Evidence from four case studies

    Energy Technology Data Exchange (ETDEWEB)

    Oosterhuis, F. [Instituut for Environmental Studies, Vrije Universiteit VU, Amsterdam (Netherlands)

    2007-07-15

    The cost of a new technology tends to decrease as its uptake grows, and environmental technology is no exception to this general rule. Factors that can bring about such cost reductions include economies of scale, 'learning-by-doing', incremental technological improvements, and growing competition. In preparing environmental policies, the potential for future cost reductions is often disregarded. The present study aims to provide some additional empirical evidence on the cost decreases in environmental technology and the factors that lie behind them. To this end, four exemplary case studies have been selected. The first case (NOx emission abatement by Selective Catalytic Reduction (SCR)), shows a wide variety in cost estimates, without a clear trend. This is even true for the costs of a fairly homogeneous type of investment (SCR in coal fired power plants). Nevertheless, it is clear that an important cost decrease has been achieved by prolonging the lifetime of the catalyst, which is one of the main cost components in SCR. In the second case (NH3 emission abatement by chemical air scrubbers in pig farming) there is not yet sufficient experience with the technology to draw conclusions on the development of costs. However, it is already clear that economizing on the capacity of the system can contribute to important cost savings. Three-way catalytic converters in cars have shown significant price decreases following their large scale introduction on the European market in the early 1990s. Probably economies of scale have played an important role in this case, as the size of the market made mass production possible. To some extent, cost reductions may also be attributed to improvements such as the need for less materials (e.g. platinum). Furthermore, the performance of catalytic converters has improved, implying that the cost per unit of emission reduction has decreased even more than the cost of the device itself. Market prices of Compact Fluorescent Lamps

  11. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-03-30

    A vendor was selected for the diamond wire technology demonstration scheduled for this summer at Princeton Plasma Physics Laboratory (PPPL). A team consisting of personnel from FIU-HCET, PPPL, and AEA Technology reviewed the submitted bids. FIU-HCET will contract this vendor. At the SRS Ninth ICT teleconference, the ICT team discussed the status of the following demonstrations: LRAD; x-ray, K-edge; Strippable Coatings; Thermal Spray Vitrification; Cutting/Shearing/Dismantlement/Size Reduction; and Electrets. The LRAD demo is complete, and the x-ray/K-edge, Strippable Coatings, and Electrets demos are ongoing. The Asbestos and Thermal Spray Vitrification demos require more laboratory testing. The Cutting/Shearing/Dismantlement/Size Reduction demo is undergoing procurement. Five FIU-HCET staff members took the 1S0 14000 environmental auditor training course February 22-26, 1999, given by ASC. The test plan for the Facility Dismantlement Technology Assessment is finished and ready for internal review.

  12. Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: Incineration and base catalyzed decomposition

    International Nuclear Information System (INIS)

    Hu Xintao; Zhu Jianxin; Ding Qiong

    2011-01-01

    Highlights: → We study the environmental impacts of two kinds of remediation technologies including Infrared High Temperature Incineration(IHTI) and Base Catalyzed Decomposition(BCD). → Combined midpoint/damage approaches were calculated for two technologies. → The results showed that major environmental impacts arose from energy consumption. → BCD has a lower environmental impact than IHTI in the view of single score. - Abstract: Remediation action is critical for the management of polychlorinated biphenyl (PCB) contaminated sites. Dozens of remediation technologies developed internationally could be divided in two general categories incineration and non-incineration. In this paper, life cycle assessment (LCA) was carried out to study the environmental impacts of these two kinds of remediation technologies in selected PCB contaminated sites, where Infrared High Temperature Incineration (IHTI) and Base Catalyzed Decomposition (BCD) were selected as representatives of incineration and non-incineration. A combined midpoint/damage approach was adopted by using SimaPro 7.2 and IMPACTA2002+ to assess the human toxicity, ecotoxicity, climate change impact, and resource consumption from the five subsystems of IHTI and BCD technologies, respectively. It was found that the major environmental impacts through the whole lifecycle arose from energy consumption in both IHTI and BCD processes. For IHTI, primary and secondary combustion subsystem contributes more than 50% of midpoint impacts concerning with carcinogens, respiratory inorganics, respiratory organics, terrestrial ecotoxity, terrestrial acidification/eutrophication and global warming. In BCD process, the rotary kiln reactor subsystem presents the highest contribution to almost all the midpoint impacts including global warming, non-renewable energy, non-carcinogens, terrestrial ecotoxity and respiratory inorganics. In the view of midpoint impacts, the characterization values for global warming from IHTI and

  13. Urban Maglev Technology Development Program : Colorado Maglev Project : part 1 : executive summary of final report

    Science.gov (United States)

    2004-06-01

    The overall objective of the urban maglev transit technology development program is to develop magnetic levitation technology that is a cost effective, reliable, and environmentally sound transit option for urban mass transportation in the United Sta...

  14. Ultrasound in environmental protection - Recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Mason, T.J. [Coventry University, Coventry (United Kingdom). School of Science and the Environment

    2002-07-01

    There can be little doubt that there is an increasing interest in the development of new methods for environmental protection and remediation. Driven by the interests of scientists and engineers but increasingly by legislation a very wide range of new technologies is being examined. Amongst these power ultrasound is proving to be a front-runner and offers a wide range of applications. Not all of these are likely to become industrial realities nevertheless there are a few which have a real chance of adoption. Some of the stronger contenders are reviewed below. (orig.)

  15. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology and Waste Management Consortium annual report, 1990--1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    The HBCU/MI Environmental Technology and Waste Management Consortium was established in January 1990, through a Memorandum of Understanding (MOU) among the member institutions. This group of research-oriented Historically Black Colleges and Universities and Minority Institutions (HBCU/MI) agreed to work together to initiate research, technology development and education programs to address the nation`s critical environmental problems. As a group the HBCU/MI Consortium is uniquely positioned to reach women and the minority populations of African Americans, Hispanics and American Indians. As part of their initial work, they developed the Research, Education, and Technology Transfer (RETT) Plan to actualize the Consortium`s guiding principles. In addition to developing a comprehensive research agenda, four major programs were begun to meet these goals. This report summarizes the 1990--1991 progress.

  16. Advanced remediation, technology development in the underground storage tank

    International Nuclear Information System (INIS)

    Gates, T.E.; Gilchrist, R.L.

    1992-01-01

    Production of nuclear materials has been a major mission of the U. S. Department of Energy (DOE) over the last 50 years. These activities have contributed to a substantial accumulation of hazardous, radioactive, and mixed wastes. In 1989, the DOE established the Office of Environmental Restoration and Waste Management. This office coordinates and manages the DOE's remediation, waste minimization, and environmental compliance activities. It also has responsibility for waste generated by current operations. Within this office is the Office of Technology Development, which is responsible for providing technology improvements. This paper reports on integrated demonstrations which have been established to efficiently bring the best technologies to bear on the common needs of multiple DOE sites. One such need is resolution of the actions required for final closure and waste disposal of liquid (including sludge and salt cake) radioactive and chemical wastes that have been transferred to underground storage tanks

  17. Report on the invitation program for developing countries concerning technology promotion project of global environmental industry in FY 1997; 1997 nendo chikyu kankyo sangyo gijutsu suishin jigyo ni kakawaru chikyu kankyo kanren gijutsu kaigai kenkyusha shohei jigyo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In an effort to help preserve the global environment, International Center for Environmental Technology Transfer (ICETT) contributes to the solution of global environmental problems by promoting research exchanges with developing countries. As a part of this effort, ICETT hosted an environmental development researcher who visited Japan from the Institute of Environmental Research of Chulalongkorn University in Bangkok, Thailand. The invitation was extended at the request of NEDO. During the period of this investigation between September 16 and December 14, 1997, a photocatalyst was prepared and its performance was evaluated under the theme ``Application of photocatalysis to purification of atmospheric environment.`` At the same time, roadside test spots were inspected to study the practical application of optical photocatalysis. The visiting researcher also visited the National Institute for Resources and Environment to discuss with the staff of institute. This helped to deepen understandings of the state of air pollution problems confronting Japan, Europe, and North America, as well as issues related to the technologies that have been developed to solve these problems. The visiting researcher toured the RITE and examined Japan`s progress in the development of environmental control technology through joint research involving government, industry, and academia. At ICETT, the visiting researcher received training in Japan`s approaches to environmental problems in developing countries

  18. User behavior and technology development. Shaping sustainable relations between consumers and technologies

    NARCIS (Netherlands)

    Slob, A.F.L.; Verbeek, P.P.

    2006-01-01

    Environmental policy has long been determined by a dichotomy between technology and behavior. Some approaches stress the importance of technology and technological innovation, while others focus on behavioral change. Each approach has its limitations, however, since technology and behavior often

  19. Socio-Environmental and Sustainability Assessment for Technology Innovations at Pectens Production in Brazil

    Directory of Open Access Journals (Sweden)

    Márcio Ricardo Costa dos Santos

    2008-08-01

    Full Text Available This study presents a practical impact assessment method for the adoption of technology innovations at Pectens In vitro Fertilization Laboratory in Rio de Janeiro State, Brazil. To fulfill the system framework requirements, focused on reproductive and productive enterprises, field visits and interview with the laboratory executive director were carried out. Considering the pectens production activities, 24 socio-environmental indicators were developed and the impact indices were automatically calculated by the system’s spreadsheets. General performance index for the pectens reproduction activities indicated an important contribution of technological innovations for the sustainable production of the In vitro Fertilization Laboratory. The employed method was considered as appropriate for evaluations of sustainability at this agribusiness activity, dealing with indicators as tools in order to identify possible risks for negative impacts. Those indicators include aspects beyond those commonly presented by environmental impact assessments, and were capable to provide adequate management and sustainable development for the studied Organization.

  20. Development of radioisotope tracer technology and nucleonic control system

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Joon Ha; Lee, Myun Joo; Jung, Sung Hee and others

    1999-04-01

    The purpose of this study is to develop the radioisotope tracer technology, which can be used in solving industrial and environmental problems and basic technology of nuclear control systems that are widely used for automation of industrial plants, and to build a strong tracer group to support the local industries. In relation to the tracer technology, the data acquisition system, the column scanning equipment and the detection pig for a leakage test have been developed. In order to use in analyzing data of tracer experiments, a computer program for the analysis of residence time distribution has been created as well. These results were utilized in developing the tracer technologies, such as the column scanning, the flow measurement using the dilution method, the simultaneous monitoring rotational movement of piston rings and the optimization of a waste water treatment facility, and the technologies were successfully demonstrated in the local industrial. The stripper of RFCC reactor has been examined to find an unwanted structure in it by imminent request from the industry. Related to the development of nucleonic control system, the state of art report on the technology has been written and an equipment for the analysis of asphalt content has been developed. (author)