WorldWideScience

Sample records for environmental sciences practical

  1. Excel 2016 for environmental sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical environmental science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel is an effective learning tool for quantitative analyses in environmental science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Environmental Science Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel 2016 to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand environmental science problems. Practice problems are provided at the end of each chapte...

  2. Expanding the Conversation: Further Explorations into Indigenous Environmental Science Education Theory, Research, and Practice

    Science.gov (United States)

    Lowan, Greg

    2012-01-01

    Indigenous environmental science education is a diverse, dynamic, and rapidly expanding field of research, theory, and practice. This article highlights, challenges, and expands upon key areas of discussion presented by Mack et al. (Cult Stud Sci Educ 7, "2012") as part of the forum on their article "Effective Practices for Creating…

  3. A confluence of traditions: Examining teacher practice in the merging of secondary science and environmental education

    Science.gov (United States)

    Astrid, Steele

    Embedding environmental education within secondary science curriculum presents both philosophical and practical difficulties for teachers. This ethnographic/narrative study, with its methodology grounded in eco-feminism and realism/constructivism, examines the work of six secondary science teachers as they engage in an action research project focused on merging environmental education in their science lessons. Over the course of several months the teachers examine and discuss their views and their professional development related to the project. In the place of definitive conclusions, eight propositions relating the work of secondary science teachers to environmental education, form the basis for a discussion of the implications of the study. The implications are particularly relevant to secondary schools in Ontario, Canada, where the embedding of environmental education in science studies has been mandated.

  4. Excel 2010 for environmental sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach environmental sciences statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical environmental sciences problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in environmental science courses.  Its powerful computational ability and graphical functions make learning statistics much easier than in years past.  However, Excel 2010 for Environmental Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Eac...

  5. Excel 2013 for environmental sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach environmentall sciences statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical environmental science problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in environmental science courses.  Its powerful computational ability and graphical functions make learning statistics much easier than in years past.  However, Excel 2013 for Environmental Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Each chap...

  6. Science and education across cultures: another look at the Negev Bedouins and their environmental management practices

    Science.gov (United States)

    Saito, Carlos Hiroo

    2014-12-01

    This is a rejoinder to the original article written by Wisam Sedawi, Orit Ben Zvi Assaraf, and Julie Cwikel about waste-related implication on the welfare of children living in the Negev's Bedouin Arab community. More specifically, the authors discuss the role of environmental education in the improvement of participants' life conditions. They do so by analyzing the impact of current precarious waste management practices on children's health and proposing the implementation of a science study unit in school that could assist them in dealing with the problem. My argument here is divided in three parts: first, based on the original article's information, I comment on some important characteristics of those unrecognized settlements and their waste production practices; second, I try to determine what kind of environmental education—if any—is necessary in that context to promote the desired changes put forward by the authors; and third, I adopt a cross-cultural approach to science and environmental literacy as means to provoke readers to consider the scientific value (often neglected) of traditional knowledge in attempting to solve the issues described in the original paper. In addition, both the Tbilisi Intergovernmental Conference on Environmental Education (1977) and the Treaty on Environmental Education for Sustainable Societies and Global Responsibility (1992) are used to support my argument, which also encompasses the concept of empowerment. Ultimately, bridging the Bedouin's traditional knowledge and Western modern science can help to improve science education at the school level in the unrecognized township under study by linking present and past in search of a more sustainable and peaceful future.

  7. Engaging academia to advance the science and practice of environmental public health tracking.

    Science.gov (United States)

    Strosnider, Heather; Zhou, Ying; Balluz, Lina; Qualters, Judith

    2014-10-01

    Public health agencies at the federal, state, and local level are responsible for implementing actions and policies that address health problems related to environmental hazards. These actions and policies can be informed by integrating or linking data on health, exposure, hazards, and population. The mission of the Centers for Disease Control and Prevention׳s National Environmental Public Health Tracking Program (Tracking Program) is to provide information from a nationwide network of integrated health, environmental hazard, and exposure data that drives actions to improve the health of communities. The Tracking Program and federal, state, and local partners collect, integrate, analyze, and disseminate data and information to inform environmental public health actions. However, many challenges exist regarding the availability and quality of data, the application of appropriate methods and tools to link data, and the state of the science needed to link and analyze health and environmental data. The Tracking Program has collaborated with academia to address key challenges in these areas. The collaboration has improved our understanding of the uses and limitations of available data and methods, expanded the use of existing data and methods, and increased our knowledge about the connections between health and environment. Valuable working relationships have been forged in this process, and together we have identified opportunities and improvements for future collaborations to further advance the science and practice of environmental public health tracking. Published by Elsevier Inc.

  8. Honorary Authorship Practices in Environmental Science Teams: Structural and Cultural Factors and Solutions.

    Science.gov (United States)

    Elliott, Kevin C; Settles, Isis H; Montgomery, Georgina M; Brassel, Sheila T; Cheruvelil, Kendra Spence; Soranno, Patricia A

    2017-01-01

    Overinclusive authorship practices such as honorary or guest authorship have been widely reported, and they appear to be exacerbated by the rise of large interdisciplinary collaborations that make authorship decisions particularly complex. Although many studies have reported on the frequency of honorary authorship and potential solutions to it, few have probed how the underlying dynamics of large interdisciplinary teams contribute to the problem. This article reports on a qualitative study of the authorship standards and practices of six National Science Foundation-funded interdisciplinary environmental science teams. Using interviews of the lead principal investigator and an early-career member on each team, our study explores the nature of honorary authorship practices as well as some of the motivating factors that may contribute to these practices. These factors include both structural elements (policies and procedures) and cultural elements (values and norms) that cross organizational boundaries. Therefore, we provide recommendations that address the intersection of these factors and that can be applied at multiple organizational levels.

  9. Environmental Science and Engineering Merit Badges: An Exploratory Case Study of a Non-Formal Science Education Program and the U.S. Scientific and Engineering Practices

    Science.gov (United States)

    Vick, Matthew E.; Garvey, Michael P.

    2016-01-01

    The Boy Scouts of America's Environmental Science and Engineering merit badges are two of their over 120 merit badges offered as a part of a non-formal educational program to U.S. boys. The Scientific and Engineering Practices of the U.S. Next Generation Science Standards provide a vision of science education that includes integrating eight…

  10. Practical Environmental Education and Local Contribution in the Environmental Science Laboratory Circle in the College of Science and Technology in Nihon University

    Science.gov (United States)

    Taniai, Tetsuyuki; Ito, Ken-Ichi; Sakamaki, Hiroshi

    In this paper, we presented a method and knowledge about a practical and project management education and local contribution obtained through the student activities of “Environmental science laboratory circle in the College of Science and technology in Nihon University” from 1991 to 2001. In this circle, four major projects were acted such as research, protection, clean up and enlightenment projects. Due to some problems from inside or outside of this circle, this circle projects have been stopped. The diffusion and popularization of the internet technology will help to resolve some of these problems.

  11. Using Next Generation Science Standards (NGSS) Practices to Address Scientific Misunderstandings Around Complex Environmental Issues

    Science.gov (United States)

    Turrin, M.; Kenna, T. C.

    2014-12-01

    The new NGSS provide an important opportunity for scientists to develop curriculum that links the practice of science to research-based data in order to improve understanding in areas of science that are both complex and confusing. Our curriculum focuses in particular on the fate and transport of anthropogenic radionuclides. Radioactivity, both naturally occurring and anthropogenic, is highly debated and largely misunderstood, and for large sections of the population is a source of scientific misunderstanding. Developed as part of the international GEOTRACES project which focuses on identifying ocean processes and quantifying fluxes that control the distributions of selected trace elements and isotopes in the ocean, and on establishing the sensitivity of these distributions to changing environmental conditions, the curriculum topic fits nicely into the applied focus of NGSS with both environmental and topical relevance. Our curriculum design focuses on small group discussion driven by questions, yet unlike more traditional curriculum pieces these are not questions posed to the students, rather they are questions posed by the students to facilitate their deeper understanding. Our curriculum design challenges the traditional question/answer memorization approach to instruction as we strive to develop an educational approach that supports the practice of science as well as the NGSS Cross Cutting Concepts and the Science & Engineering Practices. Our goal is for students to develop a methodology they can employ when faced with a complex scientific issue. Through background readings and team discussions they identify what type of information is important for them to know and where to find a reliable source for that information. Framing their discovery around key questions such as "What type of radioactive decay are we dealing with?", "What is the potential half-life of the isotope?", and "What are the pathways of transport of radioactivity?" allows students to evaluate a

  12. Environmental management practices and engineering science: a review and typology for future research.

    Science.gov (United States)

    Evangelinos, Konstantinos I; Allan, Stuart; Jones, Keith; Nikolaou, Ioannis E

    2014-04-01

    Current literature describes a number of environmental management practices and cleaner production methods that facilitate different industrial sectors to address their various environmental impacts. The high number of present practices makes their use especially difficult and complicated. This paper aims to shed light on this field by providing a typology of those environmental management practices (such as environmental management systems, environmental indicators assessment methodologies, and cleaner productions methods) and their limitations. It also describes the strengths and weaknesses of using such tools and thoughts for future research. © 2013 SETAC.

  13. Developing tools to link environmental flows science and its practice in Sri Lanka

    Directory of Open Access Journals (Sweden)

    N. Eriyagma

    2014-09-01

    Full Text Available The term "Environmental Flows (EF" may be defined as "the quantity, timing and quality of water flows required to sustain freshwater and estuarine ecosystems and the human livelihoods and well-being that depend on these ecosystems". It may be regarded as "water for nature" or "environmental demand" similar to crop water requirements, industrial or domestic water demand. The practice of EF is still limited to a few developed countries such as Australia, South Africa and the UK. In many developing countries EF is rarely considered in water resources planning and is often deemed "unimportant". Sri Lanka, being a developing country, is no exception to this general rule. Although the country underwent an extensive irrigation/water resources development phase during the 1960s through to the 1980s, the concept of EF was hardly considered. However, as Sri Lanka's water resources are being exploited more and more for human usage, ecologists, water practitioners and policymakers alike have realized the importance of EF in sustaining not only freshwater and estuarine ecosystems, but also their services to humans. Hence estimation of EF has been made mandatory in environmental impact assessments (EIAs of all large development projects involving river regulation/water abstraction. Considering EF is especially vital under the rapid urbanization and infrastructure development phase that dawned after the end of the war in the North and the East of the country in 2009. This paper details simple tools (including a software package which is under development and methods that may be used for coarse scale estimation of EF at/near monitored locations on major rivers of Sri Lanka, along with example applications to two locations on River Mahaweli. It is hoped that these tools will help bridge the gap between EF science and its practice in Sri Lanka and other developing countries.

  14. Environmental Science

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-02-15

    This book gives descriptions of environmental pollution such as water and soil pollution, harmful chemicals substances and radiation, nature protection on wild animals, wild plants, and nature park, environmental assessment, and environmental management. It deals with the earth environment on change and the cause of the earth environment, ozone layer, global warming and acid fallout, plan for the earth control and environment information and information system.

  15. Advanced Technologies and Data Management Practices in Environmental Science: Lessons from Academia

    Science.gov (United States)

    Hernandez, Rebecca R.; Mayernik, Matthew S.; Murphy-Mariscal, Michelle L.; Allen, Michael F.

    2012-01-01

    Environmental scientists are increasing their capitalization on advancements in technology, computation, and data management. However, the extent of that capitalization is unknown. We analyzed the survey responses of 434 graduate students to evaluate the understanding and use of such advances in the environmental sciences. Two-thirds of the…

  16. Emotions in teaching environmental science

    Science.gov (United States)

    Quigley, Cassie

    2016-09-01

    This op-ed article examines the emotional impact of teaching environmental science and considers how certain emotions can broaden viewpoints and other emotions narrow them. Specifically, it investigates how the topic of climate change became an emotional debate in a science classroom because of religious beliefs. Through reflective practice and examination of positionality, the author explored how certain teaching practices of pre-service science teachers created a productive space and other practices closed down the conversations. This article is framed with theories that explore both divergent and shared viewpoints.

  17. Applying behavior-analytic methodology to the science and practice of environmental enrichment in zoos and aquariums.

    Science.gov (United States)

    Alligood, Christina A; Dorey, Nicole R; Mehrkam, Lindsay R; Leighty, Katherine A

    2017-05-01

    Environmental enrichment in zoos and aquariums is often evaluated at two overlapping levels: published research and day-to-day institutional record keeping. Several authors have discussed ongoing challenges with small sample sizes in between-groups zoological research and have cautioned against the inappropriate use of inferential statistics (Shepherdson, , International Zoo Yearbook, 38, 118-124; Shepherdson, Lewis, Carlstead, Bauman, & Perrin, Applied Animal Behaviour Science, 147, 298-277; Swaisgood, , Applied Animal Behaviour Science, 102, 139-162; Swaisgood & Shepherdson, , Zoo Biology, 24, 499-518). Multi-institutional studies are the typically-prescribed solution, but these are expensive and difficult to carry out. Kuhar ( Zoo Biology, 25, 339-352) provided a reminder that inferential statistics are only necessary when one wishes to draw general conclusions at the population level. Because welfare is assessed at the level of the individual animal, we argue that evaluations of enrichment efficacy are often instances in which inferential statistics may be neither necessary nor appropriate. In recent years, there have been calls for the application of behavior-analytic techniques to zoo animal behavior management, including environmental enrichment (e.g., Bloomsmith, Marr, & Maple, , Applied Animal Behaviour Science, 102, 205-222; Tarou & Bashaw, , Applied Animal Behaviour Science, 102, 189-204). Single-subject (also called single-case, or small-n) designs provide a means of designing evaluations of enrichment efficacy based on an individual's behavior. We discuss how these designs might apply to research and practice goals at zoos and aquariums, contrast them with standard practices in the field, and give examples of how each could be successfully applied in a zoo or aquarium setting. © 2017 Wiley Periodicals, Inc.

  18. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The environmental Science and Technology Program was structured based on the continuous growth of environmental activities on areas related to nuclear programs at IPEN. The program comprehends five main areas: Environmental analysis: Chemical technology; Polymer technology nucleus: Chemical and Isotope characterization and Analytical Chemistry for the Nuclear Fuel Cycle samples.

  19. The art of co-production of knowledge in environmental sciences and management: lessons from international practice

    Science.gov (United States)

    Djenontin, Ida Nadia S.; Meadow, Alison M.

    2018-06-01

    This review paper addresses the challenging question of "how to" design and implement co-production of knowledge in climate science and other environmental and agricultural sciences. Based on a grounded theory review of nine (9) published case studies of transdisciplinary and collaborative research projects, the paper offers a set of common themes regarding specific components and processes for the design, implementation, and achievement of co-production of knowledge work, which represent the "Modus Operandi" of knowledge co-production. The analysis focuses on practical methodological guidance based on lessons from how different research teams have approached the challenges of complex collaborative research. We begin by identifying broad factors or actions that inhibit or facilitate the process, then highlight specific practices associated with co-production of knowledge and necessary competencies for undertaking co-production. We provide insights on issues such as the integration of social and professional cultures, gender and social equity, and power dynamics, and illustrate the different ways in which researchers have addressed these issues. By exploring the specific practices involved in knowledge co-production, this paper provides guidance to researchers on how to navigate different possibilities of the process of conducting transdisciplinary and co-production of knowledge research projects that best fit their research context, stakeholder needs, and research team capacities.

  20. Practicing environmental biotechnology

    Directory of Open Access Journals (Sweden)

    Bruce E.Rittmann

    2014-02-01

    Full Text Available Environmental biotechnology involves ″managing microbial communities to provide services to society″.Its success comes from partnering with prokaryotic microorganisms,whose wideranging metabolic capabilities can be harnessed to destroy pollutants and to generate renewable materials.Partnering with microorganisms requires that we understand them well,and important advances in molecular microbial ecology,analytical chemistry,and mathematical modeling are making it possible to look inside the black box of microbial communities.Also crucial is translating the understanding to biotechnological processes that ″work for the microorganisms so that they work for us″.Successful translation demands novel reactor designs,application of advanced materials,and partnering with practitioners and users.The Swette Center for Environmental Biotechnology,founded in at Arizona State University in 2005,brings together the science and engineering tools in an interdisciplinary environment.The Center emphasizes teamwork and collaborations with research and practice partners around the world.Three new technologies illustrate how the Center applies these principles to ″work for the microorganisms″:the H2-based membrane biofilm reactor (MBfR for reducing many oxidized contaminants in water,the microbial electrochemical cells (MXCs for converting organic wastes into renewable products,and Intimately Coupled PhotoBioCatalysis (ICPBC to detoxify very difficult to biodegrade organic pollutants.

  1. Life sciences and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  2. Life sciences and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER`s mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  3. Graphical methods and Cold War scientific practice: the Stommel Diagram's intriguing journey from the physical to the biological environmental sciences.

    Science.gov (United States)

    Vance, Tiffany C; Doel, Ronald E

    2010-01-01

    In the last quarter of the twentieth century, an innovative three-dimensional graphical technique was introduced into biological oceanography and ecology, where it spread rapidly. Used to improve scientists' understanding of the importance of scale within oceanic ecosystems, this influential diagram addressed biological scales from phytoplankton to fish, physical scales from diurnal tides to ocean currents, and temporal scales from hours to ice ages. Yet the Stommel Diagram (named for physical oceanographer Henry Stommel, who created it in 1963) had not been devised to aid ecological investigations. Rather, Stommel intended it to help plan large-scale research programs in physical oceanography, particularly as Cold War research funding enabled a dramatic expansion of physical oceanography in the 1960s. Marine ecologists utilized the Stommel Diagram to enhance research on biological production in ocean environments, a key concern by the 1970s amid growing alarm about overfishing and ocean pollution. Before the end of the twentieth century, the diagram had become a significant tool within the discipline of ecology. Tracing the path that Stommel's graphical techniques traveled from the physical to the biological environmental sciences reveals a great deal about practices in these distinct research communities and their relative professional and institutional standings in the Cold War era. Crucial to appreciating the course of that path is an understanding of the divergent intellectual and social contexts of the physical versus the biological environmental sciences.

  4. Linking Environmental Research and Practice: Lessons From The Integration of Climate Science and Water Management in the Western United States

    Science.gov (United States)

    Ferguson, D. B.; Rice, J.; Woodhouse, C. A.

    2015-12-01

    Efforts to better connect scientific research with people and organizations involved in environmental decision making are receiving increased interest and attention. Some of the challenges we currently face, however—including complex questions associated with climate change—present unique challenges because of their scale and scope. Focused research on the intersections between environment and society has provided substantial insight into dynamics of large-scale environmental change and the related impacts on people, natural resources, and ecosystems, yet our ability to connect this research to real-world decision making remains limited. Addressing these complex environmental problems requires broad cooperation between scientists and those who may apply research results in decision making, but there are few templates for guiding the growing number of scientists and practitioners now engaging in this kind of cooperative work. This presentation will offer a set of heuristics for carrying out collaborative work between scientists and practitioners. These heuristics were derived from research that examined the direct experiences of water resources professionals and climate researchers who have been working to integrate science and practice.

  5. Environmental Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The Program on Environmental Science and Technology comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalyzers) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization)

  6. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States)

    1998-12-31

    This complete survey of modern environmental science covers the four traditional spheres of the environment: water, air, earth, and life, and introduces a fifth sphere -- the anthrosphere -- which the author defines as the sphere of human activities, especially technology, that affect the earth. The book discusses how technology can be used in a manner that minimizes environmental disruption.

  7. Science and Education across Cultures: Another Look at the Negev Bedouins and Their Environmental Management Practices

    Science.gov (United States)

    Saito, Carlos Hiroo

    2014-01-01

    This is a rejoinder to the original article written by Wisam Sedawi, Orit Ben Zvi Assaraf, and Julie Cwikel about waste-related implication on the welfare of children living in the Negev's Bedouin Arab community. More specifically, the authors discuss the role of environmental education in the improvement of participants' life conditions. They do…

  8. Geography and environmental science

    OpenAIRE

    Milinčić, Miroljub; Souliotis, Lily; Mihajlović, Ljiljana; Požar, Tea

    2014-01-01

    Geography is one of the oldest academic disciplines with a strong holistic approach in conceptualizing the interaction between nature and society, i.e. animate and inanimate parts of the environment. Over time, geography has been increasing and improving its conceptual and terminological abilities for studying and understanding complex relationships among environmental systems. For this reason, geography has advanced from a well-known science about nature and society into a relevant science a...

  9. African Journals Online: Environmental Sciences

    African Journals Online (AJOL)

    Items 1 - 28 of 28 ... African Journals Online: Environmental Sciences ... Anthropology, Technology, Computer Science & Engineering, Veterinary Science ... and Metabolism (AJEM) is a biomedical peer-reviewed journal with international circulation. ... AFRREV STECH: An International Journal of Science and Technology.

  10. Practice of environmental education

    International Nuclear Information System (INIS)

    Takagi, Yoshio

    2005-01-01

    The author worked at Ishikawa Prefectural Takahama Senior High School until the last fiscal year and practiced environmental education. The syllabus of the class was as follows: (1) examination of river water quality (transparency, pH, dissolved oxygen, chemical oxygen demand, concentrations of phosphoric and chloride ions, and biological water qualification), (2) examination of air pollution (measurement of blocking of pine needle stoma with air-dust and measurement of atmospheric NO 2 concentration), (3) examination of environmental radioactivity and radiation (radon measurement by electrostatic collection of radon daughters and measurement of environmental radiation by using pocket dose-rate-meter), and (4) visitation to waste treatment center. (author)

  11. Social Science Collaboration with Environmental Health.

    Science.gov (United States)

    Hoover, Elizabeth; Renauld, Mia; Edelstein, Michael R; Brown, Phil

    2015-11-01

    Social science research has been central in documenting and analyzing community discovery of environmental exposure and consequential processes. Collaboration with environmental health science through team projects has advanced and improved our understanding of environmental health and justice. We sought to identify diverse methods and topics in which social scientists have expanded environmental health understandings at multiple levels, to examine how transdisciplinary environmental health research fosters better science, and to learn how these partnerships have been able to flourish because of the support from National Institute of Environmental Health Sciences (NIEHS). We analyzed various types of social science research to investigate how social science contributes to environmental health. We also examined NIEHS programs that foster social science. In addition, we developed a case study of a community-based participation research project in Akwesasne in order to demonstrate how social science has enhanced environmental health science. Social science has informed environmental health science through ethnographic studies of contaminated communities, analysis of spatial distribution of environmental injustice, psychological experience of contamination, social construction of risk and risk perception, and social impacts of disasters. Social science-environmental health team science has altered the way scientists traditionally explore exposure by pressing for cumulative exposure approaches and providing research data for policy applications. A transdisciplinary approach for environmental health practice has emerged that engages the social sciences to paint a full picture of the consequences of contamination so that policy makers, regulators, public health officials, and other stakeholders can better ameliorate impacts and prevent future exposure. Hoover E, Renauld M, Edelstein MR, Brown P. 2015. Social science collaboration with environmental health. Environ Health

  12. Center for Environmental Health Sciences

    Data.gov (United States)

    Federal Laboratory Consortium — The primary research objective of the Center for Environmental Health Sciences (CEHS) at the University of Montana is to advance knowledge of environmental impacts...

  13. Environmental management as situated practice

    DEFF Research Database (Denmark)

    Lippert, Ingmar; Krause, Franz; Hartmann, Niklas Klaus

    2015-01-01

    We propose an analysis of environmental management (EM) as work and as practical activity. This approach enables empirical studies of the diverse ways in which professionals, scientists, NGO staffers, and activists achieve the partial manageability of specific “environments”. In this introduction......, we sketch the debates in Human Geography, Management Studies, and Science and Technology Studies to which this special issue contributes. We identify the limits of understanding EM though the framework of ecological modernisation, and show how political ecology and work-place studies provide...... to be assessed, or as simply the implementation of dominant projects and the materialisation of hegemonic discourse. Such a shift renders EM as always messy practices of engagement, critique and improvisation. We conclude that studying the distributed and situated managing agencies, actors and their practices...

  14. Environmental science and technology

    International Nuclear Information System (INIS)

    2014-01-01

    The Program on Environmental Science and Technology developed at the Chemical and Environmental Technology Center comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalysts) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization). The Chemical and Environmental Technology Center was established in 1995, as an evolution of the former Department of Chemistry Engineering (1970). The program on environment science and technology was structured as consequence of the continuous growth of environmental activities on areas related to nuclear programs of IPEN. Moreover, it was an answer to the society concerning the climate changes and biodiversity preservation. All activities of research and development, services, supervision of graduate and under graduated students and courses performance at the center were related to the development, improvement and establishment of new technologies. The highlights of this period (2011 - 2013) were: - Development and use of modern analytical technology for the characterization of persistent pollutants and endocrine disrupters (metals, PAHA’s, PCBs, Pesticides, hormones, surfactants, plasticizer and human pharmaceuticals) in order to evaluate water quality and/or sediments; - Atmospheric chemistry and greenhouse gases: Evaluating an estimation of surface trace gas fluxes from aircraft measurements above the Amazon; - Cooperation with SABESP (Water and Sewage Company) and CETESB (State Environment Agency) in program for the development of public policies; - Studies and development in biodegradable polymers, polyolefins and advanced methods for polymer and rubber recycling and re-use; - Studies

  15. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Environmental Science and Technology developed at the Chemical and Environmental Technology Center comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalysts) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization). The Chemical and Environmental Technology Center was established in 1995, as an evolution of the former Department of Chemistry Engineering (1970). The program on environment science and technology was structured as consequence of the continuous growth of environmental activities on areas related to nuclear programs of IPEN. Moreover, it was an answer to the society concerning the climate changes and biodiversity preservation. All activities of research and development, services, supervision of graduate and under graduated students and courses performance at the center were related to the development, improvement and establishment of new technologies. The highlights of this period (2011 - 2013) were: - Development and use of modern analytical technology for the characterization of persistent pollutants and endocrine disrupters (metals, PAHA’s, PCBs, Pesticides, hormones, surfactants, plasticizer and human pharmaceuticals) in order to evaluate water quality and/or sediments; - Atmospheric chemistry and greenhouse gases: Evaluating an estimation of surface trace gas fluxes from aircraft measurements above the Amazon; - Cooperation with SABESP (Water and Sewage Company) and CETESB (State Environment Agency) in program for the development of public policies; - Studies and development in biodegradable polymers, polyolefins and advanced methods for polymer and rubber recycling and re-use; - Studies

  16. Experiences of environmental professionals in practice

    NARCIS (Netherlands)

    Bootsma, M.C.; Vermeulen, W.J.V.

    2011-01-01

    Purpose: The purpose of this paper is to explore the labor market position of environmental science graduates and the core competencies of these environmental professionals related to their working practice. Design/methodology/approach: The authors carried out two surveys amongst alumni of the

  17. Global Journal of Environmental Sciences

    African Journals Online (AJOL)

    Global Journal of Environmental Sciences is aimed at promoting research in all areas of Environmental Sciences including waste management, pollution control, and remediation of hazards. The journal is published twice a year. Visit the Global Journal Series website here: http://www.globaljournalseries.com/ ...

  18. Environmental Data Science

    NARCIS (Netherlands)

    Gibert, Karina; Horsburgh, Jeffery S.; Athanasiadis, I.N.; Holmes, Geoff

    2018-01-01

    Environmental data are growing in complexity, size, and resolution. Addressing the types of large, multidisciplinary problems faced by today's environmental scientists requires the ability to leverage available data and information to inform decision making. Successfully synthesizing heterogeneous

  19. Resilience research and policy/practice discourse in health, social, behavioral, and environmental sciences over the last ten years.

    Science.gov (United States)

    Almedom, Astier M

    2008-12-01

    Resilience research has gained increased scientific interest and political currency over the last ten years. To set this volume in the wider context of scholarly debate conducted in previous special theme issue and/or special section publications of refereed journals on resilience and related concepts (1998-2008). Peer reviewed journals of health, social, behavioral, and environmental sciences were searched systematically for articles on resilience and/or related themes published as a set. Non-English language publications were included, while those involving non-human subjects were excluded. A total of fifteen journal special issues and/or special sections (including a debate and a roundtable discussion) on resilience and/or related themes were retrieved and examined with the aim of teasing out salient points of direct relevance to African social policy and health care systems. Viewed chronologically, this series of public discussions and debates charts a progressive paradigm shift from the pathogenic perspectives on risk and vulnerability to a clear turn of attention to health-centered approaches to building resilience to disasters and preventing vulnerability to disease, social dysfunction, human and environmental resource depletion. Resilience is a dynamic and multi-dimensional process of adaptation to adverse and/or turbulent changes in human, institutional, and ecological systems across scales, and thus requires a composite, multi-faceted Resilience Index (RI), in order to be meaningfully gauged. Collaborative links between interdisciplinary research institutions, policy makers and practitioners involved in promoting sustainable social and health care systems are called for, particularly in Africa.

  20. Practical data science cookbook

    CERN Document Server

    Ojeda, Tony; Bengfort, Benjamin; Dasgupta, Abhijit

    2014-01-01

    If you are an aspiring data scientist who wants to learn data science and numerical programming concepts through hands-on, real-world project examples, this is the book for you. Whether you are brand new to data science or you are a seasoned expert, you will benefit from learning about the structure of data science projects, the steps in the data science pipeline, and the programming examples presented in this book. Since the book is formatted to walk you through the projects with examples and explanations along the way, no prior programming experience is required.

  1. Practicing environmental biotechnology

    OpenAIRE

    Bruce E.Rittmann

    2014-01-01

    Environmental biotechnology involves ″managing microbial communities to provide services to society″.Its success comes from partnering with prokaryotic microorganisms,whose wideranging metabolic capabilities can be harnessed to destroy pollutants and to generate renewable materials.Partnering with microorganisms requires that we understand them well,and important advances in molecular microbial ecology,analytical chemistry,and mathematical modeling are making it possible to look inside the b...

  2. Statistics for environmental science and management

    National Research Council Canada - National Science Library

    Manly, B.F.J

    2009-01-01

    .... Additional topics covered include environmental monitoring, impact assessment, censored data, environmental sampling, the role of statistics in environmental science, assessing site reclamation...

  3. Environmental science: An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.T.

    1985-01-01

    This book is divided into 5 major parts: Humans and Nature--An Overview, Some Concepts of Ecology, Population, Resources, and Pollution. It discusses both sides of major environmental issues and offers possible solutions to the problems humans--intentionally or unwittingly--create.

  4. Toxicogenomics in Environmental Science.

    Science.gov (United States)

    Brinke, Alexandra; Buchinger, Sebastian

    This chapter reviews the current knowledge and recent progress in the field of environmental, aquatic ecotoxicogenomics with a focus on transcriptomic methods. In ecotoxicogenomics the omics technologies are applied for the detection and assessment of adverse effects in the environment, and thus are to be distinguished from omics used in human toxicology [Snape et al., Aquat Toxicol 67:143-154, 2004]. Transcriptomic methods in ecotoxicology are applied to gain a mechanistic understanding of toxic effects on organisms or populations, and thus aim to bridge the gap between cause and effect. A worthwhile effect-based interpretation of stressor induced changes on the transcriptome is based on the principle of phenotypic-anchoring [Paules, Environ Health Perspect 111:A338-A339, 2003]. Thereby, changes on the transcriptomic level can only be identified as effects if they are clearly linked to a specific stressor-induced effect on the macroscopic level. By integrating those macroscopic and transcriptomic effects, conclusions on the effect-inducing type of the stressor can be drawn. Stressor-specific effects on the transcriptomic level can be identified as stressor-specific induced pathways, transcriptomic patterns, or stressors-specific genetic biomarkers. In this chapter, examples of the combined application of macroscopic and transcriptional effects for the identification of environmental stressors, such as aquatic pollutants, are given and discussed. By means of these examples, challenges on the way to a standardized application of transcriptomics in ecotoxicology are discussed. This is also done against the background of the application of transcriptomic methods in environmental regulation such as the EU regulation Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH).

  5. A Phytase Enzyme-Based Biochemistry Practical Particularly Suited to Students Undertaking Courses in Biotechnology and Environmental Science

    Science.gov (United States)

    Boyce, Angela; Casey, Anne; Walsh, Gary

    2004-01-01

    Courses in introductory biochemistry invariably encompass basic principles of enzymology, with reinforcement of lecture-based material in appropriate laboratory practicals. Students undertaking practical classes are more enthusiastic, and generally display improved performance, when the specific experiments undertaken show direct relevance to…

  6. From science to practice

    NARCIS (Netherlands)

    Willems, D.J.M.; Koenderink, N.J.J.P.; Top, J.L.

    2015-01-01

    The challenge of the work presented here is to make innovative research output in the agronomy and forestry domain accessible to end-users, so that it can be practically applied. We have developed an approach that consists of three key-elements: an ontology with domain knowledge, a set of documents

  7. Order Theory in Environmental Sciences

    DEFF Research Database (Denmark)

    Sørensen, P. B.; Brüggemann, R.; Lerche, D. B.

    This is the proceeding from the fifth workshop in Order Theory in Environ-mental Science. In this workshop series the concept of Partial Order Theory is development in relation to application and the use is tested based on specific problems. The Partial Order Theory will have a potential use...

  8. Environmental philosophy: from theory to practice.

    Science.gov (United States)

    Sarkar, Sahotra

    2014-03-01

    Environmental philosophy is a hybrid discipline drawing extensively from epistemology, ethics, and philosophy of science and analyzing disciplines such as conservation biology, restoration ecology, sustainability studies, and political ecology. The book being discussed both provides an overview of environmental philosophy and develops an anthropocentric framework for it. That framework treats natural values as deep cultural values. Tradeoffs between natural values are analyzed using decision theory to the extent possible, leaving many interesting question for philosophical deliberation. This framework is supposed to be applicable in practical contexts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Practical Statistics for Environmental and Biological Scientists

    CERN Document Server

    Townend, John

    2012-01-01

    All students and researchers in environmental and biological sciences require statistical methods at some stage of their work. Many have a preconception that statistics are difficult and unpleasant and find that the textbooks available are difficult to understand. Practical Statistics for Environmental and Biological Scientists provides a concise, user-friendly, non-technical introduction to statistics. The book covers planning and designing an experiment, how to analyse and present data, and the limitations and assumptions of each statistical method. The text does not refer to a specific comp

  10. Computer science handbook. Vol. 13.3. Environmental computer science. Computer science methods for environmental protection and environmental research

    International Nuclear Information System (INIS)

    Page, B.; Hilty, L.M.

    1994-01-01

    Environmental computer science is a new partial discipline of applied computer science, which makes use of methods and techniques of information processing in environmental protection. Thanks to the inter-disciplinary nature of environmental problems, computer science acts as a mediator between numerous disciplines and institutions in this sector. The handbook reflects the broad spectrum of state-of-the art environmental computer science. The following important subjects are dealt with: Environmental databases and information systems, environmental monitoring, modelling and simulation, visualization of environmental data and knowledge-based systems in the environmental sector. (orig.) [de

  11. Adapting Practices of Science Journalism to Foster Science Literacy

    Science.gov (United States)

    Polman, Joseph L.; Newman, Alan; Saul, Ellen Wendy; Farrar, Cathy

    2014-01-01

    In this paper, the authors describe how the practices of expert science journalists enable them to act as "competent outsiders" to science. We assert that selected science journalism practices can be used to design reform-based science instruction; these practices not only foster science literacy that is useful in daily life, but also…

  12. Differentiating Science Instruction: Secondary science teachers' practices

    Science.gov (United States)

    Maeng, Jennifer L.; Bell, Randy L.

    2015-09-01

    This descriptive study investigated the implementation practices of secondary science teachers who differentiate instruction. Participants included seven high school science teachers purposefully selected from four different schools located in a mid-Atlantic state. Purposeful selection ensured participants included differentiated instruction (DI) in their lesson implementation. Data included semi-structured interviews and field notes from a minimum of four classroom observations, selected to capture the variety of differentiation strategies employed. These data were analyzed using a constant-comparative approach. Each classroom observation was scored using the validated Differentiated Instruction Implementation Matrix-Modified, which captured both the extent to which critical indicators of DI were present in teachers' instruction and the performance levels at which they engaged in these components of DI. Results indicated participants implemented a variety of differentiation strategies in their classrooms with varying proficiency. Evidence suggested all participants used instructional modifications that required little advance preparation to accommodate differences in students' interests and learning profile. Four of the seven participants implemented more complex instructional strategies that required substantial advance preparation by the teacher. Most significantly, this study provides practical strategies for in-service science teachers beginning to differentiate instruction and recommendations for professional development and preservice science teacher education.

  13. Environmental Management Science Program Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    This program summary book is a compendium of project summaries submitted by principal investigators in the Environmental Management Science Program and Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program). These summaries provide information about the most recent project activities and accomplishments. All projects will be represented at the workshop poster sessions, so you will have an opportunity to meet with the researchers. The projects will be presented in the same order at the poster session as they are presented in this summary book. Detailed questions about an individual project may be directed to the investigators involved.

  14. Environmental science-policy interactions

    DEFF Research Database (Denmark)

    Kamelarczyk, Kewin Bach Friis

    + (Reduced Emissions from Deforestation and forest Degradation and enhancement of forest carbon stocks) process and the phenomenon of deforestation in Zambia as research examples. The research was carried out from mid 2008 and to mid 2013 and applies a mixed methods research design. Fieldwork was carried out...... to science? This PhD thesis contributes to answering this questions; however it does this by questioning the conceptions of science that contribute to political decision-making and by exploring the relationship between scientific knowledge, other types of knowledge and policy. This PhD study employs the REDD...... in future REDD+ design and implementation. To curtail potential negative consequences of the identified mode of science-policy interaction in Zambia, the study concludes by making a number of proposals. The proposals are generic in nature and may be found relevant in environmental policy processes outside...

  15. Eight statements on environmental research in the social sciences

    International Nuclear Information System (INIS)

    Prittwitz, V.

    1985-01-01

    Social science research on environmental problems has two main tasks: (1) to provide critical practice-oriented contributions to present and threatening environmental problems, and (2) to draw the humans-and-nature problematique into social science concepts and theoretical frameworks. In this paper, the prerequisites for achieving both tasks as well as the theoretical, political, and institutional aspects that affect them are discussed. The focus of the discussion is the interdependence between practical problem solving and development of theory. (orig.) [de

  16. Water Pollution, Environmental Science Curriculum Guide Supplement.

    Science.gov (United States)

    McKenna, Harold J.

    This curriculum guide is a 40-day unit plan on water pollution developed, in part, from the National Science Foundation Environmental Science Institutes' Ninth Grade Environmental Science Curriculum Guide. This unit contains teacher lesson plans, suggested teacher and student modules, case studies, and activities to be developed by teachers…

  17. Choosing and Using Images in Environmental Science Education

    Science.gov (United States)

    Muthersbaugh, Debbie Smick

    2012-01-01

    Although using images for teaching has been a common practice in science classrooms (Gordon & Pea, 1995) understanding the purpose or how to choose images has not typically been intentional. For this dissertation three separate studies relating to choosing and using images are prepared with environmental science in mind. Each of the studies…

  18. Science, practice, and place [Chapter 2

    Science.gov (United States)

    Daniel R. Williams

    2013-01-01

    Place-oriented inquiry and practice are proposed as keys to overcoming the persistent gap between science and practice. This chapter begins by describing some of the reasons science fails to simplify conservation practice, highlighting the challenges associated with the social and ecological sciences of multi-scaled complexity. Place concepts help scientists and...

  19. Activity and Action: Bridging Environmental Sciences and Environmental Education

    Science.gov (United States)

    Tal, Tali; Abramovitch, Anat

    2013-01-01

    The main goal of this study was to examine the Environmental Workshop unit taught to Environmental Sciences majors in the high schools in Israel and learn if, and in what ways, this unit could become a model for environmental education throughout the high school curriculum. We studied the special characteristics of the Environmental Workshop (EW)…

  20. Epistemic Agency in an Environmental Sciences Watershed Investigation Fostered by Digital Photography

    Science.gov (United States)

    Zimmerman, Heather Toomey; Weible, Jennifer L.

    2018-01-01

    This collective case study investigates the role of digital photography to support high school students' engagement in science inquiry practices during a three-week environmental sciences unit. The study's theoretical framework brings together research from digital photography, participation in environmental science practices, and epistemic…

  1. Environmental Science for All? Considering Environmental Science for Inclusion in the High School Core Curriculum

    Science.gov (United States)

    Edelson, Daniel C.

    2007-01-01

    With the dramatic growth of environmental science as an elective in high schools over the last decade, educators have the opportunity to realistically consider the possibility of incorporating environmental science into the core high school curriculum. Environmental science has several characteristics that make it a candidate for the core…

  2. Harnessing science for environmental regulation

    International Nuclear Information System (INIS)

    Graham, J.D.

    1991-01-01

    An introductory chapter by Graham frames the issues to be discussed; then the following three chapters describe the formation and character of three organizations. These chapters are written by authors who have each had an active management role in the organization they are writing about: Terry F. Yosie, now at the American Petroleum Institute, who staffed the SAB (Science Advisory Board) while he was at EPA; Robert A. Neal, who headed CIIT (Chemical Industry Institute of Toxicology) before leaving for a position at Vanderbilt University; and Thomas P. Grumbly, former executive director of HEI (Health Effects Institute) now president of Clean Sites, Inc. While these chapters are well written and make a vital contribution to the overall development of the book's themes, the most valuable and enjoyable parts of the book are the succeeding five chapters, which present case studies dealing with EPA's regulatory efforts on unleaded gasoline, perchloroethylene, formaldehyde, nitrates in drinking water, and carbon monoxide. Each of these case studies, nominally historical accounts of how one or more of these (three) organizations participated in the regulatory controversy, offer insight into the broader issues of dealing with, and incorporating into regulations scientific information that has high uncertainty. One of the richest aspects of the five case studies is the extensive use of referenced interviews with identified participants from all aspects of the regulatory process. This material illuminates the motivation, emotions, and goals of the different players, helping the reader to understand their positions and other issues, such as why industry pursues, and EPA and the environmental movement appear to resist, good science; what underlies EPA's preferences for one regulatory option over another; and why scientists are histant to give yes-or-no answers in accord with the real time needs of the regulatory agency

  3. Science Theatre as dissemination of environmental awareness

    DEFF Research Database (Denmark)

    Chemi, Tatiana; Kastberg, Peter

    2015-01-01

    hides behind this label? Is this concept at all new? The purpose of this article is threefold: 1) to describe Science Theatre in terms of typology with specific focus on environmental subjects, 2) to address Science Theatre as a borderline meeting place (agora or arena) between science and theatre 3......A community project with the intention of developing specific communication on environmental issues for children age 3-7 allies with a theatre artist and storyteller. The result is a meeting between science and theatre. Theatre, with its borderline praxis between entertainment and reflection...... offered a precious opportunity to deliver difficult scientific or social issues within the environmental mindset to such youngsters, an opportunity well exploited and well received. But what makes Science Theatre an obvious choice in order to communicate natural sciences or environmental issues? What...

  4. Science Teaching Methods: A Rationale for Practices

    Science.gov (United States)

    Osborne, Jonathan

    2011-01-01

    This article is a version of the talk given by Jonathan Osborne as the Association for Science Education (ASE) invited lecturer at the National Science Teachers' Association Annual Convention in San Francisco, USA, in April 2011. The article provides an explanatory justification for teaching about the practices of science in school science that…

  5. Aerosol science: theory and practice

    International Nuclear Information System (INIS)

    Williams, M.M.R.; Loyalka, S.K.

    1991-01-01

    The purpose of this book is twofold. First, it is intended to give a thorough treatment of the fundamentals of aerosol behavior with rigorous proofs and detailed derivations of the basic equations and removal mechanisms. Second, it is intended to provide practical examples with special attention to radioactive particles and their distribution in size following a radioactive release arising from an accident with a nuclear system. We start with a brief introduction to the applications of aerosol science and the characteristics of aerosols in Chapter 1. In Chapter 2, we devote considerable attention to single and two particle motion with respect to both translation and rotation. Chapter 3 contains extensive discussion of the aerosol general dynamical equation and the dependences of aerosol distributions on size, shape, space, composition, radioactivity, and charge. Important particle rate processes of coagulation, condensation, and deposition/resuspension are discussed in the chapters 4, 6 and 7, respectively. In Chapter 5, we provide a thorough treatment of the analytical and numerical methods used in solving the various forms of the aerosol dynamical equation. We discuss the importance and applications of aerosol science to nuclear technology and, in particular, the nuclear source term in Chapter 8. Our focus in this chapter is on discussions of nuclear accidents that can potentially release large amount of radioactivity to environment. We also discuss the progress that has been made in understanding the natural and engineered aerosol processes that limit or affect such releases. (author)

  6. Environmental science: A new opportunity for soil science

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, I.L.

    2000-01-01

    During the golden era of soil science--from the 1950s to the 1980s--the main focus of this discipline was on the role of soil in production agriculture. More recently, renewed interest in the area of environmental science has offered new opportunities to soil scientists. Thus, many soil scientists are now working in areas such as bioremediation, waste recycling, and/or contaminant transport. Environmental science has, therefore, not only changed the traditional research role of soil scientists at land grant institutions but has also influenced student enrollment, the traditional soil science curriculum, and faculty recruitment. These changes require a new breed of soil scientist, one with a background not only in soil science but also in other areas of environmental science as well.

  7. From Practice to Policy in Environmental Education

    African Journals Online (AJOL)

    practical skills that are needed to solve them. While infusion was the main focus of the country's environmental ... innovative work in the field of environmental education, thus recognising that additional thinking and experimentation are necessary to future policy formulation.The Uttarakhand. Environmental Education Centre ...

  8. Meningitis and Climate: From Science to Practice

    Science.gov (United States)

    Perez Garcia-Pando, Carlos; Thomson, Madeleine C.; Stanton, Michelle C.; Diggle, Peter J.; Hopson, Thomas; Pandya, Rajul; Miller, Ron L.; Hugonnet, Stephane

    2014-01-01

    Meningococcal meningitis is a climate sensitive infectious disease. The regional extent of the Meningitis Belt in Africa, where the majority of epidemics occur, was originally defined by Lapeysonnie in the 1960s. A combination of climatic and environmental conditions and biological and social factors have been associated to the spatial and temporal patterns of epidemics observed since the disease first emerged in West Africa over a century ago. However, there is still a lack of knowledge and data that would allow disentangling the relative effects of the diverse risk factors upon epidemics. The Meningitis Environmental Risk Information Technologies Initiative (MERIT), a collaborative research-to-practice consortium, seeks to inform national and regional prevention and control strategies across the African Meningitis Belt through the provision of new data and tools that better determine risk factors. In particular MERIT seeks to consolidate a body of knowledge that provides evidence of the contribution of climatic and environmental factors to seasonal and year-to-year variations in meningococcal meningitis incidence at both district and national scales. Here we review recent research and practice seeking to provide useful information for the epidemic response strategy of National Ministries of Health in the Meningitis Belt of Africa. In particular the research and derived tools described in this paper have focused at "getting science into policy and practice" by engaging with practitioner communities under the umbrella of MERIT to ensure the relevance of their work to operational decision-making. We limit our focus to that of reactive vaccination for meningococcal meningitis. Important but external to our discussion is the development and implementation of the new conjugate vaccine, which specifically targets meningococcus A

  9. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-01-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be…

  10. Environmental Management Science Program Workshop. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as that performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.

  11. Practical Reflexivity and Political Science

    DEFF Research Database (Denmark)

    Berling, Trine Villumsen; Bueger, Christian

    2013-01-01

    The simplistic but still influential, idea of a clear-cut boundary between science and politics does not capture the complexities of the ongoing “dialogue between science and politics”. Perhaps it never did. Critical Social Science from Mannheim to Kratochwil has made this painstakingly clear...

  12. Application in agriculture, forestry and environmental science

    International Nuclear Information System (INIS)

    Williams, J.; Holmes, J.W.; Williams, B. G.; Winkworth, R.E.

    1981-01-01

    This consideration of the applications of the neutron method in forestry, agriculture and environmental science, focusses on the analyses of the data which can be obtained with the neutron method and draws attention to problem situations associated with its use

  13. Journal of Applied Sciences and Environmental Management

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management. ... Impacts of Organic Wastes on Water Quality of Woji Creek in Port Harcourt, Nigeria ... of Old Netim Village in Akamkpa Local Government Area of Cross River State, Nigeria ...

  14. Journal of Applied Sciences and Environmental Management ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management. ... Types Of Contributions. Original research papers; review articles; case studies and short communications. 3. Copyright ... Example: Chukwu, M; Olusegun, AW; Mohammed, SSD.

  15. Environmentally-friendly practices in hotels

    Directory of Open Access Journals (Sweden)

    Miriam Mbasera

    2016-06-01

    Research purpose: To determine the environmentally-friendly practices in hotels in Zimbabwe and South Africa and establish the contribution that hotels are making towards mitigation of the negative environmental effects. Motivation for the study: Currently, the world is facing environmental issues, which include global climate change, ozone depletion, pollution, high consumption of resources and increasing amounts of solid waste. Hotels, as part of the tourism industry, exert a significant impact on the environment. While the extent and range of the impact that hotels exert on the environment suggest an urgent need to address this problem, the question that arises is whether hoteliers appreciate the need for environmentally-friendly initiatives in their establishments. Research design, approach and method: A qualitative research was carried out in eight hotels that employ the strategy of the case study in the aforementioned countries. Main findings: Currently, no policies for green management exist, although some hotels do engage in some environmentally-friendly practices. Some hotel managers do not implement green management initiatives to mitigate the environmental problems emanating from their hotel operations. Practical and/or managerial implications: This indicates that a gap exists between managers’ awareness of appropriate environmentally-friendly practices for hotels, implying a need for training and increased awareness of green management. Contribution and/or value-add: The results could guide managers in the implementation of environmentally-friendly practices in an effort to mitigate environmental problems facing the present generation.

  16. Development environmental attitude of prospective science teachers

    International Nuclear Information System (INIS)

    Iqbal, H.M.

    2000-01-01

    Since the last three decades or so, we have witnessed the growing concern of human beings, all over the world, to adopt measures to conserve and preserve environment of the planet earth, because the same has been threatened by human activity and by way of our unparalleled intervention in the otherwise balanced environment. This awareness and concern has emerged as a need of incorporating environmental Issues into the normal curricula, so that we can educate the young generation to become informed decision-makers of the future. UNESCO and UNEP have advocated (since the last three decades) to teach environmentalised science to students. In Pakistan, there have been attempts to change curricula in accordance with the need of the time. Teachers need new kinds of skills, attitudes and commitment to teach science in an environmentalised fashion. This article discusses the impact of a semester-course on change in environmental attitudes of prospective science-teachers. A pre-test, post-test method was used to ascertain any change in environmental attitude of prospective science-teachers, after studying the environmental education course. It has been shown that there was a change in the environmental attitude of science-teachers as a result of the one-semester course, but the change or the level of attitude was not substantial or satisfactory. There seems to be a need of adopting a comprehensive approach to environmental education, and introducing teaching of environmental concepts at a very early age. (author)

  17. Accelerate synthesis in ecology and environmental sciences

    Science.gov (United States)

    Synthesis of diverse knowledge is a central part of all sciences, but especially those such as ecology and environmental sciences which draw information from many disciplines. Research and education in ecology are intrinsically synthetic, and synthesis is increasingly needed to find solutions for en...

  18. COOPEUS - connecting research infrastructures in environmental sciences

    Science.gov (United States)

    Koop-Jakobsen, Ketil; Waldmann, Christoph; Huber, Robert

    2015-04-01

    The COOPEUS project was initiated in 2012 bringing together 10 research infrastructures (RIs) in environmental sciences from the EU and US in order to improve the discovery, access, and use of environmental information and data across scientific disciplines and across geographical borders. The COOPEUS mission is to facilitate readily accessible research infrastructure data to advance our understanding of Earth systems through an international community-driven effort, by: Bringing together both user communities and top-down directives to address evolving societal and scientific needs; Removing technical, scientific, cultural and geopolitical barriers for data use; and Coordinating the flow, integrity and preservation of information. A survey of data availability was conducted among the COOPEUS research infrastructures for the purpose of discovering impediments for open international and cross-disciplinary sharing of environmental data. The survey showed that the majority of data offered by the COOPEUS research infrastructures is available via the internet (>90%), but the accessibility to these data differ significantly among research infrastructures; only 45% offer open access on their data, whereas the remaining infrastructures offer restricted access e.g. do not release raw data or sensible data, demand user registration or require permission prior to release of data. These rules and regulations are often installed as a form of standard practice, whereas formal data policies are lacking in 40% of the infrastructures, primarily in the EU. In order to improve this situation COOPEUS has installed a common data-sharing policy, which is agreed upon by all the COOPEUS research infrastructures. To investigate the existing opportunities for improving interoperability among environmental research infrastructures, COOPEUS explored the opportunities with the GEOSS common infrastructure (GCI) by holding a hands-on workshop. Through exercises directly registering resources

  19. Understanding leadership in the environmental sciences

    OpenAIRE

    Evans, L.; Hicks, C.; Cohen, P.; Case, P.; Prideaux, M.; Mills, D.

    2015-01-01

    Leadership is often assumed, intuitively, to be an important driver of sustainable development. To understand how leadership is conceptualised and analysed in the environmental sciences and to discover what this research says about leadership outcomes, we conducted a review of environmental leadership research over the last ten years. We find that much of the environmental leadership literature we reviewed focuses on a few key individuals and desirable leadership competencies. It also reports...

  20. Environmental Protection Versus Foundry Engineering Practice

    OpenAIRE

    Maj M.; Werrtz J.; Piekło J.

    2017-01-01

    • Theory and practice of environmental protection in the case of foundries in Europe and Asia • Experience resulting from the cooperation with the foundries in a few European countries, China and India • Phenomena and factors affecting the pollution of the natural environment and the implementation of measures aiming at the environmental protection. Every specialist dealing with foundry processes and their impact on environmental pollution must have encountered in their professional careers n...

  1. Aviation environmental technology and science

    Institute of Scientific and Technical Information of China (English)

    Zhang Yanzhong

    2008-01-01

    Expatiating on the impact of aviation on the environment and aviation environmental protection projects are ex- pounded, and analyzing on the atmosphere pollution and effects on the aviation noise of aircraft discharge. Researching the approach to control aircraft exhaust pollution and noise pollution, and proposing the technology and management measures to reduce air pollution.

  2. Department of Environmental Science, Western

    African Journals Online (AJOL)

    USER

    2014-10-04

    Oct 4, 2014 ... Ethiopian Journal of Environmental Studies & Management 7(6): 628 – 634, 2014. ... of fuel wood, sometimes call fire-wood. For instance ... surrounding forest vegetation by felling and .... often referred to as ex-post facto was.

  3. Synchrotron Environmental Science-I Workshop Report

    International Nuclear Information System (INIS)

    1999-01-01

    Attendees of the Synchrotrons Environmental Science 1 (SES-1) workshop represented a broad spectrum of environmental science research areas and expertise in all of the current synchrotrons techniques (X-ray scattering and diffraction, X-ray absorption spectroscopy, and two- and three-dimensional X-ray imaging). These individuals came together to discuss current measurement obstacles in environmental research and, more specifically, ways to overcome such obstacles by applying synchrotrons radiation techniques. Significant obstacles in measurement affect virtually all of the research issues described. Attendees identified synchrotrons approaches of potential value in their research. A number of the environmental research studies discussed are currently being addressed with some success by synchrotron-based approaches. Nevertheless, improvements in low-Z measurement capabilities are needed to facilitate the use of synchrotrons radiation methodologies in environmental research

  4. Synchrotron Environmental Science-I Workshop Report.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-08

    Attendees of the Synchrotrons Environmental Science 1 (SES-1) workshop represented a broad spectrum of environmental science research areas and expertise in all of the current synchrotrons techniques (X-ray scattering and diffraction, X-ray absorption spectroscopy, and two- and three-dimensional X-ray imaging). These individuals came together to discuss current measurement obstacles in environmental research and, more specifically, ways to overcome such obstacles by applying synchrotrons radiation techniques. Significant obstacles in measurement affect virtually all of the research issues described. Attendees identified synchrotrons approaches of potential value in their research. A number of the environmental research studies discussed are currently being addressed with some success by synchrotron-based approaches. Nevertheless, improvements in low-Z measurement capabilities are needed to facilitate the use of synchrotrons radiation methodologies in environmental research.

  5. The precautionary principle in environmental science.

    Science.gov (United States)

    Kriebel, D; Tickner, J; Epstein, P; Lemons, J; Levins, R; Loechler, E L; Quinn, M; Rudel, R; Schettler, T; Stoto, M

    2001-01-01

    Environmental scientists play a key role in society's responses to environmental problems, and many of the studies they perform are intended ultimately to affect policy. The precautionary principle, proposed as a new guideline in environmental decision making, has four central components: taking preventive action in the face of uncertainty; shifting the burden of proof to the proponents of an activity; exploring a wide range of alternatives to possibly harmful actions; and increasing public participation in decision making. In this paper we examine the implications of the precautionary principle for environmental scientists, whose work often involves studying highly complex, poorly understood systems, while at the same time facing conflicting pressures from those who seek to balance economic growth and environmental protection. In this complicated and contested terrain, it is useful to examine the methodologies of science and to consider ways that, without compromising integrity and objectivity, research can be more or less helpful to those who would act with precaution. We argue that a shift to more precautionary policies creates opportunities and challenges for scientists to think differently about the ways they conduct studies and communicate results. There is a complicated feedback relation between the discoveries of science and the setting of policy. While maintaining their objectivity and focus on understanding the world, environmental scientists should be aware of the policy uses of their work and of their social responsibility to do science that protects human health and the environment. The precautionary principle highlights this tight, challenging linkage between science and policy. PMID:11673114

  6. The Effect of Environmental Science Projects on Students' Environmental Knowledge and Science Attitudes

    Science.gov (United States)

    Al-Balushi, Sulaiman M.; Al-Aamri, Shamsa S.

    2014-01-01

    The current study explores the effectiveness of involving students in environmental science projects for their environmental knowledge and attitudes towards science. The study design is a quasi-experimental pre-post control group design. The sample was 62 11th-grade female students studying at a public school in Oman. The sample was divided into…

  7. Behavioural science in general practice.

    Science.gov (United States)

    Wood, D R

    1979-10-01

    Dr Peter Sowerby has written an important criticism of Michael Balint's work based on his understanding of Karl Popper's writings. I dispute Sowerby's interpretation of Popper and disagree with his conclusions, which I suggest would lead general practice into a retreat. I believe Balint made a major contribution to general practice and has helped us towards practising whole-person medicine.

  8. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-04-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be integrated. In this paper we describe our philosophy of science education (ASSET approach) which is composed of bounded rationalism as a guideline for understanding teachers' practical reasoning, liberal education underlying the why of teaching, scientific perspectivism as guideline for the what and educational social constructivism as guiding choices about the how of science education. Integration of multiple philosophies into a coherent philosophy of science education is necessary but not sufficient to make it practical for teachers. Philosophies are still formulated at a too abstract level to guide teachers' practical reasoning. For this purpose, a heuristic model must be developed on an intermediate level of abstraction that will provide teachers with a bridge between these abstract ideas and their specific teaching situation. We have developed and validated such a heuristic model, the CLASS model in order to complement our ASSET approach. We illustrate how science teachers use the ASSET approach and the CLASS model to make choices about the what, the how and the why of science teaching.

  9. INNOVATIVE PRACTICES IN SCIENCE EDUCATION: A PANACEA ...

    African Journals Online (AJOL)

    Global Journal

    innovative practices for enhanced students' academic achievement in science subjects. KEYWORDS: Academic ... a new invention or way of doing something. Furthermore .... associated with scientific processes needed for advancement in ...

  10. Understanding leadership in the environmental sciences

    Directory of Open Access Journals (Sweden)

    Louisa S. Evans

    2015-03-01

    Full Text Available Leadership is often assumed, intuitively, to be an important driver of sustainable development. To understand how leadership is conceptualized and analyzed in the environmental sciences and to discover what this research says about leadership outcomes, we conducted a review of environmental leadership research over the last 10 years. We found that much of the environmental leadership literature focuses on a few key individuals and desirable leadership competencies. The literature also reports that leadership is one of the most important of a number of factors contributing to effective environmental governance. Only a subset of the literature highlights interacting sources of leadership, disaggregates leadership outcomes, or evaluates leadership processes in detail. We argue that the literature on environmental leadership is highly normative. Leadership is typically depicted as an unequivocal good, and its importance is often asserted rather than tested. We trace how leadership studies in the management sciences are evolving and argue that, taking into account the state of the art in environmental leadership research, more critical approaches to leadership research in environmental science can be developed.

  11. The DOE/NREL Environmental Science Program

    International Nuclear Information System (INIS)

    Douglas R. Lawson; Michael Gurevich

    2001-01-01

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects

  12. The DOE/NREL Environmental Science Program

    Energy Technology Data Exchange (ETDEWEB)

    Douglas R. Lawson; Michael Gurevich

    2001-05-14

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.

  13. Towards Building Science Teachers’ Understandings of Contemporary Science Practices

    Directory of Open Access Journals (Sweden)

    Greg Lancaster

    2017-03-01

    Full Text Available Faculties of Education and Science at Monash University have designed a Masters unit to assist pre-service and in-service science teachers in exploring the practices of contemporary science and examine how varied understandings can influence science communication. Teachers are encouraged to explore their current understandings of the Nature of Science (NoS and to contrast their views with those known to be widely held by society (Cobern & Loving, 1998. Teachers are challenged to provide insights into their thinking relating to the NoS. In order to build understandings of contemporary science practice each teacher shadows a research scientist and engages them in conversations intended to explore the scientists’ views of NoS and practice. Findings suggest that teachers were initially uncomfortable with the challenge to express ideas relating to their NoS and were also surprised how diverse the views of NoS can be among teachers, scientists and their peers, and that these views can directly impact ways of communicating contemporary science practice.

  14. Environmental impact assessment: theory and practice

    National Research Council Canada - National Science Library

    Wathern, Peter

    1988-01-01

    ... projects. Enshrined in legislation in the USA, Canada, Australia, the Netherlands, Japan and, latterly, in the European Community, EIA is an integral part of environmental management. The 'science' and 'art' of EIA are inextricably linked, but the distinction between them is useful and is reflected in the organization of the book. An introductory chapter p...

  15. Critical materialism: science, technology, and environmental sustainability.

    Science.gov (United States)

    York, Richard; Clark, Brett

    2010-01-01

    There are widely divergent views on how science and technology are connected to environmental problems. A view commonly held among natural scientists and policy makers is that environmental problems are primarily technical problems that can be solved via the development and implementation of technological innovations. This technologically optimistic view tends to ignore power relationships in society and the political-economic order that drives environmental degradation. An opposed view, common among postmodernist and poststructuralist scholars, is that the emergence of the scientific worldview is one of the fundamental causes of human oppression. This postmodernist view rejects scientific epistemology and often is associated with an anti-realist stance, which ultimately serves to deny the reality of environmental problems, thus (unintentionally) abetting right-wing efforts to scuttle environmental protection. We argue that both the technologically optimistic and the postmodernist views are misguided, and both undermine our ability to address environmental crises. We advocate the adoption of a critical materialist stance, which recognizes the importance of natural science for helping us to understand the world while also recognizing the social embeddedness of the scientific establishment and the need to challenge the manipulation of science by the elite.

  16. 1. National Congress of Environmental Science: Abstracts

    International Nuclear Information System (INIS)

    1995-01-01

    The First National Congress of Environmental Sciences had a plural participation in the environmental thematic. The public universities and the research institutes of the different states of Mexico submitted papers containing proposals of scientific and technological solutions to the problems of management of hazardous wastes: water and land pollution; new methods of evaluation to pollutants of air and water; protection and conservation of relevant species of the ecology; control of genetic alterations; development and conservation of natural resources, and environmental education. Another part of the abstracts is dedicated to the posters session (Author)

  17. Environmental Molecular Sciences Laboratory 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    White, Julia C.

    2005-04-17

    This 2004 Annual Report describes the research and accomplishments of staff and users of the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), located in Richland, Washington. EMSL is a multidisciplinary, national scientific user facility and research organization, operated by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy's Office of Biological and Environmental Research. The resources and opportunities within the facility are an outgrowth of the U.S. Department of Energy's (DOE) commitment to fundamental research for understanding and resolving environmental and other critical scientific issues.

  18. Nuclear analysis techniques and environmental sciences

    International Nuclear Information System (INIS)

    1997-10-01

    31 theses are collected in this book. It introduced molecular activation analysis micro-PIXE and micro-probe analysis, x-ray fluorescence analysis and accelerator mass spectrometry. The applications about these nuclear analysis techniques are presented and reviewed for environmental sciences

  19. The Environmental Science and Health Effects Program

    International Nuclear Information System (INIS)

    Michael Gurevich; Doug Lawson; Joe Mauderly

    2000-01-01

    The goal of the Environmental Science and Health Effect Program is to conduct policy-relevant research that will help us understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources

  20. The Environmental Science and Health Effects Program

    Energy Technology Data Exchange (ETDEWEB)

    Michael Gurevich; Doug Lawson; Joe Mauderly

    2000-04-10

    The goal of the Environmental Science and Health Effect Program is to conduct policy-relevant research that will help us understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources.

  1. Ecosystem Services in Environmental Science Literacy

    Science.gov (United States)

    Ruppert, John Robert

    2015-01-01

    Human beings depend on a set of benefits that emerge from functioning ecosystems, termed Ecosystem Services (ES), and make decisions in everyday life that affect these ES. Recent advancements in science have led to an increasingly sophisticated understanding of ES and how they can be used to inform environmental decision-making. Following suit, US…

  2. Community science, philosophy of science, and the practice of research.

    Science.gov (United States)

    Tebes, Jacob Kraemer

    2005-06-01

    Embedded in community science are implicit theories on the nature of reality (ontology), the justification of knowledge claims (epistemology), and how knowledge is constructed (methodology). These implicit theories influence the conceptualization and practice of research, and open up or constrain its possibilities. The purpose of this paper is to make some of these theories explicit, trace their intellectual history, and propose a shift in the way research in the social and behavioral sciences, and community science in particular, is conceptualized and practiced. After describing the influence and decline of logical empiricism, the underlying philosophical framework for science for the past century, I summarize contemporary views in the philosophy of science that are alternatives to logical empiricism. These include contextualism, normative naturalism, and scientific realism, and propose that a modified version of contextualism, known as perspectivism, affords the philosophical framework for an emerging community science. I then discuss the implications of perspectivism for community science in the form of four propositions to guide the practice of research.

  3. Making the Connection between Environmental Science and Decision Making

    Science.gov (United States)

    Woodhouse, C. A.; Crimmins, M.; Ferguson, D. B.; Garfin, G. M.; Scott, C. A.

    2011-12-01

    As society is confronted with population growth, limited resources, and the impacts of climate variability and change, it is vital that institutions of higher education promote the development of professionals who can work with decision-makers to incorporate scientific information into environmental planning and management. Skills for the communication of science are essential, but equally important is the ability to understand decision-making contexts and engage with resource managers and policy makers. It is increasingly being recognized that people who understand the linkages between science and decision making are crucial if science is to better support planning and policy. A new graduate-level seminar, "Making the Connection between Environmental Science and Decision Making," is a core course for a new post-baccalaureate certificate program, Connecting Environmental Science and Decision Making at the University of Arizona. The goal of the course is to provide students with a basic understanding of the dynamics between scientists and decision makers that result in scientific information being incorporated into environmental planning, policy, and management decisions. Through readings from the environmental and social sciences, policy, and planning literature, the course explores concepts including scientific information supply and demand, boundary organizations, co-production of knowledge, platforms for engagement, and knowledge networks. Visiting speakers help students understand some of the challenges of incorporating scientific information into planning and decision making within institutional and political contexts. The course also includes practical aspects of two-way communication via written, oral, and graphical presentations as well as through the interview process to facilitate the transfer of scientific information to decision makers as well as to broader audiences. We aspire to help students develop techniques that improve communication and

  4. How science makes environmental controversies worse

    International Nuclear Information System (INIS)

    Sarewitz, Daniel

    2004-01-01

    I use the example of the 2000 US Presidential election to show that political controversies with technical underpinnings are not resolved by technical means. Then, drawing from examples such as climate change, genetically modified foods, and nuclear waste disposal, I explore the idea that scientific inquiry is inherently and unavoidably subject to becoming politicized in environmental controversies. I discuss three reasons for this. First, science supplies contesting parties with their own bodies of relevant, legitimated facts about nature, chosen in part because they help make sense of, and are made sensible by, particular interests and normative frameworks. Second, competing disciplinary approaches to understanding the scientific bases of an environmental controversy may be causally tied to competing value-based political or ethical positions. The necessity of looking at nature through a variety of disciplinary lenses brings with it a variety of normative lenses, as well. Third, it follows from the foregoing that scientific uncertainty, which so often occupies a central place in environmental controversies, can be understood not as a lack of scientific understanding but as the lack of coherence among competing scientific understandings, amplified by the various political, cultural, and institutional contexts within which science is carried out. In light of these observations, I briefly explore the problem of why some types of political controversies become 'scientized' and others do not, and conclude that the value bases of disputes underlying environmental controversies must be fully articulated and adjudicated through political means before science can play an effective role in resolving environmental problems

  5. Environmental Protection Versus Foundry Engineering Practice

    Directory of Open Access Journals (Sweden)

    Maj M.

    2017-06-01

    Full Text Available • Theory and practice of environmental protection in the case of foundries in Europe and Asia • Experience resulting from the cooperation with the foundries in a few European countries, China and India • Phenomena and factors affecting the pollution of the natural environment and the implementation of measures aiming at the environmental protection. Every specialist dealing with foundry processes and their impact on environmental pollution must have encountered in their professional careers numerous situations in which the theory of environmental protection confronts the stark reality. The discrepancy between theory and practice can particularly be noticed in foundry engineering in developing countries where the contrasts between different countries and casting plants are extremely striking. The comparison of working conditions in European and Asian foundries provides a vast scope for further observations and analyses. Environmental protection seems not only a concern of manufacturers of castings, but also of their customers whose opinion exerts a significant influence on both the acceptability of working conditions and on the approach to environmental pollution adopted in metal casting industry. The article presents a number of examples of various outlooks on environmental issues in foundries manufacturing a wide range of cast steel and cast iron castings, where different technologies and production processes are applied.

  6. Environmental Science: 49 Science Fair Projects. Science Fair Projects Series.

    Science.gov (United States)

    Bonnet, Robert L.; Keen, G. Daniel

    This book contains 49 science fair projects designed for 6th to 9th grade students. Projects are organized by the topics of soil, ecology (projects in habitat and life cycles), pests and controls (projects in weeds and insects), recycling (projects in resources and conservation), waste products (projects in decomposition), microscopic organisms,…

  7. USGS Environmental health science strategy: providing environmental health science for a changing world: public review release

    Science.gov (United States)

    Bright, Patricia R.; Buxton, Herbert T.; Balistrieri, Laurie S.; Barber, Larry B.; Chapelle, Francis H.; Cross, Paul C.; Krabbenhoft, David P.; Plumlee, Geoffrey S.; Sleeman, Jonathan M.; Tillitt, Donald E.; Toccalino, Patricia L.; Winton, James R.

    2012-01-01

    America has an abundance of natural resources. We have bountiful clean water, fertile soil, and unrivaled national parks, wildlife refuges, and public lands. These resources enrich our lives and preserve our health and wellbeing. These resources have been maintained because of our history of respect for their value and an enduring commitment to their vigilant protection. Awareness of the social, economic, and personal value of the health of our environment is increasing. The emergence of environmentally driven diseases caused by environmental exposure to contaminants and pathogens is a growing concern worldwide. New health threats and patterns of established threats are affected by both natural and anthropogenic changes to the environment. Human activities are key drivers of emerging (new and re-emerging) health threats. Societal demands for land and natural resources, a better quality of life, improved economic prosperity, and the environmental impacts associated with these demands will continue to increase. Natural earth processes, climate trends, and related climatic events will add to the environmental impact of human activities. These environmental drivers will influence exposure to disease agents, including viral, bacterial, prion, and fungal pathogens, parasites, natural earth materials, toxins and other biogenic compounds, and synthetic chemicals and substances. The U.S. Geological Survey (USGS) defines environmental health science broadly as the interdisciplinary study of relations among the quality of the physical environment, the health of the living environment, and human health. The interactions among these three spheres are driven by human activities, ecological processes, and natural earth processes; the interactions affect exposure to contaminants and pathogens and the severity of environmentally driven diseases in animals and people. This definition provides USGS with a framework for synthesizing natural science information from across the Bureau

  8. Development in the Slovakia. General environmental science

    International Nuclear Information System (INIS)

    1998-01-01

    In this chapter the basic of the environmental science and preservation of the natural memories; The protection of the nature and landscape; The protection of the forest; The protection of the trees growing outside of the forests, parks and gardens; The protection of free growing of species of plants; The protection of free living species of animals; The protection of animals and game law; The protection of fishes and fishery; The water protection, their balance and water farm; The health protection of the man (Radiation protection and nuclear safety is included); The veterinary ministration and protection of animals; The air protection and protection of the ozone layer; Wastes and waste management; The protection and agricultural use of soil; The protection and use of minerals; The protection of cultural heritage in the landscape; The territorial planning, building order and environmental rationalizing; The assessment of influences on the environment; The state fund of the environment; The state administration for the environment; The access to environmental information; The law about the environment and basic meanings of the environmentalism; The environmental terminology in the environmental law; The environmental terminology in the development and documents of environmental law are reviewed

  9. 1998 Environmental Management Science Program Annual Report

    International Nuclear Information System (INIS)

    1999-01-01

    The Environmental Management Science Program (EMSP) is a collaborative partnership between the DOE Office of Environmental Management (EM), Office of Science (DOE-SC), and the Idaho Operations Office (DOE-ID) to sponsor basic environmental and waste management related research. Results are expected to lead to reduction of the costs, schedule, and risks associated with cleaning up the nation's nuclear complex. The EMSP research portfolio addresses the most challenging technical problems of the EM program related to high level waste, spent nuclear fuel, mixed waste, nuclear materials, remedial action, decontamination and decommissioning, and health, ecology, or risk. The EMSP was established in response to a mandate from Congress in the fiscal year 1996 Energy and Water Development Appropriations Act. Congress directed the Department to ''provide sufficient attention and resources to longer-term basic science research which needs to be done to ultimately reduce cleanup costs, develop a program that takes advantage of laboratory and university expertise, and seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective''. This mandate followed similar recommendations from the Galvin Commission to the Secretary of Energy Advisory Board. The EMSP also responds to needs identified by National Academy of Sciences experts, regulators, citizen advisory groups, and other stakeholders

  10. Psychometrics in action, science as practice.

    Science.gov (United States)

    Pearce, Jacob

    2017-07-27

    Practitioners in health sciences education and assessment regularly use a range of psychometric techniques to analyse data, evaluate models, and make crucial progression decisions regarding student learning. However, a recent editorial entitled "Is Psychometrics Science?" highlighted some core epistemological and practical problems in psychometrics, and brought its legitimacy into question. This paper attempts to address these issues by applying some key ideas from history and philosophy of science (HPS) discourse. I present some of the conceptual developments in HPS that have bearing on the psychometrics debate. Next, by shifting the focus onto what constitutes the practice of science, I discuss psychometrics in action. Some incorrectly conceptualize science as an assemblage of truths, rather than an assemblage of tools and goals. Psychometrics, however, seems to be an assemblage of methods and techniques. Psychometrics in action represents a range of practices using specific tools in specific contexts. This does not render the practice of psychometrics meaningless or futile. Engaging in debates about whether or not we should regard psychometrics as 'scientific' is, however, a fruitless enterprise. The key question and focus should be whether, on what grounds, and in what contexts, the existing methods and techniques used by psychometricians can be justified or criticized.

  11. Challenges for Data Archival Centers in Evolving Environmental Sciences

    Science.gov (United States)

    Wei, Y.; Cook, R. B.; Gu, L.; Santhana Vannan, S. K.; Beaty, T.

    2015-12-01

    Environmental science has entered into a big data era as enormous data about the Earth environment are continuously collected through field and airborne missions, remote sensing observations, model simulations, sensor networks, etc. An open-access and open-management data infrastructure for data-intensive science is a major grand challenge in global environmental research (BERAC, 2010). Such an infrastructure, as exemplified in EOSDIS, GEOSS, and NSF EarthCube, will provide a complete lifecycle of environmental data and ensures that data will smoothly flow among different phases of collection, preservation, integration, and analysis. Data archival centers, as the data integration units closest to data providers, serve as the source power to compile and integrate heterogeneous environmental data into this global infrastructure. This presentation discusses the interoperability challenges and practices of geosciences from the aspect of data archival centers, based on the operational experiences of the NASA-sponsored Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) and related environmental data management activities. Specifically, we will discuss the challenges to 1) encourage and help scientists to more actively share data with the broader scientific community, so that valuable environmental data, especially those dark data collected by individual scientists in small independent projects, can be shared and integrated into the infrastructure to tackle big science questions; 2) curate heterogeneous multi-disciplinary data, focusing on the key aspects of identification, format, metadata, data quality, and semantics to make them ready to be plugged into a global data infrastructure. We will highlight data curation practices at the ORNL DAAC for global campaigns such as BOREAS, LBA, SAFARI 2000; and 3) enhance the capabilities to more effectively and efficiently expose and deliver "big" environmental data to broad range of users and systems

  12. [Philosophy of science for psychiatric practice].

    Science.gov (United States)

    Ralston, A S G

    2010-01-01

    The prevailing view is that psychiatry has its roots in two separate methodologies: the natural sciences and the social sciences. It is assumed that these are separate domains, each with its own way of knowing. Psychiatric and psychological theories are based mainly on one or other of these two types of science; this leads to a ongoing dualism in psychiatry, which some people regard as problematical. This article aims to make a methodological contribution to the scientific and philosophical foundations of psychiatry. This philosophical and theoretical dichotomy is criticized in this article in the light of recent developments in the philosophy of science, and two methods are introduced which offer an alternative analysis: values-based practice and actor-network theory. Brief examples are given which demonstrate that a combination of these two methods can be productive for psychiatry. Values-based practice and actor-network theory provide a way of resolving the stalemate in the conflict between the physical sciences and the sciences of the mind, a conflict that is dominated by professionals. In addition these two new methods empower the professionals by not deriving legitimacy from the false image of a dichotomous science, but from a normative sense of professionalism.

  13. How Can Humanities Interventions Promote Progress in the Environmental Sciences?

    Directory of Open Access Journals (Sweden)

    Sally L. Kitch

    2017-10-01

    Full Text Available Environmental humanists make compelling arguments about the importance of the environmental humanities (EH for discovering new ways to conceptualize and address the urgent challenges of the environmental crisis now confronting the planet. Many environmental scientists in a variety of fields are also committed to incorporating socio-cultural analyses in their work. Despite such intentions and rhetoric, however, and some humanists’ eagerness to incorporate science into their own work, “radical interdisciplinarity [across the humanities and sciences] is ... rare ... and does not have the impact one would hope for” (Holm et al. 2013, p. 32. This article discusses reasons for the gap between transdisciplinary intentions and the work being done in the environmental sciences. The article also describes a project designed to address that gap. Entitled “From Innovation to Progress: Addressing Hazards of the Sustainability Sciences”, the project encourages humanities interventions in problem definition, before any solution or action is chosen. Progress offers strategies for promoting expanded stakeholder engagement, enhancing understanding of power struggles and inequities that underlie problems and over-determine solutions, and designing multiple future scenarios based on alternative values, cultural practices and beliefs, and perspectives on power distribution and entitlement.

  14. X-Informatics: Practical Semantic Science

    Science.gov (United States)

    Borne, K. D.

    2009-12-01

    The discipline of data science is merging with multiple science disciplines to form new X-informatics research disciplines. They are almost too numerous to name, but they include geoinformatics, bioinformatics, cheminformatics, biodiversity informatics, ecoinformatics, materials informatics, and the emerging discipline of astroinformatics. Within any X-informatics discipline, the information granules are unique to that discipline -- e.g., gene sequences in bio, the sky object in astro, and the spatial object in geo (such as points, lines, and polygons in the vector model, and pixels in the raster model). Nevertheless the goals are similar: transparent data re-use across subdisciplines and within education settings, information and data integration and fusion, personalization of user interactions with the data collection, semantic search and retrieval, and knowledge discovery. The implementation of an X-informatics framework enables these semantic e-science research goals. We describe the concepts, challenges, and new developments associated with the new discipline of astroinformatics, and how geoinformatics provides valuable lessons learned and a model for practical semantic science within a traditional science discipline through the accretion of data science methodologies (such as formal metadata creation, data models, data mining, information retrieval, knowledge engineering, provenance, taxonomies, and ontologies). The emerging concept of data-as-a-service (DaaS) builds upon the concept of smart data (or data DNA) for intelligent data management, automated workflows, and intelligent processing. Smart data, defined through X-informatics, enables several practical semantic science use cases, including self-discovery, data intelligence, automatic recommendations, relevance analysis, dimension reduction, feature selection, constraint-based mining, interdisciplinary data re-use, knowledge-sharing, data use in education, and more. We describe these concepts within the

  15. The nature of science in science education: theories and practices

    Directory of Open Access Journals (Sweden)

    Ana Maria Morais

    2018-01-01

    Full Text Available The article is based on results of research carried out by the ESSA Group (Sociological Studies of the Classroom centred on the inclusion of the nature of science (metascience on science education. The results, based on analyses of various educational texts and contexts – curricula/syllabuses, textbooks and pedagogic practices – and of the relations between those texts/contexts, have in general shown a reduced presence and low conceptualization of metascience. The article starts by presenting the theoretical framework of the research of the ESSA Group which was focused on the introduction of the nature of science in science education. It is mostly based on Ziman’s conceptualization of metascience (1984, 2000 and on Bernstein’s theorization of production and reproduction of knowledge, particularly his model of pedagogic discourse (1990, 2000 and knowledge structures (1999. This is followed by the description of a pedagogical strategy, theoretically grounded, which explores the nature of science in the classroom context. The intention is to give an example of a strategy which privileges a high level learning for all students and which may contribute to a reflection about the inclusion of the nature of science on science education. Finally, considerations are made about the applicability of the strategy on the basis of previous theoretical and empirical arguments which sustain its use in the context of science education.

  16. Securing a better future for all: Nuclear techniques for global development and environmental protection. NA factsheet on nuclear physics: Facilitating the peaceful and practical uses of nuclear science

    International Nuclear Information System (INIS)

    2012-01-01

    When properly applied, nuclear science - the study of atomic nuclei and other subatomic particles - can contribute in many ways to the health, development and security of communities around the world. In this context, the IAEA plays an important role in helping interested Member States develop the capabilities and infrastructure necessary to manage their own programmes devoted to nuclear and radiological applications. The IAEA's nuclear science programme helps Member States to establish sound frameworks for the efficient, safe and secure use of new nuclear technologies, including accelerator facilities, research reactors and future nuclear fusion facilities. By applying nuclear technologies in a wide variety of areas such as energy production, health care, food and agriculture, industry and the environment, Member States can benefit immensely from the ensuing socioeconomic developments, as well as providing better living conditions for their citizens.

  17. Good science, bad science: Questioning research practices in psychological research

    NARCIS (Netherlands)

    Bakker, M.

    2014-01-01

    In this dissertation we have questioned the current research practices in psychological science and thereby contributed to the current discussion about the credibility of psychological research. We specially focused on the problems with the reporting of statistical results and showed that reporting

  18. Environmental Science: Processes & Impacts in 2018.

    Science.gov (United States)

    2018-02-21

    2017 was another successful year for Environmental Science: Processes & Impacts (ESPI); it saw the expansion of our Editorial team and publication of two excellent Themed Issues, all while maintaining our commitment to provide our authors with exceptional customer service and fast times to publication. Through this Editorial, we wish to reflect upon some of the highlights from 2017 and also take this opportunity to reveal further new additions to the ESPI team and our plans for 2018.

  19. Trace-element analysis in environmental sciences

    International Nuclear Information System (INIS)

    Valkovic, V.; Moschini, G.

    1988-01-01

    The use of charged-particle accelerators in trace-element analysis in the field of environmental sciences is described in this article. Nuclear reactions, charged-particle-induced X-ray emission as well as other nuclear and atomic processes can be used individually, or combined, in developing adequate analytical systems. In addition to concentration levels, concentration levels, concentration profiles can be measured, resulting in unique information. Some examples of experiments performed are described together with the suggestions for future measurements [pt

  20. Archives: African Journal of Environmental Science and Technology

    African Journals Online (AJOL)

    Items 1 - 50 of 117 ... Archives: African Journal of Environmental Science and Technology. Journal Home > Archives: African Journal of Environmental Science and Technology. Log in or Register to get access to full text downloads.

  1. Teaching Professionals Environmental Management: Combining Educational Learning and Practice Learning

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Jørgensen, Ulrik

    2003-01-01

    semesters. The target groups are professional environmental managers working in businesses including consultants, governmental institutions and organizations. To get access to the education the students must have a technical/nature science competence at master level or bachelor level combined with relevant...... job experience. Generally the participants have had 5-15 years of practical experience and many have been or are in the position of an internal or external job change towards new tasks that require new knowledge, methodologies or management skills. The education of "Masters of Environmental Management...... they can use in complex situations on the job is not simply a question of combining different university disciplines in the right blend and topping it with some experience. It involves combining science-based knowledge into thematic structures in carefully organized learning processes. The education...

  2. External Science Courses: The Practicals Problem.

    Science.gov (United States)

    Kember, David

    1982-01-01

    Describes three methods for offering practical work for external science courses: residential sessions on campus, local centers, and use of home laboratory kits. The advantages and disadvantages of each are discussed and examples of each in operation are given. A 21-item bibliography is provided. (EAO)

  3. [Qualitative translational science in clinical practice].

    Science.gov (United States)

    Mu, Pei-Fan

    2013-10-01

    Qualitative translational research refers to the "bench-to-bedside" enterprise of harnessing knowledge from the basic sciences to produce new treatment options or nursing interventions for patients. Three evidence-based translational problems related to qualitative translational research discussed this year address the interfaces among the nursing paradigm, the basic sciences, and clinical nursing work. This article illustrates the definition of translational science and translational blocks of evidence-based practice; discusses the qualitative research perspective in evidence synthesis, evidence translation and evidence utilization; and discusses the research questions that must be answered to solve the problems of the three translational gaps from the qualitative research perspective. Qualitative inquiry has an essential role to play in efforts to improve current healthcare-provider nursing interventions, experiences, and contexts. Thus, it is vital to introduce qualitative perspectives into evidence-based practice from the knowledge discovery through to the knowledge implementation process.

  4. Growth of Environmental Science at the NSLS

    International Nuclear Information System (INIS)

    Northrup, P.; Lanzirotti, A.; Celestian, A.

    2007-01-01

    In the 25 years since the National Synchrotron Light Source (NSLS) began operations, synchrotron 'user facilities' have had a growing impact on research in molecular environmental science (MES). For example, synchrotron-based analytical techniques have allowed researchers to determine the molecular-level speciation of environmentally relevant elements and evaluate their spatial distribution and phase association at very low concentration levels (low parts per million) with micrometer or nanometer resolution [1]. For the environmental scientist, one of the primary advantages of these synchrotron-based techniques is that samples need not be disturbed or destroyed for study; characterization can often be done in-situ in dilute and heterogeneous natural samples with no need for species separation, pre-concentration, or pre-treatment [2]. Liquids, hydrated solids, and biological samples can also often be directly analyzed, which is of fundamental importance in environmental science for understanding the molecular-scale processes that occur at mineral-water interfaces and in understanding how abiotic and biotic processes are involved in the distribution, mobility and ultimate fate of molecular species in the environment.

  5. Growth of Environmental Science at the NSLS

    Energy Technology Data Exchange (ETDEWEB)

    Northrup,P.; Lanzirotti, A.; Celestian, A.

    2007-01-01

    In the 25 years since the National Synchrotron Light Source (NSLS) began operations, synchrotron 'user facilities' have had a growing impact on research in molecular environmental science (MES). For example, synchrotron-based analytical techniques have allowed researchers to determine the molecular-level speciation of environmentally relevant elements and evaluate their spatial distribution and phase association at very low concentration levels (low parts per million) with micrometer or nanometer resolution [1]. For the environmental scientist, one of the primary advantages of these synchrotron-based techniques is that samples need not be disturbed or destroyed for study; characterization can often be done in-situ in dilute and heterogeneous natural samples with no need for species separation, pre-concentration, or pre-treatment [2]. Liquids, hydrated solids, and biological samples can also often be directly analyzed, which is of fundamental importance in environmental science for understanding the molecular-scale processes that occur at mineral-water interfaces and in understanding how abiotic and biotic processes are involved in the distribution, mobility and ultimate fate of molecular species in the environment.

  6. 75 FR 65365 - National Institute of Environmental Health Sciences;

    Science.gov (United States)

    2010-10-22

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... clearly unwarranted invasion of personal privacy. Name of Committee: Environmental Health Sciences Review... evaluate grant applications. Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell...

  7. Environmental Sciences Division Groundwater Program Office

    International Nuclear Information System (INIS)

    1993-01-01

    This first edition of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems GWPO for fiscal year (FY) 1993. This introductory section describes the GWPO's staffing, organization, and funding sources. The GWPO is responsible for coordination and oversight for all components of the groundwater program at the three Oak Ridge facilities [ORNL, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], and the PGDP and PORTS, respectively. Several years ago, Energy systems senior management recognized that the manner in which groundwater activities were conducted at the five facilities could result in unnecessary duplication of effort, inadequate technical input to decisions related to groundwater issues, and could create a perception within the regulatory agencies of a confusing and inconsistent approach to groundwater issues at the different facilities. Extensive interactions among management from Environmental Compliance, Environmental Restoration (ER), Environmental Sciences Division, Environmental Safety and Health, and the five facilities ultimately led to development of a net technical umbrella organization for groundwater. On April 25, 1991, the GWPO was authorized to be set up within ORNL thereby establishing a central coordinating office that would develop a consistent technical and administrative direction for the groundwater programs of all facilities and result in compliance with all relevant U.S. Environmental Protection Agency (EPA) regulations such as RCRA and Comprehensive Environmental Restoration, Compensation and Liability Act (CERCLA) as well as U.S. Department of Energy (DOE) regulations and orders. For example, DOE Order 5400.1, issued on November 9, 1988, called for each DOE facility to develop an environmental monitoring program for all media (e.g., air, surface water, and groundwater)

  8. Teaching the Ethical Aspects of Environmental Science

    Science.gov (United States)

    Palinkas, C. M.

    2014-12-01

    Environmental and societal issues are often inherently linked, especially in coastal and estuarine environments, and science and social values must often be balanced in ecosystem management and decision-making. A new seminar course has been developed for the Marine Estuarine and Environmental Science (MEES) graduate program, an inter-institutional program within the University System of Maryland, to examine these issues. This 1-credit course, offered for the first time in Spring 2015, takes a complex systems perspective on major environmental and societal challenges to examine these linked issues in a variety of contexts. After a brief introduction to the emerging field of "geoethics," students develop a list of issues to examine throughout the seminar. Example topics could include fracking, offshore wind technology, dam removal, and iron fertilization, among others. A case-study approach is taken, with each class meeting focusing on one issue. For each case study, students are asked to 1) identify relevant scientific principles and major knowledge gaps, 2) predict potential outcomes, 3) identify stakeholders and likely viewpoints, and 4) construct communication plans to disseminate findings to these stakeholders. At the end of the semester, students give a brief presentation of the ethical aspects of their own research topics.

  9. A science data gateway for environmental management: A SCIENCE DATA GATEWAY FOR ENVIRONMENTAL MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Deborah A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faybishenko, Boris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krishnan, Harinarayan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kushner, Gary [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lansing, Carina [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Porter, Ellen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Romosan, Alexandru [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shoshani, Arie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wainwright, Haruko [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Weidmer, Arthur [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, Kesheng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-10-12

    Science data gateways are effective in providing complex science data collections to the world-wide user communities. In this paper we describe a gateway for the Advanced Simulation Capability for Environmental Management (ASCEM) framework. Built on top of established web service technologies, the ASCEM data gateway is specifically designed for environmental modeling applications. Its key distinguishing features include: (1) handling of complex spatiotemporal data, (2) offering a variety of selective data access mechanisms, (3) providing state of the art plotting and visualization of spatiotemporal data records, and (4) integrating seamlessly with a distributed workflow system using a RESTful interface. ASCEM project scientists have been using this data gateway since 2011.

  10. Research and Practical Trends in Geospatial Sciences

    Science.gov (United States)

    Karpik, A. P.; Musikhin, I. A.

    2016-06-01

    In recent years professional societies have been undergoing fundamental restructuring brought on by extensive technological change and rapid evolution of geospatial science. Almost all professional communities have been affected. Communities are embracing digital techniques, modern equipment, software and new technological solutions at a staggering pace. In this situation, when planning financial investments and intellectual resource management, it is crucial to have a clear understanding of those trends that will be in great demand in 3-7 years. This paper reviews current scientific and practical activities of such non-governmental international organizations as International Federation of Surveyors, International Cartographic Association, and International Society for Photogrammetry and Remote Sensing, analyzes and groups most relevant topics brought up at their scientific events, forecasts most probable research and practical trends in geospatial sciences, outlines topmost leading countries and emerging markets for further detailed analysis of their activities, types of scientific cooperation and joint implementation projects.

  11. Practical guide to surface science and spectroscopy

    CERN Document Server

    Chung, Yip-Wah

    2001-01-01

    Practical Guide to Surface Science and Spectroscopy provides a practical introduction to surface science as well as describes the basic analytical techniques that researchers use to understand what occurs at the surfaces of materials and at their interfaces. These techniques include auger electron spectroscopy, photoelectron spectroscopy, inelastic scattering of electrons and ions, low energy electron diffraction, scanning probe microscopy, and interfacial segregation. Understanding the behavior of materials at their surfaces is essential for materials scientists and engineers as they design and fabricate microelectronics and semiconductor devices. The book gives over 100 examples, discussion questions and problems with varying levels of difficulty. Included with this book is a CD-ROM, which not only contains the same information, but also provides many elements of animation and interaction that are not easily emulated on paper. In diverse subject matters ranging from the operation of ion pumps, computer-...

  12. RESEARCH AND PRACTICAL TRENDS IN GEOSPATIAL SCIENCES

    Directory of Open Access Journals (Sweden)

    A. P. Karpik

    2016-06-01

    Full Text Available In recent years professional societies have been undergoing fundamental restructuring brought on by extensive technological change and rapid evolution of geospatial science. Almost all professional communities have been affected. Communities are embracing digital techniques, modern equipment, software and new technological solutions at a staggering pace. In this situation, when planning financial investments and intellectual resource management, it is crucial to have a clear understanding of those trends that will be in great demand in 3-7 years. This paper reviews current scientific and practical activities of such non-governmental international organizations as International Federation of Surveyors, International Cartographic Association, and International Society for Photogrammetry and Remote Sensing, analyzes and groups most relevant topics brought up at their scientific events, forecasts most probable research and practical trends in geospatial sciences, outlines topmost leading countries and emerging markets for further detailed analysis of their activities, types of scientific cooperation and joint implementation projects.

  13. BEST: Bilingual environmental science training: Kindergarten level

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This booklet is one of a series of bilingual guides to environmental-science learning activities for students to do at home. Lesson objectives, materials required, procedure, vocabulary, and subjects integrated into the lesson are described in English for each lesson. A bilingual glossary, alphabetized by English entries, with Spanish equivalents in both English and Spanish, follows the lesson descriptions, and is itself followed by a bibliography of English-language references. This booklet includes descriptions of six lessons covering the senses of touch and sight, the sense of smell, how to distinguish living and non-living things, cell structures, the skeletal system, and the significance of food groups. 8 figs.

  14. Building Theory for Management Science and Practice

    DEFF Research Database (Denmark)

    Sanchez, Ron; Heene, Aimé

    2017-01-01

    In this paper we examine some fundamental epistemological issues in building theory for applied management science, by which we mean theory that can be usefully applied in a scientific approach to management research and practice. We first define and distinguish “grand theory” from “mid......-range theory” in the social and management sciences. We then elaborate and contrast epistemologies for (i) building “grand theory” intended to be applicable to all cases and contexts, and (ii) building “mid-range theory” intended to apply to specific kinds of contexts. We illustrate the epistemological...... challenges in building grand theory in management science by considering important differences in the abilities of two “grand theories” in strategic management – industry structure theory and firm resources theory – to support development of conceptually consistent models and propositions for empirical...

  15. Teaching Environmental Health Science for Informed Citizenship in the Science Classroom and Afterschool Clubs

    Science.gov (United States)

    Keselman, Alla; Levin, Daniel M.; Hundal, Savreen; Kramer, Judy F.; Matzkin, Karen; Dutcher, Gale

    2013-01-01

    In the era of growing concerns about human-induced climate change and sustainable development, it is important for the schools to prepare students for meaningful engagement with environmental policies that will determine the future of our society. To do this, educators need to face a number of challenges. These include deciding on the science knowledge and skills needed for informed citizenship, identifying teaching practices for fostering such knowledge and skills, and finding ways to implement new practices into the tightly packed existing curriculum. This paper describes two collaborative efforts between the U.S. National Library of Medicine (NLM) and University of Maryland College of Education that attempt to meet these challenges. The focus of both projects is on helping students develop information seeking and evaluation and argumentation skills, and applying them to complex socio-scientific issues that have bearing on students’ daily lives. The first effort involves co-designing an afterschool environmental health club curriculum with an interdisciplinary team of middle school teachers. The second effort is the development and implementation of a week-long school drinking water quality debate activity in a high school environmental science classroom. Both projects center on Tox Town, an NLM web resource that introduces students to environmental health issues in everyday environments. The paper describes successes and challenges of environmental health curriculum development, including teachers’ and researchers’ perception of contextual constraints in the club and classroom setting, tensions inherent in co-design, and students’ experience with socio-scientific argumentation. PMID:24382985

  16. Putting science into practice: saving energy in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Shove, E.

    1994-12-31

    A research project is described which has investigated the relationship between science-based knowledge of energy efficient building and practical energy saving action. A comparison of government funded research and development programmes has shown how knowledge of energy efficient building technology has been developed and applied. Beliefs about the nature of social change which underly these technical programmes have been revealed by an analysis of the theory and practice of technology transfer. An examination of three specific energy saving action contexts illustrates the tensions between standardised scientific knowledge and the diverse social and organisational situations in which technical expertise is applied. The report raises questions about the interaction of natural and social science and environmental policy. (UK)

  17. Practical reporting times for environmental samples

    International Nuclear Information System (INIS)

    Bayne, C.K.; Schmoyer, D.D.; Jenkins, R.A.

    1993-02-01

    Preanalytical holding times for environmental samples are specified because chemical and physical characteristics may change between sampling and chemical analysis. For example, the Federal Register prescribes a preanalytical holding time of 14 days for volatile organic compounds in soil stored at 4 degrees C. The American Society for Testing Materials (ASTM) uses a more technical definition that the preanalytical holding time is the day when the analyte concentration for an environmental sample falls below the lower 99% confidence interval on the analyte concentration at day zero. This study reviews various holding time definitions and suggest a new preanalytical holding time approach using acceptable error rates for measuring an environmental analyte. This practical reporting time (PRT) approach has been applied to nineteen volatile organic compounds and four explosives in three environmental soil samples. A PRT nomograph of error rates has been developed to estimate the consequences of missing a preanalytical holding time. This nomograph can be applied to a large class of analytes with concentrations that decay linearly or exponentially with time regardless of sample matrices and storage conditions

  18. Practical reporting times for environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Bayne, C.K.; Schmoyer, D.D.; Jenkins, R.A.

    1993-02-01

    Preanalytical holding times for environmental samples are specified because chemical and physical characteristics may change between sampling and chemical analysis. For example, the Federal Register prescribes a preanalytical holding time of 14 days for volatile organic compounds in soil stored at 4{degrees}C. The American Society for Testing Materials (ASTM) uses a more technical definition that the preanalytical holding time is the day when the analyte concentration for an environmental sample falls below the lower 99% confidence interval on the analyte concentration at day zero. This study reviews various holding time definitions and suggest a new preanalytical holding time approach using acceptable error rates for measuring an environmental analyte. This practical reporting time (PRT) approach has been applied to nineteen volatile organic compounds and four explosives in three environmental soil samples. A PRT nomograph of error rates has been developed to estimate the consequences of missing a preanalytical holding time. This nomograph can be applied to a large class of analytes with concentrations that decay linearly or exponentially with time regardless of sample matrices and storage conditions.

  19. Industrial environmental practices in Polish Firms

    DEFF Research Database (Denmark)

    Kræmer, Trine Pipi

    , and environment. The five case firms all had a Communist past. The firms represent three different industrial sectors; i.e. textile, energy, and publishing and printing industries. Furthermore, the firms are both private and state owned as well as in the process of privatisation.......The study investigates how discursive developments in Poland interact with industrial environmental practices in five production firms. The analysis of the discursive development covers the period from the end of World War I to the turn of the century. The areas in focus are identity, industry...

  20. Molecular environmental science and synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.E. Jr. [Stanford Univ., CA (United States)

    1995-12-31

    Molecular environmental science is a relatively new field but focuses on the chemical and physical forms of toxic and/or radioactive contaminants in soils, sediments, man-made waste forms, natural waters, and the atmosphere; their possible reactions with inorganic and organic compounds, plants, and organisms in the environment; and the molecular-level factors that control their toxicity, bioavailability, and transport. The chemical speciation of a contaminant is a major factor in determining its behavior in the environment, and synchrotron-based X-ray absorption fine structure (XAFS) spectroscopy is one of the spectroscopies of choice to quantitatively determine speciation of heavy metal contaminants in situ without selective extraction or other sample treatment. The use of high-flux insertion device beam lines at synchrotron sources and multi-element array detectors has permitted XAFS studies of metals such as Se and As in natural soils at concentration levels as low as 50 ppm. The X-ray absorption near edge structure of these metals is particularly useful in determining their oxidation state. Examples of such studies will be presented, and new insertion device beam lines under development at SSRL and the Advanced Photon Source for molecular environmental science applications will be discussed.

  1. Library and information science practice in Nigeria: trends and issues

    African Journals Online (AJOL)

    Library and information science practice in Nigeria: trends and issues. ... library and information science practice whereby the advent of new technologies has had ... for the Nigerian library schools where future professionals are being trained.

  2. A Computer Learning Center for Environmental Sciences

    Science.gov (United States)

    Mustard, John F.

    2000-01-01

    In the fall of 1998, MacMillan Hall opened at Brown University to students. In MacMillan Hall was the new Computer Learning Center, since named the EarthLab which was outfitted with high-end workstations and peripherals primarily focused on the use of remotely sensed and other spatial data in the environmental sciences. The NASA grant we received as part of the "Centers of Excellence in Applications of Remote Sensing to Regional and Global Integrated Environmental Assessments" was the primary source of funds to outfit this learning and research center. Since opening, we have expanded the range of learning and research opportunities and integrated a cross-campus network of disciplines who have come together to learn and use spatial data of all kinds. The EarthLab also forms a core of undergraduate, graduate, and faculty research on environmental problems that draw upon the unique perspective of remotely sensed data. Over the last two years, the Earthlab has been a center for research on the environmental impact of water resource use in and regions, impact of the green revolution on forest cover in India, the design of forest preserves in Vietnam, and detailed assessments of the utility of thermal and hyperspectral data for water quality analysis. It has also been used extensively for local environmental activities, in particular studies on the impact of lead on the health of urban children in Rhode Island. Finally, the EarthLab has also served as a key educational and analysis center for activities related to the Brown University Affiliated Research Center that is devoted to transferring university research to the private sector.

  3. The environmental science and law II. The short development of the environmental science and environmental law

    International Nuclear Information System (INIS)

    Klinda, J.

    1998-01-01

    This book contains the basic documents about environmental laws and related documents approved in the world and in the Slovak Republic. The system of the environmental laws and organizations in the world and in the Slovak Republic are reviewed. A review of a selected environmental laws of the Slovak Republic are included. The significant world acts (declarations, charters and other documents) are reviewed

  4. "Getting Practical" and the National Network of Science Learning Centres

    Science.gov (United States)

    Chapman, Georgina; Langley, Mark; Skilling, Gus; Walker, John

    2011-01-01

    The national network of Science Learning Centres is a co-ordinating partner in the Getting Practical--Improving Practical Work in Science programme. The principle of training provision for the "Getting Practical" programme is a cascade model. Regional trainers employed by the national network of Science Learning Centres trained the cohort of local…

  5. Science Outreach in Virtual Globes; Best Practices

    Science.gov (United States)

    Treves, R. W.

    2007-12-01

    The popularity of projects such as 'Crisis in Darfur' and the IPY (International Polar Year) network link show the potential of using the rich functionality of Virtual Globes for science outreach purposes. However, the structure of outreach projects in Virtual Globes varies widely. Consider an analogy: If you pick up a science journal you immediately know where to find the contents page and what the title and cover story are meant to communicate. That is because journals have a well defined set of norms that they follow in terms of layout and design. Currently, science projects presented in virtual globes have, at best, weakly defined norms, there are little common structural elements beyond those imposed by the constraints of the virtual globe system. This is not a criticism of the science community, it is to be expected since norms take time to develop for any new technology. An example of the development of norms are pages on the web: when they first started appearing structure was unguided but over the last few years structural elements such as a left hand side navigation system and a bread crumb trail near the header have become common. In this paper I shall describe the developing norms of structure I have observed in one area of virtual globe development; Google Earth science outreach projects. These norms include text introductions, video introductions, use of folders and overlay presentation. I shall go on to examine how best to use these norms to build a clear and engaging outreach project and describe some cartographic best practices that we should also consider adopting as norms. I also will briefly explain why I think norms in science outreach aid creativity rather than limiting it despite the counter intuitive nature of this concept.

  6. Practical science communication strategies for graduate students.

    Science.gov (United States)

    Kuehne, Lauren M; Twardochleb, Laura A; Fritschie, Keith J; Mims, Meryl C; Lawrence, David J; Gibson, Polly P; Stewart-Koster, Ben; Olden, Julian D

    2014-10-01

    Development of skills in science communication is a well-acknowledged gap in graduate training, but the constraints that accompany research (limited time, resources, and knowledge of opportunities) make it challenging to acquire these proficiencies. Furthermore, advisors and institutions may find it difficult to support graduate students adequately in these efforts. The result is fewer career and societal benefits because students have not learned to communicate research effectively beyond their scientific peers. To help overcome these hurdles, we developed a practical approach to incorporating broad science communication into any graduate-school time line. The approach consists of a portfolio approach that organizes outreach activities along a time line of planned graduate studies. To help design the portfolio, we mapped available science communication tools according to 5 core skills essential to most scientific careers: writing, public speaking, leadership, project management, and teaching. This helps graduate students consider the diversity of communication tools based on their desired skills, time constraints, barriers to entry, target audiences, and personal and societal communication goals. By designing a portfolio with an advisor's input, guidance, and approval, graduate students can gauge how much outreach is appropriate given their other commitments to teaching, research, and classes. The student benefits from the advisors' experience and mentorship, promotes the group's research, and establishes a track record of engagement. When graduate student participation in science communication is discussed, it is often recommended that institutions offer or require more training in communication, project management, and leadership. We suggest that graduate students can also adopt a do-it-yourself approach that includes determining students' own outreach objectives and time constraints and communicating these with their advisor. By doing so we hope students will

  7. Panarchy use in environmental science for risk and resilience planning

    Science.gov (United States)

    Environmental sciences have an important role in informing sustainable management of built environments by providing insights about the drivers and potentially negative impacts of global environmental change. Here, we discuss panarchy theory, a multi-scale hierarchical concept th...

  8. Climate Change: From Science to Practice.

    Science.gov (United States)

    Wheeler, Nicola; Watts, Nick

    2018-03-01

    Climate change poses a significant threat to human health. Understanding how climate science can be translated into public health practice is an essential first step in enabling robust adaptation and improving resiliency to climate change. Recent research highlights the importance of iterative approaches to public health adaptation to climate change, enabling uncertainties of health impacts and barriers to adaptation to be accounted for. There are still significant barriers to adaptation, which are context-specific and thus present unique challenges to public health practice. The implementation of flexible adaptation approaches, using frameworks targeted for public health, is key to ensuring robust adaptation to climate change in public health practice. The BRACE framework provides an excellent approach for health adaptation to climate change. Combining this with the insights provided and by the adaptation pathways approach allows for more deliberate accounting of long-term uncertainties. The mainstreaming of climate change adaptation into public health practice and planning is important in facilitating this approach and overcoming the significant barriers to effective adaptation. Yet, the immediate and future limits to adaptation provide clear justification for urgent and accelerated efforts to mitigate climate change.

  9. Epistemic agency in an environmental sciences watershed investigation fostered by digital photography

    Science.gov (United States)

    Zimmerman, Heather Toomey; Weible, Jennifer L.

    2018-05-01

    This collective case study investigates the role of digital photography to support high school students' engagement in science inquiry practices during a three-week environmental sciences unit. The study's theoretical framework brings together research from digital photography, participation in environmental science practices, and epistemic agency. Data analysed include field notes and video transcripts from two groups of learners (n = 19) that focus on how high school students used digital photography during their participation in two distinct environmental monitoring practices: stream mapping and macroinvertebrate identification. Our study resulted in two findings related to the role of digital photography where students developed knowledge as they engaged in environmental monitoring inquiry practices. First, we found that digital photography was integral to the youths' epistemic agency (defined as their confidence that they could build knowledge related to science in their community) as they engaged in data collection, documenting environmental monitoring procedures, and sharing data in the classroom. Based this finding, an implication of our work is a refined view of the role of digital photography in environmental sciences education where the use of photography enhances epistemic agency in inquiry-based activities. Second, we found that the youths innovated a use of digital photography to foster a recognition that they were capable and competent in scientific procedures during a streamside study. Based on this finding, we offer a theoretical implication that expands the construct of epistemic agency; we posit that epistemic agency includes a subcomponent where the students purposefully formulate an external recognition as producers of scientific knowledge.

  10. Leaving the classroom: a didactic framework for education in environmental sciences

    Science.gov (United States)

    Dopico, Eduardo; Garcia-Vazquez, Eva

    2011-06-01

    In Continuous Education curricula in Spain, the programs on sciences of the environment are aimed toward understandings of sustainability. Teaching practice rarely leaves the classroom for outdoor field studies. At the same time, teaching practice is generally focused on examples of how human activities are harmful for ecosystems. From a pedagogic point of view, it is less effective to teach environmental science with negative examples such as catastrophe, tragedy, and crisis. Rather, teaching environmental sciences and sustainable development might be focused on positive human-environment relationships, which is both important for the further development of students and educators. Within rural settings, there are many such examples of positive relationships that can be emphasized and integrated into the curriculum. In this article, we propose teaching environmental sciences through immersion in rural cultural life. We discuss how fieldwork serves as a learning methodology. When students are engaged through research with traditional cultural practices of environmental management, which is a part of the real and traditional culture of a region, they better understand how positive pedagogy instead of pedagogy structured around how not-to-do examples, can be used to stimulate the interactions between humans and the environment with their students. In this way, cultural goods serve as teaching resources in science and environmental education. What we present is authentic cases where adults involved in a course of Continuous Education explore `environmentally-friendly' practices of traditional agriculture in Asturias (north of Spain), employing methodologies of cultural studies.

  11. PUMAS: Practical Uses of Math And Science

    Science.gov (United States)

    Kahn, R. A.

    2009-12-01

    For more than ten years, PUMAS has provided a forum for disseminating peer-reviewed examples of Practical Uses of Math And Science, aimed at helping pre-college teachers enrich their presentation of math and science topics. Contributors include scientists, engineers, and content experts from many disciplines. The innovative ideas in PUMAS examples tend to be treasures, containing the ‘sparks’ of understanding that comes only from having real-life experience with the material. Examples can be essays, anecdotes, problems, demonstrations, or activities, and can be written in any style that serves the material well. They are keyed to the National Standards and Benchmarks, which provide the critical connection to K-12 curriculum guidelines, and the peer-review process involves at least one scientist with a relevant background, and at least one teacher at an appropriate grade level. The PUMAS Web Site has recently been upgraded. It is now a NASA-wide facility, recognized by both the National Science Teachers Association (NSTA) and the National Council of Teachers of Mathematics (NCTM). This presentation will describe and illustrate the operation of PUMAS, will highlight a few of our many treasures, and will appeal to scientists interested in contributing meaningfully to pre-college education to consider submitting examples to PUMAS.

  12. The (non)making/becoming of inquiry practicing science teachers

    Science.gov (United States)

    Sharma, Ajay; Muzaffar, Irfan

    2012-03-01

    Teacher education programs have adopted preparing science teachers that teach science through inquiry as an important pedagogic agenda. However, their efforts have not met with much success. While traditional explanations for this failure focus largely on preservice science teachers' knowledge, beliefs and conceptions regarding science and science teaching, this conceptual paper seeks to direct attention toward discursive practices surrounding inquiry science teaching in teacher education programs for understanding why most science teachers do not teach science through inquiry. The paper offers a theoretical framework centered on critical notions of subjection and performativity as a much needed perspective on making/becoming of science teachers through participation in discursive practices of science teacher education programs. It argues that research based on such perspectives have much potential to offer a deeper understanding of the difficult challenges teacher education programs face in preparing inquiry practicing science teachers.

  13. Research report 1987-1989: Environmental Quality Laboratory and Environmental Engineering Science, W. M. Keck Laboratories

    OpenAIRE

    Brooks, Norman H.

    1990-01-01

    This research biennial report for 1987-89 covers the activities of both the Environmental Engineering Science program and the Environmental Quality Laboratory for the period October 1987-November 1989. Environmental Engineering Science is the degree-granting academic program housed in the Keck Laboratories, with associated research projects. The Environmental Quality Laboratory is a research center focusing on large scale problems of environmental quality and natural resources. All the facult...

  14. Uncovering Students' Environmental Identity: An Exploration of Activities in an Environmental Science Course

    Science.gov (United States)

    Blatt, Erica

    2014-01-01

    This study at a public high school in the Northeastern United States explores how students' environmental identities are affected by various activities in an Environmental Science course. Data was collected as part of an ethnographic study involving an Environmental Science teacher and her tenth-twelfth grade students. The results focus on…

  15. Bridging the Gap between Research and Practice: Implementation Science

    Science.gov (United States)

    Olswang, Lesley B.; Prelock, Patricia A.

    2015-01-01

    Purpose: This article introduces implementation science, which focuses on research methods that promote the systematic application of research findings to practice. Method: The narrative defines implementation science and highlights the importance of moving research along the pipeline from basic science to practice as one way to facilitate…

  16. Crafting Disaster Risk Science: Environmental and geographical science sans frontières

    Directory of Open Access Journals (Sweden)

    Ailsa Holloway

    2009-11-01

    Full Text Available In keeping with the University of Cape Town’s commitment to social responsiveness (http://www.socialresponsiveness.uct.ac.za/, this article traces the process that underpinned the development and introduction of a postgraduate programme in Disaster Risk Science (DRS. It foregrounds the programme’s conceptualisation within the Department of Environmental and Geographical Science (EGS at the University of Cape Town (UCT, with particular emphasis on examining how disciplinary and theoretical coherence was balanced with cross-disciplinary application and social responsiveness. The article begins by describing the contextual conditions external to UCT’s formal teaching and learning environment that provided the necessary impetus for the new programme. It also traces the iterative relationship between context and curriculum that occurred over the period 1998–2008. This engagement was facilitated and mediated by the Disaster Mitigation for Sustainable Livelihoods Programme (DiMP, an interfacing research and advocacy unit, located within UCT’s Department of Environmental and Geographical Science. An explanation of subsequent content and sequencing of the postgraduate curriculum then follow. They illustrate the programme’s articulation with South Africa’s newly promulgated disaster management legislation, as well as its relevance and rigour in relation to the complex risk environment of South Africa’s Western Cape. The article specifically applies a transdisciplinary lens to the new programmme, in which Disaster Risk Science is conceptualized as a Mode 2 knowledge, but one that draws theoretically and methodologically on environmental and geographical science as its foundation or Mode 1 domain. It concludes by examining the DRS programme’s positive contributions both to scholarship and local risk management practices as well as the obstacles that constrained the new programme and continue to challenge its institutional sustainability.

  17. Journal of Applied Sciences and Environmental Management - Vol ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management. ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... Journal of Applied Sciences and Environmental Management - Vol 22, No 5 (2018) .... Growth Performance of Five Bean (Phaseolus spp) Varieties as Influenced by Organic ...

  18. Journal of Applied Sciences and Environmental Management - Vol ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management. ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... Journal of Applied Sciences and Environmental Management - Vol 22, No 4 (2018) ... Evaluating the effect of mobility speed on the performance of three handover algorithms in ...

  19. Evaluation of Students' Energy Conception in Environmental Science

    Science.gov (United States)

    Park, Mihwa; Johnson, Joseph A.

    2016-01-01

    While significant research has been conducted on students' conceptions of energy, alternative conceptions of energy have not been actively explored in the area of environmental science. The purpose of this study is to examine students' alternative conceptions in the environmental science discipline through the analysis of responses of first year…

  20. ETHICS AND JUSTICE IN ENVIRONMENTAL SCIENCE AND ENGINEERING

    Science.gov (United States)

    Science and engineering are built on trust. C.P. Snow's famous quote, "the only ethical principle which has made science possible is that the truth shall be told all the time" underscores the importance of honesty in science. Environmental scientists must do work that is useful...

  1. Environmental Policy, Practice and Education in Swaziland ...

    African Journals Online (AJOL)

    mandate while it adheres to environmental concerns if production is carried out in a ... 2000 Environmental Audit and Assessment Regulations (SEA, 2002a), the 2000 Waste ..... Development of a nature reserve within the plantation.

  2. Diversity and equity in science education research, policy, and practice

    CERN Document Server

    Lee, Okhee

    2010-01-01

    Provides a comprehensive, state-of-the-field analysis of current trends in the research, policy, and practice of science education. It offers valuable insights into why gaps in science achievement among racial, ethnic, cultural, linguistic, and socioeconomic groups persist, and points toward practical means of narrowing or eliminating these gaps. Lee and Buxton examine instructional practices, science-curriculum materials, assessment, teacher education, school organization, and home-school connections.

  3. Stakeholders and environmental management practices: an institutional framework

    Energy Technology Data Exchange (ETDEWEB)

    Delmas, Magali [California Univ., Santa Barbara, CA (United States); Toffel, Michael W. [California Univ., Berkeley, CA (United States)

    2004-07-01

    Despite burgeoning research on companies' environmental strategies and environmental management practices, it remains unclear why some firms adopt environmental management practices beyond regulatory compliance. This paper leverages institutional theory by proposing that stakeholders - including governments, regulators, customers, competitors, community and environmental interest groups, and industry associations - impose coercive and normative pressures on firms. However, the way in which managers perceive and act upon these pressures at the plant level depends upon plant- and parent-company-specific factors, including their track record of environmental performance, the competitive position of the parent company and the organizational structure of the plant. Beyond providing a framework of how institutional pressures influence plants' environmental management practices, various measures are proposed to quantify institutional pressures, key plant-level and parent-company-level characteristics and plant-level environmental management practices. (Author)

  4. Citizen science can improve conservation science, natural resource management, and environmental protection

    Science.gov (United States)

    McKinley, Duncan C.; Miller-Rushing, Abe J.; Ballard, Heidi L.; Bonney, Rick; Brown, Hutch; Cook-Patton, Susan; Evans, Daniel M.; French, Rebecca A.; Parrish, Julia; Phillips, Tina B.; Ryan, Sean F.; Shanley, Lea A.; Shirk, Jennifer L.; Stepenuck, Kristine F.; Weltzin, Jake F.; Wiggins, Andrea; Boyle, Owen D.; Briggs, Russell D.; Chapin, Stuart F.; Hewitt, David A.; Preuss, Peter W.; Soukup, Michael A.

    2017-01-01

    Citizen science has advanced science for hundreds of years, contributed to many peer-reviewed articles, and informed land management decisions and policies across the United States. Over the last 10 years, citizen science has grown immensely in the United States and many other countries. Here, we show how citizen science is a powerful tool for tackling many of the challenges faced in the field of conservation biology. We describe the two interwoven paths by which citizen science can improve conservation efforts, natural resource management, and environmental protection. The first path includes building scientific knowledge, while the other path involves informing policy and encouraging public action. We explore how citizen science is currently used and describe the investments needed to create a citizen science program. We find that:Citizen science already contributes substantially to many domains of science, including conservation, natural resource, and environmental science. Citizen science informs natural resource management, environmental protection, and policymaking and fosters public input and engagement.Many types of projects can benefit from citizen science, but one must be careful to match the needs for science and public involvement with the right type of citizen science project and the right method of public participation.Citizen science is a rigorous process of scientific discovery, indistinguishable from conventional science apart from the participation of volunteers. When properly designed, carried out, and evaluated, citizen science can provide sound science, efficiently generate high-quality data, and help solve problems.

  5. Mundane science use in a practice theoretical perspective

    DEFF Research Database (Denmark)

    Halkier, Bente

    2017-01-01

    understanding and public engagement with science. Many of the public communication initiatives, however, address lay people as consumers rather than citizens. This creates specific challenges for understanding public engagement with science and scientific citizenship. The article compares five different...... understandings of the relations between citizen-consumers and public issue communication involving science, where the first four types are widely represented in the Public Understanding of Science discussions. The fifth understanding is a practice theoretical perspective. The article suggests how the public...... understanding of and engagement in science literature can benefit from including a practice theoretical approach to research about mundane science use and public engagement....

  6. High Cholesterol and Complementary Health Practices: What the Science Says

    Science.gov (United States)

    ... professionals High Cholesterol and Complementary Health Practices: What the Science Says Share: February 2013 Dietary Supplements Red Yeast ... to exploring complementary health products and practices in the context of rigorous ... health researchers, and disseminating authoritative information ...

  7. Proceedings of the 6. Banska Stiavnica Days 2004. Environmental impacts on the environment. Trends in environmental sciences and radio-environmental sciences

    International Nuclear Information System (INIS)

    Hybler, P.; Maruskova, A.

    2004-12-01

    Scientific conference deals with problems in environmental sciences and radio-environmental sciences. The conference proceeded in two sections: (A) Environmental engineering, (B) Nuclear technologies. Sixty registered people and fifty guests participated on this conference. Twenty-seven presentations and eleven posters were presented. Proceedings contain twenty-six papers from which fourteen papers deal with the scope of INIS

  8. ONLINE SCIENCE LEARNING:Best Practices and Technologies

    OpenAIRE

    TOJDE

    2009-01-01

    This essential publication is for all research and academic libraries, especially those institutions with online and distance education courses available in their science education programs. This book will also benefit audiences within the science education community of practice and others interested in STEM education, virtual schools, e-learning, m-learning, natural sciences, physical sciences, biological sciences, geosciences, online learning models, virtual laboratories, virtual field trip...

  9. Using environmental forensic microscopy in exposure science.

    Science.gov (United States)

    Millette, James R; Brown, Richard S; Hill, Whitney B

    2008-01-01

    Environmental forensic microscopy investigations are based on the methods and procedures developed in the fields of criminal forensics, industrial hygiene and environmental monitoring. Using a variety of microscopes and techniques, the environmental forensic scientist attempts to reconstruct the sources and the extent of exposure based on the physical evidence left behind after particles are exchanged between an individual and the environments he or she passes through. This article describes how environmental forensic microscopy uses procedures developed for environmental monitoring, criminal forensics and industrial hygiene investigations. It provides key references to the interdisciplinary approach used in microscopic investigations. Case studies dealing with lead, asbestos, glass fibers and other particulate contaminants are used to illustrate how environmental forensic microscopy can be very useful in the initial stages of a variety of environmental exposure characterization efforts to eliminate some agents of concern and to narrow the field of possible sources of exposure.

  10. How to Practice Posthumanism in Environmental Learning: Experiences with North American and South Asian Indigenous Communities

    Directory of Open Access Journals (Sweden)

    Ranjan Datta

    2016-03-01

    Full Text Available This paper explores how to practice posthumanism in everyday life. This idea has increasingly come under scrutiny by posthumanist theorists, who are addressing fundamental ontological and epistemological questions in regard to defining an essential ‘human,' as well as the elastic boundary work between the human and nonhuman subject. Posthumanism is essential for considering today’s environmental problems and environmental science education. This paper then has three goals: developing posthumanist ontology, exploring methodology, and investigating whether environmental science education and practices can help students, teachers, and community in learning, teaching, and practicing processes. I demonstrate the complementary contributions from two Indigenous communities’ field studies that can be made when a researcher moves beyond an exclusive focus on western interests and considers participants as co-researchers. This paper concludes with a discussion of implications for this field.

  11. Explainers' development of science-learner identities through participation in a community of practice

    Science.gov (United States)

    Richardson, Anne E.

    The urgent environmental issues of today require science-literate adults to engage in business and political decisions to create solutions. Despite the need, few adults have the knowledge and skills of science literacy. This doctoral dissertation is an analytical case study examining the science-learner identity development of Exploratorium Field Trip Explainers. Located in San Francisco, CA, the Exploratorium is a museum of science, art, and human perception dedicated to nurturing curiosity and exploration. Data collected included semi-structured interviews with sixteen former Field Trip Explainers, participant observation of the current Field Trip Explainer Program, and review of relevant documentation. Data analysis employed constant comparative analysis, guided by the communities of practice theoretical framework (Wenger, 1998) and the National Research Council's (2009) Six Strands of Science Learning. Findings of this research indicate that Exploratorium Field Trip Explainers participate in a community of practice made up of a diverse group of people that values curiosity and openness to multiple ways of learning. Many participants entered the Field Trip Explainer Program with an understanding of science learning as a rigid process reserved for a select group of people; through participation in the Field Trip Explainer community of practice, participants developed an understanding of science learning as accessible and a part of everyday life. The findings of this case study have implications for research, theory, and practice in informal adult science learning, access of non-dominant groups to science learning, and adult workplace learning in communities of practice.

  12. Environmental Studies and Environmental Science at GCE '0' and 'A' Level.

    Science.gov (United States)

    Gayford, Christopher G.

    1983-01-01

    Reports on environmental studies/science at General Certificate of Examination (GCE) ordinary ("0") and advanced ("A") levels. Questionnaires were used to survey teachers (focusing on their professional training and why they teach environmental studies/science courses) and to determine the relationship between environmental…

  13. Environmental information systems - practicable decision aids

    International Nuclear Information System (INIS)

    1988-01-01

    Environmental information systems are classified in documentation systems and environmental planning systems. In environmental information systems emphasis is laid on scientific documentation. Environmental planning systems, on the other hand, involve facts on the state of the environment with respect to the air, noise, water, soil, waste management, the ecology and nature conservation. They can be used as instruments for documenting trends in enviromental pollution and the state of the art in environmental engineering. The relation polluter-environment-enforcement plays a central role for the protection of the environment (integration in terms of the KMSYS). The 'trade and process-specific emissions' system already represents an instrument for the transfer of knowledge in the field of air pollution abatement (see, e.g., Clean Air Technical Code, and the backfitting of existing plants). (DG) [de

  14. Factors affecting implementation of practical activities in science ...

    African Journals Online (AJOL)

    Absence of separate and well equipped laboratory for each science, absence of efforts made by science teacher to use local material for practice of basic activities and less attention of local government and school administrative to existing problem results in less student motivation to practical activity which have influence ...

  15. Social, economic and environmental evaluation of agri-environmental beneficial management practices

    OpenAIRE

    Kitchen, Amy Elizabeth

    2012-01-01

    In British Columbia, the Canada-British Columbia Environmental Farm Plan Beneficial Management Practices Program (BMP Program) encourages the adoption of agri-environmental practices on farms. The BMP Program is a voluntary and confidential program, which is jointly funded by the BC Ministry of Agriculture and Agriculture and Agri-Food Canada. Since 2005 the BMP Program has provided funding to farmers to adopt agri-environmental Beneficial Management Practices (BMPs) and during this time no e...

  16. Environmental and pollution science. 2nd. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Ian Pepper; Charles Gerba; Mark Brusseau,

    2006-07-01

    This book integrates a large number of subjects in environmental studies and provides a realistic and objective evaluation of pollution as a price we pay for a modern economy. It focuses on the scientific assessment of environmental quality by developing a framework of principles that can be applied to any environmental problem. It addresses tactical issues for managers and government workers such as remediation, environmental monitoring, risk assessment, and management. It can be used by professionals as well as undergraduate students. 186 ills. 79 tabs.

  17. Introduction to environmental science. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    Moran, J.M.; Morgan, M.D.; Wiersma, J.H.

    1986-01-01

    This book presents an overview of today's major environmental issues. It is organized into three parts - Part I: Concepts of Ecology; Part II: Environmental Quality and Management; and Part III: Fundamental Problems: Population, Food, and Energy. The complex issue of acid rain is only briefly discussed. The economic aspects of environmental regulation are covered where they are applicable. The breadth of the topics covered also leads to some omissions. However, in general, environmental issues seem to be treated objectively in this volume.

  18. Protection goals in environmental risk assessment: a practical approach.

    Science.gov (United States)

    Garcia-Alonso, Monica; Raybould, Alan

    2014-12-01

    Policy protection goals are set up in most countries to minimise harm to the environment, humans and animals caused by human activities. Decisions on whether to approve new agricultural products, like pesticides or genetically modified (GM) crops, take into account these policy protection goals. To support decision-making, applications for approval of commercial uses of GM crops usually comprise an environmental risk assessment (ERA). These risk assessments are analytical tools, based on science, that follow a conceptual model that includes a problem formulation step where policy protection goals are considered. However, in most countries, risk assessors face major problems in that policy protection goals set in the legislation are stated in very broad terms and are too ambiguous to be directly applicable in ERAs. This means that risk assessors often have to interpret policy protection goals without clear guidance on what effects would be considered harmful. In this paper we propose a practical approach that may help risk assessors to translate policy protection goals into unambiguous (i.e., operational) protection goals and to establish relevant assessment endpoints and risk hypotheses that can be used in ERAs. Examples are provided to show how this approach can be applied to two areas of environmental concern relevant to the ERAs of GM crops.

  19. Journal of Applied Sciences and Environmental Management - Vol ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management. ... PROMOTING ACCESS TO AFRICAN RESEARCH .... microbiological examination of hand-dug wells, boreholes and public water sources in selected areas of Ibadan, Nigeria ...

  20. Strengthening Science-based Environmental Policy Development in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Strengthening Science-based Environmental Policy Development in Burma's Democratic ... IDRC is providing funding to Simon Fraser University to support a network of ... The project will also encourage and assist in the creation of a business ...

  1. Environmental Molecular Sciences Laboratory Annual Report: Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Nancy S.; Showalter, Mary Ann

    2007-03-23

    This report describes the activities and research performed at the Environmental Molecular Sciences Laboratory, a Department of Energy national scientific user facility at Pacific Northwest National Laboratory, during Fiscal Year 2006.

  2. Journal of Applied Sciences and Environmental Management - Vol ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management. ... Mercury in Aquatic Systems of the Gulf Islands National Seashore, Southeastern ... and Chemical Remediation on Agricultural Soil Properties and Crop Growth · EMAIL FREE ...

  3. Practicing the practice: Learning to guide elementary science discussions in a practice-oriented science methods course

    Science.gov (United States)

    Shah, Ashima Mathur

    University methods courses are often criticized for telling pre-service teachers, or interns, about the theories behind teaching instead of preparing them to actually enact teaching. Shifting teacher education to be more "practice-oriented," or to focus more explicitly on the work of teaching, is a current trend for re-designing the way we prepare teachers. This dissertation addresses the current need for research that unpacks the shift to more practice-oriented approaches by studying the content and pedagogical approaches in a practice-oriented, masters-level elementary science methods course (n=42 interns). The course focused on preparing interns to guide science classroom discussions. Qualitative data, such as video records of course activities and interns' written reflections, were collected across eight course sessions. Codes were applied at the sentence and paragraph level and then grouped into themes. Five content themes were identified: foregrounding student ideas and questions, steering discussion toward intended learning goals, supporting students to do the cognitive work, enacting teacher role of facilitator, and creating a classroom culture for science discussions. Three pedagogical approach themes were identified. First, the teacher educators created images of science discussions by modeling and showing videos of this practice. They also provided focused teaching experiences by helping interns practice the interactive aspects of teaching both in the methods classroom and with smaller groups of elementary students in schools. Finally, they structured the planning and debriefing phases of teaching so interns could learn from their teaching experiences and prepare well for future experiences. The findings were analyzed through the lens of Grossman and colleagues' framework for teaching practice (2009) to reveal how the pedagogical approaches decomposed, represented, and approximated practice throughout course activities. Also, the teacher educators

  4. Routines and Communities of Practice in Public Environmental Procurement Processes

    OpenAIRE

    Larsen, Katarina; Svane, Örjan

    2005-01-01

    Environmental procurement has received increasing attention as a policy tool promoting change towards sustainable consumption and production. The successful implementation of public environmental procurement policy requires the establishment of new routines for user-producer-supplier relationships that enable the integration of environmental aspects. The aim of the study is to analyse the roles of different communities of practice and learning patterns in environmental procurement processes. ...

  5. Environmental sciences division: Environmental regulatory update table July 1988

    International Nuclear Information System (INIS)

    Langston, M.E.; Nikbakht, A.; Salk, M.S.

    1988-08-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action

  6. ACCOUNTING AS BRANCH OF KNOWLEDGE: SCIENCE, TECHNOLOGY AND PRACTICE

    OpenAIRE

    Farias, Manoel Raimundo Santana; Martins, Gilberto de Andrade

    2015-01-01

    The aim of this study was to characterize the accounting as branch of knowledge in three different fields: science, technology and practice. Through theoretical essay, we was argued that, although distinct, these fields interact, in that, as epistemology that justified the analysis here undertaken, the practical activities may be technology subject matter and that to be effective if based on one or more sciences. The difference between science and technology is given by the nature of knowledg...

  7. Environmental biotechnology for waste treatment, environmental science research, Volume 41

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, G.S.; Fox, R.; Blackburn, J.W.

    1991-01-01

    This book contains the proceedings of the symposium entitled [open quotes]Environmental Biotechnology: Moving from the Flask to the Field[close quotes] held in October 17th through 19th, 1990, in Knoxville, Tennessee. Environmental biotechnology involves the use of microorganisms and their processes for the clean-up of environmental contamination, specific examples of which include ground-water treatment, treatment of leachates, and clean-up of contaminated soils, sludges, and sediments. In comparison with other technologies, environmental biotechnology (or bioremediation) has the advantages of affecting mineralization of toxic compounds to innocuous end-products, being energy-effective with processes able to take place at a moderate temperature and pressure, safety, and economy and is, therefore, perceived to hold great potential for environmental clean-up. Bioremediation treatment technologies for contaminated soils and groundwater can take the form of: (1) solid-phase biotreatment; (2) slurry-phase treatment; (3) in situ treatment; and (4) combination biological and physical/chemical treatment. The goal of the symposium was to pressure technical accomplishments at the laboratory and field-scale levels, future technical directions and economic, public and regulatory concerns in environmental biotechnology. The book is divided into five major sections on Current Perceptions, Field-Scale Studies, Technical Issues and Concerns in Implementation, Nontechnical Issues and Concerns in Implementation, International Activities, and ends with a critical review of the symposium.

  8. The facts on file dictionary of environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, L.H.; Wyman, B. (eds.)

    1991-01-01

    More than 3000 entries of terms related to environmental science are included in this volume. The terms are defined in words meant to be understood by the nonexpert, for use in reporting to the general public. Definitions are one to two sentences in length and are accurate without being highly technical. The Appendix lists over 500 commonly used environmental science acronyms and abbreviations as well as a table of standard human factors.

  9. Attaining and maintaining 'best practice' in environmental management

    International Nuclear Information System (INIS)

    McNally, P.

    1993-01-01

    While environmental issues are constantly changing and becoming increasingly regulated, the key to high performance in environmental management is the application of best practice - best practicable technology of sites - specific standards, practices and procedures. The author also emphasised that the application of best practice in environmental management of mine sites is a dynamic process and that requires a combination of efficient environmental management and efficient production. Timing of application of technology and social factors are also determining factors in this process. The particular case of the Ranger uranium mine site is presented were the major environmental issues relate to water management, tailing management and rehabilitation. The management procedure used at Ranger for a research project proposal is outlined

  10. Environmental health science at the U.S. Geological Survey

    Science.gov (United States)

    Buxton, Herbert T.; Bright, Patricia R.

    2013-01-01

    USGS environmental health science focuses on the environment-health interface. Research characterizes the processes that affect the interaction among the physical environment, the living environment, and people, as well as the factors that affect ecological and human exposure to disease agents and the resulting toxicologic or infectious disease. The mission of USGS in environmental health science is to contribute scientific information to environmental, natural resource, agricultural, and public-health managers, who use that information to support sound decisionmaking. Coordination with partners and stakeholders will enable USGS to focus on the highest priority environmental health issues, to make relevant, timely, and useable contributions, and to become a “partner of first choice” for environmental health science.

  11. Panarchy use in environmental science for risk and resilience ...

    Science.gov (United States)

    Environmental sciences have an important role in informing sustainable management of built environments by providing insights about the drivers and potentially negative impacts of global environmental change. Here, we discuss panarchy theory, a multi-scale hierarchical concept that accounts for the dynamism of complex socio-ecological systems, especially for those systems with strong cross-scale feedbacks. The idea of panarchy underlies much of system resilience, focusing on how systems respond to known and unknown threats. Panarchy theory can provide a framework for qualitative and quantitative research and application in the environmental sciences, which can in turn inform the ongoing efforts in socio-technical resilience thinking and adaptive and transformative approaches to management. The environmental sciences strive for understanding, mitigating and reversing the negative impacts of global environmental change, including chemical pollution, to maintain sustainability options for the future, and therefore play an important role for informing management.

  12. Gender Differences in Attitudes toward Environmental Science

    Science.gov (United States)

    Carrier, Sarah J.

    2007-01-01

    This study examined the role of gender in the areas of environmental education that included environmental knowledge, attitudes, behaviors, and comfort levels in the outdoors. The current study was part of a larger study designed to explore the effects of a treatment that consisted of 14 weeks of outdoor lessons conducted in the schoolyard as…

  13. Implementing Environmental Practices for Accomplishing Sustainable Green Supply Chain Management

    Directory of Open Access Journals (Sweden)

    Minkyun Kim

    2017-07-01

    Full Text Available With the emergence of environmental protection as a global issue, implementing environmental practices for sustaining green supply chain management (GSCM has received a lot of attention. This study investigates the impact of integration with suppliers and supply disruption risk on environmental practices. It also examines the role of supplier integration and supply disruption risk on performance. Finally, it investigates the relationship between environmental practices and performance in order to sustain green supply chains. Based on 272 survey responses from supply and purchase managers, our research results support the positive impact of integration with suppliers and the negative impact of supply disruption risk on the adoption of environmental practices. Furthermore, they provide empirical evidence that environmental practices and integration with suppliers are positively associated with performance, while supply disruption risk is negatively associated with performance. This study identifies antecedents and establishes a research framework of GSCM. More importantly, it provides meaningful insights to managers regarding the implementation of environmental practices related to other supply chain practices for sustaining green supply chains.

  14. The Relationship between Environmental Moral Reasoning and Environmental Attitudes of Pre-Service Science Teachers

    Science.gov (United States)

    Tuncay, Busra; Yilmaz-Tuzun, Ozgul; Tuncer-Teksoz, Gaye

    2011-01-01

    The aim of the present study was to investigate the relationship between environmental moral reasoning patterns and environmental attitudes of 120 pre-service science teachers. Content analysis was carried out on participants' written statements regarding their concerns about the presented environmental problems and the statements were labeled as…

  15. Composable Data Processing in Environmental Science - A Process View

    NARCIS (Netherlands)

    Wombacher, Andreas

    Data processing in environmental science is essential for doing science. The heterogeneity of data sources, data processing operations and infrastructures results in a lot of manual data and process integration work done by each scientist individually. This is very inefficient and time consuming.

  16. Public ecology: an environmental science and policy for global society

    Science.gov (United States)

    David P. Robertson; R. Bruce Hull

    2003-01-01

    Public ecology exists at the interface of science and policy. Public ecology is an approach to environmental inquiry and decision making that does not expect scientific knowledge to be perfect or complete. Rather, public ecology requires that science be produced in collaboration with a wide variety of stakeholders in order to construct a body of knowledge that will...

  17. Science communication a practical guide for scientists

    CERN Document Server

    Bowater, Laura

    2012-01-01

    Science communication is a rapidly expanding area and meaningful engagement between scientists and the public requires effective communication. Designed to help the novice scientist get started with science communication, this unique guide begins with a short history of science communication before discussing the design and delivery of an effective engagement event. Along with numerous case studies written by highly regarded international contributors, the book discusses how to approach face-to-face science communication and engagement activities with the public while providing tips to avoid potential pitfalls. This book has been written for scientists at all stages of their career, including undergraduates and postgraduates wishing to engage with effective science communication for the first time, or looking to develop their science communication portfolio.

  18. Using Environmental Science as a Motivational Tool to Teach Physics to Non-Science Majors

    Science.gov (United States)

    Busch, Hauke C.

    2010-01-01

    A traditional physical science course was transformed into an environmental physical science course to teach physics to non-science majors. The objective of the new course was to improve the learning of basic physics principles by applying them to current issues of interest. A new curriculum was developed with new labs, homework assignments,…

  19. Learning and teaching for an ecological sense of place: Toward environmental/science education praxis

    Science.gov (United States)

    Hug, J. William

    1998-09-01

    This research presents a teaching model designed to enable learners to construct a highly developed ecological perspective and sense of place. The contextually-based research process draws upon scientific and indigenous knowledge from multiple data sources including: autobiographical experiences, environmental literature, science and environmental education research, historical approaches to environmental education, and phenomenological accounts from research participants. Data were analyzed using the theoretical frameworks of qualitative research, hermeneutic phenomenology, heuristics, and constructivism. The resulting model synthesizes and incorporates key educational philosophies and practices from: nature study, resident outdoor education, organized camping, conservation education, environmental education, earth education, outdoor recreation, sustainability, bio-regionalism, deep ecology, ecological and environmental literacy, science and technology in society, and adventure/challenge/experiential education. The model's four components--environmental knowledge, practicing responsible environmental behaviors, community-focused involvement, and direct experience in outdoor settings--contribute in a synergistic way to the development of ecological perspective and a sense of place. The model was honed through experiential use in an environmental science methods course for elementary and secondary prospective science teachers. The instructor/researcher employed individualized instruction, community-based learning, service learning, and the modeling of reflective teaching principles in pursuit of the model's goals. The resulting pedagogical knowledge extends the model's usefulness to such formal and non-formal educational contexts as: elementary/secondary classrooms, nature centers, museums, youth groups, and community organizations. This research has implications for the fields of education, geography, recreation/leisure studies, science teaching, and environmental

  20. Human/Nature Discourse in Environmental Science Education Resources

    Science.gov (United States)

    Chambers, Joan M.

    2008-01-01

    It is argued that the view of nature and the relationship between human beings and nature that each of us holds impacts our decisions, actions, and notions of environmental responsibility and consciousness. In this study, I investigate the discursive patterns of selected environmental science classroom resources produced by three disparate…

  1. Environmental and Medical Sciences Division progress report January - December 1975

    International Nuclear Information System (INIS)

    Johnston, J.E.

    1976-07-01

    The activities of the AERE Environmental and Medical Sciences Division for January to December 1975 are reported under sections entitled: introduction; inhalation toxicology and radionuclide analysis; whole body counting; radiation physics; environmental analysis, atmospheric pollution; medical; chemical analysis group; publications. (U.K.)

  2. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Environmental Science Information Center (ESIC). 950.6 Section 950.6 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE...

  3. Zimbabwe's Better Environmental Science Teaching Programme: A ...

    African Journals Online (AJOL)

    ) programme within the context of education for sustainable development (ESD). The first part of the paper briefly reviews developments in environmental education in southern Africa within the broader scope and goals of ESD and draws some ...

  4. Practical work in secondary science a minds-on approach

    CERN Document Server

    Abrahams, Ian

    2011-01-01

    Practical work is an essential feature of secondary science education. However, questions have been raised by some science educators about its effectiveness as a teaching and learning strategy. Whilst such an approach is generally effective in getting pupils to do things with objects and materials, it is seen as relatively ineffective in developing their conceptual understanding of the associated scientific ideas and concepts. Ian Abrahams argues that this is because it is practiced as a 'hands-on' rather than 'minds-on' activity. Abrahams draws together theory and practice on effective teaching and learning in practical work in science - covering biology, chemistry and physics. He provides clear guidance to ensure that students are encouraged and supported to be 'minds-on' as well as a 'hands-on' so that they can make the most of this learning experience. An invaluable text for inspiringaspiring andexperienced secondary science professionals, especially for those on M-level secondary science PGCE programmes.

  5. Science teacher’s idea about environmental concepts in science learning as the first step of science teacher training

    Science.gov (United States)

    Tapilouw, M. C.; Firman, H.; Redjeki, S.; Chandra, D. T.

    2018-05-01

    To refresh natural environmental concepts in science, science teacher have to attend a teacher training. In teacher training, all participant can have a good sharing and discussion with other science teacher. This study is the first step of science teacher training program held by education foundation in Bandung and attended by 20 science teacher from 18 Junior High School. The major aim of this study is gathering science teacher’s idea of environmental concepts. The core of questions used in this study are basic competencies linked with environmental concepts, environmental concepts that difficult to explain, the action to overcome difficulties and references in teaching environmental concepts. There are four major findings in this study. First finding, most environmental concepts are taught in 7th grade. Second finding, most difficult environmental concepts are found in 7th grade. Third finding, there are five actions to overcome difficulties. Fourth finding, science teacher use at least four references in mastering environmental concepts. After all, teacher training can be a solution to reduce difficulties in teaching environmental concepts.

  6. An Investigation of Literacy Practices in High School Science Classrooms

    Science.gov (United States)

    Wexler, Jade; Mitchell, Marisa A.; Clancy, Erin E.; Silverman, Rebecca D.

    2017-01-01

    This study reports findings from an exploration of the literacy practices of 10 high school science teachers. Based on observations of teachers' instruction, we report teachers' use of text, evidence-based vocabulary and comprehension practices, and grouping practices. Based on interviews with teachers, we also report teachers' perceptions…

  7. Applications of nuclear technique in environmental and medical science

    International Nuclear Information System (INIS)

    Shi Xianfeng; Shen Hao; Liu Bo; Sun Minde; Yao Huiying; Zhou Shijun; Mi Yong

    2001-01-01

    The serious environmental pollution problem and application of the nuclear technique in environmental and medical sciences were discussed. The analysed results of the elemental distribution of particles in automobile exhaust, the aerosol particle of different size and the effect of Rare Earth on cells were reported. The authors can obtain some information related to element concentration. It offers a convenient method in inspecting the environmental pollution

  8. Political Science--Yugoslav Theory and Practice.

    Science.gov (United States)

    Spadijer, Balsa

    1979-01-01

    Examines political science teaching and research in Yugoslavia and relates developments within the teaching of this discipline to the Yugoslav social and political system. Concludes that political science activities should aim toward reinforcing the trend toward socialist self-management. Journal availability: see SO 507 303. (Author/DB)

  9. Podcasting the Sciences: A Practical Overview

    Science.gov (United States)

    Barsky, Eugene; Lindstrom, Kevin

    2008-01-01

    University science education has been undergoing great amount of change since the commercialization of the Internet a decade ago. Mobile technologies in science education can encompass more than the proximal teaching and learning environment. Podcasting, for example, allows audio content from user-selected feeds to be automatically downloaded to…

  10. Environmental Education: From Policy to Practice.

    Science.gov (United States)

    Barraza, Laura; Duque-Aristizabal, Ana M.; Rebolledo, Geisha

    2003-01-01

    Details a seminar held at King's College in London in March, 2001. Presents a reading and reflection upon two major aspects of the discussion, the meanings of environmental education and education for sustainable development in different cultures and contexts. (Contains 20 references.) (Author/NB)

  11. Publications in biomedical and environmental sciences programs, 1980

    International Nuclear Information System (INIS)

    Pfuderer, H.A.; Moody, J.B.

    1981-07-01

    This bibliography contains 690 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1980. There are 529 references to articles published in journals and books and 161 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly and bimonthly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Energy, Environmental Sciences, and Computer Sciences

  12. Publications in biomedical and environmental sciences programs, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Pfuderer, H.A.; Moody, J.B.

    1981-07-01

    This bibliography contains 690 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1980. There are 529 references to articles published in journals and books and 161 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly and bimonthly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Energy, Environmental Sciences, and Computer Sciences.

  13. Practising science communication in the information age theorising professional practices

    CERN Document Server

    Holliman, Richard

    2008-01-01

    What is the impact of open access on science communication? How can scientists effectively engage and interact with the public? What role can science communication have when scientific controversies arise? Practising science communication in the information age is a collection of newly-commissioned chapters by leading scholars and practitioners of science communication. It considers how scientists communicate with each other as part of their professional practice, critically evaluating how this forms the basis of the documenting of scientific knowledge, and investigating how open access publication and open review are influencing current practices. It also explores how science communication can play a crucial role when science is disputed, investigating the role of expertise in the formation of scientific controversy and consensus. The volume provides a theoretically informed review of contemporary trends and issues that are engaging practitioners of science communication, focusing on issues such as the norms...

  14. Excel 2016 for physical sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical physical science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel is an effective learning tool for quantitative analyses in environmental science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Physical Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel 2016 to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand physical science problems. Practice problems are provided at the end of each chapter with their s...

  15. Environmental compliance audits of electric generating facilities - a practical approach

    International Nuclear Information System (INIS)

    Staker, R.D.

    1992-01-01

    As environmental regulations expand in complexity and number, and as regulatory agencies place more emphasis on enforcing regulations, it is increasingly important that electric utilities perform periodic environmental compliance audits to determine if their facilities are in compliance with federal, state, and local environmental regulations. Explicit commitment by the utility's top management and careful planning and execution of an audit are key elements in the effectiveness of an audit. This paper is directed to electric utility environmental managers and company management. The paper presents a practical approach for planning and performing a multi-media environmental compliance of an electric generating facility

  16. The Relationship between Environmental Moral Reasoning and Environmental Attitudes of Pre-Service Science Teachers

    OpenAIRE

    TUNCAY, Busra; YILMAZ-TUZUN, Ozgul; TUNCER-TEKSOZ, Gaye

    2011-01-01

    The aim of the present study was to investigate the relationship between environmental moral reasoning patterns and environmental attitudes of 120 pre-service science teachers. Content analysis was carried out on participants’ written statements regarding their concerns about the presented environmental problems and the statements were labeled as ecocentric, anthropocentric, and non-environmental according to their meanings. Then, descriptive and inferential analyses were conducted ...

  17. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090

    International Nuclear Information System (INIS)

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology

  18. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology. (KRM)

  19. Home and school environmental determinants of science ...

    African Journals Online (AJOL)

    Determinants of educational achievement extend beyond the school environment to include the home environment. Both environments provide tangible and intangible resources to students that can influence science achievement. South Africa provides a context where inequalities in socio-economic status are vast, thus the ...

  20. Journal of Applied Sciences and Environmental Management ...

    African Journals Online (AJOL)

    NARP) of the Nationally Coordinated Research Projects (NCRP), Faculty of Science, University of Port Harcourt, Nigeria. ISSN: 1119-8362. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's ...

  1. Environmental management best practices: towards social innovation

    OpenAIRE

    Batle, Julio; Orfila-Sintes, Francina; Moon, C. J.

    2018-01-01

    This research investigates exploratory environmental initiatives in tourism companies in Mallorca over five years, with special consideration to those involving partnerships and synergies with other parties (including academic ones), in an exploration of Social Innovation (SI) approaches in the industry. The paper starts with an outline of the growing importance of sustainability within the hospitality industry and its inherent relation with SI. The study draws its empirical material from ten...

  2. Practice-Based Interdisciplinary Approach and Environmental Research

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar Datta

    2017-03-01

    Full Text Available Interdisciplinary researchers and educators, as community members, creators of knowledge, and environmental activists and practitioners, have a responsibility to build a bridge between community practice, academic scholarship, and professional contributions aimed at establishing environmental sustainability. In this paper, I focus on an undervalued area of environmental politics, practices, and often unarticulated assumptions which underlie human–environmental relations. This article challenges interdisciplinary studies that are not connected with practice by reconfiguring the meaning of a community-based, interdisciplinary approach. Drawing from works by Foucault, Latour, and Haraway, this paper first shows how to reconfigure the meaning of an interdisciplinary approach. Second, using Bourdieu and Brightman’s ethnographic studies as a framework, the paper situates practice as central to our efforts to deconstruct and replace current interdisciplinary initiatives with a practice-based approach. Through a practice-based interdisciplinary approach (PIA, environmental educators and researchers gain an awareness of and learn to make an investment in sustainable communities. As teams of environmental researchers practising in the local community, they are meaningfully involved with the community, with each other, and with the environment.

  3. Best Practices for Gender Equality in Science

    Indian Academy of Sciences (India)

    ranjeetha

    Promotion of Research and Teaching on Gender Issues. 2. Data Collection. 3. Funding. -. U S National Science Foundation's ADVANCE (Advancement of Women in ..... Sense of Balance, as primary caregivers of children, decision- makers in ...

  4. Safety, Health, and Environmental Auditing A Practical Guide

    CERN Document Server

    Pain, Simon Watson

    2010-01-01

    A practical guide to environmental, safety, and occupational health audits. It allows organizations and business to avoid expensive external auditors and retain the knowledge and learning 'in-house'. It allows any competent manager or safety/environmental officer to undertake in-house audits in a competent and reproducible fashion.

  5. Environmental Reporting and Disclosure Practices - In Malaysian Property Industry

    OpenAIRE

    Natthondan, Shankari

    2009-01-01

    This research examined and analyzed the extent of environmental reporting and disclosure practices of the Kuala Lumpur Composite Index Companies (KLCI) as listed on the Bursa Malaysia on 21 January 2008. In particular the property industry companies were identified as a high profile sector as it is more sensitively exposed to environmental activities. The degree of reporting on environmental matters by this category of listed companies is indicative of the trend of the overall compliance and ...

  6. Department of Architecture, College of Environmental Sciences ...

    African Journals Online (AJOL)

    USER

    2015-06-02

    Jun 2, 2015 ... Ethiopian Journal of Environmental Studies & Management 8(5): ... Town Planning and Urban Development Authorities are vested with ... case may be, compensations will have to be made wherever ... major transportation networks, the .... regions. Statement of Research Problem. Akure, the capital city of ...

  7. Environmental Science Education at Sinte Gleska University

    Science.gov (United States)

    Burns, D.

    2004-12-01

    At Sinte Gleska University, basically we face two problems 1. The lack of natural resources/environmental education instructors and students. 2. High turnover in the drinking water (and waste water / environmental monitoring) jobs. As soon as people are trained, they typically leave for better paying jobs elsewhere. To overcome these In addition to regular teaching we conduct several workshops year around on environmental issues ranging from tree plantation, preserving water resources, sustainable agriculture and natural therapy (ayurvedic treatment- the Lakota way of treating illness) etc. We offer workshops about the negative impacts brought about by the development and use of hydropower, fossil fuel and nuclear energy (but include topics like reclamation of land after mining). Not only does the harvest and consumption of these energy forms devastate the land and its plants, animals, water and air, but the mental, spiritual, and physical health and culture of Native peoples suffer as well. In contrast, wind power offers an environmentally friendly source of energy that also can provide a source of income to reservations.

  8. Environmental science and technology: An overview

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is intended to provide an overview of the scientific and technological effort to meet the environmental goals identified in the Green Plan. The report gives a sense of the range of scientific and technological efforts that are being devoted to issues as diverse as conserving our wildlife and national parks and developing innovative technologies to clean-up polluted sites.

  9. Translating Behavioral Science into Practice: A Framework to Determine Science Quality and Applicability for Police Organizations.

    Science.gov (United States)

    McClure, Kimberley A; McGuire, Katherine L; Chapan, Denis M

    2018-05-07

    Policy on officer-involved shootings is critically reviewed and errors in applying scientific knowledge identified. Identifying and evaluating the most relevant science to a field-based problem is challenging. Law enforcement administrators with a clear understanding of valid science and application are in a better position to utilize scientific knowledge for the benefit of their organizations and officers. A recommended framework is proposed for considering the validity of science and its application. Valid science emerges via hypothesis testing, replication, extension and marked by peer review, known error rates, and general acceptance in its field of origin. Valid application of behavioral science requires an understanding of the methodology employed, measures used, and participants recruited to determine whether the science is ready for application. Fostering a science-practitioner partnership and an organizational culture that embraces quality, empirically based policy, and practices improves science-to-practice translation. © 2018 American Academy of Forensic Sciences.

  10. Environmental science in building. 4. ed.

    Energy Technology Data Exchange (ETDEWEB)

    McMullan, R.

    1998-05-01

    This well established book examines the science and technology of those provisions and services that are required in the built environment. The main considerations are the effects of heat, light and sound within buildings. In addition other essential requirements such as supplies of electricity and water are discussed. While the basic structure of the book remains the same in this new edition, all chapters are revised; some material is rearranged and several new sections are added. (author)

  11. A Reflection upon the "Getting Practical" Programme: Rethinking How We Teach Practical Science

    Science.gov (United States)

    Brennan, Nikki

    2010-01-01

    In this article, the author provides an overview of the "Getting Practical" training programme of professional development for all those involved with teaching practical science at primary, secondary, and post-16 levels. The programme is being led by the ASE, working with its co-ordinating partners: the Centre for Science Education,…

  12. ONLINE SCIENCE LEARNING:Best Practices and Technologies

    Directory of Open Access Journals (Sweden)

    TOJDE

    2009-04-01

    Full Text Available This essential publication is for all research and academic libraries, especially those institutions with online and distance education courses available in their science education programs. This book will also benefit audiences within the science education community of practice and others interested in STEM education, virtual schools, e-learning, m-learning, natural sciences, physical sciences, biological sciences, geosciences, online learning models, virtual laboratories, virtual field trips, cyberinfrastructure, neurological learning and the neuro-cognitive model. The continued growth in general studies and liberal arts and science programs online has led to a rise in the number of students whose science learning experiences are partially or exclusively online. character and quality of online science instruction.

  13. Qualitative Data Sharing Practices in Social Sciences

    Science.gov (United States)

    Jeng, Wei

    2017-01-01

    Social scientists have been sharing data for a long time. Sharing qualitative data, however, has not become a common practice, despite the context of e-Research, information growth, and funding agencies' mandates on research data archiving and sharing. Since most systematic and comprehensive studies are based on quantitative data practices, little…

  14. Federal Community of Practice for Crowdsourcing and Citizen Science

    Science.gov (United States)

    The community of practice includes agencies from across the federal government who convene to discuss ideas, activities, barriers, and ethics related to citizen science and crowdsourcing including scientific research, data management, and open innovation.

  15. High School Physics Students' Personal Epistemologies and School Science Practice

    Science.gov (United States)

    Alpaslan, Muhammet Mustafa; Yalvac, Bugrahan; Loving, Cathleen

    2017-11-01

    This case study explores students' physics-related personal epistemologies in school science practices. The school science practices of nine eleventh grade students in a physics class were audio-taped over 6 weeks. The students were also interviewed to find out their ideas on the nature of scientific knowledge after each activity. Analysis of transcripts yielded several epistemological resources that students activated in their school science practice. The findings show that there is inconsistency between students' definitions of scientific theories and their epistemological judgments. Analysis revealed that students used several epistemological resources to decide on the accuracy of their data including accuracy via following the right procedure and accuracy via what the others find. Traditional, formulation-based, physics instruction might have led students to activate naive epistemological resources that prevent them to participate in the practice of science in ways that are more meaningful. Implications for future studies are presented.

  16. Citizen Environmental Science in Support of Educatio

    Science.gov (United States)

    Butler, D. M.; Cavalier, D.; Potter, S.; Wagner, R.; Wegner, K.; Hammonds, J.

    2016-12-01

    Through two grants, a partnership among SciStarter, ECO-Schools, the GLOBE Program, and Youth Learning as Citizen Environmental Scientists has recruited, trained, and equipped over 100 US schools, youth groups and other citizen scientists to take several environmental measurements - surface soil moisture and temperature, precipitation, and clouds. Implementation by some has begun but many more will start implementation in the fall. These local measurements may be compared with data from the Soil Moisture Active Passive (SMAP), Global Precipitation Measurement (GPM), and other satellite missions. The measurement protocols of GLOBE specify how these data are collected so as to produce reliable data that are intercomparable across space and time. GLOBE also provides the information infrastructure for storing these data and making them openly available. This presentation will examine the initial results of this effort in terms of participation, student and professional data use, and educational benefits.

  17. Field Research in Political Science Practices and Principles

    DEFF Research Database (Denmark)

    Gravier, Magali

    2017-01-01

    Book review of: Kapiszewski (Diana), Maclean (Lauren M.), Read (Benjamin L.) ­ Field Research in Political Science. Practices and Principles. ­ Cambridge, Cambridge University Press, 2015 (Strategies for Social Inquiry). XIV + 456 p. Figures. Annexe. Bibliogr. Index.......Book review of: Kapiszewski (Diana), Maclean (Lauren M.), Read (Benjamin L.) ­ Field Research in Political Science. Practices and Principles. ­ Cambridge, Cambridge University Press, 2015 (Strategies for Social Inquiry). XIV + 456 p. Figures. Annexe. Bibliogr. Index....

  18. Integrating Art into Science Education: A Survey of Science Teachers' Practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-01-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science…

  19. Patient Satisfaction Measurement in Occupational and Environmental Medicine Practice.

    Science.gov (United States)

    Drury, David L; Adamo, Philip; Cloeren, Marianne; Hegmann, Kurt T; Martin, Douglas W; Levine, Michael J; Olson, Shawn M; Pransky, Glenn S; Tacci, James A; Thiese, Matthew

    2018-05-01

    : High patient satisfaction is a desirable goal in medical care. Patient satisfaction measures are increasingly used to evaluate and improve quality in all types of medical practices. However, the unique aspects of occupational and environmental medicine (OEM) practice require development of OEM-specific measures and thoughtful interpretation of results. The American College of Occupational and Environmental Medicine has developed and recommends a set of specific questions to measure patient satisfaction in OEM, designed to meet anticipated regulatory requirements, facilitate quality improvement of participating OEM practices, facilitate case-management review, and offer fair and accurate assessment of OEM physicians.

  20. Second-career science teachers' classroom conceptions of science and engineering practices examined through the lens of their professional histories

    Science.gov (United States)

    Antink-Meyer, Allison; Brown, Ryan A.

    2017-07-01

    Science standards in the U.S. have shifted to emphasise science and engineering process skills (i.e. specific practices within inquiry) to a greater extent than previous standards' emphases on broad representations of inquiry. This study examined the alignment between second-career science teachers' personal histories with the latter and examined the extent to which they viewed that history as a factor in their teaching. Four, second-career science teachers with professional backgrounds in engineering, environmental, industrial, and research and development careers participated. Through the examination of participants' methodological and contextual histories in science and engineering, little evidence of conflict with teaching was found. They generally exemplified the agency and motivation of a second-career teacher-scientist that has been found elsewhere [Gilbert, A. (2011). There and back again: Exploring teacher attrition and mobility with two transitioning science teachers. Journal of Science Teacher Education, 22(5), 393-415; Grier, J. M., & Johnston, C. C. (2009). An inquiry into the development of teacher identities in STEM career changers. Journal of Science Teacher Education, 20(1), 57-75]. The methodological and pedagogical perspectives of participants are explored and a discussion of the implications of findings for science teacher education are presented.

  1. A-Level Science--What Value Practical?

    Science.gov (United States)

    McCune, Roger

    2014-01-01

    The Qualifications Regulator in England (Ofqual) has decided that with the implementation of revised (linear) science specifications, first teaching from September 2015, the assessment of practical skills will not contribute to the overall qualification grade. This could have significant implications for post-16 science teaching. The decision was…

  2. Dive In! Immersion in Science Practices for High School Students

    Science.gov (United States)

    Graham, Karen J.; Gengarelly, Lara M.; Hopkins, Barbara A.; Lombard, Melissa A.

    2017-01-01

    What is it really like to plunge into the world of science learning and teaching? Find out in this unique book. "Dive In!" grew out of a teacher-scientist project at the University of New Hampshire that promoted active learning and using science practices in the classroom. That experience yielded this book's reason for being: to provide…

  3. Promising Teacher Practices: Students' Views about Their Science Learning

    Science.gov (United States)

    Moeed, Azra; Easterbrook, Matthew

    2016-01-01

    Internationally, conceptual and procedural understanding, understanding the Nature of Science, and scientific literacy are considered worthy goals of school science education in modern times. The empirical study presented here reports on promising teacher practices that in the students' views afford learning opportunities and support their science…

  4. Reframing Science Learning and Teaching: A Communities of Practice Approach

    Science.gov (United States)

    Sansone, Anna

    2018-01-01

    Next Generation Science Standards encourage science instruction that offers not only opportunities for inquiry but also the diverse social and cognitive processes involved in scientific thinking and communication. This article gives an introduction to Lave and Wenger's (1991) communities of practice framework as a potential way of viewing…

  5. Biological sciences teaching undergraduates’ environmental knowledge: a critical analysis

    Directory of Open Access Journals (Sweden)

    Silvana do Nascimento Silva

    2013-12-01

    Full Text Available Nowadays, environmental issues have been addressed in a way that goes beyond the natural impacts, embracing socio-economic, political and cultural aspects. This paper makes a description of the types of environmental conceptions, giving special emphasis to the interactions that permeate it, and develops an empirical work by analyzing the conceptions about the environmental knowledge of students majoring in a teacher preparation course on biological sciences of a university in the State of Bahia, Brazil. In a qualitative research, data were collected by application of a questionnaire with open questions with answers in text and drawings. The results revealed a predominance of naturalistic conceptions, while socio-environmental conceptions of systemic or socio-metabolic characteristics were not found. These findings lead to the need for the integration of these critical approaches about the environmental issue in Sciences and Biology teachers’ training, emphasizing the interactions between work, nature and society. Finally, some suggestions also emerge for future research, among which to analyze the biological sciences university teachers’ environmental conceptions and an action-research with these investigated undergraduates concerning environmental critical approaches.

  6. The everyday challenges of Pro-environmental practices

    DEFF Research Database (Denmark)

    Berthou, Sara Kristine Gløjmar

    2013-01-01

    Much research and policy planning aimed at climate change mitigation currently focuses on individual behavioural change as a means to reduce carbon emissions. An often used approach in order to achieve this is the attempt to influence behaviour through transfers of knowledge and information...... guiding everyday pro-environmental practices, the aim was to examine the challenges experienced in this regard. Based on visits to households in Copenhagen, four major challenges are identified and discussed. The paper argues that everyday life, as the starting point of individual pro......-environmental practices, is characterised by a complexity which people have to navigate, and thus that pro-environmental practices should not be seen as one demarcated field, but as interlinked with other practices in everyday life....

  7. Do natural science experiments influence public attitudes towards environmental problems?

    International Nuclear Information System (INIS)

    Wallner, A.; Hunziker, M.; Kienast, F.

    2003-01-01

    We investigated the significance of risk assessment studies in the public discussion on CO 2 emissions. Politicians and representatives from the public were interviewed by using the social-science technique of qualitative in-depth interviews. Three different types of attitudes towards natural science were found among politicians. Depending on which attitude a politician holds, risk assessment studies can have an impact on his/her readiness to support environmental policy measures. Regarding lay people, key factors affecting the acceptance of environmental policy measures are knowledge of environmental problems, their impacts on ecosystems or human health as well as direct personal perception of those impacts. Since direct perception is not always possible in everyday life, natural science experiments might be a means for successfully mediating this lacking perception. (author)

  8. Career education attitudes and practices of K-12 science educators

    Science.gov (United States)

    Smith, Walter S.

    A random sample of 400 K-12 science educators who were members of the National Science Teachers Association were surveyed regarding their attitude toward and practice of career education in their science teaching. These science teachers rejected a narrowly vocational view, favoring instead a conception of career education which included self-perception, values analysis, and vocational skills objectives. The science educators affirmed the importance of career education for a student's education, asserted career education ought to be taught in their existing science courses, and expressed a willingness to do so. Fewer than one-third of the science teachers, however, reported incorporating career education at least on a weekly basis in their science lessons. The major impediment to including more career education in science teaching was seen to be their lack of knowledge of methods and materials relevant to science career education, rather than objections from students, parents, or administrators; their unwillingness; or their evaluation of career education as unimportant. Thus, in order to improve this aspect of science teaching, science teachers need more concrete information about science career education applications.

  9. Social Cognitive Predictors of Interest in Environmental Science: Recommendations for Environmental Educators

    Science.gov (United States)

    Quimby, Julie L.; Seyala, Nazar D.; Wolfson, Jane L.

    2007-01-01

    The authors examined the influence of social cognitive variables on students' interest in environmental science careers and investigated differences between White and ethnic minority students on several career-related variables. The sample consisted of 161 undergraduate science majors (124 White students, 37 ethnic minority students). Results of…

  10. Post-Normal science in practice

    NARCIS (Netherlands)

    Dankel, Dorothy J.; Vaage, Nora S.; van der Sluijs, Jeroen P.

    This special issue contains a selection of papers presented during the 2014 Bergen meeting, complemented with short perspectives by young PNS-inspired scholars, presented at a mini-symposium "Post-normal times? New thinking about science and policy advice" held on 21 October 2016 in celebration of

  11. Valuation in life sciences: a practical guide

    National Research Council Canada - National Science Library

    Bogdan, Boris; Villiger, Ralph

    2010-01-01

    ... apply valuation methodologies in life sciences. One of the complicating factors is that, compared to other industries, valuation of biotech innovation is much more demanding. The long 10-15-year development and clinical trials process still represents the main risks faced by any biotech company. Added to that is the fact that getting a drug across the regulato...

  12. Political Science Theory for Public Health Practice

    Science.gov (United States)

    Watson, Tyler

    2014-01-01

    Community health educators are well versed in the behavior sciences, including intervention theories. However, most public health professionals are not familiar with the policy theories related to political advocacy. Because health educators are engaging in policy advocacy more frequently, and as a result of the profession including policy…

  13. Applications of voltammetry in environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, D.H.S.

    1985-01-01

    The wide-ranging applications of voltammetry to the analysis of trace metals and other ions of interest to environmental scientists are reviewed. It is concluded that the availability of modern microprocessor controlled instrumentation, capable of performing both anodic stripping and square wave voltammetry, provides a flexible and powerful technique to aid in solving analytical problems and carrying out routine analyses. The recent identification of many sensitizing agents which reduce detection limits to part per thousand million level, or below, is a further exciting development in this field.

  14. Science during crisis: the application of social science during major environmental crises

    Science.gov (United States)

    Machlis, Gary; Ludwig, Kris; Manfredo, Michael J.; Vaske, Jerry J.; Rechkemmer, Andreas; Duke, Esther

    2014-01-01

    Historical and contemporary experience suggests that science plays an increasingly critical role in governmental and institutional responses to major environmental crises. Recent examples include major western wildfires (2009), the Deepwater Horizon oil spill (2010), the Fukushima nuclear accident (2011), and Hurricane Sandy (2012). The application of science during such crises has several distinctive characteristics, as well as essential requirements if it is to be useful to decision makers. these include scope conditions that include coupled natural/human systems, clear statement of uncertainties and limitations, description of cascading consequences, accurate sense of place, estimates of magnitude of impacts, identification of beneficiaries and those adversely affected, clarity and conciseness, compelling visualization and presentation, capacity to speak "truth to power", and direct access to decision makers. In this chapter, we explore the role and significance of science – including all relevant disciplines and focusing attention on the social sciences – in responding to major environmental crises. We explore several important questions: How is science during crisis distinctive? What social science is most useful during crises? What distinctive characteristics are necessary for social science to make meaningful contributions to emergency response and recovery? How might the social sciences be integrated into the strategic science needed to respond to future crises? The authors, both members of the Department of the Interior's innovative Strategic Sciences Group, describe broad principles of engagement as well as specific examples drawn from history, contemporary efforts (such as during the Deepwater Horizon oil spill), and predictions of environmental crises still to be confronted.

  15. Environmental Sciences Division. Annual progress report for period ending September 30, 1979

    International Nuclear Information System (INIS)

    1980-03-01

    Progress for the period ending September 30, 1979 by the Environmental Sciences Division is reported. Sections reporting include terrestrial ecoloy; earth sciences; environmental resources; aquatic ecology; synthetic fuels; nuclear program; environmental impacts program; ecosystem studies; and burial ground technology

  16. Educator Preparedness to Teach Environmental Science in Secondary Schools

    Science.gov (United States)

    Guillory, Linus Joseph, Jr.

    2012-01-01

    This study assesses the environmental proficiency of Texas life science educators certified from 2003 to 2011 by analyzing their TExES 138 8-12 exam results in domains V and VI. The sample consisted of all the individuals that took and passed the TExES 138 life science 8-12 exam. During this period, approximately 41% of the individuals who took…

  17. ENVIRONMENTAL SYSTEMS MANAGEMENT: TOWARDS A NEW SCIENCE OF SUSTAINABLE ENVIRONMENTAL MANAGEMENT

    Science.gov (United States)

    Environmental Systems Management (ESM) is the management of environmental problems at the systems level fully accounting for the multi-dimensional nature of the environment. This includes socio-economic dimensions as well as the usual physical and life science aspects of environm...

  18. Exploring Environmental Identity and Behavioral Change in an Environmental Science Course

    Science.gov (United States)

    Blatt, Erica N.

    2013-01-01

    This ethnographic study at a public high school in the Northeastern United States investigates the process of change in students' environmental identity and proenvironmental behaviors during an Environmental Science course. The study explores how sociocultural factors, such as students' background, social interactions, and classroom structures,…

  19. Accelerator mass spectrometry and its applications in environmental science

    International Nuclear Information System (INIS)

    Liu Kexin; Li Kun; Ma Hongji; Guo Zhiyu

    2001-01-01

    Some important work worldwide in environmental science, like urban air pollution, discharges of radioactive wastes from nuclear plants, and global climate change were introduced. Based on the improvements of facility and studies on 14 C dating method, a precision better than 0.5% has been reached for the PKUAMS. A large number of samples have been measured for the Xia-Shang-Zhou Chronology project. 14 C data of PKUAMS have made important contributions to creation of more reliable chronological table of Xia, Shang and Zhou dynasties. The improvements of PKUAMS are of benefit to the applications in environmental science in the future

  20. View Points of an Ecologist on Practical Environmental Ethic: Socioecology, Common-Pool Resources and Conservation.

    Science.gov (United States)

    Castilla, Juan Carlos

    2016-01-01

    The paper centers on environmental practical ethic point of views according to a professional ecologist. Ecology and the science of Socio-ecology are defined. The framework of the Millennium Ecosystem Assessment initiative (MA 2003), including the use of ecosystems as the environmental unit of analysis, ecosystem services and human well-being as the center for assessment are discussed. Common-pool resources (CPR) and the allegory of the tragedy of the commons are used to illustrate main scientific and ethical environmental approaches, and above all to highlight the case of climate change, considering ″air-atmosphere″ as a CPR. The need to adopt practical personal environmental ethical positions is highlighted. Furthermore, on climate change, a discussion on the need to develop environmental and socio-ecological polycentric approaches: top-down and bottom-up, is included. An updated discussion on the concept of conservation, including main scientific and ethic points of view, is presented. Pope Francis's Encyclical, Laudato Si', is used to highlight environmental, socio-ecological and ethical aspects behind the comprehensive concept of Integral Ecology. The paper ends with a short synthesis on Earth modern unseen and astonishing environmental and socio-ecological rates of changes, and identifying the main barriers for personal environmental engagement. A call is done regarding the urgent need for socio-environmental ethic personal engagement and collective actions.

  1. Planting contemporary practice theory in the garden of information science

    NARCIS (Netherlands)

    Huizing, A.; Cavanagh, M.

    2011-01-01

    Introduction. The purpose of this paper is to introduce to information science in a coherent fashion the core premises of contemporary practice theory, and thus to engage the information research community in further debate and discussion. Method. Contemporary practice-based approaches are

  2. Fostering Critical Thinking Practices at Primary Science Classrooms in Nepal

    Science.gov (United States)

    Acharya, Kamal Prasad

    2016-01-01

    This article examines the socio-cultural activities that have direct and indirect impacts on critical thinking practices in primary science classrooms and what kinds of teachers' activities help to foster the development of critical thinking practices in children. Meanwhile, the constructivist and the socio-cultural theoretical dimensions have…

  3. Environmental practices of the tourist companies in Valle de Bravo

    International Nuclear Information System (INIS)

    Hernandez Penaloza, Nadia; Zizumbo Villarreal, Lilia; Vargas Martinez, Elva Esther

    2011-01-01

    The present article analyzes the environmental practices of the social actors related to the tourist companies of the municipality of Valle de Bravo, Mexico State. The environmental practices were considered from the socioeconomic point of view, including not only the natural resources management, but also the social and economic environment. Considering the previous, using a methodological proposal based on the theory of complex systems, the effects on the above mentioned environments of this tourist destination were analyzed, allowing to holistically visualizing the situation that prevails towards the environmental caring performed by all the social actors of the locality. The results show a great weakness in the implementation of the above mentioned practices, due to the fact that nowadays these practices are imposed by the municipal government and are not an initiative of the actors of the tourist companies. For this reason, the conditions of environmental deterioration in Valle de Bravo are increasing. Based on the results, some recommendations are proposed for the implementation and improvement of environmental practices that contribute to the conservation and care of the environment.

  4. Model to Evaluate Pro-Environmental Consumer Practices

    Directory of Open Access Journals (Sweden)

    Wendolyn Aguilar-Salinas

    2017-02-01

    Full Text Available The consumer plays a key role in resource conservation; therefore, it is important to know consumer behavior to identify consumer profiles and to promote pro-environmental practices in society that encourage resource conservation and reductions in waste generation. The purpose of this paper is to implement a fuzzy model to evaluate consumer behavior in relation to three pro-environmental practices that can be implemented at the household level, including reductions in resource consumption (reduce, reuse of resources (reuse, and recycling (recycle. To identify socio-demographic profiles that characterize an environmentally responsible consumer, 2831 surveys were applied on a representative sample of consumers residing in a Mexican city. Fuzzy logic and neural networks were applied using a Sugeno-type subtractive clustering to determine each profile. The model input variables were socioeconomic status, age, education level, monthly income, occupation and the type of organizations with which the consumer is affiliated. The output variables were represented by pro-environmental practices. Results show that the consumer practices are performed independently of each other, with the most frequent pro-environmental consumer practices being reduction and reuse.

  5. Gender and practical skill performance in science

    Science.gov (United States)

    Lock, Roger

    The performance of 18 boys and 18 girls on four problem-solving tasks set in science contexts was compared. The tasks were administered in a one-to-one testing situation and assessments were made by direct observation, questioning, and by using written records. The tasks were valid and reliable, and the samples of boys and girls were matched for ability and curriculum background. Past studies have identified gender differences in performance on science tasks; however, this study found little evidence to support these findings. Few significant differences in performance were found. No gender differences were detected in observation, reporting, or planning skills, and there was no differential performance on the use of scientific language. Girls performed less well in relation to self-reliance, and performance differences on the interpretation skill approached significance with boys' performance superior.

  6. Secondary Science Teachers' and Students' Involvement in a Primary School Community of Science Practice: How It Changed Their Practices and Interest in Science

    Science.gov (United States)

    Forbes, Anne; Skamp, Keith

    2016-02-01

    MyScience is a primary science education initiative in which being in a community of practice is integral to the learning process. In this initiative, stakeholder groups—primary teachers, primary students and mentors—interact around the `domain' of `investigating scientifically'. This paper builds on three earlier publications and interprets the findings of the views of four secondary science teachers and five year 9 secondary science students who were first-timer participants—as mentors—in MyScience. Perceptions of these mentors' interactions with primary students were analysed using attributes associated with both `communities of practice' and the `nature of science'. Findings reveal that participation in MyScience changed secondary science teachers' views and practices about how to approach the teaching of science in secondary school and fostered primary-secondary links. Year 9 students positively changed their views about secondary school science and confidence in science through participation as mentors. Implications for secondary science teaching and learning through participation in primary school community of science practice settings are discussed.

  7. Practice Theory and Pragmatism in Science & Technology Studies

    DEFF Research Database (Denmark)

    Buch, Anders

    2015-01-01

    begin by an introduction to some of the proponents of practice theory and of pragmatism. Regarding the latter, I primarily present work by Dewey because this is what I am most familiar with. Although I recognize that practice theory and pragmatism differ on fundamental philosophical issues in relation...... to the normative evaluation of action, I show that the two intellectual traditions have much in common when it comes to what they do to STS studies. After this introduction to practice theory, my paper will proceed in the following steps. Firstly, I will briefly survey practice theoretical and pragmatist......Science & Technology Studies (STS) and social science has made a turn, a ‘practice turn’, and the notion ‘practice theory’ has made its way into the field of STS. But it is notable that proponents of this turn and theory rarely mention American pragmatism as a source of inspiration or refer...

  8. 1992 Environmental Summer Science Camp Program evaluation. The International Environmental Institute of Westinghouse Hanford Company

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report describes the 1992 Westinghouse Hanford Company/US Department of Energy Environmental Summer Science Camp. The objective of the ``camp`` was to motivate sixth and seventh graders to pursue studies in math, science, and the environment. This objective was accomplished through hands-on fun activities while studying the present and future challenges facing our environment. The camp was funded through Technical Task Plan, 424203, from the US Department of Energy-Headquarters, Office of Environmental Restoration and Waste Management, Technology Development,to Westinghouse Hanford Company`s International Environmental Institute, Education and Internship Performance Group.

  9. FM Innovation in Science and Practice

    NARCIS (Netherlands)

    Mobach, Mark P.; Nardelli, Giulia; Konkol, Jennifer; Kok, Herman B.; Alexander, Keith; Alexander, Keith; Price, Ilfryn

    2015-01-01

    Purpose: To report in FM Innovation. Theory: Innovation theory, service management, space design. Design/methodology/approach: Case studies, workshop. Findings: Barriers, areas of interest, and best practices in FM Innovation. Originality/value: Presents a first exploration of European case

  10. FM Innovation in Science and Practice

    DEFF Research Database (Denmark)

    Mobach, Mark P.; Nardelli, Giulia; Konkol, Jennifer

    2015-01-01

    Purpose : To report in FM Innovation. Theory : Innovation theory, service management, space design. Design/methodology/approach : Case studies, workshop. Findings : Barriers, areas of interest, and best practices in FM Innovation. Originality/value : Presents a first exploration of European case...

  11. Actinide science. Fundamental and environmental aspects

    International Nuclear Information System (INIS)

    Choppin, Gregory R.

    2005-01-01

    Nuclear test explosions and reactor wastes have deposited an estimated 16x10 15 Bq of plutonium into the world's aquatic systems. However, plutonium concentration in open ocean waters is orders of magnitude less, indicating that most of the plutonium is quite insolvable in marine waters and has been incorporated into sediments. Actinide ions in waters often are not in a state of thermodynamic equilibrium and their solubility and migration behavior is related to the form in which the nuclides were introduced into the aquatic system. Actinide solubility depends on such factors as pH(hydrolysis), E H (oxidation state), reaction with complexants (e.g. carbonate, phosphate, humic acid, etc.) sorption to surfaces of minerals and/or colloids, etc., in the water. The most significant of these variables is the oxidation sate of the metal ion. The simultaneous presence of more than one oxidation state for some actinides (e.g. plutonium) in a solution complicates actinide environmental behavior. Both Np(V)O 2 + and Pu(V)O 2 + , the most significant soluble states in natural oxic waters are relatively noncomplexing and resistant to hydrolysis and subsequent precipitation but can undergo reduction to the Pu(IV) oxidation state with its different elemental behavior. The solubility of NpO 2 + can be as high as 10 -4 M while that of PuO 2 + is more limited by reduction to the insoluble tetravalent species, Pu(OH) 4 , (pK SP - 56). The net solubility of hexavalent UO 2 2+ in sea water is also limited by hydrolysis; however, it has a relatively high concentration due to formation of carbonate complexes. The insoluble trivalent americium hydroxocarbonate, Am(CO) 3 (OH), is the limiting species for the solubility of Am(III) in sea water. Thorium is found exclusively as the tetravalent species and its solubility is limited by the formation of quite insoluble Th(OH) 4 . The chemistry of actinide ions in the environment is reviewed to show the spectrum of reactions that can occur in

  12. Environmental Science Program at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Nico, Peter; A; Anastasio, Cort; Dodge, Cleveland; Fendorf, Scott; Francis, A.J.; Hubbard, Susan; Shuh, David; Tomutsa, Liviu; Tufano, Kate; Tyliszczak, Tolek; Werner, Michelle; Williams, Ken

    2006-04-05

    The Advanced Light Source (ALS) has a variety of capabilities that are applicable to very different types of environmental systems. Shown are the basic descriptions of four of the approximately 35 beam lines at the ALS. The complimentary capabilities of these four beam lines allow for investigations that range from a spatial scale of a few nanometers to several millimeters. The Environmental Science Program at the Advanced Light Source seeks to promote and assist environmental research, particularly on the four beam lines described in this report. Several short examples of the types of research conducted on these beam lines are also described.

  13. The State of Environmentally Sustainable Interior Design Practice

    OpenAIRE

    Mihyun Kang; Denise A. Guerin

    2009-01-01

    Problem statement: Research that investigates how interior designers use environmentally sustainable interior design criteria in their design solutions has not been done. To provide a base to develop education strategies for sustainable interior design, this study examined the state of environmentally sustainable interior design practice. Approach: A national, Internet-based survey of interior design practitioners was conducted. To collect data, the random sample of US interior design practit...

  14. Quantitative Reasoning in Environmental Science: A Learning Progression

    Science.gov (United States)

    Mayes, Robert Lee; Forrester, Jennifer Harris; Christus, Jennifer Schuttlefield; Peterson, Franziska Isabel; Bonilla, Rachel; Yestness, Nissa

    2014-01-01

    The ability of middle and high school students to reason quantitatively within the context of environmental science was investigated. A quantitative reasoning (QR) learning progression was created with three progress variables: quantification act, quantitative interpretation, and quantitative modeling. An iterative research design was used as it…

  15. Reforming an Undergraduate Environmental Science Course for Nonscience Majors

    Science.gov (United States)

    Kazempour, Mahsa; Amirshokoohi, Aidin

    2013-01-01

    This article discusses the key components of a reform-based introductory undergraduate environmental science course for nonscience majors and elementary teacher candidates as well as the impact of such components on the participants. The main goals for the course were to actively engage the students in their learning and, in doing so, to enhance…

  16. Matrices to Revise Crop, Soil, and Environmental Sciences Undergraduate Curricula

    Science.gov (United States)

    Savin, Mary C.; Longer, David; Miller, David M.

    2005-01-01

    Undergraduate curricula for natural resource and agronomic programs have been introduced and revised during the past several decades with a desire to stay current with emerging issues and technologies relevant to constituents. For the past decade, the Department of Crop, Soil, and Environmental Sciences (CSES) faculty at the University of Arkansas…

  17. Hierarchical modelling for the environmental sciences statistical methods and applications

    CERN Document Server

    Clark, James S

    2006-01-01

    New statistical tools are changing the way in which scientists analyze and interpret data and models. Hierarchical Bayes and Markov Chain Monte Carlo methods for analysis provide a consistent framework for inference and prediction where information is heterogeneous and uncertain, processes are complicated, and responses depend on scale. Nowhere are these methods more promising than in the environmental sciences.

  18. French environmental labs may get 'big science' funds

    CERN Multimedia

    2000-01-01

    France is considering expanding its network of enviromental laboratories to study the long term impacts of environmental change. It has been suggested that this could be funded using the 'big science' budget usually used for facilities such as particle accelerators (2 para).

  19. U.S. Geological Survey Fundamental Science Practices

    Science.gov (United States)

    ,

    2011-01-01

    The USGS has a long and proud tradition of objective, unbiased science in service to the Nation. A reputation for impartiality and excellence is one of our most important assets. To help preserve this vital asset, in 2004 the Executive Leadership Team (ELT) of the USGS was charged by the Director to develop a set of fundamental science practices, philosophical premises, and operational principles as the foundation for all USGS research and monitoring activities. In a concept document, 'Fundamental Science Practices of the U.S. Geological Survey', the ELT proposed 'a set of fundamental principles to underlie USGS science practices.' The document noted that protecting the reputation of USGS science for quality and objectivity requires the following key elements: - Clearly articulated, Bureau-wide fundamental science practices. - A shared understanding at all levels of the organization that the health and future of the USGS depend on following these practices. - The investment of budget, time, and people to ensure that the USGS reputation and high-quality standards are maintained. The USGS Fundamental Science Practices (FSP) encompass all elements of research investigations, including data collection, experimentation, analysis, writing results, peer review, management review, and Bureau approval and publication of information products. The focus of FSP is on how science is carried out and how products are produced and disseminated. FSP is not designed to address the question of what work the USGS should do; that is addressed in USGS science planning handbooks and other documents. Building from longstanding existing USGS policies and the ELT concept document, in May 2006, FSP policies were developed with input from all parts of the organization and were subsequently incorporated into the Bureau's Survey Manual. In developing an implementation plan for FSP policy, the intent was to recognize and incorporate the best of USGS current practices to obtain the optimum

  20. Environmental impact assessment in practice: A gender critique

    International Nuclear Information System (INIS)

    Kurian, P.A.; Purdue Univ., West Lafayette, IN

    1995-01-01

    The author evaluates the extent to which environmental impact assessment (EIA) as conceptualized by EIA systems is a gendered process. Through a discourse analysis of in-depth interviews with bureaucrats, technocrats, and activists involved with the Sardar Sarovar dam project in India, the author examines the practice of EIA in a Third World country. She uses a theoretical framework, informed by a theory of gender, to evaluate the interviews. In practice, EIA is marked by gender biases that ignore the gender-specific nature of impacts. Such biases distort the impact assessment process, making environmental sustainability difficult, if not impossible, to achieve

  1. Open Science: Dimensions to a new scientific practice

    Directory of Open Access Journals (Sweden)

    Adriana Carla Silva de Oliveira

    2016-08-01

    Full Text Available Introduction:The practices of e-science and the use and reuse of scientific data have constituted a new scientific work that leads to the reflection on new regulatory, legal, institutional and technological frameworks for open science. Objective: This study shows the following research question: which dimensions provide sustainability for the formulation of a policy geared to open science and its practices in the Brazilian context? The aim of this study is to discuss the dimensions that support transversely the formulation of a policy for open science and its scientific practices. Methodology:Theoretically, the study is guided by the fourth scientific paradigm grounded in the e-Science. The methodology is supported by Bufrem’s studies (2013, which propose an alternative and multidimensional model for analysis and discussion of scientific research. Technically, the literature review and documentary survey were the methods used on the Data Lifecycle scientific model, laws and international agreements.For this study purpose, five dimensions were proposed, namely: epistemological, political, ethical-legal-cultural, morphological, and technological. Results: This studyunderstands that these dimensions substantiate an information policy or the development of minimum guidelines for the open science agenda in Brazil. Conclusions: The dimensions put away the reductionist perspective on survey data and they conducted the study for the multi-dimensional and multi-relational vision of open science.

  2. Sports-science roundtable: does sports-science research influence practice?

    Science.gov (United States)

    Bishop, David; Burnett, Angus; Farrow, Damian; Gabbett, Tim; Newton, Robert

    2006-06-01

    As sports scientists, we claim to make a significant contribution to the body of knowledge that influences athletic practice and performance. Is this the reality? At the inaugural congress of the Australian Association for Exercise and Sports Science, a panel of well-credentialed academic experts with experience in the applied environment debated the question, Does sports-science research influence practice? The first task was to define "sports-science research," and it was generally agreed that it is concerned with providing evidence that improves sports performance. When practices are equally effective, sports scientists also have a role in identifying practices that are safer, more time efficient, and more enjoyable. There were varying views on the need for sports-science research to be immediately relevant to coaches or athletes. Most agreed on the importance of communicating the results of sports-science research, not only to the academic community but also to coaches and athletes, and the need to encourage both short- and long-term research. The panelists then listed examples of sports-science research that they believe have influenced practice, as well as strategies to ensure that sports-science research better influences practice.

  3. Scientific knowledge and environmental policy. Why science needs values. Environmental essay

    Energy Technology Data Exchange (ETDEWEB)

    Carolan, M.S. [Department of Sociology, Colorado State University, Fort Collins (United States)

    2006-12-15

    While the term 'science' is evoked with immense frequency in the political arena, it continues to be misunderstood. Perhaps the most repeated example of this - particularly when dealing with environmental policy and regulatory issues - is when science is called upon to provide the unattainable: namely, proof. What is scientific knowledge and, more importantly, what is it capable of providing us? These questions must be answered - by policymakers, politicians, the public, and scientists themselves - if we hope to ever resolve today's environmental controversies in a just and equitable way. This paper begins by critically examining the concepts of uncertainty and proof as they apply to science. Discussion then turns to the issue of values in science. This is to speak of the normative decisions that are made routinely in the environmental sciences (but often without them being recognized as such). To conclude, insights are gleaned from the preceding sections to help us understand how science should be utilized and conducted, particularly as it applies to environmental policy.

  4. Perceptions of Future Employees toward CSR Environmental Practices in Tourism

    Directory of Open Access Journals (Sweden)

    Diana Corina Gligor-Cimpoieru

    2017-09-01

    Full Text Available Corporate social responsibility (CSR in tourism, with its central evironmental dimension, represents an important component for the sustainable growth of the tourism industry. The related CSR education could prove a major factor for future professional performance in this field of activity. Thus, this article is aimed at identifying the perceptions of current business students about CSR (students from study programs dedicated to business administration in tourism and the importance they attribute to CSR environmental practices, mainly from their perspective as future employees in the tourism industry. We elaborated a research methodology based on the Ecolabelling principles, designed by the European Union in 2009. Our findings revealed that business tourism students assign more importance to several specific CSR environmental practices and that the importance of these CSR practices is statistically significant (we determined this significance by using the Friedman, Paired-Samples t-, ANOVA, Kruskal-Wallis and Bartlett sphericity statistical tests. The elaborated research methodology proved to be statistically highly reliable. Results also show the differences regarding the CSR practices preferred by various categories of students according to their study levels and gender. Our results pointed out that our third-year bachelor students showed a higher interest in CSR practices related to their professional training, while students from the master level degree attached more importance to CSR practices related to the environment. We also confirmed conclusions of previous studies that female respondents attach more importance to environmental issues than male respondents. Thus, we can state that a higher level of education is a key factor that supports CSR development in practice. Also, a significant conclusion of our research is related to the academic curricula for business faculties which must incorporate solid CSR and business ethics

  5. Environmental Sciences Division: Summaries of research in FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This document describes the Fiscal Year 1996 activities and products of the Environmental Sciences Division, Office of Biological and Environmental Research, Office of Energy Research. The report is organized into four main sections. The introduction identifies the basic program structure, describes the programs of the Environmental Sciences Division, and provides the level of effort for each program area. The research areas and project descriptions section gives program contact information, and provides descriptions of individual research projects including: three-year funding history, research objective and approach used in each project, and results to date. Appendixes provide postal and e-mail addresses for principal investigators and define acronyms used in the text. The indexes provide indexes of principal investigators, research institutions, and keywords for easy reference. Research projects are related to climatic change and remedial action.

  6. Panarchy use in environmental science for risk and resilience planning

    Science.gov (United States)

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Linkov, Igor

    2016-01-01

    Environmental sciences have an important role in informing sustainable management of built environments by providing insights about the drivers and potentially negative impacts of global environmental change. Here, we discuss panarchy theory, a multi-scale hierarchical concept that accounts for the dynamism of complex socio-ecological systems, especially for those systems with strong cross-scale feedbacks. The idea of panarchy underlies much of system resilience, focusing on how systems respond to known and unknown threats. Panarchy theory can provide a framework for qualitative and quantitative research and application in the environmental sciences, which can in turn inform the ongoing efforts in socio-technical resilience thinking and adaptive and transformative approaches to management.

  7. Environmental Science Program at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Susan; Shuh, David; Nico, Peter

    2005-06-01

    Synchrotron Radiation (SR)-based techniques have become an essential and fundamental research tool in Molecular Environmental Science (MES) research. MES is an emerging scientific field that has largely evolved from research interactions at the U.S. Department of Energy (U.S. DOE) SR laboratories in response to the pressing need for understanding fundamental molecular-level chemical and biological processes that involve the speciation, properties, and behavior of contaminants, within natural systems. The role of SR-based investigations in MES and their impact on environmental problems of importance to society has been recently documented in Molecular Environmental Science: An Assessment of Research Accomplishment, Available Synchrotron Radiation Facilities, and Needs (EnviroSync, 2003).

  8. Citizen science participation in research in the environmental sciences: key factors related to projects' success and longevity.

    Science.gov (United States)

    Cunha, Davi G F; Marques, Jonatas F; Resende, Juliana C DE; Falco, Patrícia B DE; Souza, Chrislaine M DE; Loiselle, Steven A

    2017-01-01

    The potential impacts of citizen science initiatives are increasing across the globe, albeit in an imbalanced manner. In general, there is a strong element of trial and error in most projects, and the comparison of best practices and project structure between different initiatives remains difficult. In Brazil, the participation of volunteers in environmental research is limited. Identifying the factors related to citizen science projects' success and longevity within a global perspective can contribute for consolidating such practices in the country. In this study, we explore past and present projects, including a case study in Brazil, to identify the spatial and temporal trends of citizen science programs as well as their best practices and challenges. We performed a bibliographic search using Google Scholar and considered results from 2005-2014. Although these results are subjective due to the Google Scholar's algorithm and ranking criteria, we highlighted factors to compare projects across geographical and disciplinary areas and identified key matches between project proponents and participants, project goals and local priorities, participant profiles and engagement, scientific methods and funding. This approach is a useful starting point for future citizen science projects, allowing for a systematic analysis of potential inconsistencies and shortcomings in this emerging field.

  9. The pedagogy of argumentation in science education: science teachers' instructional practices

    Science.gov (United States)

    Özdem Yilmaz, Yasemin; Cakiroglu, Jale; Ertepinar, Hamide; Erduran, Sibel

    2017-07-01

    Argumentation has been a prominent concern in science education research and a common goal in science curriculum in many countries over the past decade. With reference to this goal, policy documents burden responsibilities on science teachers, such as involving students in dialogues and being guides in students' spoken or written argumentation. Consequently, teachers' pedagogical practices regarding argumentation gain importance due to their impact on how they incorporate this practice into their classrooms. In this study, therefore, we investigated the instructional strategies adopted by science teachers for their argumentation-based science teaching. Participants were one elementary science teacher, two chemistry teachers, and four graduate students, who have a background in science education. The study took place during a graduate course, which was aimed at developing science teachers' theory and pedagogy of argumentation. Data sources included the participants' video-recorded classroom practices, audio-recorded reflections, post-interviews, and participants' written materials. The findings revealed three typologies of instructional strategies towards argumentation. They are named as Basic Instructional Strategies for Argumentation, Meta-level Instructional ‌St‌‌rategies for ‌Argumentation, and Meta-strategic Instructional ‌St‌‌rategies for ‌Argumentation. In conclusion, the study provided a detailed coding framework for the exploration of science teachers' instructional practices while they are implementing argumentation-based lessons.

  10. 77 FR 66853 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-11-07

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Health Sciences Special Emphasis Panel Career Grants in the Environmental Health Sciences. Date: November...., Scientific Review Administrator, Nat. Institute of Environmental Health Sciences, Office of Program...

  11. International Relations and the environment: practical examples of environmental multilateralism

    Directory of Open Access Journals (Sweden)

    Filipa Tiago Gomes

    2012-01-01

    Full Text Available The “environmental crisis” we experience today and the international community’s struggle to develop environmental standards to reach the epic “sustainable development” are widely known topics. What is needed, then, is an urgent and determined practice, which is only possible if international governance is structured, coherent and effective. The optimization of Environmental Multilateralism (the joining of what are considered the “driving forces” of Environmental International Relations: Law, Politics and international Diplomacy contributes greatly to this end. To understand its basic concepts and systems, as for example, its actors, negotiation and implementation of Multilateral Environmental Agreements (MEAs and the carrying out of their Regimes, as well as their development in the United Nations, these are all crucial elements for its improvement and optimization. The United Nations Conference on Environment and Development (Rio de Janeiro, 1992 and “its” Conventions are important examples in the history of Environmental Multilateralism, still very up-to-date not only due to the 20th anniversary of the “Rio Conference” but also due to the continuity and importance that the “Rio Conventions” and their Conferences of Parties (COP still have. This papers aims to analyze this area of studies transversal to International Relations and to the Environment, namely by studying the relation between the theory of Environmental Multilateralism and its practice.

  12. 78 FR 8156 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-02-05

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Environmental Health Sciences Special Emphasis Panel; Studies of Environmental Agents to Induce Immunotoxicity... Research and Training, Nat. Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research...

  13. 76 FR 13650 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2011-03-14

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Training, Nat. Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30/Room 3171, Research... Environmental Health Sciences Special Emphasis Panel; Review of Educational Grants with an Environmental Health...

  14. 75 FR 34147 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-06-16

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Review Branch, Division of Extramural Research and Training, Nat. Institute Environmental Health Sciences... Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental Health Hazards...

  15. 77 FR 40076 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-07-06

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Environmental Health Sciences, P.O. Box 12233, MD EC-30 Research Triangle Park, NC 27709, (919) 541- 0752... Manpower Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental...

  16. 75 FR 7487 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-02-19

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory..., Scientific Review Administrator, National Inst. of Environmental Health Sciences, Office of Program... Manpower Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental...

  17. 76 FR 67748 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-11-02

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(a) of the Federal Advisory Committee Act...., Director, Division of Extramural Research and Training, Nat. Inst. of Environmental Health Sciences... Manpower Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental...

  18. 75 FR 55805 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2010-09-14

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(a) of the Federal Advisory Committee Act... Environmental Health Sciences, 615 Davis Dr., KEY615/3112, Research Triangle Park, NC 27709. (919) 541-4980... Environmental Health Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114, Applied...

  19. 75 FR 45133 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-08-02

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory.... Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room 3170 B, Research Triangle Park, NC... Manpower Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental...

  20. 78 FR 51734 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-08-21

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory..., Nat. Institute of Environmental Health Sciences, Office of Program Operations, Scientific Review... Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental Health Hazards...

  1. 75 FR 32797 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-06-09

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Branch, Division of Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P... Manpower Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental...

  2. 78 FR 42968 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-07-18

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander Drive, Research Triangle... the Environmental Health Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114...

  3. 78 FR 27410 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-05-10

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory..., Nat. Institute of Environmental Health Sciences, Office of Program Operations, Scientific Review... the Environmental Health Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114...

  4. Beyond Science and Technology: The need to incorporate Environmental Ethics to solve Environmental Problems

    Directory of Open Access Journals (Sweden)

    Fesseha Mulu

    2018-01-01

    Full Text Available The emergence and development of science and technology has been critical in improving the lives of mankind. It helps mankind to cope with a number of manmade and natural challenges and disasters. Science cannot totally diminish the level of human dependency on nature; but, with the existing availability of natural resources, science has increased our productivity. However, science and technology can also have its own negative impacts on the natural environment. For the purpose of increasing productivity and satisfying human needs, humans have been egoistically exploiting nature but disregarding the effects of their activities on nature. Science has also been trying its level best to mitigate the negative effects that results from mankind’s exploitation of nature. However, science alone is incapable of solving all environmental problems. This desk research employs secondary sources of data, and argues that environmental ethics should come to the fore in order to address the gap left by science with regard to resolving environmental problems that mankind faces today.

  5. Operational practices of lean manufacturing: Potentiating environmental improvements

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Marcos José Alves Junior; Mendes, Juliana Veiga

    2017-07-01

    Purpose: The objective of this paper is to investigate how environmental improvements can be achieved through operational practices of Lean Manufacturing. Design/methodology/approach: A literature review was conducted to analyze the relationship between operational practices of Lean and reduction of environmental impact in organizational contexts. Verified theoretically, this relationship was observed in a company of the electronics industry, through an exploratory research which contemplated a mixed approach. The adopted research method consisted of a single case study, by providing greater depth and detail of the study. Utilized a research protocol, validated test pilot. The instruments for data collection were semi-structured interviews, direct observation and document analysis. The information was examined qualitatively considering the technique for content analysis. Findings: As a result of the study, it was found that there is evidence for the existence of relationship between the practices of Lean, for example, Kaizen, PDCA (plan, do, check, act), Ishikawa Diagram, Poka-Yoke, Standardized Work and Value Stream Mapping, with the reduction of environmental impacts of an organization. This reduction was observed after application of these practices that resulted in the reduction of energy consumption, water and waste generation. These results were accounted for financially, contributing to a reduction of annual costs by about US$ 20,900. Originality/value: The study presents in detail, the application of operational practices of Lean Manufacturing, with an effective view to reducing the environmental impact and cost reduction. The literature review, a detailed description of the application process and financial results are important information that contributes to the scientific studies that address traditional operating practices and the search for better environmental performance.

  6. Operational practices of lean manufacturing: Potentiating environmental improvements

    Directory of Open Access Journals (Sweden)

    Marcos José Alves Pinto Junior

    2017-10-01

    Full Text Available Purpose: The objective of this paper is to investigate how environmental improvements can be achieved through operational practices of Lean Manufacturing. Design/methodology/approach: A literature review was conducted to analyze the relationship between operational practices of Lean and reduction of environmental impact in organizational contexts. Verified theoretically, this relationship was observed in a company of the electronics industry, through an exploratory research which contemplated a mixed approach. The adopted research method consisted of a single case study, by providing greater depth and detail of the study. Utilized a research protocol, validated test pilot. The instruments for data collection were semi-structured interviews, direct observation and document analysis. The information was examined qualitatively considering the technique for content analysis. Findings: As a result of the study, it was found that there is evidence for the existence of relationship between the practices of Lean, for example, Kaizen, PDCA (plan, do, check, act, Ishikawa Diagram, Poka-Yoke, Standardized Work and Value Stream Mapping, with the reduction of environmental impacts of an organization. This reduction was observed after application of these practices that resulted in the reduction of energy consumption, water and waste generation. These results were accounted for financially, contributing to a reduction of annual costs by about US$ 20,900. Originality/value: The study presents in detail, the application of operational practices of Lean Manufacturing, with an effective view to reducing the environmental impact and cost reduction. The literature review, a detailed description of the application process and financial results are important information that contributes to the scientific studies that address traditional operating practices and the search for better environmental performance.

  7. Operational practices of lean manufacturing: Potentiating environmental improvements

    International Nuclear Information System (INIS)

    Pinto, Marcos José Alves Junior; Mendes, Juliana Veiga

    2017-01-01

    Purpose: The objective of this paper is to investigate how environmental improvements can be achieved through operational practices of Lean Manufacturing. Design/methodology/approach: A literature review was conducted to analyze the relationship between operational practices of Lean and reduction of environmental impact in organizational contexts. Verified theoretically, this relationship was observed in a company of the electronics industry, through an exploratory research which contemplated a mixed approach. The adopted research method consisted of a single case study, by providing greater depth and detail of the study. Utilized a research protocol, validated test pilot. The instruments for data collection were semi-structured interviews, direct observation and document analysis. The information was examined qualitatively considering the technique for content analysis. Findings: As a result of the study, it was found that there is evidence for the existence of relationship between the practices of Lean, for example, Kaizen, PDCA (plan, do, check, act), Ishikawa Diagram, Poka-Yoke, Standardized Work and Value Stream Mapping, with the reduction of environmental impacts of an organization. This reduction was observed after application of these practices that resulted in the reduction of energy consumption, water and waste generation. These results were accounted for financially, contributing to a reduction of annual costs by about US$ 20,900. Originality/value: The study presents in detail, the application of operational practices of Lean Manufacturing, with an effective view to reducing the environmental impact and cost reduction. The literature review, a detailed description of the application process and financial results are important information that contributes to the scientific studies that address traditional operating practices and the search for better environmental performance.

  8. 77 FR 45604 - Notification of Two Public Teleconferences of the Science Advisory Board; Environmental Economics...

    Science.gov (United States)

    2012-08-01

    ... Science Advisory Board; Environmental Economics Advisory Committee AGENCY: Environmental Protection Agency...) Staff Office announces two public teleconferences of the SAB Environmental Economics Advisory Committee...., notice is hereby given that the SAB Environmental Economics Advisory Committee (EEAC) will hold public...

  9. Environmental management practices, environmental technology portfolio, and environmental commitment: A content analytic approach for U.K. manufacturing firms

    OpenAIRE

    Nath, P; Ramanathan, R

    2016-01-01

    This study investigates how various aspects of environmental management practices EMPs (operational, strategic, and tactical) undertaken by firms influence their environmental technology portfolios ETPs (pollution control and pollution prevention). It also explores the role of environmental commitment of firms on the influence of EMPs on ETPs. This study uses data from content analysis of annual reports, and corporate social responsibility reports available from corporate websites of 76 UK ma...

  10. The science and practice of river restoration

    Science.gov (United States)

    Wohl, Ellen; Lane, Stuart N.; Wilcox, Andrew C.

    2015-08-01

    River restoration is one of the most prominent areas of applied water-resources science. From an initial focus on enhancing fish habitat or river appearance, primarily through structural modification of channel form, restoration has expanded to incorporate a wide variety of management activities designed to enhance river process and form. Restoration is conducted on headwater streams, large lowland rivers, and entire river networks in urban, agricultural, and less intensively human-altered environments. We critically examine how contemporary practitioners approach river restoration and challenges for implementing restoration, which include clearly identified objectives, holistic understanding of rivers as ecosystems, and the role of restoration as a social process. We also examine challenges for scientific understanding in river restoration. These include: how physical complexity supports biogeochemical function, stream metabolism, and stream ecosystem productivity; characterizing response curves of different river components; understanding sediment dynamics; and increasing appreciation of the importance of incorporating climate change considerations and resiliency into restoration planning. Finally, we examine changes in river restoration within the past decade, such as increasing use of stream mitigation banking; development of new tools and technologies; different types of process-based restoration; growing recognition of the importance of biological-physical feedbacks in rivers; increasing expectations of water quality improvements from restoration; and more effective communication between practitioners and river scientists.

  11. Molecular Environmental Science and Synchrotron Radiation Facilities An Update of the 1995 DOE-Airlie Report on Molecular Environmental Science

    Energy Technology Data Exchange (ETDEWEB)

    Bargar, John R

    1999-05-07

    This workshop was requested by Dr. Robert Marianelli, Director of the DOE-BES Chemical Sciences Division, to update the findings of the Workshop on Molecular Environmental Sciences (MES) held at Airlie, VA, in July 1995. The Airlie Workshop Report defined the new interdisciplinary field referred to as Molecular Environmental Science (MES), reviewed the synchrotron radiation methods used in MES research, assessed the adequacy of synchrotron radiation facilities for research in this field, and summarized the beam time requirements of MES users based on a national MES user survey. The objectives of MES research are to provide information on the chemical and physical forms (speciation), spatial distribution, and reactivity of contaminants in natural materials and man-made waste forms, and to develop a fundamental understanding of the complex molecular-scale environmental processes, both chemical and biological, that affect the stability, transformations, mobility, and toxicity of contaminant species. These objectives require parallel studies of ''real'' environmental samples, which are complicated multi-phase mixtures with chemical and physical heterogeneities, and of simplified model systems in which variables can be controlled and fundamental processes can be examined. Only by this combination of approaches can a basic understanding of environmental processes at the molecular-scale be achieved.

  12. Molecular Environmental Science and Synchrotron Radiation Facilities An Update of the 1995 DOE-Airlie Report on Molecular Environmental Science

    International Nuclear Information System (INIS)

    Bargar, John R

    1999-01-01

    This workshop was requested by Dr. Robert Marianelli, Director of the DOE-BES Chemical Sciences Division, to update the findings of the Workshop on Molecular Environmental Sciences (MES) held at Airlie, VA, in July 1995. The Airlie Workshop Report defined the new interdisciplinary field referred to as Molecular Environmental Science (MES), reviewed the synchrotron radiation methods used in MES research, assessed the adequacy of synchrotron radiation facilities for research in this field, and summarized the beam time requirements of MES users based on a national MES user survey. The objectives of MES research are to provide information on the chemical and physical forms (speciation), spatial distribution, and reactivity of contaminants in natural materials and man-made waste forms, and to develop a fundamental understanding of the complex molecular-scale environmental processes, both chemical and biological, that affect the stability, transformations, mobility, and toxicity of contaminant species. These objectives require parallel studies of ''real'' environmental samples, which are complicated multi-phase mixtures with chemical and physical heterogeneities, and of simplified model systems in which variables can be controlled and fundamental processes can be examined. Only by this combination of approaches can a basic understanding of environmental processes at the molecular-scale be achieved

  13. A Comprehensive Course Introducing Environmental Science : Case Study of “Introduction to Environmental Science” as a Common Course in the Graduate School of Environmental Science

    OpenAIRE

    山中, 康裕; 三井, 翔太

    2017-01-01

    The course “Introduction to Environmental Science” was designed and held during the academic year 2015-2016 for new masterʼs course students at the Graduate School of Environmental Science, Hokkaido University. The course was designed in accord with societal needs such as consensus building for environmental conservation and associated scientific evidence, bringing together a large number of students from various disciplines. The course was composed of six modules in which multipl...

  14. Proceedings of the Science and Community Environmental Knowledge Fund forum

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This paper presented details of a forum which provided partners and stakeholders with an opportunity to see results of recent projects initiated by the Petroleum Technology Alliance Canada's Science and Community Environmental Knowledge Fund. The aim of the forum was to discuss future directions for research and funding. The fund is comprised of 5 knowledge envelopes covering environmental issues relevant to the oil and gas industry. These include ecosystem and cumulative impact management; health and safety; education and technology; and community environmental knowledge. Achievements, trends, challenges and innovations in environmental impact management were reviewed. Current environmental impact management strategies in British Columbia oil and gas industry were discussed along with issues concerning wildlife and footprint minimization in relation to facility operations and reclamation management. Waste and air quality management issues were also discussed. The forum featured 29 presentations that touched on topics such as innovations and opportunities in environmental impact research; Snake-Sahtaneh Boreal caribou habitat use and ecology; wildlife habitat connectivity and conservation of Peace River lowlands; mountain goats and helicopters; water use plan and low flow analysis; cumulative impacts assessment of development on forests and First Nations of northeast BC; geophysical line construction; the application of First Nations traditional knowledge to reclamation strategies in the oil and gas industry; issues concerning construction and standards; the influence of new technologies in environmental impact management; and the environmental aspects of natural gas midstream operations.

  15. Indoor Environmental Conditions and Sanitary Practices in Selected ...

    African Journals Online (AJOL)

    Rapidly urbanizing cities are witnessing an increase in Day care centres (DCCs) whose environmental conditions are substandard. This scenario has negative consequences on the health of the DCC attendees and yet information on some of the indicators such as the level of sanitary practices is not adequately ...

  16. Biotechnology risks and benefits: Science instructor perspectives and practices

    Science.gov (United States)

    Gardner, Grant Ean

    . Interview results suggest that GTAs had a much richer understanding of the importance of the teaching of social aspects of science and technology than emerged in their teaching. Results are discussed in the context of the disconnect between the GTA's teaching practice and perspectives.

  17. Publications in biomedical and environmental sciences programs, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.B. (comp.)

    1982-07-01

    This bibliography contains 698 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1981. There are 520 references to articles published in journals and books and 178 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Instrumentation and Controls, Computer Sciences, Energy, Engineering Technology, Solid State, Central Management, Operations, and Environmental Sciences. Indexes are provided by author, title, and journal reference.

  18. Publications in biomedical and environmental sciences programs, 1981

    International Nuclear Information System (INIS)

    Moody, J.B.

    1982-07-01

    This bibliography contains 698 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1981. There are 520 references to articles published in journals and books and 178 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Instrumentation and Controls, Computer Sciences, Energy, Engineering Technology, Solid State, Central Management, Operations, and Environmental Sciences. Indexes are provided by author, title, and journal reference

  19. Student Explanations of Their Science Teachers' Assessments, Grading Practices and How They Learn Science

    Science.gov (United States)

    del Carmen Gomez, María

    2018-01-01

    The current paper draws on data generated through group interviews with students who were involved in a larger ethnographic research project performed in three science classrooms. The purpose of the study from which this data was generated, was to understand science teachers' assessment practices in an upper-secondary school in Sweden. During…

  20. Technopolis best practices for science and technology cities

    CERN Document Server

    Phillips, Fred

    2014-01-01

    Six years of UNESCO-World Technopolis Association workshops, held at various world cities and attended by government officials and scholars from nearly all the world’s countries, have resulted in a uniquely complete collection of reports on science park and science city projects in most of those countries. These reports, of which a selected few form chapters in this book, allow readers to compare knowledge-based development strategies, practices, and successes across countries. The chapters illustrate varying levels of cooperation across government, industry, and academic sectors in the respective projects – and the reasons and philosophies underlying this variation - and resulting differences in practices and results

  1. SOFSEM 2009: Theory and Practice of Computer Science

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the 35th Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2009, held in Špindleruv Mlýn, Czech Republic, in January 2009. The 49 revised full papers, presented together with 9 invited contributions, were carefully...... reviewed and selected from 132 submissions. SOFSEM 2009 was organized around the following four tracks: Foundations of Computer Science; Theory and Practice of Software Services; Game Theoretic Aspects of E-commerce; and Techniques and Tools for Formal Verification....

  2. Opportunities for web-based indicators in environmental sciences.

    Directory of Open Access Journals (Sweden)

    Sergio Malcevschi

    Full Text Available This paper proposes a set of web-based indicators for quantifying and ranking the relevance of terms related to key-issues in Ecology and Sustainability Science. Search engines that operate in different contexts (e.g. global, social, scientific are considered as web information carriers (WICs and are able to analyse; (i relevance on different levels: global web, individual/personal sphere, on-line news, and culture/science; (ii time trends of relevance; (iii relevance of keywords for environmental governance. For the purposes of this study, several indicators and specific indices (relational indices and dynamic indices were applied to a test-set of 24 keywords. Outputs consistently show that traditional study topics in environmental sciences such as water and air have remained the most quantitatively relevant keywords, while interest in systemic issues (i.e. ecosystem and landscape has grown over the last 20 years. Nowadays, the relevance of new concepts such as resilience and ecosystem services is increasing, but the actual ability of these concepts to influence environmental governance needs to be further studied and understood. The proposed approach, which is based on intuitive and easily replicable procedures, can support the decision-making processes related to environmental governance.

  3. Status and developmental strategy of nuclear agricultural sciences in researches of eco-environmental sciences in agriculture

    International Nuclear Information System (INIS)

    Hua Luo; Wang Xunqing

    2001-01-01

    The concept, research scopes, research progress and achievement of nuclear agricultural sciences in past several decades in China, as well as the relationship between nuclear agriculture research and eco-environmental sciences were described. The disciplinary frontier, major research fields and priority developmental fields of nuclear agriculture in eco-environmental sciences was displayed. Suggestions were made to improve and strengthen nuclear agriculture research. Those provided basic source materials and consideration for application developmental strategy of nuclear agriculture in eco-environmental sciences

  4. Undergraduate Students' Pro-Environmental Behavior in Daily Practice

    Science.gov (United States)

    Dewi, Widiaswati; Sawitri, Dian R.

    2018-02-01

    Pro-environmental behavior is an individual action as a manifestation of one's responsibility to create a sustainable environment. University students as one of the agent of change can adopt pro-environmental behaviors concept, even through simple things to do on daily activities such as ride a bicycle or walk for short distance, reuse the shopping bags, separate waste, learn about environmental issues etc. Many studies have examined pro-environmental behavior from various approaches. However, the study about university students' pro-environmental behavior is lacking. The aim of this paper is to examine the undergraduate students' pro-environmental behaviors level. We surveyed 364 first year undergraduate students from a state university in Semarang. The survey included six aspects of pro-environmental behavior in daily practice which include energy conservation, mobility and transportation, waste avoidance, recycling, consumerism, and vicarious behaviors toward conservation. Findings of this study showed the level of pro-environmental behavior of first year undergraduate students is medium. Recommendations for undergraduate students and future researchers are discussed.

  5. Barriers of implementation of environmental management accounting in business practice

    Directory of Open Access Journals (Sweden)

    Petra Mísařová

    2010-01-01

    Full Text Available Environmental management accounting is a very important source of information for decision-making management of the company. In many companies there were created a detailed and dynamic system of recording and processing of data on environmental costs that companies mistakenly issued for environmental management accounting. And also today for environmental accounting in the CR it is characteristic that in organizations is not normal monitoring of the environmental costs con­si­de­red as part of an integrated system for monitoring and evaluation of material, energy and financial flows. Companies do not use a wide range of options that the environmental management accounting provides. Why do not companies introduce environmental management accounting into its information system and do not use all the opportunities that EMA provides? In practice there are many barriers that prevent full-fledged process of implementation of environmental management accounting in the information system of companies. Many barriers were identified and were therefore subjected to cluster analysis. Clusters filled by identified barriers under the rules of cluster analysis are the result of cluster analysis.

  6. Web portal on environmental sciences "ATMOS''

    Directory of Open Access Journals (Sweden)

    E. P. Gordov

    2006-01-01

    Full Text Available The developed under INTAS grant web portal ATMOS (http://atmos.iao.ru and http://atmos.scert.ru makes available to the international research community, environmental managers, and the interested public, a bilingual information source for the domain of Atmospheric Physics and Chemistry, and the related application domain of air quality assessment and management. It offers access to integrated thematic information, experimental data, analytical tools and models, case studies, and related information and educational resources compiled, structured, and edited by the partners into a coherent and consistent thematic information resource. While offering the usual components of a thematic site such as link collections, user group registration, discussion forum, news section etc., the site is distinguished by its scientific information services and tools: on-line models and analytical tools, and data collections and case studies together with tutorial material. The portal is organized as a set of interrelated scientific sites, which addressed basic branches of Atmospheric Sciences and Climate Modeling as well as the applied domains of Air Quality Assessment and Management, Modeling, and Environmental Impact Assessment. Each scientific site is open for external access information-computational system realized by means of Internet technologies. The main basic science topics are devoted to Atmospheric Chemistry, Atmospheric Spectroscopy and Radiation, Atmospheric Aerosols, Atmospheric Dynamics and Atmospheric Models, including climate models. The portal ATMOS reflects current tendency of Environmental Sciences transformation into exact (quantitative sciences and is quite effective example of modern Information Technologies and Environmental Sciences integration. It makes the portal both an auxiliary instrument to support interdisciplinary projects of regional environment and extensive educational resource in this important domain.

  7. Augmented Citizen Science for Environmental Monitoring and Education

    Science.gov (United States)

    Albers, B.; de Lange, N.; Xu, S.

    2017-09-01

    Environmental monitoring and ecological studies detect and visualize changes of the environment over time. Some agencies are committed to document the development of conservation and status of geotopes and geosites, which is time-consuming and cost-intensive. Citizen science and crowd sourcing are modern approaches to collect data and at the same time to raise user awareness for environmental changes. Citizen scientists can take photographs of point of interests (POI) with smartphones and the PAN App, which is presented in this article. The user is navigated to a specific point and is then guided with an augmented reality approach to take a photo in a specific direction. The collected photographs are processed to time-lapse videos to visualize environmental changes. Users and experts in environmental agencies can use this data for long-term documentation.

  8. United States Science Policy: from Conceptions to Practice

    Directory of Open Access Journals (Sweden)

    V I Konnov

    2012-06-01

    Full Text Available The authors analyze the organizational structure of the U.S. scientific community, examining the V. Bush report Science: the Endless Frontier (1945 as its conceptual basis, which remains the cornerstone of the American science policy. The authors point out decentralization as the key trait of this structure, which reveals itself in the absence of a unitary centre with a mission to formulate and implement science policy and high level of dissemination of self-government practices supported by a wide range of government agencies. This configuration determines the special position, occupied by the universities as universal research establishments possessing flexibility in cooperation with state agencies and private sector.

  9. [Characterization of the training and practice of human talent working in environmental health in Colombia].

    Science.gov (United States)

    Agudelo-Calderón, Carlos A; García-Ubaque, Juan C; Robledo-Martínez, Rocío; García-Ubaque, Cesar A; Vaca, Martha L

    2015-07-01

    Objectives To characterize the peculiarities in the training, exercise, and performance of human talent working in environmental health in Colombia. Method Documentary and database reviews. Surveys and semi-structured interviews. Results Approximately 70 % of professionals in the area of environmental health work in health management, food engineering, environmental engineering, sanitary engineering, veterinary medicine, and pharmaceutical chemistry. 63 % of technologists belong to the field of sanitation technology. Only 20 % of surveyed educational institutions apply the competence approach to training to their students and the identification of occupational characteristics in the labor market is only used at the undergraduate level as a criterion of academic analysis and design. Only 20 % of educational institutions identify educational trends in Colombian and or international environmental health as a contribution to their programs. In prospective practices, the following topics to be strengthened were identified: risk factor identfication, measurement, and control; design and implementation of mechanisms for controlling environmental risks; forms of interdisciplinary work between the natural, social and health sciences; preventative and environmental protection measures and the concept of environment (natural, social, and cultural). Conclusion The human talent currently working in environmental health in the country is concentrated in primary care activities (inspection, monitoring and control) and a large spread exists in mission processes and competences, both professionally and technologically. A lack of coordination between the environmental sector and the education sector can be observed. A great diversity exists among the profiles offered by the different educational programs related to environmental health.

  10. Best practices for measuring students' attitudes toward learning science.

    Science.gov (United States)

    Lovelace, Matthew; Brickman, Peggy

    2013-01-01

    Science educators often characterize the degree to which tests measure different facets of college students' learning, such as knowing, applying, and problem solving. A casual survey of scholarship of teaching and learning research studies reveals that many educators also measure how students' attitudes influence their learning. Students' science attitudes refer to their positive or negative feelings and predispositions to learn science. Science educators use attitude measures, in conjunction with learning measures, to inform the conclusions they draw about the efficacy of their instructional interventions. The measurement of students' attitudes poses similar but distinct challenges as compared with measurement of learning, such as determining validity and reliability of instruments and selecting appropriate methods for conducting statistical analyses. In this review, we will describe techniques commonly used to quantify students' attitudes toward science. We will also discuss best practices for the analysis and interpretation of attitude data.

  11. Theory versus practice in Strategic Environmental Assessment (SEA)

    International Nuclear Information System (INIS)

    Lobos, Víctor; Partidario, Maria

    2014-01-01

    Could the theory of Strategic Environmental Assessment (SEA) be ahead of its time and decoupled from its practice? This paper evolved in search for this leading research question. Over the years the discourse on SEA experienced a gradual shift from the technocratic and rationalist thinking that supported its origin to more strategic approaches and integrated concepts, suggested since the mid 1990's. In this paper we share the results of our analysis of international thinking and practical experience with SEA. Results reveal that SEA practice changes very slowly when compared to advanced thinking supporting the noted shift. Current SEA practice shows to be still predominantly rooted in the logic of projects' environmental impact assessment (EIA). It is strongly bound to legal and regulatory requirements, and the motivation for its application persists being the delivery of environmental (or final) reports to meet legal obligations. Even though advanced SEA theoretical thinking claim its potential to help decisions to look forward, change mind-sets and the rationale of decision-making to meet sustainability challenges and enhance societal values, we note a weak relationship between the theoretical development of SEA and its practice. Why is this happening? Which factors explain this apparent inertia, resistance to change, in the SEA practice? Results appear to demonstrate the influence of assumptions, understandings, concepts, and beliefs in the use of SEA, which in turn suggest the political sensitivity of the instrument. - Highlights: • Theoretical thinking in SEA is ahead of its time. • SEA international practice reveals inertia to move out of project’ EIA comfort zone. • World current SEA practice show similar understandings of 30 years ago. • 100 world reports and survey of practitioners supported world review. • SEA great challenge is to change paradigms into new scientific complexity theories

  12. Theory versus practice in Strategic Environmental Assessment (SEA)

    Energy Technology Data Exchange (ETDEWEB)

    Lobos, Víctor, E-mail: vlobosg@gmail.com [CEG-IST, Instituto Superior Técnico, Universidade de Lisboa, Research Group on Strategic Approaches to Environment and Sustainability (SENSU), 1049-001 Lisboa (Portugal); Centro de Estudios del Desarrollo, San Crescente 551, Las Condes, Santiago (Chile); Partidario, Maria [CEG-IST, Instituto Superior Técnico, Universidade de Lisboa, Research Group on Strategic Approaches to Environment and Sustainability (SENSU), 1049-001 Lisboa (Portugal)

    2014-09-15

    Could the theory of Strategic Environmental Assessment (SEA) be ahead of its time and decoupled from its practice? This paper evolved in search for this leading research question. Over the years the discourse on SEA experienced a gradual shift from the technocratic and rationalist thinking that supported its origin to more strategic approaches and integrated concepts, suggested since the mid 1990's. In this paper we share the results of our analysis of international thinking and practical experience with SEA. Results reveal that SEA practice changes very slowly when compared to advanced thinking supporting the noted shift. Current SEA practice shows to be still predominantly rooted in the logic of projects' environmental impact assessment (EIA). It is strongly bound to legal and regulatory requirements, and the motivation for its application persists being the delivery of environmental (or final) reports to meet legal obligations. Even though advanced SEA theoretical thinking claim its potential to help decisions to look forward, change mind-sets and the rationale of decision-making to meet sustainability challenges and enhance societal values, we note a weak relationship between the theoretical development of SEA and its practice. Why is this happening? Which factors explain this apparent inertia, resistance to change, in the SEA practice? Results appear to demonstrate the influence of assumptions, understandings, concepts, and beliefs in the use of SEA, which in turn suggest the political sensitivity of the instrument. - Highlights: • Theoretical thinking in SEA is ahead of its time. • SEA international practice reveals inertia to move out of project’ EIA comfort zone. • World current SEA practice show similar understandings of 30 years ago. • 100 world reports and survey of practitioners supported world review. • SEA great challenge is to change paradigms into new scientific complexity theories.

  13. The application of nuclear science technology to understanding and solving environmental problems

    International Nuclear Information System (INIS)

    Zuk, W.M.

    1997-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has for many years been involved in applying nuclear science-based and related technologies to the understanding of environmental processes and to the development and implementation of practical and effective solutions to site specific problems, for a broad spectrum of industry, government regulatory agencies, and other organisations in Australia, Europe, North and South America and South East Asia. ANSTO's environmental science program arose out of the need for research to predict, measure, evaluate and monitor the environmental impacts associated with : uranium mining and processing in Australia; the operation of the research reactor at Lucas Heights; and the safe treatment and disposal of radioactive and conventional wastes associated with these activities. The expertise developed in these activities, has found application to a much broader range of environmental concerns. This paper will present an overview of ANSTO's application of nuclear science-based techniques to, inter alia: coastal and marine studies; minesite rehabilitation; transport and geochemical modelling of radionuclides, heavy metals and organic chemicals in the geosphere; the application of naturally-occurring radionuclides and radioactive tracers to corrosion and sedimentation studies in the coastal environment; dating sediments, fish corals and archaeological samples; the understanding of the kinetics and the physiological responses of aquatic organisms to radionuclides and metals in the environment: and the use of aquatic organism as archival and 'realtime' monitors of pollutants

  14. Applications of SAR Interferometry in Earth and Environmental Science Research

    Science.gov (United States)

    Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun

    2009-01-01

    This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions. PMID:22573992

  15. Applications of SAR Interferometry in Earth and Environmental Science Research

    Directory of Open Access Journals (Sweden)

    Xiaobing Zhou

    2009-03-01

    Full Text Available This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions.

  16. Applications of SAR Interferometry in Earth and Environmental Science Research.

    Science.gov (United States)

    Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun

    2009-01-01

    This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions.

  17. Incorporating Geographic Information Science in the BSc Environ-mental Science Program in Botswana

    Science.gov (United States)

    Akinyemi, Felicia O.

    2018-05-01

    Critical human capacity in Geographic Information Science (GISc) is developed at the Botswana International University of Science and Technology, a specialized, research university. Strategies employed include GISc courses offered each semester to students from various programs, the conduct of field-based projects, enrolment in online courses, geo-spatial initiatives with external partners, and final year research projects utilizing geospatial technologies. A review is made of available GISc courses embedded in the Bachelor of Science Environmental Science program. GISc courses are incorporated in three Bachelor degree programs as distinct courses. Geospatial technologies are employed in several other courses. Student researches apply GIS and Remote Sensing methods to environmental and geological themes. The overarching goals are to equip students in various disciplines to utilize geospatial technologies, and enhance their spatial thinking and reasoning skills.

  18. African Journal of Environmental Science and Technology - Vol 9 ...

    African Journals Online (AJOL)

    Green roofs: A possible best management practice for enhancing the environmental quality of Ghanaian cities · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. PAY Ampim, SGK Adiku, JJ Sloan, 701-711. http://dx.doi.org/10.5897/AJEST2014.1723 ...

  19. Social perceptions and environmental practices of the French people from 1995 to 2011

    International Nuclear Information System (INIS)

    2011-01-01

    In this collective publication, the authors discuss the always greater sensitivity of French people to environmental issues, discuss the French environmental practices with respect to that of other countries, outline that environmental practices are mostly constrained, comment the evolution from intention to practice in these matters, highlight that the standard of living is crucial for environmental practices, comment the behaviour changes with respect to energy in housing, discuss the importance of the price factor for the change of household environmental practices

  20. Environmental sciences and computations: a modular data based systems approach

    International Nuclear Information System (INIS)

    Crawford, T.V.; Bailey, C.E.

    1975-07-01

    A major computer code for environmental calculations is under development at the Savannah River Laboratory. The primary aim is to develop a flexible, efficient capability to calculate, for all significant pathways, the dose to man resulting from releases of radionuclides from the Savannah River Plant and from other existing and potential radioactive sources in the southeastern United States. The environmental sciences programs at SRP are described, with emphasis on the development of the calculational system. It is being developed as a modular data-based system within the framework of the larger JOSHUA Computer System, which provides data management, terminal, and job execution facilities. (U.S.)

  1. Earth and Environmental Sciences 1999 Annual Report Meeting National Needs

    International Nuclear Information System (INIS)

    Yonker, L.; Dannevik, B.

    2000-01-01

    Lawrence Livermore National Laboratory's Earth and Environmental Sciences 1999 Annual Report covers the following topics: (1) Nuclear Materials--Modeling Thermohydrologic Processes at the Proposed Yucca Mountain Nuclear-Waste Repository; Dose Assessments and Resettlement Support on Rongelap Atoll in the Marshall Islands. (2) Climate, Carbon, and Energy--Incorporating Surprise into Models of Global Climate Change: A Simple Climate Demonstrator Model; (3) Environmental Risk Reduction--The NASA Global Modeling Initiative: Analyzing the Atmospheric Impacts of Supersonic Aircraft; (4) National Security--Atmospheric Release Assessment Programs; and (5) Cross-Cutting Technologies/Capabilities--Advances in Technology at the Center for Accelerator Mass Spectrometry; Experimental Geophysics: Investigating Material Properties at Extreme Conditions

  2. The paradox of un/making science people: practicing ethico-political hesitations in science education

    Science.gov (United States)

    Wallace, Maria F. G.

    2018-03-01

    Over the years neoliberal ideology and discourse have become intricately connected to making science people. Science educators work within a complicated paradox where they are obligated to meet neoliberal demands that reinscribe dominant, hegemonic assumptions for producing a scientific workforce. Whether it is the discourse of school science, processes of being a scientist, or definitions of science particular subjects are made intelligible as others are made unintelligible. This paper resides within the messy entanglements of feminist poststructural and new materialist perspectives to provoke spaces where science educators might enact ethicopolitical hesitations. By turning to and living in theory, the un/making of certain kinds of science people reveals material effects and affects. Practicing ethicopolitical hesitations prompt science educators to consider beginning their work from ontological assumptions that begin with abundance rather than lack.

  3. The diversity and evolution of ecological and environmental citizen science.

    Directory of Open Access Journals (Sweden)

    Michael J O Pocock

    Full Text Available Citizen science-the involvement of volunteers in data collection, analysis and interpretation-simultaneously supports research and public engagement with science, and its profile is rapidly rising. Citizen science represents a diverse range of approaches, but until now this diversity has not been quantitatively explored. We conducted a systematic internet search and discovered 509 environmental and ecological citizen science projects. We scored each project for 32 attributes based on publicly obtainable information and used multiple factor analysis to summarise this variation to assess citizen science approaches. We found that projects varied according to their methodological approach from 'mass participation' (e.g. easy participation by anyone anywhere to 'systematic monitoring' (e.g. trained volunteers repeatedly sampling at specific locations. They also varied in complexity from approaches that are 'simple' to those that are 'elaborate' (e.g. provide lots of support to gather rich, detailed datasets. There was a separate cluster of entirely computer-based projects but, in general, we found that the range of citizen science projects in ecology and the environment showed continuous variation and cannot be neatly categorised into distinct types of activity. While the diversity of projects begun in each time period (pre 1990, 1990-99, 2000-09 and 2010-13 has not increased, we found that projects tended to have become increasingly different from each other as time progressed (possibly due to changing opportunities, including technological innovation. Most projects were still active so consequently we found that the overall diversity of active projects (available for participation increased as time progressed. Overall, understanding the landscape of citizen science in ecology and the environment (and its change over time is valuable because it informs the comparative evaluation of the 'success' of different citizen science approaches. Comparative

  4. Earth Institute at Columbia University ADVANCE Program: Addressing Needs for Women in Earth and Environmental Sciences

    Science.gov (United States)

    Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.

    2004-12-01

    The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended

  5. Gaming science innovations to integrate health systems science into medical education and practice.

    Science.gov (United States)

    White, Earla J; Lewis, Joy H; McCoy, Lise

    2018-01-01

    Health systems science (HSS) is an emerging discipline addressing multiple, complex, interdependent variables that affect providers' abilities to deliver patient care and influence population health. New perspectives and innovations are required as physician leaders and medical educators strive to accelerate changes in medical education and practice to meet the needs of evolving populations and systems. The purpose of this paper is to introduce gaming science as a lens to magnify HSS integration opportunities in the scope of medical education and practice. Evidence supports gaming science innovations as effective teaching and learning tools to promote learner engagement in scientific and systems thinking for decision making in complex scenarios. Valuable insights and lessons gained through the history of war games have resulted in strategic thinking to minimize risk and save lives. In health care, where decisions can affect patient and population outcomes, gaming science innovations have the potential to provide safe learning environments to practice crucial decision-making skills. Research of gaming science limitations, gaps, and strategies to maximize innovations to further advance HSS in medical education and practice is required. Gaming science holds promise to equip health care teams with HSS knowledge and skills required for transformative practice. The ultimate goals are to empower providers to work in complex systems to improve patient and population health outcomes and experiences, and to reduce costs and improve care team well-being.

  6. AECL's research and development program in environmental science and technology

    International Nuclear Information System (INIS)

    Cornett, R.J.

    1998-07-01

    AECL's radiological research and development (R and D) program encompasses work on sources of radiation exposure, radionuclide transport through the environment and potential impacts on biota and on human health. The application of the radiation protection knowledge and technology developed in this program provides cradle-to-grave management for CANDU and related nuclear technologies. This document provides an overview of the Environmental Science and Technology (ES and T) program which is one of the technical areas of R and D within the radiological R and D program. The ES and T program uses science from three main areas: radiochemistry, mathematical modelling and environmental assessment. In addition to providing an overview of the program, this summary also gives specific examples of recent technical work in each of the three areas. These technical examples illustrate the applied nature of the ES and T program and the close coupling of the program to CANDU customer requirements. (author)

  7. Publications in biomedical and environmental sciences programs, 1982

    International Nuclear Information System (INIS)

    Moody, J.B.

    1983-04-01

    This bibliography contains 725 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1982. There are 553 references to articles published in journals and books and 172 references to reports. The citations appear once ordered by the first author's division or by the performing division. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions are represented alphabetically. Indexes are provided by author, title, and journal reference. Reprints of articles referenced in this bibliography can be obtained from the author or the author's division

  8. Mind the Gap: Integrating Science and Policy Cultures and Practices

    Science.gov (United States)

    Lev, S. M.; Simon, I.

    2015-12-01

    A 2014 survey conducted by the Pew Research Center asked members of the American Association for the Advancement of Science about their support for active engagement in public policy debates. The survey found that 87% of the respondents supported scientists taking an active role in public policy debates about science and technology (S&T), but most believed that regulations related to areas like land use and clean air and water are not guided by the best science. Despite the demand for actionable scientific information by policy makers, these survey results underscore the gap that exists between the scientific and the public policy communities. There are fundamental differences that exist between the perspectives of these two groups, even within Federal S&T agencies that are required to balance the perspectives of the science and policy communities in order to fulfill their agency mission. In support of an ongoing agency effort to strengthen communication and interaction among staff, we led a Federal S&T agency office through an examination and comparison of goals, processes, external drivers, decision making, and timelines within their organization. This workshop activity provided an opportunity to identify the interdependence of science and policy, as well as the challenges to developing effective science-based policy solutions. The workshop featured strategies for achieving balanced science policy outcomes using examples from a range of Federal S&T agencies. The examples presented during the workshop illustrated best practices for more effective communication and interaction to resolve complex science policy issues. The workshop culminated with a group activity designed to give participants the opportunity to identify the challenges and apply best practices to real world science policy problems. Workshop examples and outcomes will be presented along with lessons learned from this agency engagement activity.

  9. Science education in a bilingual class: problematising a translational practice

    Science.gov (United States)

    Ünsal, Zeynep; Jakobson, Britt; Molander, Bengt-Olov; Wickman, Per-Olof

    2016-10-01

    In this article we examine how bilingual students construe relations between everyday language and the language of science. Studies concerning bilingual students language use in science class have mainly been conducted in settings where both the teacher and the students speak the same minority language. In this study data was collected in a class consisting of students aged 13-14. All students had Turkish as their minority language, whereas the teacher's minority language was Bosnian. The class was observed when they were working with acids and bases. In addition, the students were interviewed in groups. They were asked about how they use their languages during science lessons and then asked to describe and explain scientific phenomena and processes that had been a part of the observed lessons. For the analysis, practical epistemology analysis and the theory of translanguaging were used. The results show how the students' everyday language repertoire may limit their possibilities to make meaning of science. In particular, the teacher's practice of facilitating and supporting students' understanding of science content by relating it to concrete examples took another direction since the everyday words he used were not a part of the students' language repertoire. The study also shows how the students used their minority language as a resource to translate words from Swedish to Turkish in order to proceed with the science activities. However, translating scientific concepts was problematic and led to the students' descriptions of the concepts not being in line with how they are viewed in science. Finally, the study also demonstrates how monolingual exams may limit bilingual students' achievements in science. The study contributes by presenting and discussing circumstances that need to be taken into consideration when planning and conducting science lessons in classes where the teacher and the student do not share the same minority language.

  10. Putting open science into practice: A social dilemma?

    NARCIS (Netherlands)

    Scheliga, Kaja; Friesike, Sascha

    2014-01-01

    Digital technologies carry the promise of transforming science and opening up the research process. We interviewed researchers from a variety of backgrounds about their attitudes towards and experiences with openness in their research practices. We observe a considerable discrepancy between the

  11. Networks of Practice in Science Education Research: A Global Context

    Science.gov (United States)

    Martin, Sonya N.; Siry, Christina

    2011-01-01

    In this paper, we employ cultural sociology and Braj Kachru's model of World Englishes as theoretical and analytical tools for considering English as a form of capital necessary for widely disseminating research findings from local networks of practice to the greater science education research community. We present a brief analysis of recent…

  12. Environmental and Medical Sciences Division progress report January - December, 1980

    International Nuclear Information System (INIS)

    Hainge, W.M.

    1982-02-01

    A progress report on the work performed during 1980 by the Environmental and Medical Sciences Division at UKAEA Harwell is given. The programmes considered were atmospheric pollution; landfill research; monitoring of radioactive fallout and other radionuclides and trace elements in the environment; radioactive and non-radioactive aerosol metabolic studies; inhalation toxicology of radioactive aerosols and other hazardous materials; chemical analytical services; and radiation physics in dosimetry research, applied radiation spectrometry and data systems. (U.K.)

  13. 78 FR 59944 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-09-30

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919... [[Page 59945

  14. Preservice Teachers' Perspectives on 'Appropriate' K-8 Climate Change and Environmental Science Topics

    Science.gov (United States)

    Ford, D. J.

    2013-12-01

    With the release of the Next Generation Science Standards (NRC, 2013), climate change and related environmental sciences will now receive greater emphasis within science curricula at all grade levels. In grades K-8, preparation in foundational content (e.g., weather and climate, natural resources, and human impacts on the environment) and the nature of scientific inquiry will set the groundwork for later learning of climate change in upper middle and high school. These rigorous standards increase pressure on elementary and middle school teachers to possess strong science content knowledge, as well as experience supporting children to develop scientific ideas through the practices of science. It also requires a set of beliefs - about children and the science that is appropriate for them - that is compatible with the goals set out in the standards. Elementary teachers in particular, who often have minimal preparation in the earth sciences (NSF, 2007), and entrenched beliefs about how particular topics ought to be taught (Holt- Reynolds, 1992; Pajares, 1992), including climate change (Bryce & Day, 2013; Lambert & Bleicher, 2013), may face unique challenges in adjusting to the new standards. If teachers hold beliefs about climate change as controversial, for example, they may not consider it an appropriate topic for children, despite its inclusion in the standards. On the other hand, those who see a role for children in efforts to mitigate human impacts on the environment may be more enthusiastic about the new standards. We report on a survey of preservice K-8 teachers' beliefs about the earth and environmental science topics that they consider to be appropriate and inappropriate for children in grades K-3, 4-5, and 6-8. Participants were surveyed on a variety of standards-based topics using terminology that signals publicly and scientifically neutral (e.g. weather, ecosystems) to overtly controversial (evolution, global warming) science. Results from pilot data

  15. Brent Spar abandonment - Best Practicable Environmental Option (BPEO) assessment

    International Nuclear Information System (INIS)

    1994-12-01

    Possible methods of abandoning or re-using the Brent Spar storage and tanker offloading facility following its decommissioning in 1991 are discussed. The report assesses six of the thirteen possible methods, including horizontal dismantling and onshore disposal, vertical dismantling and onshore disposal, in-field disposal, deep water disposal, refurbishment and re-use, and continued maintenance, in order to determine the Best Practicable Environmental Option (BPEO). The BPEO covers technical feasibility risks to health and safety of the work force, environmental impacts, public acceptability and costs. (UK)

  16. Interdisciplinary Environmental-health Science Throughout Disaster Lifecycles

    Science.gov (United States)

    Plumlee, G. S.; Morman, S. A.; Hoefen, T. M.

    2014-12-01

    Potential human health effects from exposures to hazardous disaster materials and environmental contamination are common concerns following disasters. Using several examples from US Geological Survey environmental disaster responses (e.g., 2001 World Trade Center, mine tailings spills, 2005 Hurricane Katrina, 2007-2013 wildfires, 2011 Gulf oil spill, 2012 Hurricane Sandy, 2013 Colorado floods) and disaster scenarios (2011 ARkStorm, 2013 SAFRR tsunami) this presentation will illustrate the role for collaborative earth, environmental, and health science throughout disaster lifecycles. Pre-disaster environmental baseline measurements are needed to help understand environmental influences on pre-disaster health baselines, and to constrain the magnitude of a disaster's impacts. During and following disasters, there is a need for interdisciplinary rapid-response and longer-term assessments that: sample and characterize the physical, chemical, and microbial makeup of complex materials generated by the disasters; fingerprint material sources; monitor, map, and model dispersal and evolution of disaster materials in the environment; help understand how the materials are modified by environmental processes; and, identify key characteristics and processes that influence the exposures and toxicity of disaster materials to humans and the living environment. This information helps emergency responders, public health experts, and cleanup managers: 1) identify short- and long-term exposures to disaster materials that may affect health; 2) prioritize areas for cleanup; and 3) develop appropriate disposal solutions or restoration uses for disaster materials. By integrating lessons learned from past disasters with geospatial information on vulnerable sources of natural or anthropogenic contaminants, the environmental health implications of looming disasters or disaster scenarios can be better anticipated, which helps enhance preparedness and resilience. Understanding economic costs of

  17. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments

    Science.gov (United States)

    Drinkwater, Michael J.; Matthews, Kelly E.; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy. PMID:28232589

  18. A Knowledge-Based Representation Scheme for Environmental Science Models

    Science.gov (United States)

    Keller, Richard M.; Dungan, Jennifer L.; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    One of the primary methods available for studying environmental phenomena is the construction and analysis of computational models. We have been studying how artificial intelligence techniques can be applied to assist in the development and use of environmental science models within the context of NASA-sponsored activities. We have identified several high-utility areas as potential targets for research and development: model development; data visualization, analysis, and interpretation; model publishing and reuse, training and education; and framing, posing, and answering questions. Central to progress on any of the above areas is a representation for environmental models that contains a great deal more information than is present in a traditional software implementation. In particular, a traditional software implementation is devoid of any semantic information that connects the code with the environmental context that forms the background for the modeling activity. Before we can build AI systems to assist in model development and usage, we must develop a representation for environmental models that adequately describes a model's semantics and explicitly represents the relationship between the code and the modeling task at hand. We have developed one such representation in conjunction with our work on the SIGMA (Scientists' Intelligent Graphical Modeling Assistant) environment. The key feature of the representation is that it provides a semantic grounding for the symbols in a set of modeling equations by linking those symbols to an explicit representation of the underlying environmental scenario.

  19. New psychoactive substances: catalysing a shift in forensic science practice?

    Science.gov (United States)

    Tettey, Justice; Crean, Conor

    2015-08-05

    The analysis of substances of abuse remains one of the most matured areas in forensic science with a strong scientific basis, namely analytical chemistry. The current evolving drug markets, characterized by the global emergence of new psychoactive substances (NPS) and the need for forensic scientists to identify an unprecedented and ever-increasing number of NPS, presents a unique challenge to this discipline. This article looks at the current situation with NPS at the global level, and the challenges posed to the otherwise technically robust forensic science discipline of analysis of substances of abuse. It discusses the preparedness of forensic science to deal with the current situation and identifies the need for a shift in forensic science practice, especially one which embraces research and looks beyond normal casework in order to provide the much needed data for developing effective policy responses to the NPS problem. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Collaborative Yet Independent: Information Practices in the Physical Sciences

    CERN Document Server

    Meyer, Eric T; Kyriakidou-Zacharoudiou, Avgousta; Power, Lucy; Williams, Peter; Venters, Will; Terras, Melissa; Wyatt, Sally

    2011-12-31

    In many ways, the physical sciences are at the forefront of using digital tools and methods to work with information and data. However, the fields and disciplines that make up the physical sciences are by no means uniform, and physical scientists find, use, and disseminate information in a variety of ways. This report examines information practices in the physical sciences across seven cases, and demonstrates the richly varied ways in which physical scientists work, collaborate, and share information and data. This report details seven case studies in the physical sciences. For each case, qualitative interviews and focus groups were used to understand the domain. Quantitative data gathered from a survey of participants highlights different information strategies employed across the cases, and identifies important software used for research. Finally, conclusions from across the cases are drawn, and recommendations are made. This report is the third in a series commissioned by the Research Information Network...

  1. Integrating Social Science, Environmental Science, and Engineering to Understand Vulnerability and Resilience to Environmental Hazards in the Bengal Delta

    Science.gov (United States)

    Gilligan, J. M.; Ackerly, B.; Goodbred, S. L.

    2013-12-01

    In populated delta environments, it is impossible to separate human and natural systems. Human activities change the landscape by altering the dynamics of water and sediment and in return, humans themselves are affected by the natural and anthropogenic changes to the landscape. Such interactions can also have significant impacts on the ecology and natural resources of a delta system, affecting local and regional food supply, livelihoods, and economies, particularly in developing nations. Successful adaptation to environmental change in a strongly coupled human-natural system, such as the Bengal delta, requires understanding how the physical environment and the changing social, political, and economic conditions of people's lives interact. Research on human-delta interactions has largely focused on macro-scale effects from major dams, water diversions, and catchment-scale land use; but at the smaller scale of households and communities, decisions, actions, and outcomes may occur abruptly and have significant local impacts (positive or negative). Southwest Bangladesh experiences profound environmental problems at the local human-landscape interface, including groundwater salinity, soil fertility, conflicting land-use practices, management of engineering structures, and declining land-surface elevations. The impacts of climate-induced sea-level rise, especially with respect to population migration, receive great attention and concern, but neither sea level rise nor migration occurs against a background of static physical or human environments. For example, changing land use (e.g., building embankments, which affect drainage, sediment transport, and the evolution of tidal channels; and the transformation of rice fields to shrimp aquaculture, which affects soil chemistry, labor markets, river ecology, and possibly the integrity of embankments) can significantly change the impact that sea level rise will have on flood hazards and the resulting effect on people living on

  2. Turkish preservice science teachers' socioscientific issues-based teaching practices in middle school science classrooms

    Science.gov (United States)

    Genel, Abdulkadir; Sami Topçu, Mustafa

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle school science classrooms, and the research question that guided the present study is: How can we characterize Turkish PSTs' SSI-based teaching practices in middle school science classrooms (ages 11-14)? Sample: In order to address the research question of this study, we explored 10 Turkish PSTs' SSI-based teaching practices in middle school science classrooms. A purposeful sampling strategy was used, thus, PSTs were specifically chosen because they were ideal candidates to teach SSI and to integrate SSI into the science curricula since they were seniors in the science education program who had to take the field experience courses. Design and method: The participants' SSI teaching practices were characterized in light of qualitative research approach. SSI-based teaching practices were analyzed, and the transcripts of all videotape recordings were coded by two researchers. Results: The current data analysis describes Turkish PSTs' SSI-based teaching practices under five main categories: media, argumentation, SSI selection and presentation, risk analysis, and moral perspective. Most of PSTs did not use media resources in their lesson and none of them considered moral perspective in their teaching. While the risk analyses were very simple and superficial, the arguments developed in the classrooms generally remained at a simple level. PSTs did not think SSI as a central topic and discussed these issues in a very limited time and at the end of the class period. Conclusions: The findings of this study manifest the need of the reforms in science education programs. The present study provides evidence that moral, media

  3. 78 FR 18997 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2013-03-28

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act... personnel issues. Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111.... Agenda: Poster Sessions. Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell...

  4. 78 FR 18359 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2013-03-26

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Training, Nat. Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park... Environmental Health Sciences Special Emphasis Panel; Research Careers in Emerging Technologies. Date: April 30...

  5. 77 FR 60445 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-10-03

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Research and Training, National Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room... Environmental Health Sciences Special Emphasis Panel; Support for Conferences and Scientific Meetings. Date...

  6. 78 FR 25754 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-05-02

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... of Extramural Research and Training, Nat. Institute of Environmental Health Science, P.O. Box 12233... Health Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114, Applied...

  7. 77 FR 22793 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-04-17

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory.... Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919....D., Scientific Review Administrator, Nat. Institute of Environmental Health Sciences, Office of...

  8. 76 FR 79201 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-12-21

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(a) of the Federal Advisory Committee Act...: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander...., Director, Division of Extramural Research and Training, Nat. Inst. of Environmental Health Sciences...

  9. 76 FR 52672 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2011-08-23

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory.... of Environmental Health Sciences, Keystone Building, 530 Davis Drive, Research Triangle Park, NC..., Division of Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P.O. Box...

  10. 76 FR 50235 - National Institute of Environmental Health Sciences; Notice of Meetings

    Science.gov (United States)

    2011-08-12

    ... Environmental Health Sciences; Notice of Meetings Pursuant to section 10(a) of the Federal Advisory Committee... (DERT), Nat. Inst. of Environmental Health Sciences, National Institutes of Health, 615 Davis Dr... of Extramural Research and Training (DERT), Nat. Inst. of Environmental Health Sciences, National...

  11. 78 FR 39739 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-07-02

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... clearly unwarranted invasion of personal privacy. Name of Committee: Environmental Health Sciences Review... Research and Training, National Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30...

  12. 77 FR 26300 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2012-05-03

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act... Structural Biology. Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111... Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander Drive, Research Triangle...

  13. 77 FR 12602 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-03-01

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Environmental Health Sciences, Office of Program Operations, Scientific Review Branch, P.O. Box 12233, Research... Environmental Health Sciences Special Emphasis Panel; Career Development Early Award. Date: March 29, 2012. Time...

  14. 76 FR 46823 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-08-03

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act... Environmental Health Sciences Council. The meeting will be open to the public as indicated below, with...: Discussion of program policies and issues. Place: Nat. Inst. of Environmental Health Sciences, Building 101...

  15. 77 FR 6569 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-02-08

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Health Sciences, Special Emphasis Panel, Environmental Stem Cells Research. Date: February 29-March 2... of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919...

  16. 76 FR 7574 - National Institute of Environmental Health Sciences; Notice of Meetings

    Science.gov (United States)

    2011-02-10

    ... Environmental Health Sciences; Notice of Meetings Pursuant to section 10(a) of the Federal Advisory Committee... Cancer and Environmental Research Coordinating Committee State of the Science Subcommittee. These... Environmental Research Coordinating Committee (IBCERC) State of the Science Subcommittee. Date: March 29, 2011...

  17. 76 FR 62080 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2011-10-06

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... clearly unwarranted invasion of personal privacy. Name of Committee: Environmental Health Sciences Review... Extramural Research and Training, Nat'l Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30...

  18. 78 FR 14312 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2013-03-05

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Health Sciences Special Emphasis Panel; Understanding Environmental Control of Epigenetic/Mechanisms... Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30...

  19. 77 FR 33472 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-06-06

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Health Sciences Special Emphasis Panel International Collaborations in Environmental Health. Date: June....D., Scientific Review Administrator, Nat. Institute of Environmental Health Sciences, Office of...

  20. 76 FR 7225 - National Institute of Environmental Health Sciences; Notice of Meetings

    Science.gov (United States)

    2011-02-09

    ... Environmental Health Sciences; Notice of Meetings Pursuant to section 10(a) of the Federal Advisory Committee..., National Institute of Environmental Health Sciences, 615 Davis Dr., KEY615/3112, Research Triangle Park, NC..., National Institute of Environmental Health Sciences, 615 Davis Dr., KEY615/3112, Research Triangle Park, NC...

  1. 78 FR 32672 - National Institute of Environmental Health Sciences (NIEHS); Notice of Meeting

    Science.gov (United States)

    2013-05-31

    ... Environmental Health Sciences (NIEHS); Notice of Meeting Pursuant to the NIH Reform Act of 2006 (42 U.S.C. 281 (d)(4)), notice is hereby given that the National Institute of Environmental Health Sciences (NIEHS... Popovich, National Institute of Environmental Health Sciences, Division of Extramural Research and Training...

  2. 76 FR 71046 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-11-16

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(a) of the Federal Advisory Committee Act... Environmental Health Sciences, National Institutes of Health, 615 Davis Dr., KEY615/3112, Research Triangle Park... and Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences; 93.113...

  3. 77 FR 3480 - National Institute of Environmental Health Sciences Notice of Meeting

    Science.gov (United States)

    2012-01-24

    ... Environmental Health Sciences Notice of Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act... Environmental Health Sciences Council. The meeting will be open to the public as indicated below, with...: Discussion of program policies and issues. Place: Nat. Inst. of Environmental Health Sciences, Building 101...

  4. 76 FR 7572 - National Institute of Environmental Health Sciences; Notice of Meetings

    Science.gov (United States)

    2011-02-10

    ... Environmental Health Sciences; Notice of Meetings Pursuant to section 10(a) of the Federal Advisory Committee..., Director, Division of Extramural Research and Training, National Institute of Environmental Health Sciences... of Environmental Health Sciences, 615 Davis Dr., KEY615/3112, Research Triangle Park, NC 27709, (919...

  5. 76 FR 50234 - National Institute of Environmental Health Sciences Notice of Meetings

    Science.gov (United States)

    2011-08-12

    ... Environmental Health Sciences Notice of Meetings Pursuant to section 10(a) of the Federal Advisory Committee Act... of Extramural Research and Training (DERT), Nat. Inst. of Environmental Health Sciences, National..., Division of Extramural Research and Training (DERT), Nat. Inst. of Environmental Health Sciences, National...

  6. 76 FR 58521 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2011-09-21

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... and Training, Nat. Institute of Environmental Health Science, P. O. Box 12233, MD EC-30/Room 3170 B... Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P. O. Box 12233, MD EC-30...

  7. 75 FR 61765 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2010-10-06

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Environmental Health Sciences Special Emphasis Panel, Superfund Research and Training Program. Date: October 26...-Tilotta, PhD, Scientific Review Officer, Nat. Institute of Environmental Health Sciences, Office of...

  8. 76 FR 77239 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-12-12

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(a) of the Federal Advisory Committee Act.../boards/ibcercc/ . Place: National Institute of Environmental Health Sciences, Building 101, Rodbell... and Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences; 93.113...

  9. 75 FR 41505 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-07-16

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... clearly unwarranted invasion of personal privacy. Name of Committee: Environmental Health Sciences Review... applications. Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W...

  10. 77 FR 30019 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-05-21

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... of Extramural Research and Training, Nat. Institute of Environmental Health Science, P.O. Box 12233... Health Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114, Applied...

  11. 77 FR 16844 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-03-22

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory.... Institute Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919) 541-1307, [email protected] . Name of Committee: National Institute of Environmental Health Sciences...

  12. 78 FR 14562 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-03-06

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Health Sciences Special Emphasis Panel; Studies on Environmental Health Concerns from Superstorm Sandy... Administrator, National Institute of Environmental Health Sciences, Office of Program Operations, Scientific...

  13. 76 FR 5184 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2011-01-28

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Health Sciences Special Emphasis Panel; Outstanding New Environmental Scientist Award. Date: February 24... Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander Drive, Research Triangle...

  14. 76 FR 80954 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-12-27

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(a) of the Federal Advisory Committee Act.../boards/ibcercc/ . Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium... Environmental Health Sciences, National Institutes of Health, 615 Davis Dr., KEY615/3112, Research Triangle Park...

  15. 77 FR 61613 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-10-10

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Environmental Health Sciences, P. O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919) 541-1307, [email protected] . Name of Committee: National Institute of Environmental Health Sciences Special Emphasis...

  16. 76 FR 63311 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2011-10-12

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Environmental Health Sciences, Office of Program Operations, Scientific Review Branch, P.O. Box 12233, Research... Environmental Health Sciences Special Emphasis Panel, Development to Independence Review Meeting. Date: November...

  17. 77 FR 61771 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-10-11

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... clearly unwarranted invasion of personal privacy. Name of Committee: Environmental Health Sciences Review... applications. Place: National Institute of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111...

  18. 75 FR 68367 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-11-05

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Research and Training, Nat. Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room 3170 B... Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114, Applied Toxicological...

  19. 78 FR 26643 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2013-05-07

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act... Epidemiology Group and Biomarker-Based Epidemiology Group. Place: Nat. Inst. of Environmental Health Sciences.... Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W...

  20. 76 FR 26311 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2011-05-06

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory.... Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30/Room 3171, Research Triangle Park, NC... and Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences; 93.113...

  1. 77 FR 37423 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-06-21

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory..., [email protected] . Name of Committee: National Institute of Environmental Health Sciences Special... Research and Training, Nat. Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room 3170 B...

  2. 75 FR 10293 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-03-05

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory.... Institute Environmental Health Sciences, P. O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919... Health Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114, Applied...

  3. 76 FR 11500 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2011-03-02

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Administrator, Nat. Institute of Environmental Health Sciences, Office of Program Operations, Scientific Review... . Name of Committee: National Institute of Environmental Health Sciences Special Emphasis Panel; Novel...

  4. 75 FR 3474 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2010-01-21

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act... Environmental Health Sciences Council. The meeting will be open to the public as indicated below, with... of Committee: National Advisory Environmental Health Sciences Council. Date: February 18-19, 2010...

  5. 75 FR 49500 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2010-08-13

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act... Environmental Health Sciences Council. The meeting will be open to the public as indicated below, with... Committee: National Advisory Environmental Health Sciences Council. Date: September 1-2, 2010. Open...

  6. Defining core elements and outstanding practice in Nutritional Science through collaborative benchmarking.

    Science.gov (United States)

    Samman, Samir; McCarthur, Jennifer O; Peat, Mary

    2006-01-01

    Benchmarking has been adopted by educational institutions as a potentially sensitive tool for improving learning and teaching. To date there has been limited application of benchmarking methodology in the Discipline of Nutritional Science. The aim of this survey was to define core elements and outstanding practice in Nutritional Science through collaborative benchmarking. Questionnaires that aimed to establish proposed core elements for Nutritional Science, and inquired about definitions of " good" and " outstanding" practice were posted to named representatives at eight Australian universities. Seven respondents identified core elements that included knowledge of nutrient metabolism and requirement, food production and processing, modern biomedical techniques that could be applied to understanding nutrition, and social and environmental issues as related to Nutritional Science. Four of the eight institutions who agreed to participate in the present survey identified the integration of teaching with research as an indicator of outstanding practice. Nutritional Science is a rapidly evolving discipline. Further and more comprehensive surveys are required to consolidate and update the definition of the discipline, and to identify the optimal way of teaching it. Global ideas and specific regional requirements also need to be considered.

  7. Science Teachers' and Senior Secondary Schools Students' Perceptions of Earth and Environmental Science Topics

    Science.gov (United States)

    Dawson, Vaille; Carson, Katherine

    2013-01-01

    This article presents an evaluation of a new upper secondary Earth and Environmental Science (EES) course in Western Australia. Twenty-seven EES teachers were interviewed and 243 students were surveyed about the degree of difficulty, relevance and interest of EES topics in the course. The impact of the course on students' views about EES topics…

  8. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    Science.gov (United States)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  9. A Reconstructed Vision of Environmental Science Literacy: The Case of Qatar

    Science.gov (United States)

    Khishfe, Rola

    2014-01-01

    The purpose of this study was twofold: (a) develop a conceptual framework for environmental science literacy; and consequently (b) examine the potential of science standards/curricula to prepare environmentally literate citizens. The framework comprised four pillars: science content knowledge, scientific inquiry, nature of science (NOS), and…

  10. Environmental Education in the pedagogical practice of pedagogy teachers

    Directory of Open Access Journals (Sweden)

    Joseane Patrícia dos Santos

    2013-12-01

    Full Text Available This work is the result of research at  Masters level which was developed with teachers from teaching at a public university that aims to investigate the contributions of the degree course in pedagogy for teacher education as environmental educator, based on the conceptions and practices of teachers in that  course. This  article is a  sample of  the  results presented  in  this  dissertation, which aims to investigate the contributions of the introduction of EE in practice teaching in the course of Pedagogy of  an IES for teacher  training as environmental educator . For this  research, the  methodological procedures were  adopted a qualitative approach, and to  analyze some of the theoretical and  methodological content analysis of Bardin (1977. The subjects of this study were the teachers of that course. The results found that teaching practices analyzed provide opportunities for critical reflection on social and environmental issues, contributing to the formation of a teacher with a more sensitive E.E.

  11. Environmental assessment for sustainable development: process, actors and practice

    International Nuclear Information System (INIS)

    Andre, P.; Delisle, C.E.; Reveret, J.-P.

    2003-01-01

    Multiple environmental problems afflict our contemporary world and have been the subject of discussions during many international meetings. All declarations resulting from these meetings insist on including environmental problems and on environmental assessment (EA) as an important tool to achieve this. This book aims to reach three objectives. First, it introduces EA to people from different disciplines, and therefore it opens up the perspective of new disciplinary horizons. Second, the authors discuss EA as a socio-political process rather than emphasizing methodologies. Third, this book draws mainly on the experience in Francophone countries which is still poorly disseminated. This book focusses on process and actors. Thus, the subject matter is divided into five major parts: the history and major issues of EA from a sustainable development perspective (Chapters 1 to 3); the actors, i.e. the Project Proponent and consulting firms, the public, the decision maker and international actors (Chapters 4 to 7); methods and tools including public participation (Chapters 8 and 9); processes in practice through step by step processes in practice and case studies (Chapters 10 and 11); and, finally, recent and upcoming developments in EA, including elements of strategic environmental assessment (Chapters 12 and 13). An index facilitates searching for information. The reader is also invited to consult the book's website

  12. Environmental Sciences Laboratory dedication, February 26-27, 1979

    International Nuclear Information System (INIS)

    Auerbach, S.I.; Millemann, N.T.

    1980-09-01

    The dedication of the new Environmental Sciences Laboratory coincided with the 25th year of the establishment of the science of ecology at Oak Ridge National Laboratory. That quarter century witnessed the evolution of ecology from an obscure, backwater discipline of biology to a broadly used, everyday household word. The transition reflected broad and basic changes in our social and cultural view of the world. This was brought about as a result of the awareness developed in our society of the importance of the environment, coupled with efforts of ecologists and other environmental scientists who identified, clarified, and formulated the issues and challenges of environmental protection for both the lay public and the scientific community. In many respects, the activities in ecology at ORNL were a microcosm of the broader social scene; the particular problems of the environment associated with atomic energy needed to be defined in scientific terms and articulated in both the specific and general sense for a larger audience which was unfamiliar with the field and somewhat alien to its concepts and philosophy. The success of this effort is reflected in the existence of the new Environmental Sciences Laboratory. This dedication volume brings together the thoughts and reflections of many of these scientists whose efforts contributed in a unique and individualistic fashion not only to ORNL but also to the national identification of ecology and its importance to the achievement of our national goals. Their remarks and presentations are not only a pleasant and personally gratifying recapitulation of the past and of ORNL's contributions to ecology but also portend some of the challenges to ecology in the future

  13. Environmental Sciences Laboratory dedication, February 26-27, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, S.I.; Millemann, N.T. (eds.)

    1980-09-01

    The dedication of the new Environmental Sciences Laboratory coincided with the 25th year of the establishment of the science of ecology at Oak Ridge National Laboratory. That quarter century witnessed the evolution of ecology from an obscure, backwater discipline of biology to a broadly used, everyday household word. The transition reflected broad and basic changes in our social and cultural view of the world. This was brought about as a result of the awareness developed in our society of the importance of the environment, coupled with efforts of ecologists and other environmental scientists who identified, clarified, and formulated the issues and challenges of environmental protection for both the lay public and the scientific community. In many respects, the activities in ecology at ORNL were a microcosm of the broader social scene; the particular problems of the environment associated with atomic energy needed to be defined in scientific terms and articulated in both the specific and general sense for a larger audience which was unfamiliar with the field and somewhat alien to its concepts and philosophy. The success of this effort is reflected in the existence of the new Environmental Sciences Laboratory. This dedication volume brings together the thoughts and reflections of many of these scientists whose efforts contributed in a unique and individualistic fashion not only to ORNL but also to the national identification of ecology and its importance to the achievement of our national goals. Their remarks and presentations are not only a pleasant and personally gratifying recapitulation of the past and of ORNL's contributions to ecology but also portend some of the challenges to ecology in the future.

  14. Reference Data Layers for Earth and Environmental Science: History, Frameworks, Science Needs, Approaches, and New Technologies

    Science.gov (United States)

    Lenhardt, W. C.

    2015-12-01

    Global Mapping Project, Web-enabled Landsat Data (WELD), International Satellite Land Surface Climatology Project (ISLSCP), hydrology, solid earth dynamics, sedimentary geology, climate modeling, integrated assessments and so on all have needs for or have worked to develop consistently integrated data layers for Earth and environmental science. This paper will present an overview of an abstract notion of data layers of this types, what we are referring to as reference data layers for Earth and environmental science, highlight some historical examples, and delve into new approaches. The concept of reference data layers in this context combines data availability, cyberinfrastructure and data science, as well as domain science drivers. We argue that current advances in cyberinfrastructure such as iPython notebooks and integrated science processing environments such as iPlant's Discovery Environment coupled with vast arrays of new data sources warrant another look at the how to create, maintain, and provide reference data layers. The goal is to provide a context for understanding science needs for reference data layers to conduct their research. In addition, to the topics described above this presentation will also outline some of the challenges to and present some ideas for new approaches to addressing these needs. Promoting the idea of reference data layers is relevant to a number of existing related activities such as EarthCube, RDA, ESIP, the nascent NSF Regional Big Data Innovation Hubs and others.

  15. Science and Mathematics Teacher Candidates' Environmental Knowledge, Awareness, Behavior and Attitudes

    Science.gov (United States)

    Yumusak, Ahmet; Sargin, Seyid Ahmet; Baltaci, Furkan; Kelani, Raphael R.

    2016-01-01

    The purpose of this study was to measure science and mathematics teacher candidates' environmental knowledge level, awareness, behavior and environmental attitudes. Four instruments comprising Environmental Sensitivity Scale, environmental Behavior Scale, Environmental Attitudes Scale and Environmental Knowledge Test were administered to a total…

  16. 77 FR 4572 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-01-30

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental Health Hazards... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Environmental...

  17. 76 FR 59147 - National Institute of Environmental Health Sciences Notice of Meetings

    Science.gov (United States)

    2011-09-23

    ... Environmental Health Sciences Notice of Meetings Pursuant to section 10(a) of the Federal Advisory Committee Act... Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental Health Hazards... Environmental Research Coordinating Committee. The meetings will be open to the public, with attendance limited...

  18. Evaluation of field trials of innovative practices in science education

    OpenAIRE

    Gerloff-Gasser, C; Büchel, K

    2012-01-01

    Science and technology (S&T) education is vital to increase the science literacy in modern societies and to stimulate more young people to opt for careers in S&T. Because there are considerable differences in S&T education among and sometimes within countries, it is promising to adopt an adaptive strategy to its innovation that allows a fit to the specific conditions of each of the countries. In this report, we present first results of field trials with innovative practices in S&T educatio...

  19. Epistemic dependence in contemporary science: Practices and malpractices

    DEFF Research Database (Denmark)

    Andersen, Hanne

    2014-01-01

    Despite an increased focus on scientific practice in the philosophy of science in recent years, there has been relatively little focus on malpractices such as intentional fraud or gross negligence. This is the more striking since malpractice in research  both in the form of outright misconduct...... 1999; 1994). Most existing philosophical analyses of malpractice in science have centered on intentional deceit and treated the phenomenon primarily as a topic for ethical analyses. However, in this paper I shall go beyond this focus on deceit and discuss intentional, reckless as well as negligent...

  20. Pedagogical practices in Youth and Adult Education: concepts and practices of Sciences teachers

    OpenAIRE

    Karen Martins Limberger; Valderez Marina do Rosário Lima; Renata Medina Silva

    2014-01-01

    The present work aimed to analyze how the pedagogical practices of Sciences teachers in Youth and Adults Education (YAE) are developed. The study had a qualitative approach and employed semi-structured recorded interviews for data survey, which was later evaluated through the Discursive Textual Analysis. It was verified that YAE Sciences teachers’ planning is based on regular education textbooks and focuses on conceptual contents. Teachers use different teaching strategies, such as movies pic...

  1. Critical complexity in environmental health practice: simplify and complexify

    Directory of Open Access Journals (Sweden)

    Keune Hans

    2012-06-01

    Full Text Available Abstract The magic word ‘complexity’ has been buzzing around in science, policy and society for quite some time now. There seems to be a common feel for a ‘new way’ of doing things, for overcoming the limits of tradition. From the combined perspective of critical complexity thinking and environment and health practice we want to contribute to the development of alternative routines that may help overcome the limitations of traditional environment and health science. On the one hand traditional environment and health science is too self-confident with respect to potential scientific insight in environment and health problems: complexity condemns us to limited and ambiguous knowledge and the need for simplification. A more modest attitude would be more realistic from that point of view. On the other hand from a problem solving perspective more boldness is required. Waiting for Godot (perfect undisputed knowledge will not help us with respect to the challenges posed to society by environment and health problems. A sense of urgency is legitimate: the paralysis by traditional analysis should be resolved. Nevertheless this sense of urgency should not withhold us from investing in the problem solving quality of our endeavour; quality takes time, fastness from a quality perspective often leads us to a standstill. We propose the concept of critical complexification of environment and health practice that will enable the integration of relevant actors and factors in a pragmatic manner. We will illustrate this with practical examples and especially draw attention to the practical complexities involved, confronting us not only with fundamental questions, but also with fundamental challenges.

  2. Role of social science in global environmental change: case of urbanisation

    CSIR Research Space (South Africa)

    Njiro, E

    2006-02-01

    Full Text Available the role of social scientists in global environmental change by examining urbanisation and other environmental changes as suggested in the science plan of the International Human Dimensions Programme on Global Environmental Change (IHDP 2005)...

  3. Applying gene flow science to environmental policy needs: a boundary work perspective.

    Science.gov (United States)

    Ridley, Caroline E; Alexander, Laurie C

    2016-08-01

    One application of gene flow science is the policy arena. In this article, we describe two examples in which the topic of gene flow has entered into the U.S. national environmental policymaking process: regulation of genetically engineered crops and clarification of the jurisdictional scope of the Clean Water Act. We summarize both current scientific understanding and the legal context within which gene flow science has relevance. We also discuss the process by which scientific knowledge has been synthesized and communicated to decision-makers in these two contexts utilizing the concept of 'boundary work'. Boundary organizations, the work they engage in to bridge the worlds of science, policy, and practice, and the boundary objects they produce to translate scientific knowledge existed in both examples. However, the specific activities and attributes of the objects produced varied based on the needs of the decision-makers. We close with suggestions for how scientists can contribute to or engage in boundary work with policymakers.

  4. Linking Science and Society With an Environmental Information Bridge

    Science.gov (United States)

    Welling, L.; Seielstad, G.; Jones, D.; Peterson, J.

    2001-12-01

    Building learning communities to engage the public in identifying and solving local and regional environmental problems is the vision of the newly created Northern Great Plains Center for People and the Environment at the University of North Dakota. The Center serves as an Environmental Information Bridge between science and society for citizens of the region, providing information, data, and value-added remote sensing products to precision agriculture, sustainable forestry, Native American land managers, and K-lifetime educators. Guided by the needs of end users, the new Center is a prototype for a national infrastructure that meets ESE's objective to "expand and accelerate the realization of economic and societal benefits from Earth science, information, and technology". The scientific community has been good at converting raw data into useful information. However, a serious communications gap exists between the communities of scientists and non-scientists. The new Center bridges this gap, creating a many-to-many exchange of information among those who learn first about the environment and those who will put those lessons to work for their economic welfare, the betterment of the quality of their lives, and the benefit of their descendants. A major outreach component of the Center, written and produced at UND, is Our Changing Planet, a public television series aimed at increasing viewers' awareness of environmental and climate change issues. Now carried by approximately 30 public television stations the series is distributed nationwide by the National Education Television Association. The Center has also recently established a partnership with StormCenter.com, LLC, a multimedia company and fellow partner in NASA's Federation of Earth Science Information Partners that uses leading-edge technology to deliver information about the environment to regional television stations. Service to the media provides a vital link between science and the public, as local weather

  5. Participatory approaches for environmental governance: theoretical justifications and practical effects

    International Nuclear Information System (INIS)

    Van den Hove, Sybille

    2003-01-01

    A key justification for the rapid development of participatory approaches for environment and sustainable development governance stems from the characteristics of environmental issues. Environmental issues - and radioactive waste disposal is a good example - typically present four important physical characteristics: complexity, uncertainty, large temporal and spatial scales, and irreversibility, which all have consequences on what can be called the social characteristics of environmental issues. These include: social complexity and conflicts of interests, transversality, diffuse responsibilities and impacts, no clear division between micro- and macro-levels, and short-term costs of dealing with the issue associated with benefits which might occur only in the long-term. In turn, these physical and social characteristics determine the type of problem-solving processes needed to tackle environmental issues. It appears that the problem-solving processes best suited to confront global environmental issues will be dynamic processes of capacity-building, - aiming at innovative, flexible and adjustable answers, - allowing for the progressive integration of information as it becomes available, and of different value judgements and logics, - involving various actors from different backgrounds and levels. In promoting more democratic practices, these processes additionally should supersede traditional politics and allow co-ordination across different policy areas. It is deemed that participatory approaches have the potential to meet these problem-solving requirements

  6. Environmental Warning System Based on the DPSIR Model: A Practical and Concise Method for Environmental Assessment

    Directory of Open Access Journals (Sweden)

    Wenqi Wang

    2018-05-01

    Full Text Available Though we are in urgent need of environmental warnings to slow environmental deterioration, currently, there is no internationally concise method for environmental warnings. In addition, the existing approaches do not combine the three aspects of ecology, resources, and environment. At the same time, the three elements of the environment (air, water, and soil are separated in most environmental warning systems. Thus, the method this paper gives is an innovative attempt and aims to make environmental assessment more practical. This paper establishes the index system of an environmental early warning based on the Driving–Pressure–State–Influence–Response (DPSIR model. The Analytic Hierarchy Process (AHP method was used to determine the weights. Next, single and integrated index methods further assess the environmental warning state, in which the weighted summation method is used to summarize the data and results. The case of Tianjin is used to confirm the applicability of this method. In conclusion, the method in this paper is more well-behaved and, therefore, more suitable to assist cities in their environmental assessment.

  7. Influence of an Intensive, Field-Based Life Science Course on Preservice Teachers' Self-Efficacy for Environmental Science Teaching

    Science.gov (United States)

    Trauth-Nare, Amy

    2015-08-01

    Personal and professional experiences influence teachers' perceptions of their ability to implement environmental science curricula and to positively impact students' learning. The purpose of this study was twofold: to determine what influence, if any, an intensive field-based life science course and service learning had on preservice teachers' self-efficacy for teaching about the environment and to determine which aspects of the combined field-based course/service learning preservice teachers perceived as effective for enhancing their self-efficacy. Data were collected from class documents and written teaching reflections of 38 middle-level preservice teachers. Some participants ( n = 18) also completed the Environmental Education Efficacy Belief Instrument at the beginning and end of the semester. Both qualitative and quantitative data analyses indicated a significant increase in PSTs' personal efficacies for environmental teaching, t(17) = 4.50, p = .000, d = 1.30, 95 % CI (.33, .90), but not outcome expectancy, t(17) = 1.15, p = .268, d = .220, 95 % CI (-.06, .20). Preservice teachers reported three aspects of the course as important for enhancing their self-efficacies: learning about ecological concepts through place-based issues, service learning with K-5 students and EE curriculum development. Data from this study extend prior work by indicating that practical experiences with students were not the sole factor in shaping PSTs' self-efficacy; learning ecological concepts and theories in field-based activities grounded in the local landscape also influenced PSTs' self-efficacy.

  8. Building a Collaboratory in Environmental and Molecular Science

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, R.T.; Myers, J.D.; Devaney, D.M.; Dunning, T.H.; Wise, J.A.

    1994-03-01

    A Collaboratory is a meta-laboratory that spans multiple geographical areas with collaborators interacting via electronic means. Collaboratories are designed to enable close ties between scientists in a given research area, promote collaborations involving scientists in diverse areas, accelerate the development and dissemination of basic knowledge, and minimize the time-lag between discovery and application. PNL is developing the concept of an Environmental and Molecular Sciences Collaboratory (EMSC) as a natural evolution of the EMSL project. The goal of the EMSC is to increase the efficiency of research and reduce the time required to implement new environmental remediation and preservation technologies. The EMSC will leverage the resources (intellectual and physical) of the EMSL by making them more accessible to remote collaborators as well as by making the resources of remote sites available to local researchers. It will provide a common set of computer hardware and software tools to support remote collaboration, a key step in establishing a collaborative culture for scientists in the theoretical, computational, and experimental molecular sciences across the nation. In short, the EMSC will establish and support an `electronic community of scientists researching and developing innovative environmental preservation and restoration technologies.

  9. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    Science.gov (United States)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  10. Building a Collaboratory in Environmental and Molecular Science

    International Nuclear Information System (INIS)

    Kouzes, R.T.; Myers, J.D.; Devaney, D.M.; Dunning, T.H.; Wise, J.A.

    1994-03-01

    A Collaboratory is a meta-laboratory that spans multiple geographical areas with collaborators interacting via electronic means. Collaboratories are designed to enable close ties between scientists in a given research area, promote collaborations involving scientists in diverse areas, accelerate the development and dissemination of basic knowledge, and minimize the time-lag between discovery and application. PNL is developing the concept of an Environmental and Molecular Sciences Collaboratory (EMSC) as a natural evolution of the EMSL project. The goal of the EMSC is to increase the efficiency of research and reduce the time required to implement new environmental remediation and preservation technologies. The EMSC will leverage the resources (intellectual and physical) of the EMSL by making them more accessible to remote collaborators as well as by making the resources of remote sites available to local researchers. It will provide a common set of computer hardware and software tools to support remote collaboration, a key step in establishing a collaborative culture for scientists in the theoretical, computational, and experimental molecular sciences across the nation. In short, the EMSC will establish and support an 'electronic community of scientists researching and developing innovative environmental preservation and restoration technologies

  11. Knowledge, attitudes, and practices regarding environmental cleaning among environmental service workers in Chinese hospitals.

    Science.gov (United States)

    Ni, Kaiwen; Chen, Bingbing; Jin, Hui; Kong, Qingxin; Ni, Xiaoping; Xu, Hong

    2017-09-01

    We conducted a study using a face-to-face survey to assess knowledge, attitudes, and practices of environmental service workers (ESWs) concerning routine cleaning and disinfection at 3 tertiary hospitals in China. There were 115 (89.1%) respondents who agreed that environmental cleaning can contribute to keep patients safe, whereas 63 (48.8%) reported they were very willing to make cleaning practices better. Only 15 (11.6%) ESWs agreed they were in risk of nosocomial infections during daily cleaning. Our findings suggest that the level of ESWs' knowledge regarding cleaning practices was passable, but the awareness of occupational safety and health was weak. There is a need to introduce sustained education and training aimed at ESWs. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  12. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments.

    Science.gov (United States)

    Drinkwater, Michael J; Matthews, Kelly E; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy. © 2017 M. J. Drinkwater et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. How does a Next Generation Science Standard Aligned, Inquiry Based, Science Unit Impact Student Achievement of Science Practices and Student Science Efficacy in an Elementary Classroom?

    Science.gov (United States)

    Whittington, Kayla Lee

    This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.

  14. Making mathematics and science integration happen: key aspects of practice

    Science.gov (United States)

    Ríordáin, Máire Ní; Johnston, Jennifer; Walshe, Gráinne

    2016-02-01

    The integration of mathematics and science teaching and learning facilitates student learning, engagement, motivation, problem-solving, criticality and real-life application. However, the actual implementation of an integrative approach to the teaching and learning of both subjects at classroom level, with in-service teachers working collaboratively, at second-level education, is under-researched due to the complexities of school-based research. This study reports on a year-long case study on the implementation of an integrated unit of learning on distance, speed and time, within three second-level schools in Ireland. This study employed a qualitative approach and examined the key aspects of practice that impact on the integration of mathematics and science teaching and learning. We argue that teacher perspective, teacher knowledge of the 'other subject' and of technological pedagogical content knowledge (TPACK), and teacher collaboration and support all impact on the implementation of an integrative approach to mathematics and science education.

  15. Communicating science a practical guide for engineers and physical scientists

    CERN Document Server

    Boxman, Raymond

    2017-01-01

    Read this book before you write your thesis or journal paper! Communicating Science is a textbook and reference on scientific writing oriented primarily at researchers in the physical sciences and engineering. It is written from the perspective of an experienced researcher. It draws on the authors' experience of teaching and working with both native English speakers and English as a Second Language (ESL) writers. For the range of topics covered, this book is relatively short and tersely written, in order to appeal to busy researchers.Communicating Science offers comprehensive guidance on: Graduate students and early career researchers will be guided through the researcher's basic communication tasks: writing theses, journal papers, and internal reports, presenting lectures and posters, and preparing research proposals. Extensive best practice examples and analyses of common problems are presented. Advanced researchers who aim to commercialize their research results will be introduced to business plans and pat...

  16. Impact evaluation of the Masters Courses on the Science Teachers’ professional practices – best practices examples

    Directory of Open Access Journals (Sweden)

    Lúcia Pombo

    2009-03-01

    Full Text Available This study intends to (i evaluate the impact of the Master Courses’ attendance on the professional practices of Science teachers, in Portugal, (ii to disseminate examples of good practices of teaching with a strong impact on the Master Course (MC, and (iii to present suggestions to improve the articulation between Training, Research and Practices, in the post-graduation context. Semi-structured interviews were made to 5 Biology/Geology Master Teachers (MT of primary or secondary education. Two of this 5 MT were deepened studied as examples of good practices through classes’ observation and documental analysis. There were evidences of strong impact of the MC in all interviewed teachers, mainly in the classroom level, as the impact on peers was only evidenced by the two case studies. It is suggested that collaborative practices, involving teachers and researchers, namely as a result of post-graduation contexts, would promote the changing of the existent teachers’ practices.

  17. Environmentally induced nonstationarity in LIGO science run data

    International Nuclear Information System (INIS)

    Stone, Robert; Mukherjee, Soma

    2009-01-01

    NoiseFloorMon is a data monitoring tool (DMT) implemented at the LIGO sites to monitor instances of non-stationarity in the gravitational-wave data that are correlated with physical environmental monitors. An analysis of the fifth science run is nearly complete, and test runs preceding the sixth science run have also been analyzed. These analyses have identified time intervals in the gravitational-wave channel that indicate non-stationarity due to seismic activity, and these intervals are referred to as data quality flags. In the analyses conducted to date the majority of time segments identified as non-stationary were due to seismic activity at the corner station and the x-arm end station. We present the algorithm and its performance, and discuss the potential for an on-site pipeline that automatically generates data quality flags for use in future data runs.

  18. Interdisciplinary research center devoted to molecular environmental science opens

    Science.gov (United States)

    Vaughan, David J.

    In October, a new research center opened at the University of Manchester in the United Kingdom. The center is the product of over a decade of ground-breaking interdisciplinary research in the Earth and related biological and chemical sciences at the university The center also responds to the British governments policy of investing in research infrastructure at key universities.The Williamson Research Centre, the first of its kind in Britain and among the first worldwide, is devoted to the emerging field of molecular environmental science. This field also aims to bring about a revolution in understanding of our environment. Though it may be a less violent revolution than some, perhaps, its potential is high for developments that could affect us all.

  19. A Mentoring Program in Environmental Science for Underrepresented Groups

    Science.gov (United States)

    Stevens, L.; Rizzo, D. M.

    2009-12-01

    We developed a four-year program, combining educational and career support and research activities, to recruit and retain students from underrepresented groups in environmental sciences. Specifically, the program: ○ Assigns each student a faculty or graduate student mentor with whom the student conducts research activities. ○ Includes a weekly group meeting for team building and to review professional development and academic topics, such as time management and research ethics. ○ Requires students to make multiple formal presentations of their research proposals and results. ○ Provides scholarships and stipends for both the academic year and to engage students in summer research. The program seeks to achieve several goals including: ● Enhance academic performance. ● Encourage continued study in environmental science. ● Facilitate students completing their studies at UVM. ● Increase students’ interest in pursuing science careers. ● Create a more welcoming academic environment. To assess progress toward achievement of these goals, we conducted individual structured interviews with participating undergraduate students, graduate students, and faculty members at two points in time. First, interviews were conducted in the fall of 2007 after two years, and again in spring 2009, after four years. An independent research consultant, Dr. Livingston, conducted the interviews. In 2009, over the course of three days, the interviews included three graduate student and two faculty mentors, and six of the seven undergraduate students. Of the six students, three were juniors and three were graduating seniors. Results of the 2009 interviews echoed those of 2007. Both students and their mentors are quite satisfied with the program. The student presentations, weekly meetings, mentoring relationships, and summer research experiences all get high ratings from program participants. Students give high praise to their mentors and the program directors for providing

  20. Scientific data management in the environmental molecular sciences laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, P.R.; Keller, T.L.

    1995-09-01

    The Environmental Molecular Sciences Laboratory (EMSL) is currently under construction at Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy (DOE). This laboratory will be used for molecular and environmental sciences research to identify comprehensive solutions to DOE`s environmental problems. Major facilities within the EMSL include the Molecular Sciences Computing Facility (MSCF), a laser-surface dynamics laboratory, a high-field nuclear magnetic resonance (NMR) laboratory, and a mass spectrometry laboratory. The EMSL is scheduled to open early in 1997 and will house about 260 resident and visiting scientists. It is anticipated that at least six (6) terabytes of data will be archived in the first year of operation. An object-oriented database management system (OODBMS) and a mass storage system will be integrated to provide an intelligent, automated mechanism to manage data. The resulting system, called the DataBase Computer System (DBCS), will provide total scientific data management capabilities to EMSL users. A prototype mass storage system based on the National Storage Laboratory`s (NSL) UniTree has been procured and is in limited use. This system consists of two independent hierarchies of storage devices. One hierarchy of lower capacity, slower speed devices provides support for smaller files transferred over the Fiber Distributed Data Interface (FDDI) network. Also part of the system is a second hierarchy of higher capacity, higher speed devices that will be used to support high performance clients (e.g., a large scale parallel processor). The ObjectStore OODBMS will be used to manage metadata for archived datasets, maintain relationships between archived datasets, and -hold small, duplicate subsets of archived datasets (i.e., derivative data). The interim system is called DBCS, Phase 0 (DBCS-0). The production system for the EMSL, DBCS Phase 1 (DBCS-1), will be procured and installed in the summer of 1996.

  1. SUstaiNability: a science communication website on environmental research

    Science.gov (United States)

    Gravina, Teresita; Rutigliano, Flora Angela

    2015-04-01

    Environmental news mainly reach not specialist people by mass media, which generally focuses on fascinating or catastrophic events without reporting scientific data. Otherwise, scientific data on environment are published in peer-reviewed journals with specific language, so they could be not understandable to common people. In the last decade, Internet spread made easier to divulge environmental information. This allows everyone (scientist or not) to publish information without revision. In fact, World Wide Web includes many scientific sites with different levels of confidence. Within Italian scientific websites, there are those of University and Research Centre, but they mainly contain didactic and bureaucratic information, generally lacking in research news, or reporting them in peer-reviewed format. University and Research Centre should have an important role to divulge certified information, but news should be adapted to a general audience without scientific skills, in order to help population to gain knowledge on environmental issues and to develop responsible behavior. Therefore, an attractive website (www.sunability.unina2.it) has been created in order to divulge research products of Environmental, Biological and Pharmaceutical Sciences and Technologies Department (DiSTABiF) of Second University of Naples-SUN (Campania, Southern Italy). This website contains divulgation articles derived from peer-reviewed publications of DiSTABiF researchers and concerning studies on environmental, nutrition, and health issues, closely related topics. Environmental studies mainly referred to Caserta district (Southern Italy), where DiSTABiF is located. Divulgation articles have been shared by main social networks (Facebook: sunability, Twitter: @SUNability) and accesses have been monitored for 28 days in order to obtain demographic and geographic information about users and visualization number of both DiSTABiF website and social network pages. Demographic and geographic

  2. Environmental penal law. Legal foundations, aspects of administrative law, practical applications. Umweltstrafrecht. Gesetzliche Grundlagen, verwaltungsrechtliche Zusammenhaenge und praktische Anwendung

    Energy Technology Data Exchange (ETDEWEB)

    Meinberg, V. (Max-Planck-Institut fuer Auslaendisches und Internationales Strafrecht, Freiburg im Breisgau (Germany, F.R.)); Moehrenschlager, M. (Bundesministerium der Justiz, Bonn (Germany, F.R.)); Link, W. (eds.)

    1989-01-01

    The book intends to present the complexity of the penal code pertaining to environmental protection including the law on environmental offences in a way which makes the subject understandable for the reader. It is therefore not limited to the criminal law proper but looks at the administrative background and aspect of legal proceedings under these laws. Each area is dealt with by specialists from science and practice. The book is adressed to the experts in judiciary administration, industry, science and the interested layman. (orig.).

  3. Sandia Laboratories technical capabilities. Auxiliary capabilities: environmental health information science

    International Nuclear Information System (INIS)

    1975-09-01

    Sandia Laboratories is an engineering laboratory in which research, development, testing, and evaluation capabilities are integrated by program management for the generation of advanced designs. In fulfilling its primary responsibility to ERDA, Sandia Laboratories has acquired extensive research and development capabilities. The purpose of this series of documents is to catalog the many technical capabilities of the Laboratories. After the listing of capabilities, supporting information is provided in the form of highlights, which show applications. This document deals with auxiliary capabilities, in particular, environmental health and information science. (11 figures, 1 table) (RWR)

  4. Environmental dose reconstruction: Approaches to an inexact science

    International Nuclear Information System (INIS)

    Hoffman, F.O.

    1991-01-01

    The endpoints of environmental dose reconstruction are quantitative yet the science is inexact. Four problems related to this issue are described. These problems are: (1) Defining the scope of the assessment and setting logical priorities for detailed investigations, (2) Recognizing the influence of investigator judgment of the results, (3) Selecting an endpoint other than dose for the assessment of multiple contaminants, and (4) Resolving the conflict between credibility and expertise in selecting individuals responsible for dose reconstruction. Approaches are recommended for dealing with each of these problems

  5. Transforming conservation science and practice for a postnormal world.

    Science.gov (United States)

    Colloff, Matthew J; Lavorel, Sandra; van Kerkhoff, Lorrae E; Wyborn, Carina A; Fazey, Ioan; Gorddard, Russell; Mace, Georgina M; Foden, Wendy B; Dunlop, Michael; Prentice, I Colin; Crowley, John; Leadley, Paul; Degeorges, Patrick

    2017-10-01

    We examine issues to consider when reframing conservation science and practice in the context of global change. New framings of the links between ecosystems and society are emerging that are changing peoples' values and expectations of nature, resulting in plural perspectives on conservation. Reframing conservation for global change can thus be regarded as a stage in the evolving relationship between people and nature rather than some recent trend. New models of how conservation links with transformative adaptation include how decision contexts for conservation can be reframed and integrated with an adaptation pathways approach to create new options for global-change-ready conservation. New relationships for conservation science and governance include coproduction of knowledge that supports social learning. New processes for implementing adaptation for conservation outcomes include deliberate practices used to develop new strategies, shift world views, work with conflict, address power and intergenerational equity in decisions, and build consciousness and creativity that empower agents to act. We argue that reframing conservation for global change requires scientists and practitioners to implement approaches unconstrained by discipline and sectoral boundaries, geopolitical polarities, or technical problematization. We consider a stronger focus on inclusive creation of knowledge and the interaction of this knowledge with societal values and rules is likely to result in conservation science and practice that meets the challenges of a postnormal world. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  6. Global megatrends and their implications for environmental assessment practice

    Energy Technology Data Exchange (ETDEWEB)

    Retief, Francois, E-mail: francois.retief@nwu.ac.za [Research Unit for Environmental Sciences and Management, North-West University (South Africa); Bond, Alan [School of Environmental Sciences, University of East Anglia (United Kingdom); Research Unit for Environmental Sciences and Management, North-West University (South Africa); Pope, Jenny [Integral Sustainability (Australia); Research Unit for Environmental Sciences and Management, North-West University (South Africa); Morrison-Saunders, Angus [Murdoch University (Australia); Research Unit for Environmental, Sciences and Management, North-West University (South Africa); King, Nicholas [Research Unit for Environmental Sciences and Management, North-West University (South Africa)

    2016-11-15

    This paper addresses the future of environmental assessment (EA) practice in light of a rapidly changing world. We apply a literature review-based methodology to firstly identify key global megatrends and then reflect upon the implications for EA practice based on some known challenges. The key megatrends identified are synthesised into six categories: i) demographics, ii) urbanization, iii) technological innovation, iv) power shifts, v) resource scarcity and vi) climate change. We then discuss the implications of these megatrends for EA practice against four known EA challenges namely: dealing with i) complexity and uncertainty, ii) efficiency, iii) significance and iv) communication and participation. Our analysis suggests important implications for EA practice such as: increased difficulties with accuracy of prediction; the need for facilitative adaptation; an increase in the occurrence of unexpected events; higher expectations for procedural efficiency; challenges with information and communication management; dealing with significance judgements; and mitigation amidst resource scarcity and increasing pressures on earth systems. The megatrends underscore the need for continued evolution of EA thinking and practice, especially moving away from seeking a predictable single future or outcome towards the possibility of multiple scenarios with associated adaptability and enhanced system resilience capable of responding to rapid change.

  7. Global megatrends and their implications for environmental assessment practice

    International Nuclear Information System (INIS)

    Retief, Francois; Bond, Alan; Pope, Jenny; Morrison-Saunders, Angus; King, Nicholas

    2016-01-01

    This paper addresses the future of environmental assessment (EA) practice in light of a rapidly changing world. We apply a literature review-based methodology to firstly identify key global megatrends and then reflect upon the implications for EA practice based on some known challenges. The key megatrends identified are synthesised into six categories: i) demographics, ii) urbanization, iii) technological innovation, iv) power shifts, v) resource scarcity and vi) climate change. We then discuss the implications of these megatrends for EA practice against four known EA challenges namely: dealing with i) complexity and uncertainty, ii) efficiency, iii) significance and iv) communication and participation. Our analysis suggests important implications for EA practice such as: increased difficulties with accuracy of prediction; the need for facilitative adaptation; an increase in the occurrence of unexpected events; higher expectations for procedural efficiency; challenges with information and communication management; dealing with significance judgements; and mitigation amidst resource scarcity and increasing pressures on earth systems. The megatrends underscore the need for continued evolution of EA thinking and practice, especially moving away from seeking a predictable single future or outcome towards the possibility of multiple scenarios with associated adaptability and enhanced system resilience capable of responding to rapid change.

  8. Through the Looking Glass: Examining the Practice of Science Classroom Dissection with a Multi-Faceted Lens

    Science.gov (United States)

    Witte, Melissa Marie

    2014-01-01

    Dissection of lab specimens is a common procedure in science classrooms, yet there are many unasked and unexamined questions relating to this practice. In addition to ethical considerations, there are personal and environmental health impacts of using conventional dissection, which has historically included animals and animal organs embalmed in…

  9. 3R Practices Among Moe Preschool Pupils through the Environmental Education Curriculum

    Directory of Open Access Journals (Sweden)

    Mahat Hanifah

    2016-01-01

    Full Text Available Education is the key to increasing the knowledge and awareness of the general public on environmental issues at early ages, as envisaged in the concept of sustainable development. Hence, this study aims to discuss the sustainability practices among children at a Ministry of Education (MOE pre-school as a result of the implementation of environmental education through a formal curriculum. Sustainability practices of pupils in this study involves the concept of Reduce, Reuse and Recycle. Survey methods were used, which involved 500 pupils in MOE preschools in Hulu Langat district, Selangor Malaysia. Results showed that pre-school pupils practice the 3Rs only at a moderate level while the level of knowledge of sustainability was at a high level. The results also showed that there was no significant relationship between prolonged knowledge in practicing the 3Rs among pre-school students. Obviously the input given by the teacher in teaching and learning science was not aligned with sustainability activities such as the 3Rs. Space conservation practices using a structured curriculum platform should be utilised in order to produce citizens who are aware of sustainable development.

  10. Incorporating Environmental Regulation and Litigation in Earth Science Curriculum

    Science.gov (United States)

    Flegal, A. R.

    2004-12-01

    Fundamental knowledge of geological processes is not only needed for effective environmental regulation and litigation, but Earth Science students find that relevance motivating in their studies of those processes. Crustal abundance and redox reactions suddenly become personally meaningful when they are used to account for the presence of high levels of carcinogenic Cr(VI) in the students' drinking water. Similarly, epithermal mercury deposits and the element's speciation gain new importance when they are related to the warning signs on the consumption of fish that the students catch and eat. And even those students that are not motivated by these, and many other, applications of geology find solace in learning that anthropogenic perturbations of the global lead cycle may partially account for their short attention span, lack of interest, and inability to learn the material. Consequently, a number of courses in environmental toxicology and ground water contamination have been developed that are based on (1) case studies in environmental regulation and litigation and (2) active student participation as "expert witnesses" opining on the scientific basis of environmental decisions.

  11. Endorsing the Practical Endorsement? OCR's Approach to Practical Assessment in Science A-Levels

    Science.gov (United States)

    Evans, Steve; Wade, Neil

    2015-01-01

    This article summarises the practical requirements for new science A-levels in biology, chemistry and physics for first teaching from September 2015. It discusses the background to how the new approach was reached and how OCR has seen this taking shape in our assessment models. The opportunities presented by this new approach to practical…

  12. An exploration of middle school science teachers' understandings and teaching practice of science as inquiry

    Science.gov (United States)

    Castle, Margaret Ann

    A number of reports have raised a concern that the U.S. is not meeting the demands of 21st century skill preparation of students, teachers, and practitioners in the areas of science, technology, engineering, and mathematics (STEM). In 2005 and 2006 five reports were released indicating a need for improvement in science and mathematics education in the U.S. The reports were: Keeping America Competitive: Five Strategies To Improve Mathematics and Science Education (Coble & Allen, 2005); National Defense Education and Innovation Initiative: Meeting America's Economic and Security Challenges in the 21st Century (The Association of American Universities, 2006); Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future (National Academies Press, 2007); Tapping America's Potential: The Education for Innovation Initiative (Business Roundtable Taskforce , 2005); and Waiting for Sputnik: Basic Research and Strategic Competition (Lewis, 2005). Consensus of data in these reports indicates that the U.S., as compared to other industrialized nations, does not fare very well in science achievement and STEM degree attainment. For example, on the 2003 Program for International Assessment (PISA), 15-year-old students in the U.S. ranked 28th in math and 24th in science literacy (Kuenzi, Matthews, & Mangon, 2006). Furthermore, the U.S. ranked 20th among all nations in the proportion of 24-year-olds who earned degrees in natural sciences or engineering (Kuenzi, 2008). As a result, if the U.S. is to remain scientifically and technologically competitive in the world, it is necessary to increase our efforts to incorporate scientific practices associated with science, technology, engineering, and mathematics into the science classroom. Middle school is a critical point in students' science education and it is in middle school that they begin to dislike science. Research indicates that when students learn science through inquiry their interest in and

  13. Best Practice in Environmental Management of Uranium Mining

    International Nuclear Information System (INIS)

    2010-01-01

    The modern uranium mining industry was born in the middle of the 20th century at a time of rapid industrial and social change and in an atmosphere of concern over the development of nuclear weapons. At many uranium mining operations, the need to produce uranium far outweighed the need to ensure that there were any more than vestigial efforts made in protecting the workers, the public and the environment from the impacts of the mining, both radiological and non-radiological. In the last quarter of the 20th century, the world began to take greater care of the total environment with the introduction of legislation and the development of operating procedures that took environmental protection into account. The uranium mining industry was part of this change, and standards of environmental management began to become of significance in corporate planning strategies. However, by the 1980s, as uranium mining companies began to address the issues of environment protection, the industry began to suffer a cyclical slowdown. By the 1990s, the industry was at a nadir, but the surviving uranium producers continued to develop and implement a series of procedures in environmental management that were regarded as best practices. This, in part, was necessary as a means to demonstrate to the regulators, governments and the public that the mining operations were being run with the intention of minimizing adverse impacts on the workers, people and the environment. This ensured that mining would be allowed to continue. The decline in uranium mining activity bottomed out in the 1990s, but a resurgence of activity began in the new century that is likely to continue for some time. This has been, in part, due to market conditions and concerns about the shortfall of current production from primary sources (uranium mines) against current reactor fuel demands; the anticipated decrease in future availability of secondary sources such as stockpiles; and the increased interest in nuclear power

  14. Parent Involvement Practices of High-Achieving Elementary Science Students

    Science.gov (United States)

    Waller, Samara Susan

    This study addressed a prevalence of low achievement in science courses in an urban school district in Georgia. National leaders and educators have identified the improvement of science proficiency as critical to the future of American industry. The purpose of this study was to examine parent involvement in this school district and its contribution to the academic achievement of successful science students. Social capital theory guided this study by suggesting that students achieve best when investments are made into their academic and social development. A collective case study qualitative research design was used to interview 9 parent participants at 2 elementary schools whose children scored in the exceeds category on the Science CRCT. The research questions focused on what these parents did at home to support their children's academic achievement. Data were collected using a semi-structured interview protocol and analyzed through the categorical aggregation of transcribed interviews. Key findings revealed that the parents invested time and resources in 3 practices: communicating high expectations, supporting and developing key skills, and communicating with teachers. These findings contribute to social change at both the local and community level by creating a starting point for teachers, principals, and district leaders to reexamine the value of parent input in the educational process, and by providing data to support the revision of current parent involvement policies. Possibilities for further study building upon the findings of this study may focus on student perceptions of their parents' parenting as it relates to their science achievement.

  15. Authentic Science Research Opportunities: How Do Undergraduate Students Begin Integration into a Science Community of Practice?

    Science.gov (United States)

    Gardner, Grant E.; Forrester, Jennifer H.; Jeffrey, Penny Shumaker; Ferzli, Miriam; Shea, Damian

    2015-01-01

    The goal of the study described was to understand the process and degree to which an undergraduate science research program for rising college freshmen achieved its stated objectives to integrate participants into a community of practice and to develop students' research identities.

  16. The relevance of behavioural sciences in dental practice

    DEFF Research Database (Denmark)

    Schou, L

    2000-01-01

    includes compliance with certain oral hygiene regimens or specific dental visiting patterns. The outcome of the treatment depends on both the dental professional's knowledge and skills and the patient's skills, objectives and expectations. Furthermore, dental professionals and patients should be satisfied......The aim of this paper is to illustrate how knowledge from behavioural sciences is necessary and relevant in creating a successful dental practice, benefitting patients and dental professionals. There are many ways to create a successful dental practice, the products of which are the various...... treatments performed by dentists or dental hygienists for their patients. Advanced technologies and methods are constantly improving these treatments and thus the technical and managerial aspects of dentistry. However, the success of dental practice is not only dependent on the technique applied...

  17. Publications in biomedical and environmental sciences programs, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.B. (comp.)

    1983-04-01

    This bibliography contains 725 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1982. There are 553 references to articles published in journals and books and 172 references to reports. The citations appear once ordered by the first author's division or by the performing division. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions are represented alphabetically. Indexes are provided by author, title, and journal reference. Reprints of articles referenced in this bibliography can be obtained from the author or the author's division.

  18. Virtual science instructional strategies: A set of actual practices as perceived by secondary science educators

    Science.gov (United States)

    Gillette, Tammy J.

    2009-12-01

    The purpose of this proposed research study was to identify actual teaching practices/instructional strategies for online science courses. The identification of these teaching practices/instructional strategies could be used to compile a set of teaching practices/instructional strategies for virtual high school and online academy science instructors. This study could assist online science instructors by determining which teaching practices/instructional strategies were preferred for the online teaching environment. The literature reviewed the role of online and face-to-face instructional strategies, then discussed and elaborated on the science instructional strategies used by teachers, specifically at the secondary level. The current literature did not reflect an integration of these areas of study. Therefore, the connectedness of these two types of instructional strategies and the creation of a set of preferred instructional practices for online science instruction was deemed necessary. For the purpose of this study, the researcher designed a survey for face-to-face and online teachers to identify preferred teaching practices, instructional strategies, and types of technology used when teaching high school science students. The survey also requested demographic data information from the faculty members, including years of experience, subject(s) taught, and whether the teacher taught in a traditional classroom or online, to determine if any of those elements affect differences in faculty perceptions with regard to the questions under investigation. The findings from the current study added to the literature by demonstrating the differences and the similarities that exist between online and face-to-face instruction. Both forms of instruction tend to rely on student-centered approaches to teaching. There were many skills that were similar in that both types of instructors tend to focus on implementing the scientific method. The primary difference is the use of

  19. Teaching, Practice, Feedback: 15 years of COMPASS science communication training

    Science.gov (United States)

    Neeley, L.; Smith, B.; McLeod, K.; English, C. A.; Baron, N.

    2014-12-01

    COMPASS is focused on helping scientists build the skills and relationships they need to effectively participate in public discourse. Founded in 2001 with an emphasis on ocean science, and since expanding to a broader set of environmental sciences, we have advised, coached, and/or trained thousands of researchers of all career stages. Over the years, our primary work has notably shifted from needing to persuade scientists why communication matters to supporting them as they pursue the question of what their communication goals are and how best to achieve them. Since our earliest forays into media promotion, we have evolved with the state of the science communication field. In recent years, we have adapted our approach to one that facilitates dialogue and encourages engagement, helps scientists identify the most relevant people and times to engage, tests our own assumptions, and incorporates relevant social science as possible. In this case study, we will discuss more than a decade of experience in helping scientists find or initiate and engage in meaningful conversations with journalists and policymakers.

  20. Quantitative Reasoning Learning Progressions for Environmental Science: Developing a Framework

    Directory of Open Access Journals (Sweden)

    Robert L. Mayes

    2013-01-01

    Full Text Available Quantitative reasoning is a complex concept with many definitions and a diverse account in the literature. The purpose of this article is to establish a working definition of quantitative reasoning within the context of science, construct a quantitative reasoning framework, and summarize research on key components in that framework. Context underlies all quantitative reasoning; for this review, environmental science serves as the context.In the framework, we identify four components of quantitative reasoning: the quantification act, quantitative literacy, quantitative interpretation of a model, and quantitative modeling. Within each of these components, the framework provides elements that comprise the four components. The quantification act includes the elements of variable identification, communication, context, and variation. Quantitative literacy includes the elements of numeracy, measurement, proportional reasoning, and basic probability/statistics. Quantitative interpretation includes the elements of representations, science diagrams, statistics and probability, and logarithmic scales. Quantitative modeling includes the elements of logic, problem solving, modeling, and inference. A brief comparison of the quantitative reasoning framework with the AAC&U Quantitative Literacy VALUE rubric is presented, demonstrating a mapping of the components and illustrating differences in structure. The framework serves as a precursor for a quantitative reasoning learning progression which is currently under development.

  1. 76 FR 62424 - National Institute of Environmental Health Sciences; Amended Notice of Meeting

    Science.gov (United States)

    2011-10-07

    ... Environmental Health Sciences; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the Interagency Breast Cancer and Environmental Research Coordinating Committee's State of Science... the November 29, 2011 State of Science Subcommittee meeting to 2 p.m. to 4 p.m. The meeting is open to...

  2. Developing Preservice Science Teachers' Self-Determined Motivation toward Environment through Environmental Activities

    Science.gov (United States)

    Karaarslan, Guliz; Sungur, Semra; Ertepinar, Hamide

    2014-01-01

    The aim of this study was to develop pre-service science teachers' self-determined motivation toward environment before, after and five months following the environmental course activities guided by self-determination theory. The sample of the study was 33 pre-service science teachers who participated in an environmental science course. This…

  3. The role of metadata in managing large environmental science datasets. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Melton, R.B.; DeVaney, D.M. [eds.] [Pacific Northwest Lab., Richland, WA (United States); French, J. C. [Univ. of Virginia, (United States)

    1995-06-01

    The purpose of this workshop was to bring together computer science researchers and environmental sciences data management practitioners to consider the role of metadata in managing large environmental sciences datasets. The objectives included: establishing a common definition of metadata; identifying categories of metadata; defining problems in managing metadata; and defining problems related to linking metadata with primary data.

  4. Science Education for Environmental Awareness: Approaches to Integrating Cognitive and Affective Domains

    Science.gov (United States)

    Littledyke, Michael

    2008-01-01

    Science education has an important part in developing understanding of concepts that underpin environmental issues, leading potentially to pro-environmental behaviour. However, science is commonly perceived negatively, leading to inappropriate and negative models of science that do not connect to people's experiences. The article argues that the…

  5. Investing in citizen science can improve natural resource management and environmental protection

    Science.gov (United States)

    McKinley, Duncan C.; Miller-Rushing, Abraham J.; Ballard, Heidi L.; Bonney, Rick; Brown, Hutch; Evans, Daniel M.; French, Rebecca A.; Parrish, Julia K.; Phillips, Tina B.; Ryan, Sean F.; Shanley, Lea A.; Shirk, Jennifer L.; Stepenuck, Kristine F.; Weltzin, Jake F.; Wiggins, Andrea; Boyle, Owen D.; Briggs, Russell D.; Chapin, Stuart F.; Hewitt, David A.; Preuss, Peter W.; Soukup, Michael A.

    2015-01-01

    Citizen science has made substantive contributions to science for hundreds of years. More recently, it has contributed to many articles in peer-reviewed scientific journals and has influenced natural resource management and environmental protection decisions and policies across the nation. Over the last 10 years, citizen science—participation by the public in a scientific project—has seen explosive growth in the United States, particularly in ecology, the environmental sciences, and related fields of inquiry. In this report, we explore the current use of citizen science in natural resource and environmental science and decision making in the United States and describe the investments organizations might make to benefit from citizen science.

  6. Incorporating Hot Topics in Ocean Sciences to Outreach Activities in Marine and Environmental Science Education

    Science.gov (United States)

    Bergondo, D. L.; Mrakovcich, K. L.; Vlietstra, L.; Tebeau, P.; Verlinden, C.; Allen, L. A.; James, R.

    2016-02-01

    The US Coast Guard Academy, an undergraduate military Academy, in New London CT, provides STEM education programs to the local community that engage the public on hot topics in ocean sciences. Outreach efforts include classroom, lab, and field-based activities at the Academy as well as at local schools. In one course, we partner with a STEM high school collecting fish and environmental data on board a research vessel and subsequently students present the results of their project. In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops and/or participates in outreach programs including Science Partnership for Innovation in Learning (SPIL), Women in Science, Physics of the Sea, and the Ocean Exploration Trust Honors Research Program. As part of the programs, instructors and cadets create interactive and collaborative activities that focus on hot topics in ocean sciences such as oil spill clean-up, ocean exploration, tsunamis, marine biodiversity, and conservation of aquatic habitats. Innovative science demonstrations such as real-time interactions with the Exploration Vessel (E/V) Nautilus, rotating tank simulations of ocean circulation, wave tank demonstrations, and determining what materials work best to contain and clean-up oil, are used to enhance ocean literacy. Children's books, posters and videos are some creative ways students summarize their understanding of ocean sciences and marine conservation. Despite time limitations of students and faculty, and challenges associated with securing funding to keep these programs sustainable, the impact of the programs is overwhelmingly positive. We have built stronger relationships with local community, enhanced ocean literacy, facilitated communication and mentorship between young

  7. Environmental metabolomics with data science for investigating ecosystem homeostasis.

    Science.gov (United States)

    Kikuchi, Jun; Ito, Kengo; Date, Yasuhiro

    2018-02-01

    A natural ecosystem can be viewed as the interconnections between complex metabolic reactions and environments. Humans, a part of these ecosystems, and their activities strongly affect the environments. To account for human effects within ecosystems, understanding what benefits humans receive by facilitating the maintenance of environmental homeostasis is important. This review describes recent applications of several NMR approaches to the evaluation of environmental homeostasis by metabolic profiling and data science. The basic NMR strategy used to evaluate homeostasis using big data collection is similar to that used in human health studies. Sophisticated metabolomic approaches (metabolic profiling) are widely reported in the literature. Further challenges include the analysis of complex macromolecular structures, and of the compositions and interactions of plant biomass, soil humic substances, and aqueous particulate organic matter. To support the study of these topics, we also discuss sample preparation techniques and solid-state NMR approaches. Because NMR approaches can produce a number of data with high reproducibility and inter-institution compatibility, further analysis of such data using machine learning approaches is often worthwhile. We also describe methods for data pretreatment in solid-state NMR and for environmental feature extraction from heterogeneously-measured spectroscopic data by machine learning approaches. Copyright © 2017. Published by Elsevier B.V.

  8. Governance in Strategic Environmental Assessment: Lessons from the Portuguese practice

    International Nuclear Information System (INIS)

    Monteiro, Margarida B.; Partidário, Maria Rosário

    2017-01-01

    The analysis of governance in Strategic Environmental Assessment (SEA) can help understand why, whether and how strategic decision-making happens. Understanding the governance context is strategic to improve the role and capacity of SEA to stimulate, and legitimate decisions that integrate environmental issues and are sustainability driven. The objective of this paper is to discuss why governance is important in SEA. In the SEA literature governance is mostly addressed in silos (i.e. public participation or decisions transparency or accountability) rather than in an integrated way. In addition few authors adopt a strategic view to address the governance context within which SEA is used. In this paper we address the heuristics of governance in SEA based on theoretical and empirical evidence, suggesting how SEA may incorporate the governance dimension. First a review of the SEA literature in relation to governance sets the context to the analysis on how governance is approached in practice, based on 60 Portuguese SEA cases. This is followed by the presentation of an empirical SEA case conducted in Portugal to illustrate what, in our understanding, can be an example of good practice in considering governance in SEA. Final discussion reflects on the role of governance in SEA in promoting engagement, enabling collaborative action, learning processes and dialogues, concluding on the relevance of governance in creating development contexts that can deal with change.

  9. 75 FR 41506 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-07-16

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114, Applied Toxicological... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Environmental...

  10. Earth Science Informatics Community Requirements for Improving Sustainable Science Software Practices: User Perspectives and Implications for Organizational Action

    Science.gov (United States)

    Downs, R. R.; Lenhardt, W. C.; Robinson, E.

    2014-12-01

    Science software is integral to the scientific process and must be developed and managed in a sustainable manner to ensure future access to scientific data and related resources. Organizations that are part of the scientific enterprise, as well as members of the scientific community who work within these entities, can contribute to the sustainability of science software and to practices that improve scientific community capabilities for science software sustainability. As science becomes increasingly digital and therefore, dependent on software, improving community practices for sustainable science software will contribute to the sustainability of science. Members of the Earth science informatics community, including scientific data producers and distributers, end-user scientists, system and application developers, and data center managers, use science software regularly and face the challenges and the opportunities that science software presents for the sustainability of science. To gain insight on practices needed for the sustainability of science software from the science software experiences of the Earth science informatics community, an interdisciplinary group of 300 community members were asked to engage in simultaneous roundtable discussions and report on their answers to questions about the requirements for improving scientific software sustainability. This paper will present an analysis of the issues reported and the conclusions offered by the participants. These results provide perspectives for science software sustainability practices and have implications for actions that organizations and their leadership can initiate to improve the sustainability of science software.

  11. Exploring Best Practices for Research Data Management in Earth Science through Collaborating with University Libraries

    Science.gov (United States)

    Wang, T.; Branch, B. D.

    2013-12-01

    Earth Science research data, its data management, informatics processing and its data curation are valuable in allowing earth scientists to make new discoveries. But how to actively manage these research assets to ensure them safe and secure, accessible and reusable for long term is a big challenge. Nowadays, the data deluge makes this challenge become even more difficult. To address the growing demand for managing earth science data, the Council on Library and Information Resources (CLIR) partners with the Library and Technology Services (LTS) of Lehigh University and Purdue University Libraries (PUL) on hosting postdoctoral fellows in data curation activity. This inter-disciplinary fellowship program funded by the SLOAN Foundation innovatively connects university libraries and earth science departments and provides earth science Ph.D.'s opportunities to use their research experiences in earth science and data curation trainings received during their fellowship to explore best practices for research data management in earth science. In the process of exploring best practices for data curation in earth science, the CLIR Data Curation Fellows have accumulated rich experiences and insights on the data management behaviors and needs of earth scientists. Specifically, Ting Wang, the postdoctoral fellow at Lehigh University has worked together with the LTS support team for the College of Arts and Sciences, Web Specialists and the High Performance Computing Team, to assess and meet the data management needs of researchers at the Department of Earth and Environmental Sciences (EES). By interviewing the faculty members and graduate students at EES, the fellow has identified a variety of data-related challenges at different research fields of earth science, such as climate, ecology, geochemistry, geomorphology, etc. The investigation findings of the fellow also support the LTS for developing campus infrastructure for long-term data management in the sciences. Likewise

  12. Improving Group Work Practices in Teaching Life Sciences: Trialogical Learning

    Science.gov (United States)

    Tammeorg, Priit; Mykkänen, Anna; Rantamäki, Tomi; Lakkala, Minna; Muukkonen, Hanni

    2017-08-01

    Trialogical learning, a collaborative and iterative knowledge creation process using real-life artefacts or problems, familiarizes students with working life environments and aims to teach skills required in the professional world. We target one of the major limitation factors for optimal trialogical learning in university settings, inefficient group work. We propose a course design combining effective group working practices with trialogical learning principles in life sciences. We assess the usability of our design in (a) a case study on crop science education and (b) a questionnaire for university teachers in life science fields. Our approach was considered useful and supportive of the learning process by all the participants in the case study: the students, the stakeholders and the facilitator. Correspondingly, a group of university teachers expressed that the trialogical approach and the involvement of stakeholders could promote efficient learning. In our case in life sciences, we identified the key issues in facilitating effective group work to be the design of meaningful tasks and the allowance of sufficient time to take action based on formative feedback. Even though trialogical courses can be time consuming, the experience of applying knowledge in real-life cases justifies using the approach, particularly for students just about to enter their professional careers.

  13. The future of fish passage science, engineering, and practice

    DEFF Research Database (Denmark)

    Silva, Ana T.; Lucas, Martyn C.; Castro-Santos, Theodore

    2018-01-01

    science today involves a wide range of disciplines from fish behaviour to socioeconomics to complex modelling of passage prioritization options in river networks. River barrier impacts on fish migration and dispersal are currently better understood than historically, but basic ecological knowledge......Much effort has been devoted to developing, constructing and refining fish passage facilities to enable target species to pass barriers on fluvial systems, and yet, fishway science, engineering and practice remain imperfect. In this review, 17 experts from different fish passage research fields (i...... underpinning the need for effective fish passage in many regions of the world, including in biodiversity hotspots (e.g., equatorial Africa, South-East Asia), remains largely unknown. Designing efficient fishways, with minimal passage delay and post-passage impacts, requires adaptive management and continued...

  14. Emotional labor and professional practice in sports medicine and science.

    Science.gov (United States)

    Hings, R F; Wagstaff, C R D; Thelwell, R C; Gilmore, S; Anderson, V

    2018-02-01

    The aim of this study was to explore how sport medicine and science practitioners manage their emotions through emotional labor when engaging in professional practice in elite sport. To address the research aim a semistructured interview design was adopted. Specifically, eighteen professional sport medicine and science staff provided interviews. The sample comprised sport and exercise psychologists (n=6), strength and conditioning coaches (n=5), physiotherapists (n=5), one sports doctor and one generic sport scientist. Following a process of thematic analysis, the results were organized into the following overarching themes: (a) factors influencing emotional labor enactment, (b) emotional labor enactment, and (c) professional and personal outcomes. The findings provide a novel contribution to understanding the professional demands faced by practitioners and are discussed in relation to the development of professional competencies and the welfare and performance of sport medics and scientists. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Practical relevance of pattern uniqueness in forensic science.

    Science.gov (United States)

    Jayaprakash, Paul T

    2013-09-10

    Uniqueness being unprovable, it has recently been argued that individualization in forensic science is irrelevant and, probability, as applied for DNA profiles, should be applied for all identifications. Critiques against uniqueness have omitted physical matching, a realistic and tangible individualization that supports uniqueness. Describing case examples illustrating pattern matches including physical matching, it is indicated that individualizations are practically relevant for forensic science as they establish facts on a definitive basis providing firm leads benefitting criminal investigation. As a tenet of forensic identification, uniqueness forms a fundamental paradigm relevant for individualization. Evidence on the indeterministic and stochastic causal pathways of characteristics in patterns available in the related fields of science sufficiently supports the proposition of uniqueness. Characteristics involved in physical matching and matching achieved in patterned evidence existing in the state of nature are not events amenable for counting; instead these are ensemble of visible units occupying the entire pattern area stretching the probability of re-occurrence of a verisimilitude pattern into infinity offering epistemic support to uniqueness. Observational methods are as respectable as instrumental or statistical methods since they are capable of generating results that are tangible and obviously valid as in physical matching. Applying the probabilistic interpretation used for DNA profiles to the other patterns would be unbefitting since these two are disparate, the causal pathways of the events, the loci, in the manipulated DNA profiles being determinable. While uniqueness enables individualizations, it does not vouch for eliminating errors. Instead of dismissing uniqueness and individualization, accepting errors as human or system failures and seeking remedial measures would benefit forensic science practice and criminal investigation. Copyright © 2013

  16. Examining Science Teachers' Development of Interdisciplinary Science Inquiry Pedagogical Knowledge and Practices

    Science.gov (United States)

    Chowdhary, Bhawna; Liu, Xiufeng; Yerrick, Randy; Smith, Erica; Grant, Brooke

    2014-12-01

    The current literature relates to how teachers develop knowledge and practice of science inquiry, but little has been reported on how teachers develop interdisciplinary science inquiry (ISI) knowledge and practice. This study examines the effect of university research experiences, ongoing professional development, and in-school support on teachers' development of ISI pedagogical knowledge and practices. It centers on documenting diverse teachers' journeys of experiencing ISI as well as developing knowledge of ISI. It was found that there was variation in ISI understanding and practice among the teachers as a result of the combination of teachers' experiences, beliefs, and participation. Thus, in order to help teachers develop ISI knowledge and pedagogy, barriers to ISI knowledge development and implementation must also be addressed. Professional developers must articulate clear program goals to all stakeholders including an explicit definition of ISI and the ability to recognize ISI attributes during research experiences as well as during classroom implementation. Teachers must also be held accountable for participation and reflection in all aspects of professional development. Program developers must also take into consideration teachers' needs, attitudes, and beliefs toward their students when expecting changes in teachers' cognition and behavior to teach inquiry-rich challenging science.

  17. Global Environmental Leadership and Sustainability: High School Students Teaching Environmental Science to Policymakers

    Science.gov (United States)

    Wilson, S.; Tamsitt, V. M.

    2016-02-01

    A two week high school course for high-achieving 10th-12th graders was developed through the combined efforts of Scripps Institution of Oceanography (SIO) Graduate Students and UC San Diego Academic Connections. For the high school students involved, one week was spent at SIO learning basic climate science and researching climate-related topics, and one week was spent in Washington D.C. lobbying Congress for an environmental issue of their choosing. The specific learning goals of the course were for students to (1) collect, analyze and interpret scientific data, (2) synthesize scientific research for policy recommendations, (3) craft and deliver a compelling policy message, and (4) understand and experience change. In this first year, 10 students conducted research on two scientific topics; sea level rise using pier temperature data and California rainfall statistics using weather stations. Simultaneous lessons on policy messaging helped students learn how to focus scientific information for non-scientists. In combining the importance of statistics from their Science lessons with effective communication from their Policy lessons, the students developed issue papers which highlighted an environmental problem, the solution, and the reason their solution is most effective. The course culminated in two days of meetings on Capitol Hill, where they presented their solutions to their Congressional and Senate Members, conversed with policymakers, and received constructive feedback. Throughout the process, the students effectively defined arguments for an environmental topic in a program developed by SIO Graduate Students.

  18. Everyday classroom assessment practices in science classrooms in Sweden

    Science.gov (United States)

    Gómez, María del Carmen; Jakobsson, Anders

    2014-12-01

    The focus of this study is to examine to what extent and in what ways science teachers practice assessment during classroom interactions in everyday activities in an upper-secondary school in Sweden. We are science teachers working now with a larger research project on assessment in science education that seeks to examine teachers' assessment practices in the upper-secondary school. Framing questions include: are teachers performing an integrated assessment of students' skills as the national curriculum mandates? If so, what do the instructional discourses look like in those situations and what are students' experiences regarding their agency on learning and assessment? We emphasize the social, cultural and historic character of assessment and sustain a situated character of learning instead of the notion that learning is "stored inside the head". Teacher led lessons in three science classrooms were video-recorded and analyzed by combining ethnographic and discourse methods of analysis. Both methods are appropriate to the theoretical foundation of our approach on learning and can give some answers to questions about how individuals interact socially, how their experience is passed on to next generations through language and how language use may reveal cultural changes in the studied context. Making the study of action in a classroom the focal point of sociocultural analysis supports the examination of assessment processes and identification of the social roles in which teachers and students are immersed. Such an approach requires observations of how teachers act in authentic teaching situations when they interact with their students in classroom making possible to observe negotiation processes, agencies when both teachers and students are involved in every-day activities. Our study showed that teachers mostly ignored students' questions and that students solved their own problems by helping each other. Teachers did not provide opportunities for students to discuss

  19. Neuropsychology 3.0: Evidence-Based Science and Practice

    Science.gov (United States)

    Bilder, Robert M.

    2011-01-01

    Neuropsychology is poised for transformations of its concepts and methods, leveraging advances in neuroimaging, the human genome project, psychometric theory, and information technologies. It is argued that a paradigm shift towards evidence-based science and practice can be enabled by innovations, including: (1) formal definition of neuropsychological concepts and tasks in cognitive ontologies; (2) creation of collaborative neuropsychological knowledgebases; and (3) design of web-based assessment methods that permit free development, large-sample implementation, and dynamic refinement of neuropsychological tests and the constructs these aim to assess. This article considers these opportunities, highlights selected obstacles, and offers suggestions for stepwise progress towards these goals. PMID:21092355

  20. Epistemic dependence in contemporary science: Practices and malpractices

    DEFF Research Database (Denmark)

    Andersen, Hanne

    2014-01-01

    Despite an increased focus on scientific practice in the philosophy of science in recent years, there has been relatively little focus on malpractices such as intentional fraud or gross negligence. This is the more striking since malpractice in research  both in the form of outright misconduct...... such as fraud and deceit and in the form of the so-called ‘grey zone’ behavior such as sloppiness and incompetence  has been a topic of growing concern both among scientists themselves and among politicians, administrators and in the general population (for an overview of this development, see e.g. Steneck...

  1. A narrative inquiry into novice science mentor teachers' mentoring practices

    Science.gov (United States)

    Naseem, Samina

    Many teacher education programs hire new mentors every year to work with their student teacher population. The literature about teacher mentoring suggests the importance of relevant and ongoing professional development (PD) for teacher mentors at all levels. However, it is much more commonly the case that most teacher mentors volunteer and do not have access to PD. Past research about mentoring provides a descriptive sense of the practices of experienced mentors, especially within a PD context, but little is known about how novice mentors, who are mentoring for the first or the second time, with no prior PD related to mentoring articulate their work as mentors. Using the telling form of narrative inquiry, my study documented how four novice science mentors (NSMs) who had no prior mentoring-related PD articulated the work of mentoring through the stories they told about their past experiences as learners and teachers. The term learner included experiences that the NSMs had before school through K-12 and in their teacher education programs. The experiences as a teacher referred to NSMs' in-service experiences -- teaching, coaching, and mentoring (if any). Each NSM was interviewed once a month for a period of five months. The interviews captured experiences of the NSMs since their childhood to present day experiences as teachers to summarize the experiences that informed their current mentoring practices; to document salient mentoring practices they employed; to identify sources and factors that shaped those practices, and to understand mentoring from mentor teachers' perspectives. Clandinin and Connelly's (2000) three commonplaces (temporality- sociality- place ) framework was used for structuring interview questions and analyzing data. The NSMs employed number of practices discussed in the literature. The study found that the most influential life experiences were upbringing, student teaching, teaching, prior mentoring, and coaching. By taking temporality into

  2. Cumulative Environmental Impacts: Science and Policy to Protect Communities.

    Science.gov (United States)

    Solomon, Gina M; Morello-Frosch, Rachel; Zeise, Lauren; Faust, John B

    2016-01-01

    Many communities are located near multiple sources of pollution, including current and former industrial sites, major roadways, and agricultural operations. Populations in such locations are predominantly low-income, with a large percentage of minorities and non-English speakers. These communities face challenges that can affect the health of their residents, including limited access to health care, a shortage of grocery stores, poor housing quality, and a lack of parks and open spaces. Environmental exposures may interact with social stressors, thereby worsening health outcomes. Age, genetic characteristics, and preexisting health conditions increase the risk of adverse health effects from exposure to pollutants. There are existing approaches for characterizing cumulative exposures, cumulative risks, and cumulative health impacts. Although such approaches have merit, they also have significant constraints. New developments in exposure monitoring, mapping, toxicology, and epidemiology, especially when informed by community participation, have the potential to advance the science on cumulative impacts and to improve decision making.

  3. Experiments related to marine environmental science using a tandem Pelletron

    International Nuclear Information System (INIS)

    Kitamura, A.; Hamamoto, S.; Ohtani, Y.; Furuyama, Y.; Taniike, A.; Kubota, N.; Yamauchi, T.; Mimura, H.

    2003-01-01

    Activities related to marine environmental science, which have been made in our laboratory using a 1.7MV Pelletron 5SDH2 accelerator, are reviewed. One is successful application of proton beams to radiation-induced graft polymerization for making amidoxime-type adsorbents that are very effective for collecting doubly charged ions of metal elements, such as uranium and vanadium, abundantly dissolved in seawater. The other is effective application of accelerator analyses to investigation of interaction of tributyltin (TBT) chloride, which had been used in self-polishing antifouling paints and are endocrine disrupter having mutagenicity, with a TBT resistant marine microorganism newly isolated from sediment of a ship's ballast water tank. (author)

  4. Environmental capacity and the limits of predictive science

    International Nuclear Information System (INIS)

    Taylor, P.

    1991-01-01

    This paper examines the failure of pollution control and hazardous waste management strategies in the light of rapid environmental degradation observed in the decade of the 1980s. It focuses upon the central role of predictive science and assimilative capacity concepts in that failure and the development, a s a consequence, of a paradigm shift in approach, utilising the principles of precautionary action with regard to all substances, programmes of clean production applied to all industrial sectors, and source reduction applied to dissipative activities giving rise to hazardous waste. The past 'assimilative capacity' approaches are criticised as an inadequate foundation for development. In particular the nuclear regulatory concepts of 'justification', 'optimisation' and 'dose-limitation' are seriously deficient. New assessment procedures under development in the London dumping convention are discussed in the light of the precautionary principle. (au)

  5. Artificial climate experiment facility in Institute for Environmental Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Shunichi [Department of Radioecology, Institute for Environmental Sciences, Rokkasho, Aomori (Japan)

    1999-03-01

    The Institute for Environmental Sciences is now constructing the artificial climate experiment facility (ACEF) to research the effect of climate on movement of elements in the various environments. The ACEF will have one large, and five small artificial climate experiment chambers. The large chamber is designed to simulate climate conditions in all Japan. It will equip systems to simulate sunshine, rainfall (including acid rain), snowfall and fog (including acid fog). `Yamase` condition will also be reproduced in it. Yamase is a Japanese term describing the characteristic weather condition occurring mainly on the Pacific Ocean side at the northern Japan. While the small chamber will not have rainfall, snowfall and fog systems, radioisotopes will be used in the two small chambers which will be set up in a radioisotope facility. We describe here the outline of the ACEF and the preliminary research programs being undertaken using both kinds of chambers. (author)

  6. Artificial climate experiment facility in Institute for Environmental Sciences

    International Nuclear Information System (INIS)

    Hisamatsu, Shunichi

    1999-01-01

    The Institute for Environmental Sciences is now constructing the artificial climate experiment facility (ACEF) to research the effect of climate on movement of elements in the various environments. The ACEF will have one large, and five small artificial climate experiment chambers. The large chamber is designed to simulate climate conditions in all Japan. It will equip systems to simulate sunshine, rainfall (including acid rain), snowfall and fog (including acid fog). 'Yamase' condition will also be reproduced in it. Yamase is a Japanese term describing the characteristic weather condition occurring mainly on the Pacific Ocean side at the northern Japan. While the small chamber will not have rainfall, snowfall and fog systems, radioisotopes will be used in the two small chambers which will be set up in a radioisotope facility. We describe here the outline of the ACEF and the preliminary research programs being undertaken using both kinds of chambers. (author)

  7. Environmental Science and Technology department. Annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gunderson, V.; Hansen, H.; Gissel Nielsen, G.; Nielsen, O.J.; Oestergaard, H. [eds.

    1992-06-01

    Selected activities in the Environmental Science and Technology Department during 1991 are presented. The research approach in the department is predominantly experimental. The research topics emphasized are introduced and reviewed in chapters one to seven: 1. Introduction, 2. The Atmosphere, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition, 5. Geochemistry, 6. Ecology, 7. Other activities. The Department`s contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department. Information about the department`s education and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations. Further, names of the scientific and technical staff members, Ph.D. students and visiting scientists are listed. (au) (23 ills., 58 refs.).

  8. Environmental Science and Technology department. Annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gunderson, V.; Hansen, H.; Gissel Nielsen, G.; Nielsen, O.J.; Oestergaard, H. (eds.)

    1992-06-01

    Selected activities in the Environmental Science and Technology Department during 1991 are presented. The research approach in the department is predominantly experimental. The research topics emphasized are introduced and reviewed in chapters one to seven: 1. Introduction, 2. The Atmosphere, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition, 5. Geochemistry, 6. Ecology, 7. Other activities. The Department's contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department. Information about the department's education and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations. Further, names of the scientific and technical staff members, Ph.D. students and visiting scientists are listed. (au) (23 ills., 58 refs.).

  9. Environmental Science and Technology department. Annual report 1991

    International Nuclear Information System (INIS)

    Jensen, A.; Gunderson, V.; Hansen, H.; Gissel Nielsen, G.; Nielsen, O.J.; Oestergaard, H.

    1992-06-01

    Selected activities in the Environmental Science and Technology Department during 1991 are presented. The research approach in the department is predominantly experimental. The research topics emphasized are introduced and reviewed in chapters one to seven: 1. Introduction, 2. The Atmosphere, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition, 5. Geochemistry, 6. Ecology, 7. Other activities. The Department's contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department. Information about the department's education and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations. Further, names of the scientific and technical staff members, Ph.D. students and visiting scientists are listed. (au) (23 ills., 58 refs.)

  10. BEST: Bilingual environmental science training: Grades 1--2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This booklet is one of a series of bilingual guides to environmental-science learning activities for students to do at home. Lesson objectives, materials required, procedure, vocabulary, and subjects integrated into the lesson are described in English for each lesson. A bilingual glossary, alphabetized by English entries, with Spanish equivalents and definitions in both English and Spanish, follows the lesson descriptions, and is itself followed by a bibliography of English-language references. This booklet includes descriptions of ten lessons covering surface tension in water, the life cycle of plants, the protective function of the skeletal system, functions and behavior of the circulatory system and how to measure its activities, structure and functions of the digestive system, simple food chains, how that many foods come from different plant parts, importance of a good diet, distinguishing living and non-living things, and the benefits of composting. 8 figs.

  11. A hyperspectral image analysis workbench for environmental science applications

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.; Slater, J.C.

    1992-10-01

    A significant challenge to the information sciences is to provide more powerful and accessible means to exploit the enormous wealth of data available from high-resolution imaging spectrometry, or ``hyperspectral`` imagery, for analysis, for mapping purposes, and for input to environmental modeling applications. As an initial response to this challenge, Argonne`s Advanced Computer Applications Center has developed a workstation-based prototype software workbench which employs Al techniques and other advanced approaches to deduce surface characteristics and extract features from the hyperspectral images. Among its current capabilities, the prototype system can classify pixels by abstract surface type. The classification process employs neural network analysis of inputs which include pixel spectra and a variety of processed image metrics, including image ``texture spectra`` derived from fractal signatures computed for subimage tiles at each wavelength.

  12. A hyperspectral image analysis workbench for environmental science applications

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.; Slater, J.C.

    1992-01-01

    A significant challenge to the information sciences is to provide more powerful and accessible means to exploit the enormous wealth of data available from high-resolution imaging spectrometry, or hyperspectral'' imagery, for analysis, for mapping purposes, and for input to environmental modeling applications. As an initial response to this challenge, Argonne's Advanced Computer Applications Center has developed a workstation-based prototype software workbench which employs Al techniques and other advanced approaches to deduce surface characteristics and extract features from the hyperspectral images. Among its current capabilities, the prototype system can classify pixels by abstract surface type. The classification process employs neural network analysis of inputs which include pixel spectra and a variety of processed image metrics, including image texture spectra'' derived from fractal signatures computed for subimage tiles at each wavelength.

  13. Virtual school teacher's science efficacy beliefs: The effects of community of practice on science-teaching efficacy beliefs

    Science.gov (United States)

    Uzoff, Phuong Pham

    The purpose of this study was to examine how much K-12 science teachers working in a virtual school experience a community of practice and how that experience affects personal science-teaching efficacy and science-teaching outcome expectancy. The study was rooted in theoretical frameworks from Lave and Wenger's (1991) community of practice and Bandura's (1977) self-efficacy beliefs. The researcher used three surveys to examine schoolteachers' experiences of a community of practice and science-teaching efficacy beliefs. The instrument combined Mangieri's (2008) virtual teacher demographic survey, Riggs and Enochs (1990) Science-teaching efficacy Beliefs Instrument-A (STEBI-A), and Cadiz, Sawyer, and Griffith's (2009) Experienced Community of Practice (eCoP) instrument. The results showed a significant linear statistical relationship between the science teachers' experiences of community of practice and personal science-teaching efficacy. In addition, the study found that there was also a significant linear statistical relationship between teachers' community of practice experiences and science-teaching outcome expectancy. The results from this study were in line with numerous studies that have found teachers who are involved in a community of practice report higher science-teaching efficacy beliefs (Akerson, Cullen, & Hanson, 2009; Fazio, 2009; Lakshmanan, Heath, Perlmutter, & Elder, 2011; Liu, Lee, & Lin, 2010; Sinclair, Naizer, & Ledbetter, 2010). The researcher concluded that school leaders, policymakers, and researchers should increase professional learning opportunities that are grounded in social constructivist theoretical frameworks in order to increase teachers' science efficacy.

  14. Integrating art into science education: a survey of science teachers' practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-07-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science teachers (n = 66). A pedagogical model for science teachers' art integration emerged from a qualitative content analysis conducted on examples of art integration. In the model, art integration is characterised as integration through content and activities. Whilst the links in the content were facilitated either directly between concepts and ideas or indirectly through themes or artefacts, the integration through activity often connected an activity in one domain and a concept, idea or artefact in the other domain with the exception of some activities that could belong to both domains. Moreover, the examples of art integration in everyday classroom did not include expression of emotions often associated with art. In addition, quantitative part of the survey confirmed that integration is infrequent in all mapped areas. The findings of this study have implications for science teacher education that should offer opportunities for more consistent art integration.

  15. Student explanations of their science teachers' assessments, grading practices and how they learn science

    Science.gov (United States)

    del Carmen Gomez, María

    2018-03-01

    The current paper draws on data generated through group interviews with students who were involved in a larger ethnographic research project performed in three science classrooms. The purpose of the study from which this data was generated, was to understand science teachers' assessment practices in an upper-secondary school in Sweden. During group interviews students were asked about their conceptions of what were the assessment priority of teachers, why the students were silent during lecturing and their experiences regarding peer- and self-assessments. The research design and analysis of the findings derives from what students told us about their assessments and learning sciences experiences. Students related that besides the results of the written test, they do not know what else teachers assessed and used to determine their grades. It was also found that students did not participate in the discussion on science because of peer-pressure and a fear of disappointing their peers. Student silence is also linked with student conceptions of science learning and student experiences with methodologies of teaching and learning sciences.

  16. Service-Learning in the Environmental Sciences for Teaching Sustainability Science

    Science.gov (United States)

    Truebe, S.; Strong, A. L.

    2016-12-01

    Understanding and developing effective strategies for the use of community-engaged learning (service-learning) approaches in the environmental geosciences is an important research need in curricular and pedagogical innovation for sustainability. In 2015, we designed and implemented a new community-engaged learning practicum course through the Earth Systems Program in the School of Earth, Energy and Environmental Sciences at Stanford University focused on regional open space management and land stewardship. Undergraduate and graduate students partnered with three different regional land trust and environmental stewardship organizations to conduct quarter-long research projects ranging from remote sensing studies of historical land use, to fire ecology, to ranchland management, to volunteer retention strategies. Throughout the course, students reflected on the decision-making processes and stewardship actions of the organizations. Two iterations of the course were run in Winter and Fall 2015. Using coded and analyzed pre- and post-course student surveys from the two course iterations, we evaluate undergraduate and graduate student learning outcomes and changes in perceptions and understanding of sustainability science. We find that engagement with community partners to conduct research projects on a wide variety of aspects of open space management, land management, and environmental stewardship (1) increased an understanding of trade-offs inherent in sustainability and resource management and (2) altered student perceptions of the role of scientific information and research in environmental management and decision-making. Furthermore, students initially conceived of open space as purely ecological/biophysical, but by the end of the course, (3) their understanding was of open space as a coupled human/ecological system. This shift is crucial for student development as sustainability scientists.

  17. Blood-borne biomarkers and bioindicators for linking exposure to health effects in environmental health science.

    Science.gov (United States)

    Wallace, M Ariel Geer; Kormos, Tzipporah M; Pleil, Joachim D

    2016-01-01

    Environmental health science aims to link environmental pollution sources to adverse health outcomes to develop effective exposure intervention strategies that reduce long-term disease risks. Over the past few decades, the public health community recognized that health risk is driven by interaction between the human genome and external environment. Now that the human genetic code has been sequenced, establishing this "G × E" (gene-environment) interaction requires a similar effort to decode the human exposome, which is the accumulation of an individual's environmental exposures and metabolic responses throughout the person's lifetime. The exposome is composed of endogenous and exogenous chemicals, many of which are measurable as biomarkers in blood, breath, and urine. Exposure to pollutants is assessed by analyzing biofluids for the pollutant itself or its metabolic products. New methods are being developed to use a subset of biomarkers, termed bioindicators, to demonstrate biological changes indicative of future adverse health effects. Typically, environmental biomarkers are assessed using noninvasive (excreted) media, such as breath and urine. Blood is often avoided for biomonitoring due to practical reasons such as medical personnel, infectious waste, or clinical setting, despite the fact that blood represents the central compartment that interacts with every living cell and is the most relevant biofluid for certain applications and analyses. The aims of this study were to (1) review the current use of blood samples in environmental health research, (2) briefly contrast blood with other biological media, and (3) propose additional applications for blood analysis in human exposure research.

  18. Environmental Remediation Sciences Program at the Stanford Synchrotron Radiation Laboratory

    International Nuclear Information System (INIS)

    Bargar, John R.

    2006-01-01

    Synchrotron radiation (SR)-based techniques provide unique capabilities to address scientific issues underpinning environmental remediation science and have emerged as major research tools in this field. The high intensity of SR sources and x-ray photon-in/photon-out detection allow noninvasive in-situ analysis of dilute, hydrated, and chemically/structurally complex natural samples. SR x-rays can be focused to beams of micron and sub-micron dimension, which allows the study of microstructures, chemical microgradients, and microenvironments such as in biofilms, pore spaces, and around plant roots, that may control the transformation of contaminants in the environment. The utilization of SR techniques in environmental remediation sciences is often frustrated, however, by an ''activation energy barrier'', which is associated with the need to become familiar with an array of data acquisition and analysis techniques, a new technical vocabulary, beam lines, experimental instrumentation, and user facility administrative procedures. Many investigators find it challenging to become sufficiently expert in all of these areas or to maintain their training as techniques evolve. Another challenge is the dearth of facilities for hard x-ray micro-spectroscopy, particularly in the 15 to 23 KeV range, which includes x-ray absorption edges of the priority DOE contaminants Sr, U, Np, Pu, and Tc. Prior to the current program, there were only two (heavily oversubscribed) microprobe facilities in the U.S. that could fully address this energy range (one at each of APS and NSLS); none existed in the Western U.S., in spite of the relatively large number of DOE laboratories in this region

  19. Compartmentalization in environmental science and the perversion of multiple thresholds

    Energy Technology Data Exchange (ETDEWEB)

    Burkart, W. [Institute of Radiation Hygiene of the Federal Office for Radiation Protection, Ingolstaedter Landstr. 1, D 85716 Oberschleissheim, Muenchen (Germany)

    2000-04-17

    Nature and living organisms are separated into compartments. The self-assembly of phospholipid micelles was as fundamental to the emergence of life and evolution as the formation of DNA precursors and their self-replication. Also, modern science owes much of its success to the study of single compartments, the dissection of complex structures and event chains into smaller study objects which can be manipulated with a set of more and more sophisticated equipment. However, in environmental science, these insights are obtained at a price: firstly, it is difficult to recognize, let alone to take into account what is lost during fragmentation and dissection; and secondly, artificial compartments such as scientific disciplines become self-sustaining, leading to new and unnecessary boundaries, subtly framing scientific culture and impeding progress in holistic understanding. The long-standing but fruitless quest to define dose-effect relationships and thresholds for single toxic agents in our environment is a central part of the problem. Debating single-agent toxicity in splendid isolation is deeply flawed in view of a modern world where people are exposed to low levels of a multitude of genotoxic and non-genotoxic agents. Its potential danger lies in the unwarranted postulation of separate thresholds for agents with similar action. A unifying concept involving toxicology and radiation biology is needed for a full mechanistic assessment of environmental health risks. The threat of synergism may be less than expected, but this may also hold for the safety margin commonly thought to be a consequence of linear no-threshold dose-effect relationship assumptions.

  20. Green dentistry: the art and science of sustainable practice.

    Science.gov (United States)

    Mulimani, P

    2017-06-23

    Dentistry is highly energy and resource intensive with significant environmental impact. Factors inherent in the profession such as enormous electricity demands of electronic dental equipment, voluminous water requirements, environmental effects of biomaterials (before, during and after clinical use), the use of radiation and the generation of hazardous waste involving mercury, lead etc have contributed towards this. With rising temperatures across the world due to global warming, efforts are being made worldwide to mitigate the effects of environmental damage by resorting to sustainability concepts and green solutions in a myriad of ways. In such a scenario, a professional obligation and social responsibility of dentists makes it imperative to transform the practice of dentistry from a hazardous to a sustainable one, by adopting environmental-friendly measures or 'green dentistry'. The NHS in the UK has been proactive in implementing sustainability in healthcare by setting targets, developing guidance papers, initiating steering groups to develop measures and implementing actions through its Sustainable Development Unit (SDU). Such sustainable frameworks, specific to dentistry, are not yet available and even the scientific literature is devoid of studies in this field although anecdotal narratives abound. Hence this paper attempts to present a comprehensive evaluation of the existing healthcare sustainability principles, for their parallel application in the field of dentistry and lays out a blueprint for integrating the two main underlying principles of sustainability - resource use efficiency and eliminating or minimising pollution - in the day-to-day practice. The article also highlights the importance of social values, community care, engaging stakeholders, economic benefits, developing policy and providing leadership in converting the concept of green dentistry into a practised reality.