WorldWideScience

Sample records for environmental science center

  1. Center for Environmental Health Sciences

    Data.gov (United States)

    Federal Laboratory Consortium — The primary research objective of the Center for Environmental Health Sciences (CEHS) at the University of Montana is to advance knowledge of environmental impacts...

  2. A Computer Learning Center for Environmental Sciences

    Science.gov (United States)

    Mustard, John F.

    2000-01-01

    In the fall of 1998, MacMillan Hall opened at Brown University to students. In MacMillan Hall was the new Computer Learning Center, since named the EarthLab which was outfitted with high-end workstations and peripherals primarily focused on the use of remotely sensed and other spatial data in the environmental sciences. The NASA grant we received as part of the "Centers of Excellence in Applications of Remote Sensing to Regional and Global Integrated Environmental Assessments" was the primary source of funds to outfit this learning and research center. Since opening, we have expanded the range of learning and research opportunities and integrated a cross-campus network of disciplines who have come together to learn and use spatial data of all kinds. The EarthLab also forms a core of undergraduate, graduate, and faculty research on environmental problems that draw upon the unique perspective of remotely sensed data. Over the last two years, the Earthlab has been a center for research on the environmental impact of water resource use in and regions, impact of the green revolution on forest cover in India, the design of forest preserves in Vietnam, and detailed assessments of the utility of thermal and hyperspectral data for water quality analysis. It has also been used extensively for local environmental activities, in particular studies on the impact of lead on the health of urban children in Rhode Island. Finally, the EarthLab has also served as a key educational and analysis center for activities related to the Brown University Affiliated Research Center that is devoted to transferring university research to the private sector.

  3. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Environmental Science Information Center (ESIC). 950.6 Section 950.6 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE...

  4. Challenges for Data Archival Centers in Evolving Environmental Sciences

    Science.gov (United States)

    Wei, Y.; Cook, R. B.; Gu, L.; Santhana Vannan, S. K.; Beaty, T.

    2015-12-01

    Environmental science has entered into a big data era as enormous data about the Earth environment are continuously collected through field and airborne missions, remote sensing observations, model simulations, sensor networks, etc. An open-access and open-management data infrastructure for data-intensive science is a major grand challenge in global environmental research (BERAC, 2010). Such an infrastructure, as exemplified in EOSDIS, GEOSS, and NSF EarthCube, will provide a complete lifecycle of environmental data and ensures that data will smoothly flow among different phases of collection, preservation, integration, and analysis. Data archival centers, as the data integration units closest to data providers, serve as the source power to compile and integrate heterogeneous environmental data into this global infrastructure. This presentation discusses the interoperability challenges and practices of geosciences from the aspect of data archival centers, based on the operational experiences of the NASA-sponsored Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) and related environmental data management activities. Specifically, we will discuss the challenges to 1) encourage and help scientists to more actively share data with the broader scientific community, so that valuable environmental data, especially those dark data collected by individual scientists in small independent projects, can be shared and integrated into the infrastructure to tackle big science questions; 2) curate heterogeneous multi-disciplinary data, focusing on the key aspects of identification, format, metadata, data quality, and semantics to make them ready to be plugged into a global data infrastructure. We will highlight data curation practices at the ORNL DAAC for global campaigns such as BOREAS, LBA, SAFARI 2000; and 3) enhance the capabilities to more effectively and efficiently expose and deliver "big" environmental data to broad range of users and systems

  5. Interdisciplinary research center devoted to molecular environmental science opens

    Science.gov (United States)

    Vaughan, David J.

    In October, a new research center opened at the University of Manchester in the United Kingdom. The center is the product of over a decade of ground-breaking interdisciplinary research in the Earth and related biological and chemical sciences at the university The center also responds to the British governments policy of investing in research infrastructure at key universities.The Williamson Research Centre, the first of its kind in Britain and among the first worldwide, is devoted to the emerging field of molecular environmental science. This field also aims to bring about a revolution in understanding of our environment. Though it may be a less violent revolution than some, perhaps, its potential is high for developments that could affect us all.

  6. About Region 3's Laboratory and Field Services at EPA's Environmental Science Center

    Science.gov (United States)

    Mission & contact information for EPA Region 3's Laboratory and Field Services located at EPA's Environmental Science Center: the Office of Analytical Services and Quality Assurance & Field Inspection Program

  7. Western Mineral and Environmental Resources Science Center--providing comprehensive earth science for complex societal issues

    Science.gov (United States)

    Frank, David G.; Wallace, Alan R.; Schneider, Jill L.

    2010-01-01

    Minerals in the environment and products manufactured from mineral materials are all around us and we use and come into contact with them every day. They impact our way of life and the health of all that lives. Minerals are critical to the Nation's economy and knowing where future mineral resources will come from is important for sustaining the Nation's economy and national security. The U.S. Geological Survey (USGS) Mineral Resources Program (MRP) provides scientific information for objective resource assessments and unbiased research results on mineral resource potential, production and consumption statistics, as well as environmental consequences of mining. The MRP conducts this research to provide information needed for land planners and decisionmakers about where mineral commodities are known and suspected in the earth's crust and about the environmental consequences of extracting those commodities. As part of the MRP scientists of the Western Mineral and Environmental Resources Science Center (WMERSC or 'Center' herein) coordinate the development of national, geologic, geochemical, geophysical, and mineral-resource databases and the migration of existing databases to standard models and formats that are available to both internal and external users. The unique expertise developed by Center scientists over many decades in response to mineral-resource-related issues is now in great demand to support applications such as public health research and remediation of environmental hazards that result from mining and mining-related activities. Western Mineral and Environmental Resources Science Center Results of WMERSC research provide timely and unbiased analyses of minerals and inorganic materials to (1) improve stewardship of public lands and resources; (2) support national and international economic and security policies; (3) sustain prosperity and improve our quality of life; and (4) protect and improve public health, safety, and environmental quality. The MRP

  8. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    Science.gov (United States)

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  9. 76 FR 63615 - Environmental Science Center Microbiology Laboratory; Notice of Public Meeting

    Science.gov (United States)

    2011-10-13

    ...The U.S. EPA invites interested stakeholders to participate in a laboratory-based technical workshop that will focus on the conduct of the Association of Official Analytical Chemists (AOAC) Use-dilution method (UDM) and the status and implementation of a new test method, the Organization for Economic Cooperation and Development (OECD) Quantitative Method for Evaluating Bactericidal Activity of Microbicides Used on Hard, Non-Porous Surfaces. The workshop is being held to discuss current and proposed revisions mainly associated with the Staphyloccocus aureus and Pseudomonas aeruginosa methodologies. The goals of the workshop are to provide a comprehensive review and discussion period on the status of the UDM and OEDC methods integrated with hands-on laboratory demonstrations. An overview of various data sets and collaborative studies will be used to supplement the discussions which will be held at the EPA Environmental Science Center Microbiology Laboratory.

  10. Genetic Science Learning Center

    Science.gov (United States)

    Genetic Science Learning Center Making science and health easy for everyone to understand Home News Our Team What We Do ... Collaboration Conferences Current Projects Publications Contact The Genetic Science Learning Center at The University of Utah is a ...

  11. Decision support system development at the Upper Midwest Environmental Sciences Center

    Science.gov (United States)

    Fox, Timothy J.; Nelson, J. C.; Rohweder, Jason J.

    2014-01-01

    A Decision Support System (DSS) can be defined in many ways. The working definition used by the U.S. Geological Survey Upper Midwest Environmental Sciences Center (UMESC) is, “A spatially based computer application or data that assists a researcher or manager in making decisions.” This is quite a broad definition—and it needs to be, because the possibilities for types of DSSs are limited only by the user group and the developer’s imagination. There is no one DSS; the types of DSSs are as diverse as the problems they help solve. This diversity requires that DSSs be built in a variety of ways, using the most appropriate methods and tools for the individual application. The skills of potential DSS users vary widely as well, further necessitating multiple approaches to DSS development. Some small, highly trained user groups may want a powerful modeling tool with extensive functionality at the expense of ease of use. Other user groups less familiar with geographic information system (GIS) and spatial data may want an easy-to-use application for a nontechnical audience. UMESC has been developing DSSs for almost 20 years. Our DSS developers offer our partners a wide variety of technical skills and development options, ranging from the most simple Web page or small application to complex modeling application development.

  12. Environmental Modeling Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Modeling Center provides the computational tools to perform geostatistical analysis, to model ground water and atmospheric releases for comparison...

  13. Great Lakes Science Center

    Data.gov (United States)

    Federal Laboratory Consortium — Since 1927, Great Lakes Science Center (GLSC) research has provided critical information for the sound management of Great Lakes fish populations and other important...

  14. Environmental Science

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-02-15

    This book gives descriptions of environmental pollution such as water and soil pollution, harmful chemicals substances and radiation, nature protection on wild animals, wild plants, and nature park, environmental assessment, and environmental management. It deals with the earth environment on change and the cause of the earth environment, ozone layer, global warming and acid fallout, plan for the earth control and environment information and information system.

  15. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT,J.

    2004-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

  16. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  17. COMPUTATIONAL SCIENCE CENTER

    International Nuclear Information System (INIS)

    DAVENPORT, J.

    2006-01-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together

  18. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to

  19. Sandia National Laboratories: Microsystems Science & Technology Center

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  20. Environmental health sciences center task force review on halogenated organics in drinking water.

    Science.gov (United States)

    Deinzer, M; Schaumburg, F; Klein, E

    1978-06-01

    The disinfection of drinking water by chlorination has in recent years come under closer scrutiny because of the potential hazards associated with the production of stable chlorinated organic chemicals. Organic chemical contaminants are common to all water supplies and it is now well-established that chlorinated by-products are obtained under conditions of disinfection, or during tertiary treatment of sewage whose products can ultimately find their way into drinking water supplies. Naturally occurring humic substances which are invariably present in drinking waters are probably the source of chloroform and other halogenated methanes, and chloroform has shown up in every water supply investigated thus far.The Environmental Protection Agency is charged with the responsibility of assessing the public health effects resulting from the consumption of contaminated drinking water. It has specifically undertaken the task of determining whether organic contaminants or their chlorinated derivatives have a special impact, and if so, what alternatives there are to protect the consumer against bacterial and viral diseases that are transmitted through infected drinking waters. The impetus to look at these chemicals is not entirely without some prima facie evidence of potential trouble. Epidemiological studies suggested a higher incidence of cancer along the lower Mississippi River where the contamination from organic chemicals is particularly high. The conclusions from these studies have, to be sure, not gone unchallenged.The task of assessing the effects of chemicals in the drinking water is a difficult one. It includes many variables, including differences in water supplies and the temporal relationship between contamination and consumption of the finished product. It must also take into account the relative importance of the effects from these chemicals in comparison to those from occupational exposure, ingestion of contaminated foods, inhalation of polluted air, and many

  1. Environmental science and technology

    International Nuclear Information System (INIS)

    2014-01-01

    The Program on Environmental Science and Technology developed at the Chemical and Environmental Technology Center comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalysts) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization). The Chemical and Environmental Technology Center was established in 1995, as an evolution of the former Department of Chemistry Engineering (1970). The program on environment science and technology was structured as consequence of the continuous growth of environmental activities on areas related to nuclear programs of IPEN. Moreover, it was an answer to the society concerning the climate changes and biodiversity preservation. All activities of research and development, services, supervision of graduate and under graduated students and courses performance at the center were related to the development, improvement and establishment of new technologies. The highlights of this period (2011 - 2013) were: - Development and use of modern analytical technology for the characterization of persistent pollutants and endocrine disrupters (metals, PAHA’s, PCBs, Pesticides, hormones, surfactants, plasticizer and human pharmaceuticals) in order to evaluate water quality and/or sediments; - Atmospheric chemistry and greenhouse gases: Evaluating an estimation of surface trace gas fluxes from aircraft measurements above the Amazon; - Cooperation with SABESP (Water and Sewage Company) and CETESB (State Environment Agency) in program for the development of public policies; - Studies and development in biodegradable polymers, polyolefins and advanced methods for polymer and rubber recycling and re-use; - Studies

  2. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Environmental Science and Technology developed at the Chemical and Environmental Technology Center comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalysts) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization). The Chemical and Environmental Technology Center was established in 1995, as an evolution of the former Department of Chemistry Engineering (1970). The program on environment science and technology was structured as consequence of the continuous growth of environmental activities on areas related to nuclear programs of IPEN. Moreover, it was an answer to the society concerning the climate changes and biodiversity preservation. All activities of research and development, services, supervision of graduate and under graduated students and courses performance at the center were related to the development, improvement and establishment of new technologies. The highlights of this period (2011 - 2013) were: - Development and use of modern analytical technology for the characterization of persistent pollutants and endocrine disrupters (metals, PAHA’s, PCBs, Pesticides, hormones, surfactants, plasticizer and human pharmaceuticals) in order to evaluate water quality and/or sediments; - Atmospheric chemistry and greenhouse gases: Evaluating an estimation of surface trace gas fluxes from aircraft measurements above the Amazon; - Cooperation with SABESP (Water and Sewage Company) and CETESB (State Environment Agency) in program for the development of public policies; - Studies and development in biodegradable polymers, polyolefins and advanced methods for polymer and rubber recycling and re-use; - Studies

  3. Center for Rehabilitation Sciences Research

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Rehabilitation Sciences Research (CRSR) was established as a research organization to promote successful return to duty and community reintegration of...

  4. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The environmental Science and Technology Program was structured based on the continuous growth of environmental activities on areas related to nuclear programs at IPEN. The program comprehends five main areas: Environmental analysis: Chemical technology; Polymer technology nucleus: Chemical and Isotope characterization and Analytical Chemistry for the Nuclear Fuel Cycle samples.

  5. Environmental Education Center.

    Science.gov (United States)

    Holmes (Warren) Co. and Black (Kenneth) Associate, Architects, Lansing, MI.

    Public awareness and concern for our natural environment have rapidly increased. With new demands for knowledge and action concerning all aspects of environmental quality, schools have begun to incorporate into their curriculums new programs emphasizing environmental awareness and appreciation at all age levels. To bring students into further…

  6. Life sciences and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  7. Life sciences and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER`s mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  8. Environmental Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The Program on Environmental Science and Technology comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalyzers) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization)

  9. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States)

    1998-12-31

    This complete survey of modern environmental science covers the four traditional spheres of the environment: water, air, earth, and life, and introduces a fifth sphere -- the anthrosphere -- which the author defines as the sphere of human activities, especially technology, that affect the earth. The book discusses how technology can be used in a manner that minimizes environmental disruption.

  10. Molecular Science Research Center 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1994-01-01

    The Molecular Science Research Center is a designated national user facility, available to scientists from universities, industry, and other national laboratories. After an opening section, which includes conferences hosted, appointments, and projects, this document presents progress in the following fields: chemical structure and dynamics; environmental dynamics and simulation; macromolecular structure and dynamics; materials and interfaces; theory, modeling, and simulation; and computing and information sciences. Appendices are included: MSRC staff and associates, 1992 publications and presentations, activities, and acronyms and abbreviations.

  11. Geography and environmental science

    OpenAIRE

    Milinčić, Miroljub; Souliotis, Lily; Mihajlović, Ljiljana; Požar, Tea

    2014-01-01

    Geography is one of the oldest academic disciplines with a strong holistic approach in conceptualizing the interaction between nature and society, i.e. animate and inanimate parts of the environment. Over time, geography has been increasing and improving its conceptual and terminological abilities for studying and understanding complex relationships among environmental systems. For this reason, geography has advanced from a well-known science about nature and society into a relevant science a...

  12. African Journals Online: Environmental Sciences

    African Journals Online (AJOL)

    Items 1 - 28 of 28 ... African Journals Online: Environmental Sciences ... Anthropology, Technology, Computer Science & Engineering, Veterinary Science ... and Metabolism (AJEM) is a biomedical peer-reviewed journal with international circulation. ... AFRREV STECH: An International Journal of Science and Technology.

  13. Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-08

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, and provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.

  14. Molecular Science Research Center, 1991 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1992-03-01

    During 1991, the Molecular Science Research Center (MSRC) experienced solid growth and accomplishment and the Environmental, and Molecular Sciences Laboratory (EMSL) construction project moved forward. We began with strong programs in chemical structure and dynamics and theory, modeling, and simulation, and both these programs continued to thrive. We also made significant advances in the development of programs in materials and interfaces and macromolecular structure and dynamics, largely as a result of the key staff recruited to lead these efforts. If there was one pervasive activity for the past year, however, it was to strengthen the role of the EMSL in the overall environmental restoration and waste management (ER/WM) mission at Hanford. These extended activities involved not only MSRC and EMSL staff but all PNL scientific and technical staff engaged in ER/WM programs.

  15. National Space Science Data Center Master Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — The National Space Science Data Center serves as the permanent archive for NASA space science mission data. 'Space science' means astronomy and astrophysics, solar...

  16. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-10-31

    The Deactivation and Decommissioning (D&D) Technology Assessment Program (TAP) was developed to provide detailed, comparable data for environmental technologies and to disseminate this data to D&D professionals in a manner that will facilitate the review and selection of technologies to perform decontamination and decommissioning. The objectives for this project include the following: Determine technology needs through review of the Site Technology Coordination Group (STCG) information and other applicable websites and needs databases; Perform a detailed review of industries that perform similar activities as those required in D&D operations to identify additional technologies; Define the technology assessment program for characterization and waste management problem sets; Define the data management program for characterization, dismantlement, and waste management problem sets; Evaluate baseline and innovative technologies under standard test conditions at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) and other locations and collect data in the areas of performance, cost, health and safety, operations and maintenance, and primary and secondary waste generation; Continue to locate, verify, and incorporate technology performance data from other sources into the multimedia information system; and Develop the conceptual design for a dismantlement technology decision analysis tool for dismantlement technologies.

  17. Global Journal of Environmental Sciences

    African Journals Online (AJOL)

    Global Journal of Environmental Sciences is aimed at promoting research in all areas of Environmental Sciences including waste management, pollution control, and remediation of hazards. The journal is published twice a year. Visit the Global Journal Series website here: http://www.globaljournalseries.com/ ...

  18. The Advanced Technology Environmental Education Center Summer Fellows Institute.

    Science.gov (United States)

    Depken, Diane E.; Zeman, Catherine L.; Lensch, Ellen Kabat; Brown, Edward J.

    2002-01-01

    Describes the background, activities, and outcomes of the Advanced Technology Environmental Education Center (ATEEC) and its Summer Fellows Institutes as a model for disciplinary and cross-disciplinary infusion of environmental science and technology content, curriculum, and methods into the classroom. Presents experiences, themes, and activities…

  19. National Center for Environmental Health

    Science.gov (United States)

    ... R S T U V W X Y Z # Environmental Health Topics Emergency and Environmental Health Services Chemical Weapons Elimination Environmental Health Services Healthy Homes Healthy Places – Community ...

  20. Suborbital Science Program: Dryden Flight Research Center

    Science.gov (United States)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  1. Environmental Data Science

    NARCIS (Netherlands)

    Gibert, Karina; Horsburgh, Jeffery S.; Athanasiadis, I.N.; Holmes, Geoff

    2018-01-01

    Environmental data are growing in complexity, size, and resolution. Addressing the types of large, multidisciplinary problems faced by today's environmental scientists requires the ability to leverage available data and information to inform decision making. Successfully synthesizing heterogeneous

  2. National Center for Mathematics and Science

    Science.gov (United States)

    NCISLA logo National Center for Improving Student Learning and Achievement in Mathematics and Wisconsin-Madison Powerful Practices in Mathematics & Sciences A multimedia product for educators . Scaling Up Innovative Practices in Mathematics and Science (Research Report). Thomas P. Carpenter, Maria

  3. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  4. Research data management support for large-scale, long-term, interdisciplinary collaborative research centers with a focus on environmental sciences

    Science.gov (United States)

    Curdt, C.; Hoffmeister, D.; Bareth, G.; Lang, U.

    2017-12-01

    Science conducted in collaborative, cross-institutional research projects, requires active sharing of research ideas, data, documents and further information in a well-managed, controlled and structured manner. Thus, it is important to establish corresponding infrastructures and services for the scientists. Regular project meetings and joint field campaigns support the exchange of research ideas. Technical infrastructures facilitate storage, documentation, exchange and re-use of data as results of scientific output. Additionally, also publications, conference contributions, reports, pictures etc. should be managed. Both, knowledge and data sharing is essential to create synergies. Within the coordinated programme `Collaborative Research Center' (CRC), the German Research Foundation offers funding to establish research data management (RDM) infrastructures and services. CRCs are large-scale, interdisciplinary, multi-institutional, long-term (up to 12 years), university-based research institutions (up to 25 sub-projects). These CRCs address complex and scientifically challenging research questions. This poster presents the RDM services and infrastructures that have been established for two CRCs, both focusing on environmental sciences. Since 2007, a RDM support infrastructure and associated services have been set up for the CRC/Transregio 32 (CRC/TR32) `Patterns in Soil-Vegetation-Atmosphere-Systems: Monitoring, Modelling and Data Assimilation' (www.tr32.de). The experiences gained have been used to arrange RDM services for the CRC1211 `Earth - Evolution at the Dry Limit' (www.crc1211.de), funded since 2016. In both projects scientists from various disciplines collect heterogeneous data at field campaigns or by modelling approaches. To manage the scientific output, the TR32DB data repository (www.tr32db.de) has been designed and implemented for the CRC/TR32. This system was transferred and adapted to the CRC1211 needs (www.crc1211db.uni-koeln.de) in 2016. Both

  5. Transportation Technical Environmental Information Center index

    International Nuclear Information System (INIS)

    Davidson, C.A.; Foley, J.T.

    1979-01-01

    In an effort to determine the environmental intensities to which energy materials in transit may be exposed, a ''Data Center'' of technical environmental information has been established by Sandia Laboratories, Division 5522, for the DOE Division of Environmental Control Technology. An index is presented which can be used to request data of interest

  6. Fort Collins Science Center Ecosystem Dynamics Branch

    Science.gov (United States)

    Wilson, Jim; Melcher, C.; Bowen, Z.

    2009-01-01

    Complex natural resource issues require understanding a web of interactions among ecosystem components that are (1) interdisciplinary, encompassing physical, chemical, and biological processes; (2) spatially complex, involving movements of animals, water, and airborne materials across a range of landscapes and jurisdictions; and (3) temporally complex, occurring over days, weeks, or years, sometimes involving response lags to alteration or exhibiting large natural variation. Scientists in the Ecosystem Dynamics Branch of the U.S. Geological Survey, Fort Collins Science Center, investigate a diversity of these complex natural resource questions at the landscape and systems levels. This Fact Sheet describes the work of the Ecosystems Dynamics Branch, which is focused on energy and land use, climate change and long-term integrated assessments, herbivore-ecosystem interactions, fire and post-fire restoration, and environmental flows and river restoration.

  7. Statistics for environmental science and management

    National Research Council Canada - National Science Library

    Manly, B.F.J

    2009-01-01

    .... Additional topics covered include environmental monitoring, impact assessment, censored data, environmental sampling, the role of statistics in environmental science, assessing site reclamation...

  8. Environmental science: An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.T.

    1985-01-01

    This book is divided into 5 major parts: Humans and Nature--An Overview, Some Concepts of Ecology, Population, Resources, and Pollution. It discusses both sides of major environmental issues and offers possible solutions to the problems humans--intentionally or unwittingly--create.

  9. Research report 1987-1989: Environmental Quality Laboratory and Environmental Engineering Science, W. M. Keck Laboratories

    OpenAIRE

    Brooks, Norman H.

    1990-01-01

    This research biennial report for 1987-89 covers the activities of both the Environmental Engineering Science program and the Environmental Quality Laboratory for the period October 1987-November 1989. Environmental Engineering Science is the degree-granting academic program housed in the Keck Laboratories, with associated research projects. The Environmental Quality Laboratory is a research center focusing on large scale problems of environmental quality and natural resources. All the facult...

  10. Toxicogenomics in Environmental Science.

    Science.gov (United States)

    Brinke, Alexandra; Buchinger, Sebastian

    This chapter reviews the current knowledge and recent progress in the field of environmental, aquatic ecotoxicogenomics with a focus on transcriptomic methods. In ecotoxicogenomics the omics technologies are applied for the detection and assessment of adverse effects in the environment, and thus are to be distinguished from omics used in human toxicology [Snape et al., Aquat Toxicol 67:143-154, 2004]. Transcriptomic methods in ecotoxicology are applied to gain a mechanistic understanding of toxic effects on organisms or populations, and thus aim to bridge the gap between cause and effect. A worthwhile effect-based interpretation of stressor induced changes on the transcriptome is based on the principle of phenotypic-anchoring [Paules, Environ Health Perspect 111:A338-A339, 2003]. Thereby, changes on the transcriptomic level can only be identified as effects if they are clearly linked to a specific stressor-induced effect on the macroscopic level. By integrating those macroscopic and transcriptomic effects, conclusions on the effect-inducing type of the stressor can be drawn. Stressor-specific effects on the transcriptomic level can be identified as stressor-specific induced pathways, transcriptomic patterns, or stressors-specific genetic biomarkers. In this chapter, examples of the combined application of macroscopic and transcriptional effects for the identification of environmental stressors, such as aquatic pollutants, are given and discussed. By means of these examples, challenges on the way to a standardized application of transcriptomics in ecotoxicology are discussed. This is also done against the background of the application of transcriptomic methods in environmental regulation such as the EU regulation Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH).

  11. Fort Collins Science Center: Invasive Species Science

    Science.gov (United States)

    Stohlgren, Tom

    2004-01-01

    Invasive, non-native species of plants, animals, and disease organisms adversely affect the ecosystems they enter. Like "biological wildfires," they can quickly spread, and they affect nearly all terrestrial and aquatic ecosystems. Invasive species have become the greatest environmental challenge of the 21st century in terms of economic, environmental, and human health costs, with an estimated impact in the U.S. of over $138 billion per year. Managers of Department of the Interior and other public and private lands and waters rank invasive species as their top resource management problem.

  12. Emotions in teaching environmental science

    Science.gov (United States)

    Quigley, Cassie

    2016-09-01

    This op-ed article examines the emotional impact of teaching environmental science and considers how certain emotions can broaden viewpoints and other emotions narrow them. Specifically, it investigates how the topic of climate change became an emotional debate in a science classroom because of religious beliefs. Through reflective practice and examination of positionality, the author explored how certain teaching practices of pre-service science teachers created a productive space and other practices closed down the conversations. This article is framed with theories that explore both divergent and shared viewpoints.

  13. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-03-30

    A vendor was selected for the diamond wire technology demonstration scheduled for this summer at Princeton Plasma Physics Laboratory (PPPL). A team consisting of personnel from FIU-HCET, PPPL, and AEA Technology reviewed the submitted bids. FIU-HCET will contract this vendor. At the SRS Ninth ICT teleconference, the ICT team discussed the status of the following demonstrations: LRAD; x-ray, K-edge; Strippable Coatings; Thermal Spray Vitrification; Cutting/Shearing/Dismantlement/Size Reduction; and Electrets. The LRAD demo is complete, and the x-ray/K-edge, Strippable Coatings, and Electrets demos are ongoing. The Asbestos and Thermal Spray Vitrification demos require more laboratory testing. The Cutting/Shearing/Dismantlement/Size Reduction demo is undergoing procurement. Five FIU-HCET staff members took the 1S0 14000 environmental auditor training course February 22-26, 1999, given by ASC. The test plan for the Facility Dismantlement Technology Assessment is finished and ready for internal review.

  14. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-04-30

    The final data package has been completed for the Mississippi State University, DIAL FTP Wall Depth Removal Characterization Technology. The package has been sent to DIAL for comments. Work is progressing on completing the transfer of glove boxes and tanks from Rocky Flats to FIU-HCET for the purpose of performing size reduction technology assessments. Vendors are being identified and security measures are being put in place to meet the High Risk Property criteria required by Rocky Flats. The FIU-HCET Technology Assessment Program has been included as one of 11 verification programs across the US and Canada described in the Interstate Technology Regulatory Cooperation (ITRC) document, ''Multi-state Evaluation of Elements Important to the Verification of Remediation Technologies'', dated January 1999. FIU-HCET will also participate in a panel discussion on technology verification programs at the International Environmental Technology Expo '99.

  15. Transportation Technical Environmental Information Center index

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C. A.; Foley, J. T.

    1980-10-01

    In an effort to determine the environmental intensities to which energy materials in transit may be exposed, a Data Center of technical environmental information has been established by Sandia National Laboratories, Division 5523, for the DOE Office of Transportation Fuel Storage. This document is an index which can be used to request data of interest. Access to the information held is not limited to Sandia personnel. The purpose of the Transportation Technical Environmental Information Center is to collect, analyze, store, and make available descriptions of the environment of transportation expressed in engineering terms. The data stored in the Center are expected to be useful in a variety of transportation related analyses. Formulations of environmental criteria for shipment of cargo, risk assessments, and detailed structural analyses of shipping containers are examples where these data have been applied. For purposes of indexing and data retrieval, the data are catalogued under two major headings: Normal and Abnormal Environments.

  16. Transportation Technical Environmental Information Center index

    International Nuclear Information System (INIS)

    Davidson, C.A.; Foley, J.T.

    1980-10-01

    In an effort to determine the environmental intensities to which energy materials in transit may be exposed, a Data Center of technical environmental information has been established by Sandia National Laboratories, Division 5523, for the DOE Office of Transportation Fuel Storage. This document is an index which can be used to request data of interest. Access to the information held is not limited to Sandia personnel. The purpose of the Transportation Technical Environmental Information Center is to collect, analyze, store, and make available descriptions of the environment of transportation expressed in engineering terms. The data stored in the Center are expected to be useful in a variety of transportation related analyses. Formulations of environmental criteria for shipment of cargo, risk assessments, and detailed structural analyses of shipping containers are examples where these data have been applied. For purposes of indexing and data retrieval, the data are catalogued under two major headings: Normal and Abnormal Environments

  17. Order Theory in Environmental Sciences

    DEFF Research Database (Denmark)

    Sørensen, P. B.; Brüggemann, R.; Lerche, D. B.

    This is the proceeding from the fifth workshop in Order Theory in Environ-mental Science. In this workshop series the concept of Partial Order Theory is development in relation to application and the use is tested based on specific problems. The Partial Order Theory will have a potential use...

  18. Fort Collins Science Center-Fiscal year 2009 science accomplishments

    Science.gov (United States)

    Wilson, Juliette T.

    2010-01-01

    Public land and natural resource managers in the United States are confronted with increasingly complex decisions that have important ramifications for both ecological and human systems. The scientists and technical professionals at the U.S. Geological Survey Fort Collins Science Center?many of whom are at the forefront of their fields?possess a unique blend of ecological, socioeconomic, and technological expertise. Because of this diverse talent, Fort Collins Science Center staff are able to apply a systems approach to investigating complicated ecological problems in a way that helps answer critical management questions. In addition, the Fort Collins Science Center has a long record of working closely with the academic community through cooperative agreements and other collaborations. The Fort Collins Science Center is deeply engaged with other U.S. Geological Survey science centers and partners throughout the Department of the Interior. As a regular practice, we incorporate the expertise of these partners in providing a full complement of ?the right people? to effectively tackle the multifaceted research problems of today's resource-management world. In Fiscal Year 2009, the Fort Collins Science Center's scientific and technical professionals continued research vital to Department of the Interior's science and management needs. Fort Collins Science Center work also supported the science needs of other Federal and State agencies as well as non-government organizations. Specifically, Fort Collins Science Center research and technical assistance focused on client and partner needs and goals in the areas of biological information management and delivery, enterprise information, fisheries and aquatic systems, invasive species, status and trends of biological resources (including human dimensions), terrestrial ecosystems, and wildlife resources. In the process, Fort Collins Science Center science addressed natural-science information needs identified in the U

  19. DOE - BES Nanoscale Science Research Centers (NSRCs)

    Energy Technology Data Exchange (ETDEWEB)

    Beecher, Cathy Jo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a powerpoint shown to guests during tours of Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory. It shows the five DOE-BES nanoscale science research centers (NSRCs), which are located at different national laboratories throughout the country. Then it goes into detail specifically about the Center for Integrated Nanotechnologies at LANL, including statistics on its user community and CINT's New Mexico industrial users.

  20. Computer science handbook. Vol. 13.3. Environmental computer science. Computer science methods for environmental protection and environmental research

    International Nuclear Information System (INIS)

    Page, B.; Hilty, L.M.

    1994-01-01

    Environmental computer science is a new partial discipline of applied computer science, which makes use of methods and techniques of information processing in environmental protection. Thanks to the inter-disciplinary nature of environmental problems, computer science acts as a mediator between numerous disciplines and institutions in this sector. The handbook reflects the broad spectrum of state-of-the art environmental computer science. The following important subjects are dealt with: Environmental databases and information systems, environmental monitoring, modelling and simulation, visualization of environmental data and knowledge-based systems in the environmental sector. (orig.) [de

  1. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-09-30

    Co., Inc. was evaluated. A summary of the demonstration will be included in the October monthly report. A Kool-Vest from MicroClimate Systems, Inc. was evaluated during assessment at Beaver, WV from 8/16/99 to 8/17/99. The evaluation was performed in the same manner as the MTR Chemical Protective Suit described above. A summary of the demonstration will be included in the October monthly report. A brochure announcing the new Gateway to Environmental Technology (GET) website was produced by FIU-HCET and is being distributed to the D&D community by FETC-DDFA. The website provides links to the TIS and other decision support systems developed at FIU-HCET.

  2. Environmental Analysis of the Groningen City Center

    OpenAIRE

    GÓMEZ BUGEDA, RICARDO SANTIAGO

    2017-01-01

    This final thesis project is part of the research that is carrying out by the Gemeente Groningen in order to make the city center more sustainable and livable. The municipality of Groningen has recently published a conceptual development plan for improving the inner-city of Groningen, this report is called Bestemming Binnenstad 01/2016 . The main focus of this report is convert the city center to an environmental friendly downtown, reducing pollution, reroute public and private transpo...

  3. Environmental Management Science Program Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    This program summary book is a compendium of project summaries submitted by principal investigators in the Environmental Management Science Program and Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program). These summaries provide information about the most recent project activities and accomplishments. All projects will be represented at the workshop poster sessions, so you will have an opportunity to meet with the researchers. The projects will be presented in the same order at the poster session as they are presented in this summary book. Detailed questions about an individual project may be directed to the investigators involved.

  4. Kennedy Space Center environmental health program

    International Nuclear Information System (INIS)

    Marmaro, G.M.; Cardinale, M.A.; Summerfield, B.R.; Tipton, D.A.

    1992-01-01

    The Kennedy Space Center's environmental health organization is responsible for programs which assure its employees a healthful workplace under diverse and varied working conditions. These programs encompass the disciplines of industrial hygiene, radiation protection (health physics), and environmental sanitation/pollution control. Activities range from the routine, such as normal office work, to the highly specialized, such as the processing of highly toxic and hazardous materials

  5. Transportation Technical Environmental Information Center index

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C.A.; Foley, J.T.

    1982-06-01

    In an effort to determine the environmental intensities to which energy materials in transit may be exposed, a Data Center of technical environmental information has been established by Sandia National Laboratories, Division 5523, for the DOE Office of Transportation Fuel Storage. This document is an index which can be used to request data of interest. Access to the information held is not limited to Sandia personnel.

  6. Transportation Technical Environmental Information Center index

    International Nuclear Information System (INIS)

    Davidson, C.A.; Foley, J.T.

    1982-06-01

    In an effort to determine the environmental intensities to which energy materials in transit may be exposed, a Data Center of technical environmental information has been established by Sandia National Laboratories, Division 5523, for the DOE Office of Transportation Fuel Storage. This document is an index which can be used to request data of interest. Access to the information held is not limited to Sandia personnel

  7. Environmental science-policy interactions

    DEFF Research Database (Denmark)

    Kamelarczyk, Kewin Bach Friis

    + (Reduced Emissions from Deforestation and forest Degradation and enhancement of forest carbon stocks) process and the phenomenon of deforestation in Zambia as research examples. The research was carried out from mid 2008 and to mid 2013 and applies a mixed methods research design. Fieldwork was carried out...... to science? This PhD thesis contributes to answering this questions; however it does this by questioning the conceptions of science that contribute to political decision-making and by exploring the relationship between scientific knowledge, other types of knowledge and policy. This PhD study employs the REDD...... in future REDD+ design and implementation. To curtail potential negative consequences of the identified mode of science-policy interaction in Zambia, the study concludes by making a number of proposals. The proposals are generic in nature and may be found relevant in environmental policy processes outside...

  8. Eastern forest environmental threat assessment center

    Science.gov (United States)

    Southern Research Station. USDA Forest Service

    2010-01-01

    The Eastern Forest Environmental Threat Assessment Center (EFETAC) provides the latest research and expertise concerning threats to healthy forests – such as insects and disease, wildland loss, invasive species, wildland fire, and climate change – to assist forest landowners, managers and scientists throughout the East. Established in 2005, EFETAC is a joint effort of...

  9. The GLAST LAT Instrument Science Operations Center

    International Nuclear Information System (INIS)

    Cameron, Robert A.; SLAC

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) is scheduled for launch in late 2007. Operations support and science data processing for the Large Area Telescope (LAT) instrument on GLAST will be provided by the LAT Instrument Science Operations Center (ISOC) at the Stanford Linear Accelerator Center (SLAC). The ISOC supports GLAST mission operations in conjunction with other GLAST mission ground system elements and supports the research activities of the LAT scientific collaboration. The ISOC will be responsible for monitoring the health and safety of the LAT, preparing command loads for the LAT, maintaining embedded flight software which controls the LAT detector and data acquisition flight hardware, maintaining the operating configuration of the LAT and its calibration, and applying event reconstruction processing to down-linked LAT data to recover information about detected gamma-ray photons. The SLAC computer farm will be used to process LAT event data and generate science products, to be made available to the LAT collaboration through the ISOC and to the broader scientific community through the GLAST Science Support Center at NASA/GSFC. ISOC science operations will optimize the performance of the LAT and oversee automated science processing of LAT data to detect and monitor transient gamma-ray sources

  10. Communications among data and science centers

    Science.gov (United States)

    Green, James L.

    1990-01-01

    The ability to electronically access and query the contents of remote computer archives is of singular importance in space and earth sciences; the present evaluation of such on-line information networks' development status foresees swift expansion of their data capabilities and complexity, in view of the volumes of data that will continue to be generated by NASA missions. The U.S.'s National Space Science Data Center (NSSDC) manages NASA's largest science computer network, the Space Physics Analysis Network; a comprehensive account is given of the structure of NSSDC international access through BITNET, and of connections to the NSSDC available in the Americas via the International X.25 network.

  11. National Center for Mathematics and Science - publications

    Science.gov (United States)

    : Designing Statistics Instruction for Middle School Students Summer 2003: Algebraic Skills and Strategies for newsletter cover The National Center for Research in Mathematical Sciences Education (NCRMSE) (1987-1995 -Level Reform Fall 1993: Assessment Models Winter 1994: Reforming Geometry Spring 1994: Statistics and

  12. Fernbank Science Center Forest Teacher's Guide-1967.

    Science.gov (United States)

    Cherry, Jim; And Others

    This guide is designed primarily to familiarize teachers with the types of programs available through the Fernback Science Center. Instructional programs involving the use of the Fernbank Forest are outlined. Programs for secondary students include Plant Taxonomy, Field Ecology, Winter Taxonomy of Plants, and Climax Forest Succession. Elementary…

  13. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Wender, Steve [Los Alamos National Laboratory

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  14. Social Science Collaboration with Environmental Health.

    Science.gov (United States)

    Hoover, Elizabeth; Renauld, Mia; Edelstein, Michael R; Brown, Phil

    2015-11-01

    Social science research has been central in documenting and analyzing community discovery of environmental exposure and consequential processes. Collaboration with environmental health science through team projects has advanced and improved our understanding of environmental health and justice. We sought to identify diverse methods and topics in which social scientists have expanded environmental health understandings at multiple levels, to examine how transdisciplinary environmental health research fosters better science, and to learn how these partnerships have been able to flourish because of the support from National Institute of Environmental Health Sciences (NIEHS). We analyzed various types of social science research to investigate how social science contributes to environmental health. We also examined NIEHS programs that foster social science. In addition, we developed a case study of a community-based participation research project in Akwesasne in order to demonstrate how social science has enhanced environmental health science. Social science has informed environmental health science through ethnographic studies of contaminated communities, analysis of spatial distribution of environmental injustice, psychological experience of contamination, social construction of risk and risk perception, and social impacts of disasters. Social science-environmental health team science has altered the way scientists traditionally explore exposure by pressing for cumulative exposure approaches and providing research data for policy applications. A transdisciplinary approach for environmental health practice has emerged that engages the social sciences to paint a full picture of the consequences of contamination so that policy makers, regulators, public health officials, and other stakeholders can better ameliorate impacts and prevent future exposure. Hoover E, Renauld M, Edelstein MR, Brown P. 2015. Social science collaboration with environmental health. Environ Health

  15. Water Pollution, Environmental Science Curriculum Guide Supplement.

    Science.gov (United States)

    McKenna, Harold J.

    This curriculum guide is a 40-day unit plan on water pollution developed, in part, from the National Science Foundation Environmental Science Institutes' Ninth Grade Environmental Science Curriculum Guide. This unit contains teacher lesson plans, suggested teacher and student modules, case studies, and activities to be developed by teachers…

  16. Students build glovebox at Space Science Center

    Science.gov (United States)

    2001-01-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  17. The Lederman Science Center: Past, Present, Future

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, Marjorie G.; /Fermilab

    2011-11-01

    For 30 years, Fermilab has offered K-12 education programs, building bridges between the Lab and the community. The Lederman Science Center is our home. We host field trips and tours, visit schools, offer classes and professional development workshops, host special events, support internships and have a strong web presence. We develop programs based on identified needs, offer programs with peer-leaders and improve programs from participant feedback. For some we create interest; for others we build understanding and develop relationships, engaging participants in scientific exploration. We explain how we created the Center, its programs, and what the future holds.

  18. The TESS Science Processing Operations Center

    Science.gov (United States)

    Jenkins, Jon M.; Twicken, Joseph D.; McCauliff, Sean; Campbell, Jennifer; Sanderfer, Dwight; Lung, David; Mansouri-Samani, Masoud; Girouard, Forrest; Tenenbaum, Peter; Klaus, Todd; hide

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will conduct a search for Earth's closest cousins starting in early 2018 and is expected to discover approximately 1,000 small planets with R(sub p) less than 4 (solar radius) and measure the masses of at least 50 of these small worlds. The Science Processing Operations Center (SPOC) is being developed at NASA Ames Research Center based on the Kepler science pipeline and will generate calibrated pixels and light curves on the NASA Advanced Supercomputing Division's Pleiades supercomputer. The SPOC will also search for periodic transit events and generate validation products for the transit-like features in the light curves. All TESS SPOC data products will be archived to the Mikulski Archive for Space Telescopes (MAST).

  19. The Emirates Mars Mission Science Data Center

    Science.gov (United States)

    Craft, J.; Al Hammadi, O.; DeWolfe, A. W.; Staley, B.; Schafer, C.; Pankratz, C. K.

    2017-12-01

    The Emirates Mars Mission (EMM), led by the Mohammed Bin Rashid Space Center (MBRSC) in Dubai, United Arab Emirates, is expected to arrive at Mars in January 2021. The EMM Science Data Center (SDC) is to be developed as a joint effort between MBRSC and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The EMM SDC is responsible for the production, management, distribution, and archiving of science data collected from the three instruments on board the Hope spacecraft.With the respective SDC teams on opposite sides of the world evolutionary techniques and cloud-based technologies are being utilized in the development of the EMM SDC. This presentation will provide a top down view of the EMM SDC, summarizing the cloud-based technologies being implemented in the design, as well as the tools, best practices, and lessons learned for software development and management in a geographically distributed team.

  20. Activity and Action: Bridging Environmental Sciences and Environmental Education

    Science.gov (United States)

    Tal, Tali; Abramovitch, Anat

    2013-01-01

    The main goal of this study was to examine the Environmental Workshop unit taught to Environmental Sciences majors in the high schools in Israel and learn if, and in what ways, this unit could become a model for environmental education throughout the high school curriculum. We studied the special characteristics of the Environmental Workshop (EW)…

  1. Fort Collins Science Center fiscal year 2010 science accomplishments

    Science.gov (United States)

    Wilson, Juliette T.

    2011-01-01

    The scientists and technical professionals at the U.S. Geological Survey (USGS), Fort Collins Science Center (FORT), apply their diverse ecological, socioeconomic, and technological expertise to investigate complicated ecological problems confronting managers of the Nation's biological resources. FORT works closely with U.S. Department of the Interior (DOI) agency scientists, the academic community, other USGS science centers, and many other partners to provide critical information needed to help answer complex natural-resource management questions. In Fiscal Year 2010 (FY10), FORT's scientific and technical professionals conducted ongoing, expanded, and new research vital to the science needs and management goals of DOI, other Federal and State agencies, and nongovernmental organizations in the areas of aquatic systems and fisheries, climate change, data and information integration and management, invasive species, science support, security and technology, status and trends of biological resources (including the socioeconomic aspects), terrestrial and freshwater ecosystems, and wildlife resources, including threatened and endangered species. This report presents selected FORT science accomplishments for FY10 by the specific USGS mission area or science program with which each task is most closely associated, though there is considerable overlap. The report also includes all FORT publications and other products published in FY10, as well as staff accomplishments, appointments, committee assignments, and invited presentations.

  2. The 10th Anniversary Of Daejeon Environmental Technology Development Center

    International Nuclear Information System (INIS)

    2010-12-01

    This book describes the Daejeon Environment Technology Development Center with pictures for ten years. It also introduces the purpose of the foundation and background of center, structure of the center, main project and role of the center, center logo, current situation of cost of project, research business for 10 years, business supporting the environmental corporate, environment education, public relations activity and vision and prospect of the Daejeon Environmental Technology Development Center.

  3. Environmental Science for All? Considering Environmental Science for Inclusion in the High School Core Curriculum

    Science.gov (United States)

    Edelson, Daniel C.

    2007-01-01

    With the dramatic growth of environmental science as an elective in high schools over the last decade, educators have the opportunity to realistically consider the possibility of incorporating environmental science into the core high school curriculum. Environmental science has several characteristics that make it a candidate for the core…

  4. Harnessing science for environmental regulation

    International Nuclear Information System (INIS)

    Graham, J.D.

    1991-01-01

    An introductory chapter by Graham frames the issues to be discussed; then the following three chapters describe the formation and character of three organizations. These chapters are written by authors who have each had an active management role in the organization they are writing about: Terry F. Yosie, now at the American Petroleum Institute, who staffed the SAB (Science Advisory Board) while he was at EPA; Robert A. Neal, who headed CIIT (Chemical Industry Institute of Toxicology) before leaving for a position at Vanderbilt University; and Thomas P. Grumbly, former executive director of HEI (Health Effects Institute) now president of Clean Sites, Inc. While these chapters are well written and make a vital contribution to the overall development of the book's themes, the most valuable and enjoyable parts of the book are the succeeding five chapters, which present case studies dealing with EPA's regulatory efforts on unleaded gasoline, perchloroethylene, formaldehyde, nitrates in drinking water, and carbon monoxide. Each of these case studies, nominally historical accounts of how one or more of these (three) organizations participated in the regulatory controversy, offer insight into the broader issues of dealing with, and incorporating into regulations scientific information that has high uncertainty. One of the richest aspects of the five case studies is the extensive use of referenced interviews with identified participants from all aspects of the regulatory process. This material illuminates the motivation, emotions, and goals of the different players, helping the reader to understand their positions and other issues, such as why industry pursues, and EPA and the environmental movement appear to resist, good science; what underlies EPA's preferences for one regulatory option over another; and why scientists are histant to give yes-or-no answers in accord with the real time needs of the regulatory agency

  5. Science Theatre as dissemination of environmental awareness

    DEFF Research Database (Denmark)

    Chemi, Tatiana; Kastberg, Peter

    2015-01-01

    hides behind this label? Is this concept at all new? The purpose of this article is threefold: 1) to describe Science Theatre in terms of typology with specific focus on environmental subjects, 2) to address Science Theatre as a borderline meeting place (agora or arena) between science and theatre 3......A community project with the intention of developing specific communication on environmental issues for children age 3-7 allies with a theatre artist and storyteller. The result is a meeting between science and theatre. Theatre, with its borderline praxis between entertainment and reflection...... offered a precious opportunity to deliver difficult scientific or social issues within the environmental mindset to such youngsters, an opportunity well exploited and well received. But what makes Science Theatre an obvious choice in order to communicate natural sciences or environmental issues? What...

  6. The Brazilian Science Data Center (BSDC)

    Science.gov (United States)

    de Almeida, Ulisses Barres; Bodmann, Benno; Giommi, Paolo; Brandt, Carlos H.

    Astrophysics and Space Science are becoming increasingly characterised by what is now known as “big data”, the bottlenecks for progress partly shifting from data acquisition to “data mining”. Truth is that the amount and rate of data accumulation in many fields already surpasses the local capabilities for its processing and exploitation, and the efficient conversion of scientific data into knowledge is everywhere a challenge. The result is that, to a large extent, isolated data archives risk being progressively likened to “data graveyards”, where the information stored is not reused for scientific work. Responsible and efficient use of these large data-sets means democratising access and extracting the most science possible from it, which in turn signifies improving data accessibility and integration. Improving data processing capabilities is another important issue specific to researchers and computer scientists of each field. The project presented here wishes to exploit the enormous potential opened up by information technology at our age to advance a model for a science data center in astronomy which aims to expand data accessibility and integration to the largest possible extent and with the greatest efficiency for scientific and educational use. Greater access to data means more people producing and benefiting from information, whereas larger integration of related data from different origins means a greater research potential and increased scientific impact. The project of the BSDC is preoccupied, primarily, with providing tools and solutions for the Brazilian astronomical community. It nevertheless capitalizes on extensive international experience, and is developed in full cooperation with the ASI Science Data Center (ASDC), from the Italian Space Agency, granting it an essential ingredient of internationalisation. The BSDC is Virtual Observatory-complient and part of the “Open Universe”, a global initiative built under the auspices of the

  7. Academic and non-academic career options for marine scientists. - Support measures for early career scientists offered at MARUM - Center for Marine Environmental Sciences, University of Bremen, Germany

    Science.gov (United States)

    Hebbeln, Dierk; Klose, Christina

    2015-04-01

    Early career scientists at MARUM cover a wide range of research topics and disciplines including geosciences, biology, chemistry, social sciences and law. Just as colourful as the disciplinary background of the people, are their ideas for their personal careers. With our services and programmes, we aim to address some important career planning needs of PhD students and early career Postdocs, both, for careers in science and for careers outside academia. For PhD students aiming to stay in science, MARUM provides funding opportunities for a research stay abroad for a duration of up to 6 months. A range of courses is offered to prepare for the first Postdoc position. These include trainings in applying for research funding, proposal writing and interview skills. Following MARUM lectures which are held once a month, early career scientists are offered the opportunity to talk to senior scientists from all over the world in an informal Meet&Greet. Mentoring and coaching programmes for women in science are offered in cooperation with the office for equal opportunities at the University of Bremen. These programmes offer an additional opportunity to train interpersonal skills and to develop personal career strategies including a focus on special challenges that especially women might (have to) face in the scientific community. Early career scientists aiming for a non-academic career find support on different levels. MARUM provides funding opportunities for placements in industry, administration, consulting or similar. We offer trainings in e.g. job hunting strategies or interview skills. For a deeper insight into jobs outside the academic world, we regularly invite professionals for informal fireside chats and career days. These events are organised in cooperation with other graduate programmes in the region to broaden the focus of both, the lecturers and the participants. A fundamental component of our career programmes is the active involvement of alumni of MARUM and our

  8. The Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Lisowski, Paul W.; Schoenberg, Kurt F.

    2006-01-01

    The Los Alamos Neutron Science Center, or LANSCE, uses the first truly high-current medium-energy proton linear accelerator, which operated originally at a beam power of 1 MW for medium-energy nuclear physics. Today LANSCE continues operation as one of the most versatile accelerator-based user facilities in the world. During eight months of annual operation, scientists from around the world work at LANSCE to execute an extraordinarily broad program of defense and civilian research. Several areas operate simultaneously. The Lujan Neutron Scattering Center (Lujan Center) is a moderated spallation source (meV to keV), the Weapons Neutron Research Facility (WNR) is a bare spallation neutron source (keV to 800 MeV), and a new ultra-cold neutron source will be operational in 2005. These sources give LANSCE the ability to produce and use neutrons with energies that range over 14 orders of magnitude. LANSCE also supplies beam to WNR and two other areas for applications requiring protons. In a proton radiography (pRad) area, a sequence of narrow proton pulses is transmitted through shocked materials and imaged to study dynamic properties. In 2005, LANSCE began operating a facility that uses 100-MeV protons to produce medical radioisotopes. To sustain a vigorous program beyond this decade, LANSCE has embarked on a project to refurbish key elements of the facility and to plan capabilities beyond those that presently exist

  9. Environmental science: A new opportunity for soil science

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, I.L.

    2000-01-01

    During the golden era of soil science--from the 1950s to the 1980s--the main focus of this discipline was on the role of soil in production agriculture. More recently, renewed interest in the area of environmental science has offered new opportunities to soil scientists. Thus, many soil scientists are now working in areas such as bioremediation, waste recycling, and/or contaminant transport. Environmental science has, therefore, not only changed the traditional research role of soil scientists at land grant institutions but has also influenced student enrollment, the traditional soil science curriculum, and faculty recruitment. These changes require a new breed of soil scientist, one with a background not only in soil science but also in other areas of environmental science as well.

  10. Energy Science and Technology Software Center

    Energy Technology Data Exchange (ETDEWEB)

    Kidd, E.M.

    1995-03-01

    The Energy Science and Technology Software Center (ESTSC), is the U.S. Department of Energy`s (DOE) centralized software management facility. It is operated under contract for the DOE Office of Scientific and Technical Information (OSTI) and is located in Oak Ridge, Tennessee. The ESTSC is authorized by DOE and the U.S. Nuclear Regulatory Commission (NRC) to license and distribute DOE-and NRC-sponsored software developed by national laboratories and other facilities and by contractors of DOE and NRC. ESTSC also has selected software from the Nuclear Energy Agency (NEA) of the Organisation for Economic Cooperation and Development (OECD) through a software exchange agreement that DOE has with the agency.

  11. AGILE Data Center and AGILE science highlights

    International Nuclear Information System (INIS)

    Pittori, C.

    2013-01-01

    AGILE is a scientific mission of the Italian Space Agency (ASI) with INFN, INAF e CIFS participation, devoted to gamma-ray astrophysics. The satellite is in orbit since April 23rd, 2007. Gamma-ray astrophysics above 100 MeV is an exciting field of astronomical sciences that has received a strong impulse in recent years. Despite the small size and budget, AGILE produced several important scientific results, among which the unexpected discovery of strong and rapid gamma-ray flares from the Crab Nebula. This discovery won to the AGILE PI and the AGILE Team the prestigious Bruno Rossi Prize for 2012, an international recognition in the field of high energy astrophysics. We present here the AGILE data center main activities, and we give an overview of the AGILE scientific highlights after 5 years of operations

  12. Environmental Management Science Program Workshop. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as that performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.

  13. Leon M. Lederman Science Education Center: General Information

    Science.gov (United States)

    . Designed for middle school field trips, the hands-on exhibits at the Lederman Science Center are available Maintainer: ed-webmaster@fnal.gov Lederman Science Education Center Fermilab MS 777 Box 500 Batavia, IL 60510 Programs | Science Adventures | Calendar | Registration | About | Contact | FAQ | Fermilab Friends

  14. Application in agriculture, forestry and environmental science

    International Nuclear Information System (INIS)

    Williams, J.; Holmes, J.W.; Williams, B. G.; Winkworth, R.E.

    1981-01-01

    This consideration of the applications of the neutron method in forestry, agriculture and environmental science, focusses on the analyses of the data which can be obtained with the neutron method and draws attention to problem situations associated with its use

  15. Journal of Applied Sciences and Environmental Management

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management. ... Impacts of Organic Wastes on Water Quality of Woji Creek in Port Harcourt, Nigeria ... of Old Netim Village in Akamkpa Local Government Area of Cross River State, Nigeria ...

  16. Journal of Applied Sciences and Environmental Management ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management. ... Types Of Contributions. Original research papers; review articles; case studies and short communications. 3. Copyright ... Example: Chukwu, M; Olusegun, AW; Mohammed, SSD.

  17. Environmental Assessment. Moanalua Shopping Center Redevelopment Oahu, Hawaii

    National Research Council Canada - National Science Library

    Pingree, Ryan; Halperin, William

    2004-01-01

    The Department of the Navy has prepared an Environmental Assessment (EA) and determined that an Environmental Impact Statement is not required for the redevelopment of the Moanalua Shopping Center (MSC) Oahu Hawaii...

  18. Center for Urban Environmental Research and Education (CUERE)

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Urban Environmental Research and Education (CUERE) at UMBC was created in 2001 with initial support from the U.S. Environmental Protection Agency and...

  19. University of Washington Center for Child Environmental Health Risks Research

    Data.gov (United States)

    Federal Laboratory Consortium — The theme of the University of Washington based Center for Child Environmental Health Risks Research (CHC) is understanding the biochemical, molecular and exposure...

  20. Development environmental attitude of prospective science teachers

    International Nuclear Information System (INIS)

    Iqbal, H.M.

    2000-01-01

    Since the last three decades or so, we have witnessed the growing concern of human beings, all over the world, to adopt measures to conserve and preserve environment of the planet earth, because the same has been threatened by human activity and by way of our unparalleled intervention in the otherwise balanced environment. This awareness and concern has emerged as a need of incorporating environmental Issues into the normal curricula, so that we can educate the young generation to become informed decision-makers of the future. UNESCO and UNEP have advocated (since the last three decades) to teach environmentalised science to students. In Pakistan, there have been attempts to change curricula in accordance with the need of the time. Teachers need new kinds of skills, attitudes and commitment to teach science in an environmentalised fashion. This article discusses the impact of a semester-course on change in environmental attitudes of prospective science-teachers. A pre-test, post-test method was used to ascertain any change in environmental attitude of prospective science-teachers, after studying the environmental education course. It has been shown that there was a change in the environmental attitude of science-teachers as a result of the one-semester course, but the change or the level of attitude was not substantial or satisfactory. There seems to be a need of adopting a comprehensive approach to environmental education, and introducing teaching of environmental concepts at a very early age. (author)

  1. Accelerate synthesis in ecology and environmental sciences

    Science.gov (United States)

    Synthesis of diverse knowledge is a central part of all sciences, but especially those such as ecology and environmental sciences which draw information from many disciplines. Research and education in ecology are intrinsically synthetic, and synthesis is increasingly needed to find solutions for en...

  2. Interior's Climate Science Centers: Focus or Fail

    Science.gov (United States)

    Udall, B.

    2012-12-01

    After a whirlwind two years of impressive and critical infrastructure building, the Department of Interior's Climate Science Centers are now in a position to either succeed or fail. The CSCs have a number of difficult structural problems including too many constituencies relative to the available resources, an uneasy relationship among many of the constituencies including the DOI agencies themselves, a need to do science in a new, difficult and non-traditional way, and a short timeframe to produce useful products. The CSCs have built a broad and impressive network of scientists and stakeholders. These entities include science providers of the universities and the USGS, and decision makers from the states, tribes, DOI land managers and other federal agencies and NGOs. Rather than try to support all of these constituencies the CSCs would be better served by refocusing on a core mission of supporting DOI climate related decision making. The CSCs were designed to service the climate science needs of DOI agencies, many of which lost their scientific capabilities in the 1990s due to a well-intentioned but ultimately harmful re-organization at DOI involving the now defunct National Biological Survey. Many of these agencies would like to have their own scientists, have an uneasy relationship with the nominal DOI science provider, the USGS, and don't communicate effectively among themselves. The CSCs must not succumb to pursuing science in either the traditional mode of the USGS or in the traditional mode of the universities, or worse, both of them. These scientific partners will need to be flexible, learn how to collaborate and should expect to see fewer resources. Useful CSC processes and outputs should start with the recommendations of the 2009 NRC Report Informing Decisions in a Changing Climate: (1) begin with users' needs; (2) give priority to process over products; (3) link information producers and users; (4) build connections across disciplines and organizations

  3. NASA Center for Computational Sciences: History and Resources

    Science.gov (United States)

    2000-01-01

    The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.

  4. Understanding leadership in the environmental sciences

    OpenAIRE

    Evans, L.; Hicks, C.; Cohen, P.; Case, P.; Prideaux, M.; Mills, D.

    2015-01-01

    Leadership is often assumed, intuitively, to be an important driver of sustainable development. To understand how leadership is conceptualised and analysed in the environmental sciences and to discover what this research says about leadership outcomes, we conducted a review of environmental leadership research over the last ten years. We find that much of the environmental leadership literature we reviewed focuses on a few key individuals and desirable leadership competencies. It also reports...

  5. National Center for Advancing Translational Sciences

    Science.gov (United States)

    ... Models Core Technologies Clinical Innovation Clinical and Translational Science Awards Program Rare Diseases Clinical Research Network Patient ... to our monthly e-newsletter. About Translation Translational Science Spectrum Explore the full spectrum of translational science, ...

  6. The Savannah River Technology Center environmental monitoring field test platform

    International Nuclear Information System (INIS)

    Rossabi, J.

    1993-01-01

    Nearly all industrial facilities have been responsible for introducing synthetic chemicals into the environment. The Savannah River Site is no exception. Several areas at the site have been contaminated by chlorinated volatile organic chemicals. Because of the persistence and refractory nature of these contaminants, a complete clean up of the site will take many years. A major focus of the mission of the Environmental Sciences Section of the Savannah River Technology Center is to develop better, faster, and less expensive methods for characterizing, monitoring, and remediating the subsurface. These new methods can then be applied directly at the Savannah River Site and at other contaminated areas in the United States and throughout the world. The Environmental Sciences Section has hosted field testing of many different monitoring technologies over the past two years primarily as a result of the Integrated Demonstration Program sponsored by the Department of Energy's Office of Technology Development. This paper provides an overview of some of the technologies that have been demonstrated at the site and briefly discusses the applicability of these techniques

  7. Tomographic Environmental Sections for Environmental Mitigation Devices in Historical Centers

    Directory of Open Access Journals (Sweden)

    Roberta Cocci Grifoni

    2017-03-01

    Full Text Available Urban heat waves and the overall growing trend in the annual global temperature underline the importance of urban/architectural resilience and the need to reduce energy consumption. By designing urban voids, it is possible to create thermodynamic buffers, i.e., bubbles of controlled atmosphere that act as mediators between the natural and built environments, between the human body and the surrounding air, between meteorology and physiology (meteorological architecture. Multiple small actions in the urban fabric’s open spaces, such as replacing dark pavements or inserting vegetation and green spaces, are intended to improve outdoor comfort conditions and therefore the resilience of the city itself. This not only benefits the place’s quality, which is intrinsic to the new project, but also the insulating capacity of buildings, which are relieved of an external heat load. The design emphasis therefore changes from solid structures to the climate and weather conditions, which are invisible but perceivable. To design and control these constructed atmopheres, tomographic sections processed with computational fluid dynamics software (tomographic environmental section, TENS becomes necessary. It allows the effects of an extreme event on an outdoor environment to be evaluated in order to establish the appropriate (adaptive climate mitigation devices, especially in historical centers where energy retrofits are often discouraged. By fixing boundary conditions after a local intervention, the virtual environment can be simulated and then "sliced" to analyze initial values and verify the design improvements.

  8. Kepler Science Operations Center Pipeline Framework

    Science.gov (United States)

    Klaus, Todd C.; McCauliff, Sean; Cote, Miles T.; Girouard, Forrest R.; Wohler, Bill; Allen, Christopher; Middour, Christopher; Caldwell, Douglas A.; Jenkins, Jon M.

    2010-01-01

    The Kepler mission is designed to continuously monitor up to 170,000 stars at a 30 minute cadence for 3.5 years searching for Earth-size planets. The data are processed at the Science Operations Center (SOC) at NASA Ames Research Center. Because of the large volume of data and the memory and CPU-intensive nature of the analysis, significant computing hardware is required. We have developed generic pipeline framework software that is used to distribute and synchronize the processing across a cluster of CPUs and to manage the resulting products. The framework is written in Java and is therefore platform-independent, and scales from a single, standalone workstation (for development and research on small data sets) to a full cluster of homogeneous or heterogeneous hardware with minimal configuration changes. A plug-in architecture provides customized control of the unit of work without the need to modify the framework itself. Distributed transaction services provide for atomic storage of pipeline products for a unit of work across a relational database and the custom Kepler DB. Generic parameter management and data accountability services are provided to record the parameter values, software versions, and other meta-data used for each pipeline execution. A graphical console allows for the configuration, execution, and monitoring of pipelines. An alert and metrics subsystem is used to monitor the health and performance of the pipeline. The framework was developed for the Kepler project based on Kepler requirements, but the framework itself is generic and could be used for a variety of applications where these features are needed.

  9. Linking Science and Society With an Environmental Information Bridge

    Science.gov (United States)

    Welling, L.; Seielstad, G.; Jones, D.; Peterson, J.

    2001-12-01

    Building learning communities to engage the public in identifying and solving local and regional environmental problems is the vision of the newly created Northern Great Plains Center for People and the Environment at the University of North Dakota. The Center serves as an Environmental Information Bridge between science and society for citizens of the region, providing information, data, and value-added remote sensing products to precision agriculture, sustainable forestry, Native American land managers, and K-lifetime educators. Guided by the needs of end users, the new Center is a prototype for a national infrastructure that meets ESE's objective to "expand and accelerate the realization of economic and societal benefits from Earth science, information, and technology". The scientific community has been good at converting raw data into useful information. However, a serious communications gap exists between the communities of scientists and non-scientists. The new Center bridges this gap, creating a many-to-many exchange of information among those who learn first about the environment and those who will put those lessons to work for their economic welfare, the betterment of the quality of their lives, and the benefit of their descendants. A major outreach component of the Center, written and produced at UND, is Our Changing Planet, a public television series aimed at increasing viewers' awareness of environmental and climate change issues. Now carried by approximately 30 public television stations the series is distributed nationwide by the National Education Television Association. The Center has also recently established a partnership with StormCenter.com, LLC, a multimedia company and fellow partner in NASA's Federation of Earth Science Information Partners that uses leading-edge technology to deliver information about the environment to regional television stations. Service to the media provides a vital link between science and the public, as local weather

  10. Summer Center for Climate, Energy, and Environmental Decision Making (SUCCEED)

    Science.gov (United States)

    Klima, K.; Hoss, F.; Welle, P.; Larkin, S.

    2013-12-01

    Science, Technology, and Math (STEM) fields are responsible for more than half of our sustained economic expansion, and over the past 25 years the science and engineering workforce has remained at over 5% of all U.S. jobs. However, America lags behind other nations when it comes to STEM education; globally, American students rank 23th in math and 31st in science. While our youngest students show an interest in STEM subjects, roughly 40% of college students planning to major in STEM switch to other subjects. Women and minorities, 50% and 43% of school-age children, are disproportionally underrepresented in STEM fields (25% and 15%, respectively). Studies show that improved teacher curriculum combined with annual student-centered learning summer programs can promote and sustain student interest in STEM fields. Many STEM fields appear superficially simple, and yet can be truly complex and controversial topics. Carnegie Mellon University's Center for Climate and Energy Decision Making focuses on two such STEM fields: climate and energy. In 2011, we created SUCCEED: the Summer Center for Climate, Energy, and Environmental Decision Making. SUCCEED consisted of two pilot programs: a 2-day workshop for K-12 teacher professional development and a free 5-day summer school targeted at an age gap in the university's outreach, students entering 10th grade. In addition to teaching lessons climate, energy, and environment, the program aimed to highlight different STEM careers so students could better understand the breadth of choices available. SUCCEED, repeated in 2012, was wildly successful. A pre/post test demonstrated a significant increase in understanding of STEM topics. Furthermore, SUCCEED raised excitement for STEM; teachers were enthusiastic about accurate student-centered learning plans and students wanted to know more. To grow these efforts, an additional component has been added to the SUCCEED 2013 effort: online publicly available curricula. Using the curricula form

  11. Aviation environmental technology and science

    Institute of Scientific and Technical Information of China (English)

    Zhang Yanzhong

    2008-01-01

    Expatiating on the impact of aviation on the environment and aviation environmental protection projects are ex- pounded, and analyzing on the atmosphere pollution and effects on the aviation noise of aircraft discharge. Researching the approach to control aircraft exhaust pollution and noise pollution, and proposing the technology and management measures to reduce air pollution.

  12. Department of Environmental Science, Western

    African Journals Online (AJOL)

    USER

    2014-10-04

    Oct 4, 2014 ... Ethiopian Journal of Environmental Studies & Management 7(6): 628 – 634, 2014. ... of fuel wood, sometimes call fire-wood. For instance ... surrounding forest vegetation by felling and .... often referred to as ex-post facto was.

  13. Synchrotron Environmental Science-I Workshop Report

    International Nuclear Information System (INIS)

    1999-01-01

    Attendees of the Synchrotrons Environmental Science 1 (SES-1) workshop represented a broad spectrum of environmental science research areas and expertise in all of the current synchrotrons techniques (X-ray scattering and diffraction, X-ray absorption spectroscopy, and two- and three-dimensional X-ray imaging). These individuals came together to discuss current measurement obstacles in environmental research and, more specifically, ways to overcome such obstacles by applying synchrotrons radiation techniques. Significant obstacles in measurement affect virtually all of the research issues described. Attendees identified synchrotrons approaches of potential value in their research. A number of the environmental research studies discussed are currently being addressed with some success by synchrotron-based approaches. Nevertheless, improvements in low-Z measurement capabilities are needed to facilitate the use of synchrotrons radiation methodologies in environmental research

  14. Synchrotron Environmental Science-I Workshop Report.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-08

    Attendees of the Synchrotrons Environmental Science 1 (SES-1) workshop represented a broad spectrum of environmental science research areas and expertise in all of the current synchrotrons techniques (X-ray scattering and diffraction, X-ray absorption spectroscopy, and two- and three-dimensional X-ray imaging). These individuals came together to discuss current measurement obstacles in environmental research and, more specifically, ways to overcome such obstacles by applying synchrotrons radiation techniques. Significant obstacles in measurement affect virtually all of the research issues described. Attendees identified synchrotrons approaches of potential value in their research. A number of the environmental research studies discussed are currently being addressed with some success by synchrotron-based approaches. Nevertheless, improvements in low-Z measurement capabilities are needed to facilitate the use of synchrotrons radiation methodologies in environmental research.

  15. Molecular Science Research Center annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1991-01-01

    The Chemical Structure and Dynamics group is studying chemical kinetics and reactions dynamics of terrestrial and atmospheric processes as well as the chemistry of complex waste forms and waste storage media. Staff are using new laser systems and surface-mapping techniques in combination with molecular clusters that mimic adsorbate/surface interactions. The Macromolecular Structure and Dynamics group is determining biomolecular structure/function relationships for processes the control the biological transformation of contaminants and the health effects of toxic substances. The Materials and Interfaces program is generating information needed to design and synthesize advanced materials for the analysis and separation of mixed chemical waste, the long-term storage of concentrated hazardous materials, and the development of chemical sensors for environmental monitoring of various organic and inorganic species. The Theory, Modeling, and Simulation group is developing detailed molecular-level descriptions of the chemical, physical, and biological processes in natural and contaminated systems. Researchers are using the full spectrum of computational techniques. The Computer and Information Sciences group is developing new approaches to handle vast amounts of data and to perform calculations for complex natural systems. The EMSL will contain a high-performance computing facility, ancillary computing laboratories, and high-speed data acquisition systems for all major research instruments.

  16. The precautionary principle in environmental science.

    Science.gov (United States)

    Kriebel, D; Tickner, J; Epstein, P; Lemons, J; Levins, R; Loechler, E L; Quinn, M; Rudel, R; Schettler, T; Stoto, M

    2001-01-01

    Environmental scientists play a key role in society's responses to environmental problems, and many of the studies they perform are intended ultimately to affect policy. The precautionary principle, proposed as a new guideline in environmental decision making, has four central components: taking preventive action in the face of uncertainty; shifting the burden of proof to the proponents of an activity; exploring a wide range of alternatives to possibly harmful actions; and increasing public participation in decision making. In this paper we examine the implications of the precautionary principle for environmental scientists, whose work often involves studying highly complex, poorly understood systems, while at the same time facing conflicting pressures from those who seek to balance economic growth and environmental protection. In this complicated and contested terrain, it is useful to examine the methodologies of science and to consider ways that, without compromising integrity and objectivity, research can be more or less helpful to those who would act with precaution. We argue that a shift to more precautionary policies creates opportunities and challenges for scientists to think differently about the ways they conduct studies and communicate results. There is a complicated feedback relation between the discoveries of science and the setting of policy. While maintaining their objectivity and focus on understanding the world, environmental scientists should be aware of the policy uses of their work and of their social responsibility to do science that protects human health and the environment. The precautionary principle highlights this tight, challenging linkage between science and policy. PMID:11673114

  17. The Effect of Environmental Science Projects on Students' Environmental Knowledge and Science Attitudes

    Science.gov (United States)

    Al-Balushi, Sulaiman M.; Al-Aamri, Shamsa S.

    2014-01-01

    The current study explores the effectiveness of involving students in environmental science projects for their environmental knowledge and attitudes towards science. The study design is a quasi-experimental pre-post control group design. The sample was 62 11th-grade female students studying at a public school in Oman. The sample was divided into…

  18. Science Centers in the Electronic Age: Are We Doomed?

    Science.gov (United States)

    Russell, Robert L., Ed.; West, Robert M., Ed.

    1996-01-01

    This issue is a debate-discussion concerning science centers in the electronic age. The articles are based on presentations made at the Science Center World Congress (1st, Heureka, Finland, June 13-17, 1996). The four articles are: (1) "Lessons from Laboratorio dell'Immaginario Scientifico" (Andrea Bandelli); (2) "The Doom-Shaped Thing in the…

  19. Understanding leadership in the environmental sciences

    Directory of Open Access Journals (Sweden)

    Louisa S. Evans

    2015-03-01

    Full Text Available Leadership is often assumed, intuitively, to be an important driver of sustainable development. To understand how leadership is conceptualized and analyzed in the environmental sciences and to discover what this research says about leadership outcomes, we conducted a review of environmental leadership research over the last 10 years. We found that much of the environmental leadership literature focuses on a few key individuals and desirable leadership competencies. The literature also reports that leadership is one of the most important of a number of factors contributing to effective environmental governance. Only a subset of the literature highlights interacting sources of leadership, disaggregates leadership outcomes, or evaluates leadership processes in detail. We argue that the literature on environmental leadership is highly normative. Leadership is typically depicted as an unequivocal good, and its importance is often asserted rather than tested. We trace how leadership studies in the management sciences are evolving and argue that, taking into account the state of the art in environmental leadership research, more critical approaches to leadership research in environmental science can be developed.

  20. The DOE/NREL Environmental Science Program

    International Nuclear Information System (INIS)

    Douglas R. Lawson; Michael Gurevich

    2001-01-01

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects

  1. The DOE/NREL Environmental Science Program

    Energy Technology Data Exchange (ETDEWEB)

    Douglas R. Lawson; Michael Gurevich

    2001-05-14

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.

  2. ATHENA: Remote Sensing Science Center for Cultural Heritage in Cyprus

    Science.gov (United States)

    Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasiliki; Themistocleous, Kyriakos; Cuca, Branka; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter

    2016-04-01

    The Cultural Heritage (CH) sector, especially those of monuments and sites has always been facing a number of challenges from environmental pressure, pollution, human intervention from tourism to destruction by terrorism.Within this context, CH professionals are seeking to improve currently used methodologies, in order to better understand, protect and valorise the common European past and common identity. "ATHENA" H2020-TWINN-2015 project will seek to improve and expand the capabilities of the Cyprus University of Technology, involving professionals dealing with remote sensing technologies for supporting CH sector from the National Research Center of Italy (CNR) and German Aerospace Centre (DLR). The ATHENA centre will be devoted to the development, introduction and systematic use of advanced remote sensing science and technologies in the field of archaeology, built cultural heritage, their multi-temporal analysis and interpretation and the distant monitoring of their natural and anthropogenic environment in the area of Eastern Mediterranean.

  3. Critical materialism: science, technology, and environmental sustainability.

    Science.gov (United States)

    York, Richard; Clark, Brett

    2010-01-01

    There are widely divergent views on how science and technology are connected to environmental problems. A view commonly held among natural scientists and policy makers is that environmental problems are primarily technical problems that can be solved via the development and implementation of technological innovations. This technologically optimistic view tends to ignore power relationships in society and the political-economic order that drives environmental degradation. An opposed view, common among postmodernist and poststructuralist scholars, is that the emergence of the scientific worldview is one of the fundamental causes of human oppression. This postmodernist view rejects scientific epistemology and often is associated with an anti-realist stance, which ultimately serves to deny the reality of environmental problems, thus (unintentionally) abetting right-wing efforts to scuttle environmental protection. We argue that both the technologically optimistic and the postmodernist views are misguided, and both undermine our ability to address environmental crises. We advocate the adoption of a critical materialist stance, which recognizes the importance of natural science for helping us to understand the world while also recognizing the social embeddedness of the scientific establishment and the need to challenge the manipulation of science by the elite.

  4. National Center for Mathematics and Science - links to related sites

    Science.gov (United States)

    Mathematics and Science (NCISLA) HOME | WHAT WE DO | K-12 EDUCATION RESEARCH | PUBLICATIONS | TEACHER Modeling Middle School Mathematics National Association of Biology Teachers National Association for Mathematics National Science Teachers Assocation Show-Me Center Summit on Science TERC - Weaving Gender Equity

  5. Earth and Environmental Sciences 1999 Annual Report Meeting National Needs

    International Nuclear Information System (INIS)

    Yonker, L.; Dannevik, B.

    2000-01-01

    Lawrence Livermore National Laboratory's Earth and Environmental Sciences 1999 Annual Report covers the following topics: (1) Nuclear Materials--Modeling Thermohydrologic Processes at the Proposed Yucca Mountain Nuclear-Waste Repository; Dose Assessments and Resettlement Support on Rongelap Atoll in the Marshall Islands. (2) Climate, Carbon, and Energy--Incorporating Surprise into Models of Global Climate Change: A Simple Climate Demonstrator Model; (3) Environmental Risk Reduction--The NASA Global Modeling Initiative: Analyzing the Atmospheric Impacts of Supersonic Aircraft; (4) National Security--Atmospheric Release Assessment Programs; and (5) Cross-Cutting Technologies/Capabilities--Advances in Technology at the Center for Accelerator Mass Spectrometry; Experimental Geophysics: Investigating Material Properties at Extreme Conditions

  6. A cross-case analysis of three Native Science Field Centers

    Science.gov (United States)

    Augare, Helen J.; Davíd-Chavez, Dominique M.; Groenke, Frederick I.; Little Plume-Weatherwax, Melissa; Lone Fight, Lisa; Meier, Gene; Quiver-Gaddie, Helene; Returns From Scout, Elvin; Sachatello-Sawyer, Bonnie; St. Pierre, Nate; Valdez, Shelly; Wippert, Rachel

    2017-06-01

    Native Science Field Centers (NSFCs) were created to engage youth and adults in environmental science activities through the integration of traditional Native ways of knowing (understanding about the natural world based on centuries of observation including philosophy, worldview, cosmology, and belief systems of Indigenous peoples), Native languages, and Western science concepts. This paper focuses on the Blackfeet Native Science Field Center, the Lakota Native Science Field Center, and the Wind River Native Science Field Center. One of the long-term, overarching goals of these NSFCs was to stimulate the interest of Native American students in ways that encouraged them to pursue academic and career paths in science, technology, engineering, and mathematics (STEM) fields. A great deal can be learned from the experiences of the NSFCs in terms of effective educational strategies, as well as advantages and challenges in blending Native ways of knowing and Western scientific knowledge in an informal science education setting. Hopa Mountain—a Bozeman, Montana-based nonprofit—partnered with the Blackfeet Community College on the Blackfeet Reservation, Fremont County School District #21 on the Wind River Reservation, and Oglala Lakota College on the Pine Ridge Reservation to cooperatively establish the Native Science Field Centers. This paper presents a profile of each NSFC and highlights their program components and accomplishments.

  7. 1. National Congress of Environmental Science: Abstracts

    International Nuclear Information System (INIS)

    1995-01-01

    The First National Congress of Environmental Sciences had a plural participation in the environmental thematic. The public universities and the research institutes of the different states of Mexico submitted papers containing proposals of scientific and technological solutions to the problems of management of hazardous wastes: water and land pollution; new methods of evaluation to pollutants of air and water; protection and conservation of relevant species of the ecology; control of genetic alterations; development and conservation of natural resources, and environmental education. Another part of the abstracts is dedicated to the posters session (Author)

  8. Environmental Molecular Sciences Laboratory 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    White, Julia C.

    2005-04-17

    This 2004 Annual Report describes the research and accomplishments of staff and users of the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), located in Richland, Washington. EMSL is a multidisciplinary, national scientific user facility and research organization, operated by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy's Office of Biological and Environmental Research. The resources and opportunities within the facility are an outgrowth of the U.S. Department of Energy's (DOE) commitment to fundamental research for understanding and resolving environmental and other critical scientific issues.

  9. Nuclear analysis techniques and environmental sciences

    International Nuclear Information System (INIS)

    1997-10-01

    31 theses are collected in this book. It introduced molecular activation analysis micro-PIXE and micro-probe analysis, x-ray fluorescence analysis and accelerator mass spectrometry. The applications about these nuclear analysis techniques are presented and reviewed for environmental sciences

  10. The Environmental Science and Health Effects Program

    International Nuclear Information System (INIS)

    Michael Gurevich; Doug Lawson; Joe Mauderly

    2000-01-01

    The goal of the Environmental Science and Health Effect Program is to conduct policy-relevant research that will help us understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources

  11. The Environmental Science and Health Effects Program

    Energy Technology Data Exchange (ETDEWEB)

    Michael Gurevich; Doug Lawson; Joe Mauderly

    2000-04-10

    The goal of the Environmental Science and Health Effect Program is to conduct policy-relevant research that will help us understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources.

  12. Ecosystem Services in Environmental Science Literacy

    Science.gov (United States)

    Ruppert, John Robert

    2015-01-01

    Human beings depend on a set of benefits that emerge from functioning ecosystems, termed Ecosystem Services (ES), and make decisions in everyday life that affect these ES. Recent advancements in science have led to an increasingly sophisticated understanding of ES and how they can be used to inform environmental decision-making. Following suit, US…

  13. How science makes environmental controversies worse

    International Nuclear Information System (INIS)

    Sarewitz, Daniel

    2004-01-01

    I use the example of the 2000 US Presidential election to show that political controversies with technical underpinnings are not resolved by technical means. Then, drawing from examples such as climate change, genetically modified foods, and nuclear waste disposal, I explore the idea that scientific inquiry is inherently and unavoidably subject to becoming politicized in environmental controversies. I discuss three reasons for this. First, science supplies contesting parties with their own bodies of relevant, legitimated facts about nature, chosen in part because they help make sense of, and are made sensible by, particular interests and normative frameworks. Second, competing disciplinary approaches to understanding the scientific bases of an environmental controversy may be causally tied to competing value-based political or ethical positions. The necessity of looking at nature through a variety of disciplinary lenses brings with it a variety of normative lenses, as well. Third, it follows from the foregoing that scientific uncertainty, which so often occupies a central place in environmental controversies, can be understood not as a lack of scientific understanding but as the lack of coherence among competing scientific understandings, amplified by the various political, cultural, and institutional contexts within which science is carried out. In light of these observations, I briefly explore the problem of why some types of political controversies become 'scientized' and others do not, and conclude that the value bases of disputes underlying environmental controversies must be fully articulated and adjudicated through political means before science can play an effective role in resolving environmental problems

  14. Program Analysis and Design Requirements for tne National Science Center

    Science.gov (United States)

    1991-02-01

    shell of an old exposition building with secondhand furniture to display exhibit items, to the Ontario Science Center, which is a more modem building...Storage Area Pigeonhole storage cabinets for children’s school books , coats, and boots are provided at the Indianapolis Center. The Ontario center...used shopping carts for school groups to store their coats and books . They do not work well according to center staff and are cumbersome and unsightly

  15. Environmental Finance Center Serving EPA's Region 8 States

    Science.gov (United States)

    The National Rural Water Association, headquartered in Duncan Oklahoma, has been selected through a competitive grants process to establish a regional Environmental Finance Center (EFC) serving EPA Region 8 states.

  16. Environmental Science: 49 Science Fair Projects. Science Fair Projects Series.

    Science.gov (United States)

    Bonnet, Robert L.; Keen, G. Daniel

    This book contains 49 science fair projects designed for 6th to 9th grade students. Projects are organized by the topics of soil, ecology (projects in habitat and life cycles), pests and controls (projects in weeds and insects), recycling (projects in resources and conservation), waste products (projects in decomposition), microscopic organisms,…

  17. How do science centers perceive their role in science teaching?

    DEFF Research Database (Denmark)

    Nielsen, Jan Alexis; Stougaard, Birgitte; Andersen, Beth Wehner

    This poster presents the data of a survey of 11 science centres in the Region of Southern Denmark. The survey is the initial step in a project which aims, on the one hand, to identify the factors which conditions successful learning outcomes of visits to science centres, and, on the other hand...... and teachers. In the present survey we have approached the topic from the perspective of science centres. Needless to say, the science centres’ own perception of their role in science teaching plays a vital role with respect to the successfulness of such visits. The data of our survey suggest that, also from......, to apply this identification so as to guide the interaction of science teachers and science centres. Recent literature on this topic (Rennie et. al. 2003; Falk & Dierking 2000) suggest that stable learning outcomes of such visits require that such visits are (1) prepared in the sense that the teacher has...

  18. Environmental radiological protection of Bariloche Atomic Center

    International Nuclear Information System (INIS)

    Andres, Pablo A.; Levanon, Izhar S.

    2013-01-01

    This plan of monitoring radiological environmental routine fits on environmental policy of CNEA, satisfying national and international recommendations for licensed facilities. Sampling matrices are related to direct routes of exposure: air and water (river, lake, sediments, drinking water). Soil samples are also analyzed for having integrated matrices. They are considered as minimum three points of measurement: a white point (water or winds up), a point of maximum (water or winds down) and a point corresponding to the location of the individual representative or a point of public interest. Measurements in air estimate KERMA rate with thermoluminescent dosimeters, bi-monthly, and concentrations of particulate material and aerosols. For water samples (monthly), soil and sediments (quarterly), radionuclides that have download limits are analyzed, according to its importance in the dosages produced in the representative individual. In these cases artificial radionuclides using gamma spectrometry, beta total and Sr-90 by radiochemical techniques if the value of total screening (1 Bq/L) is exceeded. Foods are not included because no possible matrices were detected, either by their distance. by located not predominant wind direction. They are however still looking for milk producers that fulfills the minimum requirements.The data collected are compared with environmental baselines to set trends that might point to future significant changes in the environment during the life of the facilities. So far it was not observed significant differences with respect to baseline values

  19. USGS Environmental health science strategy: providing environmental health science for a changing world: public review release

    Science.gov (United States)

    Bright, Patricia R.; Buxton, Herbert T.; Balistrieri, Laurie S.; Barber, Larry B.; Chapelle, Francis H.; Cross, Paul C.; Krabbenhoft, David P.; Plumlee, Geoffrey S.; Sleeman, Jonathan M.; Tillitt, Donald E.; Toccalino, Patricia L.; Winton, James R.

    2012-01-01

    America has an abundance of natural resources. We have bountiful clean water, fertile soil, and unrivaled national parks, wildlife refuges, and public lands. These resources enrich our lives and preserve our health and wellbeing. These resources have been maintained because of our history of respect for their value and an enduring commitment to their vigilant protection. Awareness of the social, economic, and personal value of the health of our environment is increasing. The emergence of environmentally driven diseases caused by environmental exposure to contaminants and pathogens is a growing concern worldwide. New health threats and patterns of established threats are affected by both natural and anthropogenic changes to the environment. Human activities are key drivers of emerging (new and re-emerging) health threats. Societal demands for land and natural resources, a better quality of life, improved economic prosperity, and the environmental impacts associated with these demands will continue to increase. Natural earth processes, climate trends, and related climatic events will add to the environmental impact of human activities. These environmental drivers will influence exposure to disease agents, including viral, bacterial, prion, and fungal pathogens, parasites, natural earth materials, toxins and other biogenic compounds, and synthetic chemicals and substances. The U.S. Geological Survey (USGS) defines environmental health science broadly as the interdisciplinary study of relations among the quality of the physical environment, the health of the living environment, and human health. The interactions among these three spheres are driven by human activities, ecological processes, and natural earth processes; the interactions affect exposure to contaminants and pathogens and the severity of environmentally driven diseases in animals and people. This definition provides USGS with a framework for synthesizing natural science information from across the Bureau

  20. LANSCE: Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Kippen, Karen Elizabeth

    2017-01-01

    The principle goals of this project is to increase flux and improve resolution for neutron energies above 1 keV for nuclear physics experiments; and preserve current strong performance at thermal energies for material science.

  1. LANSCE: Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-02

    The principle goals of this project is to increase flux and improve resolution for neutron energies above 1 keV for nuclear physics experiments; and preserve current strong performance at thermal energies for material science.

  2. Fort Collins Science Center: Ecosystem Dynamics

    Science.gov (United States)

    Bowen, Zack

    2004-01-01

    Many challenging natural resource management issues require consideration of a web of interactions among ecosystem components. The spatial and temporal complexity of these ecosystem problems demands an interdisciplinary approach integrating biotic and abiotic processes. The goals of the Ecosystem Dynamics Branch are to provide sound science to aid federal resource managers and use long-term, place-focused research and monitoring on federal lands to advance ecosystem science.

  3. Development in the Slovakia. General environmental science

    International Nuclear Information System (INIS)

    1998-01-01

    In this chapter the basic of the environmental science and preservation of the natural memories; The protection of the nature and landscape; The protection of the forest; The protection of the trees growing outside of the forests, parks and gardens; The protection of free growing of species of plants; The protection of free living species of animals; The protection of animals and game law; The protection of fishes and fishery; The water protection, their balance and water farm; The health protection of the man (Radiation protection and nuclear safety is included); The veterinary ministration and protection of animals; The air protection and protection of the ozone layer; Wastes and waste management; The protection and agricultural use of soil; The protection and use of minerals; The protection of cultural heritage in the landscape; The territorial planning, building order and environmental rationalizing; The assessment of influences on the environment; The state fund of the environment; The state administration for the environment; The access to environmental information; The law about the environment and basic meanings of the environmentalism; The environmental terminology in the environmental law; The environmental terminology in the development and documents of environmental law are reviewed

  4. 1998 Environmental Management Science Program Annual Report

    International Nuclear Information System (INIS)

    1999-01-01

    The Environmental Management Science Program (EMSP) is a collaborative partnership between the DOE Office of Environmental Management (EM), Office of Science (DOE-SC), and the Idaho Operations Office (DOE-ID) to sponsor basic environmental and waste management related research. Results are expected to lead to reduction of the costs, schedule, and risks associated with cleaning up the nation's nuclear complex. The EMSP research portfolio addresses the most challenging technical problems of the EM program related to high level waste, spent nuclear fuel, mixed waste, nuclear materials, remedial action, decontamination and decommissioning, and health, ecology, or risk. The EMSP was established in response to a mandate from Congress in the fiscal year 1996 Energy and Water Development Appropriations Act. Congress directed the Department to ''provide sufficient attention and resources to longer-term basic science research which needs to be done to ultimately reduce cleanup costs, develop a program that takes advantage of laboratory and university expertise, and seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective''. This mandate followed similar recommendations from the Galvin Commission to the Secretary of Energy Advisory Board. The EMSP also responds to needs identified by National Academy of Sciences experts, regulators, citizen advisory groups, and other stakeholders

  5. Environmental Studies Center Teacher Books. 4th Grade - Mangrove Communities.

    Science.gov (United States)

    Martin County Schools, Jensen Beach, FL. Environmental Studies Center.

    This teacher's guide, one of nine teacher packages developed for use in the sequential, hands-on, field-oriented, K-8 environmental education program of the Martin County Schools in Florida, was developed for use with elementary children in grade four prior to and after a visit to an environmental studies center located near an estuarine area. The…

  6. Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is the home (archive) of Precipitation, Atmospheric Chemistry and Dynamics, and...

  7. Children's Environmental Health and Disease Prevention Research Centers Impact Report: Advances in protecting children's health where they live, learn, and play

    Science.gov (United States)

    In 1997, EPA and the National Institute of Environmental Health Sciences (NIEHS) partnered to form the Children's Environmental Health and Disease Prevention Research Centers. This impact report summarizes the history of the program, scientific findings since the program's incept...

  8. The role of informal science centers in science education: attitudes, skills, and self-efficacy

    OpenAIRE

    Sasson, Irit

    2014-01-01

    Informal learning relates to activities that occur outside the school environment. These learning environments, such as visits to science centers provide valuable motivational opportunities for students to learn science. The purpose of this study was to investigate the role of the pre-academic center in science education and particularly to explore its effects on 750 middle-school students' attitudes toward science, their scientific thinking skills and self-efficacy. Pre and post-case based q...

  9. Environmental Assessment of the Muscatatuck Urban Training Center near Butlerville, Indiana, October and November 2005

    Science.gov (United States)

    Risch, Martin R.; Ulberg, Amanda L.; Robinson, Bret A.

    2007-01-01

    An environmental assessment of the Muscatatuck Urban Training Center near Butlerville in Jennings County, Indiana, was completed during October and November 2005. As part of the Department of Defense Earth Science Program, the U.S. Geological Survey collected information about environmental conditions at the 825-acre former State of Indiana mental health facility prior to its conversion by the Indiana National Guard into an urban training center. The assessment was designed to investigate the type and extent of potential contamination associated with historical activities in selected areas of the facility.

  10. Environmental Science: Processes & Impacts in 2018.

    Science.gov (United States)

    2018-02-21

    2017 was another successful year for Environmental Science: Processes & Impacts (ESPI); it saw the expansion of our Editorial team and publication of two excellent Themed Issues, all while maintaining our commitment to provide our authors with exceptional customer service and fast times to publication. Through this Editorial, we wish to reflect upon some of the highlights from 2017 and also take this opportunity to reveal further new additions to the ESPI team and our plans for 2018.

  11. Trace-element analysis in environmental sciences

    International Nuclear Information System (INIS)

    Valkovic, V.; Moschini, G.

    1988-01-01

    The use of charged-particle accelerators in trace-element analysis in the field of environmental sciences is described in this article. Nuclear reactions, charged-particle-induced X-ray emission as well as other nuclear and atomic processes can be used individually, or combined, in developing adequate analytical systems. In addition to concentration levels, concentration levels, concentration profiles can be measured, resulting in unique information. Some examples of experiments performed are described together with the suggestions for future measurements [pt

  12. Archives: African Journal of Environmental Science and Technology

    African Journals Online (AJOL)

    Items 1 - 50 of 117 ... Archives: African Journal of Environmental Science and Technology. Journal Home > Archives: African Journal of Environmental Science and Technology. Log in or Register to get access to full text downloads.

  13. Nuclear energy centers: Economic and environmental problems

    International Nuclear Information System (INIS)

    Dollezhal', N.A.; Bobolovich, V.N.; Emel'yanov, I.Ya.; Kochenov, A.S.; Koryakin, Yu.I.; Stolyarevskij, A.Ya.; Chernyaev, V.A.; Ponomarev-Stepnoj, N.N.; Protsenko, A.M.

    1977-01-01

    The report deals with qualitative and quantitative analysis of factors and problems, which may arise in the nearest future with the dispersion of sites of nuclear and fuel cycle plants. These problems arise with a large increase in the transportation of radioactive nuclear fuel, the necessity in valuable land and water resources, delay in construction and scheduled commercial operation of nuclear power plant, increase in the cost of labour and other economic and environmental factors and limitations. The report has an analysis of one of the ways of decreasing these difficulties, connected with the construction of large nuclear energy centres, consisting of a cluster of reactors on a single reactor site with the combined capacity of 40,000-50,000 MWe. The centres may consist, for example, of a cluster of conventional nuclear power plants that mainly consist of fast breeders and fuel cycle plants. They should be located in regions with a low density population and low value and deficiency of land and water resources. Electricity will be transmitted to consumers. The social-economic functions of such centres as factors that give birth to industrial regions are considered. Also given is the comparative estimate of benefits and problems of these two ways of further development of nuclear power system [ru

  14. Stanford MFEL and Near Infrared Science Center

    Science.gov (United States)

    2011-01-28

    are incorporated into glass catadioptric lenses that are mounted and sealed at each end of the stainless steel microscope. In addition to the self...highly effective in preventing biofilm formation , as well as in killing biofilms that are already present. b) Peer-Reviewed publications (in reversed...Multiphoton Microscopy in the Biomedical Sciences VII, SPIE, vol. 6442 (2007). 3. On Image formation in Near-field Infrared Microscopy, D. M

  15. Growth of Environmental Science at the NSLS

    International Nuclear Information System (INIS)

    Northrup, P.; Lanzirotti, A.; Celestian, A.

    2007-01-01

    In the 25 years since the National Synchrotron Light Source (NSLS) began operations, synchrotron 'user facilities' have had a growing impact on research in molecular environmental science (MES). For example, synchrotron-based analytical techniques have allowed researchers to determine the molecular-level speciation of environmentally relevant elements and evaluate their spatial distribution and phase association at very low concentration levels (low parts per million) with micrometer or nanometer resolution [1]. For the environmental scientist, one of the primary advantages of these synchrotron-based techniques is that samples need not be disturbed or destroyed for study; characterization can often be done in-situ in dilute and heterogeneous natural samples with no need for species separation, pre-concentration, or pre-treatment [2]. Liquids, hydrated solids, and biological samples can also often be directly analyzed, which is of fundamental importance in environmental science for understanding the molecular-scale processes that occur at mineral-water interfaces and in understanding how abiotic and biotic processes are involved in the distribution, mobility and ultimate fate of molecular species in the environment.

  16. Growth of Environmental Science at the NSLS

    Energy Technology Data Exchange (ETDEWEB)

    Northrup,P.; Lanzirotti, A.; Celestian, A.

    2007-01-01

    In the 25 years since the National Synchrotron Light Source (NSLS) began operations, synchrotron 'user facilities' have had a growing impact on research in molecular environmental science (MES). For example, synchrotron-based analytical techniques have allowed researchers to determine the molecular-level speciation of environmentally relevant elements and evaluate their spatial distribution and phase association at very low concentration levels (low parts per million) with micrometer or nanometer resolution [1]. For the environmental scientist, one of the primary advantages of these synchrotron-based techniques is that samples need not be disturbed or destroyed for study; characterization can often be done in-situ in dilute and heterogeneous natural samples with no need for species separation, pre-concentration, or pre-treatment [2]. Liquids, hydrated solids, and biological samples can also often be directly analyzed, which is of fundamental importance in environmental science for understanding the molecular-scale processes that occur at mineral-water interfaces and in understanding how abiotic and biotic processes are involved in the distribution, mobility and ultimate fate of molecular species in the environment.

  17. 75 FR 65365 - National Institute of Environmental Health Sciences;

    Science.gov (United States)

    2010-10-22

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... clearly unwarranted invasion of personal privacy. Name of Committee: Environmental Health Sciences Review... evaluate grant applications. Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell...

  18. 75 FR 26272 - Final Environmental Impact Statement; Environmental Education Center, Yosemite National Park...

    Science.gov (United States)

    2010-05-11

    ... DEPARTMENT OF THE INTERIOR National Park Service Final Environmental Impact Statement; Environmental Education Center, Yosemite National Park, Mariposa County, CA; Notice of Approval of Record of Decision SUMMARY: Pursuant to Sec. 102(2)(C) of the National Environmental Policy Act of 1969 (Pub. L. 91...

  19. An Ecological System Curriculum: An Integrated MST Approach to Environmental Science Education.

    Science.gov (United States)

    Leonhardt, Nina A.

    This paper describes an inquiry-based, student-centered mathematics, science, and technology curriculum guide. It features activities addressing such environmental science topics as groundwater modeling, water filtration, soil permeability and porosity, water temperature and salinity, and quadrant studies. Activities are organized so that the…

  20. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  1. Youth Environmental Science Outreach in the Mushkegowuk Territory of Subarctic Ontario, Canada

    Science.gov (United States)

    Karagatzides, Jim D.; Kozlovic, Daniel R.; De Iuliis, Gerry; Liberda, Eric N.; General, Zachariah; Liedtke, Jeff; McCarthy, Daniel D.; Gomez, Natalya; Metatawabin, Daniel; Tsuji, Leonard J. S.

    2011-01-01

    We connected youth of the Mushkegowuk Territory (specifically Fort Albany First Nation) with environmental science and technology mentors in an outreach program contextualized to subarctic Ontario that addressed some of the environmental concerns identified by members of Fort Albany First Nation. Most activities were community-based centering on…

  2. Environmental Sciences Division Groundwater Program Office

    International Nuclear Information System (INIS)

    1993-01-01

    This first edition of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems GWPO for fiscal year (FY) 1993. This introductory section describes the GWPO's staffing, organization, and funding sources. The GWPO is responsible for coordination and oversight for all components of the groundwater program at the three Oak Ridge facilities [ORNL, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], and the PGDP and PORTS, respectively. Several years ago, Energy systems senior management recognized that the manner in which groundwater activities were conducted at the five facilities could result in unnecessary duplication of effort, inadequate technical input to decisions related to groundwater issues, and could create a perception within the regulatory agencies of a confusing and inconsistent approach to groundwater issues at the different facilities. Extensive interactions among management from Environmental Compliance, Environmental Restoration (ER), Environmental Sciences Division, Environmental Safety and Health, and the five facilities ultimately led to development of a net technical umbrella organization for groundwater. On April 25, 1991, the GWPO was authorized to be set up within ORNL thereby establishing a central coordinating office that would develop a consistent technical and administrative direction for the groundwater programs of all facilities and result in compliance with all relevant U.S. Environmental Protection Agency (EPA) regulations such as RCRA and Comprehensive Environmental Restoration, Compensation and Liability Act (CERCLA) as well as U.S. Department of Energy (DOE) regulations and orders. For example, DOE Order 5400.1, issued on November 9, 1988, called for each DOE facility to develop an environmental monitoring program for all media (e.g., air, surface water, and groundwater)

  3. Teaching the Ethical Aspects of Environmental Science

    Science.gov (United States)

    Palinkas, C. M.

    2014-12-01

    Environmental and societal issues are often inherently linked, especially in coastal and estuarine environments, and science and social values must often be balanced in ecosystem management and decision-making. A new seminar course has been developed for the Marine Estuarine and Environmental Science (MEES) graduate program, an inter-institutional program within the University System of Maryland, to examine these issues. This 1-credit course, offered for the first time in Spring 2015, takes a complex systems perspective on major environmental and societal challenges to examine these linked issues in a variety of contexts. After a brief introduction to the emerging field of "geoethics," students develop a list of issues to examine throughout the seminar. Example topics could include fracking, offshore wind technology, dam removal, and iron fertilization, among others. A case-study approach is taken, with each class meeting focusing on one issue. For each case study, students are asked to 1) identify relevant scientific principles and major knowledge gaps, 2) predict potential outcomes, 3) identify stakeholders and likely viewpoints, and 4) construct communication plans to disseminate findings to these stakeholders. At the end of the semester, students give a brief presentation of the ethical aspects of their own research topics.

  4. Environmental Survey preliminary report, Pittsburgh Energy Technology Center, Pittsburgh, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) conducted December 7--11, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with PETC. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at PETC, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain environmental problems identified during its on-site Survey activities at PETC. The S A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the Plan's results will be incorporated into the PETC Survey findings for inclusion into the Environmental Survey Summary Report. 64 refs., 23 figs., 29 tabs.

  5. Environmental Survey preliminary report, Feed Materials Production Center, Fernald, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    This report presents the preliminary findings from the first phase of the environmental survey of the United States Department of Energy (DOE) Feed Materials Production Center (FMPC), conducted June 16 through 27, 1986. The survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the survey is to identify environmental problems and areas of environmental risk associated with the FMPC. The survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the survey involves the review of existing site environmental data, observations of the operations carried on at FMPC, and interviews with site personnel. The survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its onsite activities. The Sampling and Analysis Plan will be executed by a DOE national laboratory or a support contractor. When completed, the results will be incorporated into the FMPC Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the FMPC survey. 41 refs., 20 figs., 25 tabs.

  6. Modern Data Center Services Supporting Science

    Science.gov (United States)

    Varner, J. D.; Cartwright, J.; McLean, S. J.; Boucher, J.; Neufeld, D.; LaRocque, J.; Fischman, D.; McQuinn, E.; Fugett, C.

    2011-12-01

    The National Oceanic and Atmospheric Administration's National Geophysical Data Center (NGDC) World Data Center for Geophysics and Marine Geology provides scientific stewardship, products and services for geophysical data, including bathymetry, gravity, magnetics, seismic reflection, data derived from sediment and rock samples, as well as historical natural hazards data (tsunamis, earthquakes, and volcanoes). Although NGDC has long made many of its datasets available through map and other web services, it has now developed a second generation of services to improve the discovery and access to data. These new services use off-the-shelf commercial and open source software, and take advantage of modern JavaScript and web application frameworks. Services are accessible using both RESTful and SOAP queries as well as Open Geospatial Consortium (OGC) standard protocols such as WMS, WFS, WCS, and KML. These new map services (implemented using ESRI ArcGIS Server) are finer-grained than their predecessors, feature improved cartography, and offer dramatic speed improvements through the use of map caches. Using standards-based interfaces allows customers to incorporate the services without having to coordinate with the provider. Providing fine-grained services increases flexibility for customers building custom applications. The Integrated Ocean and Coastal Mapping program and Coastal and Marine Spatial Planning program are two examples of national initiatives that require common data inventories from multiple sources and benefit from these modern data services. NGDC is also consuming its own services, providing a set of new browser-based mapping applications which allow the user to quickly visualize and search for data. One example is a new interactive mapping application to search and display information about historical natural hazards. NGDC continues to increase the amount of its data holdings that are accessible and is augmenting the capabilities with modern web

  7. A science data gateway for environmental management: A SCIENCE DATA GATEWAY FOR ENVIRONMENTAL MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Deborah A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faybishenko, Boris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krishnan, Harinarayan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kushner, Gary [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lansing, Carina [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Porter, Ellen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Romosan, Alexandru [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shoshani, Arie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wainwright, Haruko [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Weidmer, Arthur [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, Kesheng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-10-12

    Science data gateways are effective in providing complex science data collections to the world-wide user communities. In this paper we describe a gateway for the Advanced Simulation Capability for Environmental Management (ASCEM) framework. Built on top of established web service technologies, the ASCEM data gateway is specifically designed for environmental modeling applications. Its key distinguishing features include: (1) handling of complex spatiotemporal data, (2) offering a variety of selective data access mechanisms, (3) providing state of the art plotting and visualization of spatiotemporal data records, and (4) integrating seamlessly with a distributed workflow system using a RESTful interface. ASCEM project scientists have been using this data gateway since 2011.

  8. BEST: Bilingual environmental science training: Kindergarten level

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This booklet is one of a series of bilingual guides to environmental-science learning activities for students to do at home. Lesson objectives, materials required, procedure, vocabulary, and subjects integrated into the lesson are described in English for each lesson. A bilingual glossary, alphabetized by English entries, with Spanish equivalents in both English and Spanish, follows the lesson descriptions, and is itself followed by a bibliography of English-language references. This booklet includes descriptions of six lessons covering the senses of touch and sight, the sense of smell, how to distinguish living and non-living things, cell structures, the skeletal system, and the significance of food groups. 8 figs.

  9. Environmental Survey preliminary report, Stanford Linear Accelerator Center, Stanford, California

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    This report presents the preliminary findings from the first phase of the Survey of the US Department of Energy (DOE) Stanford Linear Accelerator Center (SLAC) at Stanford, California, conducted February 29 through March 4, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the SLAC. The Survey covers all environmental media and all areas of environmental regulation and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the SLAC, and interviews with site personnel. The Survey team is developing a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the SLAC facility. The Interim Report will reflect the final determinations of the SLAC Survey. 95 refs., 25 figs., 25 tabs.

  10. Environmental Survey preliminary report, Stanford Linear Accelerator Center, Stanford, California

    International Nuclear Information System (INIS)

    1988-07-01

    This report presents the preliminary findings from the first phase of the Survey of the US Department of Energy (DOE) Stanford Linear Accelerator Center (SLAC) at Stanford, California, conducted February 29 through March 4, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the SLAC. The Survey covers all environmental media and all areas of environmental regulation and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the SLAC, and interviews with site personnel. The Survey team is developing a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the SLAC facility. The Interim Report will reflect the final determinations of the SLAC Survey. 95 refs., 25 figs., 25 tabs

  11. Oklahoma State University proposed Advanced Technology Research Center. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the construction and equipping of the proposed Advanced Technology Research Center (ATRC) at Oklahoma State University (OSU) in Stillwater, Oklahoma. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  12. Interdisciplinary Environmental-health Science Throughout Disaster Lifecycles

    Science.gov (United States)

    Plumlee, G. S.; Morman, S. A.; Hoefen, T. M.

    2014-12-01

    Potential human health effects from exposures to hazardous disaster materials and environmental contamination are common concerns following disasters. Using several examples from US Geological Survey environmental disaster responses (e.g., 2001 World Trade Center, mine tailings spills, 2005 Hurricane Katrina, 2007-2013 wildfires, 2011 Gulf oil spill, 2012 Hurricane Sandy, 2013 Colorado floods) and disaster scenarios (2011 ARkStorm, 2013 SAFRR tsunami) this presentation will illustrate the role for collaborative earth, environmental, and health science throughout disaster lifecycles. Pre-disaster environmental baseline measurements are needed to help understand environmental influences on pre-disaster health baselines, and to constrain the magnitude of a disaster's impacts. During and following disasters, there is a need for interdisciplinary rapid-response and longer-term assessments that: sample and characterize the physical, chemical, and microbial makeup of complex materials generated by the disasters; fingerprint material sources; monitor, map, and model dispersal and evolution of disaster materials in the environment; help understand how the materials are modified by environmental processes; and, identify key characteristics and processes that influence the exposures and toxicity of disaster materials to humans and the living environment. This information helps emergency responders, public health experts, and cleanup managers: 1) identify short- and long-term exposures to disaster materials that may affect health; 2) prioritize areas for cleanup; and 3) develop appropriate disposal solutions or restoration uses for disaster materials. By integrating lessons learned from past disasters with geospatial information on vulnerable sources of natural or anthropogenic contaminants, the environmental health implications of looming disasters or disaster scenarios can be better anticipated, which helps enhance preparedness and resilience. Understanding economic costs of

  13. The Edison Environmental Center Permeable Pavement Site - slides

    Science.gov (United States)

    This is a presentation for a second Community Outreach Event called "Chemistry Works!" at West Windsor Public Library on Saturday, November 5th. It will review the permeable pavement research project at the Edison Environmental center. Besides slide persentation, two demo units w...

  14. Environmental risk factors of childhood asthma in urban centers.

    OpenAIRE

    Malveaux, F J; Fletcher-Vincent, S A

    1995-01-01

    Asthma morbidity and mortality are disproportionately high in urban centers, and minority children are especially vulnerable. Factors that contribute to this dilemma include inadequate preventive medical care for asthma management, inadequate asthma knowledge and management skills among children and their families, psychosocial factors, and environmental exposure to allergens or irritants. Living in substandard housing often constitutes excess exposure to indoor allergens and pollutants. Alle...

  15. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Hules, J. [ed.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  16. Molecular environmental science and synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.E. Jr. [Stanford Univ., CA (United States)

    1995-12-31

    Molecular environmental science is a relatively new field but focuses on the chemical and physical forms of toxic and/or radioactive contaminants in soils, sediments, man-made waste forms, natural waters, and the atmosphere; their possible reactions with inorganic and organic compounds, plants, and organisms in the environment; and the molecular-level factors that control their toxicity, bioavailability, and transport. The chemical speciation of a contaminant is a major factor in determining its behavior in the environment, and synchrotron-based X-ray absorption fine structure (XAFS) spectroscopy is one of the spectroscopies of choice to quantitatively determine speciation of heavy metal contaminants in situ without selective extraction or other sample treatment. The use of high-flux insertion device beam lines at synchrotron sources and multi-element array detectors has permitted XAFS studies of metals such as Se and As in natural soils at concentration levels as low as 50 ppm. The X-ray absorption near edge structure of these metals is particularly useful in determining their oxidation state. Examples of such studies will be presented, and new insertion device beam lines under development at SSRL and the Advanced Photon Source for molecular environmental science applications will be discussed.

  17. Tennessee Valley Authority National Fertilizer and Environmental Research Center

    International Nuclear Information System (INIS)

    Gautney, J.

    1991-01-01

    The National Fertilizer and Environmental Research Center (NFERC) is a unique part of the Tennessee Valley Authority (TVA), a government agency created by an Act of Congress in 1933. The Center, located in Muscle Shoals, Alabama, is a national laboratory for research, development, education and commercialization for fertilizers and related agricultural chemicals including their economic and environmentally safe use, renewable fuel and chemical technologies, alternatives for solving environmental/waste problems, and technologies which support national defense- NFERC projects in the pesticide waste minimization/treatment/disposal areas include ''Model Site Demonstrations and Site Assessments,'' ''Development of Waste Treatment and Site Remediation Technologies for Fertilizer/Agrichemical Dealers,'' ''Development of a Dealer Information/Education Program,'' and ''Constructed Wetlands.''

  18. USGS science in Menlo Park -- a science strategy for the U.S. Geological Survey Menlo Park Science Center, 2005-2015

    Science.gov (United States)

    Brocher, Thomas M.; Carr, Michael D.; Halsing, David L.; John, David A.; Langenheim, V.E.; Mangan, Margaret T.; Marvin-DiPasquale, Mark C.; Takekawa, John Y.; Tiedeman, Claire

    2006-01-01

    In the spring of 2004, the U.S. Geological Survey (USGS) Menlo Park Center Council commissioned an interdisciplinary working group to develop a forward-looking science strategy for the USGS Menlo Park Science Center in California (hereafter also referred to as "the Center"). The Center has been the flagship research center for the USGS in the western United States for more than 50 years, and the Council recognizes that science priorities must be the primary consideration guiding critical decisions made about the future evolution of the Center. In developing this strategy, the working group consulted widely within the USGS and with external clients and collaborators, so that most stakeholders had an opportunity to influence the science goals and operational objectives.The Science Goals are to: Natural Hazards: Conduct natural-hazard research and assessments critical to effective mitigation planning, short-term forecasting, and event response. Ecosystem Change: Develop a predictive understanding of ecosystem change that advances ecosystem restoration and adaptive management. Natural Resources: Advance the understanding of natural resources in a geologic, hydrologic, economic, environmental, and global context. Modeling Earth System Processes: Increase and improve capabilities for quantitative simulation, prediction, and assessment of Earth system processes.The strategy presents seven key Operational Objectives with specific actions to achieve the scientific goals. These Operational Objectives are to:Provide a hub for technology, laboratories, and library services to support science in the Western Region. Increase advanced computing capabilities and promote sharing of these resources. Enhance the intellectual diversity, vibrancy, and capacity of the work force through improved recruitment and retention. Strengthen client and collaborative relationships in the community at an institutional level.Expand monitoring capability by increasing density, sensitivity, and

  19. The environmental science and law II. The short development of the environmental science and environmental law

    International Nuclear Information System (INIS)

    Klinda, J.

    1998-01-01

    This book contains the basic documents about environmental laws and related documents approved in the world and in the Slovak Republic. The system of the environmental laws and organizations in the world and in the Slovak Republic are reviewed. A review of a selected environmental laws of the Slovak Republic are included. The significant world acts (declarations, charters and other documents) are reviewed

  20. Teaching Environmental Health Science for Informed Citizenship in the Science Classroom and Afterschool Clubs

    Science.gov (United States)

    Keselman, Alla; Levin, Daniel M.; Hundal, Savreen; Kramer, Judy F.; Matzkin, Karen; Dutcher, Gale

    2013-01-01

    In the era of growing concerns about human-induced climate change and sustainable development, it is important for the schools to prepare students for meaningful engagement with environmental policies that will determine the future of our society. To do this, educators need to face a number of challenges. These include deciding on the science knowledge and skills needed for informed citizenship, identifying teaching practices for fostering such knowledge and skills, and finding ways to implement new practices into the tightly packed existing curriculum. This paper describes two collaborative efforts between the U.S. National Library of Medicine (NLM) and University of Maryland College of Education that attempt to meet these challenges. The focus of both projects is on helping students develop information seeking and evaluation and argumentation skills, and applying them to complex socio-scientific issues that have bearing on students’ daily lives. The first effort involves co-designing an afterschool environmental health club curriculum with an interdisciplinary team of middle school teachers. The second effort is the development and implementation of a week-long school drinking water quality debate activity in a high school environmental science classroom. Both projects center on Tox Town, an NLM web resource that introduces students to environmental health issues in everyday environments. The paper describes successes and challenges of environmental health curriculum development, including teachers’ and researchers’ perception of contextual constraints in the club and classroom setting, tensions inherent in co-design, and students’ experience with socio-scientific argumentation. PMID:24382985

  1. Goddard Earth Science Data and Information Center (GES DISC)

    Science.gov (United States)

    Kempler, Steve

    2016-01-01

    The GES DIS is one of 12 NASA Earth science data centers. The GES DISC vision is to enable researchers and educators maximize knowledge of the Earth by engaging in understanding their goals, and by leading the advancement of remote sensing information services in response to satisfying their goals. This presentation will describe the GES DISC approach, successes, challenges, and best practices.

  2. Research Centers & Consortia | College of Engineering & Applied Science

    Science.gov (United States)

    Academics Admission Student Life Research Schools & Colleges Libraries Athletics Centers & ; Applied Science Powerful Ideas. Proven Results. Search for: Go This site All UWM Search Site Menu Skip to content Academics Undergraduate Programs Majors Minors Integrated Bachelor/Master Degree Applied Computing

  3. Visitor empowerment and the authority of science: Exploring institutionalized tensions in a science center

    Science.gov (United States)

    Loomis, Molly

    This research explored the relationships among societal, organizational, and visitor assumptions about learning in a science center. The study combined a sociocultural theory of learning with a constructivist theory of organizations to examine empirical links among the history of the Exploratorium (founded in 1969 and located in San Francisco, California), its organizational practices, and family activity at its exhibits. The study focused on three perspectives on science learning in a science center: (1) the societal perspective, which traced assumptions about science learning to the history of science centers; (2) the organizational perspective, which documented the ways that assumptions about science learning were manifested in historic museum exhibits; and (3) the family perspective, which documented the assumptions about science learning that characterized family activity at historic exhibits. All three perspectives uncovered a tension between the goals of supporting public empowerment on the one hand and preserving scientific authority on the other. Findings revealed this tension to be grounded in the social context of the organization's development, where ideas about promoting democracy and preserving the authority of science intersected. The tension was manifested in museum exhibits, which had as their task addressing the dual purposes of supporting all visitors, while also supporting committed visitors. The tension was also evident in the activity of families, who echoed sentiments about potential for their own empowerment but deferred to scientific authority. The study draws on critiques of a hidden curriculum in schools in order to explore the relationship between empowerment and authority in science centers, specifically as they are conveyed in the explicit and underlying missions of the Exploratorium. Findings suggest the need for science centers to engage in ongoing critical reflection and also lend empirical justification to the need for science

  4. GLOBE Observer and the Association of Science & Technology Centers: Leveraging Citizen Science and Partnerships for an International Science Experiment to Build Climate Literacy

    Science.gov (United States)

    Riebeek Kohl, H.; Chambers, L. H.; Murphy, T.

    2016-12-01

    For more that 20 years, the Global Learning and Observations to Benefit the Environment (GLOBE) Program has sought to increase environment literacy in students by involving them in the process of data collection and scientific research. In 2016, the program expanded to accept observations from citizen scientists of all ages through a relatively simple app. Called GLOBE Observer, the new program aims to help participants feel connected to a global community focused on advancing the scientific understanding of Earth system science while building climate literacy among participants and increasing valuable environmental data points to expand both student and scientific research. In October 2016, GLOBE Observer partnered with the Association of Science & Technology Centers (ASTC) in an international science experiment in which museums and patrons around the world collected cloud observations through GLOBE Observer to create a global cloud map in support of NASA satellite science. The experiment was an element of the International Science Center and Science Museum Day, an event planned in partnership with UNESCO and ASTC. Museums and science centers provided the climate context for the observations, while GLOBE Observer offered a uniform experience and a digital platform to build a connected global community. This talk will introduce GLOBE Observer and will present the results of the experiment, including evaluation feedback on gains in climate literacy through the event.

  5. COOPEUS - connecting research infrastructures in environmental sciences

    Science.gov (United States)

    Koop-Jakobsen, Ketil; Waldmann, Christoph; Huber, Robert

    2015-04-01

    The COOPEUS project was initiated in 2012 bringing together 10 research infrastructures (RIs) in environmental sciences from the EU and US in order to improve the discovery, access, and use of environmental information and data across scientific disciplines and across geographical borders. The COOPEUS mission is to facilitate readily accessible research infrastructure data to advance our understanding of Earth systems through an international community-driven effort, by: Bringing together both user communities and top-down directives to address evolving societal and scientific needs; Removing technical, scientific, cultural and geopolitical barriers for data use; and Coordinating the flow, integrity and preservation of information. A survey of data availability was conducted among the COOPEUS research infrastructures for the purpose of discovering impediments for open international and cross-disciplinary sharing of environmental data. The survey showed that the majority of data offered by the COOPEUS research infrastructures is available via the internet (>90%), but the accessibility to these data differ significantly among research infrastructures; only 45% offer open access on their data, whereas the remaining infrastructures offer restricted access e.g. do not release raw data or sensible data, demand user registration or require permission prior to release of data. These rules and regulations are often installed as a form of standard practice, whereas formal data policies are lacking in 40% of the infrastructures, primarily in the EU. In order to improve this situation COOPEUS has installed a common data-sharing policy, which is agreed upon by all the COOPEUS research infrastructures. To investigate the existing opportunities for improving interoperability among environmental research infrastructures, COOPEUS explored the opportunities with the GEOSS common infrastructure (GCI) by holding a hands-on workshop. Through exercises directly registering resources

  6. Environmental assessment of the Carlsbad Environmental Monitoring and Research Center Facility

    International Nuclear Information System (INIS)

    1995-10-01

    This Environmental Assessment has been prepared to determine if the Carlsbad Environmental Monitoring and Research Center (the Center), or its alternatives would have significant environmental impacts that must be analyzed in an Environmental Impact Statement. DOE's proposed action is to continue funding the Center. While DOE is not funding construction of the planned Center facility, operation of that facility is dependent upon continued funding. To implement the proposed action, the Center would initially construct a facility of approximately 2,300 square meters (25,000 square feet). The Phase 1 laboratory facilities and parking lot will occupy approximately 1.2 hectares (3 acres) of approximately 8.9 hectares (22 acres) of land which were donated to New Mexico State University (NMSU) for this purpose. The facility would contain laboratories to analyze chemical and radioactive materials typical of potential contaminants that could occur in the environment in the vicinity of the DOE Waste Isolation Pilot Plant (WIPP) site or other locations. The facility also would have bioassay facilities to measure radionuclide levels in the general population and in employees of the WIPP. Operation of the Center would meet the DOE requirement for independent monitoring and assessment of environmental impacts associated with the planned disposal of transuranic waste at the WIPP

  7. Environmental assessment of the Carlsbad Environmental Monitoring and Research Center Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This Environmental Assessment has been prepared to determine if the Carlsbad Environmental Monitoring and Research Center (the Center), or its alternatives would have significant environmental impacts that must be analyzed in an Environmental Impact Statement. DOE`s proposed action is to continue funding the Center. While DOE is not funding construction of the planned Center facility, operation of that facility is dependent upon continued funding. To implement the proposed action, the Center would initially construct a facility of approximately 2,300 square meters (25,000 square feet). The Phase 1 laboratory facilities and parking lot will occupy approximately 1.2 hectares (3 acres) of approximately 8.9 hectares (22 acres) of land which were donated to New Mexico State University (NMSU) for this purpose. The facility would contain laboratories to analyze chemical and radioactive materials typical of potential contaminants that could occur in the environment in the vicinity of the DOE Waste Isolation Pilot Plant (WIPP) site or other locations. The facility also would have bioassay facilities to measure radionuclide levels in the general population and in employees of the WIPP. Operation of the Center would meet the DOE requirement for independent monitoring and assessment of environmental impacts associated with the planned disposal of transuranic waste at the WIPP.

  8. Fecal coliforms on environmental surfaces in two day care centers.

    Science.gov (United States)

    Weniger, B G; Ruttenber, A J; Goodman, R A; Juranek, D D; Wahlquist, S P; Smith, J D

    1983-01-01

    A survey of environmental surfaces in two Atlanta area day care centers was conducted to determine the prevalence of fecal coliform bacteria, considered a marker for the presence of fecal contamination which might contain pathogenic parasites, bacteria, or viruses. Fecal coliforms were found in 17 (4.3%) of 398 representative samples of building surfaces, furniture, and other objects. These surfaces may be involved in the chain of transmission of enteric diseases among children. Therefore, disinfection of inanimate objects, in addition to good handwashing, may be important in controlling the spread of enteric diseases in day care centers. PMID:6830225

  9. Better Broader Impacts through National Science Foundation Centers

    Science.gov (United States)

    Campbell, K. M.

    2010-12-01

    National Science Foundation Science and Technology Centers (STCs) play a leading role in developing and evaluating “Better Broader Impacts”; best practices for recruiting a broad spectrum of American students into STEM fields and for educating these future professionals, as well as their families, teachers and the general public. With staff devoted full time to Broader Impacts activities, over the ten year life of a Center, STCs are able to address both a broad range of audiences and a broad range of topics. Along with other NSF funded centers, such as Centers for Ocean Sciences Education Excellence, Engineering Research Centers and Materials Research Science and Engineering Centers, STCs develop both models and materials that individual researchers can adopt, as well as, in some cases, direct opportunities for individual researchers to offer their disciplinary research expertise to existing center Broader Impacts Programs. The National Center for Earth-surface Dynamics is an STC headquartered at the University of Minnesota. NCED’s disciplinary research spans the physical, biological and engineering issues associated with developing an integrative, quantitative and predictive understanding of rivers and river basins. Funded in 2002, we have had the opportunity to partner with individuals and institutions ranging from formal to informal education and from science museums to Tribal and women’s colleges. We have developed simple table top physical models, complete museum exhibitions, 3D paper maps and interactive computer based visualizations, all of which have helped us communicate with this wide variety of learners. Many of these materials themselves or plans to construct them are available online; in many cases they have also been formally evaluated. We have also listened to the formal and informal educators with whom we partner, from whom we have learned a great deal about how to design Broader Impacts activities and programs. Using NCED as a case study

  10. Panarchy use in environmental science for risk and resilience planning

    Science.gov (United States)

    Environmental sciences have an important role in informing sustainable management of built environments by providing insights about the drivers and potentially negative impacts of global environmental change. Here, we discuss panarchy theory, a multi-scale hierarchical concept th...

  11. Strategic plan for science-U.S. Geological Survey, Ohio Water Science Center, 2010-15

    Science.gov (United States)

    ,

    2010-01-01

    This Science Plan identifies specific scientific and technical programmatic issues of current importance to Ohio and the Nation. An examination of those issues yielded a set of five major focus areas with associated science goals and strategies that the Ohio Water Science Center will emphasize in its program during 2010-15. A primary goal of the Science Plan is to establish a relevant multidisciplinary scientific and technical program that generates high-quality products that meet or exceed the expectations of our partners while supporting the goals and initiatives of the U.S. Geological Survey. The Science Plan will be used to set the direction of new and existing programs and will influence future training and hiring decisions by the Ohio Water Science Center.

  12. The Kepler Science Operations Center Pipeline Framework Extensions

    Science.gov (United States)

    Klaus, Todd C.; Cote, Miles T.; McCauliff, Sean; Girouard, Forrest R.; Wohler, Bill; Allen, Christopher; Chandrasekaran, Hema; Bryson, Stephen T.; Middour, Christopher; Caldwell, Douglas A.; hide

    2010-01-01

    The Kepler Science Operations Center (SOC) is responsible for several aspects of the Kepler Mission, including managing targets, generating on-board data compression tables, monitoring photometer health and status, processing the science data, and exporting the pipeline products to the mission archive. We describe how the generic pipeline framework software developed for Kepler is extended to achieve these goals, including pipeline configurations for processing science data and other support roles, and custom unit of work generators that control how the Kepler data are partitioned and distributed across the computing cluster. We describe the interface between the Java software that manages the retrieval and storage of the data for a given unit of work and the MATLAB algorithms that process these data. The data for each unit of work are packaged into a single file that contains everything needed by the science algorithms, allowing these files to be used to debug and evolve the algorithms offline.

  13. Photometric Analysis in the Kepler Science Operations Center Pipeline

    Science.gov (United States)

    Twicken, Joseph D.; Clarke, Bruce D.; Bryson, Stephen T.; Tenenbaum, Peter; Wu, Hayley; Jenkins, Jon M.; Girouard, Forrest; Klaus, Todd C.

    2010-01-01

    We describe the Photometric Analysis (PA) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this module are to compute the photometric flux and photocenters (centroids) for over 160,000 long cadence (thirty minute) and 512 short cadence (one minute) stellar targets from the calibrated pixels in their respective apertures. We discuss the science algorithms for long and short cadence PA: cosmic ray cleaning; background estimation and removal; aperture photometry; and flux-weighted centroiding. We discuss the end-to-end propagation of uncertainties for the science algorithms. Finally, we present examples of photometric apertures, raw flux light curves, and centroid time series from Kepler flight data. PA light curves, centroid time series, and barycentric timestamp corrections are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy.

  14. [Science and society. Guidelines for the Leopoldina Study Center].

    Science.gov (United States)

    Hacker, Jörg

    2014-01-01

    In order to adequately perform its many diverse tasks as a scholars' society and as the German National Academy of Sciences, the Deutsche Akademie der Naturforscher Leopoldina needs to view itself in a historical context. This can only happen as part of a culture of remembrance which fosters the memory of the Leopoldina's past and subjects this to a critical analysis in the context of the history of science and academies. The newly founded Leopoldina Study Center for the History of Science and Science Academies is to be a forum that pursues established forms of historical research at the Leopoldina, organizes new scientific projects, and presents its findings to the public. The aim is to involve as many Leopoldina members as possible from all of its disciplines, as well as to collaborate with national and international partners.

  15. The Centers for Ocean Science Education Excellence (COSEE) initiative

    Science.gov (United States)

    Cook, S.; Rom, E.

    2003-04-01

    Seven regional Centers for Ocean Science Education Excellence have recently been established to promote the integration of ocean science research into high-quality education programs aimed at both formal and informal audiences throughout the United States. The regional Centers include two complementary partnerships in California, a New England regional effort, a Mid-Atlantic partnership, a Southeastern collaborative, a Florida initiative and a central Gulf of Mexico alliance. A Central Coordinating Office in Washington DC will help the group develop into a cohesive and focused national network. Initial funding has been provided by the National Science Foundation with complementary support from the Office of Naval Research and multiple units within the National Oceanographic and Atmospheric Administration (specifically the National Ocean Service, the Office of Ocean Exploration and the National SeaGrant Office). Under an umbrella of common goals and objectives, the first cohort of Centers in the COSEE network is remarkably diverse in terms of geography, organizational structure and programmatic focus. NSF’s presentation will describe these partnerships, the different approaches that are being taken by the individual Centers and the expectations that NSF has for the network as a whole.

  16. A Vision for the Future of Environmental Research: Creating Environmental Intelligence Centers

    Science.gov (United States)

    Barron, E. J.

    2002-12-01

    The nature of the environmental issues facing our nation demands a capability that allows us to enhance economic vitality, maintain environmental quality, and limit threats to life and property through more fundamental understanding of the Earth. It is "advanced" knowledge of how the system may respond that gives environmental information most of its power and utility. This fact is evident in the demand for new forecasting products, involving air quality, energy demand, water quality and quantity, ultraviolet radiation, and human health indexes. As we demonstrate feasibility and benefit, society is likely to demand a growing number of new operational forecast products on prediction time scales of days to decades into the future. The driving forces that govern our environment are widely recognized, involving primarily weather and climate, patterns of land use and land cover, and resource use with its associated waste products. The importance of these driving forces has been demonstrated by a decade of research on greenhouse gas emissions, ozone depletion and deforestation, and through the birth of Earth System Science. But, there are also major challenges. We find the strongest intersection between human activity, environmental stresses, system interactions and human decision-making in regional analysis coupled to larger spatial scales. In addition, most regions are influenced by multiple-stresses. Multiple, cumulative, and interactive stresses are clearly the most difficult to understand and hence the most difficult to assess and to manage. Currently, we are incapable of addressing these issues in a truly integrated fashion at global scales. The lack of an ability to combine global and regional forcing and to assess the response of the system to multiple stresses at the spatial and temporal scales of interest to humans limits our ability to assess the impacts of specific human perturbations, to assess advantages and risks, and to enhance economic and societal well

  17. New Center Links Earth, Space, and Information Sciences

    Science.gov (United States)

    Aswathanarayana, U.

    2004-05-01

    Broad-based geoscience instruction melding the Earth, space, and information technology sciences has been identified as an effective way to take advantage of the new jobs created by technological innovations in natural resources management. Based on this paradigm, the University of Hyderabad in India is developing a Centre of Earth and Space Sciences that will be linked to the university's super-computing facility. The proposed center will provide the basic science underpinnings for the Earth, space, and information technology sciences; develop new methodologies for the utilization of natural resources such as water, soils, sediments, minerals, and biota; mitigate the adverse consequences of natural hazards; and design innovative ways of incorporating scientific information into the legislative and administrative processes. For these reasons, the ethos and the innovatively designed management structure of the center would be of particular relevance to the developing countries. India holds 17% of the world's human population, and 30% of its farm animals, but only about 2% of the planet's water resources. Water will hence constitute the core concern of the center, because ecologically sustainable, socially equitable, and economically viable management of water resources of the country holds the key to the quality of life (drinking water, sanitation, and health), food security, and industrial development of the country. The center will be focused on interdisciplinary basic and pure applied research that is relevant to the practical needs of India as a developing country. These include, for example, climate prediction, since India is heavily dependent on the monsoon system, and satellite remote sensing of soil moisture, since agriculture is still a principal source of livelihood in India. The center will perform research and development in areas such as data assimilation and validation, and identification of new sensors to be mounted on the Indian meteorological

  18. NASA's astrophysics archives at the National Space Science Data Center

    Science.gov (United States)

    Vansteenberg, M. E.

    1992-01-01

    NASA maintains an archive facility for Astronomical Science data collected from NASA's missions at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. This archive was created to insure the science data collected by NASA would be preserved and useable in the future by the science community. Through 25 years of operation there are many lessons learned, from data collection procedures, archive preservation methods, and distribution to the community. This document presents some of these more important lessons, for example: KISS (Keep It Simple, Stupid) in system development. Also addressed are some of the myths of archiving, such as 'scientists always know everything about everything', or 'it cannot possibly be that hard, after all simple data tech's do it'. There are indeed good reasons that a proper archive capability is needed by the astronomical community, the important question is how to use the existing expertise as well as the new innovative ideas to do the best job archiving this valuable science data.

  19. Status of the TESS Science Processing Operations Center

    Science.gov (United States)

    Jenkins, Jon M.; Twicken, Joseph D.; Campbell, Jennifer; Tenebaum, Peter; Sanderfer, Dwight; Davies, Misty D.; Smith, Jeffrey C.; Morris, Rob; Mansouri-Samani, Masoud; Girouardi, Forrest; hide

    2017-01-01

    The Transiting Exoplanet Survey Satellite (TESS) science pipeline is being developed by the Science Processing Operations Center (SPOC) at NASA Ames Research Center based on the highly successful Kepler Mission science pipeline. Like the Kepler pipeline, the TESS science pipeline will provide calibrated pixels, simple and systematic error-corrected aperture photometry, and centroid locations for all 200,000+ target stars, observed over the 2-year mission, along with associated uncertainties. The pixel and light curve products are modeled on the Kepler archive products and will be archived to the Mikulski Archive for Space Telescopes (MAST). In addition to the nominal science data, the 30-minute Full Frame Images (FFIs) simultaneously collected by TESS will also be calibrated by the SPOC and archived at MAST. The TESS pipeline will search through all light curves for evidence of transits that occur when a planet crosses the disk of its host star. The Data Validation pipeline will generate a suite of diagnostic metrics for each transit-like signature discovered, and extract planetary parameters by fitting a limb-darkened transit model to each potential planetary signature. The results of the transit search will be modeled on the Kepler transit search products (tabulated numerical results, time series products, and pdf reports) all of which will be archived to MAST.

  20. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    International Nuclear Information System (INIS)

    Allen, Todd R.

    2011-01-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center's investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center's research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  1. AMS data production facilities at science operations center at CERN

    Science.gov (United States)

    Choutko, V.; Egorov, A.; Eline, A.; Shan, B.

    2017-10-01

    The Alpha Magnetic Spectrometer (AMS) is a high energy physics experiment on the board of the International Space Station (ISS). This paper presents the hardware and software facilities of Science Operation Center (SOC) at CERN. Data Production is built around production server - a scalable distributed service which links together a set of different programming modules for science data transformation and reconstruction. The server has the capacity to manage 1000 paralleled job producers, i.e. up to 32K logical processors. Monitoring and management tool with Production GUI is also described.

  2. Life Sciences at the Cyclotron Center of the Slovak Republic

    International Nuclear Information System (INIS)

    Podhorsky, D.; Kovac, P.; Macasek, F.

    2004-01-01

    In this presentation the history and present status of the Cyclotron Center of the Slovak (CC SR) are presented. A state run scientific center and production facility ensuring: - the basic and applied research in nuclear physics, chemistry, biology and medicine; - production of radionuclides and radiopharmaceuticals; - and applications of heavy ions and electron accelerator technologies in medicine and material science. Current financial status of the CC SR is following: Deblocation of the Russian; Federation debt to the Slovak Republic (94 %); State budget of the Slovak Republic (3 %); IAEA (3 %)

  3. Uncovering Students' Environmental Identity: An Exploration of Activities in an Environmental Science Course

    Science.gov (United States)

    Blatt, Erica

    2014-01-01

    This study at a public high school in the Northeastern United States explores how students' environmental identities are affected by various activities in an Environmental Science course. Data was collected as part of an ethnographic study involving an Environmental Science teacher and her tenth-twelfth grade students. The results focus on…

  4. Network Science Center Research Teams Visit to Addis Ababa, Ethiopia

    Science.gov (United States)

    2012-08-01

    Network Science Center, West Point www.netscience.usma.edu 845.938.0804 Corporation as a gift from the Government of China, and consists of a 2,500...first glimpse into what became a common thread throughout the trip: the presence of a gap between microfinance and large corporate investments in the...cutting out other middlemen and increasing their own profits. Some even sell directly to major coffee names (such as Starbucks ). In our discussion it

  5. A hyperspectral image analysis workbench for environmental science applications

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.; Slater, J.C.

    1992-10-01

    A significant challenge to the information sciences is to provide more powerful and accessible means to exploit the enormous wealth of data available from high-resolution imaging spectrometry, or ``hyperspectral`` imagery, for analysis, for mapping purposes, and for input to environmental modeling applications. As an initial response to this challenge, Argonne`s Advanced Computer Applications Center has developed a workstation-based prototype software workbench which employs Al techniques and other advanced approaches to deduce surface characteristics and extract features from the hyperspectral images. Among its current capabilities, the prototype system can classify pixels by abstract surface type. The classification process employs neural network analysis of inputs which include pixel spectra and a variety of processed image metrics, including image ``texture spectra`` derived from fractal signatures computed for subimage tiles at each wavelength.

  6. A hyperspectral image analysis workbench for environmental science applications

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.; Slater, J.C.

    1992-01-01

    A significant challenge to the information sciences is to provide more powerful and accessible means to exploit the enormous wealth of data available from high-resolution imaging spectrometry, or hyperspectral'' imagery, for analysis, for mapping purposes, and for input to environmental modeling applications. As an initial response to this challenge, Argonne's Advanced Computer Applications Center has developed a workstation-based prototype software workbench which employs Al techniques and other advanced approaches to deduce surface characteristics and extract features from the hyperspectral images. Among its current capabilities, the prototype system can classify pixels by abstract surface type. The classification process employs neural network analysis of inputs which include pixel spectra and a variety of processed image metrics, including image texture spectra'' derived from fractal signatures computed for subimage tiles at each wavelength.

  7. Environmental Management Assessment of the Stanford Linear Accelerator Center

    International Nuclear Information System (INIS)

    1994-01-01

    This report documents the results of the Environmental Management Assessment of the Stanford Linear Accelerator Center (SLAC), Menlo Park, California. During this assessment, the activities conducted by the assessment team included reviews of internal documents and reports from previous assessments; interviews with the US Department of Energy (DOE), US Environmental Protection Agency, State Water Resources Board, California Regional Water Quality Control Board, and SLAC contractor personnel; and inspections and observations of selected facilities and operations. Onsite portion of the assessment was conducted from January 18 through January 31, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health (EH), and the Environment and Safety Support Division (ESS), located within the Oakland Operations Office (OAK). The EH-24 environmental management assessment and the OAK functional appraisal were combined to minimize disruptions to the site. The management disciplines and three technical areas (air quality, groundwater, and inactive waste sites) were evaluated by EH-24, and four other technical areas (surface water, waste management, toxic and chemical materials, and environmental radiation) were assessed by ESS

  8. Journal of Applied Sciences and Environmental Management - Vol ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management. ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... Journal of Applied Sciences and Environmental Management - Vol 22, No 5 (2018) .... Growth Performance of Five Bean (Phaseolus spp) Varieties as Influenced by Organic ...

  9. Journal of Applied Sciences and Environmental Management - Vol ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management. ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... Journal of Applied Sciences and Environmental Management - Vol 22, No 4 (2018) ... Evaluating the effect of mobility speed on the performance of three handover algorithms in ...

  10. Evaluation of Students' Energy Conception in Environmental Science

    Science.gov (United States)

    Park, Mihwa; Johnson, Joseph A.

    2016-01-01

    While significant research has been conducted on students' conceptions of energy, alternative conceptions of energy have not been actively explored in the area of environmental science. The purpose of this study is to examine students' alternative conceptions in the environmental science discipline through the analysis of responses of first year…

  11. Guidance for Science Data Centers through Understanding Metrics

    Science.gov (United States)

    Moses, J. F.

    2006-12-01

    NASA has built a multi-year set of transaction and user satisfaction information about the evolving, broad collection of earth science products from a diverse set of users of the Earth Observing System Data and Information System (EOSDIS). The transaction and satisfaction trends provide corroborative information to support perception and intuition, and can often be the basis for understanding the results of cross-cutting initiatives and for management decisions about future strategies. The information is available through two fundamental complementary methods, product and user transaction data collected regularly from the major science data centers, and user satisfaction information collected through the American Customer Satisfaction Index survey. The combination provides the fundamental data needed to understand utilization trends in the research community. This paper will update trends based on 2006 metrics from the NASA earth science data centers and results from the 2006 EOSDIS ACSI survey. Principle concepts are explored that lead to sound guidance for data center managers and strategists over the next year.

  12. The MMS Science Data Center: Operations, Capabilities, and Resource.

    Science.gov (United States)

    Larsen, K. W.; Pankratz, C. K.; Giles, B. L.; Kokkonen, K.; Putnam, B.; Schafer, C.; Baker, D. N.

    2015-12-01

    The Magnetospheric MultiScale (MMS) constellation of satellites completed their six month commissioning period in August, 2015 and began science operations. Science operations for the Solving Magnetospheric Acceleration, Reconnection, and Turbulence (SMART) instrument package occur at the Laboratory for Atmospheric and Space Physics (LASP). The Science Data Center (SDC) at LASP is responsible for the data production, management, distribution, and archiving of the data received. The mission will collect several gigabytes per day of particles and field data. Management of these data requires effective selection, transmission, analysis, and storage of data in the ground segment of the mission, including efficient distribution paths to enable the science community to answer the key questions regarding magnetic reconnection. Due to the constraints on download volume, this includes the Scientist-in-the-Loop program that identifies high-value science data needed to answer the outstanding questions of magnetic reconnection. Of particular interest to the community is the tools and associated website we have developed to provide convenient access to the data, first by the mission science team and, beginning March 1, 2016, by the entire community. This presentation will demonstrate the data and tools available to the community via the SDC and discuss the technologies we chose and lessons learned.

  13. Environmental risk factors of childhood asthma in urban centers.

    Science.gov (United States)

    Malveaux, F J; Fletcher-Vincent, S A

    1995-09-01

    Asthma morbidity and mortality are disproportionately high in urban centers, and minority children are especially vulnerable. Factors that contribute to this dilemma include inadequate preventive medical care for asthma management, inadequate asthma knowledge and management skills among children and their families, psychosocial factors, and environmental exposure to allergens or irritants. Living in substandard housing often constitutes excess exposure to indoor allergens and pollutants. Allergens associated with dust mites (DM) and cockroaches (CR) are probably important in both onset and worsening of asthma symptoms for children who are chronically exposed to these agents. Young children spend a great deal of time on or near the floor where these allergens are concentrated in dust. Of children (2 to 10 years of age) living in metropolitan Washington, DC, 60% were found to be sensitive to CR and 72% were allergic to DM. Exposure to tobacco smoke contributes to onset of asthma earlier in life and is a risk factor for asthma morbidity. Since disparity of asthma mortality and morbidity among minority children in urban centers is closely linked to socioeconomic status and poverty, measures to reduce exposure to environmental allergens and irritants and to eliminate barriers to access to health care are likely to have a major positive impact. Interventions for children in urban centers must focus on prevention of asthma symptoms and promotion of wellness.

  14. The Value of Metrics for Science Data Center Management

    Science.gov (United States)

    Moses, J.; Behnke, J.; Watts, T. H.; Lu, Y.

    2005-12-01

    The Earth Observing System Data and Information System (EOSDIS) has been collecting and analyzing records of science data archive, processing and product distribution for more than 10 years. The types of information collected and the analysis performed has matured and progressed to become an integral and necessary part of the system management and planning functions. Science data center managers are realizing the importance that metrics can play in influencing and validating their business model. New efforts focus on better understanding of users and their methods. Examples include tracking user web site interactions and conducting user surveys such as the government authorized American Customer Satisfaction Index survey. This paper discusses the metrics methodology, processes and applications that are growing in EOSDIS, the driving requirements and compelling events, and the future envisioned for metrics as an integral part of earth science data systems.

  15. ETHICS AND JUSTICE IN ENVIRONMENTAL SCIENCE AND ENGINEERING

    Science.gov (United States)

    Science and engineering are built on trust. C.P. Snow's famous quote, "the only ethical principle which has made science possible is that the truth shall be told all the time" underscores the importance of honesty in science. Environmental scientists must do work that is useful...

  16. 76 FR 38189 - New Proposed Collection; Comment Request; Environmental Science Formative Research Methodology...

    Science.gov (United States)

    2011-06-29

    ... consortium of representatives from appropriate Federal agencies (including the Centers for Disease Control... prospective cohort study, from birth to adulthood, to evaluate the effects of both chronic and intermittent..., fathers, public health and environmental science professional organizations and practitioners, and schools...

  17. The Center for Environmental Technology Innovative Technology Screening Process

    International Nuclear Information System (INIS)

    Bertrand, C.M.

    1995-02-01

    The Center for Environmental Technology's (CET) mission is to provide a fully integrated system for accelerated evaluation, development, commercialization, and public acceptance of creative environmental solutions which match the foremost demands in today's environmentally sensitive world. In short, CET will create a means to provide quick, effective solutions for environmental needs. To meet this mission objective, CET has created a unique and innovative approach to eliminating the usual barriers in developing and testing environmental technologies. The approach paves the way for these emerging, cutting-edge technologies by coordinating environmental restoration and waste management activities of industry, universities, and the government to: efficiently and effectively transfer technology to these users, provide market-driven, cost-effective technology programs to the public and DOE, and aid in developing innovative ideas by initiating efforts between DOE facilities and private industry. The central part to this mission is selecting and evaluating specific innovative technologies for demonstration and application at United States Department of Energy (DOE) installations. The methodology and criteria used for this selection, which is called the CET Innovative Technology Screening Process, is the subject of this paper. The selection criteria used for the screening process were modeled after other DOE technology transfer programs and were further developed by CET's Technology Screening and Evaluation Board (TSEB). The process benefits both CET and the proposing vendors by providing objective selection procedures based on predefined criteria. The selection process ensures a rapid response to proposing vendors, all technologies will have the opportunity to enter the selection process, and all technologies are evaluated on the same scale and with identical criteria

  18. Earth Institute at Columbia University ADVANCE Program: Addressing Needs for Women in Earth and Environmental Sciences

    Science.gov (United States)

    Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.

    2004-12-01

    The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended

  19. Abstracts of the International Congress of Research Center in Sports Sciences, Health Sciences & Human Development (2016

    Directory of Open Access Journals (Sweden)

    Vitor Reis

    2017-06-01

    Full Text Available The papers published in this book of abstracts / proceedings were submitted to the Scientific Commission of the International Congress of Research Center in Sports Sciences, Health Sciences & Human Development, held on 11 and 12 November 2016, at the University of Évora, Évora, Portugal, under the topic of Exercise and Health, Sports and Human Development. The content of the abstracts is solely and exclusively of its authors responsibility. The editors and the Scientific Committee of the International Congress of Research Center in Sports Sciences, Health Sciences & Human Development do not assume any responsibility for the opinions and statements expressed by the authors. Partial reproduction of the texts and their use without commercial purposes is allowed, provided the source / reference is duly mentioned.

  20. Citizen science can improve conservation science, natural resource management, and environmental protection

    Science.gov (United States)

    McKinley, Duncan C.; Miller-Rushing, Abe J.; Ballard, Heidi L.; Bonney, Rick; Brown, Hutch; Cook-Patton, Susan; Evans, Daniel M.; French, Rebecca A.; Parrish, Julia; Phillips, Tina B.; Ryan, Sean F.; Shanley, Lea A.; Shirk, Jennifer L.; Stepenuck, Kristine F.; Weltzin, Jake F.; Wiggins, Andrea; Boyle, Owen D.; Briggs, Russell D.; Chapin, Stuart F.; Hewitt, David A.; Preuss, Peter W.; Soukup, Michael A.

    2017-01-01

    Citizen science has advanced science for hundreds of years, contributed to many peer-reviewed articles, and informed land management decisions and policies across the United States. Over the last 10 years, citizen science has grown immensely in the United States and many other countries. Here, we show how citizen science is a powerful tool for tackling many of the challenges faced in the field of conservation biology. We describe the two interwoven paths by which citizen science can improve conservation efforts, natural resource management, and environmental protection. The first path includes building scientific knowledge, while the other path involves informing policy and encouraging public action. We explore how citizen science is currently used and describe the investments needed to create a citizen science program. We find that:Citizen science already contributes substantially to many domains of science, including conservation, natural resource, and environmental science. Citizen science informs natural resource management, environmental protection, and policymaking and fosters public input and engagement.Many types of projects can benefit from citizen science, but one must be careful to match the needs for science and public involvement with the right type of citizen science project and the right method of public participation.Citizen science is a rigorous process of scientific discovery, indistinguishable from conventional science apart from the participation of volunteers. When properly designed, carried out, and evaluated, citizen science can provide sound science, efficiently generate high-quality data, and help solve problems.

  1. Status of the TESS Science Processing Operations Center

    Science.gov (United States)

    Jenkins, Jon Michael; Caldwell, Douglas A.; Davies, Misty; Li, Jie; Morris, Robert L.; Rose, Mark; Smith, Jeffrey C.; Tenenbaum, Peter; Ting, Eric; Twicken, Joseph D.; Wohler, Bill

    2018-06-01

    The Transiting Exoplanet Survey Satellite (TESS) was selected by NASA’s Explorer Program to conduct a search for Earth’s closest cousins starting in 2018. TESS will conduct an all-sky transit survey of F, G and K dwarf stars between 4 and 12 magnitudes and M dwarf stars within 200 light years. TESS is expected to discover 1,000 small planets less than twice the size of Earth, and to measure the masses of at least 50 of these small worlds. The TESS science pipeline is being developed by the Science Processing Operations Center (SPOC) at NASA Ames Research Center based on the highly successful Kepler science pipeline. Like the Kepler pipeline, the TESS pipeline provides calibrated pixels, simple and systematic error-corrected aperture photometry, and centroid locations for all 200,000+ target stars observed over the 2-year mission, along with associated uncertainties. The pixel and light curve products are modeled on the Kepler archive products and will be archived to the Mikulski Archive for Space Telescopes (MAST). In addition to the nominal science data, the 30-minute Full Frame Images (FFIs) simultaneously collected by TESS will also be calibrated by the SPOC and archived at MAST. The TESS pipeline searches through all light curves for evidence of transits that occur when a planet crosses the disk of its host star. The Data Validation pipeline generates a suite of diagnostic metrics for each transit-like signature, and then extracts planetary parameters by fitting a limb-darkened transit model to each potential planetary signature. The results of the transit search are modeled on the Kepler transit search products (tabulated numerical results, time series products, and pdf reports) all of which will be archived to MAST. Synthetic sample data products are available at https://archive.stsci.edu/tess/ete-6.html.Funding for the TESS Mission has been provided by the NASA Science Mission Directorate.

  2. A phenomenological investigation of science center exhibition developers' expertise development

    Science.gov (United States)

    Young, Denise L.

    The purpose of this study was to examine the exhibition developer role in the context of United States (U.S.) science centers, and more specifically, to investigate the way science center exhibition developers build their professional expertise. This research investigated how successfully practicing exhibition developers described their current practices, how they learned to be exhibition developers, and what factors were the most important to the developers in building their professional expertise. Qualitative data was gathered from 10 currently practicing exhibition developers from three science centers: the Exploratorium, San Francisco, California; the Field Museum, Chicago, Illinois; and the Science Museum of Minnesota, St. Paul, Minnesota. In-depth, semistructured interviews were used to collect the data. The study embraced aspects of the phenomenological tradition and sought to derive a holistic understanding of the position and how expertise was built for it. The data were methodically coded and organized into themes prior to analysis. The data analysis found that the position consisted of numerous and varied activities, but the developers' primary roles were advocating for the visitor, storytelling, and mediating information and ideas. They conducted these activities in the context of a team and relied on an established exhibition planning process to guide their work. Developers described a process of learning exhibition development that was experiential in nature. Learning through daily practice was key, though they also consulted with mentors and relied on visitor studies to gauge the effectiveness of their work. They were adept at integrating prior knowledge gained from many aspects of their lives into their practice. The developers described several internal factors that contributed to their expertise development including the desire to help others, a natural curiosity about the world, a commitment to learning, and the ability to accept critique. They

  3. Unique life sciences research facilities at NASA Ames Research Center

    Science.gov (United States)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  4. Proceedings of the 6. Banska Stiavnica Days 2004. Environmental impacts on the environment. Trends in environmental sciences and radio-environmental sciences

    International Nuclear Information System (INIS)

    Hybler, P.; Maruskova, A.

    2004-12-01

    Scientific conference deals with problems in environmental sciences and radio-environmental sciences. The conference proceeded in two sections: (A) Environmental engineering, (B) Nuclear technologies. Sixty registered people and fifty guests participated on this conference. Twenty-seven presentations and eleven posters were presented. Proceedings contain twenty-six papers from which fourteen papers deal with the scope of INIS

  5. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  6. Are We Meeting the Goal of Responsible Environmental Behavior: An Examination of Nature and Environmental Education Center Goals.

    Science.gov (United States)

    Simmons, Deborah A.

    1991-01-01

    Through two surveys of nature and environmental centers throughout the United States, the author compares the centers' expressed goals with the goals of environmental education. These goals were determined by an accepted behavior model that is considered conducive to environmentally responsible behavior. (17 references) (MCO)

  7. Basic and Applied Science Research at the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Lisowski, Paul W.

    2005-01-01

    The Los Alamos Neutron Science Center, or LANSCE, is an accelerator-based national user facility for research in basic and applied science using four experimental areas. LANSCE has two areas that provide neutrons generated by the 800-MeV proton beam striking tungsten target systems. A third area uses the proton beam for radiography. The fourth area uses 100 MeV protons to produce medical radioisotopes. This paper describes the four LANSCE experimental areas, gives nuclear science highlights of the past operating period, and discusses plans for the future

  8. 2004 research briefs :Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  9. Life Sciences Division and Center for Human Genome Studies 1994

    Energy Technology Data Exchange (ETDEWEB)

    Cram, L.S.; Stafford, C. [comp.

    1995-09-01

    This report summarizes the research and development activities of the Los Alamos National Laboratory`s Life Sciences Division and the biological aspects of the Center for Human Genome Studies for the calendar year 1994. The technical portion of the report is divided into two parts, (1) selected research highlights and (2) research projects and accomplishments. The research highlights provide a more detailed description of a select set of projects. A technical description of all projects is presented in sufficient detail so that the informed reader will be able to assess the scope and significance of each project. Summaries useful to the casual reader desiring general information have been prepared by the group leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  10. Operational status of the Los Alamos neutron science center (LANSCE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin W [Los Alamos National Laboratory; Erickson, John L [Los Alamos National Laboratory; Schoenberg, Kurt F [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) accelerator and beam delivery complex generates the proton beams that serve three neutron production sources; the thermal and cold source for the Manuel Lujan Jr. Neutron Scattering Center, the Weapons Neutron Research (WNR) high-energy neutron source, and a pulsed Ultra-Cold Neutron Source. These three sources are the foundation of strong and productive multi-disciplinary research programs that serve a diverse and robust user community. The facility also provides multiplexed beams for the production of medical radioisotopes and proton radiography of dynamic events. The recent operating history of these sources will be reviewed and plans for performance improvement will be discussed, together with the underlying drivers for the proposed LANSCE Refurbishment project. The details of this latter project are presented in a separate contribution.

  11. Feed Materials Production Center annual environmental report for calendar 1989

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, T.A.; Gels, G.L.; Oberjohn, J.S.; Rogers, L.K.

    1990-10-01

    The mission of the Department of Energy's (DOE) Feed Materials Production Center (FMPC) has been to process uranium for United States' defense programs. On July 10, 1989, the FMPC suspended production operations, but remains on standby for certain segments of production. The FMPC also manages the storage of some radioactive and hazardous materials. As part of its operations, the FMPC continuously monitors the environment to determine that it is operating within federal and state standards and guidelines regarding emission of radioactive and nonradioactive materials. Data collected from the FMPC monitoring program are used to calculate estimates of radiation dose for residents due to FMPC operations. For 1989, the estimate of dose through the air pathway, excluding radon, indicated that people in the area were exposed to less than 6% of the DOE guideline established to protect the public from radiation exposure. When radon emissions are included, the dose from FMPC operations during 1989 was less than 22% of the annual background radiation dose in the Greater Cincinnati area. This report is a summary of FMPC's environmental activities and monitoring program for 1989. An Environmental Compliance Self-Assessment presents the FMPC's efforts to comply with environmental regulations through June 1990. 44 refs., 48 figs.

  12. Facility Design Program Requirements for National Science Center

    Science.gov (United States)

    1991-09-01

    a turn of the century structure and secondhand furniture to display exhibit items, to the Ontario Science Center in Canada which is a 10-year-old...mothers should be considered. 1.3 Visitors Coat Storage Areas 550 sq ft Pigeon hole or other storage cabinets for children’s school books , coats, and...1.4.4 Work Area (200 sq ft) 1.4.5 Office for Assistant Museum Shop Manager (75 sq ft) Function: Area for sale of books , posters, cards, slides, games

  13. IAEA and International Science and Technology Center sign cooperative agreement

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: The IAEA and the International Science and Technology Center (ISTC) today signed an agreement that calls for an increase in cooperation between the two organizations. The memorandum of understanding seeks to amplify their collaboration in the research and development of applications and technology that could contribute to the IAEA's activities in the fields of verification and nuclear security, including training and capacity building. IAEA Safeguards Director of Technical Support Nikolay Khlebnikov and ISTC Executive Director Adriaan van der Meer signed the Agreement at IAEA headquarters in Vienna on 22 October 2008. (IAEA)

  14. Using environmental forensic microscopy in exposure science.

    Science.gov (United States)

    Millette, James R; Brown, Richard S; Hill, Whitney B

    2008-01-01

    Environmental forensic microscopy investigations are based on the methods and procedures developed in the fields of criminal forensics, industrial hygiene and environmental monitoring. Using a variety of microscopes and techniques, the environmental forensic scientist attempts to reconstruct the sources and the extent of exposure based on the physical evidence left behind after particles are exchanged between an individual and the environments he or she passes through. This article describes how environmental forensic microscopy uses procedures developed for environmental monitoring, criminal forensics and industrial hygiene investigations. It provides key references to the interdisciplinary approach used in microscopic investigations. Case studies dealing with lead, asbestos, glass fibers and other particulate contaminants are used to illustrate how environmental forensic microscopy can be very useful in the initial stages of a variety of environmental exposure characterization efforts to eliminate some agents of concern and to narrow the field of possible sources of exposure.

  15. The Wetland and Aquatic Research Center strategic science plan

    Science.gov (United States)

    ,

    2017-02-02

    IntroductionThe U.S. Geological Survey (USGS) Wetland and Aquatic Research Center (WARC) has two primary locations (Gainesville, Florida, and Lafayette, Louisiana) and field stations throughout the southeastern United States and Caribbean. WARC’s roots are in U.S. Fish and Wildlife Service (USFWS) and National Park Service research units that were brought into the USGS as the Biological Research Division in 1996. Founded in 2015, WARC was created from the merger of two long-standing USGS biology science Centers—the Southeast Ecological Science Center and the National Wetlands Research Center—to bring together expertise in biology, ecology, landscape science, geospatial applications, and decision support in order to address issues nationally and internationally. WARC scientists apply their expertise to a variety of wetland and aquatic research and monitoring issues that require coordinated, integrated efforts to better understand natural environments. By increasing basic understanding of the biology of important species and broader ecological and physiological processes, this research provides information to policymakers and aids managers in their stewardship of natural resources and in regulatory functions.This strategic science plan (SSP) was developed to guide WARC research during the next 5–10 years in support of Department of the Interior (DOI) partnering bureaus such as the USFWS, the National Park Service, and the Bureau of Ocean Energy Management, as well as other Federal, State, and local natural resource management agencies. The SSP demonstrates the alignment of the WARC goals with the USGS mission areas, associated programs, and other DOI initiatives. The SSP is necessary for workforce planning and, as such, will be used as a guide for future needs for personnel. The SSP also will be instrumental in developing internal funding priorities and in promoting WARC’s capabilities to both external cooperators and other groups within the USGS.

  16. Environmental Studies and Environmental Science at GCE '0' and 'A' Level.

    Science.gov (United States)

    Gayford, Christopher G.

    1983-01-01

    Reports on environmental studies/science at General Certificate of Examination (GCE) ordinary ("0") and advanced ("A") levels. Questionnaires were used to survey teachers (focusing on their professional training and why they teach environmental studies/science courses) and to determine the relationship between environmental…

  17. Project of international science-education center and integration problems of nano science education in far eastern region of Asia

    International Nuclear Information System (INIS)

    Plusnin, N I; Lazarev, G I

    2008-01-01

    Some conception of international science-education center on nano science in Vladivostok is presented. The conception is based on internal and external prerequisites. Internal one is high intellectual potential of institutes of Russian Academy of Sciences and universities of Vladivostok and external one is need of countries of Far Eastern region of Asia in high level manpower. The conception takes into account a specific distribution of science and education potential between Russian Academy of Sciences and Russian universities and a specific their dislocation in Vladivostok. First specific dictates some similarity of organization structure and function of international science-education center to typical science-education center in Russia. But as for dislocation of the international science-education center in Vladivostok, it should be near dislocation of institutes of Far Eastern Brunch of Russian Academy of Sciences in Vladivostok, which are dislocated very compactly in suburb zone of Vladivostok

  18. Environmental and pollution science. 2nd. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Ian Pepper; Charles Gerba; Mark Brusseau,

    2006-07-01

    This book integrates a large number of subjects in environmental studies and provides a realistic and objective evaluation of pollution as a price we pay for a modern economy. It focuses on the scientific assessment of environmental quality by developing a framework of principles that can be applied to any environmental problem. It addresses tactical issues for managers and government workers such as remediation, environmental monitoring, risk assessment, and management. It can be used by professionals as well as undergraduate students. 186 ills. 79 tabs.

  19. Introduction to environmental science. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    Moran, J.M.; Morgan, M.D.; Wiersma, J.H.

    1986-01-01

    This book presents an overview of today's major environmental issues. It is organized into three parts - Part I: Concepts of Ecology; Part II: Environmental Quality and Management; and Part III: Fundamental Problems: Population, Food, and Energy. The complex issue of acid rain is only briefly discussed. The economic aspects of environmental regulation are covered where they are applicable. The breadth of the topics covered also leads to some omissions. However, in general, environmental issues seem to be treated objectively in this volume.

  20. Infusion of Climate Change and Geospatial Science Concepts into Environmental and Biological Science Curriculum

    Science.gov (United States)

    Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.

    2017-12-01

    The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.

  1. Journal of Applied Sciences and Environmental Management - Vol ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management. ... PROMOTING ACCESS TO AFRICAN RESEARCH .... microbiological examination of hand-dug wells, boreholes and public water sources in selected areas of Ibadan, Nigeria ...

  2. Strengthening Science-based Environmental Policy Development in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Strengthening Science-based Environmental Policy Development in Burma's Democratic ... IDRC is providing funding to Simon Fraser University to support a network of ... The project will also encourage and assist in the creation of a business ...

  3. Environmental Molecular Sciences Laboratory Annual Report: Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Nancy S.; Showalter, Mary Ann

    2007-03-23

    This report describes the activities and research performed at the Environmental Molecular Sciences Laboratory, a Department of Energy national scientific user facility at Pacific Northwest National Laboratory, during Fiscal Year 2006.

  4. Journal of Applied Sciences and Environmental Management - Vol ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management. ... Mercury in Aquatic Systems of the Gulf Islands National Seashore, Southeastern ... and Chemical Remediation on Agricultural Soil Properties and Crop Growth · EMAIL FREE ...

  5. Environmental sciences division: Environmental regulatory update table July 1988

    International Nuclear Information System (INIS)

    Langston, M.E.; Nikbakht, A.; Salk, M.S.

    1988-08-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action

  6. Environmental Quality Information Analysis Center multi-year plan

    International Nuclear Information System (INIS)

    Rivera, R.G.; Das, S.; Walsh, T.E.

    1992-09-01

    An information analysis center (IAC) is a federal resource that provides technical information for a specific technology field. An IAC links an expert technical staff with an experienced information specialist group, supported by in-house or external data bases to provide technical information and maintain a corporate knowledge in a technical area. An IAC promotes the rapid transfer of technology among its users and provides assistance in adopting new technology and predicting and assessing emerging technology. This document outlines the concept, requirements, and proposed development of an Environmental Quality IAC (EQIAC). An EQIAC network is composed of several nodes, each of which has specific technology capabilities. This document outlines strategic and operational objectives for the phased development of one such node of an EQIAC network

  7. Environmental biotechnology for waste treatment, environmental science research, Volume 41

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, G.S.; Fox, R.; Blackburn, J.W.

    1991-01-01

    This book contains the proceedings of the symposium entitled [open quotes]Environmental Biotechnology: Moving from the Flask to the Field[close quotes] held in October 17th through 19th, 1990, in Knoxville, Tennessee. Environmental biotechnology involves the use of microorganisms and their processes for the clean-up of environmental contamination, specific examples of which include ground-water treatment, treatment of leachates, and clean-up of contaminated soils, sludges, and sediments. In comparison with other technologies, environmental biotechnology (or bioremediation) has the advantages of affecting mineralization of toxic compounds to innocuous end-products, being energy-effective with processes able to take place at a moderate temperature and pressure, safety, and economy and is, therefore, perceived to hold great potential for environmental clean-up. Bioremediation treatment technologies for contaminated soils and groundwater can take the form of: (1) solid-phase biotreatment; (2) slurry-phase treatment; (3) in situ treatment; and (4) combination biological and physical/chemical treatment. The goal of the symposium was to pressure technical accomplishments at the laboratory and field-scale levels, future technical directions and economic, public and regulatory concerns in environmental biotechnology. The book is divided into five major sections on Current Perceptions, Field-Scale Studies, Technical Issues and Concerns in Implementation, Nontechnical Issues and Concerns in Implementation, International Activities, and ends with a critical review of the symposium.

  8. Eight statements on environmental research in the social sciences

    International Nuclear Information System (INIS)

    Prittwitz, V.

    1985-01-01

    Social science research on environmental problems has two main tasks: (1) to provide critical practice-oriented contributions to present and threatening environmental problems, and (2) to draw the humans-and-nature problematique into social science concepts and theoretical frameworks. In this paper, the prerequisites for achieving both tasks as well as the theoretical, political, and institutional aspects that affect them are discussed. The focus of the discussion is the interdependence between practical problem solving and development of theory. (orig.) [de

  9. The facts on file dictionary of environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, L.H.; Wyman, B. (eds.)

    1991-01-01

    More than 3000 entries of terms related to environmental science are included in this volume. The terms are defined in words meant to be understood by the nonexpert, for use in reporting to the general public. Definitions are one to two sentences in length and are accurate without being highly technical. The Appendix lists over 500 commonly used environmental science acronyms and abbreviations as well as a table of standard human factors.

  10. Environmental health science at the U.S. Geological Survey

    Science.gov (United States)

    Buxton, Herbert T.; Bright, Patricia R.

    2013-01-01

    USGS environmental health science focuses on the environment-health interface. Research characterizes the processes that affect the interaction among the physical environment, the living environment, and people, as well as the factors that affect ecological and human exposure to disease agents and the resulting toxicologic or infectious disease. The mission of USGS in environmental health science is to contribute scientific information to environmental, natural resource, agricultural, and public-health managers, who use that information to support sound decisionmaking. Coordination with partners and stakeholders will enable USGS to focus on the highest priority environmental health issues, to make relevant, timely, and useable contributions, and to become a “partner of first choice” for environmental health science.

  11. Panarchy use in environmental science for risk and resilience ...

    Science.gov (United States)

    Environmental sciences have an important role in informing sustainable management of built environments by providing insights about the drivers and potentially negative impacts of global environmental change. Here, we discuss panarchy theory, a multi-scale hierarchical concept that accounts for the dynamism of complex socio-ecological systems, especially for those systems with strong cross-scale feedbacks. The idea of panarchy underlies much of system resilience, focusing on how systems respond to known and unknown threats. Panarchy theory can provide a framework for qualitative and quantitative research and application in the environmental sciences, which can in turn inform the ongoing efforts in socio-technical resilience thinking and adaptive and transformative approaches to management. The environmental sciences strive for understanding, mitigating and reversing the negative impacts of global environmental change, including chemical pollution, to maintain sustainability options for the future, and therefore play an important role for informing management.

  12. Gender Differences in Attitudes toward Environmental Science

    Science.gov (United States)

    Carrier, Sarah J.

    2007-01-01

    This study examined the role of gender in the areas of environmental education that included environmental knowledge, attitudes, behaviors, and comfort levels in the outdoors. The current study was part of a larger study designed to explore the effects of a treatment that consisted of 14 weeks of outdoor lessons conducted in the schoolyard as…

  13. The International Science and Technology Center (ISTC) and ISTC projects related to nuclear safety. Information review

    International Nuclear Information System (INIS)

    Tocheny, Lev V.

    2003-01-01

    The ISTC is an intergovernmental organization created ten years ago by Russia, USA, EU and Japan in Moscow. The Center supports numerous science and technology projects in different areas, from biotechnologies and environmental problems to all aspects of nuclear studies, including those focused on the development of effective innovative concepts and technologies in the nuclear field, in general, and for improvement of nuclear safety, in particular. The presentation addresses some technical results of the ISTC projects as well as methods and approaches employed by the ISTC to foster close international collaboration and manage projects towards fruitful results. (author)

  14. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.

  15. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    International Nuclear Information System (INIS)

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation's primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate

  16. The Relationship between Environmental Moral Reasoning and Environmental Attitudes of Pre-Service Science Teachers

    Science.gov (United States)

    Tuncay, Busra; Yilmaz-Tuzun, Ozgul; Tuncer-Teksoz, Gaye

    2011-01-01

    The aim of the present study was to investigate the relationship between environmental moral reasoning patterns and environmental attitudes of 120 pre-service science teachers. Content analysis was carried out on participants' written statements regarding their concerns about the presented environmental problems and the statements were labeled as…

  17. Composable Data Processing in Environmental Science - A Process View

    NARCIS (Netherlands)

    Wombacher, Andreas

    Data processing in environmental science is essential for doing science. The heterogeneity of data sources, data processing operations and infrastructures results in a lot of manual data and process integration work done by each scientist individually. This is very inefficient and time consuming.

  18. Public ecology: an environmental science and policy for global society

    Science.gov (United States)

    David P. Robertson; R. Bruce Hull

    2003-01-01

    Public ecology exists at the interface of science and policy. Public ecology is an approach to environmental inquiry and decision making that does not expect scientific knowledge to be perfect or complete. Rather, public ecology requires that science be produced in collaboration with a wide variety of stakeholders in order to construct a body of knowledge that will...

  19. Choosing and Using Images in Environmental Science Education

    Science.gov (United States)

    Muthersbaugh, Debbie Smick

    2012-01-01

    Although using images for teaching has been a common practice in science classrooms (Gordon & Pea, 1995) understanding the purpose or how to choose images has not typically been intentional. For this dissertation three separate studies relating to choosing and using images are prepared with environmental science in mind. Each of the studies…

  20. Using Environmental Science as a Motivational Tool to Teach Physics to Non-Science Majors

    Science.gov (United States)

    Busch, Hauke C.

    2010-01-01

    A traditional physical science course was transformed into an environmental physical science course to teach physics to non-science majors. The objective of the new course was to improve the learning of basic physics principles by applying them to current issues of interest. A new curriculum was developed with new labs, homework assignments,…

  1. Information management for global environmental change, including the Carbon Dioxide Information Analysis Center

    Energy Technology Data Exchange (ETDEWEB)

    Stoss, F.W. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center

    1994-06-01

    The issue of global change is international in scope. A body of international organizations oversees the worldwide coordination of research and policy initiatives. In the US the National Science and Technology Council (NSTC) was established in November of 1993 to provide coordination of science, space, and technology policies throughout the federal government. NSTC is organized into nine proposed committees. The Committee on Environmental and Natural Resources (CERN) oversees the US Department of Energy`s Global Change Research Program (USGCRP). As part of the USGCRP, the US Department of Energy`s Global Change Research Program aims to improve the understanding of Earth systems and to strengthen the scientific basis for the evaluation of policy and government action in response to potential global environmental changes. This paper examines the information and data management roles of several international and national programs, including Oak Ridge National Laboratory`s (ORNL`s) global change information programs. An emphasis will be placed on the Carbon Dioxide Information Analysis Center (CDIAC), which also serves as the World Data Center-A for Atmospheric Trace Gases.

  2. Russian center of nuclear science and education is the way of nuclear engineering skilled personnel training

    International Nuclear Information System (INIS)

    Murogov, V.M.; Sal'nikov, N.L.

    2006-01-01

    Nuclear power engineering as the key of nuclear technologies is not only the element of the power market but also the basis of the country's social-economic progress. Obninsk as the first science town in Russia is the ideal place for the creation of integrated Science-Research Center of Nuclear Science and Technologies - The Russian Center of Nuclear Science and Education (Center for conservation and development of nuclear knowledge) [ru

  3. Human/Nature Discourse in Environmental Science Education Resources

    Science.gov (United States)

    Chambers, Joan M.

    2008-01-01

    It is argued that the view of nature and the relationship between human beings and nature that each of us holds impacts our decisions, actions, and notions of environmental responsibility and consciousness. In this study, I investigate the discursive patterns of selected environmental science classroom resources produced by three disparate…

  4. Environmental and Medical Sciences Division progress report January - December 1975

    International Nuclear Information System (INIS)

    Johnston, J.E.

    1976-07-01

    The activities of the AERE Environmental and Medical Sciences Division for January to December 1975 are reported under sections entitled: introduction; inhalation toxicology and radionuclide analysis; whole body counting; radiation physics; environmental analysis, atmospheric pollution; medical; chemical analysis group; publications. (U.K.)

  5. Zimbabwe's Better Environmental Science Teaching Programme: A ...

    African Journals Online (AJOL)

    ) programme within the context of education for sustainable development (ESD). The first part of the paper briefly reviews developments in environmental education in southern Africa within the broader scope and goals of ESD and draws some ...

  6. The Role of Informal Science Centers in Science Education: Attitudes, Skills, and Self-efficacy

    Directory of Open Access Journals (Sweden)

    Irit Sasson

    2014-09-01

    Full Text Available Informal learning relates to activities that occur outside the school environment. These learning environments, such as visits to science centers provide valuable motivational opportunities for students to learn science. The purpose of this study was to investigate the role of the pre-academic center in science education and particularly to explore its effects on 750 middle-school students' attitudes toward science, their scientific thinking skills and self-efficacy. Pre and post-case based questionnaires were designed to assess the students’ higher order thinking skills – inquiry, graphing, and argumentation. In addition, a five-point Likert scale questionnaire was used to assess students' attitudes and self-efficacy. The research results indicated a positive effect of the pre-academic science center activities on scientific thinking skills. A significant improvement in the students' inquiry and graphing skills was found, yet non significant differences were found in argumentation skill. The students significantly improved their ability to ask research questions based on reading a scientific text, and to describe and analyze research results that were presented graphically. While no significant differences were found between girls and boys in the pre-questionnaire, in the post-questionnaire the girls' scores in inquiry skill were significantly higher than boys' scores. Increases in students' positive attitudes toward science and self-efficacy were found but the results were not statistically significant. However, the program length was found to be an important variable that affects achievement of educational goals. A three-dimension-based framework is suggested to characterize learning environments: organizational, psychological, and pedagogical.

  7. Science teacher’s idea about environmental concepts in science learning as the first step of science teacher training

    Science.gov (United States)

    Tapilouw, M. C.; Firman, H.; Redjeki, S.; Chandra, D. T.

    2018-05-01

    To refresh natural environmental concepts in science, science teacher have to attend a teacher training. In teacher training, all participant can have a good sharing and discussion with other science teacher. This study is the first step of science teacher training program held by education foundation in Bandung and attended by 20 science teacher from 18 Junior High School. The major aim of this study is gathering science teacher’s idea of environmental concepts. The core of questions used in this study are basic competencies linked with environmental concepts, environmental concepts that difficult to explain, the action to overcome difficulties and references in teaching environmental concepts. There are four major findings in this study. First finding, most environmental concepts are taught in 7th grade. Second finding, most difficult environmental concepts are found in 7th grade. Third finding, there are five actions to overcome difficulties. Fourth finding, science teacher use at least four references in mastering environmental concepts. After all, teacher training can be a solution to reduce difficulties in teaching environmental concepts.

  8. Applications of nuclear technique in environmental and medical science

    International Nuclear Information System (INIS)

    Shi Xianfeng; Shen Hao; Liu Bo; Sun Minde; Yao Huiying; Zhou Shijun; Mi Yong

    2001-01-01

    The serious environmental pollution problem and application of the nuclear technique in environmental and medical sciences were discussed. The analysed results of the elemental distribution of particles in automobile exhaust, the aerosol particle of different size and the effect of Rare Earth on cells were reported. The authors can obtain some information related to element concentration. It offers a convenient method in inspecting the environmental pollution

  9. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    Science.gov (United States)

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  10. 78 FR 54669 - Draft Environmental Impact Statement for the Proposed RES Americas Moapa Solar Energy Center...

    Science.gov (United States)

    2013-09-05

    ... Environmental Impact Statement for the Proposed RES Americas Moapa Solar Energy Center, Clark County, Nevada... environmental impact statement (DEIS) for the proposed RES Americas Moapa Solar Energy Center on the Moapa River... Progress and on the following Web site: www.MoapaSolarEnergyCenterEIS.com . In order to be fully considered...

  11. Publications in biomedical and environmental sciences programs, 1980

    International Nuclear Information System (INIS)

    Pfuderer, H.A.; Moody, J.B.

    1981-07-01

    This bibliography contains 690 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1980. There are 529 references to articles published in journals and books and 161 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly and bimonthly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Energy, Environmental Sciences, and Computer Sciences

  12. Publications in biomedical and environmental sciences programs, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Pfuderer, H.A.; Moody, J.B.

    1981-07-01

    This bibliography contains 690 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1980. There are 529 references to articles published in journals and books and 161 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly and bimonthly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Energy, Environmental Sciences, and Computer Sciences.

  13. New evaporator station for the center for accelerator target science

    Science.gov (United States)

    Greene, John P.; Labib, Mina

    2018-05-01

    As part of an equipment grant provided by DOE-NP for the Center for Accelerator Target Science (CATS) initiative, the procurement of a new, electron beam, high-vacuum deposition system was identified as a priority to insure reliable and continued availability of high-purity targets. The apparatus is designed to contain TWO electron beam guns; a standard 4-pocket 270° geometry source as well as an electron bombardment source. The acquisition of this new system allows for the replacement of TWO outdated and aging vacuum evaporators. Also included is an additional thermal boat source, enhancing our capability within this deposition unit. Recommended specifications for this system included an automated, high-vacuum pumping station, a deposition chamber with a rotating and heated substrate holder for uniform coating capabilities and incorporating computer-controlled state-of-the-art thin film technologies. Design specifications, enhanced capabilities and the necessary mechanical modifications for our target work are discussed.

  14. Health science center faculty attitudes towards interprofessional education and teamwork.

    Science.gov (United States)

    Gary, Jodie C; Gosselin, Kevin; Bentley, Regina

    2018-03-01

    The attitudes of faculty towards interprofessional education (IPE) and teamwork impact the education of health professions education (HPE) students. This paper reports on a study evaluating attitudes from health professions educators towards IPE and teamwork at one academic health science center (HSC) where modest IPE initiatives have commenced. Drawing from the results of a previous investigation, this study was conducted to examine current attitudes of the faculty responsible for the training of future healthcare professionals. Survey data were collected to evaluate attitudes from HSC faculty, dentistry, nursing, medicine, pharmacy and public health. In general, positive HSC faculty attitudes towards interprofessional learning, education, and teamwork were significantly predicted by those affiliated with the component of nursing. Faculty development aimed at changing attitudes and increasing understanding of IPE and teamwork are critical. Results of this study serve as an underpinning to leverage strengths and evaluate weakness in initiating IPE.

  15. Scheduling at the Los Alamos Neutron Science Center (LANSCE)

    International Nuclear Information System (INIS)

    Gallegos, F.R.

    1999-01-01

    The centerpieces of the Los Alamos Neutron Science Center (LANSCE) are a half-mile long 800-MeV proton linear accelerator and proton storage ring. The accelerator, storage ring, and target stations provide the protons and spallation neutrons that are used in the numerous basic research and applications experimental programs supported by the US Department of Energy. Experimental users, facility maintenance personnel, and operations personnel must work together to achieve the most program benefit within defined budget and resource constraints. In order to satisfy the experimental users programs, operations must provide reliable and high quality beam delivery. Effective and efficient scheduling is a critical component to achieve this goal. This paper will detail how operations scheduling is presently executed at the LANSCE accelerator facility

  16. Students-exhibits interaction at a science center

    Science.gov (United States)

    Botelho, Agostinho; Morais, Ana M.

    2006-12-01

    In this study we investigate students' learning during their interaction with two exhibits at a science center. Specifically, we analyze both students' procedures when interacting with exhibits and their understanding of the scientific concepts presented therein. Bernstein's theory of pedagogic discourse (1990, 2000) provided the sociological foundation to assess the exhibit-student interaction and allowed analysis of the influence of the characteristics of students, exhibits, and interactions on students' learning. Eight students (ages 12ndash;13 years of age) with distinct sociological characteristics participated in the study. Several findings emerged from the results. First, the characteristics of the students, exhibits, and interactions appeared to influence student learning. Second, to most students, what they did interactively (procedures) seems not to have had any direct consequence on what they learned (concept understanding). Third, the data analysis suggest an important role for designers and teachers in overcoming the limitations of exhibit-student interaction.

  17. The Relationship between Environmental Moral Reasoning and Environmental Attitudes of Pre-Service Science Teachers

    OpenAIRE

    TUNCAY, Busra; YILMAZ-TUZUN, Ozgul; TUNCER-TEKSOZ, Gaye

    2011-01-01

    The aim of the present study was to investigate the relationship between environmental moral reasoning patterns and environmental attitudes of 120 pre-service science teachers. Content analysis was carried out on participants’ written statements regarding their concerns about the presented environmental problems and the statements were labeled as ecocentric, anthropocentric, and non-environmental according to their meanings. Then, descriptive and inferential analyses were conducted ...

  18. University/Science Center Collaborations (A Science Center Perspective): Developing an Infrastructure of Partnerships with Science Centers to Support the Engagement of Scientists and Engineers in Education and Outreach for Broad Impact

    Science.gov (United States)

    Marshall, Eric

    2009-03-01

    Science centers, professional associations, corporations and university research centers share the same mission of education and outreach, yet come from ``different worlds.'' This gap may be bridged by working together to leverage unique strengths in partnership. Front-end evaluation results for the development of new resources to support these (mostly volunteer-based) partnerships elucidate the factors which lead to a successful relationship. Maintaining a science museum-scientific community partnership requires that all partners devote adequate resources (time, money, etc.). In general, scientists/engineers and science museum professionals often approach relationships with different assumptions and expectations. The culture of science centers is distinctly different from the culture of science. Scientists/engineers prefer to select how they will ultimately share their expertise from an array of choices. Successful partnerships stem from clearly defined roles and responsibilities. Scientists/engineers are somewhat resistant to the idea of traditional, formal training. Instead of developing new expertise, many prefer to offer their existing strengths and expertise. Maintaining a healthy relationship requires the routine recognition of the contributions of scientists/engineers. As professional societies, university research centers and corporations increasingly engage in education and outreach, a need for a supportive infrastructure becomes evident. Work of TryScience.org/VolTS (Volunteers TryScience), the MRS NISE Net (Nanoscale Informal Science Education Network) subcommittee, NRCEN (NSF Research Center Education Network), the IBM On Demand Community, and IEEE Educational Activities exemplify some of the pieces of this evolving infrastructure.

  19. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090

    International Nuclear Information System (INIS)

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology

  20. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology. (KRM)

  1. Learning and teaching for an ecological sense of place: Toward environmental/science education praxis

    Science.gov (United States)

    Hug, J. William

    1998-09-01

    This research presents a teaching model designed to enable learners to construct a highly developed ecological perspective and sense of place. The contextually-based research process draws upon scientific and indigenous knowledge from multiple data sources including: autobiographical experiences, environmental literature, science and environmental education research, historical approaches to environmental education, and phenomenological accounts from research participants. Data were analyzed using the theoretical frameworks of qualitative research, hermeneutic phenomenology, heuristics, and constructivism. The resulting model synthesizes and incorporates key educational philosophies and practices from: nature study, resident outdoor education, organized camping, conservation education, environmental education, earth education, outdoor recreation, sustainability, bio-regionalism, deep ecology, ecological and environmental literacy, science and technology in society, and adventure/challenge/experiential education. The model's four components--environmental knowledge, practicing responsible environmental behaviors, community-focused involvement, and direct experience in outdoor settings--contribute in a synergistic way to the development of ecological perspective and a sense of place. The model was honed through experiential use in an environmental science methods course for elementary and secondary prospective science teachers. The instructor/researcher employed individualized instruction, community-based learning, service learning, and the modeling of reflective teaching principles in pursuit of the model's goals. The resulting pedagogical knowledge extends the model's usefulness to such formal and non-formal educational contexts as: elementary/secondary classrooms, nature centers, museums, youth groups, and community organizations. This research has implications for the fields of education, geography, recreation/leisure studies, science teaching, and environmental

  2. Home and school environmental determinants of science ...

    African Journals Online (AJOL)

    Determinants of educational achievement extend beyond the school environment to include the home environment. Both environments provide tangible and intangible resources to students that can influence science achievement. South Africa provides a context where inequalities in socio-economic status are vast, thus the ...

  3. Journal of Applied Sciences and Environmental Management ...

    African Journals Online (AJOL)

    NARP) of the Nationally Coordinated Research Projects (NCRP), Faculty of Science, University of Port Harcourt, Nigeria. ISSN: 1119-8362. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's ...

  4. Mobile Gaming and Student Interactions in a Science Center: The Future of Gaming in Science Education

    Science.gov (United States)

    Atwood-Blaine, Dana; Huffman, Douglas

    2017-01-01

    This article explores the impact of an augmented reality iPad-based mobile game, called The Great STEM Caper, on students' interaction at a science center. An open-source, location-based game platform called ARIS (i.e. Augmented Reality and Interactive Storytelling) was used to create an iPad-based mobile game. The game used QR scan codes and a…

  5. Network Science Center Research Team’s Visit to Kampala, Uganda

    Science.gov (United States)

    2013-04-15

    TERMS Network Analysis, Economic Networks, Entrepreneurial Ecosystems , Economic Development, Data Collection 16. SECURITY CLASSIFICATION OF: 17...the Project Synopsis, Developing Network Models of Entrepreneurial Ecosystems in Developing Economies, on the Network Science Center web site.) A...Thomas visited Kampala, Uganda in support of an ongoing Network Science Center project to develop models of entrepreneurial networks. Our Center has

  6. Area health education centers and health science library services.

    Science.gov (United States)

    West, R T; Howard, F H

    1977-07-01

    A study to determine the impact that the Area Health Education Center type of programs may have on health science libraries was conducted by the Extramural Programs, National Library of Medicine, in conjunction with a contract awarded by the Bureau of Health Manpower, Health Resources Administration, to develop an inventory of the AHEC type of projects in the United States. Specific study tasks included a review of these programs as they relate to library and information activities, on-site surveys on the programs to define their needs for library services and information, and a categorization of library activities. A major finding was that health science libraries and information services are generally not included in AHEC program planning and development, although information and information exchange is a fundamental part of the AHEC type of programs. This study suggests that library inadequacies are basically the result of this planning failure and of a lack of financial resources; however, many other factors may be contributory. The design and value of library activities for these programs needs explication.

  7. The Stocker AstroScience Center at Florida International University

    Science.gov (United States)

    Webb, James R.

    2014-01-01

    The new Stocker AstroScience Center located on the MMC campus at Florida International University in Miami Florida represents a unique facility for STEM education that arose from a combination of private, State and university funding. The building, completed in the fall of 2013, contains some unique spaces designed not only to educate, but also to inspire students interested in science and space exploration. The observatory consists of a 4-story building (3 floors) with a 24” ACE automated telescope in an Ash dome, and an observing platform above surrounding buildings. Some of the unique features of the observatory include an entrance/exhibition hall with a 6-ft glass tile floor mural linking the Florida climate to space travel, a state-of-the art telescope control that looks like a starship bridge, and displays such as “Music from the universe”. The observatory will also be the focus of our extensive public outreach program that is entering its 20 year.

  8. HEASARC - The High Energy Astrophysics Science Archive Research Center

    Science.gov (United States)

    Smale, Alan P.

    2011-01-01

    The High Energy Astrophysics Science Archive Research Center (HEASARC) is NASA's archive for high-energy astrophysics and cosmic microwave background (CMB) data, supporting the broad science goals of NASA's Physics of the Cosmos theme. It provides vital scientific infrastructure to the community by standardizing science data formats and analysis programs, providing open access to NASA resources, and implementing powerful archive interfaces. Over the next five years the HEASARC will ingest observations from up to 12 operating missions, while serving data from these and over 30 archival missions to the community. The HEASARC archive presently contains over 37 TB of data, and will contain over 60 TB by the end of 2014. The HEASARC continues to secure major cost savings for NASA missions, providing a reusable mission-independent framework for reducing, analyzing, and archiving data. This approach was recognized in the NRC Portals to the Universe report (2007) as one of the HEASARC's great strengths. This poster describes the past and current activities of the HEASARC and our anticipated developments in coming years. These include preparations to support upcoming high energy missions (NuSTAR, Astro-H, GEMS) and ground-based and sub-orbital CMB experiments, as well as continued support of missions currently operating (Chandra, Fermi, RXTE, Suzaku, Swift, XMM-Newton and INTEGRAL). In 2012 the HEASARC (which now includes LAMBDA) will support the final nine-year WMAP data release. The HEASARC is also upgrading its archive querying and retrieval software with the new Xamin system in early release - and building on opportunities afforded by the growth of the Virtual Observatory and recent developments in virtual environments and cloud computing.

  9. Science Outreach at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Lebo, George

    2002-07-01

    At the end of World War II Duane Deming, an internationally known economist enunciated what later came to be called "Total Quality Management" (TQM). The basic thrust of this economic theory called for companies and governments to identify their customers and to do whatever was necessary to meet their demands and to keep them satisfied. It also called for companies to compete internally. That is, they were to build products that competed with their own so that they were always improving. Unfortunately most U.S. corporations failed to heed this advice. Consequently, the Japanese who actively sought Deming's advice and instituted it in their corporate planning, built an economy that outstripped that of the U.S. for the next three to four decades. Only after U.S. corporations reorganized and fashioned joint ventures which incorporated the tenets of TQM with their Japanese competitors did they start to catch up. Other institutions such as the U.S. government and its agencies and schools face the same problem. While the power of the U.S. government is in no danger of being usurped, its agencies and schools face real problems which can be traced back to not heeding Deming's advice. For example, the public schools are facing real pressure from private schools and home school families because they are not meeting the needs of the general public, Likewise, NASA and other government agencies find themselves shortchanged in funding because they have failed to convince the general public that their missions are important. In an attempt to convince the general public that its science mission is both interesting and important, in 1998 the Science Directorate at NASA's Marshall Space Flight Center (MSFC) instituted a new outreach effort using the interact to reach the general public as well as the students. They have called it 'Science@NASA'.

  10. Department of Architecture, College of Environmental Sciences ...

    African Journals Online (AJOL)

    USER

    2015-06-02

    Jun 2, 2015 ... Ethiopian Journal of Environmental Studies & Management 8(5): ... Town Planning and Urban Development Authorities are vested with ... case may be, compensations will have to be made wherever ... major transportation networks, the .... regions. Statement of Research Problem. Akure, the capital city of ...

  11. Environmental Science Education at Sinte Gleska University

    Science.gov (United States)

    Burns, D.

    2004-12-01

    At Sinte Gleska University, basically we face two problems 1. The lack of natural resources/environmental education instructors and students. 2. High turnover in the drinking water (and waste water / environmental monitoring) jobs. As soon as people are trained, they typically leave for better paying jobs elsewhere. To overcome these In addition to regular teaching we conduct several workshops year around on environmental issues ranging from tree plantation, preserving water resources, sustainable agriculture and natural therapy (ayurvedic treatment- the Lakota way of treating illness) etc. We offer workshops about the negative impacts brought about by the development and use of hydropower, fossil fuel and nuclear energy (but include topics like reclamation of land after mining). Not only does the harvest and consumption of these energy forms devastate the land and its plants, animals, water and air, but the mental, spiritual, and physical health and culture of Native peoples suffer as well. In contrast, wind power offers an environmentally friendly source of energy that also can provide a source of income to reservations.

  12. Environmental science and technology: An overview

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is intended to provide an overview of the scientific and technological effort to meet the environmental goals identified in the Green Plan. The report gives a sense of the range of scientific and technological efforts that are being devoted to issues as diverse as conserving our wildlife and national parks and developing innovative technologies to clean-up polluted sites.

  13. Environmental science in building. 4. ed.

    Energy Technology Data Exchange (ETDEWEB)

    McMullan, R.

    1998-05-01

    This well established book examines the science and technology of those provisions and services that are required in the built environment. The main considerations are the effects of heat, light and sound within buildings. In addition other essential requirements such as supplies of electricity and water are discussed. While the basic structure of the book remains the same in this new edition, all chapters are revised; some material is rearranged and several new sections are added. (author)

  14. Citizen Environmental Science in Support of Educatio

    Science.gov (United States)

    Butler, D. M.; Cavalier, D.; Potter, S.; Wagner, R.; Wegner, K.; Hammonds, J.

    2016-12-01

    Through two grants, a partnership among SciStarter, ECO-Schools, the GLOBE Program, and Youth Learning as Citizen Environmental Scientists has recruited, trained, and equipped over 100 US schools, youth groups and other citizen scientists to take several environmental measurements - surface soil moisture and temperature, precipitation, and clouds. Implementation by some has begun but many more will start implementation in the fall. These local measurements may be compared with data from the Soil Moisture Active Passive (SMAP), Global Precipitation Measurement (GPM), and other satellite missions. The measurement protocols of GLOBE specify how these data are collected so as to produce reliable data that are intercomparable across space and time. GLOBE also provides the information infrastructure for storing these data and making them openly available. This presentation will examine the initial results of this effort in terms of participation, student and professional data use, and educational benefits.

  15. University of Illinois FRIENDS Children’s Environmental Health Center

    Data.gov (United States)

    Federal Laboratory Consortium — The FRIENDS Children's Environmental Health Center at the University of Illinois, Urbana-Champaign, was established in 2001 to investigate the interactive effects of...

  16. Environmental Sciences Division. Annual progress report for period ending September 30, 1975

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    The energy crisis and creation of ERDA were dominant factors affecting the activities of the Environmental Sciences Division during the past year. Efforts primarily centered on coal conversion effluents, aquatic effects from power plants, terrestrial modeling of both radioactive and nonradioactive waste transport, mineral cycling, forest management, and information handling codes and techniques. A bibliography of publications, presentation, these, and other professional activities is included. (PCS)

  17. Biological sciences teaching undergraduates’ environmental knowledge: a critical analysis

    Directory of Open Access Journals (Sweden)

    Silvana do Nascimento Silva

    2013-12-01

    Full Text Available Nowadays, environmental issues have been addressed in a way that goes beyond the natural impacts, embracing socio-economic, political and cultural aspects. This paper makes a description of the types of environmental conceptions, giving special emphasis to the interactions that permeate it, and develops an empirical work by analyzing the conceptions about the environmental knowledge of students majoring in a teacher preparation course on biological sciences of a university in the State of Bahia, Brazil. In a qualitative research, data were collected by application of a questionnaire with open questions with answers in text and drawings. The results revealed a predominance of naturalistic conceptions, while socio-environmental conceptions of systemic or socio-metabolic characteristics were not found. These findings lead to the need for the integration of these critical approaches about the environmental issue in Sciences and Biology teachers’ training, emphasizing the interactions between work, nature and society. Finally, some suggestions also emerge for future research, among which to analyze the biological sciences university teachers’ environmental conceptions and an action-research with these investigated undergraduates concerning environmental critical approaches.

  18. Status of teaching elementary science for English learners in science, mathematics and technology centered magnet schools

    Science.gov (United States)

    Han, Alyson Kim

    According to the California Commission on Teacher Credentialing (2001), one in three students speaks a language other than English. Additionally, the Commission stated that a student is considered to be an English learner if the second language acquisition is English. In California more than 1.4 million English learners enter school speaking a variety of languages, and this number continues to rise. There is an imminent need to promote instructional strategies that support this group of diverse learners. Although this was not a California study, the results derived from the nationwide participants' responses provided a congruent assessment of the basic need to provide effective science teaching strategies to all English learners. The purpose of this study was to examine the status of elementary science teaching practices used with English learners in kindergarten through fifth grade in public mathematics, science, and technology-centered elementary magnet schools throughout the country. This descriptive research was designed to provide current information and to identify trends in the areas of curriculum and instruction for English learners in science themed magnet schools. This report described the status of elementary (grades K-5) school science instruction for English learners based on the responses of 116 elementary school teachers: 59 grade K-2, and 57 grade 3-5 teachers. Current research-based approaches support incorporating self-directed learning strategy, expository teaching strategy, active listening strategies, questioning strategies, wait time strategy, small group strategy, peer tutoring strategy, large group learning strategy, demonstrations strategy, formal debates strategy, review sessions strategy, mediated conversation strategy, cooperative learning strategy, and theme-based instruction into the curriculum to assist English learners in science education. Science Technology Society (STS) strategy, problem-based learning strategy, discovery learning

  19. Do natural science experiments influence public attitudes towards environmental problems?

    International Nuclear Information System (INIS)

    Wallner, A.; Hunziker, M.; Kienast, F.

    2003-01-01

    We investigated the significance of risk assessment studies in the public discussion on CO 2 emissions. Politicians and representatives from the public were interviewed by using the social-science technique of qualitative in-depth interviews. Three different types of attitudes towards natural science were found among politicians. Depending on which attitude a politician holds, risk assessment studies can have an impact on his/her readiness to support environmental policy measures. Regarding lay people, key factors affecting the acceptance of environmental policy measures are knowledge of environmental problems, their impacts on ecosystems or human health as well as direct personal perception of those impacts. Since direct perception is not always possible in everyday life, natural science experiments might be a means for successfully mediating this lacking perception. (author)

  20. National Center for Mathematics and Science - teacher resources

    Science.gov (United States)

    Mathematics and Science (NCISLA) HOME | PROGRAM OVERVIEW | RESEARCH AND PROFESSIONAL DEVELOPMENT support and improve student understanding of mathematics and science. The instructional resources listed Resources (CD)Powerful Practices in Mathematics and Science A multimedia product for educators, professional

  1. Social Cognitive Predictors of Interest in Environmental Science: Recommendations for Environmental Educators

    Science.gov (United States)

    Quimby, Julie L.; Seyala, Nazar D.; Wolfson, Jane L.

    2007-01-01

    The authors examined the influence of social cognitive variables on students' interest in environmental science careers and investigated differences between White and ethnic minority students on several career-related variables. The sample consisted of 161 undergraduate science majors (124 White students, 37 ethnic minority students). Results of…

  2. Environmental Assessment for Education Center Buckley Air Force Base, Colorado

    National Research Council Canada - National Science Library

    Meyer, Elizabeth; Myklebust, Jessica; Denier, James; Niosi, Daniel; Christner, Jennifer

    2006-01-01

    ... and social impacts from the construction and operation of the proposed Education Center. The EA considers the No Action Alternative and three action alternatives, including the Proposed Action, for the proposed Education Center...

  3. Applications of voltammetry in environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, D.H.S.

    1985-01-01

    The wide-ranging applications of voltammetry to the analysis of trace metals and other ions of interest to environmental scientists are reviewed. It is concluded that the availability of modern microprocessor controlled instrumentation, capable of performing both anodic stripping and square wave voltammetry, provides a flexible and powerful technique to aid in solving analytical problems and carrying out routine analyses. The recent identification of many sensitizing agents which reduce detection limits to part per thousand million level, or below, is a further exciting development in this field.

  4. Student-Centered Learning in an Earth Science, Preservice, Teacher-Education Course

    Science.gov (United States)

    Avard, Margaret

    2009-01-01

    In an effort to get elementary teachers to teach more science in the classroom, a required preservice science education course was designed to promote the use of hands-on teaching techniques. This paper describes course content and activities for an innovative, student-centered, Earth science class. However, any science-content course could be…

  5. Making the Connection between Environmental Science and Decision Making

    Science.gov (United States)

    Woodhouse, C. A.; Crimmins, M.; Ferguson, D. B.; Garfin, G. M.; Scott, C. A.

    2011-12-01

    As society is confronted with population growth, limited resources, and the impacts of climate variability and change, it is vital that institutions of higher education promote the development of professionals who can work with decision-makers to incorporate scientific information into environmental planning and management. Skills for the communication of science are essential, but equally important is the ability to understand decision-making contexts and engage with resource managers and policy makers. It is increasingly being recognized that people who understand the linkages between science and decision making are crucial if science is to better support planning and policy. A new graduate-level seminar, "Making the Connection between Environmental Science and Decision Making," is a core course for a new post-baccalaureate certificate program, Connecting Environmental Science and Decision Making at the University of Arizona. The goal of the course is to provide students with a basic understanding of the dynamics between scientists and decision makers that result in scientific information being incorporated into environmental planning, policy, and management decisions. Through readings from the environmental and social sciences, policy, and planning literature, the course explores concepts including scientific information supply and demand, boundary organizations, co-production of knowledge, platforms for engagement, and knowledge networks. Visiting speakers help students understand some of the challenges of incorporating scientific information into planning and decision making within institutional and political contexts. The course also includes practical aspects of two-way communication via written, oral, and graphical presentations as well as through the interview process to facilitate the transfer of scientific information to decision makers as well as to broader audiences. We aspire to help students develop techniques that improve communication and

  6. Science during crisis: the application of social science during major environmental crises

    Science.gov (United States)

    Machlis, Gary; Ludwig, Kris; Manfredo, Michael J.; Vaske, Jerry J.; Rechkemmer, Andreas; Duke, Esther

    2014-01-01

    Historical and contemporary experience suggests that science plays an increasingly critical role in governmental and institutional responses to major environmental crises. Recent examples include major western wildfires (2009), the Deepwater Horizon oil spill (2010), the Fukushima nuclear accident (2011), and Hurricane Sandy (2012). The application of science during such crises has several distinctive characteristics, as well as essential requirements if it is to be useful to decision makers. these include scope conditions that include coupled natural/human systems, clear statement of uncertainties and limitations, description of cascading consequences, accurate sense of place, estimates of magnitude of impacts, identification of beneficiaries and those adversely affected, clarity and conciseness, compelling visualization and presentation, capacity to speak "truth to power", and direct access to decision makers. In this chapter, we explore the role and significance of science – including all relevant disciplines and focusing attention on the social sciences – in responding to major environmental crises. We explore several important questions: How is science during crisis distinctive? What social science is most useful during crises? What distinctive characteristics are necessary for social science to make meaningful contributions to emergency response and recovery? How might the social sciences be integrated into the strategic science needed to respond to future crises? The authors, both members of the Department of the Interior's innovative Strategic Sciences Group, describe broad principles of engagement as well as specific examples drawn from history, contemporary efforts (such as during the Deepwater Horizon oil spill), and predictions of environmental crises still to be confronted.

  7. The Los Alamos Neutron Science Center Spallation Neutron Sources

    International Nuclear Information System (INIS)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    2017-01-01

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  8. The Los Alamos Neutron Science Center Spallation Neutron Sources

    Science.gov (United States)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and

  9. Environmental Sciences Division. Annual progress report for period ending September 30, 1979

    International Nuclear Information System (INIS)

    1980-03-01

    Progress for the period ending September 30, 1979 by the Environmental Sciences Division is reported. Sections reporting include terrestrial ecoloy; earth sciences; environmental resources; aquatic ecology; synthetic fuels; nuclear program; environmental impacts program; ecosystem studies; and burial ground technology

  10. Educator Preparedness to Teach Environmental Science in Secondary Schools

    Science.gov (United States)

    Guillory, Linus Joseph, Jr.

    2012-01-01

    This study assesses the environmental proficiency of Texas life science educators certified from 2003 to 2011 by analyzing their TExES 138 8-12 exam results in domains V and VI. The sample consisted of all the individuals that took and passed the TExES 138 life science 8-12 exam. During this period, approximately 41% of the individuals who took…

  11. ENVIRONMENTAL SYSTEMS MANAGEMENT: TOWARDS A NEW SCIENCE OF SUSTAINABLE ENVIRONMENTAL MANAGEMENT

    Science.gov (United States)

    Environmental Systems Management (ESM) is the management of environmental problems at the systems level fully accounting for the multi-dimensional nature of the environment. This includes socio-economic dimensions as well as the usual physical and life science aspects of environm...

  12. Exploring Environmental Identity and Behavioral Change in an Environmental Science Course

    Science.gov (United States)

    Blatt, Erica N.

    2013-01-01

    This ethnographic study at a public high school in the Northeastern United States investigates the process of change in students' environmental identity and proenvironmental behaviors during an Environmental Science course. The study explores how sociocultural factors, such as students' background, social interactions, and classroom structures,…

  13. Accelerator mass spectrometry and its applications in environmental science

    International Nuclear Information System (INIS)

    Liu Kexin; Li Kun; Ma Hongji; Guo Zhiyu

    2001-01-01

    Some important work worldwide in environmental science, like urban air pollution, discharges of radioactive wastes from nuclear plants, and global climate change were introduced. Based on the improvements of facility and studies on 14 C dating method, a precision better than 0.5% has been reached for the PKUAMS. A large number of samples have been measured for the Xia-Shang-Zhou Chronology project. 14 C data of PKUAMS have made important contributions to creation of more reliable chronological table of Xia, Shang and Zhou dynasties. The improvements of PKUAMS are of benefit to the applications in environmental science in the future

  14. Environmental evaluation of the Federal Records Center in Overland, Missouri

    International Nuclear Information System (INIS)

    Persily, A.K.; Dols, W.S.; Nabinger, S.J.

    1992-08-01

    The National Institute of Standards and Technology (NIST) is studying the thermal and environmental performance of new federal office buildings for the Public Buildings Service of the General Services Administration (GSA). The project involves long-term performance monitoring starting before occupancy and extending into early occupancy in three new office buildings. The performance evaluation includes an assessment of the thermal integrity of the building envelope, long-term monitoring of ventilation system performance, and measurement of indoor levels of selected pollutants. This is the second report describing the study of the Federal Records Center in Overland, Missouri, and the report presents measurement results from preoccupancy to full occupancy. Ventilation rates ranged from 0.3 to 2.6 air changes per hour (ach) with the minimum levels being both the building design value of 0.8 ach and the recommended minimum in ASHRAE Standard 62-1989. The measured radon concentrations were 2 pCi/L or less on the sub-basement level, and less than or equal to 0.4 pCi/L on the other levels. Formaldehyde concentrations ranged from 0.03 to 0.07 ppm. Daily peak levels of carbon dioxide in the building were typically between 500 and 800 ppm. Maximum carbon monoxide levels were typically on the order of 1 to 2 ppm, essentially tracking outdoor levels induced by automobile traffic. There have been some occasions of elevated carbon monoxide and carbon dioxide levels in the building associated with unexplained episodic increases in the outdoor levels

  15. 1992 Environmental Summer Science Camp Program evaluation. The International Environmental Institute of Westinghouse Hanford Company

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report describes the 1992 Westinghouse Hanford Company/US Department of Energy Environmental Summer Science Camp. The objective of the ``camp`` was to motivate sixth and seventh graders to pursue studies in math, science, and the environment. This objective was accomplished through hands-on fun activities while studying the present and future challenges facing our environment. The camp was funded through Technical Task Plan, 424203, from the US Department of Energy-Headquarters, Office of Environmental Restoration and Waste Management, Technology Development,to Westinghouse Hanford Company`s International Environmental Institute, Education and Internship Performance Group.

  16. Person-centered pain management - science and art.

    Science.gov (United States)

    Braš, Marijana; Đorđević, Veljko; Janjanin, Mladen

    2013-06-01

    We are witnessing an unprecedented development of the medical science, which promises to revolutionize health care and improve patients' health outcomes. However, the core of the medical profession has always been and will be the relationship between the doctor and the patient, and communication is the most widely used clinical skill in medical practice. When we talk about different forms of communication in medicine, we must never forget the importance of communication through art. Although one of the simplest, art is the most effective way to approach the patient and produce the effect that no other means of communication can achieve. Person-centered pain management takes into account psychological, physical, social, and spiritual aspects of health and disease. Art should be used as a therapeutic technique for people who suffer from pain, as well as a means of raising public awareness of this problem. Art can also be one of the best forms of educating medical professionals and others involved in treatment and decision-making on pain.

  17. Semantic Data Access Services at NASA's Atmospheric Science Data Center

    Science.gov (United States)

    Huffer, E.; Hertz, J.; Kusterer, J.

    2012-12-01

    The corpus of Earth Science data products at the Atmospheric Science Data Center at NASA's Langley Research Center comprises a widely heterogeneous set of products, even among those whose subject matter is very similar. Two distinct data products may both contain data on the same parameter, for instance, solar irradiance; but the instruments used, and the circumstances under which the data were collected and processed, may differ significantly. Understanding the differences is critical to using the data effectively. Data distribution services must be able to provide prospective users with enough information to allow them to meaningfully compare and evaluate the data products offered. Semantic technologies - ontologies, triple stores, reasoners, linked data - offer functionality for addressing this issue. Ontologies can provide robust, high-fidelity domain models that serve as common schema for discovering, evaluating, comparing and integrating data from disparate products. Reasoning engines and triple stores can leverage ontologies to support intelligent search applications that allow users to discover, query, retrieve, and easily reformat data from a broad spectrum of sources. We argue that because of the extremely complex nature of scientific data, data distribution systems should wholeheartedly embrace semantic technologies in order to make their data accessible to a broad array of prospective end users, and to ensure that the data they provide will be clearly understood and used appropriately by consumers. Toward this end, we propose a distribution system in which formal ontological models that accurately and comprehensively represent the ASDC's data domain, and fully leverage the expressivity and inferential capabilities of first order logic, are used to generate graph-based representations of the relevant relationships among data sets, observational systems, metadata files, and geospatial, temporal and scientific parameters to help prospective data consumers

  18. Actinide science. Fundamental and environmental aspects

    International Nuclear Information System (INIS)

    Choppin, Gregory R.

    2005-01-01

    Nuclear test explosions and reactor wastes have deposited an estimated 16x10 15 Bq of plutonium into the world's aquatic systems. However, plutonium concentration in open ocean waters is orders of magnitude less, indicating that most of the plutonium is quite insolvable in marine waters and has been incorporated into sediments. Actinide ions in waters often are not in a state of thermodynamic equilibrium and their solubility and migration behavior is related to the form in which the nuclides were introduced into the aquatic system. Actinide solubility depends on such factors as pH(hydrolysis), E H (oxidation state), reaction with complexants (e.g. carbonate, phosphate, humic acid, etc.) sorption to surfaces of minerals and/or colloids, etc., in the water. The most significant of these variables is the oxidation sate of the metal ion. The simultaneous presence of more than one oxidation state for some actinides (e.g. plutonium) in a solution complicates actinide environmental behavior. Both Np(V)O 2 + and Pu(V)O 2 + , the most significant soluble states in natural oxic waters are relatively noncomplexing and resistant to hydrolysis and subsequent precipitation but can undergo reduction to the Pu(IV) oxidation state with its different elemental behavior. The solubility of NpO 2 + can be as high as 10 -4 M while that of PuO 2 + is more limited by reduction to the insoluble tetravalent species, Pu(OH) 4 , (pK SP - 56). The net solubility of hexavalent UO 2 2+ in sea water is also limited by hydrolysis; however, it has a relatively high concentration due to formation of carbonate complexes. The insoluble trivalent americium hydroxocarbonate, Am(CO) 3 (OH), is the limiting species for the solubility of Am(III) in sea water. Thorium is found exclusively as the tetravalent species and its solubility is limited by the formation of quite insoluble Th(OH) 4 . The chemistry of actinide ions in the environment is reviewed to show the spectrum of reactions that can occur in

  19. Science Center Public Forums: Engaging Lay-Publics in Resilience Deliberations Through Informal Science Education

    Science.gov (United States)

    Sittenfeld, D.; Choi, F.; Farooque, M.; Helmuth, B.

    2017-12-01

    Because climate hazards present a range of potential impacts and considerations for different kinds of stakeholders, community responses to increase resilience are best considered through the inclusion of diverse, informed perspectives. The Science Center Public Forums project has created multifaceted modules to engage diverse publics in substantive deliberations around four hazards: heat waves, drought, extreme precipitation, and sea level rise. Using a suite of background materials including visualization and narrative components, each of these daylong dialogues engage varied groups of lay-participants at eight US science centers in learning about hazard vulnerabilities and tradeoffs of proposed strategies for building resilience. Participants listen to and consider the priorities and perspectives of fellow residents and stakeholders, and work together to formulate detailed resilience plans reflecting both current science and informed public values. Deliverables for the project include visualizations of hazard vulnerabilities and strategies through immersive planetarium graphics and Google Earth, stakeholder perspective narratives, and detailed background materials for each project hazard. This session will: communicate the process for developing the hazard modules with input from subject matter experts, outline the process for iterative revisions based upon findings from formative focus groups, share results generated by participants of the project's first two pilot forums, and describe plans for broader implementation. These activities and outcomes could help to increase the capacity of informal science education institutions as trusted conveners for informed community dialogue by educating residents about vulnerabilities and engaging them in critical thinking about potential policy responses to critical climate hazards while sharing usable public values and priorities with civic planners.

  20. Environmental Science Program at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Nico, Peter; A; Anastasio, Cort; Dodge, Cleveland; Fendorf, Scott; Francis, A.J.; Hubbard, Susan; Shuh, David; Tomutsa, Liviu; Tufano, Kate; Tyliszczak, Tolek; Werner, Michelle; Williams, Ken

    2006-04-05

    The Advanced Light Source (ALS) has a variety of capabilities that are applicable to very different types of environmental systems. Shown are the basic descriptions of four of the approximately 35 beam lines at the ALS. The complimentary capabilities of these four beam lines allow for investigations that range from a spatial scale of a few nanometers to several millimeters. The Environmental Science Program at the Advanced Light Source seeks to promote and assist environmental research, particularly on the four beam lines described in this report. Several short examples of the types of research conducted on these beam lines are also described.

  1. Development of Distributed Research Center for monitoring and projecting regional climatic and environmental changes: first results

    Science.gov (United States)

    Gordov, Evgeny; Shiklomanov, Alexander; Okladinikov, Igor; Prusevich, Alex; Titov, Alexander

    2016-04-01

    Description and first results of the cooperative project "Development of Distributed Research Center for monitoring and projecting of regional climatic and environmental changes" recently started by SCERT IMCES and ESRC UNH are reported. The project is aimed at development of hardware and software platform prototype of Distributed Research Center (DRC) for monitoring and projecting regional climatic and environmental changes over the areas of mutual interest and demonstration the benefits of such collaboration that complements skills and regional knowledge across the northern extratropics. In the framework of the project, innovative approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platforms of two U.S. and Russian leading institutions involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research centers focused on interdisciplinary environmental studies by international research teams. DRC under development will comprise best features and functionality of earlier developed by the cooperating teams' information-computational systems RIMS (http://rims.unh.edu) and CLIMATE(http://climate.scert.ru/), which are widely used in Northern Eurasia environment studies. The project includes several major directions of research (Tasks) listed below. 1. Development of architecture and defining major hardware and software components of DRC for monitoring and projecting of regional environmental changes. 2. Development of an information database and computing software suite for distributed processing and analysis of large geospatial data hosted at ESRC and IMCES SB RAS. 3. Development of geoportal, thematic web client and web services providing international research teams with an access to "cloud" computing resources at DRC; two options will be executed: access through a basic graphical web browser and

  2. Quantitative Reasoning in Environmental Science: A Learning Progression

    Science.gov (United States)

    Mayes, Robert Lee; Forrester, Jennifer Harris; Christus, Jennifer Schuttlefield; Peterson, Franziska Isabel; Bonilla, Rachel; Yestness, Nissa

    2014-01-01

    The ability of middle and high school students to reason quantitatively within the context of environmental science was investigated. A quantitative reasoning (QR) learning progression was created with three progress variables: quantification act, quantitative interpretation, and quantitative modeling. An iterative research design was used as it…

  3. Reforming an Undergraduate Environmental Science Course for Nonscience Majors

    Science.gov (United States)

    Kazempour, Mahsa; Amirshokoohi, Aidin

    2013-01-01

    This article discusses the key components of a reform-based introductory undergraduate environmental science course for nonscience majors and elementary teacher candidates as well as the impact of such components on the participants. The main goals for the course were to actively engage the students in their learning and, in doing so, to enhance…

  4. Matrices to Revise Crop, Soil, and Environmental Sciences Undergraduate Curricula

    Science.gov (United States)

    Savin, Mary C.; Longer, David; Miller, David M.

    2005-01-01

    Undergraduate curricula for natural resource and agronomic programs have been introduced and revised during the past several decades with a desire to stay current with emerging issues and technologies relevant to constituents. For the past decade, the Department of Crop, Soil, and Environmental Sciences (CSES) faculty at the University of Arkansas…

  5. Hierarchical modelling for the environmental sciences statistical methods and applications

    CERN Document Server

    Clark, James S

    2006-01-01

    New statistical tools are changing the way in which scientists analyze and interpret data and models. Hierarchical Bayes and Markov Chain Monte Carlo methods for analysis provide a consistent framework for inference and prediction where information is heterogeneous and uncertain, processes are complicated, and responses depend on scale. Nowhere are these methods more promising than in the environmental sciences.

  6. French environmental labs may get 'big science' funds

    CERN Multimedia

    2000-01-01

    France is considering expanding its network of enviromental laboratories to study the long term impacts of environmental change. It has been suggested that this could be funded using the 'big science' budget usually used for facilities such as particle accelerators (2 para).

  7. Plasma Science and Innovation Center (PSI-Center) at Washington, Wisconsin, and Utah State, ARRA Supplement

    Energy Technology Data Exchange (ETDEWEB)

    Sovinec, Carl [Univ. of Wisconsin-Madison, Madison, WI (United States)

    2018-03-14

    The objective of the Plasma Science and Innovation Center (PSI-Center) is to develop and deploy computational models that simulate conditions in smaller, concept-exploration plasma experiments. The PSIC group at the University of Wisconsin-Madison, led by Prof. Carl Sovinec, uses and enhances the Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion (NIMROD) code, to simulate macroscopic plasma dynamics in a number of magnetic confinement configurations. These numerical simulations provide information on how magnetic fields and plasma flows evolve over all three spatial dimensions, which supplements the limited access of diagnostics in plasma experiments. The information gained from simulation helps explain how plasma evolves. It is also used to engineer more effective plasma confinement systems, reducing the need for building many experiments to cover the physical parameter space. The ultimate benefit is a more cost-effective approach to the development of fusion energy for peaceful power production. The supplemental funds provided by the American Recovery and Reinvestment Act of 2009 were used to purchase computer components that were assembled into a 48-core system with 256 Gb of shared memory. The system was engineered and constructed by the group's system administrator at the time, Anthony Hammond. It was successfully used by then graduate student, Dr. John O'Bryan, for computing magnetic relaxation dynamics that occur during experimental tests of non-inductive startup in the Pegasus Toroidal Experiment (pegasus.ep.wisc.edu). Dr. O'Bryan's simulations provided the first detailed explanation of how the driven helical filament of electrical current evolves into a toroidal tokamak-like plasma configuration.

  8. How Can Humanities Interventions Promote Progress in the Environmental Sciences?

    Directory of Open Access Journals (Sweden)

    Sally L. Kitch

    2017-10-01

    Full Text Available Environmental humanists make compelling arguments about the importance of the environmental humanities (EH for discovering new ways to conceptualize and address the urgent challenges of the environmental crisis now confronting the planet. Many environmental scientists in a variety of fields are also committed to incorporating socio-cultural analyses in their work. Despite such intentions and rhetoric, however, and some humanists’ eagerness to incorporate science into their own work, “radical interdisciplinarity [across the humanities and sciences] is ... rare ... and does not have the impact one would hope for” (Holm et al. 2013, p. 32. This article discusses reasons for the gap between transdisciplinary intentions and the work being done in the environmental sciences. The article also describes a project designed to address that gap. Entitled “From Innovation to Progress: Addressing Hazards of the Sustainability Sciences”, the project encourages humanities interventions in problem definition, before any solution or action is chosen. Progress offers strategies for promoting expanded stakeholder engagement, enhancing understanding of power struggles and inequities that underlie problems and over-determine solutions, and designing multiple future scenarios based on alternative values, cultural practices and beliefs, and perspectives on power distribution and entitlement.

  9. THE CENTER FOR ENVIRONMENTAL IMPLICATIONS OF NANOTECHNOLOGY (CEINT)

    Science.gov (United States)

    In the future CEIN will collaborate with the NC Museum of Life and Science (NCMLS) in an educational effort spanning G8-12 to adults. Our partnership will leverage NCMLS’s activities in the Nanoscale Informal Science Education Network (NISE Net) program and create materials...

  10. Gifted and Talented Students' Views about Biology Activities in a Science and Art Center

    Science.gov (United States)

    Özarslan, Murat; Çetin, Gülcan

    2018-01-01

    The aim of the study was to determine gifted and talented students' views about biology activities in a science and art center. The study was conducted with 26 gifted and talented students who studied at a science and art center in southwestern Turkey. Students studied animal and plant genus and species in biology activities. Data were collected…

  11. 78 FR 50108 - Notice of Intent To Repatriate Cultural Item: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2013-08-16

    ....R50000] Notice of Intent To Repatriate Cultural Item: Rochester Museum & Science Center, Rochester, NY AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Rochester Museum & Science Center... that the cultural item listed in this notice meets the definition of a sacred object and an object of...

  12. An Exploration of Hispanic Mothers' Culturally Sustaining Experiences at an Informal Science Center

    Science.gov (United States)

    Weiland, Ingrid

    2015-01-01

    Science education reform focuses on learner-centered instruction within contexts that support learners' sociocultural experiences. The purpose of this study was to explore Hispanic mothers' experiences as accompanying adults at an informal science center within the context of culturally sustaining experiences, which include the fluidity…

  13. 75 FR 57967 - Science Advisory Board to the National Center for Toxicological Research Notice of Meeting

    Science.gov (United States)

    2010-09-23

    ...] Science Advisory Board to the National Center for Toxicological Research Notice of Meeting AGENCY: Food... closed to the public. Name of Committee: Science Advisory Board (SAB) to the National Center for Toxicological Research (NCTR). General Function of the Committee: To provide advice and recommendations to the...

  14. 77 FR 57569 - Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting

    Science.gov (United States)

    2012-09-18

    ...] Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting AGENCY: Food... closed to the public. Name of Committee: Science Advisory Board (SAB) to the National Center for Toxicological Research (NCTR). General Function of the Committee: To provide advice and recommendations to the...

  15. 77 FR 31329 - Northeast Fisheries Science Center, Woods, Hole, MA; Public Meeting/Workshop

    Science.gov (United States)

    2012-05-25

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Northeast Fisheries Science Center, Woods, Hole, MA; Public Meeting/Workshop AGENCY: National Marine Fisheries Service (NMFS.../workshop. SUMMARY: NOAA's Northeast Fisheries Science Center will sponsor a workshop to address the stock...

  16. Scientific knowledge and environmental policy. Why science needs values. Environmental essay

    Energy Technology Data Exchange (ETDEWEB)

    Carolan, M.S. [Department of Sociology, Colorado State University, Fort Collins (United States)

    2006-12-15

    While the term 'science' is evoked with immense frequency in the political arena, it continues to be misunderstood. Perhaps the most repeated example of this - particularly when dealing with environmental policy and regulatory issues - is when science is called upon to provide the unattainable: namely, proof. What is scientific knowledge and, more importantly, what is it capable of providing us? These questions must be answered - by policymakers, politicians, the public, and scientists themselves - if we hope to ever resolve today's environmental controversies in a just and equitable way. This paper begins by critically examining the concepts of uncertainty and proof as they apply to science. Discussion then turns to the issue of values in science. This is to speak of the normative decisions that are made routinely in the environmental sciences (but often without them being recognized as such). To conclude, insights are gleaned from the preceding sections to help us understand how science should be utilized and conducted, particularly as it applies to environmental policy.

  17. Environmental Sciences Division: Summaries of research in FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This document describes the Fiscal Year 1996 activities and products of the Environmental Sciences Division, Office of Biological and Environmental Research, Office of Energy Research. The report is organized into four main sections. The introduction identifies the basic program structure, describes the programs of the Environmental Sciences Division, and provides the level of effort for each program area. The research areas and project descriptions section gives program contact information, and provides descriptions of individual research projects including: three-year funding history, research objective and approach used in each project, and results to date. Appendixes provide postal and e-mail addresses for principal investigators and define acronyms used in the text. The indexes provide indexes of principal investigators, research institutions, and keywords for easy reference. Research projects are related to climatic change and remedial action.

  18. Panarchy use in environmental science for risk and resilience planning

    Science.gov (United States)

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Linkov, Igor

    2016-01-01

    Environmental sciences have an important role in informing sustainable management of built environments by providing insights about the drivers and potentially negative impacts of global environmental change. Here, we discuss panarchy theory, a multi-scale hierarchical concept that accounts for the dynamism of complex socio-ecological systems, especially for those systems with strong cross-scale feedbacks. The idea of panarchy underlies much of system resilience, focusing on how systems respond to known and unknown threats. Panarchy theory can provide a framework for qualitative and quantitative research and application in the environmental sciences, which can in turn inform the ongoing efforts in socio-technical resilience thinking and adaptive and transformative approaches to management.

  19. Environmental Science Program at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Susan; Shuh, David; Nico, Peter

    2005-06-01

    Synchrotron Radiation (SR)-based techniques have become an essential and fundamental research tool in Molecular Environmental Science (MES) research. MES is an emerging scientific field that has largely evolved from research interactions at the U.S. Department of Energy (U.S. DOE) SR laboratories in response to the pressing need for understanding fundamental molecular-level chemical and biological processes that involve the speciation, properties, and behavior of contaminants, within natural systems. The role of SR-based investigations in MES and their impact on environmental problems of importance to society has been recently documented in Molecular Environmental Science: An Assessment of Research Accomplishment, Available Synchrotron Radiation Facilities, and Needs (EnviroSync, 2003).

  20. The Woods Hole Partnership Education Program: Increasing Diversity in the Ocean and Environmental Sciences in One Influential Science Community

    Science.gov (United States)

    Jearld, A.

    2011-12-01

    To increase diversity in one influential science community, a consortium of public and private institutions created the Woods Hole Partnership Education Program, or PEP, in 2008. Participating institutions are the Marine Biological Laboratory, Northeast Fisheries Science Center of NOAA's Fisheries Service, Sea Education Association, U.S. Geological Survey, Woods Hole Oceanographic Institution, the Woods Hole Research Center, and University of Maryland Eastern Shore. Aimed at college juniors and seniors with some course work in marine and/or environmental sciences, PEP is a four-week course and a six-to-eight-week individual research project under the guidance of a research mentor. Forty-six students have participated to date. Investigators from the science institutions serve as course faculty and research mentors. We listened to experts regarding critical mass, mentoring, adequate support, network recruitment, and then built a program based on those features. Three years in we have a program that works and that has its own model for choosing applicants and for matching with mentors. We continue fine-tuning our match process, enhancing mentoring skills, preparing our students for a variety of lab cultures, and setting expectations high while remaining supportive. Our challenges now are to keep at it, using leverage instead of capacity to make a difference. Collaboration, not competition, is key since a rising tide floats all boats.

  1. 77 FR 66853 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-11-07

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Health Sciences Special Emphasis Panel Career Grants in the Environmental Health Sciences. Date: November...., Scientific Review Administrator, Nat. Institute of Environmental Health Sciences, Office of Program...

  2. Argonne Chemical Sciences & Engineering - Center for Electrical Energy

    Science.gov (United States)

    Laboratory Chemical Sciences & Engineering DOE Logo CSE Home About CSE Research Facilities People Publications Awards News & Highlights Events Search Argonne ... Search Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Conversion Electrochemical

  3. National Center for Mathematics and Science - who we are

    Science.gov (United States)

    Massachusetts-Dartmouth Expertise Areas Classroom discourse Sociocultural theory in mathematics teacher education The learnability of new ideas, such as complexity, chaos and nonlinear systems Center Research students' mathematical understanding Program evaluation Curriculum theory and reform Center Research

  4. Lujan at Los Alamos Neutron Science Center (LANSCE)

    Data.gov (United States)

    Federal Laboratory Consortium — The Lujan Neutron Scattering Center (Lujan Center) at Los Alamos National Laboratory is an intense pulsed neutrons source operating at a power level of 80 -100 kW....

  5. Grid Integration Science, NREL Power Systems Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-25

    This report highlights journal articles published in 2016 by researchers in the Power Systems Engineering Center. NREL's Power Systems Engineering Center published 47 journal and magazine articles in the past year, highlighting recent research in grid modernization.

  6. 78 FR 8156 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-02-05

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Environmental Health Sciences Special Emphasis Panel; Studies of Environmental Agents to Induce Immunotoxicity... Research and Training, Nat. Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research...

  7. 76 FR 13650 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2011-03-14

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Training, Nat. Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30/Room 3171, Research... Environmental Health Sciences Special Emphasis Panel; Review of Educational Grants with an Environmental Health...

  8. 75 FR 34147 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-06-16

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Review Branch, Division of Extramural Research and Training, Nat. Institute Environmental Health Sciences... Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental Health Hazards...

  9. 77 FR 40076 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-07-06

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Environmental Health Sciences, P.O. Box 12233, MD EC-30 Research Triangle Park, NC 27709, (919) 541- 0752... Manpower Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental...

  10. 75 FR 7487 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-02-19

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory..., Scientific Review Administrator, National Inst. of Environmental Health Sciences, Office of Program... Manpower Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental...

  11. 76 FR 67748 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-11-02

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(a) of the Federal Advisory Committee Act...., Director, Division of Extramural Research and Training, Nat. Inst. of Environmental Health Sciences... Manpower Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental...

  12. 75 FR 55805 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2010-09-14

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(a) of the Federal Advisory Committee Act... Environmental Health Sciences, 615 Davis Dr., KEY615/3112, Research Triangle Park, NC 27709. (919) 541-4980... Environmental Health Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114, Applied...

  13. 75 FR 45133 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-08-02

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory.... Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room 3170 B, Research Triangle Park, NC... Manpower Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental...

  14. 78 FR 51734 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-08-21

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory..., Nat. Institute of Environmental Health Sciences, Office of Program Operations, Scientific Review... Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental Health Hazards...

  15. 75 FR 32797 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-06-09

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Branch, Division of Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P... Manpower Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental...

  16. 78 FR 42968 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-07-18

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander Drive, Research Triangle... the Environmental Health Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114...

  17. 78 FR 27410 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-05-10

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory..., Nat. Institute of Environmental Health Sciences, Office of Program Operations, Scientific Review... the Environmental Health Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114...

  18. WFIRST: User and mission support at ISOC - IPAC Science Operations Center

    Science.gov (United States)

    Akeson, Rachel; Armus, Lee; Bennett, Lee; Colbert, James; Helou, George; Kirkpatrick, J. Davy; Laine, Seppo; Meshkat, Tiffany; Paladini, Roberta; Ramirez, Solange; Wang, Yun; Xie, Joan; Yan, Lin

    2018-01-01

    The science center for WFIRST is distributed between the Goddard Space Flight Center, the Infrared Processing and Analysis Center (IPAC) and the Space Telescope Science Institute (STScI). The main functions of the IPAC Science Operations Center (ISOC) are:* Conduct the GO, archival and theory proposal submission and evaluation process* Support the coronagraph instrument, including observation planning, calibration and data processing pipeline, generation of data products, and user support* Microlensing survey data processing pipeline, generation of data products, and user support* Community engagement including conferences, workshops and general support of the WFIRST exoplanet communityWe will describe the components planned to support these functions and the community of WFIRST users.

  19. Beyond Science and Technology: The need to incorporate Environmental Ethics to solve Environmental Problems

    Directory of Open Access Journals (Sweden)

    Fesseha Mulu

    2018-01-01

    Full Text Available The emergence and development of science and technology has been critical in improving the lives of mankind. It helps mankind to cope with a number of manmade and natural challenges and disasters. Science cannot totally diminish the level of human dependency on nature; but, with the existing availability of natural resources, science has increased our productivity. However, science and technology can also have its own negative impacts on the natural environment. For the purpose of increasing productivity and satisfying human needs, humans have been egoistically exploiting nature but disregarding the effects of their activities on nature. Science has also been trying its level best to mitigate the negative effects that results from mankind’s exploitation of nature. However, science alone is incapable of solving all environmental problems. This desk research employs secondary sources of data, and argues that environmental ethics should come to the fore in order to address the gap left by science with regard to resolving environmental problems that mankind faces today.

  20. 77 FR 45604 - Notification of Two Public Teleconferences of the Science Advisory Board; Environmental Economics...

    Science.gov (United States)

    2012-08-01

    ... Science Advisory Board; Environmental Economics Advisory Committee AGENCY: Environmental Protection Agency...) Staff Office announces two public teleconferences of the SAB Environmental Economics Advisory Committee...., notice is hereby given that the SAB Environmental Economics Advisory Committee (EEAC) will hold public...

  1. [Stanford Linear Accelerator Center] annual environmental monitoring report, January--December 1989

    International Nuclear Information System (INIS)

    1990-05-01

    This progress report discusses environmental monitoring activities at the Stanford Linear Accelerator Center for 1989. Topics include climate, site geology, site water usage, land use, demography, unusual events or releases, radioactive and nonradioactive releases, compliance summary, environmental nonradiological program information, environmental radiological program information, groundwater protection monitoring ad quality assurance. 5 figs., 7 tabs

  2. Molecular Environmental Science and Synchrotron Radiation Facilities An Update of the 1995 DOE-Airlie Report on Molecular Environmental Science

    Energy Technology Data Exchange (ETDEWEB)

    Bargar, John R

    1999-05-07

    This workshop was requested by Dr. Robert Marianelli, Director of the DOE-BES Chemical Sciences Division, to update the findings of the Workshop on Molecular Environmental Sciences (MES) held at Airlie, VA, in July 1995. The Airlie Workshop Report defined the new interdisciplinary field referred to as Molecular Environmental Science (MES), reviewed the synchrotron radiation methods used in MES research, assessed the adequacy of synchrotron radiation facilities for research in this field, and summarized the beam time requirements of MES users based on a national MES user survey. The objectives of MES research are to provide information on the chemical and physical forms (speciation), spatial distribution, and reactivity of contaminants in natural materials and man-made waste forms, and to develop a fundamental understanding of the complex molecular-scale environmental processes, both chemical and biological, that affect the stability, transformations, mobility, and toxicity of contaminant species. These objectives require parallel studies of ''real'' environmental samples, which are complicated multi-phase mixtures with chemical and physical heterogeneities, and of simplified model systems in which variables can be controlled and fundamental processes can be examined. Only by this combination of approaches can a basic understanding of environmental processes at the molecular-scale be achieved.

  3. Molecular Environmental Science and Synchrotron Radiation Facilities An Update of the 1995 DOE-Airlie Report on Molecular Environmental Science

    International Nuclear Information System (INIS)

    Bargar, John R

    1999-01-01

    This workshop was requested by Dr. Robert Marianelli, Director of the DOE-BES Chemical Sciences Division, to update the findings of the Workshop on Molecular Environmental Sciences (MES) held at Airlie, VA, in July 1995. The Airlie Workshop Report defined the new interdisciplinary field referred to as Molecular Environmental Science (MES), reviewed the synchrotron radiation methods used in MES research, assessed the adequacy of synchrotron radiation facilities for research in this field, and summarized the beam time requirements of MES users based on a national MES user survey. The objectives of MES research are to provide information on the chemical and physical forms (speciation), spatial distribution, and reactivity of contaminants in natural materials and man-made waste forms, and to develop a fundamental understanding of the complex molecular-scale environmental processes, both chemical and biological, that affect the stability, transformations, mobility, and toxicity of contaminant species. These objectives require parallel studies of ''real'' environmental samples, which are complicated multi-phase mixtures with chemical and physical heterogeneities, and of simplified model systems in which variables can be controlled and fundamental processes can be examined. Only by this combination of approaches can a basic understanding of environmental processes at the molecular-scale be achieved

  4. A Comprehensive Course Introducing Environmental Science : Case Study of “Introduction to Environmental Science” as a Common Course in the Graduate School of Environmental Science

    OpenAIRE

    山中, 康裕; 三井, 翔太

    2017-01-01

    The course “Introduction to Environmental Science” was designed and held during the academic year 2015-2016 for new masterʼs course students at the Graduate School of Environmental Science, Hokkaido University. The course was designed in accord with societal needs such as consensus building for environmental conservation and associated scientific evidence, bringing together a large number of students from various disciplines. The course was composed of six modules in which multipl...

  5. Proceedings of the Science and Community Environmental Knowledge Fund forum

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This paper presented details of a forum which provided partners and stakeholders with an opportunity to see results of recent projects initiated by the Petroleum Technology Alliance Canada's Science and Community Environmental Knowledge Fund. The aim of the forum was to discuss future directions for research and funding. The fund is comprised of 5 knowledge envelopes covering environmental issues relevant to the oil and gas industry. These include ecosystem and cumulative impact management; health and safety; education and technology; and community environmental knowledge. Achievements, trends, challenges and innovations in environmental impact management were reviewed. Current environmental impact management strategies in British Columbia oil and gas industry were discussed along with issues concerning wildlife and footprint minimization in relation to facility operations and reclamation management. Waste and air quality management issues were also discussed. The forum featured 29 presentations that touched on topics such as innovations and opportunities in environmental impact research; Snake-Sahtaneh Boreal caribou habitat use and ecology; wildlife habitat connectivity and conservation of Peace River lowlands; mountain goats and helicopters; water use plan and low flow analysis; cumulative impacts assessment of development on forests and First Nations of northeast BC; geophysical line construction; the application of First Nations traditional knowledge to reclamation strategies in the oil and gas industry; issues concerning construction and standards; the influence of new technologies in environmental impact management; and the environmental aspects of natural gas midstream operations.

  6. Publications in biomedical and environmental sciences programs, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.B. (comp.)

    1982-07-01

    This bibliography contains 698 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1981. There are 520 references to articles published in journals and books and 178 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Instrumentation and Controls, Computer Sciences, Energy, Engineering Technology, Solid State, Central Management, Operations, and Environmental Sciences. Indexes are provided by author, title, and journal reference.

  7. Publications in biomedical and environmental sciences programs, 1981

    International Nuclear Information System (INIS)

    Moody, J.B.

    1982-07-01

    This bibliography contains 698 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1981. There are 520 references to articles published in journals and books and 178 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Instrumentation and Controls, Computer Sciences, Energy, Engineering Technology, Solid State, Central Management, Operations, and Environmental Sciences. Indexes are provided by author, title, and journal reference

  8. Narrative as a learning tool in science centers : potentials, possibilities and merits

    NARCIS (Netherlands)

    Murmann, Mai; Avraamidou, Lucy

    2014-01-01

    In this theoretical paper we explore the use of narrative as a learning tool in informal science settings. Specifically, the purpose of this paper is to ex-plore how narrative can be applied to exhibits in the context of science centers to scaffold visitors science learning. In exploring this idea,

  9. Opportunities for web-based indicators in environmental sciences.

    Directory of Open Access Journals (Sweden)

    Sergio Malcevschi

    Full Text Available This paper proposes a set of web-based indicators for quantifying and ranking the relevance of terms related to key-issues in Ecology and Sustainability Science. Search engines that operate in different contexts (e.g. global, social, scientific are considered as web information carriers (WICs and are able to analyse; (i relevance on different levels: global web, individual/personal sphere, on-line news, and culture/science; (ii time trends of relevance; (iii relevance of keywords for environmental governance. For the purposes of this study, several indicators and specific indices (relational indices and dynamic indices were applied to a test-set of 24 keywords. Outputs consistently show that traditional study topics in environmental sciences such as water and air have remained the most quantitatively relevant keywords, while interest in systemic issues (i.e. ecosystem and landscape has grown over the last 20 years. Nowadays, the relevance of new concepts such as resilience and ecosystem services is increasing, but the actual ability of these concepts to influence environmental governance needs to be further studied and understood. The proposed approach, which is based on intuitive and easily replicable procedures, can support the decision-making processes related to environmental governance.

  10. Status and developmental strategy of nuclear agricultural sciences in researches of eco-environmental sciences in agriculture

    International Nuclear Information System (INIS)

    Hua Luo; Wang Xunqing

    2001-01-01

    The concept, research scopes, research progress and achievement of nuclear agricultural sciences in past several decades in China, as well as the relationship between nuclear agriculture research and eco-environmental sciences were described. The disciplinary frontier, major research fields and priority developmental fields of nuclear agriculture in eco-environmental sciences was displayed. Suggestions were made to improve and strengthen nuclear agriculture research. Those provided basic source materials and consideration for application developmental strategy of nuclear agriculture in eco-environmental sciences

  11. Web portal on environmental sciences "ATMOS''

    Directory of Open Access Journals (Sweden)

    E. P. Gordov

    2006-01-01

    Full Text Available The developed under INTAS grant web portal ATMOS (http://atmos.iao.ru and http://atmos.scert.ru makes available to the international research community, environmental managers, and the interested public, a bilingual information source for the domain of Atmospheric Physics and Chemistry, and the related application domain of air quality assessment and management. It offers access to integrated thematic information, experimental data, analytical tools and models, case studies, and related information and educational resources compiled, structured, and edited by the partners into a coherent and consistent thematic information resource. While offering the usual components of a thematic site such as link collections, user group registration, discussion forum, news section etc., the site is distinguished by its scientific information services and tools: on-line models and analytical tools, and data collections and case studies together with tutorial material. The portal is organized as a set of interrelated scientific sites, which addressed basic branches of Atmospheric Sciences and Climate Modeling as well as the applied domains of Air Quality Assessment and Management, Modeling, and Environmental Impact Assessment. Each scientific site is open for external access information-computational system realized by means of Internet technologies. The main basic science topics are devoted to Atmospheric Chemistry, Atmospheric Spectroscopy and Radiation, Atmospheric Aerosols, Atmospheric Dynamics and Atmospheric Models, including climate models. The portal ATMOS reflects current tendency of Environmental Sciences transformation into exact (quantitative sciences and is quite effective example of modern Information Technologies and Environmental Sciences integration. It makes the portal both an auxiliary instrument to support interdisciplinary projects of regional environment and extensive educational resource in this important domain.

  12. Engaging academia to advance the science and practice of environmental public health tracking.

    Science.gov (United States)

    Strosnider, Heather; Zhou, Ying; Balluz, Lina; Qualters, Judith

    2014-10-01

    Public health agencies at the federal, state, and local level are responsible for implementing actions and policies that address health problems related to environmental hazards. These actions and policies can be informed by integrating or linking data on health, exposure, hazards, and population. The mission of the Centers for Disease Control and Prevention׳s National Environmental Public Health Tracking Program (Tracking Program) is to provide information from a nationwide network of integrated health, environmental hazard, and exposure data that drives actions to improve the health of communities. The Tracking Program and federal, state, and local partners collect, integrate, analyze, and disseminate data and information to inform environmental public health actions. However, many challenges exist regarding the availability and quality of data, the application of appropriate methods and tools to link data, and the state of the science needed to link and analyze health and environmental data. The Tracking Program has collaborated with academia to address key challenges in these areas. The collaboration has improved our understanding of the uses and limitations of available data and methods, expanded the use of existing data and methods, and increased our knowledge about the connections between health and environment. Valuable working relationships have been forged in this process, and together we have identified opportunities and improvements for future collaborations to further advance the science and practice of environmental public health tracking. Published by Elsevier Inc.

  13. Augmented Citizen Science for Environmental Monitoring and Education

    Science.gov (United States)

    Albers, B.; de Lange, N.; Xu, S.

    2017-09-01

    Environmental monitoring and ecological studies detect and visualize changes of the environment over time. Some agencies are committed to document the development of conservation and status of geotopes and geosites, which is time-consuming and cost-intensive. Citizen science and crowd sourcing are modern approaches to collect data and at the same time to raise user awareness for environmental changes. Citizen scientists can take photographs of point of interests (POI) with smartphones and the PAN App, which is presented in this article. The user is navigated to a specific point and is then guided with an augmented reality approach to take a photo in a specific direction. The collected photographs are processed to time-lapse videos to visualize environmental changes. Users and experts in environmental agencies can use this data for long-term documentation.

  14. Applications of SAR Interferometry in Earth and Environmental Science Research

    Science.gov (United States)

    Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun

    2009-01-01

    This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions. PMID:22573992

  15. Applications of SAR Interferometry in Earth and Environmental Science Research

    Directory of Open Access Journals (Sweden)

    Xiaobing Zhou

    2009-03-01

    Full Text Available This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions.

  16. Applications of SAR Interferometry in Earth and Environmental Science Research.

    Science.gov (United States)

    Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun

    2009-01-01

    This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions.

  17. Science teacher learning for MBL-supported student-centered science education in the context of secondary education in Tanzania

    NARCIS (Netherlands)

    Voogt, Joke; Tilya, F.; van den Akker, Jan

    2009-01-01

    Science teachers from secondary schools in Tanzania were offered an in-service arrangement to prepare them for the integration of technology in a student-centered approach to science teaching. The in-service arrangement consisted of workshops in which educative curriculum materials were used to

  18. Incorporating Geographic Information Science in the BSc Environ-mental Science Program in Botswana

    Science.gov (United States)

    Akinyemi, Felicia O.

    2018-05-01

    Critical human capacity in Geographic Information Science (GISc) is developed at the Botswana International University of Science and Technology, a specialized, research university. Strategies employed include GISc courses offered each semester to students from various programs, the conduct of field-based projects, enrolment in online courses, geo-spatial initiatives with external partners, and final year research projects utilizing geospatial technologies. A review is made of available GISc courses embedded in the Bachelor of Science Environmental Science program. GISc courses are incorporated in three Bachelor degree programs as distinct courses. Geospatial technologies are employed in several other courses. Student researches apply GIS and Remote Sensing methods to environmental and geological themes. The overarching goals are to equip students in various disciplines to utilize geospatial technologies, and enhance their spatial thinking and reasoning skills.

  19. Environmental sciences and computations: a modular data based systems approach

    International Nuclear Information System (INIS)

    Crawford, T.V.; Bailey, C.E.

    1975-07-01

    A major computer code for environmental calculations is under development at the Savannah River Laboratory. The primary aim is to develop a flexible, efficient capability to calculate, for all significant pathways, the dose to man resulting from releases of radionuclides from the Savannah River Plant and from other existing and potential radioactive sources in the southeastern United States. The environmental sciences programs at SRP are described, with emphasis on the development of the calculational system. It is being developed as a modular data-based system within the framework of the larger JOSHUA Computer System, which provides data management, terminal, and job execution facilities. (U.S.)

  20. Advancing Environmental Health: A Ballroom Dance Between Human Health and Earth Sciences Research

    Science.gov (United States)

    Miller, A.

    2016-12-01

    The mission of the National Institute of Environmental Health Sciences (NIEHS) is to discover how the environment affects people in order to promote healthier lives. Translation of this mission into a meaningful reality entails extensive interdisciplinary interactions, expertise, and collaborations between the traditional health and earth sciences communities. Efforts to advance our understanding of adverse effects and illness associated with environmental factors requires not only a refined understanding of the biological mechanisms and pathways (e.g., inflammation, epigenetic changes, oxidative stress, mutagenesis, etc.) related to function and disease, but also the incredibly broad and complex environmental exposures and systems that influence these processes. Further complicating efforts to understand such interactions is the need to take into account individual susceptibility to disease across the human life span. While it is clear that environmental exposures can be readily linked to disease in individuals and to disproportionate health disparities in populations, the underlying risk factors for such findings are often elusive. Health and earth scientists have a long tradition of crossing their scientific divides to work together on a wide range of problems and issues, including disasters. Emergency situations, such as the environmental asbestos contamination in Libby, Montana, the Gulf Oil Spill, numerous chemical releases into air and water, wildfires, the World Trade Center Attack, and responses to Ebola, and now Zika, demand the collective expertise of the "environmental health sciences enterprise" to protect the public's health, facilitate recovery, and improve future preparedness. Furthermore, such high visibility efforts stand as a clear example of what human and earth sciences research can accomplish when transformative interdisciplinary approaches and a diverse well-trained cadre of scientists dance together on the ballroom floor.

  1. Development of Distributed Research Center for analysis of regional climatic and environmental changes

    Science.gov (United States)

    Gordov, E.; Shiklomanov, A.; Okladnikov, I.; Prusevich, A.; Titov, A.

    2016-11-01

    We present an approach and first results of a collaborative project being carried out by a joint team of researchers from the Institute of Monitoring of Climatic and Ecological Systems, Russia and Earth Systems Research Center UNH, USA. Its main objective is development of a hardware and software platform prototype of a Distributed Research Center (DRC) for monitoring and projecting of regional climatic and environmental changes in the Northern extratropical areas. The DRC should provide the specialists working in climate related sciences and decision-makers with accurate and detailed climatic characteristics for the selected area and reliable and affordable tools for their in-depth statistical analysis and studies of the effects of climate change. Within the framework of the project, new approaches to cloud processing and analysis of large geospatial datasets (big geospatial data) inherent to climate change studies are developed and deployed on technical platforms of both institutions. We discuss here the state of the art in this domain, describe web based information-computational systems developed by the partners, justify the methods chosen to reach the project goal, and briefly list the results obtained so far.

  2. International environmental and occupational health: From individual scientists to networked science Hubs.

    Science.gov (United States)

    Rosenthal, Joshua; Jessup, Christine; Felknor, Sarah; Humble, Michael; Bader, Farah; Bridbord, Kenneth

    2012-12-01

    For the past 16 years, the International Training and Research in Environmental and Occupational Health program (ITREOH) has supported projects that link U.S. academic scientists with scientists from low- and middle-income countries in diverse research and research training activities. Twenty-two projects of varied duration have conducted training to enhance the research capabilities of scientists at 75 institutions in 43 countries in Asia, Africa, Eastern Europe, and Latin America, and have built productive research relationships between these scientists and their U.S. partners. ITREOH investigators and their trainees have produced publications that have advanced basic sciences, developed methods, informed policy outcomes, and built institutional capacity. Today, the changing nature of the health sciences calls for a more strategic approach. Data-rich team science requires greater capacity for information technology and knowledge synthesis at the local institution. More robust systems for ethical review and administrative support are necessary to advance population-based research. Sustainability of institutional research capability depends on linkages to multiple national and international partners. In this context, the Fogarty International Center, the National Institute of Environmental Sciences and the National Institute for Occupational Safety and Health, have reengineered the ITREOH program to support and catalyze a multi-national network of regional hubs for Global Environmental and Occupational Health Sciences (GEOHealth). We anticipate that these networked science hubs will build upon previous investments by the ITREOH program and will serve to advance locally and internationally important health science, train and attract first-class scientists, and provide critical evidence to guide policy discussions. Published in 2012. This article is a U.S. Government work and is in the public domain in the USA.

  3. The diversity and evolution of ecological and environmental citizen science.

    Directory of Open Access Journals (Sweden)

    Michael J O Pocock

    Full Text Available Citizen science-the involvement of volunteers in data collection, analysis and interpretation-simultaneously supports research and public engagement with science, and its profile is rapidly rising. Citizen science represents a diverse range of approaches, but until now this diversity has not been quantitatively explored. We conducted a systematic internet search and discovered 509 environmental and ecological citizen science projects. We scored each project for 32 attributes based on publicly obtainable information and used multiple factor analysis to summarise this variation to assess citizen science approaches. We found that projects varied according to their methodological approach from 'mass participation' (e.g. easy participation by anyone anywhere to 'systematic monitoring' (e.g. trained volunteers repeatedly sampling at specific locations. They also varied in complexity from approaches that are 'simple' to those that are 'elaborate' (e.g. provide lots of support to gather rich, detailed datasets. There was a separate cluster of entirely computer-based projects but, in general, we found that the range of citizen science projects in ecology and the environment showed continuous variation and cannot be neatly categorised into distinct types of activity. While the diversity of projects begun in each time period (pre 1990, 1990-99, 2000-09 and 2010-13 has not increased, we found that projects tended to have become increasingly different from each other as time progressed (possibly due to changing opportunities, including technological innovation. Most projects were still active so consequently we found that the overall diversity of active projects (available for participation increased as time progressed. Overall, understanding the landscape of citizen science in ecology and the environment (and its change over time is valuable because it informs the comparative evaluation of the 'success' of different citizen science approaches. Comparative

  4. Collaboration and Team Science Field Guide - Center for Research Strategy

    Science.gov (United States)

    Collaboration and Team Science: A Field Guide provides insight into the practices of conducting collaborative work. Since its 2010 publication, the authors have worked and learned from teams and organizations all over the world. Learn from these experiences in the second edition of the Team Science Field Guide.

  5. Science and Math in the Library Media Center Using GLOBE.

    Science.gov (United States)

    Aquino, Teresa L.; Levine, Elissa R.

    2003-01-01

    Describes the Global Learning and Observations to Benefit the Environment (GLOBE) program which helps school library media specialists and science and math teachers bring earth science, math, information literacy, information technology, and student inquiry into the classroom. Discusses use of the Internet to create a global network to study the…

  6. AECL's research and development program in environmental science and technology

    International Nuclear Information System (INIS)

    Cornett, R.J.

    1998-07-01

    AECL's radiological research and development (R and D) program encompasses work on sources of radiation exposure, radionuclide transport through the environment and potential impacts on biota and on human health. The application of the radiation protection knowledge and technology developed in this program provides cradle-to-grave management for CANDU and related nuclear technologies. This document provides an overview of the Environmental Science and Technology (ES and T) program which is one of the technical areas of R and D within the radiological R and D program. The ES and T program uses science from three main areas: radiochemistry, mathematical modelling and environmental assessment. In addition to providing an overview of the program, this summary also gives specific examples of recent technical work in each of the three areas. These technical examples illustrate the applied nature of the ES and T program and the close coupling of the program to CANDU customer requirements. (author)

  7. Publications in biomedical and environmental sciences programs, 1982

    International Nuclear Information System (INIS)

    Moody, J.B.

    1983-04-01

    This bibliography contains 725 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1982. There are 553 references to articles published in journals and books and 172 references to reports. The citations appear once ordered by the first author's division or by the performing division. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions are represented alphabetically. Indexes are provided by author, title, and journal reference. Reprints of articles referenced in this bibliography can be obtained from the author or the author's division

  8. Environmental and Medical Sciences Division progress report January - December, 1980

    International Nuclear Information System (INIS)

    Hainge, W.M.

    1982-02-01

    A progress report on the work performed during 1980 by the Environmental and Medical Sciences Division at UKAEA Harwell is given. The programmes considered were atmospheric pollution; landfill research; monitoring of radioactive fallout and other radionuclides and trace elements in the environment; radioactive and non-radioactive aerosol metabolic studies; inhalation toxicology of radioactive aerosols and other hazardous materials; chemical analytical services; and radiation physics in dosimetry research, applied radiation spectrometry and data systems. (U.K.)

  9. 78 FR 59944 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-09-30

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919... [[Page 59945

  10. Difficulties of Turkish Science Gifted Teachers: Institutions of Science and Art Centers.

    Directory of Open Access Journals (Sweden)

    Mehmet Küçük

    2005-05-01

    Full Text Available The purpose of this study is to determine the fundamental problems of science gifted teachers (SG/Ts who teach Turkish gifted children (G/C and compare it with the international milieu. Turkish G/C are taught in different educational contexts named “Science and Art Centers” (SACs in which better opportunities are presented for them. In this project, field observations were done at three of the SACs in Turkey - in Bayburt, Sinop, and Trabzon - and, semi-structured interviews were conducted with each of ten SG/Ts who work in these centers by one of the researchers. Data analysis showed that SG/Ts do not perceive their duties holistically and feel they need help with measurement and assessment techniques, modern learning theories, planning and implementation of a research project, questioning techniques and using laboratory-based methods for G/C. Moving from the research data, it is suggested that in service education courses, which include the above issues, should be organized for the SG/Ts and they should be encouraged to use an action research approach in teaching G/C in SACs.

  11. NASA Johnson Space Center Life Sciences Data System

    Science.gov (United States)

    Rahman, Hasan; Cardenas, Jeffery

    1994-01-01

    The Life Sciences Project Division (LSPD) at JSC, which manages human life sciences flight experiments for the NASA Life Sciences Division, augmented its Life Sciences Data System (LSDS) in support of the Spacelab Life Sciences-2 (SLS-2) mission, October 1993. The LSDS is a portable ground system supporting Shuttle, Spacelab, and Mir based life sciences experiments. The LSDS supports acquisition, processing, display, and storage of real-time experiment telemetry in a workstation environment. The system may acquire digital or analog data, storing the data in experiment packet format. Data packets from any acquisition source are archived and meta-parameters are derived through the application of mathematical and logical operators. Parameters may be displayed in text and/or graphical form, or output to analog devices. Experiment data packets may be retransmitted through the network interface and database applications may be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control and the LSDS system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability, and ease of use make the LSDS a cost-effective solution to many experiment data processing requirements. The same system is used for experiment systems functional and integration tests, flight crew training sessions and mission simulations. In addition, the system has provided the infrastructure for the development of the JSC Life Sciences Data Archive System scheduled for completion in December 1994.

  12. A Knowledge-Based Representation Scheme for Environmental Science Models

    Science.gov (United States)

    Keller, Richard M.; Dungan, Jennifer L.; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    One of the primary methods available for studying environmental phenomena is the construction and analysis of computational models. We have been studying how artificial intelligence techniques can be applied to assist in the development and use of environmental science models within the context of NASA-sponsored activities. We have identified several high-utility areas as potential targets for research and development: model development; data visualization, analysis, and interpretation; model publishing and reuse, training and education; and framing, posing, and answering questions. Central to progress on any of the above areas is a representation for environmental models that contains a great deal more information than is present in a traditional software implementation. In particular, a traditional software implementation is devoid of any semantic information that connects the code with the environmental context that forms the background for the modeling activity. Before we can build AI systems to assist in model development and usage, we must develop a representation for environmental models that adequately describes a model's semantics and explicitly represents the relationship between the code and the modeling task at hand. We have developed one such representation in conjunction with our work on the SIGMA (Scientists' Intelligent Graphical Modeling Assistant) environment. The key feature of the representation is that it provides a semantic grounding for the symbols in a set of modeling equations by linking those symbols to an explicit representation of the underlying environmental scenario.

  13. Update to Permeable Pavement Research at the Edison Environmental Center - abstract

    Science.gov (United States)

    Abstract The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable pavers...

  14. Microorganism Removal in Permeable Pavement Parking Lots in Edison Environmental Center, New Jersey

    Science.gov (United States)

    Three types of permeable pavements (pervious concrete, permeable interlocking concrete pavers, and porous asphalt) were monitored at the Edison Environmental Center in Edison, New Jersey for indicator organisms such as fecal coliform, enterococci, and E. coli. Results showed tha...

  15. Update to permeable pavement research at the Edison Environmental Center - slides

    Science.gov (United States)

    Abstract: The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable paver...

  16. NIEHS/EPA Children’s Environmental Health Centers: Lifecourse Exposures & Diet: Epigenetics, Maturation & Metabolic Syndrome

    Science.gov (United States)

    The Columbia Center for Children’s Environmental Health (CCCEH) at Columbia University studies long-term health of urban pollutants on children raised in minority neighborhoods in inner-city communities.

  17. NIEHS/EPA CEHCs: Children's Environmental Health and Disease Prevention Center - Dartmouth College

    Science.gov (United States)

    The Columbia Center for Children’s Environmental Health (CCCEH) at Columbia University studies long-term health of urban pollutants on children raised in minority neighborhoods in inner-city communities.

  18. Report: Results of Technical Network Vulnerability Assessment: EPA’s Andrew W. Breidenbach Environmental Research Center

    Science.gov (United States)

    Report #10-P-0210, September 7, 2010. Vulnerability testing of EPA’s Andrew W. Breidenbach Environmental Research Center network conducted in June 2010 identified Internet Protocol addresses with numerous high-risk and medium-risk vulnerabilities.

  19. 78 FR 18997 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2013-03-28

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act... personnel issues. Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111.... Agenda: Poster Sessions. Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell...

  20. 78 FR 18359 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2013-03-26

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Training, Nat. Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park... Environmental Health Sciences Special Emphasis Panel; Research Careers in Emerging Technologies. Date: April 30...

  1. 77 FR 60445 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-10-03

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Research and Training, National Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room... Environmental Health Sciences Special Emphasis Panel; Support for Conferences and Scientific Meetings. Date...

  2. 78 FR 25754 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-05-02

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... of Extramural Research and Training, Nat. Institute of Environmental Health Science, P.O. Box 12233... Health Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114, Applied...

  3. 77 FR 22793 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-04-17

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory.... Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919....D., Scientific Review Administrator, Nat. Institute of Environmental Health Sciences, Office of...

  4. 76 FR 79201 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-12-21

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(a) of the Federal Advisory Committee Act...: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander...., Director, Division of Extramural Research and Training, Nat. Inst. of Environmental Health Sciences...

  5. 76 FR 52672 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2011-08-23

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory.... of Environmental Health Sciences, Keystone Building, 530 Davis Drive, Research Triangle Park, NC..., Division of Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P.O. Box...

  6. 76 FR 50235 - National Institute of Environmental Health Sciences; Notice of Meetings

    Science.gov (United States)

    2011-08-12

    ... Environmental Health Sciences; Notice of Meetings Pursuant to section 10(a) of the Federal Advisory Committee... (DERT), Nat. Inst. of Environmental Health Sciences, National Institutes of Health, 615 Davis Dr... of Extramural Research and Training (DERT), Nat. Inst. of Environmental Health Sciences, National...

  7. 78 FR 39739 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-07-02

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... clearly unwarranted invasion of personal privacy. Name of Committee: Environmental Health Sciences Review... Research and Training, National Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30...

  8. 77 FR 26300 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2012-05-03

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act... Structural Biology. Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111... Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander Drive, Research Triangle...

  9. 77 FR 12602 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-03-01

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Environmental Health Sciences, Office of Program Operations, Scientific Review Branch, P.O. Box 12233, Research... Environmental Health Sciences Special Emphasis Panel; Career Development Early Award. Date: March 29, 2012. Time...

  10. 76 FR 46823 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-08-03

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act... Environmental Health Sciences Council. The meeting will be open to the public as indicated below, with...: Discussion of program policies and issues. Place: Nat. Inst. of Environmental Health Sciences, Building 101...

  11. 77 FR 6569 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-02-08

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Health Sciences, Special Emphasis Panel, Environmental Stem Cells Research. Date: February 29-March 2... of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919...

  12. 76 FR 7574 - National Institute of Environmental Health Sciences; Notice of Meetings

    Science.gov (United States)

    2011-02-10

    ... Environmental Health Sciences; Notice of Meetings Pursuant to section 10(a) of the Federal Advisory Committee... Cancer and Environmental Research Coordinating Committee State of the Science Subcommittee. These... Environmental Research Coordinating Committee (IBCERC) State of the Science Subcommittee. Date: March 29, 2011...

  13. 76 FR 62080 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2011-10-06

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... clearly unwarranted invasion of personal privacy. Name of Committee: Environmental Health Sciences Review... Extramural Research and Training, Nat'l Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30...

  14. 78 FR 14312 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2013-03-05

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Health Sciences Special Emphasis Panel; Understanding Environmental Control of Epigenetic/Mechanisms... Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30...

  15. 77 FR 33472 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-06-06

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Health Sciences Special Emphasis Panel International Collaborations in Environmental Health. Date: June....D., Scientific Review Administrator, Nat. Institute of Environmental Health Sciences, Office of...

  16. 76 FR 7225 - National Institute of Environmental Health Sciences; Notice of Meetings

    Science.gov (United States)

    2011-02-09

    ... Environmental Health Sciences; Notice of Meetings Pursuant to section 10(a) of the Federal Advisory Committee..., National Institute of Environmental Health Sciences, 615 Davis Dr., KEY615/3112, Research Triangle Park, NC..., National Institute of Environmental Health Sciences, 615 Davis Dr., KEY615/3112, Research Triangle Park, NC...

  17. 78 FR 32672 - National Institute of Environmental Health Sciences (NIEHS); Notice of Meeting

    Science.gov (United States)

    2013-05-31

    ... Environmental Health Sciences (NIEHS); Notice of Meeting Pursuant to the NIH Reform Act of 2006 (42 U.S.C. 281 (d)(4)), notice is hereby given that the National Institute of Environmental Health Sciences (NIEHS... Popovich, National Institute of Environmental Health Sciences, Division of Extramural Research and Training...

  18. 76 FR 71046 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-11-16

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(a) of the Federal Advisory Committee Act... Environmental Health Sciences, National Institutes of Health, 615 Davis Dr., KEY615/3112, Research Triangle Park... and Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences; 93.113...

  19. 77 FR 3480 - National Institute of Environmental Health Sciences Notice of Meeting

    Science.gov (United States)

    2012-01-24

    ... Environmental Health Sciences Notice of Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act... Environmental Health Sciences Council. The meeting will be open to the public as indicated below, with...: Discussion of program policies and issues. Place: Nat. Inst. of Environmental Health Sciences, Building 101...

  20. 76 FR 7572 - National Institute of Environmental Health Sciences; Notice of Meetings

    Science.gov (United States)

    2011-02-10

    ... Environmental Health Sciences; Notice of Meetings Pursuant to section 10(a) of the Federal Advisory Committee..., Director, Division of Extramural Research and Training, National Institute of Environmental Health Sciences... of Environmental Health Sciences, 615 Davis Dr., KEY615/3112, Research Triangle Park, NC 27709, (919...

  1. 76 FR 50234 - National Institute of Environmental Health Sciences Notice of Meetings

    Science.gov (United States)

    2011-08-12

    ... Environmental Health Sciences Notice of Meetings Pursuant to section 10(a) of the Federal Advisory Committee Act... of Extramural Research and Training (DERT), Nat. Inst. of Environmental Health Sciences, National..., Division of Extramural Research and Training (DERT), Nat. Inst. of Environmental Health Sciences, National...

  2. 76 FR 58521 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2011-09-21

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... and Training, Nat. Institute of Environmental Health Science, P. O. Box 12233, MD EC-30/Room 3170 B... Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P. O. Box 12233, MD EC-30...

  3. 75 FR 61765 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2010-10-06

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Environmental Health Sciences Special Emphasis Panel, Superfund Research and Training Program. Date: October 26...-Tilotta, PhD, Scientific Review Officer, Nat. Institute of Environmental Health Sciences, Office of...

  4. 76 FR 77239 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-12-12

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(a) of the Federal Advisory Committee Act.../boards/ibcercc/ . Place: National Institute of Environmental Health Sciences, Building 101, Rodbell... and Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences; 93.113...

  5. 75 FR 41505 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-07-16

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... clearly unwarranted invasion of personal privacy. Name of Committee: Environmental Health Sciences Review... applications. Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W...

  6. 77 FR 30019 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-05-21

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... of Extramural Research and Training, Nat. Institute of Environmental Health Science, P.O. Box 12233... Health Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114, Applied...

  7. 77 FR 16844 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-03-22

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory.... Institute Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919) 541-1307, [email protected] . Name of Committee: National Institute of Environmental Health Sciences...

  8. 78 FR 14562 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-03-06

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Health Sciences Special Emphasis Panel; Studies on Environmental Health Concerns from Superstorm Sandy... Administrator, National Institute of Environmental Health Sciences, Office of Program Operations, Scientific...

  9. 76 FR 5184 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2011-01-28

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Health Sciences Special Emphasis Panel; Outstanding New Environmental Scientist Award. Date: February 24... Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander Drive, Research Triangle...

  10. 76 FR 80954 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-12-27

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(a) of the Federal Advisory Committee Act.../boards/ibcercc/ . Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium... Environmental Health Sciences, National Institutes of Health, 615 Davis Dr., KEY615/3112, Research Triangle Park...

  11. 77 FR 61613 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-10-10

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Environmental Health Sciences, P. O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919) 541-1307, [email protected] . Name of Committee: National Institute of Environmental Health Sciences Special Emphasis...

  12. 76 FR 63311 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2011-10-12

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Environmental Health Sciences, Office of Program Operations, Scientific Review Branch, P.O. Box 12233, Research... Environmental Health Sciences Special Emphasis Panel, Development to Independence Review Meeting. Date: November...

  13. 77 FR 61771 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-10-11

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... clearly unwarranted invasion of personal privacy. Name of Committee: Environmental Health Sciences Review... applications. Place: National Institute of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111...

  14. 75 FR 68367 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-11-05

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Research and Training, Nat. Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room 3170 B... Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114, Applied Toxicological...

  15. 78 FR 26643 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2013-05-07

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act... Epidemiology Group and Biomarker-Based Epidemiology Group. Place: Nat. Inst. of Environmental Health Sciences.... Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W...

  16. 76 FR 26311 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2011-05-06

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory.... Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30/Room 3171, Research Triangle Park, NC... and Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences; 93.113...

  17. 77 FR 37423 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-06-21

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory..., [email protected] . Name of Committee: National Institute of Environmental Health Sciences Special... Research and Training, Nat. Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room 3170 B...

  18. 75 FR 10293 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-03-05

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory.... Institute Environmental Health Sciences, P. O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919... Health Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114, Applied...

  19. 76 FR 11500 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2011-03-02

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Administrator, Nat. Institute of Environmental Health Sciences, Office of Program Operations, Scientific Review... . Name of Committee: National Institute of Environmental Health Sciences Special Emphasis Panel; Novel...

  20. 75 FR 3474 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2010-01-21

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act... Environmental Health Sciences Council. The meeting will be open to the public as indicated below, with... of Committee: National Advisory Environmental Health Sciences Council. Date: February 18-19, 2010...

  1. 75 FR 49500 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2010-08-13

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act... Environmental Health Sciences Council. The meeting will be open to the public as indicated below, with... Committee: National Advisory Environmental Health Sciences Council. Date: September 1-2, 2010. Open...

  2. Final Environmental Assessment for the California Space Center at Vandenberg Air Force Base, California

    Science.gov (United States)

    2010-06-02

    rooted , mesophylic plant species that Chapter 3. Affected Environment Final Environmental Assessment - California Space Center, Vandenberg Air...Chapter 3. Affected Environment 3-12 Final Environmental Assessment - California Space Center, Vandenberg Air Force Base the root and debris zone of the...protruding objects, slippery soils or mud, and biological hazards including vegetation (i.e. poison oak and stinging nettle ), animals (i.e. insects

  3. Cities are at the center of our environmental future

    Directory of Open Access Journals (Sweden)

    Saskia Sassen

    2010-06-01

    Full Text Available The global environmental challenge becomes tangible and urgent in cities. Thus, it is critical that we understand the capabilities of cities to transform what is today a negative environmental impact to a positive one. We must make cities part of the solution. One point of entry to this question is to view cities as a type of socio-ecological system that has an expanding range of articulations with nature's ecologies. Today, most of these articulations produce environmental damage. How can we begin to use these articulations to produce positive outcomes - outcomes that allow cities to contribute to environmental sustainability? The complex systemic and multi-scalar capacities of cities provide massive potential for a broad range of positive articulations with nature's ecologies.El desafío ambiental global se hace tangible y urgente en las ciudades. Por ende, es necesario que comprendamos cuáles son las potencialidades de las ciudades para transformar lo que hoy es un impacto ambiental negativo en uno positivo. En este sentido, la ciudad debe ser considerada como parte de la solución. Una ventana para mirar este asunto es la que considera a las ciudades como sistemas socio-ecológicos con un abanico de articulaciones con los sistemas ecológicos naturales. Hoy en día, la mayoría de estas articulaciones produce daños. ¿Cómo podemos empezar a utilizarlas para producir impactos positivos, que permitan una contribución de las ciudades a la sostenibilidad ambiental? Las potencialidades de carácter complejo y multi-escalar de las ciudades representan un potencial de gran relevancia para explorar un amplio rango de articulaciones positivas con las dinámicas ecológicas naturales.

  4. Science Teachers' and Senior Secondary Schools Students' Perceptions of Earth and Environmental Science Topics

    Science.gov (United States)

    Dawson, Vaille; Carson, Katherine

    2013-01-01

    This article presents an evaluation of a new upper secondary Earth and Environmental Science (EES) course in Western Australia. Twenty-seven EES teachers were interviewed and 243 students were surveyed about the degree of difficulty, relevance and interest of EES topics in the course. The impact of the course on students' views about EES topics…

  5. The Language Research Center's Computerized Test System for environmental enrichment and psychological assessment

    Science.gov (United States)

    Washburn, D. A.; Rumbaugh, D. M.; Richardson, W. K.

    1992-01-01

    In the spring of 1987, we undertook to provide environmental enrichment to nonhuman primate subjects in ways that would complement and even contribute to the bio-behaviorial science that justified the monkeys' captivity. Of course, the psychological well-being of captive primates--and indeed all research species-- has been an area of intense research activity since the 1985 amendment of the Animal Welfare Act. This mandate for researchers to ensure the psychological, as well as physical, fitness of experimental animals catalyzed the humane and scientific interests of the research community. The contemporary literature is replete with proposed means both of assaying and of providing enrichment and well-being. Notwithstanding, consensus on either assessment or intervention has yet to be reached. The paradigm we employed was modelled after successful efforts with chimpanzees. An automated test system was constructed in which subjects responded to computer tasks by manipulating a joystick. The tasks, interactive game-like versions of many of the classic testing paradigms of cognitive and comparative psychology, permitted the controlled presentation of stimuli and demands without the required presence of a human experimenter. Despite significant barriers to the success, rhesus monkeys (Macaca mulatta) and a variety of other primate species (including, of course, humans) have mastered the skills necessary for testing in this paradigm. Previous experiments have illustrated the utility of the test system for addressing questions of learning, memory, attention, perception, and motivation. Additional data have been reported to support the contention that the Language Research Center's Computerized Test System (LRC-CTS) serves its other raison d'etre--providing environmental enrichment and assessing psychological well-being. This paper is designed to augment previous descriptions of the technology and the paradigm for scientists and caretakers interested in environmental

  6. A Reconstructed Vision of Environmental Science Literacy: The Case of Qatar

    Science.gov (United States)

    Khishfe, Rola

    2014-01-01

    The purpose of this study was twofold: (a) develop a conceptual framework for environmental science literacy; and consequently (b) examine the potential of science standards/curricula to prepare environmentally literate citizens. The framework comprised four pillars: science content knowledge, scientific inquiry, nature of science (NOS), and…

  7. Environmental Sciences Laboratory dedication, February 26-27, 1979

    International Nuclear Information System (INIS)

    Auerbach, S.I.; Millemann, N.T.

    1980-09-01

    The dedication of the new Environmental Sciences Laboratory coincided with the 25th year of the establishment of the science of ecology at Oak Ridge National Laboratory. That quarter century witnessed the evolution of ecology from an obscure, backwater discipline of biology to a broadly used, everyday household word. The transition reflected broad and basic changes in our social and cultural view of the world. This was brought about as a result of the awareness developed in our society of the importance of the environment, coupled with efforts of ecologists and other environmental scientists who identified, clarified, and formulated the issues and challenges of environmental protection for both the lay public and the scientific community. In many respects, the activities in ecology at ORNL were a microcosm of the broader social scene; the particular problems of the environment associated with atomic energy needed to be defined in scientific terms and articulated in both the specific and general sense for a larger audience which was unfamiliar with the field and somewhat alien to its concepts and philosophy. The success of this effort is reflected in the existence of the new Environmental Sciences Laboratory. This dedication volume brings together the thoughts and reflections of many of these scientists whose efforts contributed in a unique and individualistic fashion not only to ORNL but also to the national identification of ecology and its importance to the achievement of our national goals. Their remarks and presentations are not only a pleasant and personally gratifying recapitulation of the past and of ORNL's contributions to ecology but also portend some of the challenges to ecology in the future

  8. Environmental Sciences Laboratory dedication, February 26-27, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, S.I.; Millemann, N.T. (eds.)

    1980-09-01

    The dedication of the new Environmental Sciences Laboratory coincided with the 25th year of the establishment of the science of ecology at Oak Ridge National Laboratory. That quarter century witnessed the evolution of ecology from an obscure, backwater discipline of biology to a broadly used, everyday household word. The transition reflected broad and basic changes in our social and cultural view of the world. This was brought about as a result of the awareness developed in our society of the importance of the environment, coupled with efforts of ecologists and other environmental scientists who identified, clarified, and formulated the issues and challenges of environmental protection for both the lay public and the scientific community. In many respects, the activities in ecology at ORNL were a microcosm of the broader social scene; the particular problems of the environment associated with atomic energy needed to be defined in scientific terms and articulated in both the specific and general sense for a larger audience which was unfamiliar with the field and somewhat alien to its concepts and philosophy. The success of this effort is reflected in the existence of the new Environmental Sciences Laboratory. This dedication volume brings together the thoughts and reflections of many of these scientists whose efforts contributed in a unique and individualistic fashion not only to ORNL but also to the national identification of ecology and its importance to the achievement of our national goals. Their remarks and presentations are not only a pleasant and personally gratifying recapitulation of the past and of ORNL's contributions to ecology but also portend some of the challenges to ecology in the future.

  9. 77 FR 19699 - Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2012-04-02

    ... Indian tribe, has determined that the cultural items meet the definition of both sacred objects and... Rochester Museum & Science Center that meet the definition of both sacred objects and [[Page 19700

  10. Master's Level Graduate Training in Medical Physics at the University of Colorado Health Sciences Center.

    Science.gov (United States)

    Ibbott, Geoffrey S.; Hendee, William R.

    1980-01-01

    Describes the master's degree program in medical physics developed at the University of Colorado Health Sciences Center. Required courses for the program, and requirements for admission are included in the appendices. (HM)

  11. Spent fuel storage facility at science and technical center 'Sosny': Experience of ten years activity

    International Nuclear Information System (INIS)

    Chigrinov, S.; Goulo, V.; Lunev, A.; Belousov, N.; Salnikov, L.; Boiko, L.

    2000-01-01

    Spent fuel storage of the Academic Science and Technical Center in Minsk is in operation already more then 10 years. In the paper aspects of its design, operation practice, problems and decisions for future are discussed. (author)

  12. National Climate Change and Wildlife Science Center, Version 2.0

    Science.gov (United States)

    O'Malley, R.; Fort, E.; Hartke-O'Berg, N.; Varela-Acevedo, E.; Padgett, Holly A.

    2013-01-01

    The mission of the USGS's National Climate Change and Wildlife Science Center (NCCWSC) is to serve the scientific needs of managers of fish, wildlife, habitats, and ecosystems as they plan for a changing climate. DOI Climate Science Centers (CSCs) are management by NCCWSC and include this mission as a core responsibility, in line with the CSC mission to provide scientific support for climate-adaptation across a full range of natural and cultural resources. NCCWSC is a Science Center application designed in Drupal with the OMEGA theme. As a content management system, Drupal allows the science center to keep their website up-to-date with current publications, news, meetings and projects. OMEGA allows the site to be adaptive at different screen sizes and is developed on the 960 grid.

  13. 77 FR 51564 - Notice of Inventory Completion: Herrett Center for Arts and Science, College of Southern Idaho...

    Science.gov (United States)

    2012-08-24

    ... Inventory Completion: Herrett Center for Arts and Science, College of Southern Idaho, Twin Falls, ID AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Herrett Center for Arts and Science, College... associated funerary object may contact the Herrett Center for Arts and Science, College of Southern Idaho...

  14. Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle

    Science.gov (United States)

    2015-08-03

    AND SUBTITLE Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle...Center program to be able to expose Science Technology, Engineering and Mathematics (STEM) space-inspired science centers for DC Metro beltway schools

  15. Reference Data Layers for Earth and Environmental Science: History, Frameworks, Science Needs, Approaches, and New Technologies

    Science.gov (United States)

    Lenhardt, W. C.

    2015-12-01

    Global Mapping Project, Web-enabled Landsat Data (WELD), International Satellite Land Surface Climatology Project (ISLSCP), hydrology, solid earth dynamics, sedimentary geology, climate modeling, integrated assessments and so on all have needs for or have worked to develop consistently integrated data layers for Earth and environmental science. This paper will present an overview of an abstract notion of data layers of this types, what we are referring to as reference data layers for Earth and environmental science, highlight some historical examples, and delve into new approaches. The concept of reference data layers in this context combines data availability, cyberinfrastructure and data science, as well as domain science drivers. We argue that current advances in cyberinfrastructure such as iPython notebooks and integrated science processing environments such as iPlant's Discovery Environment coupled with vast arrays of new data sources warrant another look at the how to create, maintain, and provide reference data layers. The goal is to provide a context for understanding science needs for reference data layers to conduct their research. In addition, to the topics described above this presentation will also outline some of the challenges to and present some ideas for new approaches to addressing these needs. Promoting the idea of reference data layers is relevant to a number of existing related activities such as EarthCube, RDA, ESIP, the nascent NSF Regional Big Data Innovation Hubs and others.

  16. Science and Mathematics Teacher Candidates' Environmental Knowledge, Awareness, Behavior and Attitudes

    Science.gov (United States)

    Yumusak, Ahmet; Sargin, Seyid Ahmet; Baltaci, Furkan; Kelani, Raphael R.

    2016-01-01

    The purpose of this study was to measure science and mathematics teacher candidates' environmental knowledge level, awareness, behavior and environmental attitudes. Four instruments comprising Environmental Sensitivity Scale, environmental Behavior Scale, Environmental Attitudes Scale and Environmental Knowledge Test were administered to a total…

  17. 77 FR 4572 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-01-30

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental Health Hazards... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Environmental...

  18. 76 FR 59147 - National Institute of Environmental Health Sciences Notice of Meetings

    Science.gov (United States)

    2011-09-23

    ... Environmental Health Sciences Notice of Meetings Pursuant to section 10(a) of the Federal Advisory Committee Act... Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental Health Hazards... Environmental Research Coordinating Committee. The meetings will be open to the public, with attendance limited...

  19. Energy efficiency and environmental considerations for green data centers

    International Nuclear Information System (INIS)

    Uddin, M.; Shah, A.

    2014-01-01

    The advancement of business and social practices based on information and social practices based on information and communication technologies (ICTs) in the last few decades has transformed many, if not most, economies and businesses into e-economies and businesses into e-businesses. For economies, ICTs are increasingly playing a critical role in transforming and generating economic opportunities. Technology has a potential to create sustainable business and society both in grim and green economic times. Especially, the recovery from the current economic crisis is going to lead to more greener and energy efficient industries. Data centers are found to be major culprits in consuming too much energy and generating higher level of CO/sub 2/ in their overall operations. In order to handle the sheer magnitude of today's data, servers have become larger, denser, hotter, and significantly more costly operate using more power than being used earlier. This paper determines the properties and attributes of green IT infrastructures and the way they will be helpful in achieving green sustainable businesses. The proposed attributes and characteristics of green IT using Virtualization technology are very productive and efficient and green, hence reducing the emission of greenhouse gases so that their overall effect on global warming can be reduced or even eliminated. The proposed attributes indicate the qualities of green IT to enhance the proper utilization of hardware and software resources available in the data center. (author)

  20. NIEHS/EPA Children's Environmental Health and Disease Prevention Research Centers: 2017 Annual Meeting Proceedings

    Science.gov (United States)

    The 2017 Annual Meeting of the NIEHS/EPA Children’s Environmental Health and Disease Prevention Research Centers was hosted by EPA in collaboration with NIEHS and the Pediatric Environmental Health Specialty Units (PEHSUs). The meeting was held at the EPA Region 9 offices i...

  1. Role of social science in global environmental change: case of urbanisation

    CSIR Research Space (South Africa)

    Njiro, E

    2006-02-01

    Full Text Available the role of social scientists in global environmental change by examining urbanisation and other environmental changes as suggested in the science plan of the International Human Dimensions Programme on Global Environmental Change (IHDP 2005)...

  2. Jackson State University (JSU)’s Center of Excellence in Science, Technology, Engineering, and Mathematics Education (CESTEME)

    Science.gov (United States)

    2016-01-08

    Actuarial Science Taylor, Triniti Lanier Alcorn State University Animal Science Tchounwou, Hervey Madison Central Jackson State University Computer...for Public Release; Distribution Unlimited Final Report: Jackson State University (JSU)’s Center of Excellence in Science , Technology, Engineering...Final Report: Jackson State University (JSU)’s Center of Excellence in Science , Technology, Engineering, and Mathematics Education (CESTEME) Report

  3. Building a Collaboratory in Environmental and Molecular Science

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, R.T.; Myers, J.D.; Devaney, D.M.; Dunning, T.H.; Wise, J.A.

    1994-03-01

    A Collaboratory is a meta-laboratory that spans multiple geographical areas with collaborators interacting via electronic means. Collaboratories are designed to enable close ties between scientists in a given research area, promote collaborations involving scientists in diverse areas, accelerate the development and dissemination of basic knowledge, and minimize the time-lag between discovery and application. PNL is developing the concept of an Environmental and Molecular Sciences Collaboratory (EMSC) as a natural evolution of the EMSL project. The goal of the EMSC is to increase the efficiency of research and reduce the time required to implement new environmental remediation and preservation technologies. The EMSC will leverage the resources (intellectual and physical) of the EMSL by making them more accessible to remote collaborators as well as by making the resources of remote sites available to local researchers. It will provide a common set of computer hardware and software tools to support remote collaboration, a key step in establishing a collaborative culture for scientists in the theoretical, computational, and experimental molecular sciences across the nation. In short, the EMSC will establish and support an `electronic community of scientists researching and developing innovative environmental preservation and restoration technologies.

  4. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    Science.gov (United States)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  5. Building a Collaboratory in Environmental and Molecular Science

    International Nuclear Information System (INIS)

    Kouzes, R.T.; Myers, J.D.; Devaney, D.M.; Dunning, T.H.; Wise, J.A.

    1994-03-01

    A Collaboratory is a meta-laboratory that spans multiple geographical areas with collaborators interacting via electronic means. Collaboratories are designed to enable close ties between scientists in a given research area, promote collaborations involving scientists in diverse areas, accelerate the development and dissemination of basic knowledge, and minimize the time-lag between discovery and application. PNL is developing the concept of an Environmental and Molecular Sciences Collaboratory (EMSC) as a natural evolution of the EMSL project. The goal of the EMSC is to increase the efficiency of research and reduce the time required to implement new environmental remediation and preservation technologies. The EMSC will leverage the resources (intellectual and physical) of the EMSL by making them more accessible to remote collaborators as well as by making the resources of remote sites available to local researchers. It will provide a common set of computer hardware and software tools to support remote collaboration, a key step in establishing a collaborative culture for scientists in the theoretical, computational, and experimental molecular sciences across the nation. In short, the EMSC will establish and support an 'electronic community of scientists researching and developing innovative environmental preservation and restoration technologies

  6. The University of Texas Health Science Center at Houston

    African Journals Online (AJOL)

    Adebimpe Oyeyemi

    elucidates on the scholarship of discovery, the scholarship of application, the scholarship of integration and the scholarship of ... Science and professional education in medicine and health are .... approaches, modification of an existing approach that results in .... Their Teaching to Advance Practice and Improve Students.

  7. 78 FR 77687 - Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting

    Science.gov (United States)

    2013-12-24

    ... year. The SAB will be presented with an overview of the Division of Microbiology Subcommittee and the... National Toxicology Program of the National Institutes of Environmental Health Sciences on current and...

  8. National Space Science Data Center and World Data Center A for Rockets and Satellites - Ionospheric data holdings and services

    Science.gov (United States)

    Bilitza, D.; King, J. H.

    1988-01-01

    The activities and services of the National Space Science data Center (NSSDC) and the World Data Center A for Rockets and Satellites (WDC-A-R and S) are described with special emphasis on ionospheric physics. The present catalog/archive system is explained and future developments are indicated. In addition to the basic data acquisition, archiving, and dissemination functions, ongoing activities include the Central Online Data Directory (CODD), the Coordinated Data Analysis Workshopps (CDAW), the Space Physics Analysis Network (SPAN), advanced data management systems (CD/DIS, NCDS, PLDS), and publication of the NSSDC News, the SPACEWARN Bulletin, and several NSSD reports.

  9. 75 FR 36666 - Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2010-06-28

    ... and 1941, the Works Progress Administration/Indian Arts Project paid members of the Tonawanda Seneca..., director, Rochester Museum of Arts & Science (now Rochester Museum & Science Center), with the intent of... medicine faces were also created under the auspices of the Works Progress Administration/Indian Arts...

  10. 75 FR 23801 - Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2010-05-04

    ... Museum & Science Center, Rochester, NY, that meet the definitions of ``sacred objects'' and ``objects of... center of the Seneca religious fire. This was agreed upon by representatives from the Seneca Nation of.... Tonawanda Seneca Nation traditional religious leaders have identified these medicine faces as being needed...

  11. Next generation neutron scattering at Neutron Science Center project in JAERI

    International Nuclear Information System (INIS)

    Yamada, Yasusada; Watanabe, Noboru; Niimura, Nobuo; Morii, Yukio; Katano, Susumu; Aizawa, Kazuya; Suzuki, Jun-ichi; Koizumi, Satoshi; Osakabe, Toyotaka.

    1997-01-01

    Japan Atomic Energy Research Institute (JAERI) has promoted neutron scattering researches by means of research reactors in Tokai Research Establishment, and proposes 'Neutron Science Research Center' to develop the future prospect of the Tokai Research Establishment. The scientific fields which will be expected to progress by the neutron scattering experiments carried out at the proposed facility in the Center are surveyed. (author)

  12. Workshop on APEC virtual center for environmental technology exchange; APEC kankyo gijutsu koryu virtual center workshop hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    At the 'policy maker workshop of the virtual center of APEC technology exchange' held in November 1997 in Osaka, Japan, it was agreed to organize study groups to discuss the scope of information provided by the virtual center, and to make common the classification systems and retrieval functions. In addition, the necessity was confirmed on international cooperation to promote establishment of virtual centers in different countries and territories. On the first day, Professor Ueda at the Kyoto University gave the basic lecture entitled 'global environment preservation and environmental technology transfer: problems and prospects'. Mr. Dan, the workshop manager gave the basic proposal entitled 'the future directionality of environmental technology exchange inside the APEC territories by using Internet'. Based on the basic proposal made on the first day, reports and discussions were given in the following sessions, where confirmation was made on the future directions. S1: establishment of the virtual centers in other countries and territories; S2: assurance of interchangeability of classification systems and retrieval functions in providing information, and S3: presentation of examples of inter-territorial exchange and the future directionality. (NEDO)

  13. Workshop on APEC virtual center for environmental technology exchange; APEC kankyo gijutsu koryu virtual center workshop hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    At the 'policy maker workshop of the virtual center of APEC technology exchange' held in November 1997 in Osaka, Japan, it was agreed to organize study groups to discuss the scope of information provided by the virtual center, and to make common the classification systems and retrieval functions. In addition, the necessity was confirmed on international cooperation to promote establishment of virtual centers in different countries and territories. On the first day, Professor Ueda at the Kyoto University gave the basic lecture entitled 'global environment preservation and environmental technology transfer: problems and prospects'. Mr. Dan, the workshop manager gave the basic proposal entitled 'the future directionality of environmental technology exchange inside the APEC territories by using Internet'. Based on the basic proposal made on the first day, reports and discussions were given in the following sessions, where confirmation was made on the future directions. S1: establishment of the virtual centers in other countries and territories; S2: assurance of interchangeability of classification systems and retrieval functions in providing information, and S3: presentation of examples of inter-territorial exchange and the future directionality. (NEDO)

  14. Environmentally induced nonstationarity in LIGO science run data

    International Nuclear Information System (INIS)

    Stone, Robert; Mukherjee, Soma

    2009-01-01

    NoiseFloorMon is a data monitoring tool (DMT) implemented at the LIGO sites to monitor instances of non-stationarity in the gravitational-wave data that are correlated with physical environmental monitors. An analysis of the fifth science run is nearly complete, and test runs preceding the sixth science run have also been analyzed. These analyses have identified time intervals in the gravitational-wave channel that indicate non-stationarity due to seismic activity, and these intervals are referred to as data quality flags. In the analyses conducted to date the majority of time segments identified as non-stationary were due to seismic activity at the corner station and the x-arm end station. We present the algorithm and its performance, and discuss the potential for an on-site pipeline that automatically generates data quality flags for use in future data runs.

  15. A Mentoring Program in Environmental Science for Underrepresented Groups

    Science.gov (United States)

    Stevens, L.; Rizzo, D. M.

    2009-12-01

    We developed a four-year program, combining educational and career support and research activities, to recruit and retain students from underrepresented groups in environmental sciences. Specifically, the program: ○ Assigns each student a faculty or graduate student mentor with whom the student conducts research activities. ○ Includes a weekly group meeting for team building and to review professional development and academic topics, such as time management and research ethics. ○ Requires students to make multiple formal presentations of their research proposals and results. ○ Provides scholarships and stipends for both the academic year and to engage students in summer research. The program seeks to achieve several goals including: ● Enhance academic performance. ● Encourage continued study in environmental science. ● Facilitate students completing their studies at UVM. ● Increase students’ interest in pursuing science careers. ● Create a more welcoming academic environment. To assess progress toward achievement of these goals, we conducted individual structured interviews with participating undergraduate students, graduate students, and faculty members at two points in time. First, interviews were conducted in the fall of 2007 after two years, and again in spring 2009, after four years. An independent research consultant, Dr. Livingston, conducted the interviews. In 2009, over the course of three days, the interviews included three graduate student and two faculty mentors, and six of the seven undergraduate students. Of the six students, three were juniors and three were graduating seniors. Results of the 2009 interviews echoed those of 2007. Both students and their mentors are quite satisfied with the program. The student presentations, weekly meetings, mentoring relationships, and summer research experiences all get high ratings from program participants. Students give high praise to their mentors and the program directors for providing

  16. Scientific data management in the environmental molecular sciences laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, P.R.; Keller, T.L.

    1995-09-01

    The Environmental Molecular Sciences Laboratory (EMSL) is currently under construction at Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy (DOE). This laboratory will be used for molecular and environmental sciences research to identify comprehensive solutions to DOE`s environmental problems. Major facilities within the EMSL include the Molecular Sciences Computing Facility (MSCF), a laser-surface dynamics laboratory, a high-field nuclear magnetic resonance (NMR) laboratory, and a mass spectrometry laboratory. The EMSL is scheduled to open early in 1997 and will house about 260 resident and visiting scientists. It is anticipated that at least six (6) terabytes of data will be archived in the first year of operation. An object-oriented database management system (OODBMS) and a mass storage system will be integrated to provide an intelligent, automated mechanism to manage data. The resulting system, called the DataBase Computer System (DBCS), will provide total scientific data management capabilities to EMSL users. A prototype mass storage system based on the National Storage Laboratory`s (NSL) UniTree has been procured and is in limited use. This system consists of two independent hierarchies of storage devices. One hierarchy of lower capacity, slower speed devices provides support for smaller files transferred over the Fiber Distributed Data Interface (FDDI) network. Also part of the system is a second hierarchy of higher capacity, higher speed devices that will be used to support high performance clients (e.g., a large scale parallel processor). The ObjectStore OODBMS will be used to manage metadata for archived datasets, maintain relationships between archived datasets, and -hold small, duplicate subsets of archived datasets (i.e., derivative data). The interim system is called DBCS, Phase 0 (DBCS-0). The production system for the EMSL, DBCS Phase 1 (DBCS-1), will be procured and installed in the summer of 1996.

  17. SUstaiNability: a science communication website on environmental research

    Science.gov (United States)

    Gravina, Teresita; Rutigliano, Flora Angela

    2015-04-01

    Environmental news mainly reach not specialist people by mass media, which generally focuses on fascinating or catastrophic events without reporting scientific data. Otherwise, scientific data on environment are published in peer-reviewed journals with specific language, so they could be not understandable to common people. In the last decade, Internet spread made easier to divulge environmental information. This allows everyone (scientist or not) to publish information without revision. In fact, World Wide Web includes many scientific sites with different levels of confidence. Within Italian scientific websites, there are those of University and Research Centre, but they mainly contain didactic and bureaucratic information, generally lacking in research news, or reporting them in peer-reviewed format. University and Research Centre should have an important role to divulge certified information, but news should be adapted to a general audience without scientific skills, in order to help population to gain knowledge on environmental issues and to develop responsible behavior. Therefore, an attractive website (www.sunability.unina2.it) has been created in order to divulge research products of Environmental, Biological and Pharmaceutical Sciences and Technologies Department (DiSTABiF) of Second University of Naples-SUN (Campania, Southern Italy). This website contains divulgation articles derived from peer-reviewed publications of DiSTABiF researchers and concerning studies on environmental, nutrition, and health issues, closely related topics. Environmental studies mainly referred to Caserta district (Southern Italy), where DiSTABiF is located. Divulgation articles have been shared by main social networks (Facebook: sunability, Twitter: @SUNability) and accesses have been monitored for 28 days in order to obtain demographic and geographic information about users and visualization number of both DiSTABiF website and social network pages. Demographic and geographic

  18. Sandia Laboratories technical capabilities. Auxiliary capabilities: environmental health information science

    International Nuclear Information System (INIS)

    1975-09-01

    Sandia Laboratories is an engineering laboratory in which research, development, testing, and evaluation capabilities are integrated by program management for the generation of advanced designs. In fulfilling its primary responsibility to ERDA, Sandia Laboratories has acquired extensive research and development capabilities. The purpose of this series of documents is to catalog the many technical capabilities of the Laboratories. After the listing of capabilities, supporting information is provided in the form of highlights, which show applications. This document deals with auxiliary capabilities, in particular, environmental health and information science. (11 figures, 1 table) (RWR)

  19. Environmental dose reconstruction: Approaches to an inexact science

    International Nuclear Information System (INIS)

    Hoffman, F.O.

    1991-01-01

    The endpoints of environmental dose reconstruction are quantitative yet the science is inexact. Four problems related to this issue are described. These problems are: (1) Defining the scope of the assessment and setting logical priorities for detailed investigations, (2) Recognizing the influence of investigator judgment of the results, (3) Selecting an endpoint other than dose for the assessment of multiple contaminants, and (4) Resolving the conflict between credibility and expertise in selecting individuals responsible for dose reconstruction. Approaches are recommended for dealing with each of these problems

  20. Crowd-Sourced Radio Science at Marshall Space Flight Center

    Science.gov (United States)

    Fry, C. D.; McTernan, J. K.; Suggs, R. M.; Rawlins, L.; Krause, L. H.; Gallagher, D. L.; Adams, M. L.

    2018-01-01

    August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged citizen scientists and students in an investigation of the effects of an eclipse on the mid-latitude ionosphere. Activities included fieldwork and station-based data collection of HF Amateur Radio frequency bands and VLF radio waves before, during, and after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse.

  1. A Center for Excellence in Mathematical Sciences Final Progress Report

    Science.gov (United States)

    1997-02-18

    concentration are a Groebner Basis Project and a Symbolic Methods in AI and Computer Science project, with simultaneous development of other needed areas. The... Groebner construction algorithm. Develop an algebraic theory of piece wise polynomial approximation based on the Bezier- Bernstein algebra. Address...questions surrounding polytopes, splines, and complexity of Groebner basis computations. In topology determine the homotopy type of subdivision lattice of a

  2. Incorporating Environmental Regulation and Litigation in Earth Science Curriculum

    Science.gov (United States)

    Flegal, A. R.

    2004-12-01

    Fundamental knowledge of geological processes is not only needed for effective environmental regulation and litigation, but Earth Science students find that relevance motivating in their studies of those processes. Crustal abundance and redox reactions suddenly become personally meaningful when they are used to account for the presence of high levels of carcinogenic Cr(VI) in the students' drinking water. Similarly, epithermal mercury deposits and the element's speciation gain new importance when they are related to the warning signs on the consumption of fish that the students catch and eat. And even those students that are not motivated by these, and many other, applications of geology find solace in learning that anthropogenic perturbations of the global lead cycle may partially account for their short attention span, lack of interest, and inability to learn the material. Consequently, a number of courses in environmental toxicology and ground water contamination have been developed that are based on (1) case studies in environmental regulation and litigation and (2) active student participation as "expert witnesses" opining on the scientific basis of environmental decisions.

  3. The National Climate Change and Wildlife Science Center annual report for 2013

    Science.gov (United States)

    Varela-Acevedo, Elda

    2014-01-01

    In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to respond to the demands of natural resource managers for rigorous scientific information and effective tools for assessing and responding to climate change. Located at the USGS National Headquarters in Reston, Va., the NCCWSC has invested more than $93 million (through FY13) in cutting-edge climate change research and, in response to Secretarial Order No. 3289, established and is managing eight regional Department of Interior (DOI) Climate Science Centers (CSCs). In 2013:

  4. The efficacy of student-centered instruction in supporting science learning.

    Science.gov (United States)

    Granger, E M; Bevis, T H; Saka, Y; Southerland, S A; Sampson, V; Tate, R L

    2012-10-05

    Transforming science learning through student-centered instruction that engages students in a variety of scientific practices is central to national science-teaching reform efforts. Our study employed a large-scale, randomized-cluster experimental design to compare the effects of student-centered and teacher-centered approaches on elementary school students' understanding of space-science concepts. Data included measures of student characteristics and learning and teacher characteristics and fidelity to the instructional approach. Results reveal that learning outcomes were higher for students enrolled in classrooms engaging in scientific practices through a student-centered approach; two moderators were identified. A statistical search for potential causal mechanisms for the observed outcomes uncovered two potential mediators: students' understanding of models and evidence and the self-efficacy of teachers.

  5. Students’ Digital Photography Behaviors during a Multiday Environmental Science Field Trip and Their Recollections of Photographed Science Content

    Directory of Open Access Journals (Sweden)

    Victor R. Lee

    2014-01-01

    Full Text Available Taking photographs to document the experiences of an educational field trip is becoming a common activity for teachers and students alike. Considering the regular creation of photographic artifacts, our goal in this paper is to explore students’ picture taking behavior and their recollections of science content associated with their photographs. In this study, we partnered with a class of fifth-grade students in the United States and provided each student with a digital camera to document their experiences during an environmental science field trip at a national park. We report the frequency of photography behaviors according to which activities were most often documented by the students and specifically that students tended to document more of their experiences when they were in outdoor, natural spaces rather than inside of visitor centers or museums. Also, through an analysis of students’ comments about the science content captured in their photographs we observe that students’ comments about photographs of the outdoors tended to show greater depth and complexity than those that were taken in indoor, museum-like spaces.

  6. Center of Excellence in Space Data and Information Sciences

    Science.gov (United States)

    Yesha, Yelena

    1999-01-01

    This report summarizes the range of computer science-related activities undertaken by CESDIS for NASA in the twelve months from July 1, 1998 through June 30, 1999. These activities address issues related to accessing, processing, and analyzing data from space observing systems through collaborative efforts with university, industry, and NASA space and Earth scientists. The sections of this report which follow, detail the activities undertaken by the members of each of the CESDIS branches. This includes contributions from university faculty members and graduate students as well as CESDIS employees. Phone numbers and e-mail addresses appear in Appendix F (CESDIS Personnel and Associates) to facilitate interactions and new collaborations.

  7. Small neutron sources as centers for innovation and science

    International Nuclear Information System (INIS)

    Baxter, D.V.

    2009-01-01

    The education and training of the next generation of scientists who will form the user base for the Spallation Neutron Source (SNS) remains a significant issue for the future success of this national facility. These scientists will be drawn from a wide variety of disciplines (physics, chemistry, biology, and engineering) and therefore the development of an effective interdisciplinary training program represents a significant challenge. In addition, effective test facilities to develop the full potential of pulsed neutron sources for science do not exist. Each of these problems represents a significant hurdle for the future health of neutron science in this country. An essential part of the solution to both problems is to get neutron sources of useful intensities into the hands of researchers and students at universities, where faculty can teach students about neutron production and the utility of neutrons for solving scientific problems. Due to a combination of developments in proton accelerator technology, neutron optics, cold neutron moderators, computer technology, and small-angle neutron scattering (SANS) instrumentation, it is now technically possible and cost effective to construct a pulsed cold neutron source suitable for use in a university setting and devoted to studies of nano structures in the fields of materials science, polymers, microemulsions, and biology. Such a source, based on (p,n) reactions in light nuclei induced by a few MeV pulsed proton beam coupled to a cold neutron moderator, would also be ideal for the study of a number of technical issues which are essential for the development of neutron science such as cold and perhaps ultracold neutron moderators, neutron optical devices, neutron detector technology, and transparent DAQ/user interfaces. At the Indiana University Cyclotron Facility (IUCF) we possess almost all of the required instrumentation and expertise to efficiently launch the first serious attempt to develop an intense pulsed cold

  8. Publications in biomedical and environmental sciences programs, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.B. (comp.)

    1983-04-01

    This bibliography contains 725 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1982. There are 553 references to articles published in journals and books and 172 references to reports. The citations appear once ordered by the first author's division or by the performing division. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions are represented alphabetically. Indexes are provided by author, title, and journal reference. Reprints of articles referenced in this bibliography can be obtained from the author or the author's division.

  9. Crafting Disaster Risk Science: Environmental and geographical science sans frontières

    Directory of Open Access Journals (Sweden)

    Ailsa Holloway

    2009-11-01

    Full Text Available In keeping with the University of Cape Town’s commitment to social responsiveness (http://www.socialresponsiveness.uct.ac.za/, this article traces the process that underpinned the development and introduction of a postgraduate programme in Disaster Risk Science (DRS. It foregrounds the programme’s conceptualisation within the Department of Environmental and Geographical Science (EGS at the University of Cape Town (UCT, with particular emphasis on examining how disciplinary and theoretical coherence was balanced with cross-disciplinary application and social responsiveness. The article begins by describing the contextual conditions external to UCT’s formal teaching and learning environment that provided the necessary impetus for the new programme. It also traces the iterative relationship between context and curriculum that occurred over the period 1998–2008. This engagement was facilitated and mediated by the Disaster Mitigation for Sustainable Livelihoods Programme (DiMP, an interfacing research and advocacy unit, located within UCT’s Department of Environmental and Geographical Science. An explanation of subsequent content and sequencing of the postgraduate curriculum then follow. They illustrate the programme’s articulation with South Africa’s newly promulgated disaster management legislation, as well as its relevance and rigour in relation to the complex risk environment of South Africa’s Western Cape. The article specifically applies a transdisciplinary lens to the new programmme, in which Disaster Risk Science is conceptualized as a Mode 2 knowledge, but one that draws theoretically and methodologically on environmental and geographical science as its foundation or Mode 1 domain. It concludes by examining the DRS programme’s positive contributions both to scholarship and local risk management practices as well as the obstacles that constrained the new programme and continue to challenge its institutional sustainability.

  10. Quantitative Reasoning Learning Progressions for Environmental Science: Developing a Framework

    Directory of Open Access Journals (Sweden)

    Robert L. Mayes

    2013-01-01

    Full Text Available Quantitative reasoning is a complex concept with many definitions and a diverse account in the literature. The purpose of this article is to establish a working definition of quantitative reasoning within the context of science, construct a quantitative reasoning framework, and summarize research on key components in that framework. Context underlies all quantitative reasoning; for this review, environmental science serves as the context.In the framework, we identify four components of quantitative reasoning: the quantification act, quantitative literacy, quantitative interpretation of a model, and quantitative modeling. Within each of these components, the framework provides elements that comprise the four components. The quantification act includes the elements of variable identification, communication, context, and variation. Quantitative literacy includes the elements of numeracy, measurement, proportional reasoning, and basic probability/statistics. Quantitative interpretation includes the elements of representations, science diagrams, statistics and probability, and logarithmic scales. Quantitative modeling includes the elements of logic, problem solving, modeling, and inference. A brief comparison of the quantitative reasoning framework with the AAC&U Quantitative Literacy VALUE rubric is presented, demonstrating a mapping of the components and illustrating differences in structure. The framework serves as a precursor for a quantitative reasoning learning progression which is currently under development.

  11. 76 FR 62424 - National Institute of Environmental Health Sciences; Amended Notice of Meeting

    Science.gov (United States)

    2011-10-07

    ... Environmental Health Sciences; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the Interagency Breast Cancer and Environmental Research Coordinating Committee's State of Science... the November 29, 2011 State of Science Subcommittee meeting to 2 p.m. to 4 p.m. The meeting is open to...

  12. Epistemic Agency in an Environmental Sciences Watershed Investigation Fostered by Digital Photography

    Science.gov (United States)

    Zimmerman, Heather Toomey; Weible, Jennifer L.

    2018-01-01

    This collective case study investigates the role of digital photography to support high school students' engagement in science inquiry practices during a three-week environmental sciences unit. The study's theoretical framework brings together research from digital photography, participation in environmental science practices, and epistemic…

  13. Developing Preservice Science Teachers' Self-Determined Motivation toward Environment through Environmental Activities

    Science.gov (United States)

    Karaarslan, Guliz; Sungur, Semra; Ertepinar, Hamide

    2014-01-01

    The aim of this study was to develop pre-service science teachers' self-determined motivation toward environment before, after and five months following the environmental course activities guided by self-determination theory. The sample of the study was 33 pre-service science teachers who participated in an environmental science course. This…

  14. The role of metadata in managing large environmental science datasets. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Melton, R.B.; DeVaney, D.M. [eds.] [Pacific Northwest Lab., Richland, WA (United States); French, J. C. [Univ. of Virginia, (United States)

    1995-06-01

    The purpose of this workshop was to bring together computer science researchers and environmental sciences data management practitioners to consider the role of metadata in managing large environmental sciences datasets. The objectives included: establishing a common definition of metadata; identifying categories of metadata; defining problems in managing metadata; and defining problems related to linking metadata with primary data.

  15. Science Education for Environmental Awareness: Approaches to Integrating Cognitive and Affective Domains

    Science.gov (United States)

    Littledyke, Michael

    2008-01-01

    Science education has an important part in developing understanding of concepts that underpin environmental issues, leading potentially to pro-environmental behaviour. However, science is commonly perceived negatively, leading to inappropriate and negative models of science that do not connect to people's experiences. The article argues that the…

  16. Investing in citizen science can improve natural resource management and environmental protection

    Science.gov (United States)

    McKinley, Duncan C.; Miller-Rushing, Abraham J.; Ballard, Heidi L.; Bonney, Rick; Brown, Hutch; Evans, Daniel M.; French, Rebecca A.; Parrish, Julia K.; Phillips, Tina B.; Ryan, Sean F.; Shanley, Lea A.; Shirk, Jennifer L.; Stepenuck, Kristine F.; Weltzin, Jake F.; Wiggins, Andrea; Boyle, Owen D.; Briggs, Russell D.; Chapin, Stuart F.; Hewitt, David A.; Preuss, Peter W.; Soukup, Michael A.

    2015-01-01

    Citizen science has made substantive contributions to science for hundreds of years. More recently, it has contributed to many articles in peer-reviewed scientific journals and has influenced natural resource management and environmental protection decisions and policies across the nation. Over the last 10 years, citizen science—participation by the public in a scientific project—has seen explosive growth in the United States, particularly in ecology, the environmental sciences, and related fields of inquiry. In this report, we explore the current use of citizen science in natural resource and environmental science and decision making in the United States and describe the investments organizations might make to benefit from citizen science.

  17. Incorporating Hot Topics in Ocean Sciences to Outreach Activities in Marine and Environmental Science Education

    Science.gov (United States)

    Bergondo, D. L.; Mrakovcich, K. L.; Vlietstra, L.; Tebeau, P.; Verlinden, C.; Allen, L. A.; James, R.

    2016-02-01

    The US Coast Guard Academy, an undergraduate military Academy, in New London CT, provides STEM education programs to the local community that engage the public on hot topics in ocean sciences. Outreach efforts include classroom, lab, and field-based activities at the Academy as well as at local schools. In one course, we partner with a STEM high school collecting fish and environmental data on board a research vessel and subsequently students present the results of their project. In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops and/or participates in outreach programs including Science Partnership for Innovation in Learning (SPIL), Women in Science, Physics of the Sea, and the Ocean Exploration Trust Honors Research Program. As part of the programs, instructors and cadets create interactive and collaborative activities that focus on hot topics in ocean sciences such as oil spill clean-up, ocean exploration, tsunamis, marine biodiversity, and conservation of aquatic habitats. Innovative science demonstrations such as real-time interactions with the Exploration Vessel (E/V) Nautilus, rotating tank simulations of ocean circulation, wave tank demonstrations, and determining what materials work best to contain and clean-up oil, are used to enhance ocean literacy. Children's books, posters and videos are some creative ways students summarize their understanding of ocean sciences and marine conservation. Despite time limitations of students and faculty, and challenges associated with securing funding to keep these programs sustainable, the impact of the programs is overwhelmingly positive. We have built stronger relationships with local community, enhanced ocean literacy, facilitated communication and mentorship between young

  18. Neutron Tomography at the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Myers, William Riley

    2017-01-01

    Neutron imaging is an incredibly powerful tool for non-destructive sample characterization and materials science. Neutron tomography is one technique that results in a three-dimensional model of the sample, representing the interaction of the neutrons with the sample. This relies both on reliable data acquisition and on image processing after acquisition. Over the course of the project, the focus has changed from the former to the latter, culminating in a large-scale reconstruction of a meter-long fossilized skull. The full reconstruction is not yet complete, though tools have been developed to improve the speed and accuracy of the reconstruction. This project helps to improve the capabilities of LANSCE and LANL with regards to imaging large or unwieldy objects.

  19. Neutron Tomography at the Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Myers, William Riley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-07

    Neutron imaging is an incredibly powerful tool for non-destructive sample characterization and materials science. Neutron tomography is one technique that results in a three-dimensional model of the sample, representing the interaction of the neutrons with the sample. This relies both on reliable data acquisition and on image processing after acquisition. Over the course of the project, the focus has changed from the former to the latter, culminating in a large-scale reconstruction of a meter-long fossilized skull. The full reconstruction is not yet complete, though tools have been developed to improve the speed and accuracy of the reconstruction. This project helps to improve the capabilities of LANSCE and LANL with regards to imaging large or unwieldy objects.

  20. Tribal engagement strategy of the South Central Climate Science Center, 2014

    Science.gov (United States)

    Andrews, William J.; Taylor, April; Winton, Kimberly T.

    2014-01-01

    The South Central Climate Science Center was established by the U.S. Department of the Interior in 2012 to increase understanding of climate change and coordinate an effective response to climate-change effects on Native American tribes and natural and cultural resources that the Department manages. The eight regional Climate Science Centers of the U.S. Department of the Interior work closely with natural-resource management agencies, university researchers, and others such as tribes and private landowners on climate-change issues. The relatively large number of Native Americans in the south central United States and their special knowledge of changing ecosystems make working with tribes and tribal members on climate-change issues particularly important in this part of the Nation. This circular describes priorities of the South Central Climate Science Center and provides information about resources available from Climate Science Centers and partner agencies regarding climate change. The circular also describes how this Climate Science Center, tribes and tribal members, and others can collaborate to minimize potential harmful effects of climate change on human society and our surrounding ecosystems.