Macklin, Paul; Cristini, Vittorio
2013-01-01
Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insight on the initiation, progression, and treatment of cancer. In this review, we introduce the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale cancer modeling toward clinical application. Furthermore, because the development of multiscale cancer models requires a new level of collaboration among scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and computer science, an innovative Web-based infrastructure is needed to support this growing community. PMID:21529163
Multiscale modelling of nanostructures
International Nuclear Information System (INIS)
Vvedensky, Dimitri D
2004-01-01
Most materials phenomena are manifestations of processes that are operative over a vast range of length and time scales. A complete understanding of the behaviour of materials thereby requires theoretical and computational tools that span the atomic-scale detail of first-principles methods and the more coarse-grained description provided by continuum equations. Recent efforts have focused on combining traditional methodologies-density functional theory, molecular dynamics, Monte Carlo methods and continuum descriptions-within a unified multiscale framework. This review covers the techniques that have been developed to model various aspects of materials behaviour with the ultimate aim of systematically coupling the atomistic to the continuum descriptions. The approaches described typically have been motivated by particular applications but can often be applied in wider contexts. The self-assembly of quantum dot ensembles will be used as a case study for the issues that arise and the methods used for all nanostructures. Although quantum dots can be obtained with all the standard growth methods and for a variety of material systems, their appearance is a quite selective process, involving the competition between equilibrium and kinetic effects, and the interplay between atomistic and long-range interactions. Most theoretical models have addressed particular aspects of the ordering kinetics of quantum dot ensembles, with far fewer attempts at a comprehensive synthesis of this inherently multiscale phenomenon. We conclude with an assessment of the current status of multiscale modelling strategies and highlight the main outstanding issues. (topical review)
Multiscale Computing with the Multiscale Modeling Library and Runtime Environment
Borgdorff, J.; Mamonski, M.; Bosak, B.; Groen, D.; Ben Belgacem, M.; Kurowski, K.; Hoekstra, A.G.
2013-01-01
We introduce a software tool to simulate multiscale models: the Multiscale Coupling Library and Environment 2 (MUSCLE 2). MUSCLE 2 is a component-based modeling tool inspired by the multiscale modeling and simulation framework, with an easy-to-use API which supports Java, C++, C, and Fortran. We
Multiscale Signal Analysis and Modeling
Zayed, Ahmed
2013-01-01
Multiscale Signal Analysis and Modeling presents recent advances in multiscale analysis and modeling using wavelets and other systems. This book also presents applications in digital signal processing using sampling theory and techniques from various function spaces, filter design, feature extraction and classification, signal and image representation/transmission, coding, nonparametric statistical signal processing, and statistical learning theory. This book also: Discusses recently developed signal modeling techniques, such as the multiscale method for complex time series modeling, multiscale positive density estimations, Bayesian Shrinkage Strategies, and algorithms for data adaptive statistics Introduces new sampling algorithms for multidimensional signal processing Provides comprehensive coverage of wavelets with presentations on waveform design and modeling, wavelet analysis of ECG signals and wavelet filters Reviews features extraction and classification algorithms for multiscale signal and image proce...
Modeling and Simulation of Multi-scale Environmental Systems with Generalized Hybrid Petri Nets
Directory of Open Access Journals (Sweden)
Mostafa eHerajy
2015-07-01
Full Text Available Predicting and studying the dynamics and properties of environmental systems necessitates the construction and simulation of mathematical models entailing different levels of complexities. Such type of computational experiments often require the combination of discrete and continuous variables as well as processes operating at different time scales. Furthermore, the iterative steps of constructing and analyzing environmental models might involve researchers with different background. Hybrid Petri nets may contribute in overcoming such challenges as they facilitate the implementation of systems integrating discrete and continuous dynamics. Additionally, the visual depiction of model components will inevitably help to bridge the gap between scientists with distinct expertise working on the same problem. Thus, modeling environmental systems with hybrid Petri nets enables the construction of complex processes while keeping the models comprehensible for researchers working on the same project with significantly divergent education path. In this paper we propose the utilization of a special class of hybrid Petri nets, Generalized Hybrid Petri Nets (GHPN, to model and simulate environmental systems exposing processes interacting at different time-scales. GHPN integrate stochastic and deterministic semantics as well as other types of special basic events. Moreover, a case study is presented to illustrate the use of GHPN in constructing and simulating multi-timescale environmental scenarios.
Multiscale Thermohydrologic Model
Energy Technology Data Exchange (ETDEWEB)
T. Buscheck
2004-10-12
The purpose of the multiscale thermohydrologic model (MSTHM) is to predict the possible range of thermal-hydrologic conditions, resulting from uncertainty and variability, in the repository emplacement drifts, including the invert, and in the adjoining host rock for the repository at Yucca Mountain. Thus, the goal is to predict the range of possible thermal-hydrologic conditions across the repository; this is quite different from predicting a single expected thermal-hydrologic response. The MSTHM calculates the following thermal-hydrologic parameters: temperature, relative humidity, liquid-phase saturation, evaporation rate, air-mass fraction, gas-phase pressure, capillary pressure, and liquid- and gas-phase fluxes (Table 1-1). These thermal-hydrologic parameters are required to support ''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504]). The thermal-hydrologic parameters are determined as a function of position along each of the emplacement drifts and as a function of waste package type. These parameters are determined at various reference locations within the emplacement drifts, including the waste package and drip-shield surfaces and in the invert. The parameters are also determined at various defined locations in the adjoining host rock. The MSTHM uses data obtained from the data tracking numbers (DTNs) listed in Table 4.1-1. The majority of those DTNs were generated from the following analyses and model reports: (1) ''UZ Flow Model and Submodels'' (BSC 2004 [DIRS 169861]); (2) ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2004); (3) ''Calibrated Properties Model'' (BSC 2004 [DIRS 169857]); (4) ''Thermal Conductivity of the Potential Repository Horizon'' (BSC 2004 [DIRS 169854]); (5) ''Thermal Conductivity of the Non-Repository Lithostratigraphic Layers
MULTISCALE THERMOHYDROLOGIC MODEL
International Nuclear Information System (INIS)
T. Buscheck
2005-01-01
The intended purpose of the multiscale thermohydrologic model (MSTHM) is to predict the possible range of thermal-hydrologic conditions, resulting from uncertainty and variability, in the repository emplacement drifts, including the invert, and in the adjoining host rock for the repository at Yucca Mountain. The goal of the MSTHM is to predict a reasonable range of possible thermal-hydrologic conditions within the emplacement drift. To be reasonable, this range includes the influence of waste-package-to-waste-package heat output variability relevant to the license application design, as well as the influence of uncertainty and variability in the geologic and hydrologic conditions relevant to predicting the thermal-hydrologic response in emplacement drifts. This goal is quite different from the goal of a model to predict a single expected thermal-hydrologic response. As a result, the development and validation of the MSTHM and the associated analyses using this model are focused on the goal of predicting a reasonable range of thermal-hydrologic conditions resulting from parametric uncertainty and waste-package-to-waste-package heat-output variability. Thermal-hydrologic conditions within emplacement drifts depend primarily on thermal-hydrologic conditions in the host rock at the drift wall and on the temperature difference between the drift wall and the drip-shield and waste-package surfaces. Thus, the ability to predict a reasonable range of relevant in-drift MSTHM output parameters (e.g., temperature and relative humidity) is based on valid predictions of thermal-hydrologic processes in the host rock, as well as valid predictions of heat-transfer processes between the drift wall and the drip-shield and waste-package surfaces. Because the invert contains crushed gravel derived from the host rock, the invert is, in effect, an extension of the host rock, with thermal and hydrologic properties that have been modified by virtue of the crushing (and the resulting
MULTISCALE THERMOHYDROLOGIC MODEL
Energy Technology Data Exchange (ETDEWEB)
T. Buscheck
2005-07-07
The intended purpose of the multiscale thermohydrologic model (MSTHM) is to predict the possible range of thermal-hydrologic conditions, resulting from uncertainty and variability, in the repository emplacement drifts, including the invert, and in the adjoining host rock for the repository at Yucca Mountain. The goal of the MSTHM is to predict a reasonable range of possible thermal-hydrologic conditions within the emplacement drift. To be reasonable, this range includes the influence of waste-package-to-waste-package heat output variability relevant to the license application design, as well as the influence of uncertainty and variability in the geologic and hydrologic conditions relevant to predicting the thermal-hydrologic response in emplacement drifts. This goal is quite different from the goal of a model to predict a single expected thermal-hydrologic response. As a result, the development and validation of the MSTHM and the associated analyses using this model are focused on the goal of predicting a reasonable range of thermal-hydrologic conditions resulting from parametric uncertainty and waste-package-to-waste-package heat-output variability. Thermal-hydrologic conditions within emplacement drifts depend primarily on thermal-hydrologic conditions in the host rock at the drift wall and on the temperature difference between the drift wall and the drip-shield and waste-package surfaces. Thus, the ability to predict a reasonable range of relevant in-drift MSTHM output parameters (e.g., temperature and relative humidity) is based on valid predictions of thermal-hydrologic processes in the host rock, as well as valid predictions of heat-transfer processes between the drift wall and the drip-shield and waste-package surfaces. Because the invert contains crushed gravel derived from the host rock, the invert is, in effect, an extension of the host rock, with thermal and hydrologic properties that have been modified by virtue of the crushing (and the resulting
Multiscale Drivers of Global Environmental Health
Desai, Manish Anil
In this dissertation, I motivate, develop, and demonstrate three such approaches for investigating multiscale drivers of global environmental health: (1) a metric for analyzing contributions and responses to climate change from global to sectoral scales, (2) a framework for unraveling the influence of environmental change on infectious diseases at regional to local scales, and (3) a model for informing the design and evaluation of clean cooking interventions at community to household scales. The full utility of climate debt as an analytical perspective will remain untapped without tools that can be manipulated by a wide range of analysts, including global environmental health researchers. Chapter 2 explains how international natural debt (IND) apportions global radiative forcing from fossil fuel carbon dioxide and methane, the two most significant climate altering pollutants, to individual entities -- primarily countries but also subnational states and economic sectors, with even finer scales possible -- as a function of unique trajectories of historical emissions, taking into account the quite different radiative efficiencies and atmospheric lifetimes of each pollutant. Owing to its straightforward and transparent derivation, IND can readily operationalize climate debt to consider issues of equity and efficiency and drive scenario exercises that explore the response to climate change at multiple scales. Collectively, the analyses presented in this chapter demonstrate how IND can inform a range of key question on climate change mitigation at multiple scales, compelling environmental health towards an appraisal of the causes and not just the consequences of climate change. The environmental change and infectious disease (EnvID) conceptual framework of Chapter 3 builds on a rich history of prior efforts in epidemiologic theory, environmental science, and mathematical modeling by: (1) articulating a flexible and logical system specification; (2) incorporating
Differential Geometry Based Multiscale Models
Wei, Guo-Wei
2010-01-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that
Differential geometry based multiscale models.
Wei, Guo-Wei
2010-08-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are
Multiscale modelling for tokamak pedestals
Abel, I. G.
2018-04-01
Pedestal modelling is crucial to predict the performance of future fusion devices. Current modelling efforts suffer either from a lack of kinetic physics, or an excess of computational complexity. To ameliorate these problems, we take a first-principles multiscale approach to the pedestal. We will present three separate sets of equations, covering the dynamics of edge localised modes (ELMs), the inter-ELM pedestal and pedestal turbulence, respectively. Precisely how these equations should be coupled to each other is covered in detail. This framework is completely self-consistent; it is derived from first principles by means of an asymptotic expansion of the fundamental Vlasov-Landau-Maxwell system in appropriate small parameters. The derivation exploits the narrowness of the pedestal region, the smallness of the thermal gyroradius and the low plasma (the ratio of thermal to magnetic pressures) typical of current pedestal operation to achieve its simplifications. The relationship between this framework and gyrokinetics is analysed, and possibilities to directly match our systems of equations onto multiscale gyrokinetics are explored. A detailed comparison between our model and other models in the literature is performed. Finally, the potential for matching this framework onto an open-field-line region is briefly discussed.
2014-12-01
is an ordered array of bone fibers in a matrix material [1]. It is the dominant form of bone and closely resembles a layered fiber - reinforced ...mineral [3], [14]. These fibers are not independent structures, but exist only within the complex lamellar bone [13], similar to a fiber reinforced ...accuracy of this method. What this model does not provide is the transverse properties or a Poisson ’ s ratio for TC. Thus, we must assume that
Multiscale modelling of DNA mechanics
International Nuclear Information System (INIS)
Dršata, Tomáš; Lankaš, Filip
2015-01-01
Mechanical properties of DNA are important not only in a wide range of biological processes but also in the emerging field of DNA nanotechnology. We review some of the recent developments in modeling these properties, emphasizing the multiscale nature of the problem. Modern atomic resolution, explicit solvent molecular dynamics simulations have contributed to our understanding of DNA fine structure and conformational polymorphism. These simulations may serve as data sources to parameterize rigid base models which themselves have undergone major development. A consistent buildup of larger entities involving multiple rigid bases enables us to describe DNA at more global scales. Free energy methods to impose large strains on DNA, as well as bead models and other approaches, are also briefly discussed. (topical review)
Multiscale modeling of pedestrian dynamics
Cristiani, Emiliano; Tosin, Andrea
2014-01-01
This book presents mathematical models and numerical simulations of crowd dynamics. The core topic is the development of a new multiscale paradigm, which bridges the microscopic and macroscopic scales taking the most from each of them for capturing the relevant clues of complexity of crowds. The background idea is indeed that most of the complex trends exhibited by crowds are due to an intrinsic interplay between individual and collective behaviors. The modeling approach promoted in this book pursues actively this intuition and profits from it for designing general mathematical structures susceptible of application also in fields different from the inspiring original one. The book considers also the two most traditional points of view: the microscopic one, in which pedestrians are tracked individually, and the macroscopic one, in which pedestrians are assimilated to a continuum. Selected existing models are critically analyzed. The work is addressed to researchers and graduate students.
Multiscale Modeling of Wear Degradation
Moraes, Alvaro; Ruggeri, Fabrizio; Tempone, Raul; Vilanova, Pedro
2016-01-01
Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.
Multiscale Modeling of Wear Degradation
Moraes, Alvaro; Ruggeri, Fabrizio; Tempone, Raul; Vilanova, Pedro
2015-01-01
Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.
Multiscale Modeling of Wear Degradation
Moraes, Alvaro
2015-01-07
Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.
Multiscale Modeling of Wear Degradation
Moraes, Alvaro
2014-01-06
Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.
Multiscale Modeling of Wear Degradation
Moraes, Alvaro
2016-01-06
Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.
International Nuclear Information System (INIS)
Sciacovelli, A.; Guelpa, E.; Verda, V.
2014-01-01
Groundwater heat pumps are expected to play a major role in future energy scenarios. Proliferation of such systems in urban areas may generate issues related to possible interference between installations. These issues are associated with the thermal plume produced by heat pumps during operation and are particularly evident in the case of groundwater flow, because of the advection heat transfer. In this paper, the impact of an installation is investigated through a thermo-fluid dynamic model of the subsurface which considers fluid flow in the saturated unit and heat transfer in both the saturated and unsaturated units. Due to the large extension of the affected area, a multiscale numerical model that combines a three-dimensional CFD model and a network model is proposed. The thermal request of the user and the heat pump performances are considered in the multi-scale numerical model through appropriate boundary conditions imposed at the wells. Various scenarios corresponding to different operating modes of the heat pump are considered. - Highlights: • A groundwater heat pump of a skyscraper under construction is considered. • The thermal plume induced in the groundwater is evaluated using a multi-scale model. • The multi-scale model is constituted by a full 3D model and a network model. • Multi-scale permits to study large space for long time with low computational costs. • In some cases thermal plume can reduce the COP of other heat pumps of 20%
Multifunctional multiscale composites: Processing, modeling and characterization
Qiu, Jingjing
Carbon nanotubes (CNTs) demonstrate extraordinary properties and show great promise in enhancing out-of-plane properties of traditional polymer/fiber composites and enabling functionality. However, current manufacturing challenges hinder the realization of their potential. In the dissertation research, both experimental and computational efforts have been conducted to investigate effective manufacturing techniques of CNT integrated multiscale composites. The fabricated composites demonstrated significant improvements in physical properties, such as tensile strength, tensile modulus, inter-laminar shear strength, thermal dimension stability and electrical conductivity. Such multiscale composites were truly multifunctional with the addition of CNTs. Furthermore, a novel hierarchical multiscale modeling method was developed in this research. Molecular dynamic (MD) simulation offered reasonable explanation of CNTs dispersion and their motion in polymer solution. Bi-mode finite-extensible-nonlinear-elastic (FENE) dumbbell simulation was used to analyze the influence of CNT length distribution on the stress tensor and shear-rate-dependent viscosity. Based on the simulated viscosity profile and empirical equations from experiments, a macroscale flow simulation model on the finite element method (FEM) method was developed and validated to predict resin flow behavior in the processing of CNT-enhanced multiscale composites. The proposed multiscale modeling method provided a comprehensive understanding of micro/nano flow in both atomistic details and mesoscale. The simulation model can be used to optimize process design and control of the mold-filling process in multiscale composite manufacturing. This research provided systematic investigations into the CNT-based multiscale composites. The results from this study may be used to leverage the benefits of CNTs and open up new application opportunities for high-performance multifunctional multiscale composites. Keywords. Carbon
Multiscale modeling of complex materials phenomenological, theoretical and computational aspects
Trovalusci, Patrizia
2014-01-01
The papers in this volume deal with materials science, theoretical mechanics and experimental and computational techniques at multiple scales, providing a sound base and a framework for many applications which are hitherto treated in a phenomenological sense. The basic principles are formulated of multiscale modeling strategies towards modern complex multiphase materials subjected to various types of mechanical, thermal loadings and environmental effects. The focus is on problems where mechanics is highly coupled with other concurrent physical phenomena. Attention is also focused on the historical origins of multiscale modeling and foundations of continuum mechanics currently adopted to model non-classical continua with substructure, for which internal length scales play a crucial role.
Multiscale modelling in immunology: a review.
Cappuccio, Antonio; Tieri, Paolo; Castiglione, Filippo
2016-05-01
One of the greatest challenges in biomedicine is to get a unified view of observations made from the molecular up to the organism scale. Towards this goal, multiscale models have been highly instrumental in contexts such as the cardiovascular field, angiogenesis, neurosciences and tumour biology. More recently, such models are becoming an increasingly important resource to address immunological questions as well. Systematic mining of the literature in multiscale modelling led us to identify three main fields of immunological applications: host-virus interactions, inflammatory diseases and their treatment and development of multiscale simulation platforms for immunological research and for educational purposes. Here, we review the current developments in these directions, which illustrate that multiscale models can consistently integrate immunological data generated at several scales, and can be used to describe and optimize therapeutic treatments of complex immune diseases. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Foundations for a multiscale collaborative Earth model
Afanasiev, M.; Peter, Daniel; Sager, K.; Simut, S.; Ermert, L.; Krischer, L.; Fichtner, A.
2015-01-01
. The CSEM as a computational framework is intended to help bridging the gap between local, regional and global tomography, and to contribute to the development of a global multiscale Earth model. While the current construction serves as a first proof
Borgdorff, J.; Bona-Casas, C.; Mamonski, M.; Kurowski, K.; Piontek, T.; Bosak, B.; Rycerz, K.; Ciepiela, E.; Gubala, T.; Harezlak, D.; Bubak, M.; Lorenz, E.; Hoekstra, A.G.
2012-01-01
Nature is observed at all scales; with multiscale modeling, scientists bring together several scales for a holistic analysis of a phenomenon. The models on these different scales may require significant but also heterogeneous computational resources, creating the need for distributed multiscale
Novel Multiscale Modeling Tool Applied to Pseudomonas aeruginosa Biofilm Formation
Biggs, Matthew B.; Papin, Jason A.
2013-01-01
Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid mod...
Integrated multi-scale modelling and simulation of nuclear fuels
International Nuclear Information System (INIS)
Valot, C.; Bertolus, M.; Masson, R.; Malerba, L.; Rachid, J.; Besmann, T.; Phillpot, S.; Stan, M.
2015-01-01
This chapter aims at discussing the objectives, implementation and integration of multi-scale modelling approaches applied to nuclear fuel materials. We will first show why the multi-scale modelling approach is required, due to the nature of the materials and by the phenomena involved under irradiation. We will then present the multiple facets of multi-scale modelling approach, while giving some recommendations with regard to its application. We will also show that multi-scale modelling must be coupled with appropriate multi-scale experiments and characterisation. Finally, we will demonstrate how multi-scale modelling can contribute to solving technology issues. (authors)
Dehghan, A.; Mariani, Z.; Gascon, G.; Bélair, S.; Milbrandt, J.; Joe, P. I.; Crawford, R.; Melo, S.
2017-12-01
Environment and Climate Change Canada (ECCC) is implementing a 2.5-km resolution version of the Global Environmental Multiscale (GEM) model over the Canadian Arctic. Radiosonde observations were used to evaluate the numerical representation of surface-based temperature inversion which is a major feature in the Arctic region. Arctic surface-based inversions are often created by imbalance between radiative cooling processes at surface and warm air advection above. This can have a significant effect on vertical mixing of pollutants and moisture, and ultimately, on cloud formation. It is therefore important to correctly predict the existence of surface inversions along with their characteristics (i.e., intensity and depth). Previous climatological studies showed that the frequency and intensity of surface-based inversions are larger during colder months in the Arctic. Therefore, surface-based inversions were estimated using radiosonde measurements during winter (December 2015 to February 2016) at Iqaluit (Nunavut, Canada). Results show that the inversion intensity can exceed 10 K with depths as large as 1 km. Preliminary evaluation of GEM outputs reveals that the model tends to underestimate the intensity of near-surface inversions, and in some cases, the model failed to predict an inversion. This study presents the factors contributing to this bias including surface temperature and snow cover.
Multiscale modeling in biomechanics and mechanobiology
Hwang, Wonmuk; Kuhl, Ellen
2015-01-01
Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models. Biomechanics involves the study of the interactions of physical forces with biological systems at all scales – including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces – bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these...
Zanin, Massimiliano; Chorbev, Ivan; Stres, Blaz; Stalidzans, Egils; Vera, Julio; Tieri, Paolo; Castiglione, Filippo; Groen, Derek; Zheng, Huiru; Baumbach, Jan; Schmid, Johannes A; Basilio, José; Klimek, Peter; Debeljak, Nataša; Rozman, Damjana; Schmidt, Harald H H W
2017-12-05
Systems medicine holds many promises, but has so far provided only a limited number of proofs of principle. To address this road block, possible barriers and challenges of translating systems medicine into clinical practice need to be identified and addressed. The members of the European Cooperation in Science and Technology (COST) Action CA15120 Open Multiscale Systems Medicine (OpenMultiMed) wish to engage the scientific community of systems medicine and multiscale modelling, data science and computing, to provide their feedback in a structured manner. This will result in follow-up white papers and open access resources to accelerate the clinical translation of systems medicine. © The Author 2017. Published by Oxford University Press.
Multiscale approach to equilibrating model polymer melts
DEFF Research Database (Denmark)
Svaneborg, Carsten; Ali Karimi-Varzaneh, Hossein; Hojdis, Nils
2016-01-01
We present an effective and simple multiscale method for equilibrating Kremer Grest model polymer melts of varying stiffness. In our approach, we progressively equilibrate the melt structure above the tube scale, inside the tube and finally at the monomeric scale. We make use of models designed...
Multiscale Modeling of Ceramic Matrix Composites
Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.
2015-01-01
Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.
Multiscale information modelling for heart morphogenesis
Energy Technology Data Exchange (ETDEWEB)
Abdulla, T; Imms, R; Summers, R [Department of Electronic and Electrical Engineering, Loughborough University, Loughborough (United Kingdom); Schleich, J M, E-mail: T.Abdulla@lboro.ac.u [LTSI Signal and Image Processing Laboratory, University of Rennes 1, Rennes (France)
2010-07-01
Science is made feasible by the adoption of common systems of units. As research has become more data intensive, especially in the biomedical domain, it requires the adoption of a common system of information models, to make explicit the relationship between one set of data and another, regardless of format. This is being realised through the OBO Foundry to develop a suite of reference ontologies, and NCBO Bioportal to provide services to integrate biomedical resources and functionality to visualise and create mappings between ontology terms. Biomedical experts tend to be focused at one level of spatial scale, be it biochemistry, cell biology, or anatomy. Likewise, the ontologies they use tend to be focused at a particular level of scale. There is increasing interest in a multiscale systems approach, which attempts to integrate between different levels of scale to gain understanding of emergent effects. This is a return to physiological medicine with a computational emphasis, exemplified by the worldwide Physiome initiative, and the European Union funded Network of Excellence in the Virtual Physiological Human. However, little work has been done on how information modelling itself may be tailored to a multiscale systems approach. We demonstrate how this can be done for the complex process of heart morphogenesis, which requires multiscale understanding in both time and spatial domains. Such an effort enables the integration of multiscale metrology.
Multiscale information modelling for heart morphogenesis
International Nuclear Information System (INIS)
Abdulla, T; Imms, R; Summers, R; Schleich, J M
2010-01-01
Science is made feasible by the adoption of common systems of units. As research has become more data intensive, especially in the biomedical domain, it requires the adoption of a common system of information models, to make explicit the relationship between one set of data and another, regardless of format. This is being realised through the OBO Foundry to develop a suite of reference ontologies, and NCBO Bioportal to provide services to integrate biomedical resources and functionality to visualise and create mappings between ontology terms. Biomedical experts tend to be focused at one level of spatial scale, be it biochemistry, cell biology, or anatomy. Likewise, the ontologies they use tend to be focused at a particular level of scale. There is increasing interest in a multiscale systems approach, which attempts to integrate between different levels of scale to gain understanding of emergent effects. This is a return to physiological medicine with a computational emphasis, exemplified by the worldwide Physiome initiative, and the European Union funded Network of Excellence in the Virtual Physiological Human. However, little work has been done on how information modelling itself may be tailored to a multiscale systems approach. We demonstrate how this can be done for the complex process of heart morphogenesis, which requires multiscale understanding in both time and spatial domains. Such an effort enables the integration of multiscale metrology.
Multiscale modeling of mucosal immune responses
2015-01-01
Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut
Multiscale modeling of mucosal immune responses.
Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep
2015-01-01
Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T
Multiscale Modeling of Poromechanics in Geologic Media
Castelletto, N.; Hajibeygi, H.; Klevtsov, S.; Tchelepi, H.
2017-12-01
We describe a hybrid MultiScale Finite Element-Finite Volume (h-MSFE-FV) framework for the simulation of single-phase Darcy flow through deformable porous media that exhibit highly heterogeneous poromechanical properties over a wide range of length scales. In such systems, high resolution characterizations are a key requirement to obtain reliable modeling predictions and motivate the development of multiscale solution strategies to cope with the computational burden. A coupled two-field fine-scale mixed FE-FV discretization of the governing equations, namely conservation laws of linear momentum and mass, is first implemented based on a displacement-pressure formulation. After imposing a coarse-scale grid on the given fine-scale problem, for the MSFE displacement stage, the coarse-scale basis functions are obtained by solving local equilibrium problems within coarse elements. Such MSFE stage is then coupled with the MSFV method for flow, in which a dual-coarse grid is introduced to obtain approximate but conservative multiscale solutions. Robustness and accuracy of the proposed multiscale framework is demonstrated using a variety of challenging test problems.
Multiscale Model Reduction with Generalized Multiscale Finite Element Methods in Geomathematics
Efendiev, Yalchin R.; Presho, Michael
2015-01-01
In this chapter, we discuss multiscale model reduction using Generalized Multiscale Finite Element Methods (GMsFEM) in a number of geomathematical applications. GMsFEM has been recently introduced (Efendiev et al. 2012) and applied to various problems. In the current chapter, we consider some of these applications and outline the basic methodological concepts.
Multiscale Model Reduction with Generalized Multiscale Finite Element Methods in Geomathematics
Efendiev, Yalchin R.
2015-09-02
In this chapter, we discuss multiscale model reduction using Generalized Multiscale Finite Element Methods (GMsFEM) in a number of geomathematical applications. GMsFEM has been recently introduced (Efendiev et al. 2012) and applied to various problems. In the current chapter, we consider some of these applications and outline the basic methodological concepts.
Multiscale agent-based cancer modeling.
Zhang, Le; Wang, Zhihui; Sagotsky, Jonathan A; Deisboeck, Thomas S
2009-04-01
Agent-based modeling (ABM) is an in silico technique that is being used in a variety of research areas such as in social sciences, economics and increasingly in biomedicine as an interdisciplinary tool to study the dynamics of complex systems. Here, we describe its applicability to integrative tumor biology research by introducing a multi-scale tumor modeling platform that understands brain cancer as a complex dynamic biosystem. We summarize significant findings of this work, and discuss both challenges and future directions for ABM in the field of cancer research.
Efendiev, Yalchin R.
2015-06-05
In this paper, we develop a multiscale finite element method for solving flows in fractured media. Our approach is based on generalized multiscale finite element method (GMsFEM), where we represent the fracture effects on a coarse grid via multiscale basis functions. These multiscale basis functions are constructed in the offline stage via local spectral problems following GMsFEM. To represent the fractures on the fine grid, we consider two approaches (1) discrete fracture model (DFM) (2) embedded fracture model (EFM) and their combination. In DFM, the fractures are resolved via the fine grid, while in EFM the fracture and the fine grid block interaction is represented as a source term. In the proposed multiscale method, additional multiscale basis functions are used to represent the long fractures, while short-size fractures are collectively represented by a single basis functions. The procedure is automatically done via local spectral problems. In this regard, our approach shares common concepts with several approaches proposed in the literature as we discuss. We would like to emphasize that our goal is not to compare DFM with EFM, but rather to develop GMsFEM framework which uses these (DFM or EFM) fine-grid discretization techniques. Numerical results are presented, where we demonstrate how one can adaptively add basis functions in the regions of interest based on error indicators. We also discuss the use of randomized snapshots (Calo et al. Randomized oversampling for generalized multiscale finite element methods, 2014), which reduces the offline computational cost.
A complete categorization of multiscale models of infectious disease systems.
Garira, Winston
2017-12-01
Modelling of infectious disease systems has entered a new era in which disease modellers are increasingly turning to multiscale modelling to extend traditional modelling frameworks into new application areas and to achieve higher levels of detail and accuracy in characterizing infectious disease systems. In this paper we present a categorization framework for categorizing multiscale models of infectious disease systems. The categorization framework consists of five integration frameworks and five criteria. We use the categorization framework to give a complete categorization of host-level immuno-epidemiological models (HL-IEMs). This categorization framework is also shown to be applicable in categorizing other types of multiscale models of infectious diseases beyond HL-IEMs through modifying the initial categorization framework presented in this study. Categorization of multiscale models of infectious disease systems in this way is useful in bringing some order to the discussion on the structure of these multiscale models.
Multi-scale Modelling of Segmentation
DEFF Research Database (Denmark)
Hartmann, Martin; Lartillot, Olivier; Toiviainen, Petri
2016-01-01
pieces. In a second experiment on non-real-time segmentation, musicians indicated boundaries and their strength for six examples. Kernel density estimation was used to develop multi-scale segmentation models. Contrary to previous research, no relationship was found between boundary strength and boundary......While listening to music, people often unwittingly break down musical pieces into constituent chunks such as verses and choruses. Music segmentation studies have suggested that some consensus regarding boundary perception exists, despite individual differences. However, neither the effects...
Multiscale Modeling with Carbon Nanotubes
Energy Technology Data Exchange (ETDEWEB)
Maiti, A
2006-02-21
Technologically important nanomaterials come in all shapes and sizes. They can range from small molecules to complex composites and mixtures. Depending upon the spatial dimensions of the system and properties under investigation computer modeling of such materials can range from equilibrium and nonequilibrium Quantum Mechanics, to force-field-based Molecular Mechanics and kinetic Monte Carlo, to Mesoscale simulation of evolving morphology, to Finite-Element computation of physical properties. This brief review illustrates some of the above modeling techniques through a number of recent applications with carbon nanotubes: nano electromechanical sensors (NEMS), chemical sensors, metal-nanotube contacts, and polymer-nanotube composites.
Multiscale Modeling of Ionospheric Irregularities
2014-10-22
numerical simulations of ionospheric plasma density structures associated with nonlinear evolution of the Rayleigh-Taylor (RT) instabilities in...model was developed to resolve the transport pat- terns of plasma density coupled with neutral atmospheric dynamics. Inclusion of neutral dynamics in...trapping electromagnetic (EM) waves in parabolic cavities, which are created by the refractive index gradients along the propagation paths. Keywords
Multiscale modelling of DNA mechanics
Czech Academy of Sciences Publication Activity Database
Dršata, Tomáš; Lankaš, Filip
2015-01-01
Roč. 27, č. 32 (2015), 323102/1-323102/12 ISSN 0953-8984 R&D Projects: GA ČR(CZ) GA14-21893S Institutional support: RVO:61388963 Keywords : DNA elasticity * DNA coarse-grained models * molecular dynamics simulations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.209, year: 2015
Multiscale geomorphometric modeling of Mercury
Florinsky, I. V.
2018-02-01
Topography is one of the key characteristics of a planetary body. Geomorphometry deals with quantitative modeling and analysis of the topographic surface and relationships between topography and other natural components of landscapes. The surface of Mercury is systematically studied by interpretation of images acquired during the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. However, the Mercurian surface is still little explored by methods of geomorphometry. In this paper, we evaluate the Mercury MESSENGER Global DEM MSGR_DEM_USG_SC_I_V02 - a global digital elevation model (DEM) of Mercury with the resolution of 0.015625° - as a source for geomorphometric modeling of this planet. The study was performed at three spatial scales: the global, regional (the Caloris basin), and local (the Pantheon Fossae area) ones. As the initial data, we used three DEMs of these areas with resolutions of 0.25°, 0.0625°, and 0.015625°, correspondingly. The DEMs were extracted from the MESSENGER Global DEM. From the DEMs, we derived digital models of several fundamental morphometric variables, such as: slope gradient, horizontal curvature, vertical curvature, minimal curvature, maximal curvature, catchment area, and dispersive area. The morphometric maps obtained represent peculiarities of the Mercurian topography in different ways, according to the physical and mathematical sense of a particular variable. Geomorphometric models are a rich source of information on the Mercurian surface. These data can be utilized to study evolution and internal structure of the planet, for example, to visualize and quantify regional topographic differences as well as to refine geological boundaries.
Multiscale Modeling of Microbial Communities
Blanchard, Andrew
Although bacteria are single-celled organisms, they exist in nature primarily in the form of complex communities, participating in a vast array of social interactions through regulatory gene networks. The social interactions between individual cells drive the emergence of community structures, resulting in an intricate relationship across multiple spatiotemporal scales. Here, I present my work towards developing and applying the tools necessary to model the complex dynamics of bacterial communities. In Chapter 2, I utilize a reaction-diffusion model to determine the population dynamics for a population with two species. One species (CDI+) utilizes contact dependent inhibition to kill the other sensitive species (CDI-). The competition can produce diverse patterns, including extinction, coexistence, and localized aggregation. The emergence, relative abundance, and characteristic features of these patterns are collectively determined by the competitive benefit of CDI and its growth disadvantage for a given rate of population diffusion. The results provide a systematic and statistical view of CDI-based bacterial population competition, expanding the spectrum of our knowledge about CDI systems and possibly facilitating new experimental tests for a deeper understanding of bacterial interactions. In the following chapter, I present a systematic computational survey on the relationship between social interaction types and population structures for two-species communities by developing and utilizing a hybrid computational framework that combines discrete element techniques with reaction-diffusion equations. The impact of deleterious and beneficial interactions on the community are quantified. Deleterious interactions generate an increased variance in relative abundance, a drastic decrease in surviving lineages, and a rough expanding front. In contrast, beneficial interactions contribute to a reduced variance in relative abundance, an enhancement in lineage number, and a
Institute for Multiscale Modeling of Biological Interactions
Energy Technology Data Exchange (ETDEWEB)
Paulaitis, Michael E; Garcia-Moreno, Bertrand; Lenhoff, Abraham
2009-12-26
The Institute for Multiscale Modeling of Biological Interactions (IMMBI) has two primary goals: Foster interdisciplinary collaborations among faculty and their research laboratories that will lead to novel applications of multiscale simulation and modeling methods in the biological sciences and engineering; and Building on the unique biophysical/biology-based engineering foundations of the participating faculty, train scientists and engineers to apply computational methods that collectively span multiple time and length scales of biological organization. The success of IMMBI will be defined by the following: Size and quality of the applicant pool for pre-doctoral and post-doctoral fellows; Academic performance; Quality of the pre-doctoral and post-doctoral research; Impact of the research broadly and to the DOE (ASCR program) mission; Distinction of the next career step for pre-doctoral and post-doctoral fellows; and Faculty collaborations that result from IMMBI activities. Specific details about accomplishments during the three years of DOE support for IMMBI have been documented in Annual Progress Reports (April 2005, June 2006, and March 2007) and a Report for a National Academy of Sciences Review (October 2005) that were submitted to DOE on the dates indicated. An overview of these accomplishments is provided.
Variational multiscale models for charge transport.
Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin
2012-01-01
This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle
Variational multiscale models for charge transport
Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin
2012-01-01
This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle
Multi-scale modeling of composites
DEFF Research Database (Denmark)
Azizi, Reza
A general method to obtain the homogenized response of metal-matrix composites is developed. It is assumed that the microscopic scale is sufficiently small compared to the macroscopic scale such that the macro response does not affect the micromechanical model. Therefore, the microscopic scale......-Mandel’s energy principle is used to find macroscopic operators based on micro-mechanical analyses using the finite element method under generalized plane strain condition. A phenomenologically macroscopic model for metal matrix composites is developed based on constitutive operators describing the elastic...... to plastic deformation. The macroscopic operators found, can be used to model metal matrix composites on the macroscopic scale using a hierarchical multi-scale approach. Finally, decohesion under tension and shear loading is studied using a cohesive law for the interface between matrix and fiber....
A multiscale model for virus capsid dynamics.
Chen, Changjun; Saxena, Rishu; Wei, Guo-Wei
2010-01-01
Viruses are infectious agents that can cause epidemics and pandemics. The understanding of virus formation, evolution, stability, and interaction with host cells is of great importance to the scientific community and public health. Typically, a virus complex in association with its aquatic environment poses a fabulous challenge to theoretical description and prediction. In this work, we propose a differential geometry-based multiscale paradigm to model complex biomolecule systems. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum domain of the fluid mechanical description of the aquatic environment from the microscopic discrete domain of the atomistic description of the biomolecule. A multiscale action functional is constructed as a unified framework to derive the governing equations for the dynamics of different scales. We show that the classical Navier-Stokes equation for the fluid dynamics and Newton's equation for the molecular dynamics can be derived from the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows.
A Multiscale Model for Virus Capsid Dynamics
Directory of Open Access Journals (Sweden)
Changjun Chen
2010-01-01
Full Text Available Viruses are infectious agents that can cause epidemics and pandemics. The understanding of virus formation, evolution, stability, and interaction with host cells is of great importance to the scientific community and public health. Typically, a virus complex in association with its aquatic environment poses a fabulous challenge to theoretical description and prediction. In this work, we propose a differential geometry-based multiscale paradigm to model complex biomolecule systems. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum domain of the fluid mechanical description of the aquatic environment from the microscopic discrete domain of the atomistic description of the biomolecule. A multiscale action functional is constructed as a unified framework to derive the governing equations for the dynamics of different scales. We show that the classical Navier-Stokes equation for the fluid dynamics and Newton's equation for the molecular dynamics can be derived from the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows.
Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.
Directory of Open Access Journals (Sweden)
Matthew B Biggs
Full Text Available Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.
Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.
Biggs, Matthew B; Papin, Jason A
2013-01-01
Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.
A Generalized Hybrid Multiscale Modeling Approach for Flow and Reactive Transport in Porous Media
Yang, X.; Meng, X.; Tang, Y. H.; Guo, Z.; Karniadakis, G. E.
2017-12-01
Using emerging understanding of biological and environmental processes at fundamental scales to advance predictions of the larger system behavior requires the development of multiscale approaches, and there is strong interest in coupling models at different scales together in a hybrid multiscale simulation framework. A limited number of hybrid multiscale simulation methods have been developed for subsurface applications, mostly using application-specific approaches for model coupling. The proposed generalized hybrid multiscale approach is designed with minimal intrusiveness to the at-scale simulators (pre-selected) and provides a set of lightweight C++ scripts to manage a complex multiscale workflow utilizing a concurrent coupling approach. The workflow includes at-scale simulators (using the lattice-Boltzmann method, LBM, at the pore and Darcy scale, respectively), scripts for boundary treatment (coupling and kriging), and a multiscale universal interface (MUI) for data exchange. The current study aims to apply the generalized hybrid multiscale modeling approach to couple pore- and Darcy-scale models for flow and mixing-controlled reaction with precipitation/dissolution in heterogeneous porous media. The model domain is packed heterogeneously that the mixing front geometry is more complex and not known a priori. To address those challenges, the generalized hybrid multiscale modeling approach is further developed to 1) adaptively define the locations of pore-scale subdomains, 2) provide a suite of physical boundary coupling schemes and 3) consider the dynamic change of the pore structures due to mineral precipitation/dissolution. The results are validated and evaluated by comparing with single-scale simulations in terms of velocities, reactive concentrations and computing cost.
Multiscale sampling model for motion integration.
Sherbakov, Lena; Yazdanbakhsh, Arash
2013-09-30
Biologically plausible strategies for visual scene integration across spatial and temporal domains continues to be a challenging topic. The fundamental question we address is whether classical problems in motion integration, such as the aperture problem, can be solved in a model that samples the visual scene at multiple spatial and temporal scales in parallel. We hypothesize that fast interareal connections that allow feedback of information between cortical layers are the key processes that disambiguate motion direction. We developed a neural model showing how the aperture problem can be solved using different spatial sampling scales between LGN, V1 layer 4, V1 layer 6, and area MT. Our results suggest that multiscale sampling, rather than feedback explicitly, is the key process that gives rise to end-stopped cells in V1 and enables area MT to solve the aperture problem without the need for calculating intersecting constraints or crafting intricate patterns of spatiotemporal receptive fields. Furthermore, the model explains why end-stopped cells no longer emerge in the absence of V1 layer 6 activity (Bolz & Gilbert, 1986), why V1 layer 4 cells are significantly more end-stopped than V1 layer 6 cells (Pack, Livingstone, Duffy, & Born, 2003), and how it is possible to have a solution to the aperture problem in area MT with no solution in V1 in the presence of driving feedback. In summary, while much research in the field focuses on how a laminar architecture can give rise to complicated spatiotemporal receptive fields to solve problems in the motion domain, we show that one can reframe motion integration as an emergent property of multiscale sampling achieved concurrently within lamina and across multiple visual areas.
A multiscale modeling approach for biomolecular systems
Energy Technology Data Exchange (ETDEWEB)
Bowling, Alan, E-mail: bowling@uta.edu; Haghshenas-Jaryani, Mahdi, E-mail: mahdi.haghshenasjaryani@mavs.uta.edu [The University of Texas at Arlington, Department of Mechanical and Aerospace Engineering (United States)
2015-04-15
This paper presents a new multiscale molecular dynamic model for investigating the effects of external interactions, such as contact and impact, during stepping and docking of motor proteins and other biomolecular systems. The model retains the mass properties ensuring that the result satisfies Newton’s second law. This idea is presented using a simple particle model to facilitate discussion of the rigid body model; however, the particle model does provide insights into particle dynamics at the nanoscale. The resulting three-dimensional model predicts a significant decrease in the effect of the random forces associated with Brownian motion. This conclusion runs contrary to the widely accepted notion that the motor protein’s movements are primarily the result of thermal effects. This work focuses on the mechanical aspects of protein locomotion; the effect ATP hydrolysis is estimated as internal forces acting on the mechanical model. In addition, the proposed model can be numerically integrated in a reasonable amount of time. Herein, the differences between the motion predicted by the old and new modeling approaches are compared using a simplified model of myosin V.
Efficient algorithms for multiscale modeling in porous media
Wheeler, Mary F.; Wildey, Tim; Xue, Guangri
2010-01-01
We describe multiscale mortar mixed finite element discretizations for second-order elliptic and nonlinear parabolic equations modeling Darcy flow in porous media. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. We discuss the construction of multiscale mortar basis and extend this concept to nonlinear interface operators. We present a multiscale preconditioning strategy to minimize the computational cost associated with construction of the multiscale mortar basis. We also discuss the use of appropriate quadrature rules and approximation spaces to reduce the saddle point system to a cell-centered pressure scheme. In particular, we focus on multiscale mortar multipoint flux approximation method for general hexahedral grids and full tensor permeabilities. Numerical results are presented to verify the accuracy and efficiency of these approaches. © 2010 John Wiley & Sons, Ltd.
Efficient algorithms for multiscale modeling in porous media
Wheeler, Mary F.
2010-09-26
We describe multiscale mortar mixed finite element discretizations for second-order elliptic and nonlinear parabolic equations modeling Darcy flow in porous media. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. We discuss the construction of multiscale mortar basis and extend this concept to nonlinear interface operators. We present a multiscale preconditioning strategy to minimize the computational cost associated with construction of the multiscale mortar basis. We also discuss the use of appropriate quadrature rules and approximation spaces to reduce the saddle point system to a cell-centered pressure scheme. In particular, we focus on multiscale mortar multipoint flux approximation method for general hexahedral grids and full tensor permeabilities. Numerical results are presented to verify the accuracy and efficiency of these approaches. © 2010 John Wiley & Sons, Ltd.
Multiscale modeling of three-dimensional genome
Zhang, Bin; Wolynes, Peter
The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.
An approach to multiscale modelling with graph grammars.
Ong, Yongzhi; Streit, Katarína; Henke, Michael; Kurth, Winfried
2014-09-01
Functional-structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs. A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL. Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas. The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models.
Multiscale Modeling of Mesoscale and Interfacial Phenomena
Petsev, Nikolai Dimitrov
we provide a novel and general framework for multiscale modeling of systems featuring one or more dissolved species. This makes it possible to retain molecular detail for parts of the problem that require it while using a simple, continuum description for parts where high detail is unnecessary, reducing the number of degrees of freedom (i.e. number of particles) dramatically. This opens the possibility for modeling ion transport in biological processes and biomolecule assembly in ionic solution, as well as electrokinetic phenomena at interfaces such as corrosion. The number of particles in the system is further reduced through an integrated boundary approach, which we apply to colloidal suspensions. In this thesis, we describe this general framework for multiscale modeling single- and multicomponent systems, provide several simple equilibrium and non-equilibrium case studies, and discuss future applications.
Model-to-model interface for multiscale materials modeling
Energy Technology Data Exchange (ETDEWEB)
Antonelli, Perry Edward [Iowa State Univ., Ames, IA (United States)
2017-12-17
A low-level model-to-model interface is presented that will enable independent models to be linked into an integrated system of models. The interface is based on a standard set of functions that contain appropriate export and import schemas that enable models to be linked with no changes to the models themselves. These ideas are presented in the context of a specific multiscale material problem that couples atomistic-based molecular dynamics calculations to continuum calculations of fluid ow. These simulations will be used to examine the influence of interactions of the fluid with an adjacent solid on the fluid ow. The interface will also be examined by adding it to an already existing modeling code, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and comparing it with our own molecular dynamics code.
Fast Multiscale Reservoir Simulations using POD-DEIM Model Reduction
Ghasemi, Mohammadreza; Yang, Yanfang; Gildin, Eduardo; Efendiev, Yalchin R.; Calo, Victor M.
2015-01-01
snapshots are inexpensively computed using local model reduction techniques based on Generalized Multiscale Finite Element Method (GMsFEM) which provides (1) a hierarchical approximation of snapshot vectors (2) adaptive computations by using coarse grids (3
Multi-scale modeling strategies in materials science—The ...
Indian Academy of Sciences (India)
Unknown
Multi-scale models; quasicontinuum method; finite elements. 1. Introduction ... boundary with external stresses, and the interaction of a lattice dislocation with a grain ..... mum value of se over the elements that touch node α. The acceleration of ...
Predicting FLDs Using a Multiscale Modeling Scheme
Wu, Z.; Loy, C.; Wang, E.; Hegadekatte, V.
2017-09-01
The measurement of a single forming limit diagram (FLD) requires significant resources and is time consuming. We have developed a multiscale modeling scheme to predict FLDs using a combination of limited laboratory testing, crystal plasticity (VPSC) modeling, and dual sequential-stage finite element (ABAQUS/Explicit) modeling with the Marciniak-Kuczynski (M-K) criterion to determine the limit strain. We have established a means to work around existing limitations in ABAQUS/Explicit by using an anisotropic yield locus (e.g., BBC2008) in combination with the M-K criterion. We further apply a VPSC model to reduce the number of laboratory tests required to characterize the anisotropic yield locus. In the present work, we show that the predicted FLD is in excellent agreement with the measured FLD for AA5182 in the O temper. Instead of 13 different tests as for a traditional FLD determination within Novelis, our technique uses just four measurements: tensile properties in three orientations; plane strain tension; biaxial bulge; and the sheet crystallographic texture. The turnaround time is consequently far less than for the traditional laboratory measurement of the FLD.
Multiscale modeling of polyisoprene on graphite
International Nuclear Information System (INIS)
Pandey, Yogendra Narayan; Brayton, Alexander; Doxastakis, Manolis; Burkhart, Craig; Papakonstantopoulos, George J.
2014-01-01
The local dynamics and the conformational properties of polyisoprene next to a smooth graphite surface constructed by graphene layers are studied by a multiscale methodology. First, fully atomistic molecular dynamics simulations of oligomers next to the surface are performed. Subsequently, Monte Carlo simulations of a systematically derived coarse-grained model generate numerous uncorrelated structures for polymer systems. A new reverse backmapping strategy is presented that reintroduces atomistic detail. Finally, multiple extensive fully atomistic simulations with large systems of long macromolecules are employed to examine local dynamics in proximity to graphite. Polyisoprene repeat units arrange close to a parallel configuration with chains exhibiting a distribution of contact lengths. Efficient Monte Carlo algorithms with the coarse-grain model are capable of sampling these distributions for any molecular weight in quantitative agreement with predictions from atomistic models. Furthermore, molecular dynamics simulations with well-equilibrated systems at all length-scales support an increased dynamic heterogeneity that is emerging from both intermolecular interactions with the flat surface and intramolecular cooperativity. This study provides a detailed comprehensive picture of polyisoprene on a flat surface and consists of an effort to characterize such systems in atomistic detail
Multiscale Concrete Modeling of Aging Degradation
Energy Technology Data Exchange (ETDEWEB)
Hammi, Yousseff [Mississippi State Univ., Mississippi State, MS (United States); Gullett, Philipp [Mississippi State Univ., Mississippi State, MS (United States); Horstemeyer, Mark F. [Mississippi State Univ., Mississippi State, MS (United States)
2015-07-31
In this work a numerical finite element framework is implemented to enable the integration of coupled multiscale and multiphysics transport processes. A User Element subroutine (UEL) in Abaqus is used to simultaneously solve stress equilibrium, heat conduction, and multiple diffusion equations for 2D and 3D linear and quadratic elements. Transport processes in concrete structures and their degradation mechanisms are presented along with the discretization of the governing equations. The multiphysics modeling framework is theoretically extended to the linear elastic fracture mechanics (LEFM) by introducing the eXtended Finite Element Method (XFEM) and based on the XFEM user element implementation of Giner et al. [2009]. A damage model that takes into account the damage contribution from the different degradation mechanisms is theoretically developed. The total contribution of damage is forwarded to a Multi-Stage Fatigue (MSF) model to enable the assessment of the fatigue life and the deterioration of reinforced concrete structures in a nuclear power plant. Finally, two examples are presented to illustrate the developed multiphysics user element implementation and the XFEM implementation of Giner et al. [2009].
The Goddard multi-scale modeling system with unified physics
Directory of Open Access Journals (Sweden)
W.-K. Tao
2009-08-01
Full Text Available Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1 a cloud-resolving model (CRM, (2 a regional-scale model, the NASA unified Weather Research and Forecasting Model (WRF, and (3 a coupled CRM-GCM (general circulation model, known as the Goddard Multi-scale Modeling Framework or MMF. The same cloud-microphysical processes, long- and short-wave radiative transfer and land-surface processes are applied in all of the models to study explicit cloud-radiation and cloud-surface interactive processes in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator for comparison and validation with NASA high-resolution satellite data.
This paper reviews the development and presents some applications of the multi-scale modeling system, including results from using the multi-scale modeling system to study the interactions between clouds, precipitation, and aerosols. In addition, use of the multi-satellite simulator to identify the strengths and weaknesses of the model-simulated precipitation processes will be discussed as well as future model developments and applications.
Microphysics in Multi-scale Modeling System with Unified Physics
Tao, Wei-Kuo
2012-01-01
Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.
Multiscale Modeling of UHTC: Thermal Conductivity
Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.
2012-01-01
We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.
Distributed multiscale computing
Borgdorff, J.
2014-01-01
Multiscale models combine knowledge, data, and hypotheses from different scales. Simulating a multiscale model often requires extensive computation. This thesis evaluates distributing these computations, an approach termed distributed multiscale computing (DMC). First, the process of multiscale
Integrated multiscale modeling of molecular computing devices
International Nuclear Information System (INIS)
Cummings, Peter T; Leng Yongsheng
2005-01-01
Molecular electronics, in which single organic molecules are designed to perform the functions of transistors, diodes, switches and other circuit elements used in current siliconbased microelecronics, is drawing wide interest as a potential replacement technology for conventional silicon-based lithographically etched microelectronic devices. In addition to their nanoscopic scale, the additional advantage of molecular electronics devices compared to silicon-based lithographically etched devices is the promise of being able to produce them cheaply on an industrial scale using wet chemistry methods (i.e., self-assembly from solution). The design of molecular electronics devices, and the processes to make them on an industrial scale, will require a thorough theoretical understanding of the molecular and higher level processes involved. Hence, the development of modeling techniques for molecular electronics devices is a high priority from both a basic science point of view (to understand the experimental studies in this field) and from an applied nanotechnology (manufacturing) point of view. Modeling molecular electronics devices requires computational methods at all length scales - electronic structure methods for calculating electron transport through organic molecules bonded to inorganic surfaces, molecular simulation methods for determining the structure of self-assembled films of organic molecules on inorganic surfaces, mesoscale methods to understand and predict the formation of mesoscale patterns on surfaces (including interconnect architecture), and macroscopic scale methods (including finite element methods) for simulating the behavior of molecular electronic circuit elements in a larger integrated device. Here we describe a large Department of Energy project involving six universities and one national laboratory aimed at developing integrated multiscale methods for modeling molecular electronics devices. The project is funded equally by the Office of Basic
Multiscale Modeling in the Clinic: Drug Design and Development
Energy Technology Data Exchange (ETDEWEB)
Clancy, Colleen E.; An, Gary; Cannon, William R.; Liu, Yaling; May, Elebeoba E.; Ortoleva, Peter; Popel, Aleksander S.; Sluka, James P.; Su, Jing; Vicini, Paolo; Zhou, Xiaobo; Eckmann, David M.
2016-02-17
A wide range of length and time scales are relevant to pharmacology, especially in drug development, drug design and drug delivery. Therefore, multi-scale computational modeling and simulation methods and paradigms that advance the linkage of phenomena occurring at these multiple scales have become increasingly important. Multi-scale approaches present in silico opportunities to advance laboratory research to bedside clinical applications in pharmaceuticals research. This is achievable through the capability of modeling to reveal phenomena occurring across multiple spatial and temporal scales, which are not otherwise readily accessible to experimentation. The resultant models, when validated, are capable of making testable predictions to guide drug design and delivery. In this review we describe the goals, methods, and opportunities of multi-scale modeling in drug design and development. We demonstrate the impact of multiple scales of modeling in this field. We indicate the common mathematical techniques employed for multi-scale modeling approaches used in pharmacology and present several examples illustrating the current state-of-the-art regarding drug development for: Excitable Systems (Heart); Cancer (Metastasis and Differentiation); Cancer (Angiogenesis and Drug Targeting); Metabolic Disorders; and Inflammation and Sepsis. We conclude with a focus on barriers to successful clinical translation of drug development, drug design and drug delivery multi-scale models.
Modeling Temporal Evolution and Multiscale Structure in Networks
DEFF Research Database (Denmark)
Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard
2013-01-01
Many real-world networks exhibit both temporal evolution and multiscale structure. We propose a model for temporally correlated multifurcating hierarchies in complex networks which jointly capture both effects. We use the Gibbs fragmentation tree as prior over multifurcating trees and a change......-point model to account for the temporal evolution of each vertex. We demonstrate that our model is able to infer time-varying multiscale structure in synthetic as well as three real world time-evolving complex networks. Our modeling of the temporal evolution of hierarchies brings new insights...
Multiscale modeling of emergent materials: biological and soft matter
DEFF Research Database (Denmark)
Murtola, Teemu; Bunker, Alex; Vattulainen, Ilpo
2009-01-01
In this review, we focus on four current related issues in multiscale modeling of soft and biological matter. First, we discuss how to use structural information from detailed models (or experiments) to construct coarse-grained ones in a hierarchical and systematic way. This is discussed in the c......In this review, we focus on four current related issues in multiscale modeling of soft and biological matter. First, we discuss how to use structural information from detailed models (or experiments) to construct coarse-grained ones in a hierarchical and systematic way. This is discussed...
Foundations for a multiscale collaborative Earth model
Afanasiev, M.
2015-11-11
of the CSEM development, the broad global updates mostly act to remove artefacts from the assembly of the initial CSEM. During the future evolution of the CSEM, the reference data set will be used to account for the influence of small-scale refinements on large-scale global structure. The CSEM as a computational framework is intended to help bridging the gap between local, regional and global tomography, and to contribute to the development of a global multiscale Earth model. While the current construction serves as a first proof of concept, future refinements and additions will require community involvement, which is welcome at this stage already.
Integrated multiscale biomaterials experiment and modelling: a perspective
Buehler, Markus J.; Genin, Guy M.
2016-01-01
Advances in multiscale models and computational power have enabled a broad toolset to predict how molecules, cells, tissues and organs behave and develop. A key theme in biological systems is the emergence of macroscale behaviour from collective behaviours across a range of length and timescales, and a key element of these models is therefore hierarchical simulation. However, this predictive capacity has far outstripped our ability to validate predictions experimentally, particularly when multiple hierarchical levels are involved. The state of the art represents careful integration of multiscale experiment and modelling, and yields not only validation, but also insights into deformation and relaxation mechanisms across scales. We present here a sampling of key results that highlight both challenges and opportunities for integrated multiscale experiment and modelling in biological systems. PMID:28981126
Multiscale modeling of transdermal drug delivery
Rim, Jee Eun
2006-04-01
This study addresses the modeling of transdermal diffusion of drugs, to better understand the permeation of molecules through the skin, and especially the stratum corneum, which forms the main permeation barrier of the skin. In transdermal delivery of systemic drugs, the drugs diffuse from a patch placed on the skin through the epidermis to the underlying blood vessels. The epidermis is the outermost layer of the skin and can be further divided into the stratum corneum (SC) and the viable epidermis layers. The SC consists of keratinous cells (corneocytes) embedded in the lipid multi-bilayers of the intercellular space. It is widely accepted that the barrier properties of the skin mostly arises from the ordered structure of the lipid bilayers. The diffusion path, at least for lipophilic molecules, seems to be mainly through the lipid bilayers. Despite the advantages of transdermal drug delivery compared to other drug delivery routes such as oral dosing and injections, the low percutaneous permeability of most compounds is a major difficulty in the wide application of transdermal drug delivery. In fact, many transdermal drug formulations include one or more permeation enhancers that increase the permeation of the drug significantly. During the last two decades, many researchers have studied percutaneous absorption of drugs both experimentally and theoretically. However, many are based on pharmacokinetic compartmental models, in which steady or pseudo-steady state conditions are assumed, with constant diffusivity and partitioning for single component systems. This study presents a framework for studying the multi-component diffusion of drugs coupled with enhancers through the skin by considering the microstructure of the stratum corneum (SC). A multiscale framework of modeling the transdermal diffusion of molecules is presented, by first calculating the microscopic diffusion coefficient in the lipid bilayers of the SC using molecular dynamics (MD). Then a
Maria Vergara; Samuel A. Cushman; Fermin Urra; Aritz Ruiz-Gonzalez
2016-01-01
Multispecies and multiscale habitat suitability models (HSM) are important to identify the environmental variables and scales influencing habitat selection and facilitate the comparison of closely related species with different ecological requirements. Objectives This study explores the multiscale relationships of habitat suitability for the pine (Martes...
Daniels, Miles E; Hogan, Jennifer; Smith, Woutrina A; Oates, Stori C; Miller, Melissa A; Hardin, Dane; Shapiro, Karen; Los Huertos, Marc; Conrad, Patricia A; Dominik, Clare; Watson, Fred G R
2014-09-15
Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii are waterborne protozoal pathogens distributed worldwide and empirical evidence suggests that wetlands reduce the concentrations of these pathogens under certain environmental conditions. The goal of this study was to evaluate how protozoal removal in surface water is affected by the water temperature, turbidity, salinity, and vegetation cover of wetlands in the Monterey Bay region of California. To examine how protozoal removal was affected by these environmental factors, we conducted observational experiments at three primary spatial scales: settling columns, recirculating wetland mesocosm tanks, and an experimental research wetland (Molera Wetland). Simultaneously, we developed a protozoal transport model for surface water to simulate the settling columns, the mesocosm tanks, and the Molera Wetland. With a high degree of uncertainty expected in the model predictions and field observations, we developed the model within a Bayesian statistical framework. We found protozoal removal increased when water flowed through vegetation, and with higher levels of turbidity, salinity, and temperature. Protozoal removal in surface water was maximized (~0.1 hour(-1)) when flowing through emergent vegetation at 2% cover, and with a vegetation contact time of ~30 minutes compared to the effects of temperature, salinity, and turbidity. Our studies revealed that an increase in vegetated wetland area, with water moving through vegetation, would likely improve regional water quality through the reduction of fecal protozoal pathogen loads. Copyright © 2014 Elsevier B.V. All rights reserved.
Computer-Aided Multiscale Modelling for Chemical Process Engineering
DEFF Research Database (Denmark)
Morales Rodriguez, Ricardo; Gani, Rafiqul
2007-01-01
Chemical processes are generally modeled through monoscale approaches, which, while not adequate, satisfy a useful role in product-process design. In this case, use of a multi-dimensional and multi-scale model-based approach has importance in product-process development. A computer-aided framework...
Multi-scale path planning for reduced environmental impact of aviation
Campbell, Scot Edward
A future air traffic management system capable of rerouting aircraft trajectories in real-time in response to transient and evolving events would result in increased aircraft efficiency, better utilization of the airspace, and decreased environmental impact. Mixed-integer linear programming (MILP) is used within a receding horizon framework to form aircraft trajectories which mitigate persistent contrail formation, avoid areas of convective weather, and seek a minimum fuel solution. Areas conducive to persistent contrail formation and areas of convective weather occur at disparate temporal and spatial scales, and thereby require the receding horizon controller to be adaptable to multi-scale events. In response, a novel adaptable receding horizon controller was developed to account for multi-scale disturbances, as well as generate trajectories using both a penalty function approach for obstacle penetration and hard obstacle avoidance constraints. A realistic aircraft fuel burn model based on aircraft data and engine performance simulations is used to form the cost function in the MILP optimization. The performance of the receding horizon algorithm is tested through simulation. A scalability analysis of the algorithm is conducted to ensure the tractability of the path planner. The adaptable receding horizon algorithm is shown to successfully negotiate multi-scale environments with performance exceeding static receding horizon solutions. The path planner is applied to realistic scenarios involving real atmospheric data. A single flight example for persistent contrail mitigation shows that fuel burn increases 1.48% when approximately 50% of persistent contrails are avoided, but 6.19% when 100% of persistent contrails are avoided. Persistent contrail mitigating trajectories are generated for multiple days of data, and the research shows that 58% of persistent contrails are avoided with a 0.48% increase in fuel consumption when averaged over a year.
Multiscale modeling and simulation of brain blood flow
Energy Technology Data Exchange (ETDEWEB)
Perdikaris, Paris, E-mail: parisp@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Grinberg, Leopold, E-mail: leopoldgrinberg@us.ibm.com [IBM T.J Watson Research Center, 1 Rogers St, Cambridge, Massachusetts 02142 (United States); Karniadakis, George Em, E-mail: george-karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912 (United States)
2016-02-15
The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.
A Liver-centric Multiscale Modeling Framework for Xenobiotics
We describe a multi-scale framework for modeling acetaminophen-induced liver toxicity. Acetaminophen is a widely used analgesic. Overdose of acetaminophen can result in liver injury via its biotransformation into toxic product, which further induce massive necrosis. Our study foc...
Multiscale model reduction for shale gas transport in fractured media
Akkutlu, I. Y.
2016-05-18
In this paper, we develop a multiscale model reduction technique that describes shale gas transport in fractured media. Due to the pore-scale heterogeneities and processes, we use upscaled models to describe the matrix. We follow our previous work (Akkutlu et al. Transp. Porous Media 107(1), 235–260, 2015), where we derived an upscaled model in the form of generalized nonlinear diffusion model to describe the effects of kerogen. To model the interaction between the matrix and the fractures, we use Generalized Multiscale Finite Element Method (Efendiev et al. J. Comput. Phys. 251, 116–135, 2013, 2015). In this approach, the matrix and the fracture interaction is modeled via local multiscale basis functions. In Efendiev et al. (2015), we developed the GMsFEM and applied for linear flows with horizontal or vertical fracture orientations aligned with a Cartesian fine grid. The approach in Efendiev et al. (2015) does not allow handling arbitrary fracture distributions. In this paper, we (1) consider arbitrary fracture distributions on an unstructured grid; (2) develop GMsFEM for nonlinear flows; and (3) develop online basis function strategies to adaptively improve the convergence. The number of multiscale basis functions in each coarse region represents the degrees of freedom needed to achieve a certain error threshold. Our approach is adaptive in a sense that the multiscale basis functions can be added in the regions of interest. Numerical results for two-dimensional problem are presented to demonstrate the efficiency of proposed approach. © 2016 Springer International Publishing Switzerland
Versatile Micromechanics Model for Multiscale Analysis of Composite Structures
Kwon, Y. W.; Park, M. S.
2013-08-01
A general-purpose micromechanics model was developed so that the model could be applied to various composite materials such as reinforced by particles, long fibers and short fibers as well as those containing micro voids. Additionally, the model can be used with hierarchical composite materials. The micromechanics model can be used to compute effective material properties like elastic moduli, shear moduli, Poisson's ratios, and coefficients of thermal expansion for the various composite materials. The model can also calculate the strains and stresses at the constituent material level such as fibers, particles, and whiskers from the composite level stresses and strains. The model was implemented into ABAQUS using the UMAT option for multiscale analysis. An extensive set of examples are presented to demonstrate the reliability and accuracy of the developed micromechanics model for different kinds of composite materials. Another set of examples is provided to study the multiscale analysis of composite structures.
Multiscale Systems Modeling of Male Reproductive Tract ...
The reproductive tract is a complex, integrated organ system with diverse embryology and unique sensitivity to prenatal environmental exposures that disrupt morphoregulatory processes and endocrine signaling. U.S. EPA’s in vitro high-throughput screening (HTS) database (ToxCastDB) was used to profile the bioactivity of 54 chemicals with male developmental consequences across ~800 molecular and cellular features [Leung et al., accepted manuscript]. The in vitro bioactivity on molecular targets could be condensed into 156 gene annotations in a bipartite network. These results highlighted the role of estrogen and androgen signaling pathways in male reproductive tract development, and importantly, broadened the list of molecular targets to include GPCRs, cytochrome-P450s, vascular remodeling proteins, and retinoic acid signaling. A multicellular agent-based model was used to simulate the complex interactions between morphoregulatory, endocrine, and environmental influences during genital tubercle (GT) development. Spatially dynamic signals (e.g., SHH, FGF10, and androgen) were implemented in the model to address differential adhesion, cell motility, proliferation, and apoptosis. Urethral tube closure was an emergent feature of the model that was linked to gender-specific rates of ventral mesenchymal proliferation and urethral plate endodermal apoptosis, both under control of androgen signaling [Leung et al., manuscript in preparation]. A systemic parameter sweep w
Multiscale Modeling and Uncertainty Quantification for Nuclear Fuel Performance
Energy Technology Data Exchange (ETDEWEB)
Estep, Donald [Colorado State Univ., Fort Collins, CO (United States); El-Azab, Anter [Florida State Univ., Tallahassee, FL (United States); Pernice, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterson, John W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Polyakov, Peter [Univ. of Wyoming, Laramie, WY (United States); Tavener, Simon [Colorado State Univ., Fort Collins, CO (United States); Xiu, Dongbin [Purdue Univ., West Lafayette, IN (United States); Univ. of Utah, Salt Lake City, UT (United States)
2017-03-23
In this project, we will address the challenges associated with constructing high fidelity multiscale models of nuclear fuel performance. We (*) propose a novel approach for coupling mesoscale and macroscale models, (*) devise efficient numerical methods for simulating the coupled system, and (*) devise and analyze effective numerical approaches for error and uncertainty quantification for the coupled multiscale system. As an integral part of the project, we will carry out analysis of the effects of upscaling and downscaling, investigate efficient methods for stochastic sensitivity analysis of the individual macroscale and mesoscale models, and carry out a posteriori error analysis for computed results. We will pursue development and implementation of solutions in software used at Idaho National Laboratories on models of interest to the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.
ANALYSIS/MODEL COVER SHEET, MULTISCALE THERMOHYDROLOGIC MODEL
International Nuclear Information System (INIS)
Buscheck, T.A.
2001-01-01
The purpose of the Multiscale Thermohydrologic Model (MSTHM) is to describe the thermohydrologic evolution of the near-field environment (NFE) and engineered barrier system (EBS) throughout the potential high-level nuclear waste repository at Yucca Mountain for a particular engineering design (CRWMS M andO 2000c). The process-level model will provide thermohydrologic (TH) information and data (such as in-drift temperature, relative humidity, liquid saturation, etc.) for use in other technical products. This data is provided throughout the entire repository area as a function of time. The MSTHM couples the Smeared-heat-source Drift-scale Thermal-conduction (SDT), Line-average-heat-source Drift-scale Thermohydrologic (LDTH), Discrete-heat-source Drift-scale Thermal-conduction (DDT), and Smeared-heat-source Mountain-scale Thermal-conduction (SMT) submodels such that the flow of water and water vapor through partially-saturated fractured rock is considered. The MSTHM accounts for 3-D drift-scale and mountain-scale heat flow, repository-scale variability of stratigraphy and infiltration flux, and waste package (WP)-to-WP variability in heat output from WPs. All submodels use the nonisothermal unsaturated-saturated flow and transport (NUFT) simulation code. The MSTHM is implemented in several data-processing steps. The four major steps are: (1) submodel input-file preparation, (2) execution of the four submodel families with the use of the NUFT code, (3) execution of the multiscale thermohydrologic abstraction code (MSTHAC), and (4) binning and post-processing (i.e., graphics preparation) of the output from MSTHAC. Section 6 describes the MSTHM in detail. The objectives of this Analyses and Model Report (AMR) are to investigate near field (NF) and EBS thermohydrologic environments throughout the repository area at various evolution periods, and to provide TH data that may be used in other process model reports
Leempoel, Kevin; Parisod, Christian; Geiser, Céline; Joost, Stéphane
2018-02-01
Plant species are known to adapt locally to their environment, particularly in mountainous areas where conditions can vary drastically over short distances. The climate of such landscapes being largely influenced by topography, using fine-scale models to evaluate environmental heterogeneity may help detecting adaptation to micro-habitats. Here, we applied a multiscale landscape genomic approach to detect evidence of local adaptation in the alpine plant Biscutella laevigata . The two gene pools identified, experiencing limited gene flow along a 1-km ridge, were different in regard to several habitat features derived from a very high resolution (VHR) digital elevation model (DEM). A correlative approach detected signatures of selection along environmental gradients such as altitude, wind exposure, and solar radiation, indicating adaptive pressures likely driven by fine-scale topography. Using a large panel of DEM-derived variables as ecologically relevant proxies, our results highlighted the critical role of spatial resolution. These high-resolution multiscale variables indeed indicate that the robustness of associations between genetic loci and environmental features depends on spatial parameters that are poorly documented. We argue that the scale issue is critical in landscape genomics and that multiscale ecological variables are key to improve our understanding of local adaptation in highly heterogeneous landscapes.
Multiscale geometric modeling of macromolecules II: Lagrangian representation
Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei
2013-01-01
Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR and cryo-EM, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger’s functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, while our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions. PMID:23813599
Multiscale modeling of radiation effects in nuclear reactor structural materials
Energy Technology Data Exchange (ETDEWEB)
Kwon, Junhyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
Most problems in irradiated materials originate from the atomic collision of high-energy particles and lattice atoms. This collision leads to displacement cascades through the energy transfer reaction and causes various types of defects such as vacancies, interstitials, and clusters. The behavior of the point defects created in the displacement cascades is important because these defects play a major role in a microstructural evolution and further affect the changes in material properties. Rapid advances have been made in the computational capabilities for a realistic simulation of complex physical phenomena, such as irradiation and aging effects. At the same time, progress has been made in understanding the effect of radiation in metals, especially iron-based alloys. In this work, we present some of our ongoing work in this area, which illustrates a multiscale modeling for evaluating a microstructural evolution and mechanical property changes during irradiation. Multiscale modeling approaches are briefly presented here in the following order: nuclear interaction, atomic-level interaction, atomistic modeling, microstructural evolution modeling and mechanical property modeling. This is one of many possible methods for classifying techniques. The effort in developing physical multiscale models applied to radiation damage has been focused on a single crystal or single-grain materials.
Multiscale Modeling of Composites: Toward Virtual Testing … and Beyond
LLorca, J.; González, C.; Molina-Aldareguía, J. M.; Lópes, C. S.
2013-02-01
Recent developments in the area of multiscale modeling of fiber-reinforced polymers are presented. The overall strategy takes advantage of the separation of length scales between different entities (ply, laminate, and component) found in composite structures. This allows us to carry out multiscale modeling by computing the properties of one entity (e.g., individual plies) at the relevant length scale, homogenizing the results into a constitutive model, and passing this information to the next length scale to determine the mechanical behavior of the larger entity (e.g., laminate). As a result, high-fidelity numerical simulations of the mechanical behavior of composite coupons and small components are nowadays feasible starting from the matrix, fiber, and interface properties and spatial distribution. Finally, the roadmap is outlined for extending the current strategy to include functional properties and processing into the simulation scheme.
Multiscale computer modeling in biomechanics and biomedical engineering
2013-01-01
This book reviews the state-of-the-art in multiscale computer modeling, in terms of both accomplishments and challenges. The information in the book is particularly useful for biomedical engineers, medical physicists and researchers in systems biology, mathematical biology, micro-biomechanics and biomaterials who are interested in how to bridge between traditional biomedical engineering work at the organ and tissue scales, and the newer arenas of cellular and molecular bioengineering.
Numerical Simulations of a Multiscale Model of Stratified Langmuir Circulation
Malecha, Ziemowit; Chini, Gregory; Julien, Keith
2012-11-01
Langmuir circulation (LC), a prominent form of wind and surface-wave driven shear turbulence in the ocean surface boundary layer (BL), is commonly modeled using the Craik-Leibovich (CL) equations, a phase-averaged variant of the Navier-Stokes (NS) equations. Although surface-wave filtering renders the CL equations more amenable to simulation than are the instantaneous NS equations, simulations in wide domains, hundreds of times the BL depth, currently earn the ``grand challenge'' designation. To facilitate simulations of LC in such spatially-extended domains, we have derived multiscale CL equations by exploiting the scale separation between submesoscale and BL flows in the upper ocean. The numerical algorithm for simulating this multiscale model resembles super-parameterization schemes used in meteorology, but retains a firm mathematical basis. We have validated our algorithm and here use it to perform multiscale simulations of the interaction between LC and upper ocean density stratification. ZMM, GPC, KJ gratefully acknowledge funding from NSF CMG Award 0934827.
Multiscale modelling and experimentation of hydrogen embrittlement in aerospace materials
Jothi, Sathiskumar
Pulse plated nickel and nickel based superalloys have been used extensively in the Ariane 5 space launcher engines. Large structural Ariane 5 space launcher engine components such as combustion chambers with complex microstructures have usually been manufactured using electrodeposited nickel with advanced pulse plating techniques with smaller parts made of nickel based superalloys joined or welded to the structure to fabricate Ariane 5 space launcher engines. One of the major challenges in manufacturing these space launcher components using newly developed materials is a fundamental understanding of how different materials and microstructures react with hydrogen during welding which can lead to hydrogen induced cracking. The main objective of this research has been to examine and interpret the effects of microstructure on hydrogen diffusion and hydrogen embrittlement in (i) nickel based superalloy 718, (ii) established and (iii) newly developed grades of pulse plated nickel used in the Ariane 5 space launcher engine combustion chamber. Also, the effect of microstructures on hydrogen induced hot and cold cracking and weldability of three different grades of pulse plated nickel were investigated. Multiscale modelling and experimental methods have been used throughout. The effect of microstructure on hydrogen embrittlement was explored using an original multiscale numerical model (exploiting synthetic and real microstructures) and a wide range of material characterization techniques including scanning electron microscopy, 2D and 3D electron back scattering diffraction, in-situ and ex-situ hydrogen charged slow strain rate tests, thermal spectroscopy analysis and the Varestraint weldability test. This research shows that combined multiscale modelling and experimentation is required for a fundamental understanding of microstructural effects in hydrogen embrittlement in these materials. Methods to control the susceptibility to hydrogen induced hot and cold cracking and
Multi-scale modeling for sustainable chemical production.
Zhuang, Kai; Bakshi, Bhavik R; Herrgård, Markus J
2013-09-01
With recent advances in metabolic engineering, it is now technically possible to produce a wide portfolio of existing petrochemical products from biomass feedstock. In recent years, a number of modeling approaches have been developed to support the engineering and decision-making processes associated with the development and implementation of a sustainable biochemical industry. The temporal and spatial scales of modeling approaches for sustainable chemical production vary greatly, ranging from metabolic models that aid the design of fermentative microbial strains to material and monetary flow models that explore the ecological impacts of all economic activities. Research efforts that attempt to connect the models at different scales have been limited. Here, we review a number of existing modeling approaches and their applications at the scales of metabolism, bioreactor, overall process, chemical industry, economy, and ecosystem. In addition, we propose a multi-scale approach for integrating the existing models into a cohesive framework. The major benefit of this proposed framework is that the design and decision-making at each scale can be informed, guided, and constrained by simulations and predictions at every other scale. In addition, the development of this multi-scale framework would promote cohesive collaborations across multiple traditionally disconnected modeling disciplines to achieve sustainable chemical production. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growth
Perfahl, H.
2012-11-01
We present a three-dimensional, multiscale model of vascular tumour growth, which couples nutrient/growth factor transport, blood flow, angiogenesis, vascular remodelling, movement of and interactions between normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. We present computational simulations which show how a vascular network may evolve and interact with tumour and healthy cells. We also demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.
3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growth
Perfahl, H.; Byrne, H. M.; Chen, T.; Estrella, V.; Alarcó n, T.; Lapin, A.; Gatenby, R. A.; Gillies, R. J.; Lloyd, M. C.; Maini, P. K.; Reuss, M.; Owen, M. R.
2012-01-01
We present a three-dimensional, multiscale model of vascular tumour growth, which couples nutrient/growth factor transport, blood flow, angiogenesis, vascular remodelling, movement of and interactions between normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. We present computational simulations which show how a vascular network may evolve and interact with tumour and healthy cells. We also demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.
Multiscale Models of Melting Arctic Sea Ice
2014-09-30
Sea ice reflectance or albedo , a key parameter in climate modeling, is primarily determined by melt pond and ice floe configurations. Ice - albedo ...determine their albedo - a key parameter in climate modeling. Here we explore the possibility of a conceptual sea ice climate model passing through a...bifurcation points. Ising model for melt ponds on Arctic sea ice Y. Ma, I. Sudakov, and K. M. Golden Abstract: The albedo of melting
Multiscale friction modeling for sheet metal forming
Hol, J.; Cid Alfaro, M.V.; de Rooij, Matthias B.; Meinders, Vincent T.; Felder, Eric; Montmitonnet, Pierre
2010-01-01
The most often used friction model for sheet metal forming simulations is the relative simple Coulomb friction model. This paper presents a more advanced friction model for large scale forming simulations based on the surface change on the micro-scale. The surface texture of a material changes when
Multiscale Modeling of Carbon Nanotube-Epoxy Nanocomposites
Fasanella, Nicholas A.
Epoxy-composites are widely used in the aerospace industry. In order to improve upon stiffness and thermal conductivity; carbon nanotube additives to epoxies are being explored. This dissertation presents multiscale modeling techniques to study the engineering properties of single walled carbon nanotube (SWNT)-epoxy nanocomposites, consisting of pristine and covalently functionalized systems. Using Molecular Dynamics (MD), thermomechanical properties were calculated for a representative polymer unit cell. Finite Element (FE) and orientation distribution function (ODF) based methods were used in a multiscale framework to obtain macroscale properties. An epoxy network was built using the dendrimer growth approach. The epoxy model was verified by matching the experimental glass transition temperature, density, and dilatation. MD, via the constant valence force field (CVFF), was used to explore the mechanical and dilatometric effects of adding pristine and functionalized SWNTs to epoxy. Full stiffness matrices and linear coefficient of thermal expansion vectors were obtained. The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for the various nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. To obtain continuum-scale elastic properties from the MD data, multiscale modeling was considered to give better control over the volume fraction of nanotubes, and investigate the effects of nanotube alignment. Two methods were considered; an FE based method, and an ODF based method. The FE method probabilistically assigned elastic properties of elements from the MD lattice results based on the desired volume fraction and alignment of the nanotubes. For the ODF method, a distribution function was generated based on the desired amount of nanotube alignment
Multiscale modelling approaches for assessing cosmetic ingredients safety.
Bois, Frédéric Y; Ochoa, Juan G Diaz; Gajewska, Monika; Kovarich, Simona; Mauch, Klaus; Paini, Alicia; Péry, Alexandre; Benito, Jose Vicente Sala; Teng, Sophie; Worth, Andrew
2017-12-01
The European Union's ban on animal testing for cosmetic ingredients and products has generated a strong momentum for the development of in silico and in vitro alternative methods. One of the focus of the COSMOS project was ab initio prediction of kinetics and toxic effects through multiscale pharmacokinetic modeling and in vitro data integration. In our experience, mathematical or computer modeling and in vitro experiments are complementary. We present here a summary of the main models and results obtained within the framework of the project on these topics. A first section presents our work at the organelle and cellular level. We then go toward modeling cell levels effects (monitored continuously), multiscale physiologically based pharmacokinetic and effect models, and route to route extrapolation. We follow with a short presentation of the automated KNIME workflows developed for dissemination and easy use of the models. We end with a discussion of two challenges to the field: our limited ability to deal with massive data and complex computations. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
A posteriori error analysis of multiscale operator decomposition methods for multiphysics models
International Nuclear Information System (INIS)
Estep, D; Carey, V; Tavener, S; Ginting, V; Wildey, T
2008-01-01
Multiphysics, multiscale models present significant challenges in computing accurate solutions and for estimating the error in information computed from numerical solutions. In this paper, we describe recent advances in extending the techniques of a posteriori error analysis to multiscale operator decomposition solution methods. While the particulars of the analysis vary considerably with the problem, several key ideas underlie a general approach being developed to treat operator decomposition multiscale methods. We explain these ideas in the context of three specific examples
Multiscale geometric modeling of macromolecules I: Cartesian representation
Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei
2014-01-01
This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the
Multiscale geometric modeling of macromolecules I: Cartesian representation
Energy Technology Data Exchange (ETDEWEB)
Xia, Kelin [Department of Mathematics, Michigan State University, MI 48824 (United States); Feng, Xin [Department of Computer Science and Engineering, Michigan State University, MI 48824 (United States); Chen, Zhan [Department of Mathematics, Michigan State University, MI 48824 (United States); Tong, Yiying [Department of Computer Science and Engineering, Michigan State University, MI 48824 (United States); Wei, Guo-Wei, E-mail: wei@math.msu.edu [Department of Mathematics, Michigan State University, MI 48824 (United States); Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824 (United States)
2014-01-15
This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace–Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the
Computational multiscale modeling of intergranular cracking
International Nuclear Information System (INIS)
Simonovski, Igor; Cizelj, Leon
2011-01-01
A novel computational approach for simulation of intergranular cracks in a polycrystalline aggregate is proposed in this paper. The computational model includes a topological model of the experimentally determined microstructure of a 400 μm diameter stainless steel wire and automatic finite element discretization of the grains and grain boundaries. The microstructure was spatially characterized by X-ray diffraction contrast tomography and contains 362 grains and some 1600 grain boundaries. Available constitutive models currently include isotropic elasticity for the grain interior and cohesive behavior with damage for the grain boundaries. The experimentally determined lattice orientations are employed to distinguish between resistant low energy and susceptible high energy grain boundaries in the model. The feasibility and performance of the proposed computational approach is demonstrated by simulating the onset and propagation of intergranular cracking. The preliminary numerical results are outlined and discussed.
Stochastic Multiscale Modeling of Polycrystalline Materials
2013-01-01
The single-grid strategy is adopted. The crystal visco-plastic constitutive model proposed in [7] along with a Voce type hardening model described...in [97] is used with γ̇0 = 1s−1 and m = 0.1. The parameters in the Voce type hardening law are selected according to [97]: κ0 = 47.0MPa, κ1 = 86.0MPa
Multi-scale Modeling of Arctic Clouds
Hillman, B. R.; Roesler, E. L.; Dexheimer, D.
2017-12-01
The presence and properties of clouds are critically important to the radiative budget in the Arctic, but clouds are notoriously difficult to represent in global climate models (GCMs). The challenge stems partly from a disconnect in the scales at which these models are formulated and the scale of the physical processes important to the formation of clouds (e.g., convection and turbulence). Because of this, these processes are parameterized in large-scale models. Over the past decades, new approaches have been explored in which a cloud system resolving model (CSRM), or in the extreme a large eddy simulation (LES), is embedded into each gridcell of a traditional GCM to replace the cloud and convective parameterizations to explicitly simulate more of these important processes. This approach is attractive in that it allows for more explicit simulation of small-scale processes while also allowing for interaction between the small and large-scale processes. The goal of this study is to quantify the performance of this framework in simulating Arctic clouds relative to a traditional global model, and to explore the limitations of such a framework using coordinated high-resolution (eddy-resolving) simulations. Simulations from the global model are compared with satellite retrievals of cloud fraction partioned by cloud phase from CALIPSO, and limited-area LES simulations are compared with ground-based and tethered-balloon measurements from the ARM Barrow and Oliktok Point measurement facilities.
Carmeliet, J.; Descamps, F.; Houvenaghel, G.
1999-01-01
A multiscale network model is presented to model unsaturated moisture transfer in hygroscopic capillary-porous materials showing a broad pore-size distribution. Both capillary effects and water sorption phenomena, water vapour and liquid water transfer are considered. The multiscale approach is
Cellular potts models multiscale extensions and biological applications
Scianna, Marco
2013-01-01
A flexible, cell-level, and lattice-based technique, the cellular Potts model accurately describes the phenomenological mechanisms involved in many biological processes. Cellular Potts Models: Multiscale Extensions and Biological Applications gives an interdisciplinary, accessible treatment of these models, from the original methodologies to the latest developments. The book first explains the biophysical bases, main merits, and limitations of the cellular Potts model. It then proposes several innovative extensions, focusing on ways to integrate and interface the basic cellular Potts model at the mesoscopic scale with approaches that accurately model microscopic dynamics. These extensions are designed to create a nested and hybrid environment, where the evolution of a biological system is realistically driven by the constant interplay and flux of information between the different levels of description. Through several biological examples, the authors demonstrate a qualitative and quantitative agreement with t...
Stochastic scalar mixing models accounting for turbulent frequency multiscale fluctuations
International Nuclear Information System (INIS)
Soulard, Olivier; Sabel'nikov, Vladimir; Gorokhovski, Michael
2004-01-01
Two new scalar micromixing models accounting for a turbulent frequency scale distribution are investigated. These models were derived by Sabel'nikov and Gorokhovski [Second International Symposium on Turbulence and Shear FLow Phenomena, Royal Institute of technology (KTH), Stockholm, Sweden, June 27-29, 2001] using a multiscale extension of the classical interaction by exchange with the mean (IEM) and Langevin models. They are, respectively, called Extended IEM (EIEM) and Extended Langevin (ELM) models. The EIEM and ELM models are tested against DNS results in the case of the decay of a homogeneous scalar field in homogeneous turbulence. This comparison leads to a reformulation of the law governing the mixing frequency distribution. Finally, the asymptotic behaviour of the modeled PDF is discussed
MULTISCALE SPARSE APPEARANCE MODELING AND SIMULATION OF PATHOLOGICAL DEFORMATIONS
Directory of Open Access Journals (Sweden)
Rami Zewail
2017-08-01
Full Text Available Machine learning and statistical modeling techniques has drawn much interest within the medical imaging research community. However, clinically-relevant modeling of anatomical structures continues to be a challenging task. This paper presents a novel method for multiscale sparse appearance modeling in medical images with application to simulation of pathological deformations in X-ray images of human spine. The proposed appearance model benefits from the non-linear approximation power of Contourlets and its ability to capture higher order singularities to achieve a sparse representation while preserving the accuracy of the statistical model. Independent Component Analysis is used to extract statistical independent modes of variations from the sparse Contourlet-based domain. The new model is then used to simulate clinically-relevant pathological deformations in radiographic images.
Density functional theory and multiscale materials modeling
Indian Academy of Sciences (India)
One of the vital ingredients in the theoretical tools useful in materials modeling at all the length scales of interest is the concept of density. In the microscopic length scale, it is the electron density that has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids.
Multiscale Modeling of Multiphase Fluid Flow
2016-08-01
was compared to the original equilibrium volume of the neat solvent as a measure of the solubility of carbon dioxide and ammonia in pure water and...temperature and two-temperature models has been used, in which either local thermal equilibrium ( LTE ) between PCM and foams was assumed, or the...solved in the simulations. 6.2.2 Direct Numerical Simulation of PCM in Foam Without the need for extra ad hoc assumptions such as LTE , direct
A bidirectional coupling procedure applied to multiscale respiratory modeling
Energy Technology Data Exchange (ETDEWEB)
Kuprat, A.P., E-mail: andrew.kuprat@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Kabilan, S., E-mail: senthil.kabilan@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Carson, J.P., E-mail: james.carson@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Corley, R.A., E-mail: rick.corley@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Einstein, D.R., E-mail: daniel.einstein@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States)
2013-07-01
In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton’s method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a “pressure-drop” residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD–ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural
A bidirectional coupling procedure applied to multiscale respiratory modeling
Kuprat, A. P.; Kabilan, S.; Carson, J. P.; Corley, R. A.; Einstein, D. R.
2013-07-01
In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton's method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a "pressure-drop" residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural
A bidirectional coupling procedure applied to multiscale respiratory modeling
International Nuclear Information System (INIS)
Kuprat, A.P.; Kabilan, S.; Carson, J.P.; Corley, R.A.; Einstein, D.R.
2013-01-01
In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton’s method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a “pressure-drop” residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD–ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural
Oxley, Tim; Dore, Anthony J; ApSimon, Helen; Hall, Jane; Kryza, Maciej
2013-11-01
Integrated assessment modelling has evolved to support policy development in relation to air pollutants and greenhouse gases by providing integrated simulation tools able to produce quick and realistic representations of emission scenarios and their environmental impacts without the need to re-run complex atmospheric dispersion models. The UK Integrated Assessment Model (UKIAM) has been developed to investigate strategies for reducing UK emissions by bringing together information on projected UK emissions of SO2, NOx, NH3, PM10 and PM2.5, atmospheric dispersion, criteria for protection of ecosystems, urban air quality and human health, and data on potential abatement measures to reduce emissions, which may subsequently be linked to associated analyses of costs and benefits. We describe the multi-scale model structure ranging from continental to roadside, UK emission sources, atmospheric dispersion of emissions, implementation of abatement measures, integration with European-scale modelling, and environmental impacts. The model generates outputs from a national perspective which are used to evaluate alternative strategies in relation to emissions, deposition patterns, air quality metrics and ecosystem critical load exceedance. We present a selection of scenarios in relation to the 2020 Business-As-Usual projections and identify potential further reductions beyond those currently being planned. © 2013.
Multiscale modeling of alloy solidification using a database approach
Tan, Lijian; Zabaras, Nicholas
2007-11-01
A two-scale model based on a database approach is presented to investigate alloy solidification. Appropriate assumptions are introduced to describe the behavior of macroscopic temperature, macroscopic concentration, liquid volume fraction and microstructure features. These assumptions lead to a macroscale model with two unknown functions: liquid volume fraction and microstructure features. These functions are computed using information from microscale solutions of selected problems. This work addresses the selection of sample problems relevant to the interested problem and the utilization of data from the microscale solution of the selected sample problems. A computationally efficient model, which is different from the microscale and macroscale models, is utilized to find relevant sample problems. In this work, the computationally efficient model is a sharp interface solidification model of a pure material. Similarities between the sample problems and the problem of interest are explored by assuming that the liquid volume fraction and microstructure features are functions of solution features extracted from the solution of the computationally efficient model. The solution features of the computationally efficient model are selected as the interface velocity and thermal gradient in the liquid at the time the sharp solid-liquid interface passes through. An analytical solution of the computationally efficient model is utilized to select sample problems relevant to solution features obtained at any location of the domain of the problem of interest. The microscale solution of selected sample problems is then utilized to evaluate the two unknown functions (liquid volume fraction and microstructure features) in the macroscale model. The temperature solution of the macroscale model is further used to improve the estimation of the liquid volume fraction and microstructure features. Interpolation is utilized in the feature space to greatly reduce the number of required
Multiscale modeling for fluid transport in nanosystems.
Energy Technology Data Exchange (ETDEWEB)
Lee, Jonathan W.; Jones, Reese E.; Mandadapu, Kranthi Kiran; Templeton, Jeremy Alan; Zimmerman, Jonathan A.
2013-09-01
Atomistic-scale behavior drives performance in many micro- and nano-fluidic systems, such as mircrofludic mixers and electrical energy storage devices. Bringing this information into the traditionally continuum models used for engineering analysis has proved challenging. This work describes one such approach to address this issue by developing atomistic-to-continuum multi scale and multi physics methods to enable molecular dynamics (MD) representations of atoms to incorporated into continuum simulations. Coupling is achieved by imposing constraints based on fluxes of conserved quantities between the two regions described by one of these models. The impact of electric fields and surface charges are also critical, hence, methodologies to extend finite-element (FE) MD electric field solvers have been derived to account for these effects. Finally, the continuum description can have inconsistencies with the coarse-grained MD dynamics, so FE equations based on MD statistics were derived to facilitate the multi scale coupling. Examples are shown relevant to nanofluidic systems, such as pore flow, Couette flow, and electric double layer.
Adaptive Multiscale Modeling of Geochemical Impacts on Fracture Evolution
Molins, S.; Trebotich, D.; Steefel, C. I.; Deng, H.
2016-12-01
Understanding fracture evolution is essential for many subsurface energy applications, including subsurface storage, shale gas production, fracking, CO2 sequestration, and geothermal energy extraction. Geochemical processes in particular play a significant role in the evolution of fractures through dissolution-driven widening, fines migration, and/or fracture sealing due to precipitation. One obstacle to understanding and exploiting geochemical fracture evolution is that it is a multiscale process. However, current geochemical modeling of fractures cannot capture this multi-scale nature of geochemical and mechanical impacts on fracture evolution, and is limited to either a continuum or pore-scale representation. Conventional continuum-scale models treat fractures as preferential flow paths, with their permeability evolving as a function (often, a cubic law) of the fracture aperture. This approach has the limitation that it oversimplifies flow within the fracture in its omission of pore scale effects while also assuming well-mixed conditions. More recently, pore-scale models along with advanced characterization techniques have allowed for accurate simulations of flow and reactive transport within the pore space (Molins et al., 2014, 2015). However, these models, even with high performance computing, are currently limited in their ability to treat tractable domain sizes (Steefel et al., 2013). Thus, there is a critical need to develop an adaptive modeling capability that can account for separate properties and processes, emergent and otherwise, in the fracture and the rock matrix at different spatial scales. Here we present an adaptive modeling capability that treats geochemical impacts on fracture evolution within a single multiscale framework. Model development makes use of the high performance simulation capability, Chombo-Crunch, leveraged by high resolution characterization and experiments. The modeling framework is based on the adaptive capability in Chombo
Multiscale Molecular Dynamics Model for Heterogeneous Charged Systems
Stanton, L. G.; Glosli, J. N.; Murillo, M. S.
2018-04-01
Modeling matter across large length scales and timescales using molecular dynamics simulations poses significant challenges. These challenges are typically addressed through the use of precomputed pair potentials that depend on thermodynamic properties like temperature and density; however, many scenarios of interest involve spatiotemporal variations in these properties, and such variations can violate assumptions made in constructing these potentials, thus precluding their use. In particular, when a system is strongly heterogeneous, most of the usual simplifying assumptions (e.g., spherical potentials) do not apply. Here, we present a multiscale approach to orbital-free density functional theory molecular dynamics (OFDFT-MD) simulations that bridges atomic, interionic, and continuum length scales to allow for variations in hydrodynamic quantities in a consistent way. Our multiscale approach enables simulations on the order of micron length scales and 10's of picosecond timescales, which exceeds current OFDFT-MD simulations by many orders of magnitude. This new capability is then used to study the heterogeneous, nonequilibrium dynamics of a heated interface characteristic of an inertial-confinement-fusion capsule containing a plastic ablator near a fuel layer composed of deuterium-tritium ice. At these scales, fundamental assumptions of continuum models are explored; features such as the separation of the momentum fields among the species and strong hydrogen jetting from the plastic into the fuel region are observed, which had previously not been seen in hydrodynamic simulations.
Multiscale Modeling of PEEK Using Reactive Molecular Dynamics Modeling and Micromechanics
Pisani, William A.; Radue, Matthew; Chinkanjanarot, Sorayot; Bednarcyk, Brett A.; Pineda, Evan J.; King, Julia A.; Odegard, Gregory M.
2018-01-01
Polyether ether ketone (PEEK) is a high-performance, semi-crystalline thermoplastic that is used in a wide range of engineering applications, including some structural components of aircraft. The design of new PEEK-based materials requires a precise understanding of the multiscale structure and behavior of semi-crystalline PEEK. Molecular Dynamics (MD) modeling can efficiently predict bulk-level properties of single phase polymers, and micromechanics can be used to homogenize those phases based on the overall polymer microstructure. In this study, MD modeling was used to predict the mechanical properties of the amorphous and crystalline phases of PEEK. The hierarchical microstructure of PEEK, which combines the aforementioned phases, was modeled using a multiscale modeling approach facilitated by NASA's MSGMC. The bulk mechanical properties of semi-crystalline PEEK predicted using MD modeling and MSGMC agree well with vendor data, thus validating the multiscale modeling approach.
Multi-scale climate modelling over Southern Africa using a variable-resolution global model
CSIR Research Space (South Africa)
Engelbrecht, FA
2011-12-01
Full Text Available -mail: fengelbrecht@csir.co.za Multi-scale climate modelling over Southern Africa using a variable-resolution global model FA Engelbrecht1, 2*, WA Landman1, 3, CJ Engelbrecht4, S Landman5, MM Bopape1, B Roux6, JL McGregor7 and M Thatcher7 1 CSIR Natural... improvement. Keywords: multi-scale climate modelling, variable-resolution atmospheric model Introduction Dynamic climate models have become the primary tools for the projection of future climate change, at both the global and regional scales. Dynamic...
Fast Multiscale Reservoir Simulations using POD-DEIM Model Reduction
Ghasemi, Mohammadreza
2015-02-23
In this paper, we present a global-local model reduction for fast multiscale reservoir simulations in highly heterogeneous porous media with applications to optimization and history matching. Our proposed approach identifies a low dimensional structure of the solution space. We introduce an auxiliary variable (the velocity field) in our model reduction that allows achieving a high degree of model reduction. The latter is due to the fact that the velocity field is conservative for any low-order reduced model in our framework. Because a typical global model reduction based on POD is a Galerkin finite element method, and thus it can not guarantee local mass conservation. This can be observed in numerical simulations that use finite volume based approaches. Discrete Empirical Interpolation Method (DEIM) is used to approximate the nonlinear functions of fine-grid functions in Newton iterations. This approach allows achieving the computational cost that is independent of the fine grid dimension. POD snapshots are inexpensively computed using local model reduction techniques based on Generalized Multiscale Finite Element Method (GMsFEM) which provides (1) a hierarchical approximation of snapshot vectors (2) adaptive computations by using coarse grids (3) inexpensive global POD operations in a small dimensional spaces on a coarse grid. By balancing the errors of the global and local reduced-order models, our new methodology can provide an error bound in simulations. Our numerical results, utilizing a two-phase immiscible flow, show a substantial speed-up and we compare our results to the standard POD-DEIM in finite volume setup.
A Liver-Centric Multiscale Modeling Framework for Xenobiotics.
Directory of Open Access Journals (Sweden)
James P Sluka
Full Text Available We describe a multi-scale, liver-centric in silico modeling framework for acetaminophen pharmacology and metabolism. We focus on a computational model to characterize whole body uptake and clearance, liver transport and phase I and phase II metabolism. We do this by incorporating sub-models that span three scales; Physiologically Based Pharmacokinetic (PBPK modeling of acetaminophen uptake and distribution at the whole body level, cell and blood flow modeling at the tissue/organ level and metabolism at the sub-cellular level. We have used standard modeling modalities at each of the three scales. In particular, we have used the Systems Biology Markup Language (SBML to create both the whole-body and sub-cellular scales. Our modeling approach allows us to run the individual sub-models separately and allows us to easily exchange models at a particular scale without the need to extensively rework the sub-models at other scales. In addition, the use of SBML greatly facilitates the inclusion of biological annotations directly in the model code. The model was calibrated using human in vivo data for acetaminophen and its sulfate and glucuronate metabolites. We then carried out extensive parameter sensitivity studies including the pairwise interaction of parameters. We also simulated population variation of exposure and sensitivity to acetaminophen. Our modeling framework can be extended to the prediction of liver toxicity following acetaminophen overdose, or used as a general purpose pharmacokinetic model for xenobiotics.
Predictive Multiscale Modeling of Nanocellulose Based Materials and Systems
International Nuclear Information System (INIS)
Kovalenko, Andriy
2014-01-01
Cellulose Nanocrysals (CNC) is a renewable biodegradable biopolymer with outstanding mechanical properties made from highly abundant natural source, and therefore is very attractive as reinforcing additive to replace petroleum-based plastics in biocomposite materials, foams, and gels. Large-scale applications of CNC are currently limited due to its low solubility in non-polar organic solvents used in existing polymerization technologies. The solvation properties of CNC can be improved by chemical modification of its surface. Development of effective surface modifications has been rather slow because extensive chemical modifications destabilize the hydrogen bonding network of cellulose and deteriorate the mechanical properties of CNC. We employ predictive multiscale theory, modeling, and simulation to gain a fundamental insight into the effect of CNC surface modifications on hydrogen bonding, CNC crystallinity, solvation thermodynamics, and CNC compatibilization with the existing polymerization technologies, so as to rationally design green nanomaterials with improved solubility in non-polar solvents, controlled liquid crystal ordering and optimized extrusion properties. An essential part of this multiscale modeling approach is the statistical- mechanical 3D-RISM-KH molecular theory of solvation, coupled with quantum mechanics, molecular mechanics, and multistep molecular dynamics simulation. The 3D-RISM-KH theory provides predictive modeling of both polar and non-polar solvents, solvent mixtures, and electrolyte solutions in a wide range of concentrations and thermodynamic states. It properly accounts for effective interactions in solution such as steric effects, hydrophobicity and hydrophilicity, hydrogen bonding, salt bridges, buffer, co-solvent, and successfully predicts solvation effects and processes in bulk liquids, solvation layers at solid surface, and in pockets and other inner spaces of macromolecules and supramolecular assemblies. This methodology
Predictive Multiscale Modeling of Nanocellulose Based Materials and Systems
Kovalenko, Andriy
2014-08-01
Cellulose Nanocrysals (CNC) is a renewable biodegradable biopolymer with outstanding mechanical properties made from highly abundant natural source, and therefore is very attractive as reinforcing additive to replace petroleum-based plastics in biocomposite materials, foams, and gels. Large-scale applications of CNC are currently limited due to its low solubility in non-polar organic solvents used in existing polymerization technologies. The solvation properties of CNC can be improved by chemical modification of its surface. Development of effective surface modifications has been rather slow because extensive chemical modifications destabilize the hydrogen bonding network of cellulose and deteriorate the mechanical properties of CNC. We employ predictive multiscale theory, modeling, and simulation to gain a fundamental insight into the effect of CNC surface modifications on hydrogen bonding, CNC crystallinity, solvation thermodynamics, and CNC compatibilization with the existing polymerization technologies, so as to rationally design green nanomaterials with improved solubility in non-polar solvents, controlled liquid crystal ordering and optimized extrusion properties. An essential part of this multiscale modeling approach is the statistical- mechanical 3D-RISM-KH molecular theory of solvation, coupled with quantum mechanics, molecular mechanics, and multistep molecular dynamics simulation. The 3D-RISM-KH theory provides predictive modeling of both polar and non-polar solvents, solvent mixtures, and electrolyte solutions in a wide range of concentrations and thermodynamic states. It properly accounts for effective interactions in solution such as steric effects, hydrophobicity and hydrophilicity, hydrogen bonding, salt bridges, buffer, co-solvent, and successfully predicts solvation effects and processes in bulk liquids, solvation layers at solid surface, and in pockets and other inner spaces of macromolecules and supramolecular assemblies. This methodology
Multiscale Modeling of Point and Line Defects in Cubic Lattices
National Research Council Canada - National Science Library
Chung, P. W; Clayton, J. D
2007-01-01
.... This multiscale theory explicitly captures heterogeneity in microscopic atomic motion in crystalline materials, attributed, for example, to the presence of various point and line lattice defects...
Collaborative Multi-Scale 3d City and Infrastructure Modeling and Simulation
Breunig, M.; Borrmann, A.; Rank, E.; Hinz, S.; Kolbe, T.; Schilcher, M.; Mundani, R.-P.; Jubierre, J. R.; Flurl, M.; Thomsen, A.; Donaubauer, A.; Ji, Y.; Urban, S.; Laun, S.; Vilgertshofer, S.; Willenborg, B.; Menninghaus, M.; Steuer, H.; Wursthorn, S.; Leitloff, J.; Al-Doori, M.; Mazroobsemnani, N.
2017-09-01
Computer-aided collaborative and multi-scale 3D planning are challenges for complex railway and subway track infrastructure projects in the built environment. Many legal, economic, environmental, and structural requirements have to be taken into account. The stringent use of 3D models in the different phases of the planning process facilitates communication and collaboration between the stake holders such as civil engineers, geological engineers, and decision makers. This paper presents concepts, developments, and experiences gained by an interdisciplinary research group coming from civil engineering informatics and geo-informatics banding together skills of both, the Building Information Modeling and the 3D GIS world. New approaches including the development of a collaborative platform and 3D multi-scale modelling are proposed for collaborative planning and simulation to improve the digital 3D planning of subway tracks and other infrastructures. Experiences during this research and lessons learned are presented as well as an outlook on future research focusing on Building Information Modeling and 3D GIS applications for cities of the future.
COLLABORATIVE MULTI-SCALE 3D CITY AND INFRASTRUCTURE MODELING AND SIMULATION
Directory of Open Access Journals (Sweden)
M. Breunig
2017-09-01
Full Text Available Computer-aided collaborative and multi-scale 3D planning are challenges for complex railway and subway track infrastructure projects in the built environment. Many legal, economic, environmental, and structural requirements have to be taken into account. The stringent use of 3D models in the different phases of the planning process facilitates communication and collaboration between the stake holders such as civil engineers, geological engineers, and decision makers. This paper presents concepts, developments, and experiences gained by an interdisciplinary research group coming from civil engineering informatics and geo-informatics banding together skills of both, the Building Information Modeling and the 3D GIS world. New approaches including the development of a collaborative platform and 3D multi-scale modelling are proposed for collaborative planning and simulation to improve the digital 3D planning of subway tracks and other infrastructures. Experiences during this research and lessons learned are presented as well as an outlook on future research focusing on Building Information Modeling and 3D GIS applications for cities of the future.
Multiscale modelling of hydrogen behaviour on beryllium (0001 surface
Directory of Open Access Journals (Sweden)
Ch. Stihl
2016-12-01
Full Text Available Beryllium is proposed to be a neutron multiplier and plasma facing material in future fusion devices. Therefore, it is crucial to acquire an understanding of the microscopic mechanisms of tritium accumulation and release as a result of transmutation processes that Be undergoes under neutron irradiation. A multiscale simulation of ad- and desorption of hydrogen isotopes on the beryllium (0001 surface is developed. It consists of ab initio calculations of certain H adsorption configurations, a suitable cluster expansion approximating the energies of arbitrary configurations, and a kinetic Monte Carlo method for dynamic simulations of adsorption and desorption. The processes implemented in the kinetic Monte Carlo simulation are deduced from further ab initio calculations comprising both, static relaxation as well as molecular dynamics runs. The simulation is used to reproduce experimental data and the results are compared and discussed. Based on the observed results, proposals for a refined model are made.
Training Systems Modelers through the Development of a Multi-scale Chagas Disease Risk Model
Hanley, J.; Stevens-Goodnight, S.; Kulkarni, S.; Bustamante, D.; Fytilis, N.; Goff, P.; Monroy, C.; Morrissey, L. A.; Orantes, L.; Stevens, L.; Dorn, P.; Lucero, D.; Rios, J.; Rizzo, D. M.
2012-12-01
The goal of our NSF-sponsored Division of Behavioral and Cognitive Sciences grant is to create a multidisciplinary approach to develop spatially explicit models of vector-borne disease risk using Chagas disease as our model. Chagas disease is a parasitic disease endemic to Latin America that afflicts an estimated 10 million people. The causative agent (Trypanosoma cruzi) is most commonly transmitted to humans by blood feeding triatomine insect vectors. Our objectives are: (1) advance knowledge on the multiple interacting factors affecting the transmission of Chagas disease, and (2) provide next generation genomic and spatial analysis tools applicable to the study of other vector-borne diseases worldwide. This funding is a collaborative effort between the RSENR (UVM), the School of Engineering (UVM), the Department of Biology (UVM), the Department of Biological Sciences (Loyola (New Orleans)) and the Laboratory of Applied Entomology and Parasitology (Universidad de San Carlos). Throughout this five-year study, multi-educational groups (i.e., high school, undergraduate, graduate, and postdoctoral) will be trained in systems modeling. This systems approach challenges students to incorporate environmental, social, and economic as well as technical aspects and enables modelers to simulate and visualize topics that would either be too expensive, complex or difficult to study directly (Yasar and Landau 2003). We launch this research by developing a set of multi-scale, epidemiological models of Chagas disease risk using STELLA® software v.9.1.3 (isee systems, inc., Lebanon, NH). We use this particular system dynamics software as a starting point because of its simple graphical user interface (e.g., behavior-over-time graphs, stock/flow diagrams, and causal loops). To date, high school and undergraduate students have created a set of multi-scale (i.e., homestead, village, and regional) disease models. Modeling the system at multiple spatial scales forces recognition that
Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials
Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar
2015-01-01
The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition
DEFF Research Database (Denmark)
Zhuang, Kai; Herrgard, Markus
2015-01-01
factories. To address this issue, we have developed a comprehensive Multi-scale framework for modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes and economic impact assessment. We...... investment in a new bio-based chemical industry, there is a need for assessing the technological, economic, and environmental potentials of combinations of biomass feedstocks, biochemical products, bioprocess technologies, and metabolic engineering approaches in the early phase of development of cell...... demonstrate the use of the MuSIC framework in a case study where two major polymer precursors (1,3-propanediol and 3-hydroxypropionic acid) are produced from two biomass feedstocks (corn-based glucose and soy-based glycerol) through 66 proposed biosynthetic pathways in two host organisms (Escherichia coli...
Kirschner, Denise E; Hunt, C Anthony; Marino, Simeone; Fallahi-Sichani, Mohammad; Linderman, Jennifer J
2014-01-01
The use of multi-scale mathematical and computational models to study complex biological processes is becoming increasingly productive. Multi-scale models span a range of spatial and/or temporal scales and can encompass multi-compartment (e.g., multi-organ) models. Modeling advances are enabling virtual experiments to explore and answer questions that are problematic to address in the wet-lab. Wet-lab experimental technologies now allow scientists to observe, measure, record, and analyze experiments focusing on different system aspects at a variety of biological scales. We need the technical ability to mirror that same flexibility in virtual experiments using multi-scale models. Here we present a new approach, tuneable resolution, which can begin providing that flexibility. Tuneable resolution involves fine- or coarse-graining existing multi-scale models at the user's discretion, allowing adjustment of the level of resolution specific to a question, an experiment, or a scale of interest. Tuneable resolution expands options for revising and validating mechanistic multi-scale models, can extend the longevity of multi-scale models, and may increase computational efficiency. The tuneable resolution approach can be applied to many model types, including differential equation, agent-based, and hybrid models. We demonstrate our tuneable resolution ideas with examples relevant to infectious disease modeling, illustrating key principles at work. © 2014 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc.
Linear theory for filtering nonlinear multiscale systems with model error.
Berry, Tyrus; Harlim, John
2014-07-08
In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online , as part of a filtering
A variational multiscale constitutive model for nanocrystalline materials
Gurses, Ercan
2011-03-01
This paper presents a variational multi-scale constitutive model in the finite deformation regime capable of capturing the mechanical behavior of nanocrystalline (nc) fcc metals. The nc-material is modeled as a two-phase material consisting of a grain interior phase and a grain boundary effected zone (GBAZ). A rate-independent isotropic porous plasticity model is employed to describe the GBAZ, whereas a crystal-plasticity model which accounts for the transition from partial dislocation to full dislocation mediated plasticity is employed for the grain interior. The constitutive models of both phases are formulated in a small strain framework and extended to finite deformation by use of logarithmic and exponential mappings. Assuming the rule of mixtures, the overall behavior of a given grain is obtained via volume averaging. The scale transition from a single grain to a polycrystal is achieved by Taylor-type homogenization where a log-normal grain size distribution is assumed. It is shown that the proposed model is able to capture the inverse HallPetch effect, i.e., loss of strength with grain size refinement. Finally, the predictive capability of the model is validated against experimental results on nanocrystalline copper and nickel. © 2010 Elsevier Ltd. All rights reserved.
Multiscale Models for the Two-Stream Instability
Joseph, Ilon; Dimits, Andris; Banks, Jeffrey; Berger, Richard; Brunner, Stephan; Chapman, Thomas
2017-10-01
Interpenetrating streams of plasma found in many important scenarios in nature and in the laboratory can develop kinetic two-stream instabilities that exchange momentum and energy between the streams. A quasilinear model for the electrostatic two-stream instability is under development as a component of a multiscale model that couples fluid simulations to kinetic theory. Parameters of the model will be validated with comparison to full kinetic simulations using LOKI and efficient strategies for numerical solution of the quasilinear model and for coupling to the fluid model will be discussed. Extending the kinetic models into the collisional regime requires an efficient treatment of the collision operator. Useful reductions of the collision operator relative to the full multi-species Landau-Fokker-Plank operator are being explored. These are further motivated both by careful consideration of the parameter orderings relevant to two-stream scenarios and by the particular 2D+2V phase space used in the LOKI code. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344 and LDRD project 17- ERD-081.
Multi-scale modeling of the CD8 immune response
Energy Technology Data Exchange (ETDEWEB)
Barbarroux, Loic, E-mail: loic.barbarroux@doctorant.ec-lyon.fr [Inria, Université de Lyon, UMR 5208, Institut Camille Jordan (France); Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Michel, Philippe, E-mail: philippe.michel@ec-lyon.fr [Inria, Université de Lyon, UMR 5208, Institut Camille Jordan (France); Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Adimy, Mostafa, E-mail: mostafa.adimy@inria.fr [Inria, Université de Lyon, UMR 5208, Université Lyon 1, Institut Camille Jordan, 43 Bd. du 11 novembre 1918, F-69200 Villeurbanne Cedex (France); Crauste, Fabien, E-mail: crauste@math.univ-lyon1.fr [Inria, Université de Lyon, UMR 5208, Université Lyon 1, Institut Camille Jordan, 43 Bd. du 11 novembre 1918, F-69200 Villeurbanne Cedex (France)
2016-06-08
During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself in case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.
Multiscale forward electromagnetic model of uterine contractions during pregnancy
International Nuclear Information System (INIS)
La Rosa, Patricio S; Eswaran, Hari; Preissl, Hubert; Nehorai, Arye
2012-01-01
Analyzing and monitoring uterine contractions during pregnancy is relevant to the field of reproductive health assessment. Its clinical importance is grounded in the need to reliably predict the onset of labor at term and pre-term. Preterm births can cause health problems or even be fatal for the fetus. Currently, there are no objective methods for consistently predicting the onset of labor based on sensing of the mechanical or electrophysiological aspects of uterine contractions. Therefore, modeling uterine contractions could help to better interpret such measurements and to develop more accurate methods for predicting labor. In this work, we develop a multiscale forward electromagnetic model of myometrial contractions during pregnancy. In particular, we introduce a model of myometrial current source densities and compute its magnetic field and action potential at the abdominal surface, using Maxwell’s equations and a four-compartment volume conductor geometry. To model the current source density at the myometrium we use a bidomain approach. We consider a modified version of the Fitzhugh-Nagumo (FHN) equation for modeling ionic currents in each myocyte, assuming a plateau-type transmembrane potential, and we incorporate the anisotropic nature of the uterus by designing conductivity-tensor fields. We illustrate our modeling approach considering a spherical uterus and one pacemaker located in the fundus. We obtained a travelling transmembrane potential depolarizing from −56 mV to −16 mV and an average potential in the plateau area of −25 mV with a duration, before hyperpolarization, of 35 s, which is a good approximation with respect to the average recorded transmembrane potentials at term reported in the technical literature. Similarly, the percentage of myometrial cells contracting as a function of time had the same symmetric properties and duration as the intrauterine pressure waveforms of a pregnant human myometrium at term. We introduced a multiscale
Multiscale mechanistic modeling in pharmaceutical research and development.
Kuepfer, Lars; Lippert, Jörg; Eissing, Thomas
2012-01-01
Discontinuation of drug development projects due to lack of efficacy or adverse events is one of the main cost drivers in pharmaceutical research and development (R&D). Investments have to be written-off and contribute to the total costs of a successful drug candidate receiving marketing authorization and allowing return on invest. A vital risk for pharmaceutical innovator companies is late stage clinical failure since costs for individual clinical trials may exceed the one billion Euro threshold. To guide investment decisions and to safeguard maximum medical benefit and safety for patients recruited in clinical trials, it is therefore essential to understand the clinical consequences of all information and data generated. The complexity of the physiological and pathophysiological processes and the sheer amount of information available overcharge the mental capacity of any human being and prevent a prediction of the success in clinical development. A rigorous integration of knowledge, assumption, and experimental data into computational models promises a significant improvement of the rationalization of decision making in pharmaceutical industry. We here give an overview of the current status of modeling and simulation in pharmaceutical R&D and outline the perspectives of more recent developments in mechanistic modeling. Specific modeling approaches for different biological scales ranging from intracellular processes to whole organism physiology are introduced and an example for integrative multiscale modeling of therapeutic efficiency in clinical oncology trials is showcased.
Siddiq, A.; El Sayed, Tamer S.
2013-01-01
We present a variational multiscale constitutive model that accounts for intergranular failure in nanocrystalline fcc metals due to void growth and coalescence in the grain boundary region. Following previous work by the authors, a nanocrystalline
The Feasibility of Multiscale Modeling of Tunnel Fires Using FDS 6
DEFF Research Database (Denmark)
Vermesi, Izabella; Colella, Francesco; Rein, Guillermo
2014-01-01
The HVAC component of FDS 6 was used to divide a 1.2km tunnel into a 3D near fire area and a 1D area further away from the fire in order to investigate the feasibility of multiscale modeling of tunnel fires with this new feature in FDS. The two sub-models were coupled directly. The results were...... compared with reference works on multiscale modeling and the outcome is considered positive, with a deviation of less than 5% in magnitude of relevant parameters, yet with a significant reduction of the simulation runtime. As such, the multiscale method is deemed feasible for simulating tunnel fires in FDS......6. However, the simplifications that are made in this work require further investigation in order to take full advantage of the potential of this computational method. INTRODUCTION Multiscale modeling for tunnel flows and fires has previously been studied using RANS general purpose CFD software...
Relational grounding facilitates development of scientifically useful multiscale models
Directory of Open Access Journals (Sweden)
Lam Tai
2011-09-01
Full Text Available Abstract We review grounding issues that influence the scientific usefulness of any biomedical multiscale model (MSM. Groundings are the collection of units, dimensions, and/or objects to which a variable or model constituent refers. To date, models that primarily use continuous mathematics rely heavily on absolute grounding, whereas those that primarily use discrete software paradigms (e.g., object-oriented, agent-based, actor typically employ relational grounding. We review grounding issues and identify strategies to address them. We maintain that grounding issues should be addressed at the start of any MSM project and should be reevaluated throughout the model development process. We make the following points. Grounding decisions influence model flexibility, adaptability, and thus reusability. Grounding choices should be influenced by measures, uncertainty, system information, and the nature of available validation data. Absolute grounding complicates the process of combining models to form larger models unless all are grounded absolutely. Relational grounding facilitates referent knowledge embodiment within computational mechanisms but requires separate model-to-referent mappings. Absolute grounding can simplify integration by forcing common units and, hence, a common integration target, but context change may require model reengineering. Relational grounding enables synthesis of large, composite (multi-module models that can be robust to context changes. Because biological components have varying degrees of autonomy, corresponding components in MSMs need to do the same. Relational grounding facilitates achieving such autonomy. Biomimetic analogues designed to facilitate translational research and development must have long lifecycles. Exploring mechanisms of normal-to-disease transition requires model components that are grounded relationally. Multi-paradigm modeling requires both hyperspatial and relational grounding.
Multi-scale salient feature extraction on mesh models
Yang, Yongliang; Shen, ChaoHui
2012-01-01
We present a new method of extracting multi-scale salient features on meshes. It is based on robust estimation of curvature on multiple scales. The coincidence between salient feature and the scale of interest can be established straightforwardly, where detailed feature appears on small scale and feature with more global shape information shows up on large scale. We demonstrate this multi-scale description of features accords with human perception and can be further used for several applications as feature classification and viewpoint selection. Experiments exhibit that our method as a multi-scale analysis tool is very helpful for studying 3D shapes. © 2012 Springer-Verlag.
Multiscale modeling of nerve agent hydrolysis mechanisms: a tale of two Nobel Prizes
Field, Martin J.; Wymore, Troy W.
2014-10-01
The 2013 Nobel Prize in Chemistry was awarded for the development of multiscale models for complex chemical systems, whereas the 2013 Peace Prize was given to the Organisation for the Prohibition of Chemical Weapons for their efforts to eliminate chemical warfare agents. This review relates the two by introducing the field of multiscale modeling and highlighting its application to the study of the biological mechanisms by which selected chemical weapon agents exert their effects at an atomic level.
Multiscale vision model for event detection and reconstruction in two-photon imaging data
DEFF Research Database (Denmark)
Brazhe, Alexey; Mathiesen, Claus; Lind, Barbara Lykke
2014-01-01
on a modified multiscale vision model, an object detection framework based on the thresholding of wavelet coefficients and hierarchical trees of significant coefficients followed by nonlinear iterative partial object reconstruction, for the analysis of two-photon calcium imaging data. The framework is discussed...... of the multiscale vision model is similar in the denoising, but provides a better segmenation of the image into meaningful objects, whereas other methods need to be combined with dedicated thresholding and segmentation utilities....
Multiscale model for pedestrian and infection dynamics during air travel
Namilae, Sirish; Derjany, Pierrot; Mubayi, Anuj; Scotch, Mathew; Srinivasan, Ashok
2017-05-01
In this paper we develop a multiscale model combining social-force-based pedestrian movement with a population level stochastic infection transmission dynamics framework. The model is then applied to study the infection transmission within airplanes and the transmission of the Ebola virus through casual contacts. Drastic limitations on air-travel during epidemics, such as during the 2014 Ebola outbreak in West Africa, carry considerable economic and human costs. We use the computational model to evaluate the effects of passenger movement within airplanes and air-travel policies on the geospatial spread of infectious diseases. We find that boarding policy by an airline is more critical for infection propagation compared to deplaning policy. Enplaning in two sections resulted in fewer infections than the currently followed strategy with multiple zones. In addition, we found that small commercial airplanes are better than larger ones at reducing the number of new infections in a flight. Aggregated results indicate that passenger movement strategies and airplane size predicted through these network models can have significant impact on an event like the 2014 Ebola epidemic. The methodology developed here is generic and can be readily modified to incorporate the impact from the outbreak of other directly transmitted infectious diseases.
Multiscale modeling of porous ceramics using movable cellular automaton method
Smolin, Alexey Yu.; Smolin, Igor Yu.; Smolina, Irina Yu.
2017-10-01
The paper presents a multiscale model for porous ceramics based on movable cellular automaton method, which is a particle method in novel computational mechanics of solid. The initial scale of the proposed approach corresponds to the characteristic size of the smallest pores in the ceramics. At this scale, we model uniaxial compression of several representative samples with an explicit account of pores of the same size but with the unique position in space. As a result, we get the average values of Young's modulus and strength, as well as the parameters of the Weibull distribution of these properties at the current scale level. These data allow us to describe the material behavior at the next scale level were only the larger pores are considered explicitly, while the influence of small pores is included via effective properties determined earliar. If the pore size distribution function of the material has N maxima we need to perform computations for N-1 levels in order to get the properties step by step from the lowest scale up to the macroscale. The proposed approach was applied to modeling zirconia ceramics with bimodal pore size distribution. The obtained results show correct behavior of the model sample at the macroscale.
Multiscale thermohydrologic model: addressing variability and uncertainty at Yucca Mountain
International Nuclear Information System (INIS)
Buscheck, T; Rosenberg, N D; Gansemer, J D; Sun, Y
2000-01-01
Performance assessment and design evaluation require a modeling tool that simultaneously accounts for processes occurring at a scale of a few tens of centimeters around individual waste packages and emplacement drifts, and also on behavior at the scale of the mountain. Many processes and features must be considered, including non-isothermal, multiphase-flow in rock of variable saturation and thermal radiation in open cavities. Also, given the nature of the fractured rock at Yucca Mountain, a dual-permeability approach is needed to represent permeability. A monolithic numerical model with all these features requires too large a computational cost to be an effective simulation tool, one that is used to examine sensitivity to key model assumptions and parameters. We have developed a multi-scale modeling approach that effectively simulates 3D discrete-heat-source, mountain-scale thermohydrologic behavior at Yucca Mountain and captures the natural variability of the site consistent with what we know from site characterization and waste-package-to-waste-package variability in heat output. We describe this approach and present results examining the role of infiltration flux, the most important natural-system parameter with respect to how thermohydrologic behavior influences the performance of the repository
Uncertainty propagation in a multiscale model of nanocrystalline plasticity
International Nuclear Information System (INIS)
Koslowski, M.; Strachan, Alejandro
2011-01-01
We characterize how uncertainties propagate across spatial and temporal scales in a physics-based model of nanocrystalline plasticity of fcc metals. Our model combines molecular dynamics (MD) simulations to characterize atomic-level processes that govern dislocation-based-plastic deformation with a phase field approach to dislocation dynamics (PFDD) that describes how an ensemble of dislocations evolve and interact to determine the mechanical response of the material. We apply this approach to a nanocrystalline Ni specimen of interest in micro-electromechanical (MEMS) switches. Our approach enables us to quantify how internal stresses that result from the fabrication process affect the properties of dislocations (using MD) and how these properties, in turn, affect the yield stress of the metallic membrane (using the PFMM model). Our predictions show that, for a nanocrystalline sample with small grain size (4 nm), a variation in residual stress of 20 MPa (typical in today's microfabrication techniques) would result in a variation on the critical resolved shear yield stress of approximately 15 MPa, a very small fraction of the nominal value of approximately 9 GPa. - Highlights: → Quantify how fabrication uncertainties affect yield stress in a microswitch component. → Propagate uncertainties in a multiscale model of single crystal plasticity. → Molecular dynamics quantifies how fabrication variations affect dislocations. → Dislocation dynamics relate variations in dislocation properties to yield stress.
Integrating cellular metabolism into a multiscale whole-body model.
Directory of Open Access Journals (Sweden)
Markus Krauss
Full Text Available Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development.
Integrating Cellular Metabolism into a Multiscale Whole-Body Model
Krauss, Markus; Schaller, Stephan; Borchers, Steffen; Findeisen, Rolf; Lippert, Jörg; Kuepfer, Lars
2012-01-01
Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development. PMID:23133351
DEFF Research Database (Denmark)
Zhuang, Kai; Herrgard, Markus
2014-01-01
of a variety of policies and practices (e.g. land-usage, energy source mixture, CO2 emission cap), as well as trade offs between different objectives (e.g. profits for different sectors, emission minimization) for key stakeholders involved in the biochemical value chain (agriculture, energy, and biotechnology......In recent years, bio-based chemicals have gained traction as a sustainable alternative topetrochemicals. In order to maximize the impacts of researches and investments, there is a need to focus on the most promising combinations of feedstocks, biochemical products, and bioprocesses. To address...... this issue, we developed a multiscale framework that integrates modeling approaches across scales of cellular metabolism, bioreactor, bioprocess, and economy/ecosystem, and is able to simultaneously assess biological, technological, economic and environmental feasibility of different production scenarios...
Multiscale modelling of a composite electroactive polymer structure
Wang, P.; Lassen, B.; Jones, R. W.; Thomsen, B.
2010-12-01
Danfoss PolyPower has developed a tubular actuator comprising a dielectric elastomer sheet with specially shaped compliant electrodes rolled into a tube. This paper is concerned with the modelling of this kind of tubular actuator. This is a challenging task due to the system's multiscale nature which is caused by the orders of magnitude difference between the length and thickness of the sheets as well as the thickness of the electrodes and the elastomer in the sheets. A further complication is the presence of passive parts at both ends of the actuator, i.e. areas without electrodes which are needed in order to avoid short circuits between negative and positively charged electrodes on the two sides of the sheet. Due to the complexities in shape and size it is necessary to introduce some simplifying assumptions. This paper presents a set of models where the three-dimensional problem has been reduced to two-dimensional problems, ensuring that the resulting models can be handled numerically within the framework of the finite element method. These models have been derived by expressing Navier's equation in elliptical cylindrical coordinates in order to take full advantage of the special shape of these actuators. Emphasis is placed on studying the passive parts of the actuator, as these degrade the effectiveness of the actuator. Two approaches are used here to model the passive parts: a spring-stiffness analogy model and a longitudinal section model of the actuator. The models have been compared with experimental results for the force-elongation characteristics of the commercially available PolyPower 'InLastor push' actuator. The comparison shows good agreement between model and experiments for the case where the passive parts were taken into account. One of the models developed is subsequently used to study geometric effects—specifically the effect of changing the ellipticity of the tubular actuator on the actuator's performance is investigated.
Herrgård, Markus; Sukumara, Sumesh; Campodonico, Miguel; Zhuang, Kai
2015-12-01
In recent years, bio-based chemicals have gained interest as a renewable alternative to petrochemicals. However, there is a significant need to assess the technological, biological, economic and environmental feasibility of bio-based chemicals, particularly during the early research phase. Recently, the Multi-scale framework for Sustainable Industrial Chemicals (MuSIC) was introduced to address this issue by integrating modelling approaches at different scales ranging from cellular to ecological scales. This framework can be further extended by incorporating modelling of the petrochemical value chain and the de novo prediction of metabolic pathways connecting existing host metabolism to desirable chemical products. This multi-scale, multi-disciplinary framework for quantitative assessment of bio-based chemicals will play a vital role in supporting engineering, strategy and policy decisions as we progress towards a sustainable chemical industry. © 2015 Authors; published by Portland Press Limited.
Multiscale model reduction for shale gas transport in fractured media
Akkutlu, I. Y.; Efendiev, Yalchin R.; Vasilyeva, Maria
2016-01-01
fracture distributions on an unstructured grid; (2) develop GMsFEM for nonlinear flows; and (3) develop online basis function strategies to adaptively improve the convergence. The number of multiscale basis functions in each coarse region represents
Multiscale modelling for better hygrothermal prediction of porous building materials
Directory of Open Access Journals (Sweden)
Belarbi Rafik
2018-01-01
Full Text Available The aim of this work is to understand the influence of the microstructuralgeometric parameters of porous building materials on the mechanisms of coupled heat, air and moisture transfers, in order to predict behavior of the building to control and improve it in its durability. For this a multi-scale approach is implemented. It consists of mastering the dominant physical phenomena and their interactions on the microscopic scale. Followed by a dual-scale modelling, microscopic-macroscopic, of coupled heat, air and moisture transfers that takes into account the intrinsic properties and microstructural topology of the material using X-ray tomography combined with the correlation of 3D images were undertaken. In fact, the hygromorphicbehavior under hydric solicitations was considered. In this context, a model of coupled heat, air and moisture transfer in porous building materials was developed using the periodic homogenization technique. These informations were subsequently implemented in a dynamic computation simulation that model the hygrothermalbehaviourof material at the scale of the envelopes and indoor air quality of building. Results reveals that is essential to consider the local behaviors of materials, but also to be able to measure and quantify the evolution of its properties on a macroscopic scale from the youngest age of the material. In addition, comparisons between experimental and numerical temperature and relative humidity profilesin multilayers wall and in building envelopes were undertaken. Good agreements were observed.
Modeling multiscale evolution of numerous voids in shocked brittle material.
Yu, Yin; Wang, Wenqiang; He, Hongliang; Lu, Tiecheng
2014-04-01
The influence of the evolution of numerous voids on macroscopic properties of materials is a multiscale problem that challenges computational research. A shock-wave compression model for brittle material, which can obtain both microscopic evolution and macroscopic shock properties, was developed using discrete element methods (lattice model). Using a model interaction-parameter-mapping procedure, qualitative features, as well as trends in the calculated shock-wave profiles, are shown to agree with experimental results. The shock wave splits into an elastic wave and a deformation wave in porous brittle materials, indicating significant shock plasticity. Void collapses in the deformation wave were the natural reason for volume shrinkage and deformation. However, media slippage and rotation deformations indicated by complex vortex patterns composed of relative velocity vectors were also confirmed as an important source of shock plasticity. With increasing pressure, the contribution from slippage deformation to the final plastic strain increased. Porosity was found to determine the amplitude of the elastic wave; porosity and shock stress together determine propagation speed of the deformation wave, as well as stress and strain on the final equilibrium state. Thus, shock behaviors of porous brittle material can be systematically designed for specific applications.
Multi-Scale Models for the Scale Interaction of Organized Tropical Convection
Yang, Qiu
Assessing the upscale impact of organized tropical convection from small spatial and temporal scales is a research imperative, not only for having a better understanding of the multi-scale structures of dynamical and convective fields in the tropics, but also for eventually helping in the design of new parameterization strategies to improve the next-generation global climate models. Here self-consistent multi-scale models are derived systematically by following the multi-scale asymptotic methods and used to describe the hierarchical structures of tropical atmospheric flows. The advantages of using these multi-scale models lie in isolating the essential components of multi-scale interaction and providing assessment of the upscale impact of the small-scale fluctuations onto the large-scale mean flow through eddy flux divergences of momentum and temperature in a transparent fashion. Specifically, this thesis includes three research projects about multi-scale interaction of organized tropical convection, involving tropical flows at different scaling regimes and utilizing different multi-scale models correspondingly. Inspired by the observed variability of tropical convection on multiple temporal scales, including daily and intraseasonal time scales, the goal of the first project is to assess the intraseasonal impact of the diurnal cycle on the planetary-scale circulation such as the Hadley cell. As an extension of the first project, the goal of the second project is to assess the intraseasonal impact of the diurnal cycle over the Maritime Continent on the Madden-Julian Oscillation. In the third project, the goals are to simulate the baroclinic aspects of the ITCZ breakdown and assess its upscale impact on the planetary-scale circulation over the eastern Pacific. These simple multi-scale models should be useful to understand the scale interaction of organized tropical convection and help improve the parameterization of unresolved processes in global climate models.
Multiscale mathematical modeling of the hypothalamo-pituitary-gonadal axis.
Clément, Frédérique
2016-07-01
Although the fields of systems and integrative biology are in full expansion, few teams are involved worldwide into the study of reproductive function from the mathematical modeling viewpoint. This may be due to the fact that the reproductive function is not compulsory for individual organism survival, even if it is for species survival. Alternatively, the complexity of reproductive physiology may be discouraging. Indeed, the hypothalamo-pituitary-gonadal (HPG) axis involves not only several organs and tissues but also intricate time (from the neuronal millisecond timescale to circannual rhythmicity) and space (from molecules to organs) scales. Yet, mathematical modeling, and especially multiscale modeling, can renew our approaches of the molecular, cellular, and physiological processes underlying the control of reproductive functions. In turn, the remarkable dynamic features exhibited by the HPG axis raise intriguing and challenging questions to modelers and applied mathematicians. In this article, we draw a panoramic review of some mathematical models designed in the framework of the female HPG, with a special focus on the gonadal and central control of follicular development. On the gonadal side, the modeling of follicular development calls to the generic formalism of structured cell populations, that allows one to make mechanistic links between the control of cell fate (proliferation, differentiation, or apoptosis) and that of the follicle fate (ovulation or degeneration) or to investigate how the functional interactions between the oocyte and its surrounding cells shape the follicle morphogenesis. On the central, mainly hypothalamic side, models based on dynamical systems with multiple timescales allow one to represent within a single framework both the pulsatile and surge patterns of the neurohormone GnRH. Beyond their interest in basic research investigations, mathematical models can also be at the source of useful tools to study the encoding and decoding of
Multi-scale Modeling of Plasticity in Tantalum.
Energy Technology Data Exchange (ETDEWEB)
Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carroll, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boyce, Brad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weinberger, Christopher [Drexel Univ., Philadelphia, PA (United States)
2015-12-01
In this report, we present a multi-scale computational model to simulate plastic deformation of tantalum and validating experiments. In atomistic/ dislocation level, dislocation kink- pair theory is used to formulate temperature and strain rate dependent constitutive equations. The kink-pair theory is calibrated to available data from single crystal experiments to produce accurate and convenient constitutive laws. The model is then implemented into a BCC crystal plasticity finite element method (CP-FEM) model to predict temperature and strain rate dependent yield stresses of single and polycrystalline tantalum and compared with existing experimental data from the literature. Furthermore, classical continuum constitutive models describing temperature and strain rate dependent flow behaviors are fit to the yield stresses obtained from the CP-FEM polycrystal predictions. The model is then used to conduct hydro- dynamic simulations of Taylor cylinder impact test and compared with experiments. In order to validate the proposed tantalum CP-FEM model with experiments, we introduce a method for quantitative comparison of CP-FEM models with various experimental techniques. To mitigate the effects of unknown subsurface microstructure, tantalum tensile specimens with a pseudo-two-dimensional grain structure and grain sizes on the order of millimeters are used. A technique combining an electron back scatter diffraction (EBSD) and high resolution digital image correlation (HR-DIC) is used to measure the texture and sub-grain strain fields upon uniaxial tensile loading at various applied strains. Deformed specimens are also analyzed with optical profilometry measurements to obtain out-of- plane strain fields. These high resolution measurements are directly compared with large-scale CP-FEM predictions. This computational method directly links fundamental dislocation physics to plastic deformations in the grain-scale and to the engineering-scale applications. Furthermore, direct
Multiscale modeling and simulation of microtubule-motor-protein assemblies
Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.
2015-12-01
Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.
Fast Proton Titration Scheme for Multiscale Modeling of Protein Solutions.
Teixeira, Andre Azevedo Reis; Lund, Mikael; da Silva, Fernando Luís Barroso
2010-10-12
Proton exchange between titratable amino acid residues and the surrounding solution gives rise to exciting electric processes in proteins. We present a proton titration scheme for studying acid-base equilibria in Metropolis Monte Carlo simulations where salt is treated at the Debye-Hückel level. The method, rooted in the Kirkwood model of impenetrable spheres, is applied on the three milk proteins α-lactalbumin, β-lactoglobulin, and lactoferrin, for which we investigate the net-charge, molecular dipole moment, and charge capacitance. Over a wide range of pH and salt conditions, excellent agreement is found with more elaborate simulations where salt is explicitly included. The implicit salt scheme is orders of magnitude faster than the explicit analog and allows for transparent interpretation of physical mechanisms. It is shown how the method can be expanded to multiscale modeling of aqueous salt solutions of many biomolecules with nonstatic charge distributions. Important examples are protein-protein aggregation, protein-polyelectrolyte complexation, and protein-membrane association.
Multiscale Modeling of Wear Degradation in Cylinder Liners
Moraes, Alvaro
2014-03-20
Every mechanical system is naturally subjected to some kind of wear process that, at some point, will cause failure in the system if no monitoring or treatment process is applied. Since failures often lead to high economical costs, it is essential both to predict and to avoid them. To achieve this, a monitoring system of the wear level should be implemented to decrease the risk of failure. In this work, we take a first step into the development of a multiscale indirect inference methodology for state-dependent Markovian pure jump processes. This allows us to model the evolution of the wear level and to identify when the system reaches some critical level that triggers a maintenance response. Since the likelihood function of a discretely observed pure jump process does not have an expression that is simple enough for standard nonsampling optimization methods, we approximate this likelihood by expressions from upscaled models of the data. We use the Master Equation (ME) to assess the goodness-of-fit and to compute the distribution of the hitting time to the critical level.
Multiscale modeling and simulation of microtubule–motor-protein assemblies
Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.
2016-01-01
Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate–consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation. PMID:26764729
Multiscale modeling and simulation of microtubule-motor-protein assemblies.
Gao, Tong; Blackwell, Robert; Glaser, Matthew A; Betterton, M D; Shelley, Michael J
2015-01-01
Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.
Multiscale Modeling of Dewetting Damage in Highly Filled Particulate Composites
Geubelle, P. H.; Inglis, H. M.; Kramer, J. D.; Patel, J. J.; Kumar, N. C.; Tan, H.
2008-02-01
Particle debonding or dewetting constitutes one of the key damage processes in highly filled particulate composites such as solid propellant and other energetic materials. To analyze this failure process, we have developed a multiscale finite element framework that combines, at the microscale, a nonlinear description of the binder response with a cohesive model of the damage process taking place in a representative periodic unit cell (PUC). To relate micro-scale damage to the macroscopic constitutive response of the material, we employ the mathematical theory of homogenization (MTH). After a description of the numerical scheme, we present the results of the damage response of a highly filled particulate composite subjected to a uniaxial macroscopic strain, and show the direct correlation between the complex damage processes taking place in the PUC and the nonlinear macroscopic constitutive response. We also present a detailed study of the PUC size and a comparison between the finite element MTH-based study and a micromechanics model of the dewetting process.
A multiscale crack-bridging model of cellulose nanopaper
Meng, Qinghua; Li, Bo; Li, Teng; Feng, Xi-Qiao
2017-06-01
The conflict between strength and toughness is a long-standing challenge in advanced materials design. Recently, a fundamental bottom-up material design strategy has been demonstrated using cellulose nanopaper to achieve significant simultaneous increase in both strength and toughness. Fertile opportunities of such a design strategy aside, mechanistic understanding is much needed to thoroughly explore its full potential. To this end, here we establish a multiscale crack-bridging model to reveal the toughening mechanisms in cellulose nanopaper. A cohesive law is developed to characterize the interfacial properties between cellulose nanofibrils by considering their hydrogen bonding nature. In the crack-bridging zone, the hydrogen bonds between neighboring cellulose nanofibrils may break and reform at the molecular scale, rendering a superior toughness at the macroscopic scale. It is found that cellulose nanofibrils exhibit a distinct size-dependence in enhancing the fracture toughness of cellulose nanopaper. An optimal range of the length-to-radius ratio of nanofibrils is required to achieve higher fracture toughness of cellulose nanopaper. A unified law is proposed to correlate the fracture toughness of cellulose nanopaper with its microstructure and material parameters. The results obtained from this model agree well with relevant experiments. This work not only helps decipher the fundamental mechanisms underlying the remarkable mechanical properties of cellulose nanopaper but also provides a guide to design a wide range of advanced functional materials.
ESCOMPTE 2001: multi-scale modelling and experimental validation
Cousin, F.; Tulet, P.; Rosset, R.
2003-04-01
ESCOMPTE is a European pollution field experiment located in the Marseille / Fos-Berre area in the summer 2001.This Mediterranean area, with frequent pollution peaks, is characterized by a complex topography subject to sea breeze regimes, together with intense localized urban, industrial and biogenic sources. Four POI have been selected, the most significant being POI2a / b, a 6-day pollution episode extensively documented for dynamics, radiation, gas phase and aerosols, with surface measurements (including measurements at sea in the gulf of Genoa, on board instrumented ferries between Marseille and Corsica), 7 aircrafts, lidar, radar and constant-level flight balloon soundings. The two-way mesoscale model MESO-NH-C (MNH-C), with horizontal resolutions of 9 and 3 km and high vertical resolution (up to 40 levels in the first 2 km), embedded in the global CTM Mocage, has been run for all POIs, with a focus here on POI2b (June 24-27,2001), a typical high pollution episode. The multi-scale modelling system MNH-C+MOCAGE allows to simulate local and regional pollution issued from emission sources in the Marseille / Fos-Berre area as well as from remote sources (e.g. the Po Valley and / or western Mediterranean sources) and their associated transboundary pollution fluxes. Detailed dynamical, chemical and aerosol (both modal and sectional spectra with organics and inorganics) simulations generally favorably compare to surface(continental and on ships), lidar and along-flight aircraft measurements.
Anibal Pauchard; Eduardo Ugarte; Jaime Millan
2000-01-01
The exponential growth of recreation and tourism or ecotourism activities is affecting ecological processes in protected areas of Chile. In order to protect protected areas integrity, all projects inside their boundaries must pass through the Environmental Impact Assessment (EIA). The purpose of this research was to design a multiscale method to assess vegetation for...
Technical Work Plan for: Additional Multiscale Thermohydrologic Modeling
International Nuclear Information System (INIS)
B. Kirstein
2006-01-01
The primary objective of Revision 04 of the MSTHM report is to provide TSPA with revised repository-wide MSTHM analyses that incorporate updated percolation flux distributions, revised hydrologic properties, updated IEDs, and information pertaining to the emplacement of transport, aging, and disposal (TAD) canisters. The updated design information is primarily related to the incorporation of TAD canisters, but also includes updates related to superseded IEDs describing emplacement drift cross-sectional geometry and layout. The intended use of the results of Revision 04 of the MSTHM report, as described in this TWP, is to predict the evolution of TH conditions (temperature, relative humidity, liquid-phase saturation, and liquid-phase flux) at specified locations within emplacement drifts and in the adjoining near-field host rock along all emplacement drifts throughout the repository. This information directly supports the TSPA for the nominal and seismic scenarios. The revised repository-wide analyses are required to incorporate updated parameters and design information and to extend those analyses out to 1,000,000 years. Note that the previous MSTHM analyses reported in Revision 03 of Multiscale Thermohydrologic Model (BSC 2005 [DIRS 173944]) only extend out to 20,000 years. The updated parameters are the percolation flux distributions, including incorporation of post-10,000-year distributions, and updated calibrated hydrologic property values for the host-rock units. The applied calibrated hydrologic properties will be an updated version of those available in Calibrated Properties Model (BSC 2004 [DIRS 169857]). These updated properties will be documented in an Appendix of Revision 03 of UZ Flow Models and Submodels (BSC 2004 [DIRS 169861]). The updated calibrated properties are applied because they represent the latest available information. The reasonableness of applying the updated calibrated' properties to the prediction of near-fieldin-drift TH conditions
Zhang, Xueliang; Xiao, Pengfeng; Feng, Xuezhi
2017-09-01
It has been a common idea to produce multiscale segmentations to represent the various geographic objects in high-spatial resolution remote sensing (HR) images. However, it remains a great challenge to automatically select the proper segmentation scale(s) just according to the image information. In this study, we propose a novel way of information fusion at object level by combining hierarchical multiscale segmentations with existed thematic information produced by classification or recognition. The tree Markov random field (T-MRF) model is designed for the multiscale combination framework, through which the object type is determined as close as the existed thematic information. At the same time, the object boundary is jointly determined by the thematic labels and the multiscale segments through the minimization of the energy function. The benefits of the proposed T-MRF combination model include: (1) reducing the dependence of segmentation scale selection when utilizing multiscale segmentations; (2) exploring the hierarchical context naturally imbedded in the multiscale segmentations. The HR images in both urban and rural areas are used in the experiments to show the effectiveness of the proposed combination framework on these two aspects.
A case study on the influence of multiscale modelling in design and structural analysis
DEFF Research Database (Denmark)
Nicholas, Paul; Zwierzycki, Mateusz; La Magna, Riccardo
2017-01-01
. To illustrate the concept of multi-scale modelling, the prototype of a bridge structure that was realised making use of this information transfer between models will be presented. The prototype primarily takes advantage of the geometric and material stiffening effect of incremental metal forming. The local......The current paper discusses the role of multi-scale modelling within the context of design and structural analysis. Depending on the level of detail, a design model may retain, lose or enhance key information. The term multi-scale refers to the break-down of a design and analysis task into multiple...... levels of detail and the transfer of this information between models. Focusing on the influence that different models have on the analysed performance of the structure, the paper will discuss the advantages and trade-offs of coupling multiple levels of abstraction in terms of design and structure...
Multiscale modeling of the dynamics of multicellular systems
Kosztin, Ioan
2011-03-01
Describing the biomechanical properties of cellular systems, regarded as complex highly viscoelastic materials, is a difficult problem of great conceptual and practical value. Here we present a novel approach, referred to as the Cellular Particle Dynamics (CPD) method, for: (i) quantitatively relating biomechanical properties at the cell level to those at the multicellular and tissue level, and (ii) describing and predicting the time evolution of multicellular systems that undergo biomechanical relaxations. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. Cell and multicellular level biomechanical properties (e.g., viscosity, surface tension and shear modulus) are determined through the combined use of experiments and theory of continuum viscoelastic media. The same biomechanical properties are also ``measured'' computationally by employing the CPD method, the results being expressed in terms of CPD parameters. Once these parameters have been calibrated experimentally, the formalism provides a systematic framework to predict the time evolution of complex multicellular systems during shape-changing biomechanical transformations. By design, the CPD method is rather flexible and most suitable for multiscale modeling of multicellular system. The spatial level of detail of the system can be easily tuned by changing the number of CPs in a cell. Thus, CPD can be used equally well to describe both cell level processes (e.g., the adhesion of two cells) and tissue level processes (e.g., the formation of 3D constructs of millions of cells through bioprinting). Work supported by NSF [FIBR-0526854 and PHY-0957914
State-of-the-Art Report on Multi-scale Modelling of Nuclear Fuels
International Nuclear Information System (INIS)
Bartel, T.J.; Dingreville, R.; Littlewood, D.; Tikare, V.; Bertolus, M.; Blanc, V.; Bouineau, V.; Carlot, G.; Desgranges, C.; Dorado, B.; Dumas, J.C.; Freyss, M.; Garcia, P.; Gatt, J.M.; Gueneau, C.; Julien, J.; Maillard, S.; Martin, G.; Masson, R.; Michel, B.; Piron, J.P.; Sabathier, C.; Skorek, R.; Toffolon, C.; Valot, C.; Van Brutzel, L.; Besmann, Theodore M.; Chernatynskiy, A.; Clarno, K.; Gorti, S.B.; Radhakrishnan, B.; Devanathan, R.; Dumont, M.; Maugis, P.; El-Azab, A.; Iglesias, F.C.; Lewis, B.J.; Krack, M.; Yun, Y.; Kurata, M.; Kurosaki, K.; Largenton, R.; Lebensohn, R.A.; Malerba, L.; Oh, J.Y.; Phillpot, S.R.; Tulenko, J. S.; Rachid, J.; Stan, M.; Sundman, B.; Tonks, M.R.; Williamson, R.; Van Uffelen, P.; Welland, M.J.; Valot, Carole; Stan, Marius; Massara, Simone; Tarsi, Reka
2015-10-01
The Nuclear Science Committee (NSC) of the Nuclear Energy Agency (NEA) has undertaken an ambitious programme to document state-of-the-art of modelling for nuclear fuels and structural materials. The project is being performed under the Working Party on Multi-Scale Modelling of Fuels and Structural Material for Nuclear Systems (WPMM), which has been established to assess the scientific and engineering aspects of fuels and structural materials, describing multi-scale models and simulations as validated predictive tools for the design of nuclear systems, fuel fabrication and performance. The WPMM's objective is to promote the exchange of information on models and simulations of nuclear materials, theoretical and computational methods, experimental validation and related topics. It also provides member countries with up-to-date information, shared data, models, and expertise. The goal is also to assess needs for improvement and address them by initiating joint efforts. The WPMM reviews and evaluates multi-scale modelling and simulation techniques currently employed in the selection of materials used in nuclear systems. It serves to provide advice to the nuclear community on the developments needed to meet the requirements of modelling for the design of different nuclear systems. The original WPMM mandate had three components (Figure 1), with the first component currently completed, delivering a report on the state-of-the-art of modelling of structural materials. The work on modelling was performed by three expert groups, one each on Multi-Scale Modelling Methods (M3), Multi-Scale Modelling of Fuels (M2F) and Structural Materials Modelling (SMM). WPMM is now composed of three expert groups and two task forces providing contributions on multi-scale methods, modelling of fuels and modelling of structural materials. This structure will be retained, with the addition of task forces as new topics are developed. The mandate of the Expert Group on Multi-Scale Modelling of
Multiscale Multiphysics and Multidomain Models I: Basic Theory.
Wei, Guo-Wei
2013-12-01
This work extends our earlier two-domain formulation of a differential geometry based multiscale paradigm into a multidomain theory, which endows us the ability to simultaneously accommodate multiphysical descriptions of aqueous chemical, physical and biological systems, such as fuel cells, solar cells, nanofluidics, ion channels, viruses, RNA polymerases, molecular motors and large macromolecular complexes. The essential idea is to make use of the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain of solvent from the microscopic domain of solute, and dynamically couple continuum and discrete descriptions. Our main strategy is to construct energy functionals to put on an equal footing of multiphysics, including polar (i.e., electrostatic) solvation, nonpolar solvation, chemical potential, quantum mechanics, fluid mechanics, molecular mechanics, coarse grained dynamics and elastic dynamics. The variational principle is applied to the energy functionals to derive desirable governing equations, such as multidomain Laplace-Beltrami (LB) equations for macromolecular morphologies, multidomain Poisson-Boltzmann (PB) equation or Poisson equation for electrostatic potential, generalized Nernst-Planck (NP) equations for the dynamics of charged solvent species, generalized Navier-Stokes (NS) equation for fluid dynamics, generalized Newton's equations for molecular dynamics (MD) or coarse-grained dynamics and equation of motion for elastic dynamics. Unlike the classical PB equation, our PB equation is an integral-differential equation due to solvent-solute interactions. To illustrate the proposed formalism, we have explicitly constructed three models, a multidomain solvation model, a multidomain charge transport model and a multidomain chemo-electro-fluid-MD-elastic model. Each solute domain is equipped with distinct surface tension, pressure, dielectric function, and charge density distribution. In addition to long
A rate-dependent multi-scale crack model for concrete
Karamnejad, A.; Nguyen, V.P.; Sluys, L.J.
2013-01-01
A multi-scale numerical approach for modeling cracking in heterogeneous quasi-brittle materials under dynamic loading is presented. In the model, a discontinuous crack model is used at macro-scale to simulate fracture and a gradient-enhanced damage model has been used at meso-scale to simulate
Multiscale Modeling of Hydrogen Embrittlement for Multiphase Material
Al-Jabr, Khalid A.
2014-05-01
Hydrogen Embrittlement (HE) is a very common failure mechanism induced crack propagation in materials that are utilized in oil and gas industry structural components and equipment. Considering the prediction of HE behavior, which is suggested in this study, is one technique of monitoring HE of equipment in service. Therefore, multi-scale constitutive models that account for the failure in polycrystalline Body Centered Cubic (BCC) materials due to hydrogen embrittlement are developed. The polycrystalline material is modeled as two-phase materials consisting of a grain interior (GI) phase and a grain boundary (GB) phase. In the first part of this work, the hydrogen concentration in the GI (Cgi) and the GB (Cgb) as well as the hydrogen distribution in each phase, were calculated and modeled by using kinetic regime-A and C, respectively. In the second part of this work, this dissertation captures the adverse effects of hydrogen concentration, in each phase, in micro/meso and macro-scale models on the mechanical behavior of steel; e.g. tensile strength and critical porosity. The models predict the damage mechanisms and the reduction in the ultimate strength profile of a notched, round bar under tension for different hydrogen concentrations as observed in the experimental data available in the literature for steels. Moreover, the study outcomes are supported by the experimental data of the Fractography and HE indices investigation. In addition to the aforementioned continuum model, this work employs the Molecular Dynamics (MD) simulations to provide information regarding bond formulation and breaking. The MD analyses are conducted for both single grain and polycrystalline BCC iron with different amounts of hydrogen and different size of nano-voids. The simulations show that the hydrogen atoms could form the transmission in materials configuration from BCC to FCC (Face Centered Cubic) and HCP (Hexagonal Close Packed). They also suggest the preferred sites of hydrogen for
Multiscale Modeling of Wear Degradation in Cylinder Liners
Moraes, Alvaro; Ruggeri, Fabrizio; Tempone, Raul; Vilanova, Pedro
2014-01-01
both to predict and to avoid them. To achieve this, a monitoring system of the wear level should be implemented to decrease the risk of failure. In this work, we take a first step into the development of a multiscale indirect inference methodology
Multiscale Modeling of Fracture Processes in Cementitious Materials
Qian, Z.
2012-01-01
Concrete is a composite construction material, which is composed primarily of coarse aggregates, sands and cement paste. The fracture processes in concrete are complicated, because of the multiscale and multiphase nature of the material. In the past decades, comprehensive effort has been put to
Hybrid continuum–molecular modelling of multiscale internal gas flows
International Nuclear Information System (INIS)
Patronis, Alexander; Lockerby, Duncan A.; Borg, Matthew K.; Reese, Jason M.
2013-01-01
We develop and apply an efficient multiscale method for simulating a large class of low-speed internal rarefied gas flows. The method is an extension of the hybrid atomistic–continuum approach proposed by Borg et al. (2013) [28] for the simulation of micro/nano flows of high-aspect ratio. The major new extensions are: (1) incorporation of fluid compressibility; (2) implementation using the direct simulation Monte Carlo (DSMC) method for dilute rarefied gas flows, and (3) application to a broader range of geometries, including periodic, non-periodic, pressure-driven, gravity-driven and shear-driven internal flows. The multiscale method is applied to micro-scale gas flows through a periodic converging–diverging channel (driven by an external acceleration) and a non-periodic channel with a bend (driven by a pressure difference), as well as the flow between two eccentric cylinders (with the inner rotating relative to the outer). In all these cases there exists a wide variation of Knudsen number within the geometries, as well as substantial compressibility despite the Mach number being very low. For validation purposes, our multiscale simulation results are compared to those obtained from full-scale DSMC simulations: very close agreement is obtained in all cases for all flow variables considered. Our multiscale simulation is an order of magnitude more computationally efficient than the full-scale DSMC for the first and second test cases, and two orders of magnitude more efficient for the third case
Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.
2015-01-01
Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.
Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.
2015-01-01
Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.
A Multi-scale Modeling System with Unified Physics to Study Precipitation Processes
Tao, W. K.
2017-12-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), and (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF). The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitation, processes and their sensitivity on model resolution and microphysics schemes will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.
Modeling and simulation of high dimensional stochastic multiscale PDE systems at the exascale
Energy Technology Data Exchange (ETDEWEB)
Zabaras, Nicolas J. [Cornell Univ., Ithaca, NY (United States)
2016-11-08
Predictive Modeling of multiscale and Multiphysics systems requires accurate data driven characterization of the input uncertainties, and understanding of how they propagate across scales and alter the final solution. This project develops a rigorous mathematical framework and scalable uncertainty quantification algorithms to efficiently construct realistic low dimensional input models, and surrogate low complexity systems for the analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The work can be applied to many areas including physical and biological processes, from climate modeling to systems biology.
A stochastic multiscale framework for modeling flow through random heterogeneous porous media
International Nuclear Information System (INIS)
Ganapathysubramanian, B.; Zabaras, N.
2009-01-01
Flow through porous media is ubiquitous, occurring from large geological scales down to the microscopic scales. Several critical engineering phenomena like contaminant spread, nuclear waste disposal and oil recovery rely on accurate analysis and prediction of these multiscale phenomena. Such analysis is complicated by inherent uncertainties as well as the limited information available to characterize the system. Any realistic modeling of these transport phenomena has to resolve two key issues: (i) the multi-length scale variations in permeability that these systems exhibit, and (ii) the inherently limited information available to quantify these property variations that necessitates posing these phenomena as stochastic processes. A stochastic variational multiscale formulation is developed to incorporate uncertain multiscale features. A stochastic analogue to a mixed multiscale finite element framework is used to formulate the physical stochastic multiscale process. Recent developments in linear and non-linear model reduction techniques are used to convert the limited information available about the permeability variation into a viable stochastic input model. An adaptive sparse grid collocation strategy is used to efficiently solve the resulting stochastic partial differential equations (SPDEs). The framework is applied to analyze flow through random heterogeneous media when only limited statistics about the permeability variation are given
Non-classic multiscale modeling of manipulation based on AFM, in aqueous and humid ambient
Korayem, M. H.; Homayooni, A.; Hefzabad, R. N.
2018-05-01
To achieve a precise manipulation, it is important that an accurate model consisting the size effect and environmental conditions be employed. In this paper, the non-classical multiscale modeling is developed to investigate the manipulation in a vacuum, aqueous and humid ambient. The manipulation structure is considered into two parts as a macro-field (MF) and a nano-field (NF). The governing equations of the AFM components (consist of the cantilever and tip) in the MF are derived based on the modified couple stress theory. The material length scale parameter is used to study the size effect. The fluid flow in the MF is assumed as the Couette and Creeping flows. Moreover, the NF is modeled using the molecular dynamics. The Electro-Based (ELBA) model is considered to model the ambient condition in the NF. The nanoparticle in the different conditions is taken into account to study the manipulation. The results of the manipulation indicate that the predicted deflection of the non-classical model is less than the classical one. Comparison of the nanoparticle travelled distance on substrate shows that the manipulation in the submerged condition is close to the ideal manipulation. The results of humid condition illustrate that by increasing the relative humidity (RH) the manipulation force decreases. Furthermore, Root Mean Square (RMS) as a criterion of damage demonstrates that the submerged nanoparticle has the minimum damage, however, the minimum manipulation force occurs in superlative humid ambient.
Federal Laboratory Consortium — The Environmental Modeling Center provides the computational tools to perform geostatistical analysis, to model ground water and atmospheric releases for comparison...
Mineral Precipitation in Fractures: Multiscale Imaging and Geochemical Modeling
Hajirezaie, S.; Peters, C. A.; Swift, A.; Sheets, J. M.; Cole, D. R.; Crandall, D.; Cheshire, M.; Stack, A. G.; Anovitz, L. M.
2017-12-01
For subsurface energy technologies such as geologic carbon sequestration, fractures are potential pathways for fluid migration from target formations. Highly permeable fractures may become sealed by mineral precipitation. In this study, we examined shale specimens with existing cemented fractures as natural analogues, using an array of imaging methods to characterize mineralogy and porosity at several spatial scales. In addition, we used reactive transport modeling to investigate geochemical conditions that can lead to extensive mineral precipitation and to simulate the impacts on fracture hydraulic properties. The naturally-cemented fractured rock specimens were from the Upper Wolfcamp formation in Texas, at 10,000 ft depth. The specimens were scanned using x-ray computed tomography (xCT) at resolution of 13 microns. The xCT images revealed an original fracture aperture of 1.9 mm filled with several distinct mineral phases and vuggy void regions, and the mineral phase volumes and surface areas were quantified and mapped in 3D. Specimens were thin-sectioned and examined at micron- and submicron-scales using petrographic microscopy (PM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and small angle X-ray scattering (SAXS). Collectively these methods revealed crystals of dolomite as large as 900 microns in length overlain with a heterogeneous mixture of carbonate minerals including calcite, dolomite, and Fe-rich dolomite, interspersed at spatial scales as small as 5 microns. In addition, secondary precipitation of SiO2 was found to fill some of the void space. This multiscale imaging was used to inform the reactive transport modeling employed to examine the conditions that can cause the observed mineral precipitation in fractures at a larger scale. Two brines containing solutions that when mixed would lead to precipitation of various carbonate minerals were simulated as injectants into a fracture domain. In particular, the competing
Energy Technology Data Exchange (ETDEWEB)
Mehrez, Loujaine [University of Southern California; Ghanem, Roger [University of Southern California; McAuliffe, Colin [Altair Engineering, Inc.; Aitharaju, Venkat [General Motors; Rodgers, William [General Motors
2016-06-06
multiscale framework to construct stochastic macroscopic constitutive material models is proposed. A spectral projection approach, specifically polynomial chaos expansion, has been used to construct explicit functional relationships between the homogenized properties and input parameters from finer scales. A homogenization engine embedded in Multiscale Designer, software for composite materials, has been used for the upscaling process. The framework is demonstrated using non-crimp fabric composite materials by constructing probabilistic models of the homogenized properties of a non-crimp fabric laminate in terms of the input parameters together with the homogenized properties from finer scales.
Multiscale Methods for Accurate, Efficient, and Scale-Aware Models
Energy Technology Data Exchange (ETDEWEB)
Larson, Vincent [Univ. of Wisconsin, Milwaukee, WI (United States)
2017-07-14
The goal of UWM’s portion of the Multiscale project was to develop a unified cloud parameterization that could simulate all cloud types --- including stratocumulus, shallow cumulus, and deep cumulus --- using the single equation set implemented in CLUBB. An advantage of a unified parameterization methodology is that it avoids the difficult task of interfacing different cloud parameterizations for different cloud types. To interface CLUBB’s clouds to the microphysics, a Monte Carlo interface, SILHS, was further developed.
A multi-scale energy demand model suggests sharing market risks with intelligent energy cooperatives
G. Methenitis (Georgios); M. Kaisers (Michael); J.A. La Poutré (Han)
2015-01-01
textabstractIn this paper, we propose a multi-scale model of energy demand that is consistent with observations at a macro scale, in our use-case standard load profiles for (residential) electric loads. We employ the model to study incentives to assume the risk of volatile market prices for
Multi-scale modeling of dispersed gas-liquid two-phase flow
Deen, N.G.; Sint Annaland, van M.; Kuipers, J.A.M.
2004-01-01
In this work the concept of multi-scale modeling is demonstrated. The idea of this approach is to use different levels of modeling, each developed to study phenomena at a certain length scale. Information obtained at the level of small length scales can be used to provide closure information at the
Barcelos Carneiro M Rocha, Iuri; van der Meer, F.P.; Nijssen, RPL; Sluijs, Bert
2017-01-01
In this work, a numerical framework for modelling of hygrothermal ageing in laminated composites is proposed. The model consists of a macroscopic diffusion analysis based on Fick's second law coupled with a multiscale FE^{2} stress analysis in order to take microscopic degradation
Advanced computational workflow for the multi-scale modeling of the bone metabolic processes.
Dao, Tien Tuan
2017-06-01
Multi-scale modeling of the musculoskeletal system plays an essential role in the deep understanding of complex mechanisms underlying the biological phenomena and processes such as bone metabolic processes. Current multi-scale models suffer from the isolation of sub-models at each anatomical scale. The objective of this present work was to develop a new fully integrated computational workflow for simulating bone metabolic processes at multi-scale levels. Organ-level model employs multi-body dynamics to estimate body boundary and loading conditions from body kinematics. Tissue-level model uses finite element method to estimate the tissue deformation and mechanical loading under body loading conditions. Finally, cell-level model includes bone remodeling mechanism through an agent-based simulation under tissue loading. A case study on the bone remodeling process located on the human jaw was performed and presented. The developed multi-scale model of the human jaw was validated using the literature-based data at each anatomical level. Simulation outcomes fall within the literature-based ranges of values for estimated muscle force, tissue loading and cell dynamics during bone remodeling process. This study opens perspectives for accurately simulating bone metabolic processes using a fully integrated computational workflow leading to a better understanding of the musculoskeletal system function from multiple length scales as well as to provide new informative data for clinical decision support and industrial applications.
Towards distributed multiscale computing for the VPH
Hoekstra, A.G.; Coveney, P.
2010-01-01
Multiscale modeling is fundamental to the Virtual Physiological Human (VPH) initiative. Most detailed three-dimensional multiscale models lead to prohibitive computational demands. As a possible solution we present MAPPER, a computational science infrastructure for Distributed Multiscale Computing
Chiverton, John P; Ige, Olubisi; Barnett, Stephanie J; Parry, Tony
2017-11-01
This paper is concerned with the modeling and analysis of the orientation and distance between steel fibers in X-ray micro-tomography data. The advantage of combining both orientation and separation in a model is that it helps provide a detailed understanding of how the steel fibers are arranged, which is easy to compare. The developed models are designed to summarize the randomness of the orientation distribution of the steel fibers both locally and across an entire volume based on multiscale entropy. Theoretical modeling, simulation, and application to real imaging data are shown here. The theoretical modeling of multiscale entropy for orientation includes a proof showing the final form of the multiscale taken over a linear range of scales. A series of image processing operations are also included to overcome interslice connectivity issues to help derive the statistical descriptions of the orientation distributions of the steel fibers. The results demonstrate that multiscale entropy provides unique insights into both simulated and real imaging data of steel fiber reinforced concrete.
Multi-scale modeling of spin transport in organic semiconductors
Hemmatiyan, Shayan; Souza, Amaury; Kordt, Pascal; McNellis, Erik; Andrienko, Denis; Sinova, Jairo
In this work, we present our theoretical framework to simulate simultaneously spin and charge transport in amorphous organic semiconductors. By combining several techniques e.g. molecular dynamics, density functional theory and kinetic Monte Carlo, we are be able to study spin transport in the presence of anisotropy, thermal effects, magnetic and electric field effects in a realistic morphologies of amorphous organic systems. We apply our multi-scale approach to investigate the spin transport in amorphous Alq3 (Tris(8-hydroxyquinolinato)aluminum) and address the underlying spin relaxation mechanism in this system as a function of temperature, bias voltage, magnetic field and sample thickness.
Multiscale musculoskeletal modelling, data–model fusion and electromyography-informed modelling
Zhang, J.; Heidlauf, T.; Sartori, M.; Besier, T.; Röhrle, O.; Lloyd, D.
2016-01-01
This paper proposes methods and technologies that advance the state of the art for modelling the musculoskeletal system across the spatial and temporal scales; and storing these using efficient ontologies and tools. We present population-based modelling as an efficient method to rapidly generate individual morphology from only a few measurements and to learn from the ever-increasing supply of imaging data available. We present multiscale methods for continuum muscle and bone models; and efficient mechanostatistical methods, both continuum and particle-based, to bridge the scales. Finally, we examine both the importance that muscles play in bone remodelling stimuli and the latest muscle force prediction methods that use electromyography-assisted modelling techniques to compute musculoskeletal forces that best reflect the underlying neuromuscular activity. Our proposal is that, in order to have a clinically relevant virtual physiological human, (i) bone and muscle mechanics must be considered together; (ii) models should be trained on population data to permit rapid generation and use underlying principal modes that describe both muscle patterns and morphology; and (iii) these tools need to be available in an open-source repository so that the scientific community may use, personalize and contribute to the database of models. PMID:27051510
Energy Technology Data Exchange (ETDEWEB)
None
2017-04-01
This factsheet describes a project that developed and demonstrated a new manufacturing-informed design framework that utilizes advanced multi-scale, physics-based process modeling to dramatically improve manufacturing productivity and quality in machining operations while reducing the cost of machined components.
Multi-time, multi-scale correlation functions in turbulence and in turbulent models
Biferale, L.; Boffetta, G.; Celani, A.; Toschi, F.
1999-01-01
A multifractal-like representation for multi-time, multi-scale velocity correlation in turbulence and dynamical turbulent models is proposed. The importance of subleading contributions to time correlations is highlighted. The fulfillment of the dynamical constraints due to the equations of motion is
Multi-scale habitat selection modeling: A review and outlook
Kevin McGarigal; Ho Yi Wan; Kathy A. Zeller; Brad C. Timm; Samuel A. Cushman
2016-01-01
Scale is the lens that focuses ecological relationships. Organisms select habitat at multiple hierarchical levels and at different spatial and/or temporal scales within each level. Failure to properly address scale dependence can result in incorrect inferences in multi-scale habitat selection modeling studies.
The Industrial Process System Assessment (IPSA) methodology is a multiple step allocation approach for connecting information from the production line level up to the facility level and vice versa using a multiscale model of process systems. The allocation procedure assigns inpu...
Multi-scale modeling with cellular automata: The complex automata approach
Hoekstra, A.G.; Falcone, J.-L.; Caiazzo, A.; Chopard, B.
2008-01-01
Cellular Automata are commonly used to describe complex natural phenomena. In many cases it is required to capture the multi-scale nature of these phenomena. A single Cellular Automata model may not be able to efficiently simulate a wide range of spatial and temporal scales. It is our goal to
Downscaling modelling system for multi-scale air quality forecasting
Nuterman, R.; Baklanov, A.; Mahura, A.; Amstrup, B.; Weismann, J.
2010-09-01
Urban modelling for real meteorological situations, in general, considers only a small part of the urban area in a micro-meteorological model, and urban heterogeneities outside a modelling domain affect micro-scale processes. Therefore, it is important to build a chain of models of different scales with nesting of higher resolution models into larger scale lower resolution models. Usually, the up-scaled city- or meso-scale models consider parameterisations of urban effects or statistical descriptions of the urban morphology, whereas the micro-scale (street canyon) models are obstacle-resolved and they consider a detailed geometry of the buildings and the urban canopy. The developed system consists of the meso-, urban- and street-scale models. First, it is the Numerical Weather Prediction (HIgh Resolution Limited Area Model) model combined with Atmospheric Chemistry Transport (the Comprehensive Air quality Model with extensions) model. Several levels of urban parameterisation are considered. They are chosen depending on selected scales and resolutions. For regional scale, the urban parameterisation is based on the roughness and flux corrections approach; for urban scale - building effects parameterisation. Modern methods of computational fluid dynamics allow solving environmental problems connected with atmospheric transport of pollutants within urban canopy in a presence of penetrable (vegetation) and impenetrable (buildings) obstacles. For local- and micro-scales nesting the Micro-scale Model for Urban Environment is applied. This is a comprehensive obstacle-resolved urban wind-flow and dispersion model based on the Reynolds averaged Navier-Stokes approach and several turbulent closures, i.e. k -É linear eddy-viscosity model, k - É non-linear eddy-viscosity model and Reynolds stress model. Boundary and initial conditions for the micro-scale model are used from the up-scaled models with corresponding interpolation conserving the mass. For the boundaries a
A multi-scale modeling of surface effect via the modified boundary Cauchy-Born model
Energy Technology Data Exchange (ETDEWEB)
Khoei, A.R., E-mail: arkhoei@sharif.edu; Aramoon, A.
2012-10-01
In this paper, a new multi-scale approach is presented based on the modified boundary Cauchy-Born (MBCB) technique to model the surface effects of nano-structures. The salient point of the MBCB model is the definition of radial quadrature used in the surface elements which is an indicator of material behavior. The characteristics of quadrature are derived by interpolating data from atoms laid in a circular support around the quadrature, in a least-square scene. The total-Lagrangian formulation is derived for the equivalent continua by employing the Cauchy-Born hypothesis for calculating the strain energy density function of the continua. The numerical results of the proposed method are compared with direct atomistic and finite element simulation results to indicate that the proposed technique provides promising results for modeling surface effects of nano-structures. - Highlights: Black-Right-Pointing-Pointer A multi-scale approach is presented to model the surface effects in nano-structures. Black-Right-Pointing-Pointer The total-Lagrangian formulation is derived by employing the Cauchy-Born hypothesis. Black-Right-Pointing-Pointer The radial quadrature is used to model the material behavior in surface elements. Black-Right-Pointing-Pointer The quadrature characteristics are derived using the data at the atomistic level.
Zhuang, Kai H; Herrgård, Markus J
2015-09-01
In recent years, bio-based chemicals have gained traction as a sustainable alternative to petrochemicals. However, despite rapid advances in metabolic engineering and synthetic biology, there remain significant economic and environmental challenges. In order to maximize the impact of research investment in a new bio-based chemical industry, there is a need for assessing the technological, economic, and environmental potentials of combinations of biomass feedstocks, biochemical products, bioprocess technologies, and metabolic engineering approaches in the early phase of development of cell factories. To address this issue, we have developed a comprehensive Multi-scale framework for modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes and economic impact assessment. We demonstrate the use of the MuSIC framework in a case study where two major polymer precursors (1,3-propanediol and 3-hydroxypropionic acid) are produced from two biomass feedstocks (corn-based glucose and soy-based glycerol) through 66 proposed biosynthetic pathways in two host organisms (Escherichia coli and Saccharomyces cerevisiae). The MuSIC framework allows exploration of tradeoffs and interactions between economy-scale objectives (e.g. profit maximization, emission minimization), constraints (e.g. land-use constraints) and process- and cell-scale technology choices (e.g. strain design or oxygenation conditions). We demonstrate that economy-scale assessment can be used to guide specific strain design decisions in metabolic engineering, and that these design decisions can be affected by non-intuitive dependencies across multiple scales. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Multi-Scale Modelling of the Gamma Radiolysis of Nitrate Solutions
Horne, Gregory; Donoclift, Thomas; Sims, Howard E.; M. Orr, Robin; Pimblott, Simon
2016-01-01
A multi-scale modelling approach has been developed for the extended timescale long-term radiolysis of aqueous systems. The approach uses a combination of stochastic track structure and track chemistry as well as deterministic homogeneous chemistry techniques and involves four key stages; radiation track structure simulation, the subsequent physicochemical processes, nonhomogeneous diffusion-reaction kinetic evolution, and homogeneous bulk chemistry modelling. The first three components model...
International Nuclear Information System (INIS)
Martin, W.E.; McDonald, L.A.
1997-01-01
The eight book chapters demonstrate the link between the physical models of the environment and the policy analysis in support of policy making. Each chapter addresses an environmental policy issue using a quantitative modeling approach. The volume addresses three general areas of environmental policy - non-point source pollution in the agricultural sector, pollution generated in the extractive industries, and transboundary pollutants from burning fossil fuels. The book concludes by discussing the modeling efforts and the use of mathematical models in general. Chapters are entitled: modeling environmental policy: an introduction; modeling nonpoint source pollution in an integrated system (agri-ecological); modeling environmental and trade policy linkages: the case of EU and US agriculture; modeling ecosystem constraints in the Clean Water Act: a case study in Clearwater National Forest (subject to discharge from metal mining waste); costs and benefits of coke oven emission controls; modeling equilibria and risk under global environmental constraints (discussing energy and environmental interrelations); relative contribution of the enhanced greenhouse effect on the coastal changes in Louisiana; and the use of mathematical models in policy evaluations: comments. The paper on coke area emission controls has been abstracted separately for the IEA Coal Research CD-ROM
Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes
Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.
2011-01-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the recent developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitating systems and hurricanes/typhoons will be presented. The high-resolution spatial and temporal visualization will be utilized to show the evolution of precipitation processes. Also how to
Simulation of left atrial function using a multi-scale model of the cardiovascular system.
Directory of Open Access Journals (Sweden)
Antoine Pironet
Full Text Available During a full cardiac cycle, the left atrium successively behaves as a reservoir, a conduit and a pump. This complex behavior makes it unrealistic to apply the time-varying elastance theory to characterize the left atrium, first, because this theory has known limitations, and second, because it is still uncertain whether the load independence hypothesis holds. In this study, we aim to bypass this uncertainty by relying on another kind of mathematical model of the cardiac chambers. In the present work, we describe both the left atrium and the left ventricle with a multi-scale model. The multi-scale property of this model comes from the fact that pressure inside a cardiac chamber is derived from a model of the sarcomere behavior. Macroscopic model parameters are identified from reference dog hemodynamic data. The multi-scale model of the cardiovascular system including the left atrium is then simulated to show that the physiological roles of the left atrium are correctly reproduced. This include a biphasic pressure wave and an eight-shaped pressure-volume loop. We also test the validity of our model in non basal conditions by reproducing a preload reduction experiment by inferior vena cava occlusion with the model. We compute the variation of eight indices before and after this experiment and obtain the same variation as experimentally observed for seven out of the eight indices. In summary, the multi-scale mathematical model presented in this work is able to correctly account for the three roles of the left atrium and also exhibits a realistic left atrial pressure-volume loop. Furthermore, the model has been previously presented and validated for the left ventricle. This makes it a proper alternative to the time-varying elastance theory if the focus is set on precisely representing the left atrial and left ventricular behaviors.
Anatomy and Physiology of Multiscale Modeling and Simulation in Systems Medicine.
Mizeranschi, Alexandru; Groen, Derek; Borgdorff, Joris; Hoekstra, Alfons G; Chopard, Bastien; Dubitzky, Werner
2016-01-01
Systems medicine is the application of systems biology concepts, methods, and tools to medical research and practice. It aims to integrate data and knowledge from different disciplines into biomedical models and simulations for the understanding, prevention, cure, and management of complex diseases. Complex diseases arise from the interactions among disease-influencing factors across multiple levels of biological organization from the environment to molecules. To tackle the enormous challenges posed by complex diseases, we need a modeling and simulation framework capable of capturing and integrating information originating from multiple spatiotemporal and organizational scales. Multiscale modeling and simulation in systems medicine is an emerging methodology and discipline that has already demonstrated its potential in becoming this framework. The aim of this chapter is to present some of the main concepts, requirements, and challenges of multiscale modeling and simulation in systems medicine.
Predictive multiscale computational model of shoe-floor coefficient of friction.
Moghaddam, Seyed Reza M; Acharya, Arjun; Redfern, Mark S; Beschorner, Kurt E
2018-01-03
Understanding the frictional interactions between the shoe and floor during walking is critical to prevention of slips and falls, particularly when contaminants are present. A multiscale finite element model of shoe-floor-contaminant friction was developed that takes into account the surface and material characteristics of the shoe and flooring in microscopic and macroscopic scales. The model calculates shoe-floor coefficient of friction (COF) in boundary lubrication regime where effects of adhesion friction and hydrodynamic pressures are negligible. The validity of model outputs was assessed by comparing model predictions to the experimental results from mechanical COF testing. The multiscale model estimates were linearly related to the experimental results (p < 0.0001). The model predicted 73% of variability in experimentally-measured shoe-floor-contaminant COF. The results demonstrate the potential of multiscale finite element modeling in aiding slip-resistant shoe and flooring design and reducing slip and fall injuries. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
International Nuclear Information System (INIS)
Wirth, B; Asoka-Kumar, P; Denison, A; Glade, S; Howell, R; Marian, J; Odette, G; Sterne, P
2004-01-01
The objective of this work is to determine the chemical composition of nanometer precipitates responsible for irradiation hardening and embrittlement of reactor pressure vessel steels, which threaten to limit the operating lifetime of nuclear power plants worldwide. The scientific approach incorporates computational multiscale modeling of radiation damage and microstructural evolution in Fe-Cu-Ni-Mn alloys, and experimental characterization by positron annihilation spectroscopy and small angle neutron scattering. The modeling and experimental results are
Bellamy, Chloe; Altringham, John
2015-01-01
Conservation increasingly operates at the landscape scale. For this to be effective, we need landscape scale information on species distributions and the environmental factors that underpin them. Species records are becoming increasingly available via data centres and online portals, but they are often patchy and biased. We demonstrate how such data can yield useful habitat suitability models, using bat roost records as an example. We analysed the effects of environmental variables at eight spatial scales (500 m - 6 km) on roost selection by eight bat species (Pipistrellus pipistrellus, P. pygmaeus, Nyctalus noctula, Myotis mystacinus, M. brandtii, M. nattereri, M. daubentonii, and Plecotus auritus) using the presence-only modelling software MaxEnt. Modelling was carried out on a selection of 418 data centre roost records from the Lake District National Park, UK. Target group pseudoabsences were selected to reduce the impact of sampling bias. Multi-scale models, combining variables measured at their best performing spatial scales, were used to predict roosting habitat suitability, yielding models with useful predictive abilities. Small areas of deciduous woodland consistently increased roosting habitat suitability, but other habitat associations varied between species and scales. Pipistrellus were positively related to built environments at small scales, and depended on large-scale woodland availability. The other, more specialist, species were highly sensitive to human-altered landscapes, avoiding even small rural towns. The strength of many relationships at large scales suggests that bats are sensitive to habitat modifications far from the roost itself. The fine resolution, large extent maps will aid targeted decision-making by conservationists and planners. We have made available an ArcGIS toolbox that automates the production of multi-scale variables, to facilitate the application of our methods to other taxa and locations. Habitat suitability modelling has the
The Models-3 Community Multi-scale Air Quality (CMAQ) model, first released by the USEPA in 1999 (Byun and Ching. 1999), continues to be developed and evaluated. The principal components of the CMAQ system include a comprehensive emission processor known as the Sparse Matrix O...
Clouds and fogs can significantly impact the concentration and distribution of atmospheric gases and aerosols through chemistry, scavenging, and transport. This presentation summarizes the representation of cloud processes in the Community Multiscale Air Quality (CMAQ) modeling ...
The adaptation of the Community Multiscale Air Quality (CMAQ) modeling system to simulate O3, particulate matter, and related precursor distributions over the northern hemisphere is presented. Hemispheric simulations with CMAQ and the Weather Research and Forecasting (...
Franco, Alejandro A; Bessler, Wolfgang G
2015-01-01
This book reviews the use of innovative physical multiscale modeling methods to deeply understand the electrochemical mechanisms and numerically simulate the structure and properties of electrochemical devices for energy storage and conversion.
Wang, Zhihui; Deisboeck, Thomas S.; Cristini, Vittorio
2014-01-01
There are two challenges that researchers face when performing global sensitivity analysis (GSA) on multiscale in silico cancer models. The first is increased computational intensity, since a multiscale cancer model generally takes longer to run than does a scale-specific model. The second problem is the lack of a best GSA method that fits all types of models, which implies that multiple methods and their sequence need to be taken into account. In this article, we therefore propose a sampling-based GSA workflow consisting of three phases – pre-analysis, analysis, and post-analysis – by integrating Monte Carlo and resampling methods with the repeated use of analysis of variance (ANOVA); we then exemplify this workflow using a two-dimensional multiscale lung cancer model. By accounting for all parameter rankings produced by multiple GSA methods, a summarized ranking is created at the end of the workflow based on the weighted mean of the rankings for each input parameter. For the cancer model investigated here, this analysis reveals that ERK, a downstream molecule of the EGFR signaling pathway, has the most important impact on regulating both the tumor volume and expansion rate in the algorithm used. PMID:25257020
International Nuclear Information System (INIS)
Andersson, Martin; Yuan, Jinliang; Sunden, Bengt
2010-01-01
A literature study is performed to compile the state-of-the-art, as well as future potential, in SOFC modeling. Principles behind various transport processes such as mass, heat, momentum and charge as well as for electrochemical and internal reforming reactions are described. A deeper investigation is made to find out potentials and challenges using a multiscale approach to model solid oxide fuel cells (SOFCs) and combine the accuracy at microscale with the calculation speed at macroscale to design SOFCs, based on a clear understanding of transport phenomena, chemical reactions and functional requirements. Suitable methods are studied to model SOFCs covering various length scales. Coupling methods between different approaches and length scales by multiscale models are outlined. Multiscale modeling increases the understanding for detailed transport phenomena, and can be used to make a correct decision on the specific design and control of operating conditions. It is expected that the development and production costs will be decreased and the energy efficiency be increased (reducing running cost) as the understanding of complex physical phenomena increases. It is concluded that the connection between numerical modeling and experiments is too rare and also that material parameters in most cases are valid only for standard materials and not for the actual SOFC component microstructures.
Lefkimmiatis, Stamatios; Maragos, Petros; Papandreou, George
2009-08-01
We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques.
Toward multiscale modelings of grain-fluid systems
Chareyre, Bruno; Yuan, Chao; Montella, Eduard P.; Salager, Simon
2017-06-01
Computationally efficient methods have been developed for simulating partially saturated granular materials in the pendular regime. In contrast, one hardly avoid expensive direct resolutions of 2-phase fluid dynamics problem for mixed pendular-funicular situations or even saturated regimes. Following previous developments for single-phase flow, a pore-network approach of the coupling problems is described. The geometry and movements of phases and interfaces are described on the basis of a tetrahedrization of the pore space, introducing elementary objects such as bridge, meniscus, pore body and pore throat, together with local rules of evolution. As firmly established local rules are still missing on some aspects (entry capillary pressure and pore-scale pressure-saturation relations, forces on the grains, or kinetics of transfers in mixed situations) a multi-scale numerical framework is introduced, enhancing the pore-network approach with the help of direct simulations. Small subsets of a granular system are extracted, in which multiphase scenario are solved using the Lattice-Boltzman method (LBM). In turns, a global problem is assembled and solved at the network scale, as illustrated by a simulated primary drainage.
Multi-scale modelling of uranyl chloride solutions
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Thanh-Nghi; Duvail, Magali, E-mail: magali.duvail@icsm.fr; Villard, Arnaud; Dufrêche, Jean-François, E-mail: jean-francois.dufreche@univ-montp2.fr [Institut de Chimie Séparative de Marcoule (ICSM), UMR 5257, CEA-CNRS-Université Montpellier 2-ENSCM, Site de Marcoule, Bâtiment 426, BP 17171, F-30207 Bagnols-sur-Cèze Cedex (France); Molina, John Jairo [Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103 (Japan); Guilbaud, Philippe [CEA/DEN/DRCP/SMCS/LILA, Marcoule, F-30207 Bagnols-sur-Cèze Cedex (France)
2015-01-14
Classical molecular dynamics simulations with explicit polarization have been successfully used to determine the structural and thermodynamic properties of binary aqueous solutions of uranyl chloride (UO{sub 2}Cl{sub 2}). Concentrated aqueous solutions of uranyl chloride have been studied to determine the hydration properties and the ion-ion interactions. The bond distances and the coordination number of the hydrated uranyl are in good agreement with available experimental data. Two stable positions of chloride in the second hydration shell of uranyl have been identified. The UO{sub 2}{sup 2+}-Cl{sup −} association constants have also been calculated using a multi-scale approach. First, the ion-ion potential averaged over the solvent configurations at infinite dilution (McMillan-Mayer potential) was calculated to establish the dissociation/association processes of UO{sub 2}{sup 2+}-Cl{sup −} ion pairs in aqueous solution. Then, the association constant was calculated from this potential. The value we obtained for the association constant is in good agreement with the experimental result (K{sub UO{sub 2Cl{sup +}}} = 1.48 l mol{sup −1}), but the resulting activity coefficient appears to be too low at molar concentration.
Energy Technology Data Exchange (ETDEWEB)
Horstemeyer, Mark R. [Mississippi State Univ., Mississippi State, MS (United States); Chaudhuri, Santanu [Univ. of Illinois, Urbana-Champaign, IL (United States)
2015-09-30
A multiscale modeling Internal State Variable (ISV) constitutive model was developed that captures the fundamental structure-property relationships. The macroscale ISV model used lower length scale simulations (Butler-Volmer and Electronics Structures results) in order to inform the ISVs at the macroscale. The chemomechanical ISV model was calibrated and validated from experiments with magnesium (Mg) alloys that were investigated under corrosive environments coupled with experimental electrochemical studies. Because the ISV chemomechanical model is physically based, it can be used for other material systems to predict corrosion behavior. As such, others can use the chemomechanical model for analyzing corrosion effects on their designs.
Computational design and multiscale modeling of a nanoactuator using DNA actuation
International Nuclear Information System (INIS)
Hamdi, Mustapha
2009-01-01
Developments in the field of nano-biodevices coupling nanostructures and biological components are of great interest in medical nanorobotics. As the fundamentals of bio/non-bio interaction processes are still poorly understood in the design of these devices, design tools and multiscale dynamics modeling approaches are necessary at the fabrication pre-project stage. This paper proposes a new concept of optimized carbon nanotube based servomotor design for drug delivery and biomolecular transport applications. The design of an encapsulated DNA-multi-walled carbon nanotube actuator is prototyped using multiscale modeling. The system is parametrized by using a quantum level approach and characterized by using a molecular dynamics simulation. Based on the analysis of the simulation results, a servo nanoactuator using ionic current feedback is simulated and analyzed for application as a drug delivery carrier.
Energy Technology Data Exchange (ETDEWEB)
Hamed, Elham [University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, 1206 West Green Street, Urbana, IL 61801 (United States); Novitskaya, Ekaterina, E-mail: eevdokim@ucsd.edu [University of California, San Diego, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Li, Jun; Jasiuk, Iwona [University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, 1206 West Green Street, Urbana, IL 61801 (United States); McKittrick, Joanna [University of California, San Diego, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093 (United States)
2015-09-01
The elastic moduli of trabecular bone were modeled using an analytical multiscale approach. Trabecular bone was represented as a porous nanocomposite material with a hierarchical structure spanning from the collagen–mineral level to the trabecular architecture level. In parallel, compression testing was done on bovine femoral trabecular bone samples in two anatomical directions, parallel to the femoral neck axis and perpendicular to it, and the measured elastic moduli were compared with the corresponding theoretical results. To gain insights on the interaction of collagen and minerals at the nanoscale, bone samples were deproteinized or demineralized. After such processing, the treated samples remained as self-standing structures and were tested in compression. Micro-computed tomography was used to characterize the hierarchical structure of these three bone types and to quantify the amount of bone porosity. The obtained experimental data served as inputs to the multiscale model and guided us to represent bone as an interpenetrating composite material. Good agreement was found between the theory and experiments for the elastic moduli of the untreated, deproteinized, and demineralized trabecular bone. - Highlights: • A multiscale model was used to predict the elastic moduli of trabecular bone. • Samples included demineralized, deproteinized and untreated bone. • The model portrays bone as a porous, interpenetrating two phase composite. • The experimental elastic moduli for trabecular bone fell between theoretical bounds.
A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials
Energy Technology Data Exchange (ETDEWEB)
Matouš, Karel, E-mail: kmatous@nd.edu [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 (United States); Geers, Marc G.D.; Kouznetsova, Varvara G. [Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven (Netherlands); Gillman, Andrew [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 (United States)
2017-02-01
Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platform in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.
A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials
International Nuclear Information System (INIS)
Matouš, Karel; Geers, Marc G.D.; Kouznetsova, Varvara G.; Gillman, Andrew
2017-01-01
Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platform in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.
A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials
Matouš, Karel; Geers, Marc G. D.; Kouznetsova, Varvara G.; Gillman, Andrew
2017-02-01
Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platform in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.
DEFF Research Database (Denmark)
Vermesi, Izabella; Rein, Guillermo; Colella, Francesco
2017-01-01
Multiscale modelling of tunnel fires that uses a coupled 3D (fire area) and 1D (the rest of the tunnel) model is seen as the solution to the numerical problem of the large domains associated with long tunnels. The present study demonstrates the feasibility of the implementation of this method...... in FDS version 6.0, a widely used fire-specific, open source CFD software. Furthermore, it compares the reduction in simulation time given by multiscale modelling with the one given by the use of multiple processor calculation. This was done using a 1200m long tunnel with a rectangular cross......-section as a demonstration case. The multiscale implementation consisted of placing a 30MW fire in the centre of a 400m long 3D domain, along with two 400m long 1D ducts on each side of it, that were again bounded by two nodes each. A fixed volume flow was defined in the upstream duct and the two models were coupled...
International Nuclear Information System (INIS)
Hamed, Elham; Novitskaya, Ekaterina; Li, Jun; Jasiuk, Iwona; McKittrick, Joanna
2015-01-01
The elastic moduli of trabecular bone were modeled using an analytical multiscale approach. Trabecular bone was represented as a porous nanocomposite material with a hierarchical structure spanning from the collagen–mineral level to the trabecular architecture level. In parallel, compression testing was done on bovine femoral trabecular bone samples in two anatomical directions, parallel to the femoral neck axis and perpendicular to it, and the measured elastic moduli were compared with the corresponding theoretical results. To gain insights on the interaction of collagen and minerals at the nanoscale, bone samples were deproteinized or demineralized. After such processing, the treated samples remained as self-standing structures and were tested in compression. Micro-computed tomography was used to characterize the hierarchical structure of these three bone types and to quantify the amount of bone porosity. The obtained experimental data served as inputs to the multiscale model and guided us to represent bone as an interpenetrating composite material. Good agreement was found between the theory and experiments for the elastic moduli of the untreated, deproteinized, and demineralized trabecular bone. - Highlights: • A multiscale model was used to predict the elastic moduli of trabecular bone. • Samples included demineralized, deproteinized and untreated bone. • The model portrays bone as a porous, interpenetrating two phase composite. • The experimental elastic moduli for trabecular bone fell between theoretical bounds
A high-order multiscale finite-element method for time-domain acoustic-wave modeling
Gao, Kai; Fu, Shubin; Chung, Eric T.
2018-05-01
Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructs high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss-Lobatto-Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.
Evaluating and Improving Cloud Processes in the Multi-Scale Modeling Framework
Energy Technology Data Exchange (ETDEWEB)
Ackerman, Thomas P. [Univ. of Washington, Seattle, WA (United States)
2015-03-01
The research performed under this grant was intended to improve the embedded cloud model in the Multi-scale Modeling Framework (MMF) for convective clouds by using a 2-moment microphysics scheme rather than the single moment scheme used in all the MMF runs to date. The technical report and associated documents describe the results of testing the cloud resolving model with fixed boundary conditions and evaluation of model results with data. The overarching conclusion is that such model evaluations are problematic because errors in the forcing fields control the results so strongly that variations in parameterization values cannot be usefully constrained
Directory of Open Access Journals (Sweden)
Aribet M De Jesus
Full Text Available Many cell types remodel the extracellular matrix of the tissues they inhabit in response to a wide range of environmental stimuli, including mechanical cues. Such is the case in dermal wound healing, where fibroblast migrate into and remodel the provisional fibrin matrix in a complex manner that depends in part on the local mechanical environment and the evolving multi-scale mechanical interactions of the system. In this study, we report on the development of an image-based multi-scale mechanical model that predicts the short-term (24 hours, structural reorganization of a fibrin gel by fibroblasts. These predictive models are based on an in vitro experimental system where clusters of fibroblasts (i.e., explants were spatially arranged into a triangular geometry onto the surface of fibrin gels that were subjected to either Fixed or Free in-plane mechanical constraints. Experimentally, regional differences in short-term structural remodeling and cell migration were observed for the two gel boundary conditions. A pilot experiment indicated that these small differences in the short-term remodeling of the fibrin gel translate into substantial differences in long-term (4 weeks remodeling, particularly in terms of collagen production. The multi-scale models were able to predict some regional differences in remodeling and qualitatively similar reorganization patterns for the two boundary conditions. However, other aspects of the model, such as the magnitudes and rates of deformation of gel, did not match the experiments. These discrepancies between model and experiment provide fertile ground for challenging model assumptions and devising new experiments to enhance our understanding of how this multi-scale system functions. These efforts will ultimately improve the predictions of the remodeling process, particularly as it relates to dermal wound healing and the reduction of patient scarring. Such models could be used to recommend patient
El-Amin, Mohamed F.; Kou, Jisheng; Sun, Shuyu
2017-01-01
Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy's law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.
Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.
2016-01-01
Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.
El-Amin, Mohamed F.
2017-06-06
Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy\\'s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.
Multiscale modeling of radiation damage in Fe-based alloys in the fusion environment
International Nuclear Information System (INIS)
Wirth, B.D.; Odette, G.R.; Marian, J.; Ventelon, L.; Young-Vandersall, J.A.; Zepeda-Ruiz, L.A.
2004-01-01
Ferritic alloys represent a technologically important class of candidate materials for fusion first wall and blanket structures. A detailed understanding of the mechanisms of defect accumulation and microstructure evolution, and the corresponding effects on mechanical properties is required to predict their in-service structural performance limits. The physical processes involved in radiation damage, and its effects on mechanical properties, are inherently multiscale and hierarchical, spanning length and time scales from the atomic nucleus to meters and picosecond to decades. In this paper, we present a multiscale modeling methodology to describe radiation effects within the fusion energy environment. Selected results from atomic scale investigation are presented, focusing on (i) the mechanisms of self-interstitial dislocation loop formation with Burgers vector of a in iron relative to vanadium, (ii) helium transport and (iii) the interaction between helium and small self-interstitial clusters in iron, and (iv) dislocation-helium bubble interactions in fcc aluminum
Multiscale modeling of θ' precipitation in Al-Cu binary alloys
International Nuclear Information System (INIS)
Vaithyanathan, V.; Wolverton, C.; Chen, L.Q.
2004-01-01
We present a multiscale model for studying the growth and coarsening of θ' precipitates in Al-Cu alloys. Our approach utilizes a novel combination of the mesoscale phase-field method with atomistic approaches such as first-principles total energy and linear response calculations, as well as a mixed-space cluster expansion coupled with Monte Carlo simulations. We give quantitative first-principles predictions of: (i) bulk energetics of the Al-Cu solid solution and θ ' precipitate phases, (ii) interfacial energies of the coherent and semi-coherent θ ' /Al interfaces, and (iii) stress-free misfit strains and coherency strain energies of the θ ' /Al system. These first-principles data comprise all the necessary energetic information to construct our phase-field model of microstructural evolution. Using our multiscale approach, we elucidate the effects of various energetic contributions on the equilibrium shape of θ ' precipitates, finding that both the elastic energy and interfacial energy anisotropy contributions play critical roles in determining the aspect ratio of θ ' precipitates. Additionally, we have performed a quantitative study of the morphology of two-dimensional multi-precipitate microstructures during growth and coarsening, and compared the calculated results with experimentally observed morphologies. Our multiscale first-principles/phase-field method is completely general and should therefore be applicable to a wide variety of problems in microstructural evolution
High resolution multi-scale air quality modelling for all streets in Denmark
DEFF Research Database (Denmark)
Jensen, Steen Solvang; Ketzel, Matthias; Becker, Thomas
2017-01-01
The annual concentrations of NO2, PM2.5 and PM10 in 2012 have for the first time been modelled for all 2.4 million addresses in Denmark based on a multi-scale air quality modelling approach. All addresses include residential, industrial, institutional, shop, school, restaurant addresses etc...... concentrations of NO2 for the five available street monitoring stations are within −27% to +12%. The model results were also verified with comparisons with previous model results for NO2 at 98 selected streets in Copenhagen and 31 streets in Aalborg. The verification showed good correlation in Copenhagen (r2 = 0...
A Multiscale Closed-Loop Cardiovascular Model, with Applications to Heart Pacing and Hemorrhage
Canuto, Daniel; Eldredge, Jeff; Chong, Kwitae; Benharash, Peyman; Dutson, Erik
2017-11-01
A computational tool is developed for simulating the dynamic response of the human cardiovascular system to various stressors and injuries. The tool couples zero-dimensional models of the heart, pulmonary vasculature, and peripheral vasculature to one-dimensional models of the major systemic arteries. To simulate autonomic response, this multiscale circulatory model is integrated with a feedback model of the baroreflex, allowing control of heart rate, cardiac contractility, and peripheral impedance. The performance of the tool is demonstrated in two scenarios: increasing heart rate by stimulating the sympathetic nervous system, and an acute 10 percent hemorrhage from the left femoral artery.
Multi-scale modeling in morphogenesis: a critical analysis of the cellular Potts model.
Directory of Open Access Journals (Sweden)
Anja Voss-Böhme
Full Text Available Cellular Potts models (CPMs are used as a modeling framework to elucidate mechanisms of biological development. They allow a spatial resolution below the cellular scale and are applied particularly when problems are studied where multiple spatial and temporal scales are involved. Despite the increasing usage of CPMs in theoretical biology, this model class has received little attention from mathematical theory. To narrow this gap, the CPMs are subjected to a theoretical study here. It is asked to which extent the updating rules establish an appropriate dynamical model of intercellular interactions and what the principal behavior at different time scales characterizes. It is shown that the longtime behavior of a CPM is degenerate in the sense that the cells consecutively die out, independent of the specific interdependence structure that characterizes the model. While CPMs are naturally defined on finite, spatially bounded lattices, possible extensions to spatially unbounded systems are explored to assess to which extent spatio-temporal limit procedures can be applied to describe the emergent behavior at the tissue scale. To elucidate the mechanistic structure of CPMs, the model class is integrated into a general multiscale framework. It is shown that the central role of the surface fluctuations, which subsume several cellular and intercellular factors, entails substantial limitations for a CPM's exploitation both as a mechanistic and as a phenomenological model.
The Multi-Scale Model Approach to Thermohydrology at Yucca Mountain
International Nuclear Information System (INIS)
Glascoe, L; Buscheck, T A; Gansemer, J; Sun, Y
2002-01-01
The Multi-Scale Thermo-Hydrologic (MSTH) process model is a modeling abstraction of them1 hydrology (TH) of the potential Yucca Mountain repository at multiple spatial scales. The MSTH model as described herein was used for the Supplemental Science and Performance Analyses (BSC, 2001) and is documented in detail in CRWMS M and O (2000) and Glascoe et al. (2002). The model has been validated to a nested grid model in Buscheck et al. (In Review). The MSTH approach is necessary for modeling thermal hydrology at Yucca Mountain for two reasons: (1) varying levels of detail are necessary at different spatial scales to capture important TH processes and (2) a fully-coupled TH model of the repository which includes the necessary spatial detail is computationally prohibitive. The MSTH model consists of six ''submodels'' which are combined in a manner to reduce the complexity of modeling where appropriate. The coupling of these models allows for appropriate consideration of mountain-scale thermal hydrology along with the thermal hydrology of drift-scale discrete waste packages of varying heat load. Two stages are involved in the MSTH approach, first, the execution of submodels, and second, the assembly of submodels using the Multi-scale Thermohydrology Abstraction Code (MSTHAC). MSTHAC assembles the submodels in a five-step process culminating in the TH model output of discrete waste packages including a mountain-scale influence
Multi-Scale Modeling of an Integrated 3D Braided Composite with Applications to Helicopter Arm
Zhang, Diantang; Chen, Li; Sun, Ying; Zhang, Yifan; Qian, Kun
2017-10-01
A study is conducted with the aim of developing multi-scale analytical method for designing the composite helicopter arm with three-dimensional (3D) five-directional braided structure. Based on the analysis of 3D braided microstructure, the multi-scale finite element modeling is developed. Finite element analysis on the load capacity of 3D five-directional braided composites helicopter arm is carried out using the software ABAQUS/Standard. The influences of the braiding angle and loading condition on the stress and strain distribution of the helicopter arm are simulated. The results show that the proposed multi-scale method is capable of accurately predicting the mechanical properties of 3D braided composites, validated by the comparison the stress-strain curves of meso-scale RVCs. Furthermore, it is found that the braiding angle is an important factor affecting the mechanical properties of 3D five-directional braided composite helicopter arm. Based on the optimized structure parameters, the nearly net-shaped composite helicopter arm is fabricated using a novel resin transfer mould (RTM) process.
Directory of Open Access Journals (Sweden)
Kamal Sharma
2014-01-01
Full Text Available The present paper discusses the key issues of carbon nanotube (CNT dispersion and effect of functionalisation on the mechanical properties of multiscale carbon epoxy composites. In this study, CNTs were added in epoxy matrix and further reinforced with carbon fibres. Predetermined amounts of optimally amine functionalised CNTs were dispersed in epoxy matrix, and unidirectional carbon fiber laminates were produced. The effect of the presence of CNTs (1.0 wt% in the resin was reflected by pronounced increase in Young’s modulus, inter-laminar shear strength, and flexural modulus by 51.46%, 39.62%, and 38.04%, respectively. However, 1.5 wt% CNT loading in epoxy resin decreased the overall properties of the three-phase composites. A combination of Halpin-Tsai equations and micromechanics modeling approach was also used to evaluate the mechanical properties of multiscale composites and the differences between the predicted and experimental values are reported. These multiscale composites are likely to be used for potential missile and aerospace structural applications.
Bridging scales through multiscale modeling: A case study on Protein Kinase A
Directory of Open Access Journals (Sweden)
Sophia P Hirakis
2015-09-01
Full Text Available The goal of multiscale modeling in biology is to use structurally based physico-chemical models to integrate across temporal and spatial scales of biology and thereby improve mechanistic understanding of, for example, how a single mutation can alter organism-scale phenotypes. This approach may also inform therapeutic strategies or identify candidate drug targets that might otherwise have been overlooked. However, in many cases, it remains unclear how best to synthesize information obtained from various scales and analysis approaches, such as atomistic molecular models, Markov state models (MSM, subcellular network models, and whole cell models. In this paper, we use protein kinase A (PKA activation as a case study to explore how computational methods that model different physical scales can complement each other and integrate into an improved multiscale representation of the biological mechanisms. Using measured crystal structures, we show how molecular dynamics (MD simulations coupled with atomic-scale MSMs can provide conformations for Brownian dynamics (BD simulations to feed transitional states and kinetic parameters into protein-scale MSMs. We discuss how milestoning can give reaction probabilities and forward-rate constants of cAMP association events by seamlessly integrating MD and BD simulation scales. These rate constants coupled with MSMs provide a robust representation of the free energy landscape, enabling access to kinetic and thermodynamic parameters unavailable from current experimental data. These approaches have helped to illuminate the cooperative nature of PKA activation in response to distinct cAMP binding events. Collectively, this approach exemplifies a general strategy for multiscale model development that is applicable to a wide range of biological problems.
Smith, S. N.; Mueller, S. F.
2010-05-01
A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates non-methane volatile organic compound (NMVOC) emissions from biogenic sources, nitrogen oxide (NOx) emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, windblown dust particulate, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide), 44% of total NOx, 80% of reactive carbonaceous gases (NMVOCs and carbon monoxide), 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride), and 84% of fine particles (i.e., those smaller than 2.5 μm in size) released into the atmosphere
Smith, S. N.; Mueller, S. F.
2010-01-01
A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates volatile organic compound (VOC) emissions from biogenic sources, nitrogen oxide (NOx) emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as windblown dust and sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide), 44% of total NOx, 80% of reactive carbonaceous gases (VOCs and carbon monoxide), 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride), and 84% of fine particles (i.e., those smaller than 2.5 μm in size) released into the atmosphere. The seasonality and
A multi-scale model for correlation in B cell VDJ usage of zebrafish
International Nuclear Information System (INIS)
Pan, Keyao; Deem, Michael W
2011-01-01
The zebrafish (Danio rerio) is one of the model animals used for the study of immunology because the dynamics in the adaptive immune system of zebrafish are similar to that in higher animals. In this work, we built a multi-scale model to simulate the dynamics of B cells in the primary and secondary immune responses of zebrafish. We use this model to explain the reported correlation between VDJ usage of B cell repertoires in individual zebrafish. We use a delay ordinary differential equation (ODE) system to model the immune responses in the 6-month lifespan of a zebrafish. This mean field theory gives the number of high-affinity B cells as a function of time during an infection. The sequences of those B cells are then taken from a distribution calculated by a 'microscopic' random energy model. This generalized NK model shows that mature B cells specific to one antigen largely possess a single VDJ recombination. The model allows first-principle calculation of the probability, p, that two zebrafish responding to the same antigen will select the same VDJ recombination. This probability p increases with the B cell population size and the B cell selection intensity. The probability p decreases with the B cell hypermutation rate. The multi-scale model predicts correlations in the immune system of the zebrafish that are highly similar to that from experiment
A multi-scale model for correlation in B cell VDJ usage of zebrafish
Pan, Keyao; Deem, Michael W.
2011-10-01
The zebrafish (Danio rerio) is one of the model animals used for the study of immunology because the dynamics in the adaptive immune system of zebrafish are similar to that in higher animals. In this work, we built a multi-scale model to simulate the dynamics of B cells in the primary and secondary immune responses of zebrafish. We use this model to explain the reported correlation between VDJ usage of B cell repertoires in individual zebrafish. We use a delay ordinary differential equation (ODE) system to model the immune responses in the 6-month lifespan of a zebrafish. This mean field theory gives the number of high-affinity B cells as a function of time during an infection. The sequences of those B cells are then taken from a distribution calculated by a 'microscopic' random energy model. This generalized NK model shows that mature B cells specific to one antigen largely possess a single VDJ recombination. The model allows first-principle calculation of the probability, p, that two zebrafish responding to the same antigen will select the same VDJ recombination. This probability p increases with the B cell population size and the B cell selection intensity. The probability p decreases with the B cell hypermutation rate. The multi-scale model predicts correlations in the immune system of the zebrafish that are highly similar to that from experiment.
Multiscale numerical modeling of Ce3+-inhibitor release from novel corrosion protection coatings
International Nuclear Information System (INIS)
Trenado, Carlos; Wittmar, Matthias; Veith, Michael; Strauss, Daniel J; Rosero-Navarro, Nataly C; Aparicio, Mario; Durán, Alicia; Castro, Yolanda
2011-01-01
A novel hybrid sol–gel coating has recently been introduced as an alternative to high toxic chromate-based corrosion protection systems. In this paper, we propose a multiscale computational model to estimate the amount and time scale of inhibitor release of the active corrosion protection coating. Moreover, we study the release rate under the influence of parameters such as porosity and viscosity, which have recently been implicated in the stability of the coating. Numerical simulations obtained with the model predicted experimental release tests and recent findings on the compromise between inhibitor concentration and the stability of the coating
A variational multiscale constitutive model for nanocrystalline materials
Gurses, Ercan; El Sayed, Tamer S.
2011-01-01
grain interior phase and a grain boundary effected zone (GBAZ). A rate-independent isotropic porous plasticity model is employed to describe the GBAZ, whereas a crystal-plasticity model which accounts for the transition from partial dislocation to full
Improved convergence of gradient-based reconstruction using multi-scale models
International Nuclear Information System (INIS)
Cunningham, G.S.; Hanson, K.M.; Koyfman, I.
1996-01-01
Geometric models have received increasing attention in medical imaging for tasks such as segmentation, reconstruction, restoration, and registration. In order to determine the best configuration of the geometric model in the context of any of these tasks, one needs to perform a difficult global optimization of an energy function that may have many local minima. Explicit models of geometry, also called deformable models, snakes, or active contours, have been used extensively to solve image segmentation problems in a non-Bayesian framework. Researchers have seen empirically that multi-scale analysis is useful for convergence to a configuration that is near the global minimum. In this type of analysis, the image data are convolved with blur functions of increasing resolution, and an optimal configuration of the snake is found for each blurred image. The configuration obtained using the highest resolution blur is used as the solution to the global optimization problem. In this article, the authors use explicit models of geometry for a variety of Bayesian estimation problems, including image segmentation, reconstruction and restoration. The authors introduce a multi-scale approach that blurs the geometric model, rather than the image data, and show that this approach turns a global, highly nonquadratic optimization into a sequence of local, approximately quadratic problems that converge to the global minimum. The result is a deterministic, robust, and efficient optimization strategy applicable to a wide variety of Bayesian estimation problems in which geometric models of images are an important component
Lacharité, Myriam; Metaxas, Anna
2018-03-01
Evaluating the role of abiotic factors in influencing the distribution of deep-water (>75-100 m depth) epibenthic megafaunal communities at mid-to-high latitudes is needed to estimate effects of environmental change, and support marine spatial planning since these factors can be effectively mapped. Given the disparity in scales at which these factors operate, incorporating multiple spatial and temporal scales is necessary. In this study, we determined the relative importance of 3 groups of environmental drivers at different scales (sediment, geomorphology, and oceanography) on epibenthic megafauna on a deep temperate continental shelf in the eastern Gulf of Maine (northwest Atlantic). Twenty benthic photographic transects (range: 611-1021 m; total length surveyed: 18,902 m; 996 images; average of 50 ± 16 images per transect) were performed in July and August 2009 to assess the abundance, composition and diversity of these communities. Surficial geology was assessed using seafloor imagery processed with a novel approach based on computer vision. A bathymetric terrain model (horizontal resolution: 100 m) was used to derive bathymetric variability in the vicinity of transects (1.5, 5 km). Oceanography at the seafloor (temperature, salinity, current speed, current direction) over 10 years (1999-2008) was determined using empirical (World Ocean Database 2013) and modelled data (Finite-Volume Community Ocean Model; 45 vertical layers; horizontal resolution: 1.7-9.5 km). The relative influence of environmental drivers differed between community traits. Abundance was enhanced primarily by swift current speeds, while higher diversity was observed in coarser and more heterogeneous substrates. In both cases, the role of geomorphological features was secondary to these drivers. Environmental variables were poor predictors of change in community composition at the scale of the eastern Gulf of Maine. This study demonstrated the need for explicitly incorporating scales into
Lyu, Dandan; Li, Shaofan
2017-10-01
Crystal defects have microstructure, and this microstructure should be related to the microstructure of the original crystal. Hence each type of crystals may have similar defects due to the same failure mechanism originated from the same microstructure, if they are under the same loading conditions. In this work, we propose a multiscale crystal defect dynamics (MCDD) model that models defects by considering its intrinsic microstructure derived from the microstructure or material genome of the original perfect crystal. The main novelties of present work are: (1) the discrete exterior calculus and algebraic topology theory are used to construct a scale-up (coarse-grained) dual lattice model for crystal defects, which may represent all possible defect modes inside a crystal; (2) a higher order Cauchy-Born rule (up to the fourth order) is adopted to construct atomistic-informed constitutive relations for various defect process zones, and (3) an hierarchical strain gradient theory based finite element formulation is developed to support an hierarchical multiscale cohesive (process) zone model for various defects in a unified formulation. The efficiency of MCDD computational algorithm allows us to simulate dynamic defect evolution at large scale while taking into account atomistic interaction. The MCDD model has been validated by comparing of the results of MCDD simulations with that of molecular dynamics (MD) in the cases of nanoindentation and uniaxial tension. Numerical simulations have shown that MCDD model can predict dislocation nucleation induced instability and inelastic deformation, and thus it may provide an alternative solution to study crystal plasticity.
Multiscale modeling for the prediction of casting defects in investment cast aluminum alloys
International Nuclear Information System (INIS)
Hamilton, R.W.; See, D.; Butler, S.; Lee, P.D.
2003-01-01
Macroscopic modeling of heat transfer and fluid flow is now routinely used for the prediction of macroscopic defects in castings, while microscopic models are used to investigate the effects of alloy changes on typical microstructures. By combining these two levels of modeling it is possible to simulate the casting process over a wider range of spatial and temporal scales. This paper presents a multiscale model where micromodels for dendrite arm spacing and microporosity are incorporated into a macromodel of heat transfer and in order to predict the as cast microstructure and prevalence of microscopic defects, specifically porosity. The approach is applied to aluminum alloy (L169) investment castings. The models are compared with results obtained by optical image analysis of prepared slices, and X-ray tomography of volume samples from the experiments. Multiscale modeling is shown to provide the designer with a useful tool to improve the properties of the final casting by testing how altering the casting process affects the final microstructure including porosity
Multi-Scale Modeling of the Gamma Radiolysis of Nitrate Solutions.
Horne, Gregory P; Donoclift, Thomas A; Sims, Howard E; Orr, Robin M; Pimblott, Simon M
2016-11-17
A multiscale modeling approach has been developed for the extended time scale long-term radiolysis of aqueous systems. The approach uses a combination of stochastic track structure and track chemistry as well as deterministic homogeneous chemistry techniques and involves four key stages: radiation track structure simulation, the subsequent physicochemical processes, nonhomogeneous diffusion-reaction kinetic evolution, and homogeneous bulk chemistry modeling. The first three components model the physical and chemical evolution of an isolated radiation chemical track and provide radiolysis yields, within the extremely low dose isolated track paradigm, as the input parameters for a bulk deterministic chemistry model. This approach to radiation chemical modeling has been tested by comparison with the experimentally observed yield of nitrite from the gamma radiolysis of sodium nitrate solutions. This is a complex radiation chemical system which is strongly dependent on secondary reaction processes. The concentration of nitrite is not just dependent upon the evolution of radiation track chemistry and the scavenging of the hydrated electron and its precursors but also on the subsequent reactions of the products of these scavenging reactions with other water radiolysis products. Without the inclusion of intratrack chemistry, the deterministic component of the multiscale model is unable to correctly predict experimental data, highlighting the importance of intratrack radiation chemistry in the chemical evolution of the irradiated system.
A multi-scale adaptive model of residential energy demand
International Nuclear Information System (INIS)
Farzan, Farbod; Jafari, Mohsen A.; Gong, Jie; Farzan, Farnaz; Stryker, Andrew
2015-01-01
Highlights: • We extend an energy demand model to investigate changes in behavioral and usage patterns. • The model is capable of analyzing why demand behaves the way it does. • The model empowers decision makers to investigate DSM strategies and effectiveness. • The model provides means to measure the effect of energy prices on daily profile. • The model considers the coupling effects of adopting multiple new technologies. - Abstract: In this paper, we extend a previously developed bottom-up energy demand model such that the model can be used to determine changes in behavioral and energy usage patterns of a community when: (i) new load patterns from Plug-in Electrical Vehicles (PEV) or other devices are introduced; (ii) new technologies and smart devices are used within premises; and (iii) new Demand Side Management (DSM) strategies, such as price responsive demand are implemented. Unlike time series forecasting methods that solely rely on historical data, the model only uses a minimal amount of data at the atomic level for its basic constructs. These basic constructs can be integrated into a household unit or a community model using rules and connectors that are, in principle, flexible and can be altered according to the type of questions that need to be answered. Furthermore, the embedded dynamics of the model works on the basis of: (i) Markovian stochastic model for simulating human activities, (ii) Bayesian and logistic technology adoption models, and (iii) optimization, and rule-based models to respond to price signals without compromising users’ comfort. The proposed model is not intended to replace traditional forecasting models. Instead it provides an analytical framework that can be used at the design stage of new products and communities to evaluate design alternatives. The framework can also be used to answer questions such as why demand behaves the way it does by examining demands at different scales and by playing What-If games. These
Multi-scale modeling for sustainable chemical production
DEFF Research Database (Denmark)
Zhuang, Kai; Bakshi, Bhavik R.; Herrgard, Markus
2013-01-01
associated with the development and implementation of a su stainable biochemical industry. The temporal and spatial scales of modeling approaches for sustainable chemical production vary greatly, ranging from metabolic models that aid the design of fermentative microbial strains to material and monetary flow......With recent advances in metabolic engineering, it is now technically possible to produce a wide portfolio of existing petrochemical products from biomass feedstock. In recent years, a number of modeling approaches have been developed to support the engineering and decision-making processes...... models that explore the ecological impacts of all economic activities. Research efforts that attempt to connect the models at different scales have been limited. Here, we review a number of existing modeling approaches and their applications at the scales of metabolism, bioreactor, overall process...
BLEVE overpressure: multi-scale comparison of blast wave modeling
International Nuclear Information System (INIS)
Laboureur, D.; Buchlin, J.M.; Rambaud, P.; Heymes, F.; Lapebie, E.
2014-01-01
BLEVE overpressure modeling has been already widely studied but only few validations including the scale effect have been made. After a short overview of the main models available in literature, a comparison is done with different scales of measurements, taken from previous studies or coming from experiments performed in the frame of this research project. A discussion on the best model to use in different cases is finally proposed. (authors)
A multi-scale metrics approach to forest fragmentation for Strategic Environmental Impact Assessment
Energy Technology Data Exchange (ETDEWEB)
Kim, Eunyoung, E-mail: eykim@kei.re.kr [Korea Environment Institute, 215 Jinheungno, Eunpyeong-gu, Seoul 122-706 (Korea, Republic of); Song, Wonkyong, E-mail: wksong79@gmail.com [Suwon Research Institute, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270 (Korea, Republic of); Lee, Dongkun, E-mail: dklee7@snu.ac.kr [Department of Landscape Architecture and Rural System Engineering, Seoul National University, 599 Gwanakro, Gwanak-gu, Seoul 151-921 (Korea, Republic of); Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of)
2013-09-15
Forests are becoming severely fragmented as a result of land development. South Korea has responded to changing community concerns about environmental issues. The nation has developed and is extending a broad range of tools for use in environmental management. Although legally mandated environmental compliance requirements in South Korea have been implemented to predict and evaluate the impacts of land-development projects, these legal instruments are often insufficient to assess the subsequent impact of development on the surrounding forests. It is especially difficult to examine impacts on multiple (e.g., regional and local) scales in detail. Forest configuration and size, including forest fragmentation by land development, are considered on a regional scale. Moreover, forest structure and composition, including biodiversity, are considered on a local scale in the Environmental Impact Assessment process. Recently, the government amended the Environmental Impact Assessment Act, including the SEA, EIA, and small-scale EIA, to require an integrated approach. Therefore, the purpose of this study was to establish an impact assessment system that minimizes the impacts of land development using an approach that is integrated across multiple scales. This study focused on forest fragmentation due to residential development and road construction sites in selected Congestion Restraint Zones (CRZs) in the Greater Seoul Area of South Korea. Based on a review of multiple-scale impacts, this paper integrates models that assess the impacts of land development on forest ecosystems. The applicability of the integrated model for assessing impacts on forest ecosystems through the SEIA process is considered. On a regional scale, it is possible to evaluate the location and size of a land-development project by considering aspects of forest fragmentation, such as the stability of the forest structure and the degree of fragmentation. On a local scale, land-development projects should
Energy Technology Data Exchange (ETDEWEB)
Mehrez, Loujaine [University of Southern California; Ghanem, Roger [University of Southern California; Aitharaju, Venkat [General Motors; Rodgers, William [General Motors
2017-10-23
Design of non-crimp fabric (NCF) composites entails major challenges pertaining to (1) the complex fine-scale morphology of the constituents, (2) the manufacturing-produced inconsistency of this morphology spatially, and thus (3) the ability to build reliable, robust, and efficient computational surrogate models to account for this complex nature. Traditional approaches to construct computational surrogate models have been to average over the fluctuations of the material properties at different scale lengths. This fails to account for the fine-scale features and fluctuations in morphology, material properties of the constituents, as well as fine-scale phenomena such as damage and cracks. In addition, it fails to accurately predict the scatter in macroscopic properties, which is vital to the design process and behavior prediction. In this work, funded in part by the Department of Energy, we present an approach for addressing these challenges by relying on polynomial chaos representations of both input parameters and material properties at different scales. Moreover, we emphasize the efficiency and robustness of integrating the polynomial chaos expansion with multiscale tools to perform multiscale assimilation, characterization, propagation, and prediction, all of which are necessary to construct the data-driven surrogate models required to design under the uncertainty of composites. These data-driven constructions provide an accurate map from parameters (and their uncertainties) at all scales and the system-level behavior relevant for design. While this perspective is quite general and applicable to all multiscale systems, NCF composites present a particular hierarchy of scales that permits the efficient implementation of these concepts.
Multiscale modeling of large deformations in 3-D polycrystals
International Nuclear Information System (INIS)
Lu Jing; Maniatty, Antoinette; Misiolek, Wojciech; Bandar, Alexander
2004-01-01
An approach for modeling 3-D polycrystals, linking to the macroscale, is presented. A Potts type model is used to generate a statistically representative grain structures with periodicity to allow scale-linking. The grain structures are compared to experimentally observed grain structures to validate that they are representative. A macroscale model of a compression test is compared against an experimental compression test for an Al-Mg-Si alloy to determine various deformation paths at different locations in the samples. These deformation paths are then applied to the experimental grain structure using a scale-bridging technique. Preliminary results from this work will be presented and discussed
A Multiscale Survival Process for Modeling Human Activity Patterns.
Zhang, Tianyang; Cui, Peng; Song, Chaoming; Zhu, Wenwu; Yang, Shiqiang
2016-01-01
Human activity plays a central role in understanding large-scale social dynamics. It is well documented that individual activity pattern follows bursty dynamics characterized by heavy-tailed interevent time distributions. Here we study a large-scale online chatting dataset consisting of 5,549,570 users, finding that individual activity pattern varies with timescales whereas existing models only approximate empirical observations within a limited timescale. We propose a novel approach that models the intensity rate of an individual triggering an activity. We demonstrate that the model precisely captures corresponding human dynamics across multiple timescales over five orders of magnitudes. Our model also allows extracting the population heterogeneity of activity patterns, characterized by a set of individual-specific ingredients. Integrating our approach with social interactions leads to a wide range of implications.
Multi-scale Modeling of Power Plant Plume Emissions and Comparisons with Observations
Costigan, K. R.; Lee, S.; Reisner, J.; Dubey, M. K.; Love, S. P.; Henderson, B. G.; Chylek, P.
2011-12-01
The Remote Sensing Verification Project (RSVP) test-bed located in the Four Corners region of Arizona, Utah, Colorado, and New Mexico offers a unique opportunity to develop new approaches for estimating emissions of CO2. Two major power plants located in this area produce very large signals of co-emitted CO2 and NO2 in this rural region. In addition to the Environmental Protection Agency (EPA) maintaining Continuous Emissions Monitoring Systems (CEMS) on each of the power plant stacks, the RSVP program has deployed an array of in-situ and remote sensing instruments, which provide both point and integrated measurements. To aid in the synthesis and interpretation of the measurements, a multi-scale atmospheric modeling approach is implemented, using two atmospheric numerical models: the Weather Research and Forecasting Model with chemistry (WRF-Chem; Grell et al., 2005) and the HIGRAD model (Reisner et al., 2003). The high fidelity HIGRAD model incorporates a multi-phase Lagrangian particle based approach to track individual chemical species of stack plumes at ultra-high resolution, using an adaptive mesh. It is particularly suited to model buoyancy effects and entrainment processes at the edges of the power plant plumes. WRF-Chem is a community model that has been applied to a number of air quality problems and offers several physical and chemical schemes that can be used to model the transport and chemical transformation of the anthropogenic plumes out of the local region. Multiple nested grids employed in this study allow the model to incorporate atmospheric variability ranging from synoptic scales to micro-scales (~200 m), while including locally developed flows influenced by the nearby complex terrain of the San Juan Mountains. The simulated local atmospheric dynamics are provided to force the HIGRAD model, which links mesoscale atmospheric variability to the small-scale simulation of the power plant plumes. We will discuss how these two models are applied and
Modeling the multi-scale mechanisms of macromolecular resource allocation
DEFF Research Database (Denmark)
Yang, Laurence; Yurkovich, James T; King, Zachary A
2018-01-01
As microbes face changing environments, they dynamically allocate macromolecular resources to produce a particular phenotypic state. Broad 'omics' data sets have revealed several interesting phenomena regarding how the proteome is allocated under differing conditions, but the functional consequen...... and detail how mathematical models have aided in our understanding of these processes. Ultimately, such modeling efforts have helped elucidate the principles of proteome allocation and hold promise for further discovery....
Multiscale Modeling of a Conditionally Disordered pH-Sensing Chaperone
Ahlstrom, Logan S.; Law, Sean M.; Dickson, Alex; Brooks, Charles L.
2015-01-01
The pH-sensing chaperone HdeA promotes the survival of enteropathogenic bacteria during transit through the harshly acidic environment of the mammalian stomach. At low pH, HdeA transitions from an inactive, folded, dimer to chaperone-active, disordered, monomers to protect against the acid-induced aggregation of periplasmic proteins. Toward achieving a detailed mechanistic understanding of the pH response of HdeA, we develop a multiscale modeling approach to capture its pH-dependent thermodyn...
Paiva, L. R.; Martins, M. L.
2011-01-01
A multiscale model for tumor growth and its chemotherapy using conjugate nanoparticles is presented, and the corresponding therapeutic outcomes are evaluated. It is found that doxorubicin assembled into chimeric polypeptide nanoparticles cannot eradicate either vascularized primary tumors or avascular micrometastasis even administrated at loads close to their maximum tolerated doses. Furthermore, an effective and safety treatment demands for conjugate nanoparticles targeted to the malignant cells with much higher specificity and affinity than those currently observed in order to leave most of the normal tissues unaffected and to ensure a fast intracellular drug accumulation.
Multiscale sagebrush rangeland habitat modeling in southwest Wyoming
Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Coan, Michael J.; Bowen, Zachary H.
2009-01-01
Sagebrush-steppe ecosystems in North America have experienced dramatic elimination and degradation since European settlement. As a result, sagebrush-steppe dependent species have experienced drastic range contractions and population declines. Coordinated ecosystem-wide research, integrated with monitoring and management activities, would improve the ability to maintain existing sagebrush habitats. However, current data only identify resource availability locally, with rigorous spatial tools and models that accurately model and map sagebrush habitats over large areas still unavailable. Here we report on an effort to produce a rigorous large-area sagebrush-habitat classification and inventory with statistically validated products and estimates of precision in the State of Wyoming. This research employs a combination of significant new tools, including (1) modeling sagebrush rangeland as a series of independent continuous field components that can be combined and customized by any user at multiple spatial scales; (2) collecting ground-measured plot data on 2.4-meter imagery in the same season the satellite imagery is acquired; (3) effective modeling of ground-measured data on 2.4-meter imagery to maximize subsequent extrapolation; (4) acquiring multiple seasons (spring, summer, and fall) of an additional two spatial scales of imagery (30 meter and 56 meter) for optimal large-area modeling; (5) using regression tree classification technology that optimizes data mining of multiple image dates, ratios, and bands with ancillary data to extrapolate ground training data to coarser resolution sensors; and (6) employing rigorous accuracy assessment of model predictions to enable users to understand the inherent uncertainties. First-phase results modeled eight rangeland components (four primary targets and four secondary targets) as continuous field predictions. The primary targets included percent bare ground, percent herbaceousness, percent shrub, and percent litter. The
Masselot, Pierre; Chebana, Fateh; Bélanger, Diane; St-Hilaire, André; Abdous, Belkacem; Gosselin, Pierre; Ouarda, Taha B. M. J.
2018-01-01
In a number of environmental studies, relationships between natural processes are often assessed through regression analyses, using time series data. Such data are often multi-scale and non-stationary, leading to a poor accuracy of the resulting regression models and therefore to results with moderate reliability. To deal with this issue, the present paper introduces the EMD-regression methodology consisting in applying the empirical mode decomposition (EMD) algorithm on data series and then using the resulting components in regression models. The proposed methodology presents a number of advantages. First, it accounts of the issues of non-stationarity associated to the data series. Second, this approach acts as a scan for the relationship between a response variable and the predictors at different time scales, providing new insights about this relationship. To illustrate the proposed methodology it is applied to study the relationship between weather and cardiovascular mortality in Montreal, Canada. The results shed new knowledge concerning the studied relationship. For instance, they show that the humidity can cause excess mortality at the monthly time scale, which is a scale not visible in classical models. A comparison is also conducted with state of the art methods which are the generalized additive models and distributed lag models, both widely used in weather-related health studies. The comparison shows that EMD-regression achieves better prediction performances and provides more details than classical models concerning the relationship.
Multi-scale modeling of ductile failure in metallic alloys
International Nuclear Information System (INIS)
Pardoen, Th.; Scheyvaerts, F.; Simar, A.; Tekoglu, C.; Onck, P.R.
2010-01-01
Micro-mechanical models for ductile failure have been developed in the seventies and eighties essentially to address cracking in structural applications and complement the fracture mechanics approach. Later, this approach has become attractive for physical metallurgists interested by the prediction of failure during forming operations and as a guide for the design of more ductile and/or high-toughness microstructures. Nowadays, a realistic treatment of damage evolution in complex metallic microstructures is becoming feasible when sufficiently sophisticated constitutive laws are used within the context of a multilevel modelling strategy. The current understanding and the state of the art models for the nucleation, growth and coalescence of voids are reviewed with a focus on the underlying physics. Considerations are made about the introduction of the different length scales associated with the microstructure and damage process. Two applications of the methodology are then described to illustrate the potential of the current models. The first application concerns the competition between intergranular and transgranular ductile fracture in aluminum alloys involving soft precipitate free zones along the grain boundaries. The second application concerns the modeling of ductile failure in friction stir welded joints, a problem which also involves soft and hard zones, albeit at a larger scale. (authors)
Multiscale modeling of ductile failure in metallic alloys
Pardoen, Thomas; Scheyvaerts, Florence; Simar, Aude; Tekoğlu, Cihan; Onck, Patrick R.
2010-04-01
Micromechanical models for ductile failure have been developed in the 1970s and 1980s essentially to address cracking in structural applications and complement the fracture mechanics approach. Later, this approach has become attractive for physical metallurgists interested by the prediction of failure during forming operations and as a guide for the design of more ductile and/or high-toughness microstructures. Nowadays, a realistic treatment of damage evolution in complex metallic microstructures is becoming feasible when sufficiently sophisticated constitutive laws are used within the context of a multilevel modelling strategy. The current understanding and the state of the art models for the nucleation, growth and coalescence of voids are reviewed with a focus on the underlying physics. Considerations are made about the introduction of the different length scales associated with the microstructure and damage process. Two applications of the methodology are then described to illustrate the potential of the current models. The first application concerns the competition between intergranular and transgranular ductile fracture in aluminum alloys involving soft precipitate free zones along the grain boundaries. The second application concerns the modeling of ductile failure in friction stir welded joints, a problem which also involves soft and hard zones, albeit at a larger scale.
Multi-scale modelling and numerical simulation of electronic kinetic transport
International Nuclear Information System (INIS)
Duclous, R.
2009-11-01
This research thesis which is at the interface between numerical analysis, plasma physics and applied mathematics, deals with the kinetic modelling and numerical simulations of the electron energy transport and deposition in laser-produced plasmas, having in view the processes of fuel assembly to temperature and density conditions necessary to ignite fusion reactions. After a brief review of the processes at play in the collisional kinetic theory of plasmas, with a focus on basic models and methods to implement, couple and validate them, the author focuses on the collective aspect related to the free-streaming electron transport equation in the non-relativistic limit as well as in the relativistic regime. He discusses the numerical development and analysis of the scheme for the Vlasov-Maxwell system, and the selection of a validation procedure and numerical tests. Then, he investigates more specific aspects of the collective transport: the multi-specie transport, submitted to phase-space discontinuities. Dealing with the multi-scale physics of electron transport with collision source terms, he validates the accuracy of a fast Monte Carlo multi-grid solver for the Fokker-Planck-Landau electron-electron collision operator. He reports realistic simulations for the kinetic electron transport in the frame of the shock ignition scheme, the development and validation of a reduced electron transport angular model. He finally explores the relative importance of the processes involving electron-electron collisions at high energy by means a multi-scale reduced model with relativistic Boltzmann terms
International Nuclear Information System (INIS)
Lee, P.D.; Chirazi, A.; Atwood, R.C.; Wang, W.
2004-01-01
Phase transition phenomena in metallic alloys involve complex physical processes occurring over a wide range of temporal, spatial and energy scales. Multiscale modelling is a powerful methodology for understanding these complex systems. In this paper, a multiscale model of grain and pore formation is presented during solidification. At the microscale, a combined stochastic-deterministic approach based on the cellular automata method is used to solve multicomponent diffusion in a three-phase system (liquid, solid and gas), simulating the nucleation and growth of both grains and pores. The impingement of the growing pores upon the developing solid is also solved to predict the tortuous shape of the porosity, a critical factor for fatigue properties. The micromodel is coupled with a finite element method (FEM) solution of the macroscale heat transfer and fluid flow in industrial castings through the temperature and pressure fields. The result model was used to investigate the influence of local solidification time, hydrogen content, local metallostatic pressure and alloy composition upon the predicted grain structure and pore morphology. Comparison of the model predictions to both laboratory and industrial scale castings are presented
Porta, Alberto; Bari, Vlasta; Ranuzzi, Giovanni; De Maria, Beatrice; Baselli, Giuseppe
2017-09-01
We propose a multiscale complexity (MSC) method assessing irregularity in assigned frequency bands and being appropriate for analyzing the short time series. It is grounded on the identification of the coefficients of an autoregressive model, on the computation of the mean position of the poles generating the components of the power spectral density in an assigned frequency band, and on the assessment of its distance from the unit circle in the complex plane. The MSC method was tested on simulations and applied to the short heart period (HP) variability series recorded during graded head-up tilt in 17 subjects (age from 21 to 54 years, median = 28 years, 7 females) and during paced breathing protocols in 19 subjects (age from 27 to 35 years, median = 31 years, 11 females) to assess the contribution of time scales typical of the cardiac autonomic control, namely in low frequency (LF, from 0.04 to 0.15 Hz) and high frequency (HF, from 0.15 to 0.5 Hz) bands to the complexity of the cardiac regulation. The proposed MSC technique was compared to a traditional model-free multiscale method grounded on information theory, i.e., multiscale entropy (MSE). The approach suggests that the reduction of HP variability complexity observed during graded head-up tilt is due to a regularization of the HP fluctuations in LF band via a possible intervention of sympathetic control and the decrement of HP variability complexity observed during slow breathing is the result of the regularization of the HP variations in both LF and HF bands, thus implying the action of physiological mechanisms working at time scales even different from that of respiration. MSE did not distinguish experimental conditions at time scales larger than 1. Over a short time series MSC allows a more insightful association between cardiac control complexity and physiological mechanisms modulating cardiac rhythm compared to a more traditional tool such as MSE.
A Physiologically Based, Multi-Scale Model of Skeletal Muscle Structure and Function
Röhrle, O.; Davidson, J. B.; Pullan, A. J.
2012-01-01
Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle’s response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modeling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle’s response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modeling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibers and their grouping. Together with a well-established model of motor-unit recruitment, the electro-physiological behavior of single muscle fibers within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenization. The effect of homogenization has been investigated by varying the number of embedded skeletal muscle fibers and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the tibialis anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modeling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behavior ranging from motor-unit recruitment to force generation and fatigue. PMID:22993509
A physiologically based, multi-scale model of skeletal muscle structure and function
Directory of Open Access Journals (Sweden)
Oliver eRöhrle
2012-09-01
Full Text Available Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle's response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modelling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle's response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modelling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibres and their grouping. Together with a well-established model of motor unit recruitment, the electro-physiological behaviour of single muscle fibres within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenisation. The effect of homogenisation has been investigated by varying the number of embedded skeletal muscle fibres and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the Tibialis Anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modelling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behaviour ranging from motor unit recruitment to force generation and fatigue.
Microstructure-based multiscale modeling of elevated temperature deformation in aluminum alloys
International Nuclear Information System (INIS)
Krajewski, Paul E.; Hector, Louis G.; Du Ningning; Bower, Allan F.
2010-01-01
A multiscale model for predicting elevated temperature deformation in Al-Mg alloys is presented. Constitutive models are generated from a theoretical methodology and used to investigate the effects of grain size on formability. Flow data are computed with a polycrystalline, microstructure-based model which accounts for grain boundary sliding, stress-induced diffusion, and dislocation creep. Favorable agreement is found between the computed flow data and elevated temperature tensile measurements. A creep constitutive model is then fit to the computed flow data and used in finite-element simulations of two simple gas pressure forming processes, where favorable results are observed. These results are fully consistent with gas pressure forming experiments, and suggest a greater role for constitutive models, derived largely from theoretical methodologies, in the design of Al alloys with enhanced elevated temperature formability. The methodology detailed herein provides a framework for incorporation of results from atomistic-scale models of dislocation creep and diffusion.
A Multiscale Modeling System: Developments, Applications, and Critical Issues
Tao, Wei-Kuo; Lau, William; Simpson, Joanne; Chern, Jiun-Dar; Atlas, Robert; Khairoutdinov, David Randall Marat; Li, Jui-Lin; Waliser, Duane E.; Jiang, Jonathan; Hou, Arthur;
2009-01-01
The foremost challenge in parameterizing convective clouds and cloud systems in large-scale models are the many coupled dynamical and physical processes that interact over a wide range of scales, from microphysical scales to the synoptic and planetary scales. This makes the comprehension and representation of convective clouds and cloud systems one of the most complex scientific problems in Earth science. During the past decade, the Global Energy and Water Cycle Experiment (GEWEX) Cloud System Study (GCSS) has pioneered the use of single-column models (SCMs) and cloud-resolving models (CRMs) for the evaluation of the cloud and radiation parameterizations in general circulation models (GCMs; e.g., GEWEX Cloud System Science Team 1993). These activities have uncovered many systematic biases in the radiation, cloud and convection parameterizations of GCMs and have led to the development of new schemes (e.g., Zhang 2002; Pincus et al, 2003; Zhang and Wu 2003; Wu et al. 2003; Liang and Wu 2005; Wu and Liang 2005, and others). Comparisons between SCMs and CRMs using the same large-scale forcing derived from field campaigns have demonstrated that CRMs are superior to SCMs in the prediction of temperature and moisture tendencies (e.g., Das et al. 1999; Randall et al 2003b; Xie et al. 2005).
Multiscale mass-spring models of carbon nanotube foams
Fraternali, F.; Blesgen, T.; Amendola, A.; Daraio, C.
This article is concerned with the mechanical properties of dense, vertically aligned CNT foams subject to one-dimensional compressive loading. We develop a discrete model directly inspired by the micromechanical response reported experimentally for CNT foams, where infinitesimal portions of the
Complex Automata: Multi-scale Modeling with Coupled Cellular Automata
Hoekstra, A.G.; Caiazzo, A.; Lorenz, E.; Falcone, J.-L.; Chopard, B.; Hoekstra, A.G.; Kroc, J.; Sloot, P.M.A.
2010-01-01
Cellular Automata (CA) are generally acknowledged to be a powerful way to describe and model natural phenomena [1-3]. There are even tempting claims that nature itself is one big (quantum) information processing system, e.g. [4], and that CA may actually be nature’s way to do this processing [5-7].
Multiscale modeling and topology optimization of poroelastic actuators
DEFF Research Database (Denmark)
Andreasen, Casper Schousboe; Sigmund, Ole
2012-01-01
This paper presents a method for design of optimized poroelastic materials which under internal pressurization turn into actuators for application in, for example, linear motors. The actuators are modeled in a two-scale fluid–structure interaction approach. The fluid saturated material microstruc...
Multi-scale modeling of carbon capture systems
Energy Technology Data Exchange (ETDEWEB)
Kress, Joel David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-03-03
The development and scale up of cost effective carbon capture processes is of paramount importance to enable the widespread deployment of these technologies to significantly reduce greenhouse gas emissions. The U.S. Department of Energy initiated the Carbon Capture Simulation Initiative (CCSI) in 2011 with the goal of developing a computational toolset that would enable industry to more effectively identify, design, scale up, operate, and optimize promising concepts. The first half of the presentation will introduce the CCSI Toolset consisting of basic data submodels, steady-state and dynamic process models, process optimization and uncertainty quantification tools, an advanced dynamic process control framework, and high-resolution filtered computationalfluid- dynamics (CFD) submodels. The second half of the presentation will describe a high-fidelity model of a mesoporous silica supported, polyethylenimine (PEI)-impregnated solid sorbent for CO_{2} capture. The sorbent model includes a detailed treatment of transport and amine-CO_{2}- H_{2}O interactions based on quantum chemistry calculations. Using a Bayesian approach for uncertainty quantification, we calibrate the sorbent model to Thermogravimetric (TGA) data.
Tempered stable distributions stochastic models for multiscale processes
Grabchak, Michael
2015-01-01
This brief is concerned with tempered stable distributions and their associated Levy processes. It is a good text for researchers interested in learning about tempered stable distributions. A tempered stable distribution is one which takes a stable distribution and modifies its tails to make them lighter. The motivation for this class comes from the fact that infinite variance stable distributions appear to provide a good fit to data in a variety of situations, but the extremely heavy tails of these models are not realistic for most real world applications. The idea of using distributions that modify the tails of stable models to make them lighter seems to have originated in the influential paper of Mantegna and Stanley (1994). Since then, these distributions have been extended and generalized in a variety of ways. They have been applied to a wide variety of areas including mathematical finance, biostatistics,computer science, and physics.
Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena
Gorban, Alexander N; Theodoropoulos, Constantinos; Kazantzis, Nikolaos K; Öttinger, Hans Christian
2006-01-01
Model reduction and coarse-graining are important in many areas of science and engineering. How does a system with many degrees of freedom become one with fewer? How can a reversible micro-description be adapted to the dissipative macroscopic model? These crucial questions, as well as many other related problems, are discussed in this book. Specific areas of study include dynamical systems, non-equilibrium statistical mechanics, kinetic theory, hydrodynamics and mechanics of continuous media, (bio)chemical kinetics, nonlinear dynamics, nonlinear control, nonlinear estimation, and particulate systems from various branches of engineering. The generic nature and the power of the pertinent conceptual, analytical and computational frameworks helps eliminate some of the traditional language barriers, which often unnecessarily impede scientific progress and the interaction of researchers between disciplines such as physics, chemistry, biology, applied mathematics and engineering. All contributions are authored by ex...
Multiscale modeling of lithium ion batteries: thermal aspects
Directory of Open Access Journals (Sweden)
Arnulf Latz
2015-04-01
Full Text Available The thermal behavior of lithium ion batteries has a huge impact on their lifetime and the initiation of degradation processes. The development of hot spots or large local overpotentials leading, e.g., to lithium metal deposition depends on material properties as well as on the nano- und microstructure of the electrodes. In recent years a theoretical structure emerges, which opens the possibility to establish a systematic modeling strategy from atomistic to continuum scale to capture and couple the relevant phenomena on each scale. We outline the building blocks for such a systematic approach and discuss in detail a rigorous approach for the continuum scale based on rational thermodynamics and homogenization theories. Our focus is on the development of a systematic thermodynamically consistent theory for thermal phenomena in batteries at the microstructure scale and at the cell scale. We discuss the importance of carefully defining the continuum fields for being able to compare seemingly different phenomenological theories and for obtaining rules to determine unknown parameters of the theory by experiments or lower-scale theories. The resulting continuum models for the microscopic and the cell scale are numerically solved in full 3D resolution. The complex very localized distributions of heat sources in a microstructure of a battery and the problems of mapping these localized sources on an averaged porous electrode model are discussed by comparing the detailed 3D microstructure-resolved simulations of the heat distribution with the result of the upscaled porous electrode model. It is shown, that not all heat sources that exist on the microstructure scale are represented in the averaged theory due to subtle cancellation effects of interface and bulk heat sources. Nevertheless, we find that in special cases the averaged thermal behavior can be captured very well by porous electrode theory.
Computational multiscale modeling of fluids and solids theory and applications
Steinhauser, Martin Oliver
2017-01-01
The idea of the book is to provide a comprehensive overview of computational physics methods and techniques, that are used for materials modeling on different length and time scales. Each chapter first provides an overview of the basic physical principles which are the basis for the numerical and mathematical modeling on the respective length-scale. The book includes the micro-scale, the meso-scale and the macro-scale, and the chapters follow this classification. The book explains in detail many tricks of the trade of some of the most important methods and techniques that are used to simulate materials on the perspective levels of spatial and temporal resolution. Case studies are included to further illustrate some methods or theoretical considerations. Example applications for all techniques are provided, some of which are from the author’s own contributions to some of the research areas. The second edition has been expanded by new sections in computational models on meso/macroscopic scales for ocean and a...
Multiscale modeling of transport of grains through granular assemblies
Directory of Open Access Journals (Sweden)
Tejada Ignacio G
2017-01-01
Full Text Available We investigate the transport of moderately large passive particles through granular assemblies caused by seeping flows. This process can only be described by highly nonlinear continuum models, since the local permeability, the advection and dispersion mechanisms are strongly determined by the concentration of transported particles. Particles may sometimes get temporally trapped and thus proper kinetic mass transfer models are required. The mass transfer depends on the complexity of the porous medium, the kind of interaction forces and the concentration of transported particles. We study these two issues by means of numerical and laboratory experiments. In the laboratory we use an oedo-permeameter to force sand grains to move through a gravel bed under conditions of constant hydraulic pressure drop. To understand the process, numerical experiments were performed to approach particle transport at the grain scale with a fully coupled method. The DEM-PFV combines the discrete element method with a pore scale finite volume formulation to solve the interstitial fluid flow and particle transport problems. These experiments help us to set up a continuum transport model that can be used in a boundary value problem.
A Multiscale Model Evaluates Screening for Neoplasia in Barrett's Esophagus.
Directory of Open Access Journals (Sweden)
Kit Curtius
2015-05-01
Full Text Available Barrett's esophagus (BE patients are routinely screened for high grade dysplasia (HGD and esophageal adenocarcinoma (EAC through endoscopic screening, during which multiple esophageal tissue samples are removed for histological analysis. We propose a computational method called the multistage clonal expansion for EAC (MSCE-EAC screening model that is used for screening BE patients in silico to evaluate the effects of biopsy sampling, diagnostic sensitivity, and treatment on disease burden. Our framework seamlessly integrates relevant cell-level processes during EAC development with a spatial screening process to provide a clinically relevant model for detecting dysplastic and malignant clones within the crypt-structured BE tissue. With this computational approach, we retain spatio-temporal information about small, unobserved tissue lesions in BE that may remain undetected during biopsy-based screening but could be detected with high-resolution imaging. This allows evaluation of the efficacy and sensitivity of current screening protocols to detect neoplasia (dysplasia and early preclinical EAC in the esophageal lining. We demonstrate the clinical utility of this model by predicting three important clinical outcomes: (1 the probability that small cancers are missed during biopsy-based screening, (2 the potential gains in neoplasia detection probabilities if screening occurred via high-resolution tomographic imaging, and (3 the efficacy of ablative treatments that result in the curative depletion of metaplastic and neoplastic cell populations in BE in terms of the long-term impact on reducing EAC incidence.
Sulfur Deactivation of NOx Storage Catalysts: A Multiscale Modeling Approach
Directory of Open Access Journals (Sweden)
Rankovic N.
2013-09-01
Full Text Available Lean NOx Trap (LNT catalysts, a promising solution for reducing the noxious nitrogen oxide emissions from the lean burn and Diesel engines, are technologically limited by the presence of sulfur in the exhaust gas stream. Sulfur stemming from both fuels and lubricating oils is oxidized during the combustion event and mainly exists as SOx (SO2 and SO3 in the exhaust. Sulfur oxides interact strongly with the NOx trapping material of a LNT to form thermodynamically favored sulfate species, consequently leading to the blockage of NOx sorption sites and altering the catalyst operation. Molecular and kinetic modeling represent a valuable tool for predicting system behavior and evaluating catalytic performances. The present paper demonstrates how fundamental ab initio calculations can be used as a valuable source for designing kinetic models developed in the IFP Exhaust library, intended for vehicle simulations. The concrete example we chose to illustrate our approach was SO3 adsorption on the model NOx storage material, BaO. SO3 adsorption was described for various sites (terraces, surface steps and kinks and bulk for a closer description of a real storage material. Additional rate and sensitivity analyses provided a deeper understanding of the poisoning phenomena.
Salas, W.; Torbick, N.
2017-12-01
Rice greenhouse gas (GHG) emissions in production hot spots have been mapped using multiscale satellite imagery and a processed-based biogeochemical model. The multiscale Synthetic Aperture Radar (SAR) and optical imagery were co-processed and fed into a machine leanring framework to map paddy attributes that are tuned using field observations and surveys. Geospatial maps of rice extent, crop calendar, hydroperiod, and cropping intensity were then used to parameterize the DeNitrification-DeComposition (DNDC) model to estimate emissions. Results, in the Red River Detla for example, show total methane emissions at 345.4 million kgCH4-C equivalent to 11.5 million tonnes CO2e (carbon dioxide equivalent). We further assessed the role of Alternative Wetting and Drying and the impact on GHG and yield across production hot spots with uncertainty estimates. The approach described in this research provides a framework for using SAR to derive maps of rice and landscape characteristics to drive process models like DNDC. These types of tools and approaches will support the next generation of Monitoring, Reporting, and Verification (MRV) to combat climate change and support ecosystem service markets.
Information Management Workflow and Tools Enabling Multiscale Modeling Within ICME Paradigm
Arnold, Steven M.; Bednarcyk, Brett A.; Austin, Nic; Terentjev, Igor; Cebon, Dave; Marsden, Will
2016-01-01
With the increased emphasis on reducing the cost and time to market of new materials, the need for analytical tools that enable the virtual design and optimization of materials throughout their processing - internal structure - property - performance envelope, along with the capturing and storing of the associated material and model information across its lifecycle, has become critical. This need is also fueled by the demands for higher efficiency in material testing; consistency, quality and traceability of data; product design; engineering analysis; as well as control of access to proprietary or sensitive information. Fortunately, material information management systems and physics-based multiscale modeling methods have kept pace with the growing user demands. Herein, recent efforts to establish workflow for and demonstrate a unique set of web application tools for linking NASA GRC's Integrated Computational Materials Engineering (ICME) Granta MI database schema and NASA GRC's Integrated multiscale Micromechanics Analysis Code (ImMAC) software toolset are presented. The goal is to enable seamless coupling between both test data and simulation data, which is captured and tracked automatically within Granta MI®, with full model pedigree information. These tools, and this type of linkage, are foundational to realizing the full potential of ICME, in which materials processing, microstructure, properties, and performance are coupled to enable application-driven design and optimization of materials and structures.
Integration of multiscale dendritic spine structure and function data into systems biology models
Directory of Open Access Journals (Sweden)
James J Mancuso
2014-11-01
Full Text Available Comprising 1011 neurons with 1014 synaptic connections the human brain is the ultimate systems biology puzzle. An increasing body of evidence highlights the observation that changes in brain function, both normal and pathological, consistently correlate with dynamic changes in neuronal anatomy. Anatomical changes occur on a full range of scales from the trafficking of individual proteins, to alterations in synaptic morphology both individually and on a systems level, to reductions in long distance connectivity and brain volume. The major sites of contact for synapsing neurons are dendritic spines, which provide an excellent metric for the number and strength of signaling connections between elements of functional neuronal circuits. A comprehensive model of anatomical changes and their functional consequences would be a holy grail for the field of systems neuroscience but its realization appears far on the horizon. Various imaging technologies have advanced to allow for multi-scale visualization of brain plasticity and pathology, but computational analysis of the massive big data sets involved forms the bottleneck toward the creation of multiscale models of brain structure and function. While a full accounting of techniques and progress toward a comprehensive model of brain anatomy and function is beyond the scope of this or any other single paper, this review serves to highlight the opportunities for analysis of neuronal spine anatomy and function provided by new imaging technologies and the high-throughput application of older technologies while surveying the strengths and weaknesses of currently available computational analytical tools and room for future improvement.
International Nuclear Information System (INIS)
Yang, L H; Tang, M; Moriarty, J A
2001-01-01
Plastic deformation in bcc metals at low temperatures and high-strain rates is controlled by the motion of a/2 screw dislocations, and understanding the fundamental atomistic processes of this motion is essential to develop predictive multiscale models of crystal plasticity. The multiscale modeling approach presented here for bcc Ta is based on information passing, where results of simulations at the atomic scale are used in simulations of plastic deformation at mesoscopic length scales via dislocation dynamics (DD). The relevant core properties of a/2 screw dislocations in Ta have been obtained using quantum-based interatomic potentials derived from model generalized pseudopotential theory and an ab-initio data base together with an accurate Green's-function simulation method that implements flexible boundary conditions. In particular, the stress-dependent activation enthalpy for the lowest-energy kink-pair mechanism has been calculated and fitted to a revealing analytic form. This is the critical quantity determining dislocation mobility in the DD simulations, and the present activation enthalpy is found to be in good agreement with the previous empirical form used to explain the temperature dependence of the yield stress
Multiscale model of short cracks in a random polycrystalline aggregate
International Nuclear Information System (INIS)
Simonovski, I.; Cizelj, L.; Petric, Z.
2006-01-01
A plane-strain finite element crystal plasticity model of microstructurally small stationary crack emanating at a surface grain in a 316L stainless steel is proposed. The model consisting of 212 randomly shaped, sized and oriented grains is loaded monotonically in uniaxial tension to a maximum load of 1.12Rp0.2 (280MPa). The influence that a random grain structure imposes on a Stage I crack is assessed by calculating the crack tip opening (CTOD) and sliding displacements (CTSD) for single crystal as well as for polycrystal models, considering also different crystallographic orientations. In the single crystal case the CTOD and CTSD may differ by more than one order of magnitude. Near the crack tip slip is activated on all the slip planes whereby only two are active in the rest of the model. The maximum CTOD is directly related to the maximal Schmid factors. For the more complex polycrystal cases it is shown that certain crystallographic orientations result in a cluster of soft grains around the crack-containing grain. In these cases the crack tip can become a part of the localized strain, resulting in a large CTOD value. This effect, resulting from the overall grain orientations and sizes, can have a greater impact on the CTOD than the local grain orientation. On the other hand, when a localized soft response is formed away from the crack, the localized strain does not affect the crack tip directly, resulting in a small CTOD value. The resulting difference in CTOD can be up to a factor of 4, depending upon the crystallographic set. Grains as far as 6 times the value of crack length significantly influence that crack tip parameters. It was also found that a larger crack containing grain tends to increase the CTOD. Finally, smaller than expected drop in the CTOD (12.7%) was obtained as the crack approached the grain boundary. This could be due to the assumption of the unchanged crack direction, only monotonic loading and simplified grain boundary modelling. (author)
Liu, Yushi; Poh, Hee Joo
2014-11-01
The Computational Fluid Dynamics analysis has become increasingly important in modern urban planning in order to create highly livable city. This paper presents a multi-scale modeling methodology which couples Weather Research and Forecasting (WRF) Model with open source CFD simulation tool, OpenFOAM. This coupling enables the simulation of the wind flow and pollutant dispersion in urban built-up area with high resolution mesh. In this methodology meso-scale model WRF provides the boundary condition for the micro-scale CFD model OpenFOAM. The advantage is that the realistic weather condition is taken into account in the CFD simulation and complexity of building layout can be handled with ease by meshing utility of OpenFOAM. The result is validated against the Joint Urban 2003 Tracer Field Tests in Oklahoma City and there is reasonably good agreement between the CFD simulation and field observation. The coupling of WRF- OpenFOAM provide urban planners with reliable environmental modeling tool in actual urban built-up area; and it can be further extended with consideration of future weather conditions for the scenario studies on climate change impact.
Rasool, Quazi Z.; Zhang, Rui; Lash, Benjamin; Cohan, Daniel S.; Cooter, Ellen J.; Bash, Jesse O.; Lamsal, Lok N.
2016-01-01
Modeling of soil nitric oxide (NO) emissions is highly uncertain and may misrepresent its spatial and temporal distribution. This study builds upon a recently introduced parameterization to improve the timing and spatial distribution of soil NO emission estimates in the Community Multiscale Air Quality (CMAQ) model. The parameterization considers soil parameters, meteorology, land use, and mineral nitrogen (N) availability to estimate NO emissions. We incorporate daily year-specific fertilizer data from the Environmental Policy Integrated Climate (EPIC) agricultural model to replace the annual generic data of the initial parameterization, and use a 12km resolution soil biome map over the continental USA. CMAQ modeling for July 2011 shows slight differences in model performance in simulating fine particulate matter and ozone from Interagency Monitoring of Protected Visual Environments (IMPROVE) and Clean Air Status and Trends Network (CASTNET) sites and NO2 columns from Ozone Monitoring Instrument (OMI) satellite retrievals. We also simulate how the change in soil NO emissions scheme affects the expected O3 response to projected emissions reductions.
Multiscale Reduced Order Modeling of Complex Multi-Bay Structures
2013-07-01
fuselage panel studied in [28], see Fig. 2 for a picture of the actual hardware taken from [28]. The finite element model of the 9-bay panel, shown in...discussed. Two alternatives to reduce the computational time for the solution of these problems are explored. iii A mi familia ...results at P=0.98-1.82 lb/in, P=1.4-2.6 lb/in. The baseline solution P=1.4-2.6 lb/in has a 46 mean value of 2 lb/in and it is actually very close to
Multiscale modeling of materials. Materials Research Society symposium proceedings: Volume 538
International Nuclear Information System (INIS)
Bulatov, V.V.; Diaz de la Rubia, T.; Phillips, R.; Kaxiras, E.; Ghoniem, N.
1999-01-01
The symposium, Multiscale Modeling of Materials, was held at the 1998 MRS Fall Meeting in Boston, Massachusetts, November 30 to December 3. Though multiple scale models are not new the topic has recently taken on a new sense of urgency. This is in large part due to the recognition that brute force computational approaches often fall short of allowing for direct simulation of both the characteristic structures and temporal processes found in real materials. As a result, a number of hybrid approaches are now finding favor in which ideas borrowed from distinct disciplines or modeling paradigms are unified to produce more powerful techniques. Topics included are modeling dislocation properties and behavior, defect dynamics and microstructural evolution, crystal defects and interfaces, novel methods for materials modeling, and non-crystalline and nanocrystalline materials. Eighty papers have been processed separately for inclusion on the data base
Multi-scale modelling for HEDP experiments on Orion
Sircombe, N. J.; Ramsay, M. G.; Hughes, S. J.; Hoarty, D. J.
2016-05-01
The Orion laser at AWE couples high energy long-pulse lasers with high intensity short-pulses, allowing material to be compressed beyond solid density and heated isochorically. This experimental capability has been demonstrated as a platform for conducting High Energy Density Physics material properties experiments. A clear understanding of the physics in experiments at this scale, combined with a robust, flexible and predictive modelling capability, is an important step towards more complex experimental platforms and ICF schemes which rely on high power lasers to achieve ignition. These experiments present a significant modelling challenge, the system is characterised by hydrodynamic effects over nanoseconds, driven by long-pulse lasers or the pre-pulse of the petawatt beams, and fast electron generation, transport, and heating effects over picoseconds, driven by short-pulse high intensity lasers. We describe the approach taken at AWE; to integrate a number of codes which capture the detailed physics for each spatial and temporal scale. Simulations of the heating of buried aluminium microdot targets are discussed and we consider the role such tools can play in understanding the impact of changes to the laser parameters, such as frequency and pre-pulse, as well as understanding effects which are difficult to observe experimentally.
Multiscale modelling of hydrogen embrittlement in zirconium alloys
Energy Technology Data Exchange (ETDEWEB)
Majevadia, Jassel; Wenman, Mark; Balint, Daniel; Sutton, Adrian [Imperial College London (United Kingdom); Nazarov, Roman [MPIE, Dusseldorf (Germany)
2013-07-01
Delayed Hydride Cracking (DHC) is a commonly occurring embrittlement phenomenon in zirconium alloy fuel cladding within Pressurized Water Reactors (PWRs). DHC is caused by the accumulation of hydrogen atoms taken up by the metal, and the formation of brittle hydrides in the vicinity of crack tips. The rate of crack growth is limited by the rate of hydrogen diffusion to the crack, which can be modelled by solving a stress driven diffusion equation that incorporates the elastic interaction between defects. This of interest in the present work. The elastic interaction is calculated by combining defect forces determined through Density Functional Theory (DFT) simulations, and an exact solution for the anisotropic elastic field of an edge dislocation in Zr. making it possible to determine the interaction energy without the need to simulate directly a hydrogen atom in the presence of a crack or dislocation, which is computationally prohibitive with DFT. The result of the elastic interaction energy calculations can be utilised to determine the segregation of hydrogen to a crack tip for varying crack tip geometries, and in the presence of other crystal defects. This is done by implementing a diffusion equation for hydrogen within a discrete dislocation dynamics simulation. In the present work a model has been developed to demonstrate the effect of a single dislocation on hydrogen diffusion to create a Cottrell atmosphere.
Numerical Analysis of Electromagnetic Fields in Multiscale Model
International Nuclear Information System (INIS)
Ma Ji; Fang Guang-You; Ji Yi-Cai
2015-01-01
Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments (MoM) with finite-difference time-domain (FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples. (paper)
Multiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites
Clancy, Thomas C.; Frankland, Sarah-Jane V.; Hinkley, Jeffrey A.; Gates, Thomas S.
2010-01-01
Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene-vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene-vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of noncovalent functionalization, two types of polyethylene matrices. -- aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity
Circulation of carbon dioxide in the mantle: multiscale modeling
Morra, G.; Yuen, D. A.; Lee, S.
2012-12-01
Much speculation has been put forward on the quantity and nature of carbon reservoirs in the deep Earth, because of its involvement in the evolution of life at the surface and inside planetary interiors. Carbon penetrates into the Earth's mantle mostly during subduction of oceanic crust, which contains carbonate deposits [1], however the form that it assumes at lower mantle depths is scarcely understood [2], hampering our ability to estimate the amount of carbon in the entire mantle by orders of magnitude. We present simulations of spontaneous degassing of supercritical CO2 using in-house developed novel implementations of the Fast-Multipole Boundary Element Method suitable for modeling two-phase flow (here mantle mineral and free CO2 fluid) through disordered materials such as porous rocks. Because the mutual interaction of droplets immersed either in a fluid or a solid matrix and their weakening effect to the host rock alters the strength of the mantle rocks, at the large scale the fluid phases in the mantle may control the creeping of mantle rocks [3]. In particular our study focuses on the percolation of supercritical CO2, estimated through the solution of the Laplace equation in a porous system, stochastically generated through a series of random Karhunen-Loeve decomposition. The model outcome is employed to extract the transmissivity of supercritical fluids in the mantle from the lowest scale up to the mantle scale and in combination with the creeping flow of the convecting mantle. The emerging scenarios on the global carbon cycle are finally discussed. [1] Boulard, E., et al., New host for carbon in the deep Earth. Proceedings of the National Academy of Sciences, 2011. 108(13): p. 5184-5187. [2] Walter, M.J., et al., Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions. Science, 2011. 334(6052): p. 54-57. [3] Morra, G., et al., Ascent of Bubbles in Magma Conduits Using Boundary Elements and Particles. Procedia Computer
Multiscale model of metal alloy oxidation at grain boundaries
International Nuclear Information System (INIS)
Sushko, Maria L.; Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.
2015-01-01
High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr 2 O 3 . This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl 2 O 4 . Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr 2 O 3 has a plate-like structure with 1.2–1.7 nm wide pores running along the grain boundary, while NiAl 2 O 4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional
Components for Atomistic-to-Continuum Multiscale Modeling of Flow in Micro- and Nanofluidic Systems
Directory of Open Access Journals (Sweden)
Helgi Adalsteinsson
2008-01-01
Full Text Available Micro- and nanofluidics pose a series of significant challenges for science-based modeling. Key among those are the wide separation of length- and timescales between interface phenomena and bulk flow and the spatially heterogeneous solution properties near solid-liquid interfaces. It is not uncommon for characteristic scales in these systems to span nine orders of magnitude from the atomic motions in particle dynamics up to evolution of mass transport at the macroscale level, making explicit particle models intractable for all but the simplest systems. Recently, atomistic-to-continuum (A2C multiscale simulations have gained a lot of interest as an approach to rigorously handle particle-level dynamics while also tracking evolution of large-scale macroscale behavior. While these methods are clearly not applicable to all classes of simulations, they are finding traction in systems in which tight-binding, and physically important, dynamics at system interfaces have complex effects on the slower-evolving large-scale evolution of the surrounding medium. These conditions allow decomposition of the simulation into discrete domains, either spatially or temporally. In this paper, we describe how features of domain decomposed simulation systems can be harnessed to yield flexible and efficient software for multiscale simulations of electric field-driven micro- and nanofluidics.
Lu, Huijie; Peng, Zhangli
2017-11-01
Our goal is to develop a high-efficiency multiscale modeling method to predict the stress and deformation of cells during the interactions with their microenvironments in microcirculation and microfluidic devices, including red blood cells (RBCs) and circulating tumor cells (CTCs). There are more than 1 billion people in the world suffering from RBC diseases, e.g. anemia, sickle cell diseases, and malaria. The mechanical properties of RBCs are changed in these diseases due to molecular structure alternations, which is not only important for understanding the disease pathology but also provides an opportunity for diagnostics. On the other hand, the mechanical properties of cancer cells are also altered compared to healthy cells. This can lead to acquired ability to cross the narrow capillary networks and endothelial gaps, which is crucial for metastasis, the leading cause of cancer mortality. Therefore, it is important to predict the deformation and stress of RBCs and CTCs in microcirculations. We are developing a high-efficiency multiscale model of cell-fluid interaction to study these two topics.
DEFF Research Database (Denmark)
Herrgard, Markus; Sukumara, Sumesh; Campodonico Alt, Miguel Angel
2015-01-01
, the Multi-scale framework for Sustainable Industrial Chemicals (MuSIC) was introduced to address this issue by integrating modelling approaches at different scales ranging from cellular to ecological scales. This framework can be further extended by incorporating modelling of the petrochemical value chain...... towards a sustainable chemical industry....
Multi-scale modelling of fatigue microcrack initiation
International Nuclear Information System (INIS)
Liu, Jia
2013-01-01
The thesis aims to improve the understanding and simulation of microcrack initiation induced by thermal fatigue and the induced crack network formation. The polycrystalline simulations allow the prediction of both macroscopic cyclic behavior and mean grain distributions of stress, plastic strain and number of cycles to microcrack initiation. Various aggregate meshes have been used, from the simplest ones using cubic grains up to a real 3D aggregate built thanks to many re-polishing and EBSD measurement sequences (Institut P', Poitiers). Tension-compression, cyclic shear and equi-biaxial loadings, with and without mean strain, have been considered. All the predictions are in qualitative agreement with many experimental observations obtained at various scales. The single crystal simulations allow us to predict the effect of slip localization in thin persistent slip bands (PSBs). Inside PSBs, vacancies are produced and annihilated because of cyclic dislocation interactions and may diffuse towards the surrounding matrix. This induces extrusion growth at the free surface of PSBs. Microcracking is modelled by cohesive zones located along the PSB - matrix interfaces. The predicted extrusion rates and numbers of cycles to microcrack initiation are in fair agreement with numerous experimental data concerning single and polycrystals, copper and 316L(N), under either air or inert environment. (author) [fr
Multiscale modeling of fluid flow and mass transport
Masuoka, K.; Yamamoto, H.; Bijeljic, B.; Lin, Q.; Blunt, M. J.
2017-12-01
In recent years, there are some reports on a simulation of fluid flow in pore spaces of rocks using Navier-Stokes equations. These studies mostly adopt a X-ray CT to create 3-D numerical grids of the pores in micro-scale. However, results may be of low accuracy when the rock has a large pore size distribution, because pores, whose size is smaller than resolution of the X-ray CT may be neglected. We recently found out by tracer tests in a laboratory using a brine saturated Ryukyu limestone and inject fresh water that a decrease of chloride concentration took longer time. This phenomenon can be explained due to weak connectivity of the porous networks. Therefore, it is important to simulate entire pore spaces even those of very small sizes in which diffusion is dominant. We have developed a new methodology for multi-level modeling for pore scale fluid flow in porous media. The approach is to combine pore-scale analysis with Darcy-flow analysis using two types of X-ray CT images in different resolutions. Results of the numerical simulations showed a close match with the experimental results. The proposed methodology is an enhancement for analyzing mass transport and flow phenomena in rocks with complicated pore structure.
Energy Technology Data Exchange (ETDEWEB)
Gao, Jiaying; Liang, Biao; Zhang, Weizhao; Liu, Zeliang; Cheng, Puikei; Bostanabad, Ramin; Cao, Jian; Chen, Wei; Liu, Wing Kam; Su, Xuming; Zeng, Danielle; Zhao, John
2017-10-23
In this work, a multiscale modeling framework for CFRP is introduced to study hierarchical structure of CFRP. Four distinct scales are defined: nanoscale, microscale, mesoscale, and macroscale. Information at lower scales can be passed to higher scale, which is beneficial for studying effect of constituents on macroscale part’s mechanical property. This bottom-up modeling approach enables better understanding of CFRP from finest details. Current study focuses on microscale and mesoscale. Representative volume element is used at microscale and mesoscale to model material’s properties. At microscale, unidirection CFRP (UD) RVE is used to study properties of UD. The UD RVE can be modeled with different volumetric fraction to encounter non-uniform fiber distribution in CFRP part. Such consideration is important in modeling uncertainties at microscale level. Currently, we identified volumetric fraction as the only uncertainty parameters in UD RVE. To measure effective material properties of UD RVE, periodic boundary conditions (PBC) are applied to UD RVE to ensure convergence of obtained properties. Properties of UD is directly used at mesoscale woven RVE modeling, where each yarn is assumed to have same properties as UD. Within woven RVE, there can be many potential uncertainties parameters to consider for a physical modeling of CFRP. Currently, we will consider fiber misalignment within yarn and angle between wrap and weft yarns. PBC is applied to woven RVE to calculate its effective material properties. The effect of uncertainties are investigated quantitatively by Gaussian process. Preliminary results of UD and Woven study are analyzed for efficacy of the RVE modeling. This work is considered as the foundation for future multiscale modeling framework development for ICME project.
Directory of Open Access Journals (Sweden)
Rumian Zhong
2015-01-01
Full Text Available A two-step response surface method for multiscale finite element model (FEM updating and validation is presented with respect to Guanhe Bridge, a composite cable-stayed bridge in the National Highway number G15, in China. Firstly, the state equations of both multiscale and single-scale FEM are established based on the basic equation in structural dynamic mechanics to update the multiscale coupling parameters and structural parameters. Secondly, based on the measured data from the structural health monitoring (SHM system, a Monte Carlo simulation is employed to analyze the uncertainty quantification and transmission, where the uncertainties of the multiscale FEM and measured data were considered. The results indicate that the relative errors between the calculated and measured frequencies are less than 2%, and the overlap ratio indexes of each modal frequency are larger than 80% without the average absolute value of relative errors. These demonstrate that the proposed method can be applied to validate the multiscale FEM, and the validated FEM can reflect the current conditions of the real bridge; thus it can be used as the basis for bridge health monitoring, damage prognosis (DP, and safety prognosis (SP.
International Nuclear Information System (INIS)
Massoud, J.P.; Bugat, St.; Marini, B.; Lidbury, D.; Van Dyck, St.; Debarberis, L.
2008-01-01
Full text of publication follows. In nuclear PWRs, materials undergo degradation due to severe irradiation conditions that may limit their operational life. Utilities operating these reactors must quantify the aging and the potential degradations of reactor pressure vessels and also of internal structures to ensure safe and reliable plant operation. The EURATOM 6. Framework Integrated Project PERFECT (Prediction of Irradiation Damage Effects in Reactor Components) addresses irradiation damage in RPV materials and components by multi-scale modelling. This state-of-the-art approach offers potential advantages over the conventional empirical methods used in current practice of nuclear plant lifetime management. Launched in January 2004, this 48-month project is focusing on two main components of nuclear power plants which are subject to irradiation damage: the ferritic steel reactor pressure vessel and the austenitic steel internals. This project is also an opportunity to integrate the fragmented research and experience that currently exists within Europe in the field of numerical simulation of radiation damage and creates the links with international organisations involved in similar projects throughout the world. Continuous progress in the physical understanding of the phenomena involved in irradiation damage and continuous progress in computer sciences make possible the development of multi-scale numerical tools able to simulate the effects of irradiation on materials microstructure. The consequences of irradiation on mechanical and corrosion properties of materials are also tentatively modelled using such multi-scale modelling. But it requires to develop different mechanistic models at different levels of physics and engineering and to extend the state of knowledge in several scientific fields. And the links between these different kinds of models are particularly delicate to deal with and need specific works. Practically the main objective of PERFECT is to build
Brad C. Timm; Kevin McGarigal; Samuel A. Cushman; Joseph L. Ganey
2016-01-01
Efficacy of future habitat selection studies will benefit by taking a multi-scale approach. In addition to potentially providing increased explanatory power and predictive capacity, multi-scale habitat models enhance our understanding of the scales at which species respond to their environment, which is critical knowledge required to implement effective...
Multi-scale modeling of inter-granular fracture in UO2
Energy Technology Data Exchange (ETDEWEB)
Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Biner, S. Bulent [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-03-01
A hierarchical multi-scale approach is pursued in this work to investigate the influence of porosity, pore and grain size on the intergranular brittle fracture in UO2. In this approach, molecular dynamics simulations are performed to obtain the fracture properties for different grain boundary types. A phase-field model is then utilized to perform intergranular fracture simulations of representative microstructures with different porosities, pore and grain sizes. In these simulations the grain boundary fracture properties obtained from molecular dynamics simulations are used. The responses from the phase-field fracture simulations are then fitted with a stress-based brittle fracture model usable at the engineering scale. This approach encapsulates three different length and time scales, and allows the development of microstructurally informed engineering scale model from properties evaluated at the atomistic scale.
International Nuclear Information System (INIS)
T.A. Buscheck; Y. Sun; Y. Hao
2006-01-01
The MultiScale ThermoHydrologic Model (MSTHM) predicts thermal-hydrologic (TH) conditions within emplacement tunnels (drifts) and in the adjoining host rock at Yucca Mountain, Nevada, which is the proposed site for a radioactive waste repository in the US. Because these predictions are used in the performance assessment of the Yucca Mountain repository, they must address the influence of variability and uncertainty of the engineered- and natural-system parameters that significantly influence those predictions. Parameter-sensitivity studies show that the MSTHM predictions adequately propagate the influence of parametric variability and uncertainty. Model-validation studies show that the influence of conceptual-model uncertainty on the MSTHM predictions is insignificant compared to that of parametric uncertainty, which is propagated through the MSTHM
On the mass-coupling relation of multi-scale quantum integrable models
Energy Technology Data Exchange (ETDEWEB)
Bajnok, Zoltán; Balog, János [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary); Ito, Katsushi [Department of Physics, Tokyo Institute of Technology,2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Satoh, Yuji [Institute of Physics, University of Tsukuba,1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Tóth, Gábor Zsolt [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary)
2016-06-13
We determine exactly the mass-coupling relation for the simplest multi-scale quantum integrable model, the homogenous sine-Gordon model with two independent mass-scales. We first reformulate its perturbed coset CFT description in terms of the perturbation of a projected product of minimal models. This representation enables us to identify conserved tensor currents on the UV side. These UV operators are then mapped via form factor perturbation theory to operators on the IR side, which are characterized by their form factors. The relation between the UV and IR operators is given in terms of the sought-for mass-coupling relation. By generalizing the Θ sum rule Ward identity we are able to derive differential equations for the mass-coupling relation, which we solve in terms of hypergeometric functions. We check these results against the data obtained by numerically solving the thermodynamic Bethe Ansatz equations, and find a complete agreement.
Modeling complex biological flows in multi-scale systems using the APDEC framework
Trebotich, David
2006-09-01
We have developed advanced numerical algorithms to model biological fluids in multiscale flow environments using the software framework developed under the SciDAC APDEC ISIC. The foundation of our computational effort is an approach for modeling DNA laden fluids as ''bead-rod'' polymers whose dynamics are fully coupled to an incompressible viscous solvent. The method is capable of modeling short range forces and interactions between particles using soft potentials and rigid constraints. Our methods are based on higher-order finite difference methods in complex geometry with adaptivity, leveraging algorithms and solvers in the APDEC Framework. Our Cartesian grid embedded boundary approach to incompressible viscous flow in irregular geometries has also been interfaced to a fast and accurate level-sets method within the APDEC Framework for extracting surfaces from volume renderings of medical image data and used to simulate cardio-vascular and pulmonary flows in critical anatomies.
Modelling an industrial anaerobic granular reactor using a multi-scale approach
DEFF Research Database (Denmark)
Feldman, Hannah; Flores Alsina, Xavier; Ramin, Pedram
2017-01-01
The objective of this paper is to show the results of an industrial project dealing with modelling of anaerobic digesters. A multi-scale mathematical approach is developed to describe reactor hydrodynamics, granule growth/distribution and microbial competition/inhibition for substrate/space within...... the biofilm. The main biochemical and physico-chemical processes in the model are based on the Anaerobic Digestion Model No 1 (ADM1) extended with the fate of phosphorus (P), sulfur (S) and ethanol (Et-OH). Wastewater dynamic conditions are reproduced and data frequency increased using the Benchmark...... simulations show the effects on the overall process performance when operational (pH) and loading (S:COD) conditions are modified. Lastly, the effect of intra-granular precipitation on the overall organic/inorganic distribution is assessed at: 1) different times; and, 2) reactor heights. Finally...
A multiscale method for modeling high-aspect-ratio micro/nano flows
Lockerby, Duncan; Borg, Matthew; Reese, Jason
2012-11-01
In this paper we present a new multiscale scheme for simulating micro/nano flows of high aspect ratio in the flow direction, e.g. within long ducts, tubes, or channels, of varying section. The scheme consists of applying a simple hydrodynamic description over the entire domain, and allocating micro sub-domains in very small ``slices'' of the channel. Every micro element is a molecular dynamics simulation (or other appropriate model, e.g., a direct simulation Monte Carlo method for micro-channel gas flows) over the local height of the channel/tube. The number of micro elements as well as their streamwise position is chosen to resolve the geometrical features of the macro channel. While there is no direct communication between individual micro elements, coupling occurs via an iterative imposition of mass and momentum-flux conservation on the macro scale. The greater the streamwise scale of the geometry, the more significant is the computational speed-up when compared to a full MD simulation. We test our new multiscale method on the case of a converging/diverging nanochannel conveying a simple Lennard-Jones liquid. We validate the results from our simulations by comparing them to a full MD simulation of the same test case. Supported by EPSRC Programme Grant, EP/I011927/1.
SU-F-18C-15: Model-Based Multiscale Noise Reduction On Low Dose Cone Beam Projection
International Nuclear Information System (INIS)
Yao, W; Farr, J
2014-01-01
Purpose: To improve image quality of low dose cone beam CT for patient positioning in radiation therapy. Methods: In low dose cone beam CT (CBCT) imaging systems, Poisson process governs the randomness of photon fluence at x-ray source and the detector because of the independent binomial process of photon absorption in medium. On a CBCT projection, the variance of fluence consists of the variance of noiseless imaging structure and that of Poisson noise, which is proportional to the mean (noiseless) of the fluence at the detector. This requires multiscale filters to smoothen noise while keeping the structure information of the imaged object. We used a mathematical model of Poisson process to design multiscale filters and established the balance of noise correction and structure blurring. The algorithm was checked with low dose kilo-voltage CBCT projections acquired from a Varian OBI system. Results: From the investigation of low dose CBCT of a Catphan phantom and patients, it showed that our model-based multiscale technique could efficiently reduce noise and meanwhile keep the fine structure of the imaged object. After the image processing, the number of visible line pairs in Catphan phantom scanned with 4 ms pulse time was similar to that scanned with 32 ms, and soft tissue structure from simulated 4 ms patient head-and-neck images was also comparable with scanned 20 ms ones. Compared with fixed-scale technique, the image quality from multiscale one was improved. Conclusion: Use of projection-specific multiscale filters can reach better balance on noise reduction and structure information loss. The image quality of low dose CBCT can be improved by using multiscale filters
Directory of Open Access Journals (Sweden)
S. L. Gong
2012-09-01
Full Text Available A global air quality modeling system GEM-AQ/EC was developed by implementing tropospheric chemistry and aerosol processes on-line into the Global Environmental Multiscale weather prediction model – GEM. Due to the multi-scale features of the GEM, the integrated model, GEM-AQ/EC, is able to investigate chemical weather at scales from global to urban domains. The current chemical mechanism is comprised of 50 gas-phase species, 116 chemical and 19 photolysis reactions, and is complemented by a sectional aerosol module CAM (The Canadian Aerosol Module with 5 aerosols types: sulphate, black carbon, organic carbon, sea-salt and soil dust. Monthly emission inventories of black carbon and organic carbon from boreal and temperate vegetation fires were assembled using the most reliable areas burned datasets by countries, from statistical databases and derived from remote sensing products of 1995–2004. The model was run for ten years from from 1995–2004 with re-analyzed meteorology on a global uniform 1° × 1° horizontal resolution domain and 28 hybrid levels extending up to 10 hPa. The simulating results were compared with various observations including surface network around the globe and satellite data. Regional features of global aerosols are reasonably captured including emission, surface concentrations and aerosol optical depth. For various types of aerosols, satisfactory correlations were achieved between modeled and observed with some degree of systematic bias possibly due to large uncertainties in the emissions used in this study. A global distribution of natural aerosol contributions to the total aerosols is obtained and compared with observations.
Multi-scale modeling of the thermo-mechanical behavior of particle-based composites
International Nuclear Information System (INIS)
Di Paola, F.
2010-01-01
The aim of this work was to perform numerical simulations of the thermal and mechanical behavior of a particle-based nuclear fuel. This is a refractory composite material made of UO 2 spherical particles which are coated with two layers of pyrocarbon and embedded in a graphite matrix at a high volume fraction (45%). The objective was to develop a multi-scale modeling of this composite material which can estimate its mean behavior as well as the heterogeneity of the local mechanical variables. The first part of this work was dedicated to the modeling of the microstructure in 3D. To do this, we developed tools to generate random distributions of spheres, meshes and to characterize the morphology of the microstructure towards the finite element code Cast3M. A hundred of numerical samples of the composite were created. The second part was devoted to the characterization of the thermo-elastic behavior by the finite element modeling of the samples. We studied the influence of different modeling parameters, one of them is the boundary conditions. We proposed a method to vanish the boundary conditions effects from the computed solution by analyzing it on an internal sub-volume of the sample obtained by erosion. Then, we determined the effective properties (elastic moduli, thermal conductivity and thermal expansion) and the stress distribution within the matrix. Finally, in the third part we proposed a multi-scale modeling to determine the mean values and the variance and covariance of the local mechanical variables for any macroscopic load. This statistical approach have been used to estimate the intra-phase distribution of these variables in the composite material. (author) [fr
Multi-scale modeling of the thermo-mechanical behavior of particle-based composites
International Nuclear Information System (INIS)
Di Paola, F.
2010-11-01
The aim of this work was to perform numerical simulations of the thermal and mechanical behavior of a particle-based nuclear fuel. This is a refractory composite material made of UO 2 spherical particles which are coated with two layers of pyrocarbon and embedded in a graphite matrix at a high volume fraction (45 %). The objective was to develop a multi-scale modeling of this composite material which can estimate its mean behavior as well as the heterogeneity of the local mechanical variables. The first part of this work was dedicated to the modeling of the microstructure in 3D. To do this, we developed tools to generate random distributions of spheres, meshes and to characterize the morphology of the microstructure towards the finite element code Cast3M. A hundred of numerical samples of the composite were created. The second part was devoted to the characterization of the thermo-elastic behavior by the finite element modeling of the samples. We studied the influence of different modeling parameters, one of them is the boundary conditions. We proposed a method to vanish the boundary conditions effects from the computed solution by analyzing it on an internal sub-volume of the sample obtained by erosion. Then, we determined the effective properties (elastic moduli, thermal conductivity and thermal expansion) and the stress distribution within the matrix. Finally, in the third part we proposed a multi-scale modeling to determine the mean values and the variance and covariance of the local mechanical variables for any macroscopic load. This statistical approach have been used to estimate the intra-phase distribution of these variables in the composite material. (author)
SOMAR-LES: A framework for multi-scale modeling of turbulent stratified oceanic flows
Chalamalla, Vamsi K.; Santilli, Edward; Scotti, Alberto; Jalali, Masoud; Sarkar, Sutanu
2017-12-01
A new multi-scale modeling technique, SOMAR-LES, is presented in this paper. Localized grid refinement gives SOMAR (the Stratified Ocean Model with Adaptive Resolution) access to small scales of the flow which are normally inaccessible to general circulation models (GCMs). SOMAR-LES drives a LES (Large Eddy Simulation) on SOMAR's finest grids, forced with large scale forcing from the coarser grids. Three-dimensional simulations of internal tide generation, propagation and scattering are performed to demonstrate this multi-scale modeling technique. In the case of internal tide generation at a two-dimensional bathymetry, SOMAR-LES is able to balance the baroclinic energy budget and accurately model turbulence losses at only 10% of the computational cost required by a non-adaptive solver running at SOMAR-LES's fine grid resolution. This relative cost is significantly reduced in situations with intermittent turbulence or where the location of the turbulence is not known a priori because SOMAR-LES does not require persistent, global, high resolution. To illustrate this point, we consider a three-dimensional bathymetry with grids adaptively refined along the tidally generated internal waves to capture remote mixing in regions of wave focusing. The computational cost in this case is found to be nearly 25 times smaller than that of a non-adaptive solver at comparable resolution. In the final test case, we consider the scattering of a mode-1 internal wave at an isolated two-dimensional and three-dimensional topography, and we compare the results with Legg (2014) numerical experiments. We find good agreement with theoretical estimates. SOMAR-LES is less dissipative than the closure scheme employed by Legg (2014) near the bathymetry. Depending on the flow configuration and resolution employed, a reduction of more than an order of magnitude in computational costs is expected, relative to traditional existing solvers.
Robert S. Arkle; David S. Pilliod; Steven E. Hanser; Matthew L. Brooks; Jeanne C. Chambers; James B. Grace; Kevin C. Knutson; David A. Pyke; Justin L. Welty; Troy A. Wirth
2014-01-01
A recurrent challenge in the conservation of wide-ranging, imperiled species is understanding which habitats to protect and whether we are capable of restoring degraded landscapes. For Greater Sage-grouse (Centrocercus urophasianus), a species of conservation concern in the western United States, we approached this problem by developing multi-scale empirical models of...
Land-Atmosphere Coupling in the Multi-Scale Modelling Framework
Kraus, P. M.; Denning, S.
2015-12-01
The Multi-Scale Modeling Framework (MMF), in which cloud-resolving models (CRMs) are embedded within general circulation model (GCM) gridcells to serve as the model's cloud parameterization, has offered a number of benefits to GCM simulations. The coupling of these cloud-resolving models directly to land surface model instances, rather than passing averaged atmospheric variables to a single instance of a land surface model, the logical next step in model development, has recently been accomplished. This new configuration offers conspicuous improvements to estimates of precipitation and canopy through-fall, but overall the model exhibits warm surface temperature biases and low productivity.This work presents modifications to a land-surface model that take advantage of the new multi-scale modeling framework, and accommodate the change in spatial scale from a typical GCM range of ~200 km to the CRM grid-scale of 4 km.A parameterization is introduced to apportion modeled surface radiation into direct-beam and diffuse components. The diffuse component is then distributed among the land-surface model instances within each GCM cell domain. This substantially reduces the number excessively low light values provided to the land-surface model when cloudy conditions are modeled in the CRM, associated with its 1-D radiation scheme. The small spatial scale of the CRM, ~4 km, as compared with the typical ~200 km GCM scale, provides much more realistic estimates of precipitation intensity, this permits the elimination of a model parameterization of canopy through-fall. However, runoff at such scales can no longer be considered as an immediate flow to the ocean. Allowing sub-surface water flow between land-surface instances within the GCM domain affords better realism and also reduces temperature and productivity biases.The MMF affords a number of opportunities to land-surface modelers, providing both the advantages of direct simulation at the 4 km scale and a much reduced
Multi-scale modeling of urban air pollution: development of a Street-in-Grid model
Kim, Youngseob; Wu, You; Seigneur, Christian; Roustan, Yelva
2016-04-01
A new multi-scale model of urban air pollution is presented. This model combines a chemical-transport model (CTM) that includes a comprehensive treatment of atmospheric chemistry and transport at spatial scales greater than 1 km and a street-network model that describes the atmospheric concentrations of pollutants in an urban street network. The street-network model is based on the general formulation of the SIRANE model and consists of two main components: a street-canyon component and a street-intersection component. The street-canyon component calculates the mass transfer velocity at the top of the street canyon (roof top) and the mean wind velocity within the street canyon. The estimation of the mass transfer velocity depends on the intensity of the standard deviation of the vertical velocity at roof top. The effect of various formulations of this mass transfer velocity on the pollutant transport at roof-top level is examined. The street-intersection component calculates the mass transfer from a given street to other streets across the intersection. These mass transfer rates among the streets are calculated using the mean wind velocity calculated for each street and are balanced so that the total incoming flow rate is equal to the total outgoing flow rate from the intersection including the flow between the intersection and the overlying atmosphere at roof top. In the default option, the Leighton photostationary cycle among ozone (O3) and nitrogen oxides (NO and NO2) is used to represent the chemical reactions within the street network. However, the influence of volatile organic compounds (VOC) on the pollutant concentrations increases when the nitrogen oxides (NOx) concentrations are low. To account for the possible VOC influence on street-canyon chemistry, the CB05 chemical kinetic mechanism, which includes 35 VOC model species, is implemented in this street-network model. A sensitivity study is conducted to assess the uncertainties associated with the use of
Hosseini, Seyed Ali; Shah, Nilay
2011-04-06
There is a large body of literature regarding the choice and optimization of different processes for converting feedstock to bioethanol and bio-commodities; moreover, there has been some reasonable technological development in bioconversion methods over the past decade. However, the eventual cost and other important metrics relating to sustainability of biofuel production will be determined not only by the performance of the conversion process, but also by the performance of the entire supply chain from feedstock production to consumption. Moreover, in order to ensure world-class biorefinery performance, both the network and the individual components must be designed appropriately, and allocation of resources over the resulting infrastructure must effectively be performed. The goal of this work is to describe the key challenges in bioenergy supply chain modelling and then to develop a framework and methodology to show how multi-scale modelling can pave the way to answer holistic supply chain questions, such as the prospects for second generation bioenergy crops.
MEGAPOLI: concept of multi-scale modelling of megacity impact on air quality and climate
Baklanov, A.; Lawrence, M.; Pandis, S.; Mahura, A.; Finardi, S.; Moussiopoulos, N.; Beekmann, M.; Laj, P.; Gomes, L.; Jaffrezo, J.-L.; Borbon, A.; Coll, I.; Gros, V.; Sciare, J.; Kukkonen, J.; Galmarini, S.; Giorgi, F.; Grimmond, S.; Esau, I.; Stohl, A.; Denby, B.; Wagner, T.; Butler, T.; Baltensperger, U.; Builtjes, P.; van den Hout, D.; van der Gon, H. D.; Collins, B.; Schluenzen, H.; Kulmala, M.; Zilitinkevich, S.; Sokhi, R.; Friedrich, R.; Theloke, J.; Kummer, U.; Jalkinen, L.; Halenka, T.; Wiedensholer, A.; Pyle, J.; Rossow, W. B.
2010-11-01
The EU FP7 Project MEGAPOLI: "Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation" (http://megapoli.info) brings together leading European research groups, state-of-the-art scientific tools and key players from non-European countries to investigate the interactions among megacities, air quality and climate. MEGAPOLI bridges the spatial and temporal scales that connect local emissions, air quality and weather with global atmospheric chemistry and climate. The suggested concept of multi-scale integrated modelling of megacity impact on air quality and climate and vice versa is discussed in the paper. It requires considering different spatial and temporal dimensions: time scales from seconds and hours (to understand the interaction mechanisms) up to years and decades (to consider the climate effects); spatial resolutions: with model down- and up-scaling from street- to global-scale; and two-way interactions between meteorological and chemical processes.
Uncertainty Quantification and Management for Multi-scale Nuclear Materials Modeling
International Nuclear Information System (INIS)
McDowell, David; Deo, Chaitanya; Zhu, Ting; Wang, Yan
2015-01-01
Understanding and improving microstructural mechanical stability in metals and alloys is central to the development of high strength and high ductility materials for cladding and cores structures in advanced fast reactors. Design and enhancement of radiation-induced damage tolerant alloys are facilitated by better understanding the connection of various unit processes to collective responses in a multiscale model chain, including: dislocation nucleation, absorption and desorption at interfaces; vacancy production, radiation-induced segregation of Cr and Ni at defect clusters (point defect sinks) in BCC Fe-Cr ferritic/martensitic steels; investigation of interaction of interstitials and vacancies with impurities (V, Nb, Ta, Mo, W, Al, Si, P, S); time evolution of swelling (cluster growth) phenomena of irradiated materials; and energetics and kinetics of dislocation bypass of defects formed by interstitial clustering and formation of prismatic loops, informing statistical models of continuum character with regard to processes of dislocation glide, vacancy agglomeration and swelling, climb and cross slip.
Multiscale multifractal DCCA and complexity behaviors of return intervals for Potts price model
Wang, Jie; Wang, Jun; Stanley, H. Eugene
2018-02-01
To investigate the characteristics of extreme events in financial markets and the corresponding return intervals among these events, we use a Potts dynamic system to construct a random financial time series model of the attitudes of market traders. We use multiscale multifractal detrended cross-correlation analysis (MM-DCCA) and Lempel-Ziv complexity (LZC) perform numerical research of the return intervals for two significant China's stock market indices and for the proposed model. The new MM-DCCA method is based on the Hurst surface and provides more interpretable cross-correlations of the dynamic mechanism between different return interval series. We scale the LZC method with different exponents to illustrate the complexity of return intervals in different scales. Empirical studies indicate that the proposed return intervals from the Potts system and the real stock market indices hold similar statistical properties.
Uncertainty Quantification and Management for Multi-scale Nuclear Materials Modeling
Energy Technology Data Exchange (ETDEWEB)
McDowell, David [Georgia Inst. of Technology, Atlanta, GA (United States); Deo, Chaitanya [Georgia Inst. of Technology, Atlanta, GA (United States); Zhu, Ting [Georgia Inst. of Technology, Atlanta, GA (United States); Wang, Yan [Georgia Inst. of Technology, Atlanta, GA (United States)
2015-10-21
Understanding and improving microstructural mechanical stability in metals and alloys is central to the development of high strength and high ductility materials for cladding and cores structures in advanced fast reactors. Design and enhancement of radiation-induced damage tolerant alloys are facilitated by better understanding the connection of various unit processes to collective responses in a multiscale model chain, including: dislocation nucleation, absorption and desorption at interfaces; vacancy production, radiation-induced segregation of Cr and Ni at defect clusters (point defect sinks) in BCC Fe-Cr ferritic/martensitic steels; investigation of interaction of interstitials and vacancies with impurities (V, Nb, Ta, Mo, W, Al, Si, P, S); time evolution of swelling (cluster growth) phenomena of irradiated materials; and energetics and kinetics of dislocation bypass of defects formed by interstitial clustering and formation of prismatic loops, informing statistical models of continuum character with regard to processes of dislocation glide, vacancy agglomeration and swelling, climb and cross slip.
Environmental Measurements and Modeling
Environmental measurement is any data collection activity involving the assessment of chemical, physical, or biological factors in the environment which affect human health. Learn more about these programs and tools that aid in environmental decisions
Oenema, Jouke; Burgers, Saskia; Verloop, Koos; Hooijboer, Arno; Boumans, Leo; ten Berge, Hein
2010-01-01
Nitrate leaching in intensive grassland- and silage maize-based dairy farming systems on sandy soil is a main environmental concern. Here, statistical relationships are presented between management practices and environmental conditions and nitrate concentration in shallow groundwater (0.8 m depth) at farm, field, and point scales in The Netherlands, based on data collected in a participatory approach over a 7-yr period at one experimental and eight pilot commercial dairy farms on sandy soil. Farm milk production ranged from 10 to 24 Mg ha(-1). Soil and hydrological characteristics were derived from surveys and weather conditions from meteorological stations. Statistical analyses were performed with multiple regression models. Mean nitrate concentration at farm scale decreased from 79 mg L(-1) in 1999 to 63 in 2006, with average nitrate concentration in groundwater decreasing under grassland but increasing under maize land over the monitoring period. The effects of management practices on nitrate concentration varied with spatial scale. At farm scale, nitrogen surplus, grazing intensity, and the relative areas of grassland and maize land significantly contributed to explaining the variance in nitrate concentration in groundwater. Mean nitrate concentration was negatively correlated to the concentration of dissolved organic carbon in the shallow groundwater. At field scale, management practices and soil, hydrological, and climatic conditions significantly contributed to explaining the variance in nitrate concentration in groundwater under grassland and maize land. We conclude that, on these intensive dairy farms, additional measures are needed to comply with the European Union water quality standard in groundwater of 50 mg nitrate L(-1). The most promising measures are omitting fertilization of catch crops and reducing fertilization levels of first-year maize in the rotation.
Małolepszy, Zbigniew; Szynkaruk, Ewa
2015-04-01
The multiscale static modeling of regional structure of the Lublin Basin is carried on in the Polish Geological Institute, in accordance with principles of integrated 3D geological modelling. The model is based on all available geospatial data from Polish digital databases and analogue archives. Mapped regional structure covers the area of 260x80 km located between Warsaw and Polish-Ukrainian border, along NW-SE-trending margin of the East European Craton. Within the basin, the Paleozoic beds with coalbearing Carboniferous and older formations containing hydrocarbons and unconventional prospects are covered unconformably by Permo-Mesozoic and younger rocks. Vertical extent of the regional model is set from topographic surface to 6000 m ssl and at the bottom includes some Proterozoic crystalline formations of the craton. The project focuses on internal consistency of the models built at different scales - from basin (small) scale to field-scale (large-scale). The models, nested in the common structural framework, are being constructed with regional geological knowledge, ensuring smooth transition in the 3D model resolution and amount of geological detail. Major challenge of the multiscale approach to subsurface modelling is the assessment and consistent quantification of various types of geological uncertainties tied to those various scale sub-models. Decreasing amount of information with depth and, particularly, very limited data collected below exploration targets, as well as accuracy and quality of data, all have the most critical impact on the modelled structure. In deeper levels of the Lublin Basin model, seismic interpretation of 2D surveys is sparsely tied to well data. Therefore time-to-depth conversion carries one of the major uncertainties in the modeling of structures, especially below 3000 m ssl. Furthermore, as all models at different scales are based on the same dataset, we must deal with different levels of generalization of geological structures. The
International Nuclear Information System (INIS)
Montgomery, David W. G.; Amira, Abbes; Zaidi, Habib
2007-01-01
The widespread application of positron emission tomography (PET) in clinical oncology has driven this imaging technology into a number of new research and clinical arenas. Increasing numbers of patient scans have led to an urgent need for efficient data handling and the development of new image analysis techniques to aid clinicians in the diagnosis of disease and planning of treatment. Automatic quantitative assessment of metabolic PET data is attractive and will certainly revolutionize the practice of functional imaging since it can lower variability across institutions and may enhance the consistency of image interpretation independent of reader experience. In this paper, a novel automated system for the segmentation of oncological PET data aiming at providing an accurate quantitative analysis tool is proposed. The initial step involves expectation maximization (EM)-based mixture modeling using a k-means clustering procedure, which varies voxel order for initialization. A multiscale Markov model is then used to refine this segmentation by modeling spatial correlations between neighboring image voxels. An experimental study using an anthropomorphic thorax phantom was conducted for quantitative evaluation of the performance of the proposed segmentation algorithm. The comparison of actual tumor volumes to the volumes calculated using different segmentation methodologies including standard k-means, spatial domain Markov Random Field Model (MRFM), and the new multiscale MRFM proposed in this paper showed that the latter dramatically reduces the relative error to less than 8% for small lesions (7 mm radii) and less than 3.5% for larger lesions (9 mm radii). The analysis of the resulting segmentations of clinical oncologic PET data seems to confirm that this methodology shows promise and can successfully segment patient lesions. For problematic images, this technique enables the identification of tumors situated very close to nearby high normal physiologic uptake. The
International Nuclear Information System (INIS)
Pellenq, Roland J.M.
2012-01-01
Document available in extended abstract form only. 'Multi-scale Porous Materials under the Nano-scope'. Setting up the stage, one can list important engineering problems such as hydrogen storage for transportation applications, electric energy storage in batteries, CO 2 sequestration in used coal mines, earthquake mechanisms, durability of nuclear fuels, stability of soils and sediment and cements and concrete cohesive properties in the context of sustainability. With the exception of health, these are basically the challenging engineering problems of the coming century that address energy, environment and natural hazards. Behind all those problems are complex multi-scale porous materials that have a confined fluid in their pore void: water in the case of clays and cement, an electrolyte in the case of batteries and super-capacitors, weakly interacting molecular fluids in the case of hydrogen storage devices, gas-shale and nuclear fuel bars. So what do we mean by 'under the nano-scope'? The nano-scope does not exist as a single experimental technique able of assessing the 3D texture of complex multi-scale material. Obviously techniques such as TEM are part of the answer but are not the 'nano-scope' in itself. In our idea, the 'nano-scope' is more than a technique producing images. It is rather a concept that links a suite of modeling techniques coupled with experiments (electron and X-rays microscopies, tomography, nano-indentation, nano-scratching...). Fig 1 gives an outline of this strategy for cement. It allows accessing material texture, their chemistry, their mechanical behavior, their adsorption/condensation behavior at all scales starting from the nano-scale upwards. The toolbox of the simulation aspect of the 'nano-scope' is akin to a statistical physics description of material texture and properties including the thermodynamics and dynamics of the fluids confined to their pore voids as a means to linking atomic scale properties to macroscopic properties
Bayesian data assimilation for stochastic multiscale models of transport in porous media.
Energy Technology Data Exchange (ETDEWEB)
Marzouk, Youssef M. (Massachusetts Institute of Technology, Cambridge, MA); van Bloemen Waanders, Bart Gustaaf (Sandia National Laboratories, Albuquerque NM); Parno, Matthew (Massachusetts Institute of Technology, Cambridge, MA); Ray, Jaideep; Lefantzi, Sophia; Salazar, Luke (Sandia National Laboratories, Albuquerque NM); McKenna, Sean Andrew (Sandia National Laboratories, Albuquerque NM); Klise, Katherine A. (Sandia National Laboratories, Albuquerque NM)
2011-10-01
We investigate Bayesian techniques that can be used to reconstruct field variables from partial observations. In particular, we target fields that exhibit spatial structures with a large spectrum of lengthscales. Contemporary methods typically describe the field on a grid and estimate structures which can be resolved by it. In contrast, we address the reconstruction of grid-resolved structures as well as estimation of statistical summaries of subgrid structures, which are smaller than the grid resolution. We perform this in two different ways (a) via a physical (phenomenological), parameterized subgrid model that summarizes the impact of the unresolved scales at the coarse level and (b) via multiscale finite elements, where specially designed prolongation and restriction operators establish the interscale link between the same problem defined on a coarse and fine mesh. The estimation problem is posed as a Bayesian inverse problem. Dimensionality reduction is performed by projecting the field to be inferred on a suitable orthogonal basis set, viz. the Karhunen-Loeve expansion of a multiGaussian. We first demonstrate our techniques on the reconstruction of a binary medium consisting of a matrix with embedded inclusions, which are too small to be grid-resolved. The reconstruction is performed using an adaptive Markov chain Monte Carlo method. We find that the posterior distributions of the inferred parameters are approximately Gaussian. We exploit this finding to reconstruct a permeability field with long, but narrow embedded fractures (which are too fine to be grid-resolved) using scalable ensemble Kalman filters; this also allows us to address larger grids. Ensemble Kalman filtering is then used to estimate the values of hydraulic conductivity and specific yield in a model of the High Plains Aquifer in Kansas. Strong conditioning of the spatial structure of the parameters and the non-linear aspects of the water table aquifer create difficulty for the ensemble Kalman
A multi-scale spatial approach to address environmental effects of small hydropower development.
McManamay, Ryan A; Samu, Nicole; Kao, Shih-Chieh; Bevelhimer, Mark S; Hetrick, Shelaine C
2015-01-01
Hydropower development continues to grow worldwide in developed and developing countries. While the ecological and physical responses to dam construction have been well documented, translating this information into planning for hydropower development is extremely difficult. Very few studies have conducted environmental assessments to guide site-specific or widespread hydropower development. Herein, we propose a spatial approach for estimating environmental effects of hydropower development at multiple scales, as opposed to individual site-by-site assessments (e.g., environmental impact assessment). Because the complex, process-driven effects of future hydropower development may be uncertain or, at best, limited by available information, we invested considerable effort in describing novel approaches to represent environmental concerns using spatial data and in developing the spatial footprint of hydropower infrastructure. We then use two case studies in the US, one at the scale of the conterminous US and another within two adjoining rivers basins, to examine how environmental concerns can be identified and related to areas of varying energy capacity. We use combinations of reserve-design planning and multi-metric ranking to visualize tradeoffs among environmental concerns and potential energy capacity. Spatial frameworks, like the one presented, are not meant to replace more in-depth environmental assessments, but to identify information gaps and measure the sustainability of multi-development scenarios as to inform policy decisions at the basin or national level. Most importantly, the approach should foster discussions among environmental scientists and stakeholders regarding solutions to optimize energy development and environmental sustainability.
Siddiq, A.
2013-09-01
We present a variational multiscale constitutive model that accounts for intergranular failure in nanocrystalline fcc metals due to void growth and coalescence in the grain boundary region. Following previous work by the authors, a nanocrystalline material is modeled as a two-phase material consisting of a grain interior phase and a grain boundary affected zone (GBAZ). A crystal plasticity model that accounts for the transition from partial dislocation to full dislocation mediated plasticity is used for the grain interior. Isotropic porous plasticity model with further extension to account for failure due to the void coalescence was used for the GBAZ. The extended model contains all the deformation phases, i.e. elastic deformation, plastic deformation including deviatoric and volumetric plasticity (void growth) followed by damage initiation and evolution due to void coalescence. Parametric studies have been performed to assess the model\\'s dependence on the different input parameters. The model is then validated against uniaxial loading experiments for different materials. Lastly we show the model\\'s ability to predict the damage and fracture of a dog-bone shaped specimen as observed experimentally. © 2013 Elsevier B.V.
Development and application of a multiscale model for the magnetic fusion edge plasma region
International Nuclear Information System (INIS)
Hasenbeck, Felix Martin Michael
2016-01-01
Plasma edge particle and energy transport perpendicular to the magnetic field plays a decisive role for the performance and lifetime of a magnetic fusion reactor. For the particles, classical and neoclassical theories underestimate the associated radial transport by at least an order of magnitude. Drift fluid models, including mesoscale processes on scales down to tenths of millimeters and microseconds, account for the experimentally found level of radial transport; however, numerical simulations for typical reactor scales (of the order of seconds and centimeters) are computationally very expensive. Large scale code simulations are less costly but usually lack an adequate model for the radial transport. The multiscale model presented in this work aims at improving the description of radial particle transport in large scale codes by including the effects of averaged local drift fluid dynamics on the macroscale profiles. The multiscale balances are derived from a generic multiscale model for a fluid, using the Braginskii closure for a collisional, magnetized plasma, and the assumptions of the B2 code model (macroscale balances) and the model of the local version of the drift fluid code ATTEMPT (mesoscale balances). A combined concurrent-sequential coupling procedure is developed for the implementation of the multiscale model within a coupled code system. An algorithm for the determination of statistically stationary states and adequate averaging intervals for the mesoscale data is outlined and tested, proving that it works consistently and efficiently. The general relation between mesoscale and macroscale dynamics is investigated exemplarily by means of a passive scalar system. While mesoscale processes are convective in this system, earlier studies for small Kubo numbers K<<1 have shown that the macroscale behavior is diffusive. In this work it is demonstrated by numerical experiments that also in the regime of large Kubo numbers K<<1 the macroscale transport
Development and application of a multiscale model for the magnetic fusion edge plasma region
Energy Technology Data Exchange (ETDEWEB)
Hasenbeck, Felix Martin Michael
2016-07-01
Plasma edge particle and energy transport perpendicular to the magnetic field plays a decisive role for the performance and lifetime of a magnetic fusion reactor. For the particles, classical and neoclassical theories underestimate the associated radial transport by at least an order of magnitude. Drift fluid models, including mesoscale processes on scales down to tenths of millimeters and microseconds, account for the experimentally found level of radial transport; however, numerical simulations for typical reactor scales (of the order of seconds and centimeters) are computationally very expensive. Large scale code simulations are less costly but usually lack an adequate model for the radial transport. The multiscale model presented in this work aims at improving the description of radial particle transport in large scale codes by including the effects of averaged local drift fluid dynamics on the macroscale profiles. The multiscale balances are derived from a generic multiscale model for a fluid, using the Braginskii closure for a collisional, magnetized plasma, and the assumptions of the B2 code model (macroscale balances) and the model of the local version of the drift fluid code ATTEMPT (mesoscale balances). A combined concurrent-sequential coupling procedure is developed for the implementation of the multiscale model within a coupled code system. An algorithm for the determination of statistically stationary states and adequate averaging intervals for the mesoscale data is outlined and tested, proving that it works consistently and efficiently. The general relation between mesoscale and macroscale dynamics is investigated exemplarily by means of a passive scalar system. While mesoscale processes are convective in this system, earlier studies for small Kubo numbers K<<1 have shown that the macroscale behavior is diffusive. In this work it is demonstrated by numerical experiments that also in the regime of large Kubo numbers K<<1 the macroscale transport
Oenema, J.; Burgers, S.L.G.E.; Verloop, J.; Hooijboer, A.; Boumans, L.; Berge, ten H.F.M.
2010-01-01
Nitrate leaching in intensive grassland- and silage maize-based dairy farming systems on sandy soil is a main environmental concern. Here, statistical relationships are presented between management practices and environmental conditions and nitrate concentration in shallow groundwater (0.8 m depth)
Zieliński, Tomasz G.
2017-11-01
The paper proposes and investigates computationally-efficient microstructure representations for sound absorbing fibrous media. Three-dimensional volume elements involving non-trivial periodic arrangements of straight fibres are examined as well as simple two-dimensional cells. It has been found that a simple 2D quasi-representative cell can provide similar predictions as a volume element which is in general much more geometrically accurate for typical fibrous materials. The multiscale modelling allowed to determine the effective speeds and damping of acoustic waves propagating in such media, which brings up a discussion on the correlation between the speed, penetration range and attenuation of sound waves. Original experiments on manufactured copper-wire samples are presented and the microstructure-based calculations of acoustic absorption are compared with the corresponding experimental results. In fact, the comparison suggested the microstructure modifications leading to representations with non-uniformly distributed fibres.
Modeling and Simulation of High Dimensional Stochastic Multiscale PDE Systems at the Exascale
Energy Technology Data Exchange (ETDEWEB)
Kevrekidis, Ioannis [Princeton Univ., NJ (United States)
2017-03-22
The thrust of the proposal was to exploit modern data-mining tools in a way that will create a systematic, computer-assisted approach to the representation of random media -- and also to the representation of the solutions of an array of important physicochemical processes that take place in/on such media. A parsimonious representation/parametrization of the random media links directly (via uncertainty quantification tools) to good sampling of the distribution of random media realizations. It also links directly to modern multiscale computational algorithms (like the equation-free approach that has been developed in our group) and plays a crucial role in accelerating the scientific computation of solutions of nonlinear PDE models (deterministic or stochastic) in such media – both solutions in particular realizations of the random media, and estimation of the statistics of the solutions over multiple realizations (e.g. expectations).
Multi-scale spatial modeling of human exposure from local sources to global intake
DEFF Research Database (Denmark)
Wannaz, Cedric; Fantke, Peter; Jolliet, Olivier
2018-01-01
Exposure studies, used in human health risk and impact assessments of chemicals are largely performed locally or regionally. It is usually not known how global impacts resulting from exposure to point source emissions compare to local impacts. To address this problem, we introduce Pangea......, an innovative multi-scale, spatial multimedia fate and exposure assessment model. We study local to global population exposure associated with emissions from 126 point sources matching locations of waste-to-energy plants across France. Results for three chemicals with distinct physicochemical properties...... occur within a 100 km radius from the source. This suggests that, by neglecting distant low-level exposure, local assessments might only account for fractions of global cumulative intakes. We also study ~10,000 emission locations covering France more densely to determine per chemical and exposure route...
Multiscale modeling of high contrast brinkman equations with applications to deformable porous media
Brown, Donald
2013-06-18
Simulating porous media flows has a wide range of applications. Often, these applications involve many scales and multi-physical processes. A useful tool in the analysis of such problems in that of homogenization as an averaged description is derived circumventing the need for complicated simulation of the fine scale features. In this work, we recall recent developments of homogenization techniques in the application of flows in deformable porous media. In addition, homogenization of media with high-contrast. In particular, we recall the main ideas of the homogenization of slowly varying Stokes flow and summarize the results of [4]. We also present the ideas for extending these techniques to high-contrast deformable media [3]. These ideas are connected by the modeling of multiscale fluid-structure interaction problems. © 2013 American Society of Civil Engineers.
Modeling of heterogeneous elastic materials by the multiscale hp-adaptive finite element method
Klimczak, Marek; Cecot, Witold
2018-01-01
We present an enhancement of the multiscale finite element method (MsFEM) by combining it with the hp-adaptive FEM. Such a discretization-based homogenization technique is a versatile tool for modeling heterogeneous materials with fast oscillating elasticity coefficients. No assumption on periodicity of the domain is required. In order to avoid direct, so-called overkill mesh computations, a coarse mesh with effective stiffness matrices is used and special shape functions are constructed to account for the local heterogeneities at the micro resolution. The automatic adaptivity (hp-type at the macro resolution and h-type at the micro resolution) increases efficiency of computation. In this paper details of the modified MsFEM are presented and a numerical test performed on a Fichera corner domain is presented in order to validate the proposed approach.
Directory of Open Access Journals (Sweden)
Renke Lühken
2016-05-01
Full Text Available This study analysed Culicoides presence-absence data from 46 sampling sites in Germany, where monitoring was carried out from April 2007 until May 2008. Culicoides presence-absence data were analysed in relation to land cover data, in order to study whether the prevalence of biting midges is correlated to land cover data with respect to the trapping sites. We differentiated eight scales, i.e. buffer zones with radii of 0.5, 1, 2, 3, 4, 5, 7.5 and 10 km, around each site, and chose several land cover variables. For each species, we built eight single-scale models (i.e. predictor variables from one of the eight scales for each model based on averaged, generalised linear models and two multiscale models (i.e. predictor variables from all of the eight scales based on averaged, generalised linear models and generalised linear models with random forest variable selection. There were no significant differences between performance indicators of models built with land cover data from different buffer zones around the trapping sites. However, the overall performance of multi-scale models was higher than the alternatives. Furthermore, these models mostly achieved the best performance for the different species using the index area under the receiver operating characteristic curve. However, as also presented in this study, the relevance of the different variables could significantly differ between various scales, including the number of species affected and the positive or negative direction. This is an even more severe problem if multi-scale models are concerned, in which one model can have the same variable at different scales but with different directions, i.e. negative and positive direction of the same variable at different scales. However, multi-scale modelling is a promising approach to model the distribution of Culicoides species, accounting much more for the ecology of biting midges, which uses different resources (breeding sites, hosts, etc. at
International Nuclear Information System (INIS)
Cruz, Roberto de la; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás
2017-01-01
The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction–diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction–diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge
Directory of Open Access Journals (Sweden)
Juan Guillermo eDiaz Ochoa
2013-01-01
Full Text Available In this study, we focus on a novel multi-scale modeling approach for spatiotemporal prediction of the distribution of substances and resulting hepatotoxicity by combining cellular models, a 2D liver model, and whole-body model. As a case study, we focused on predicting human hepatotoxicity upon treatment with acetaminophen based on in vitro toxicity data and potential inter-individual variability in gene expression and enzyme activities. By aggregating mechanistic, genome-based in silico cells to a novel 2D liver model and eventually to a whole body model, we predicted pharmacokinetic properties, metabolism, and the onset of hepatotoxicity in an in silico patient. Depending on the concentration of acetaminophen in the liver and the accumulation of toxic metabolites, cell integrity in the liver as a function of space and time as well as changes in the elimination rate of substances were estimated. We show that the variations in elimination rates also influence the distribution of acetaminophen and its metabolites in the whole body. Our results are in agreement with experimental results. What is more, the integrated model also predicted variations in drug toxicity depending on alterations of metabolic enzyme activities. Variations in enzyme activity, in turn, reflect genetic characteristics or diseases of individuals. In conclusion, this framework presents an important basis for efficiently integrating inter-individual variability data into models, paving the way for personalized or stratified predictions of drug toxicity and efficacy.
Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated
International Nuclear Information System (INIS)
Chen Xiaoguang; Wayne Brodland, G
2008-01-01
The novel multi-scale computational approach introduced here makes possible a new means for testing hypotheses about the forces that drive specific morphogenetic movements. A 3D model based on this approach is used to investigate neurulation in the axolotl (Ambystoma mexicanum), a type of amphibian. The model is based on geometric data from 3D surface reconstructions of live embryos and from serial sections. Tissue properties are described by a system of cell-based constitutive equations, and parameters in the equations are determined from physical tests. The model includes the effects of Shroom-activated neural ridge reshaping and lamellipodium-driven convergent extension. A typical whole-embryo model consists of 10 239 elements and to run its 100 incremental time steps requires 2 days. The model shows that a normal phenotype does not result if lamellipodium forces are uniform across the width of the neural plate; but it can result if the lamellipodium forces decrease from a maximum value at the mid-sagittal plane to zero at the plate edge. Even the seemingly simple motions of neurulation are found to contain important features that would remain hidden, they were not studied using an advanced computational model. The present model operates in a setting where data are extremely sparse and an important outcome of the study is a better understanding of the role of computational models in such environments
Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated
Chen, Xiaoguang; Brodland, G. Wayne
2008-03-01
The novel multi-scale computational approach introduced here makes possible a new means for testing hypotheses about the forces that drive specific morphogenetic movements. A 3D model based on this approach is used to investigate neurulation in the axolotl (Ambystoma mexicanum), a type of amphibian. The model is based on geometric data from 3D surface reconstructions of live embryos and from serial sections. Tissue properties are described by a system of cell-based constitutive equations, and parameters in the equations are determined from physical tests. The model includes the effects of Shroom-activated neural ridge reshaping and lamellipodium-driven convergent extension. A typical whole-embryo model consists of 10 239 elements and to run its 100 incremental time steps requires 2 days. The model shows that a normal phenotype does not result if lamellipodium forces are uniform across the width of the neural plate; but it can result if the lamellipodium forces decrease from a maximum value at the mid-sagittal plane to zero at the plate edge. Even the seemingly simple motions of neurulation are found to contain important features that would remain hidden, they were not studied using an advanced computational model. The present model operates in a setting where data are extremely sparse and an important outcome of the study is a better understanding of the role of computational models in such environments.
A multiscale model on hospital infections coupling macro and micro dynamics
Wang, Xia; Tang, Sanyi
2017-09-01
A multiscale model of hospital infections coupling the micro model of the growth of bacteria and the macro model describing the transmission of the bacteria among patients and health care workers (HCWs) was established to investigate the effects of antibiotic treatment on the transmission of the bacteria among patients and HCWs. The model was formulated by viewing the transmission rate from infected patients to HCWs and the shedding rate of bacteria from infected patients to the environment as saturated functions of the within-host bacterial load. The equilibria and the basic reproduction number of the coupled system were studied, and the global dynamics of the disease free equilibrium and the endemic equilibrium were analyzed in detail by constructing two Lyapunov functions. Furthermore, effects of drug treatment in the within-host model on the basic reproduction number and the dynamics of the coupled model were studied by coupling a pharmacokinetics model with the within-host model. Sensitive analysis indicated that the growth rate of the bacteria, the maximum drug effect and the dosing interval are the three most sensitive parameters contributing to the basic reproduction number. Thus, adopting ;wonder; drugs to decrease the growth rate of the bacteria or to increase the drug's effect is the most effective measure but changing the dosage regime is also effective. A quantitative criterion of how to choose the best dosage regimen can also be obtained from numerical results.
Saylor, David M; Craven, Brent A; Chandrasekar, Vaishnavi; Simon, David D; Brown, Ronald P; Sussman, Eric M
2018-04-01
Many cardiovascular device alloys contain nickel, which if released in sufficient quantities, can lead to adverse health effects. However, in-vivo nickel release from implanted devices and subsequent biodistribution of nickel ions to local tissues and systemic circulation are not well understood. To address this uncertainty, we have developed a multi-scale (material, tissue, and system) biokinetic model. The model links nickel release from an implanted cardiovascular device to concentrations in peri-implant tissue, as well as in serum and urine, which can be readily monitored. The model was parameterized for a specific cardiovascular implant, nitinol septal occluders, using in-vitro nickel release test results, studies of ex-vivo uptake into heart tissue, and in-vivo and clinical measurements from the literature. Our results show that the model accurately predicts nickel concentrations in peri-implant tissue in an animal model and in serum and urine of septal occluder patients. The congruity of the model with these data suggests it may provide useful insight to establish nickel exposure limits and interpret biomonitoring data. Finally, we use the model to predict local and systemic nickel exposure due to passive release from nitinol devices produced using a wide range of manufacturing processes, as well as general relationships between release rate and exposure. These relationships suggest that peri-implant tissue and serum levels of nickel will remain below 5 μg/g and 10 μg/l, respectively, in patients who have received implanted nitinol cardiovascular devices provided the rate of nickel release per device surface area does not exceed 0.074 μg/(cm 2 d) and is less than 32 μg/d in total. The uncertainty in whether in-vitro tests used to evaluate metal ion release from medical products are representative of clinical environments is one of the largest roadblocks to establishing the associated patient risk. We have developed and validated a multi-scale
A voxel-based multiscale model to simulate the radiation response of hypoxic tumors.
Espinoza, I; Peschke, P; Karger, C P
2015-01-01
In radiotherapy, it is important to predict the response of tumors to irradiation prior to the treatment. This is especially important for hypoxic tumors, which are known to be highly radioresistant. Mathematical modeling based on the dose distribution, biological parameters, and medical images may help to improve this prediction and to optimize the treatment plan. A voxel-based multiscale tumor response model for simulating the radiation response of hypoxic tumors was developed. It considers viable and dead tumor cells, capillary and normal cells, as well as the most relevant biological processes such as (i) proliferation of tumor cells, (ii) hypoxia-induced angiogenesis, (iii) spatial exchange of cells leading to tumor growth, (iv) oxygen-dependent cell survival after irradiation, (v) resorption of dead cells, and (vi) spatial exchange of cells leading to tumor shrinkage. Oxygenation is described on a microscopic scale using a previously published tumor oxygenation model, which calculates the oxygen distribution for each voxel using the vascular fraction as the most important input parameter. To demonstrate the capabilities of the model, the dependence of the oxygen distribution on tumor growth and radiation-induced shrinkage is investigated. In addition, the impact of three different reoxygenation processes is compared and tumor control probability (TCP) curves for a squamous cells carcinoma of the head and neck (HNSSC) are simulated under normoxic and hypoxic conditions. The model describes the spatiotemporal behavior of the tumor on three different scales: (i) on the macroscopic scale, it describes tumor growth and shrinkage during radiation treatment, (ii) on a mesoscopic scale, it provides the cell density and vascular fraction for each voxel, and (iii) on the microscopic scale, the oxygen distribution may be obtained in terms of oxygen histograms. With increasing tumor size, the simulated tumors develop a hypoxic core. Within the model, tumor shrinkage was
A voxel-based multiscale model to simulate the radiation response of hypoxic tumors
International Nuclear Information System (INIS)
Espinoza, I.; Peschke, P.; Karger, C. P.
2015-01-01
Purpose: In radiotherapy, it is important to predict the response of tumors to irradiation prior to the treatment. This is especially important for hypoxic tumors, which are known to be highly radioresistant. Mathematical modeling based on the dose distribution, biological parameters, and medical images may help to improve this prediction and to optimize the treatment plan. Methods: A voxel-based multiscale tumor response model for simulating the radiation response of hypoxic tumors was developed. It considers viable and dead tumor cells, capillary and normal cells, as well as the most relevant biological processes such as (i) proliferation of tumor cells, (ii) hypoxia-induced angiogenesis, (iii) spatial exchange of cells leading to tumor growth, (iv) oxygen-dependent cell survival after irradiation, (v) resorption of dead cells, and (vi) spatial exchange of cells leading to tumor shrinkage. Oxygenation is described on a microscopic scale using a previously published tumor oxygenation model, which calculates the oxygen distribution for each voxel using the vascular fraction as the most important input parameter. To demonstrate the capabilities of the model, the dependence of the oxygen distribution on tumor growth and radiation-induced shrinkage is investigated. In addition, the impact of three different reoxygenation processes is compared and tumor control probability (TCP) curves for a squamous cells carcinoma of the head and neck (HNSSC) are simulated under normoxic and hypoxic conditions. Results: The model describes the spatiotemporal behavior of the tumor on three different scales: (i) on the macroscopic scale, it describes tumor growth and shrinkage during radiation treatment, (ii) on a mesoscopic scale, it provides the cell density and vascular fraction for each voxel, and (iii) on the microscopic scale, the oxygen distribution may be obtained in terms of oxygen histograms. With increasing tumor size, the simulated tumors develop a hypoxic core. Within the
Directory of Open Access Journals (Sweden)
S. F. Mueller
2010-05-01
Full Text Available A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE emissions processing system currently estimates non-methane volatile organic compound (NMVOC emissions from biogenic sources, nitrogen oxide (NOx emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, windblown dust particulate, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide, 44% of total NOx, 80% of reactive carbonaceous gases (NMVOCs and carbon monoxide, 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride, and 84% of fine particles (i.e., those smaller than 2.5 μm in size released into the
Directory of Open Access Journals (Sweden)
Yan Yu
2018-05-01
Full Text Available Urban agglomeration has become the predominant form of urbanization in China. In this process, spatial interaction evidently played a significant role in promoting the collaborative development of these correlated cities. The traditional urban model’s focus on individual cities should be transformed to an urban system model. In this study, a multi-scale simulation model has been proposed to simulate the agglomeration development process of the Wuhan urban agglomeration area by embedding the multi-scale spatial interaction into the transition rule system of cellular automata (CA. A system dynamic model was used to predict the demand for new urban land at an aggregated urban agglomeration area scale. A data field approach was adopted to measuring the interaction of intercity at city scale. Neighborhood interaction was interpreted with a logistic regression method at the land parcel scale. Land use data from 1995, 2005, and 2015 were used to calibrate and evaluate the model. The simulation results show that there has been continuing urban growth in the Wuhan urban agglomeration area from 1995 to 2020. Although extension-sprawl was the predominant pattern of urban spatial expansion, the trend of extensive growth to intensive growth is clear during the entire period. The spatial interaction among these cities has been reinforced, which guided the collaborative development and formed the regional urban system network.
Jia, Xin; Huang, Zhengxiang; Zu, Xudong; Gu, Xiaohui; Xiao, Qiangqiang
2013-12-01
In this study, an optimal finite element model of Kevlar woven fabric that is more computational efficient compared with existing models was developed to simulate ballistic impact onto fabric. Kevlar woven fabric was modeled to yarn level architecture by using the hybrid elements analysis (HEA), which uses solid elements in modeling the yarns at the impact region and uses shell elements in modeling the yarns away from the impact region. Three HEA configurations were constructed, in which the solid element region was set as about one, two, and three times that of the projectile's diameter with impact velocities of 30 m/s (non-perforation case) and 200 m/s (perforation case) to determine the optimal ratio between the solid element region and the shell element region. To further reduce computational time and to maintain the necessary accuracy, three multiscale models were presented also. These multiscale models combine the local region with the yarn level architecture by using the HEA approach and the global region with homogenous level architecture. The effect of the varying ratios of the local and global area on the ballistic performance of fabric was discussed. The deformation and damage mechanisms of fabric were analyzed and compared among numerical models. Simulation results indicate that the multiscale model based on HEA accurately reproduces the baseline results and obviously decreases computational time.
MRI-Based Multiscale Model for Electromagnetic Analysis in the Human Head with Implanted DBS
Directory of Open Access Journals (Sweden)
Maria Ida Iacono
2013-01-01
Full Text Available Deep brain stimulation (DBS is an established procedure for the treatment of movement and affective disorders. Patients with DBS may benefit from magnetic resonance imaging (MRI to evaluate injuries or comorbidities. However, the MRI radio-frequency (RF energy may cause excessive tissue heating particularly near the electrode. This paper studies how the accuracy of numerical modeling of the RF field inside a DBS patient varies with spatial resolution and corresponding anatomical detail of the volume surrounding the electrodes. A multiscale model (MS was created by an atlas-based segmentation using a 1 mm3 head model (mRes refined in the basal ganglia by a 200 μm2 ex-vivo dataset. Four DBS electrodes targeting the left globus pallidus internus were modeled. Electromagnetic simulations at 128 MHz showed that the peak of the electric field of the MS doubled (18.7 kV/m versus 9.33 kV/m and shifted 6.4 mm compared to the mRes model. Additionally, the MS had a sixfold increase over the mRes model in peak-specific absorption rate (SAR of 43.9 kW/kg versus 7 kW/kg. The results suggest that submillimetric resolution and improved anatomical detail in the model may increase the accuracy of computed electric field and local SAR around the tip of the implant.
Model reduction of multiscale chemical langevin equations: a numerical case study.
Sotiropoulos, Vassilios; Contou-Carrere, Marie-Nathalie; Daoutidis, Prodromos; Kaznessis, Yiannis N
2009-01-01
Two very important characteristics of biological reaction networks need to be considered carefully when modeling these systems. First, models must account for the inherent probabilistic nature of systems far from the thermodynamic limit. Often, biological systems cannot be modeled with traditional continuous-deterministic models. Second, models must take into consideration the disparate spectrum of time scales observed in biological phenomena, such as slow transcription events and fast dimerization reactions. In the last decade, significant efforts have been expended on the development of stochastic chemical kinetics models to capture the dynamics of biomolecular systems, and on the development of robust multiscale algorithms, able to handle stiffness. In this paper, the focus is on the dynamics of reaction sets governed by stiff chemical Langevin equations, i.e., stiff stochastic differential equations. These are particularly challenging systems to model, requiring prohibitively small integration step sizes. We describe and illustrate the application of a semianalytical reduction framework for chemical Langevin equations that results in significant gains in computational cost.
Using agricultural practices information for multiscale environmental assessment of phosphorus risk
Matos Moreira, Mariana; Lemercier, Blandine; Michot, Didier; Dupas, Rémi; Gascuel-Odoux, Chantal
2015-04-01
Phosphorus (P) is an essential nutrient for plant growth. In intensively farmed areas, excessive applications of animal manure and mineral P fertilizers to soils have raised both economic and ecological concerns. P accumulation in agricultural soils leads to increased P losses to surface waterbodies contributing to eutrophication. Increasing soil P content over time in agricultural soils is often correlated with agricultural practices; in Brittany (NW France), an intensive livestock farming region, soil P content is well correlated with animal density (Lemercier et al.,2008). Thus, a better understanding of the factors controlling P distribution is required to enable environmental assessment of P risk. The aim of this study was to understand spatial distribution of extractable (Olsen method) and total P contents and its controlling factors at the catchment scale in order to predict P contents at regional scale (Brittany). Data on soil morphology, soil tests (including P status, particles size, organic carbon…) for 198 punctual positions, crops succession since 20 years, agricultural systems, field and animal manure management were obtained on a well-characterized catchment (ORE Agrhys, 10 km²). A multivariate analysis with mixed quantitative variables and factors and a digital soil mapping approach were performed to identify variables playing a significant role in soil total and extractable P contents and distribution. Spatial analysis was performed by means of the Cubist model, a decision tree-based algorithm. Different scenarios were assessed, considering various panels of predictive variables: soil data, terrain attributes derived from digital elevation model, gamma-ray spectrometry (from airborne geophysical survey) and agricultural practices information. In the research catchment, mean extractable and total P content were 140.0 ± 63.4 mg/kg and 2862.7 ± 773.0 mg/kg, respectively. Organic and mineral P inputs, P balance, soil pH, and Al contents were
Ható, Zoltán; Valiskó, Mónika; Kristóf, Tamás; Gillespie, Dirk; Boda, Dezsö
2017-07-21
In a multiscale modeling approach, we present computer simulation results for a rectifying bipolar nanopore at two modeling levels. In an all-atom model, we use explicit water to simulate ion transport directly with the molecular dynamics technique. In a reduced model, we use implicit water and apply the Local Equilibrium Monte Carlo method together with the Nernst-Planck transport equation. This hybrid method makes the fast calculation of ion transport possible at the price of lost details. We show that the implicit-water model is an appropriate representation of the explicit-water model when we look at the system at the device (i.e., input vs. output) level. The two models produce qualitatively similar behavior of the electrical current for different voltages and model parameters. Looking at the details of concentration and potential profiles, we find profound differences between the two models. These differences, however, do not influence the basic behavior of the model as a device because they do not influence the z-dependence of the concentration profiles which are the main determinants of current. These results then address an old paradox: how do reduced models, whose assumptions should break down in a nanoscale device, predict experimental data? Our simulations show that reduced models can still capture the overall device physics correctly, even though they get some important aspects of the molecular-scale physics quite wrong; reduced models work because they include the physics that is necessary from the point of view of device function. Therefore, reduced models can suffice for general device understanding and device design, but more detailed models might be needed for molecular level understanding.
Energy Technology Data Exchange (ETDEWEB)
Luo, Jian; Tomar, Vikas; Zhou, Naixie; Lee, Hongsuk
2013-06-30
Based on a recent discovery of premelting-like grain boundary segregation in refractory metals occurring at high temperatures and/or high alloying levels, this project investigated grain boundary segregation and embrittlement in tungsten (W) based alloys. Specifically, new interfacial thermodynamic models have been developed and quantified to predict high-temperature grain boundary segregation in the W-Ni binary alloy and W-Ni-Fe, W-Ni-Ti, W-Ni-Co, W-Ni-Cr, W-Ni-Zr and W-Ni-Nb ternary alloys. The thermodynamic modeling results have been experimentally validated for selected systems. Furthermore, multiscale modeling has been conducted at continuum, atomistic and quantum-mechanical levels to link grain boundary segregation with embrittlement. In summary, this 3-year project has successfully developed a theoretical framework in combination with a multiscale modeling strategy for predicting grain boundary segregation and embrittlement in W based alloys.
Alleman, Coleman N.; Foulk, James W.; Mota, Alejandro; Lim, Hojun; Littlewood, David J.
2018-02-01
The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.
A hybrid model for dissolved oxygen prediction in aquaculture based on multi-scale features
Directory of Open Access Journals (Sweden)
Chen Li
2018-03-01
Full Text Available To increase prediction accuracy of dissolved oxygen (DO in aquaculture, a hybrid model based on multi-scale features using ensemble empirical mode decomposition (EEMD is proposed. Firstly, original DO datasets are decomposed by EEMD and we get several components. Secondly, these components are used to reconstruct four terms including high frequency term, intermediate frequency term, low frequency term and trend term. Thirdly, according to the characteristics of high and intermediate frequency terms, which fluctuate violently, the least squares support vector machine (LSSVR is used to predict the two terms. The fluctuation of low frequency term is gentle and periodic, so it can be modeled by BP neural network with an optimal mind evolutionary computation (MEC-BP. Then, the trend term is predicted using grey model (GM because it is nearly linear. Finally, the prediction values of DO datasets are calculated by the sum of the forecasting values of all terms. The experimental results demonstrate that our hybrid model outperforms EEMD-ELM (extreme learning machine based on EEMD, EEMD-BP and MEC-BP models based on the mean absolute error (MAE, mean absolute percentage error (MAPE, mean square error (MSE and root mean square error (RMSE. Our hybrid model is proven to be an effective approach to predict aquaculture DO.
Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J
2017-10-03
Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.
Development of a multi-scale simulation model of tube hydroforming for superconducting RF cavities
Energy Technology Data Exchange (ETDEWEB)
Kim, H.S. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Sumption, M.D., E-mail: sumption.3@osu.edu [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Bong, H.J. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Lim, H. [Sandia National Laboratories, Albuquerque, NM (United States); Collings, E.W. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States)
2017-01-02
This work focuses on finite element modeling of the hydroforming process for niobium tubes intended for use in superconducting radio frequency (SRF) cavities. The hydroforming of tubular samples into SRF-relevant shapes involves the complex geometries and loading conditions which develop during the deformation, as well as anisotropic materials properties. Numerical description of the process entails relatively complex numerical simulations. A crystal plasticity (CP) model was constructed that included the evolution of crystallographic orientation during deformation as well as the anisotropy of tubes in all directions and loading conditions. In this work we demonstrate a multi-scale simulation approach which uses both microscopic CP and macroscopic continuum models. In this approach a CP model (developed and implemented into ABAQUS using UMAT) was used for determining the flow stress curve only under bi-axial loading in order to reduce the computing time. The texture of the materials obtained using orientation imaging microscopy (OIM) and tensile test data were inputs for this model. Continuum FE analysis of tube hydroforming using the obtained constitutive equation from the CP modeling was then performed and compared to the results of hydraulic bulge testing. The results show that high quality predictions of the deformation under hydroforming of Nb tubes can be obtained using CP-FEM based on their known texture and the results of tensile tests. The importance of the CP-FEM based approach is that it reduces the need for hydraulic bulge testing, using a relatively simple computational approach.
A multiphysics and multiscale model for low frequency electromagnetic direct-chill casting
International Nuclear Information System (INIS)
Košnik, N; Guštin, A Z; Mavrič, B; Šarler, B
2016-01-01
Simulation and control of macrosegregation, deformation and grain size in low frequency electromagnetic (EM) direct-chill casting (LFEMC) is important for downstream processing. Respectively, a multiphysics and multiscale model is developed for solution of Lorentz force, temperature, velocity, concentration, deformation and grain structure of LFEMC processed aluminum alloys, with focus on axisymmetric billets. The mixture equations with lever rule, linearized phase diagram, and stationary thermoelastic solid phase are assumed, together with EM induction equation for the field imposed by the coil. Explicit diffuse approximate meshless solution procedure [1] is used for solving the EM field, and the explicit local radial basis function collocation method [2] is used for solving the coupled transport phenomena and thermomechanics fields. Pressure-velocity coupling is performed by the fractional step method [3]. The point automata method with modified KGT model is used to estimate the grain structure [4] in a post-processing mode. Thermal, mechanical, EM and grain structure outcomes of the model are demonstrated. A systematic study of the complicated influences of the process parameters can be investigated by the model, including intensity and frequency of the electromagnetic field. The meshless solution framework, with the implemented simplest physical models, will be further extended by including more sophisticated microsegregation and grain structure models, as well as a more realistic solid and solid-liquid phase rheology. (paper)
Multi-scale modelling of ions in solution: from atomistic descriptions to chemical engineering
International Nuclear Information System (INIS)
Molina, J.J.
2011-01-01
Ions in solution play a fundamental role in many physical, chemical, and biological processes. The PUREX process used in the nuclear industry to the treatment of spent nuclear fuels is considered as an example. For industrial applications these systems are usually described using simple analytical models which are fitted to reproduce the available experimental data. In this work, we propose a multi-scale coarse graining procedure to derive such models from atomistic descriptions. First, parameters for classical force-fields of ions in solution are extracted from ab-initio calculations. Effective (McMillan-Mayer) ion-ion potentials are then derived from radial distribution functions measured in classical molecular dynamics simulations, allowing us to define an implicit solvent model of electrolytes. Finally, perturbation calculations are performed to define the best possible representation for these systems, in terms of charged hard-sphere models. Our final model is analytical and contains no free 'fitting' parameters. It shows good agreement with the exact results obtained from Monte-Carlo simulations for the thermodynamic and structural properties. Development of a similar model for the electrolyte viscosity, from information derived from atomistic descriptions, is also introduced. (author)
An eye model for computational dosimetry using a multi-scale voxel phantom
International Nuclear Information System (INIS)
Caracappa, P.F.; Rhodes, A.; Fiedler, D.
2013-01-01
The lens of the eye is a radiosensitive tissue with cataract formation being the major concern. Recently reduced recommended dose limits to the lens of the eye have made understanding the dose to this tissue of increased importance. Due to memory limitations, the voxel resolution of computational phantoms used for radiation dose calculations is too large to accurately represent the dimensions of the eye. A revised eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and is then transformed into a high-resolution voxel model. This eye model is combined with an existing set of whole body models to form a multi-scale voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole body model are developed. When the Lattice Overlay method, the simpler of the two to define, is utilized, the computational penalty in terms of speed is noticeable and the figure of merit for the eye dose tally decreases by as much as a factor of two. When the Voxel Substitution method is applied, the penalty in speed is nearly trivial and the impact on the tally figure of merit is comparatively smaller. The origin of this difference in the code behavior may warrant further investigation
Development of a multi-scale simulation model of tube hydroforming for superconducting RF cavities
International Nuclear Information System (INIS)
Kim, H.S.; Sumption, M.D.; Bong, H.J.; Lim, H.; Collings, E.W.
2017-01-01
This work focuses on finite element modeling of the hydroforming process for niobium tubes intended for use in superconducting radio frequency (SRF) cavities. The hydroforming of tubular samples into SRF-relevant shapes involves the complex geometries and loading conditions which develop during the deformation, as well as anisotropic materials properties. Numerical description of the process entails relatively complex numerical simulations. A crystal plasticity (CP) model was constructed that included the evolution of crystallographic orientation during deformation as well as the anisotropy of tubes in all directions and loading conditions. In this work we demonstrate a multi-scale simulation approach which uses both microscopic CP and macroscopic continuum models. In this approach a CP model (developed and implemented into ABAQUS using UMAT) was used for determining the flow stress curve only under bi-axial loading in order to reduce the computing time. The texture of the materials obtained using orientation imaging microscopy (OIM) and tensile test data were inputs for this model. Continuum FE analysis of tube hydroforming using the obtained constitutive equation from the CP modeling was then performed and compared to the results of hydraulic bulge testing. The results show that high quality predictions of the deformation under hydroforming of Nb tubes can be obtained using CP-FEM based on their known texture and the results of tensile tests. The importance of the CP-FEM based approach is that it reduces the need for hydraulic bulge testing, using a relatively simple computational approach.
Aerosol-cloud interactions in a multi-scale modeling framework
Lin, G.; Ghan, S. J.
2017-12-01
Atmospheric aerosols play an important role in changing the Earth's climate through scattering/absorbing solar and terrestrial radiation and interacting with clouds. However, quantification of the aerosol effects remains one of the most uncertain aspects of current and future climate projection. Much of the uncertainty results from the multi-scale nature of aerosol-cloud interactions, which is very challenging to represent in traditional global climate models (GCMs). In contrast, the multi-scale modeling framework (MMF) provides a viable solution, which explicitly resolves the cloud/precipitation in the cloud resolved model (CRM) embedded in the GCM grid column. In the MMF version of community atmospheric model version 5 (CAM5), aerosol processes are treated with a parameterization, called the Explicit Clouds Parameterized Pollutants (ECPP). It uses the cloud/precipitation statistics derived from the CRM to treat the cloud processing of aerosols on the GCM grid. However, this treatment treats clouds on the CRM grid but aerosols on the GCM grid, which is inconsistent with the reality that cloud-aerosol interactions occur on the cloud scale. To overcome the limitation, here, we propose a new aerosol treatment in the MMF: Explicit Clouds Explicit Aerosols (ECEP), in which we resolve both clouds and aerosols explicitly on the CRM grid. We first applied the MMF with ECPP to the Accelerated Climate Modeling for Energy (ACME) model to have an MMF version of ACME. Further, we also developed an alternative version of ACME-MMF with ECEP. Based on these two models, we have conducted two simulations: one with the ECPP and the other with ECEP. Preliminary results showed that the ECEP simulations tend to predict higher aerosol concentrations than ECPP simulations, because of the more efficient vertical transport from the surface to the higher atmosphere but the less efficient wet removal. We also found that the cloud droplet number concentrations are also different between the
Directory of Open Access Journals (Sweden)
Bangzhu Zhu
2012-02-01
Full Text Available Due to the movement and complexity of the carbon market, traditional monoscale forecasting approaches often fail to capture its nonstationary and nonlinear properties and accurately describe its moving tendencies. In this study, a multiscale ensemble forecasting model integrating empirical mode decomposition (EMD, genetic algorithm (GA and artificial neural network (ANN is proposed to forecast carbon price. Firstly, the proposed model uses EMD to decompose carbon price data into several intrinsic mode functions (IMFs and one residue. Then, the IMFs and residue are composed into a high frequency component, a low frequency component and a trend component which have similar frequency characteristics, simple components and strong regularity using the fine-to-coarse reconstruction algorithm. Finally, those three components are predicted using an ANN trained by GA, i.e., a GAANN model, and the final forecasting results can be obtained by the sum of these three forecasting results. For verification and testing, two main carbon future prices with different maturity in the European Climate Exchange (ECX are used to test the effectiveness of the proposed multiscale ensemble forecasting model. Empirical results obtained demonstrate that the proposed multiscale ensemble forecasting model can outperform the single random walk (RW, ARIMA, ANN and GAANN models without EMD preprocessing and the ensemble ARIMA model with EMD preprocessing.
Wrede, S.; Pfister, L.; Krein, A.; Bogaard, T. A.; Savenije, H. H. G.; Uhlenbrook, S.
2009-04-01
Experimental hydrology focuses traditionally on field investigations at smaller spatial and temporal scales and research is driven by small-scale, detailed and complex investigations of densely instrumented research sites. However, to improve operational water management and protection of water resources at the river basin scale, it is necessary to study the hydrological processes across a range of scales. Empirical studies investigating catchment structure and functioning across multiple scales are still rare and urgently needed. Besides geomorphologic and climatic catchment descriptors, environmental tracers have been recognized as a fundamental tool in experimental hydrology to assess the scaling gap, as they provide an independent and integrative perspective of catchment functioning and scaling. A three year tracer study is being carried out in the Attert river basin in Luxembourg to identify how major controls of runoff generation change across scales and to investigate the spatial and temporal functioning of larger basins. The mesoscale (300 km²) Attert catchment is located in the Midwestern part of Luxembourg and lies at the transition zone of contrasting bedrock lithology that is a major control for runoff generation: The Northern part is characterized by Devonian schist of the Ardennes massif, while sedimentary deposits of sandstone and marls dominate in the Southern part of the basin. Major hydrochemical tracers including stable water isotopes were grab sampled fortnightly and, where possible, also event-based at 13 nested stream locations ranging in size from 0.5 to 300 km² throughout the basin. Results using Deuterium and a range of hydrochemical tracers confirm the major role of bedrock lithology for runoff response of different geological parts of the basins: Hydrological response of schistose basins is characterized by seasonal variation and a delayed shallow groundwater component originating from a saprolitic zone, sandstone basins exhibit a
Macro-economic environmental models
International Nuclear Information System (INIS)
Wier, M.
1993-01-01
In the present report, an introduction to macro-economic environmental models is given. The role of the models as a tool for policy analysis is discussed. Future applications, as well as the limitations given by the data, are brought into focus. The economic-ecological system is described. A set of guidelines for implementation of the system in a traditional economic macro-model is proposed. The characteristics of empirical national and international environmental macro-economic models so far are highlighted. Special attention is paid to main economic causalities and their consequences for the environmental policy recommendations sat by the models. (au) (41 refs.)
Xia, Kelin
2017-12-20
In this paper, a multiscale virtual particle based elastic network model (MVP-ENM) is proposed for the normal mode analysis of large-sized biomolecules. The multiscale virtual particle (MVP) model is proposed for the discretization of biomolecular density data. With this model, large-sized biomolecular structures can be coarse-grained into virtual particles such that a balance between model accuracy and computational cost can be achieved. An elastic network is constructed by assuming "connections" between virtual particles. The connection is described by a special harmonic potential function, which considers the influence from both the mass distributions and distance relations of the virtual particles. Two independent models, i.e., the multiscale virtual particle based Gaussian network model (MVP-GNM) and the multiscale virtual particle based anisotropic network model (MVP-ANM), are proposed. It has been found that in the Debye-Waller factor (B-factor) prediction, the results from our MVP-GNM with a high resolution are as good as the ones from GNM. Even with low resolutions, our MVP-GNM can still capture the global behavior of the B-factor very well with mismatches predominantly from the regions with large B-factor values. Further, it has been demonstrated that the low-frequency eigenmodes from our MVP-ANM are highly consistent with the ones from ANM even with very low resolutions and a coarse grid. Finally, the great advantage of MVP-ANM model for large-sized biomolecules has been demonstrated by using two poliovirus virus structures. The paper ends with a conclusion.
Gantt, B.; Kelly, J. T.; Bash, J. O.
2015-01-01
Sea spray aerosols (SSAs) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. Model evaluations of SSA emissions have mainly focused on the global scale, but regional-scale evaluations are also important due to the localized impact of SSAs on atmospheric chemistry near the coast. In this study, SSA emissions in the Community Multiscale Air Quality (CMAQ) model were updated to enhance the...
Characterising performance of environmental models
Bennett, N.D.; Croke, B.F.W.; Guariso, G.; Guillaume, J.H.A.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newham, L.T.H.; Norton, J.; Perrin, C.; Pierce, S.; Robson, B.; Seppelt, R.; Voinov, A.; Fath, B.D.; Andreassian, V.
2013-01-01
In order to use environmental models effectively for management and decision-making, it is vital to establish an appropriate level of confidence in their performance. This paper reviews techniques available across various fields for characterising the performance of environmental models with focus
Multi-scale modelling of non-uniform consolidation of uncured toughened unidirectional prepregs
Sorba, G.; Binetruy, C.; Syerko, E.; Leygue, A.; Comas-Cardona, S.; Belnoue, J. P.-H.; Nixon-Pearson, O. J.; Ivanov, D. S.; Hallett, S. R.; Advani, S. G.
2018-05-01
Consolidation is a crucial step in manufacturing of composite parts with prepregs because its role is to eliminate inter- and intra-ply gaps and porosity. Some thermoset prepreg systems are toughened with thermoplastic particles. Depending on their size, thermoplastic particles can be either located in between plies or distributed within the inter-fibre regions. When subjected to transverse compaction, resin will bleed out of low-viscosity unidirectional prepregs along the fibre direction, whereas one would expect transverse squeeze flow to dominate for higher viscosity prepregs. Recent experimental work showed that the consolidation of uncured toughened prepregs involves complex flow and deformation mechanisms where both bleeding and squeeze flow patterns are observed [1]. Micrographs of compacted and cured samples confirm these features as shown in Fig.1. A phenomenological model was proposed [2] where bleeding flow and squeeze flow are combined. A criterion for the transition from shear flow to resin bleeding was also proposed. However, the micrographs also reveal a resin rich layer between plies which may be contributing to the complex flow mechanisms during the consolidation process. In an effort to provide additional insight into these complex mechanisms, this work focuses on the 3D numerical modelling of the compaction of uncured toughened prepregs in the cross-ply configuration described in [1]. A transversely isotropic fluid model is used to describe the flow behaviour of the plies coupled with interplay resin flow of an isotropic fluid. The multi-scale flow model used is based on [3, 4]. A numerical parametric study is carried out where the resin viscosity, permeability and inter-ply thickness are varied to identify the role of important variables. The squeezing flow and the bleeding flow are compared for a range of process parameters to investigate the coupling and competition between the two flow mechanisms. Figure 4 shows the predicted displacement of
Multi-scale dynamic modeling of atmospheric pollution in urban environment
International Nuclear Information System (INIS)
Thouron, Laetitia
2017-01-01
Urban air pollution has been identified as an important cause of health impacts, including premature deaths. In particular, ambient concentrations of gaseous pollutants such as nitrogen dioxide (NO 2 ) and particulate matter (PM10 and PM2.5) are regulated, which means that emission reduction strategies must be put in place to reduce these concentrations in places where the corresponding regulations are not respected. Besides, air pollution can contribute to the contamination of other media, for example through the contribution of atmospheric deposition to runoff contamination. The multifactorial and multi-scale aspects of urban make the pollution sources difficult to identify. Indeed, the urban environment is a heterogeneous space characterized by complex architectural structures (old buildings alongside a more modern building, residential, commercial, industrial zones, roads, etc.), non-uniform atmospheric pollutant emissions and therefore the population exposure to pollution is variable in space and time. The modeling of urban air pollution aims to understand the origin of pollutants, their spatial extent and their concentration/deposition levels. Some pollutants have long residence times and can stay several weeks in the atmosphere (PM2.5) and therefore be transported over long distances, while others are more local (NO x in the vicinity of traffic). The spatial distribution of a pollutant will therefore depend on several factors, and in particular on the surfaces encountered. Air quality depends strongly on weather, buildings (canyon-street) and emissions. The aim of this thesis is to address some of these aspects by modeling: (1) urban background pollution with a transport-chemical model (Polyphemus / POLAIR3D), which makes it possible to estimate atmospheric pollutants by type of urban surfaces (roofs, walls and roadways), (2) street-level pollution by explicitly integrating the effects of the building in a three-dimensional way with a multi-scale model of
Everaers, Ralf; Rosa, Angelo
2012-01-07
The quantitative description of polymeric systems requires hierarchical modeling schemes, which bridge the gap between the atomic scale, relevant to chemical or biomolecular reactions, and the macromolecular scale, where the longest relaxation modes occur. Here, we use the formalism for diffusion-controlled reactions in polymers developed by Wilemski, Fixman, and Doi to discuss the renormalisation of the reactivity parameters in polymer models with varying spatial resolution. In particular, we show that the adjustments are independent of chain length. As a consequence, it is possible to match reactions times between descriptions with different resolution for relatively short reference chains and to use the coarse-grained model to make quantitative predictions for longer chains. We illustrate our results by a detailed discussion of the classical problem of chain cyclization in the Rouse model, which offers the simplest example of a multi-scale descriptions, if we consider differently discretized Rouse models for the same physical system. Moreover, we are able to explore different combinations of compact and non-compact diffusion in the local and large-scale dynamics by varying the embedding dimension.
Biology meets Physics: Reductionism and Multi-scale Modeling of Morphogenesis
DEFF Research Database (Denmark)
Green, Sara; Batterman, Robert
2017-01-01
A common reductionist assumption is that macro-scale behaviors can be described "bottom-up" if only sufficient details about lower-scale processes are available. The view that an "ideal" or "fundamental" physics would be sufficient to explain all macro-scale phenomena has been met with criticism ...... modeling in developmental biology. In such contexts, the relation between models at different scales and from different disciplines is neither reductive nor completely autonomous, but interdependent....... from philosophers of biology. Specifically, scholars have pointed to the impossibility of deducing biological explanations from physical ones, and to the irreducible nature of distinctively biological processes such as gene regulation and evolution. This paper takes a step back in asking whether bottom......-up modeling is feasible even when modeling simple physical systems across scales. By comparing examples of multi-scale modeling in physics and biology, we argue that the “tyranny of scales” problem present a challenge to reductive explanations in both physics and biology. The problem refers to the scale...
Energy Technology Data Exchange (ETDEWEB)
Vanoost, D., E-mail: dries.vanoost@kuleuven-kulak.be [KU Leuven Technology Campus Ostend, ReMI Research Group, Oostende B-8400 (Belgium); KU Leuven Kulak, Wave Propagation and Signal Processing Research Group, Kortrijk B-8500 (Belgium); Steentjes, S. [Institute of Electrical Machines, RWTH Aachen University, Aachen D-52062 (Germany); Peuteman, J. [KU Leuven Technology Campus Ostend, ReMI Research Group, Oostende B-8400 (Belgium); KU Leuven, Department of Electrical Engineering, Electrical Energy and Computer Architecture, Heverlee B-3001 (Belgium); Gielen, G. [KU Leuven, Department of Electrical Engineering, Microelectronics and Sensors, Heverlee B-3001 (Belgium); De Gersem, H. [KU Leuven Kulak, Wave Propagation and Signal Processing Research Group, Kortrijk B-8500 (Belgium); TU Darmstadt, Institut für Theorie Elektromagnetischer Felder, Darmstadt D-64289 (Germany); Pissoort, D. [KU Leuven Technology Campus Ostend, ReMI Research Group, Oostende B-8400 (Belgium); KU Leuven, Department of Electrical Engineering, Microelectronics and Sensors, Heverlee B-3001 (Belgium); Hameyer, K. [Institute of Electrical Machines, RWTH Aachen University, Aachen D-52062 (Germany)
2016-09-15
This paper proposes a multi-scale energy-based material model for poly-crystalline materials. Describing the behaviour of poly-crystalline materials at three spatial scales of dominating physical mechanisms allows accounting for the heterogeneity and multi-axiality of the material behaviour. The three spatial scales are the poly-crystalline, grain and domain scale. Together with appropriate scale transitions rules and models for local magnetic behaviour at each scale, the model is able to describe the magneto-elastic behaviour (magnetostriction and hysteresis) at the macroscale, although the data input is merely based on a set of physical constants. Introducing a new energy density function that describes the demagnetisation field, the anhysteretic multi-scale energy-based material model is extended to the hysteretic case. The hysteresis behaviour is included at the domain scale according to the micro-magnetic domain theory while preserving a valid description for the magneto-elastic coupling. The model is verified using existing measurement data for different mechanical stress levels. - Highlights: • A ferromagnetic hysteretic energy-based multi-scale material model is proposed. • The hysteresis is obtained by new proposed hysteresis energy density function. • Avoids tedious parameter identification.
A Multi-Scale Energy Food Systems Modeling Framework For Climate Adaptation
Siddiqui, S.; Bakker, C.; Zaitchik, B. F.; Hobbs, B. F.; Broaddus, E.; Neff, R.; Haskett, J.; Parker, C.
2016-12-01
Our goal is to understand coupled system dynamics across scales in a manner that allows us to quantify the sensitivity of critical human outcomes (nutritional satisfaction, household economic well-being) to development strategies and to climate or market induced shocks in sub-Saharan Africa. We adopt both bottom-up and top-down multi-scale modeling approaches focusing our efforts on food, energy, water (FEW) dynamics to define, parameterize, and evaluate modeled processes nationally as well as across climate zones and communities. Our framework comprises three complementary modeling techniques spanning local, sub-national and national scales to capture interdependencies between sectors, across time scales, and on multiple levels of geographic aggregation. At the center is a multi-player micro-economic (MME) partial equilibrium model for the production, consumption, storage, and transportation of food, energy, and fuels, which is the focus of this presentation. We show why such models can be very useful for linking and integrating across time and spatial scales, as well as a wide variety of models including an agent-based model applied to rural villages and larger population centers, an optimization-based electricity infrastructure model at a regional scale, and a computable general equilibrium model, which is applied to understand FEW resources and economic patterns at national scale. The MME is based on aggregating individual optimization problems for relevant players in an energy, electricity, or food market and captures important food supply chain components of trade and food distribution accounting for infrastructure and geography. Second, our model considers food access and utilization by modeling food waste and disaggregating consumption by income and age. Third, the model is set up to evaluate the effects of seasonality and system shocks on supply, demand, infrastructure, and transportation in both energy and food.
Bednarcyk, Brett A.; Arnold, Steven M.
2012-01-01
A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.
Environmental Satellite Models for a Macroeconomic Model
International Nuclear Information System (INIS)
Moeller, F.; Grinderslev, D.; Werner, M.
2003-01-01
To support national environmental policy, it is desirable to forecast and analyse environmental indicators consistently with economic variables. However, environmental indicators are physical measures linked to physical activities that are not specified in economic models. One way to deal with this is to develop environmental satellite models linked to economic models. The system of models presented gives a frame of reference where emissions of greenhouse gases, acid gases, and leaching of nutrients to the aquatic environment are analysed in line with - and consistently with - macroeconomic variables. This paper gives an overview of the data and the satellite models. Finally, the results of applying the model system to calculate the impacts on emissions and the economy are reviewed in a few illustrative examples. The models have been developed for Denmark; however, most of the environmental data used are from the CORINAIR system implemented in numerous countries
Bayesian Uncertainty Quantification for Subsurface Inversion Using a Multiscale Hierarchical Model
Mondal, Anirban
2014-07-03
We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a random field (spatial or temporal). The Bayesian approach contains a natural mechanism for regularization in the form of prior information, can incorporate information from heterogeneous sources and provide a quantitative assessment of uncertainty in the inverse solution. The Bayesian setting casts the inverse solution as a posterior probability distribution over the model parameters. The Karhunen-Loeve expansion is used for dimension reduction of the random field. Furthermore, we use a hierarchical Bayes model to inject multiscale data in the modeling framework. In this Bayesian framework, we show that this inverse problem is well-posed by proving that the posterior measure is Lipschitz continuous with respect to the data in total variation norm. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of MCMC) and are compounded by high dimensionality of the posterior. We develop two-stage reversible jump MCMC that has the ability to screen the bad proposals in the first inexpensive stage. Numerical results are presented by analyzing simulated as well as real data from hydrocarbon reservoir. This article has supplementary material available online. © 2014 American Statistical Association and the American Society for Quality.
Halloran, J. P.; Sibole, S.; van Donkelaar, C. C.; van Turnhout, M. C.; Oomens, C. W. J.; Weiss, J. A.; Guilak, F.; Erdemir, A.
2012-01-01
Articular cartilage experiences significant mechanical loads during daily activities. Healthy cartilage provides the capacity for load bearing and regulates the mechanobiological processes for tissue development, maintenance, and repair. Experimental studies at multiple scales have provided a fundamental understanding of macroscopic mechanical function, evaluation of the micromechanical environment of chondrocytes, and the foundations for mechanobiological response. In addition, computational models of cartilage have offered a concise description of experimental data at many spatial levels under healthy and diseased conditions, and have served to generate hypotheses for the mechanical and biological function. Further, modeling and simulation provides a platform for predictive risk assessment, management of dysfunction, as well as a means to relate multiple spatial scales. Simulation-based investigation of cartilage comes with many challenges including both the computational burden and often insufficient availability of data for model development and validation. This review outlines recent modeling and simulation approaches to understand cartilage function from a mechanical systems perspective, and illustrates pathways to associate mechanics with biological function. Computational representations at single scales are provided from the body down to the microstructure, along with attempts to explore multiscale mechanisms of load sharing that dictate the mechanical environment of the cartilage and chondrocytes. PMID:22648577
Xavier, Joao B; De Kreuk, Merle K; Picioreanu, Cristian; Van Loosdrecht, Mark C M
2007-09-15
Aerobic granular sludge is a novel compact biological wastewater treatment technology for integrated removal of COD (chemical oxygen demand), nitrogen, and phosphate charges. We present here a multiscale model of aerobic granular sludge sequencing batch reactors (GSBR) describing the complex dynamics of populations and nutrient removal. The macro scale describes bulk concentrations and effluent composition in six solutes (oxygen, acetate, ammonium, nitrite, nitrate, and phosphate). A finer scale, the scale of one granule (1.1 mm of diameter), describes the two-dimensional spatial arrangement of four bacterial groups--heterotrophs, ammonium oxidizers, nitrite oxidizers, and phosphate accumulating organisms (PAO)--using individual based modeling (IbM) with species-specific kinetic models. The model for PAO includes three internal storage compounds: polyhydroxyalkanoates (PHA), poly phosphate, and glycogen. Simulations of long-term reactor operation show how the microbial population and activity depends on the operating conditions. Short-term dynamics of solute bulk concentrations are also generated with results comparable to experimental data from lab scale reactors. Our results suggest that N-removal in GSBR occurs mostly via alternating nitrification/denitrification rather than simultaneous nitrification/denitrification, supporting an alternative strategy to improve N-removal in this promising wastewater treatment process.
Vision 2040: A Roadmap for Integrated, Multiscale Modeling and Simulation of Materials and Systems
Liu, Xuan; Furrer, David; Kosters, Jared; Holmes, Jack
2018-01-01
Over the last few decades, advances in high-performance computing, new materials characterization methods, and, more recently, an emphasis on integrated computational materials engineering (ICME) and additive manufacturing have been a catalyst for multiscale modeling and simulation-based design of materials and structures in the aerospace industry. While these advances have driven significant progress in the development of aerospace components and systems, that progress has been limited by persistent technology and infrastructure challenges that must be overcome to realize the full potential of integrated materials and systems design and simulation modeling throughout the supply chain. As a result, NASA's Transformational Tools and Technology (TTT) Project sponsored a study (performed by a diverse team led by Pratt & Whitney) to define the potential 25-year future state required for integrated multiscale modeling of materials and systems (e.g., load-bearing structures) to accelerate the pace and reduce the expense of innovation in future aerospace and aeronautical systems. This report describes the findings of this 2040 Vision study (e.g., the 2040 vision state; the required interdependent core technical work areas, Key Element (KE); identified gaps and actions to close those gaps; and major recommendations) which constitutes a community consensus document as it is a result of over 450 professionals input obtain via: 1) four society workshops (AIAA, NAFEMS, and two TMS), 2) community-wide survey, and 3) the establishment of 9 expert panels (one per KE) consisting on average of 10 non-team members from academia, government and industry to review, update content, and prioritize gaps and actions. The study envisions the development of a cyber-physical-social ecosystem comprised of experimentally verified and validated computational models, tools, and techniques, along with the associated digital tapestry, that impacts the entire supply chain to enable cost
Progression to multi-scale models and the application to food system intervention strategies.
Gröhn, Yrjö T
2015-02-01
The aim of this article is to discuss how the systems science approach can be used to optimize intervention strategies in food animal systems. It advocates the idea that the challenges of maintaining a safe food supply are best addressed by integrating modeling and mathematics with biological studies critical to formulation of public policy to address these challenges. Much information on the biology and epidemiology of food animal systems has been characterized through single-discipline methods, but until now this information has not been thoroughly utilized in a fully integrated manner. The examples are drawn from our current research. The first, explained in depth, uses clinical mastitis to introduce the concept of dynamic programming to optimize management decisions in dairy cows (also introducing the curse of dimensionality problem). In the second example, a compartmental epidemic model for Johne's disease with different intervention strategies is optimized. The goal of the optimization strategy depends on whether there is a relationship between Johne's and Crohn's disease. If so, optimization is based on eradication of infection; if not, it is based on the cow's performance only (i.e., economic optimization, similar to the mastitis example). The third example focuses on food safety to introduce risk assessment using Listeria monocytogenes and Salmonella Typhimurium. The last example, practical interventions to effectively manage antibiotic resistance in beef and dairy cattle systems, introduces meta-population modeling that accounts for bacterial growth not only in the host (cow), but also in the cow's feed, drinking water and the housing environment. Each example stresses the need to progress toward multi-scale modeling. The article ends with examples of multi-scale systems, from food supply systems to Johne's disease. Reducing the consequences of foodborne illnesses (i.e., minimizing disease occurrence and associated costs) can only occur through an
Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis
Energy Technology Data Exchange (ETDEWEB)
Montgomery, Robert, E-mail: robert.montgomery@pnnl.gov [Pacific Northwest National Laboratory (United States); Tomé, Carlos, E-mail: tome@lanl.gov [Los Alamos National Laboratory (United States); Liu, Wenfeng, E-mail: wenfeng.liu@anatech.com [ANATECH Corporation (United States); Alankar, Alankar, E-mail: alankar.alankar@iitb.ac.in [Indian Institute of Technology Bombay (India); Subramanian, Gopinath, E-mail: gopinath.subramanian@usm.edu [University of Southern Mississippi (United States); Stanek, Christopher, E-mail: stanek@lanl.gov [Los Alamos National Laboratory (United States)
2017-01-01
Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical constitutive models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. To improve upon this approach, a microstructurally-based zirconium alloy mechanical deformation analysis capability is being developed within the United States Department of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL). Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed by Lebensohn and Tomé [1], has been coupled with the BISON engineering scale fuel performance code to represent the mechanistic material processes controlling the deformation behavior of light water reactor (LWR) cladding. A critical component of VPSC is the representation of the crystallographic nature (defect and dislocation movement) and orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. A future goal is for VPSC to obtain information on reaction rate kinetics from atomistic calculations to inform the defect and dislocation behavior models described in VPSC. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON and provides initial results utilizing the coupled functionality.
Directory of Open Access Journals (Sweden)
Mengxue Zhang
Full Text Available Understanding the mechanisms of uterine contractions during pregnancy is especially important in predicting the onset of labor and thus in forecasting preterm deliveries. Preterm birth can cause serious health problems in newborns, as well as large financial burdens to society. Various techniques such as electromyography (EMG and magnetomyography (MMG have been developed to quantify uterine contractions. However, no widely accepted method to predict labor based on electromagnetic measurement is available. Therefore, developing a biophysical model of EMG and MMG could help better understand uterine contractions, interpret real measurements, and detect labor. In this work, we propose a multiscale realistic model of uterine contractions during pregnancy. At the cellular level, building on bifurcation theory, we apply generalized FitzHugh-Nagumo (FHN equations that produces both plateau-type and bursting-type action potentials. At the tissue level, we introduce a random fiber orientation model applicable to an arbitrary uterine shape. We also develop an analytical expression for the propagation speed of transmembrane potential. At the organ level, a realistic volume conductor geometry model is provided based on magnetic resonance images of a pregnant woman. To simulate the measurements from the SQUID Array for Reproductive Assessment (SARA device, we propose a sensor array model. Our model is able to reproduce the characteristics of action potentials. Additionally, we investigate the sensitivity of MMG to model configuration aspects such as volume geometry, fiber orientation, and pacemaker location. Our numerical results show that fiber orientation and pacemaker location are the key aspects that greatly affect the MMG as measured by the SARA device. We conclude that sphere is appropriate as an approximation of the volume geometry. The initial step towards validating the model against real MMG measurement is also presented. Our results show that the
Morris, Ralph E; McNally, Dennis E; Tesche, Thomas W; Tonnesen, Gail; Boylan, James W; Brewer, Patricia
2005-11-01
The Visibility Improvement State and Tribal Association of the Southeast (VISTAS) is one of five Regional Planning Organizations that is charged with the management of haze, visibility, and other regional air quality issues in the United States. The VISTAS Phase I work effort modeled three episodes (January 2002, July 1999, and July 2001) to identify the optimal model configuration(s) to be used for the 2002 annual modeling in Phase II. Using model configurations recommended in the Phase I analysis, 2002 annual meteorological (Mesoscale Meterological Model [MM5]), emissions (Sparse Matrix Operator Kernal Emissions [SMOKE]), and air quality (Community Multiscale Air Quality [CMAQ]) simulations were performed on a 36-km grid covering the continental United States and a 12-km grid covering the Eastern United States. Model estimates were then compared against observations. This paper presents the results of the preliminary CMAQ model performance evaluation for the initial 2002 annual base case simulation. Model performance is presented for the Eastern United States using speciated fine particle concentration and wet deposition measurements from several monitoring networks. Initial results indicate fairly good performance for sulfate with fractional bias values generally within +/-20%. Nitrate is overestimated in the winter by approximately +50% and underestimated in the summer by more than -100%. Organic carbon exhibits a large summer underestimation bias of approximately -100% with much improved performance seen in the winter with a bias near zero. Performance for elemental carbon is reasonable with fractional bias values within +/- 40%. Other fine particulate (soil) and coarse particular matter exhibit large (80-150%) overestimation in the winter but improved performance in the summer. The preliminary 2002 CMAQ runs identified several areas of enhancements to improve model performance, including revised temporal allocation factors for ammonia emissions to improve
Ray, Nadja; Rupp, Andreas; Prechtel, Alexander
2017-09-01
Upscaling transport in porous media including both biomass development and simultaneous structural changes in the solid matrix is extremely challenging. This is because both affect the medium's porosity as well as mass transport parameters and flow paths. We address this challenge by means of a multiscale model. At the pore scale, the local discontinuous Galerkin (LDG) method is used to solve differential equations describing particularly the bacteria's and the nutrient's development. Likewise, a sticky agent tightening together solid or bio cells is considered. This is combined with a cellular automaton method (CAM) capturing structural changes of the underlying computational domain stemming from biomass development and solid restructuring. Findings from standard homogenization theory are applied to determine the medium's characteristic time- and space-dependent properties. Investigating these results enhances our understanding of the strong interplay between a medium's functional properties and its geometric structure. Finally, integrating such properties as model parameters into models defined on a larger scale enables reflecting the impact of pore scale processes on the larger scale.
A Multiscale Computational Model of the Response of Swine Epidermis After Acute Irradiation
Hu, Shaowen; Cucinotta, Francis A.
2012-01-01
Radiation exposure from Solar Particle Events can lead to very high skin dose for astronauts on exploration missions outside the protection of the Earth s magnetic field [1]. Assessing the detrimental effects to human skin under such adverse conditions could be predicted by conducting territorial experiments on animal models. In this study we apply a computational approach to simulate the experimental data of the radiation response of swine epidermis, which is closely similar to human epidermis [2]. Incorporating experimentally measured histological and cell kinetic parameters into a multiscale tissue modeling framework, we obtain results of population kinetics and proliferation index comparable to unirradiated and acutely irradiated swine experiments [3]. It is noted the basal cell doubling time is 10 to 16 days in the intact population, but drops to 13.6 hr in the regenerating populations surviving irradiation. This complex 30-fold variation is proposed to be attributed to the shortening of the G1 phase duration. We investigate this radiation induced effect by considering at the sub-cellular level the expression and signaling of TGF-beta, as it is recognized as a key regulatory factor of tissue formation and wound healing [4]. This integrated model will allow us to test the validity of various basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and should lead to a fuller understanding of the pathophysiological effects of ionizing radiation on the skin.
Naik, Shivangi; Hancock, Bruno; Abramov, Yuriy; Yu, Weili; Rowland, Martin; Huang, Zhonghui; Chaudhuri, Bodhisattwa
2016-04-01
Pharmaceutical powders are very prone to electrostatic charging by colliding and sliding contacts. In pharmaceutical formulation processes, particle charging is often a nuisance and can cause problems in the manufacture of products, such as affecting powder flow, fill, and dose uniformity. For a fundamental understanding of the powder triboelectrification, it is essential to study charge transfer under well-defined conditions. Hence, all experiments in the present study were conducted in a V-blender located inside a glove box with a controlled humidity of 20%. To understand tribocharging, different contact surfaces, namely aluminum, Teflon, poly methyl methacrylate, and nylon were used along with 2 pharmaceutical excipients and 2 drug substances. For the pharmaceutical materials, the work function values were estimated using MOPAC, a semiempirical molecular orbital package which has been previously used for the solid-state studies and molecular structure predictions. For a mechanistic understanding of tribocharging, a discrete element model incorporating charge transfer and electrostatic forces was developed. An effort was made to correlate tribocharging of pharmaceutical powders to properties such as cohesive energy density and surface energy. The multiscale model used is restricted as it considers only spherical particles with smooth surfaces. It should be used judiciously for other experimental assemblies because it does not represent a full validation of a tightly integrated model. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Epidermal Homeostasis and Radiation Responses in a Multiscale Tissue Modeling Framework
Hu, Shaowen; Cucinotta, Francis A.
2013-01-01
The surface of skin is lined with several thin layers of epithelial cells that are maintained throughout life time by a small population of stem cells. High dose radiation exposures could injure and deplete the underlying proliferative cells and induce cutaneous radiation syndrome. In this work we propose a multiscale computational model for skin epidermal dynamics that links phenomena occurring at the subcellular, cellular, and tissue levels of organization, to simulate the experimental data of the radiation response of swine epidermis, which is closely similar to human epidermis. Incorporating experimentally measured histological and cell kinetic parameters, we obtain results of population kinetics and proliferation indexes comparable to observations in unirradiated and acutely irradiated swine experiments. At the sub-cellular level, several recently published Wnt signaling controlled cell-cycle models are applied and the roles of key components and parameters are analyzed. Based on our simulation results, we demonstrate that a moderate increase of proliferation rate for the survival proliferative cells is sufficient to fully repopulate the area denuded by high dose radiation, as long as the integrity of underlying basement membrane is maintained. Our work highlights the importance of considering proliferation kinetics as well as the spatial organization of tissues when conducting in vivo investigations of radiation responses. This integrated model allow us to test the validity of several basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and enhance our understanding of the pathophysiological effects of ionizing radiation on skin.
Multiscale Feature Model for Terrain Data Based on Adaptive Spatial Neighborhood
Directory of Open Access Journals (Sweden)
Huijie Zhang
2013-01-01
Full Text Available Multiresolution hierarchy based on features (FMRH has been applied in the field of terrain modeling and obtained significant results in real engineering. However, it is difficult to schedule multiresolution data in FMRH from external memory. This paper proposed new multiscale feature model and related strategies to cluster spatial data blocks and solve the scheduling problems of FMRH using spatial neighborhood. In the model, the nodes with similar error in the different layers should be in one cluster. On this basis, a space index algorithm for each cluster guided by Hilbert curve is proposed. It ensures that multi-resolution terrain data can be loaded without traversing the whole FMRH; therefore, the efficiency of data scheduling is improved. Moreover, a spatial closeness theorem of cluster is put forward and is also proved. It guarantees that the union of data blocks composites a whole terrain without any data loss. Finally, experiments have been carried out on many different large scale data sets, and the results demonstrate that the schedule time is shortened and the efficiency of I/O operation is apparently improved, which is important in real engineering.
Bruno, Luigi; Decuzzi, Paolo; Gentile, Francesco
2016-01-01
The promise of nanotechnology lies in the possibility of engineering matter on the nanoscale and creating technological interfaces that, because of their small scales, may directly interact with biological objects, creating new strategies for the treatment of pathologies that are otherwise beyond the reach of conventional medicine. Nanotechnology is inherently a multiscale, multiphenomena challenge. Fundamental understanding and highly accurate predictive methods are critical to successful manufacturing of nanostructured materials, bio/mechanical devices and systems. In biomedical engineering, and in the mechanical analysis of biological tissues, classical continuum approaches are routinely utilized, even if these disregard the discrete nature of tissues, that are an interpenetrating network of a matrix (the extra cellular matrix, ECM) and a generally large but finite number of cells with a size falling in the micrometer range. Here, we introduce a nano-mechanical theory that accounts for the-non continuum nature of bio systems and other discrete systems. This discrete field theory, doublet mechanics (DM), is a technique to model the mechanical behavior of materials over multiple scales, ranging from some millimeters down to few nanometers. In the paper, we use this theory to predict the response of a granular material to an external applied load. Such a representation is extremely attractive in modeling biological tissues which may be considered as a spatial set of a large number of particulate (cells) dispersed in an extracellular matrix. Possibly more important of this, using digital image correlation (DIC) optical methods, we provide an experimental verification of the model.
Prediction of Coal Face Gas Concentration by Multi-Scale Selective Ensemble Hybrid Modeling
Directory of Open Access Journals (Sweden)
WU Xiang
2014-06-01
Full Text Available A selective ensemble hybrid modeling prediction method based on wavelet transformation is proposed to improve the fitting and generalization capability of the existing prediction models of the coal face gas concentration, which has a strong stochastic volatility. Mallat algorithm was employed for the multi-scale decomposition and single-scale reconstruction of the gas concentration time series. Then, it predicted every subsequence by sparsely weighted multi unstable ELM(extreme learning machine predictor within method SERELM(sparse ensemble regressors of ELM. At last, it superimposed the predicted values of these models to obtain the predicted values of the original sequence. The proposed method takes advantage of characteristics of multi scale analysis of wavelet transformation, accuracy and fast characteristics of ELM prediction and the generalization ability of L1 regularized selective ensemble learning method. The results show that the forecast accuracy has large increase by using the proposed method. The average relative error is 0.65%, the maximum relative error is 4.16% and the probability of relative error less than 1% reaches 0.785.
Evans, John; Coley, Christopher; Aronson, Ryan; Nelson, Corey
2017-11-01
In this talk, a large eddy simulation methodology for turbulent incompressible flow will be presented which combines the best features of divergence-conforming discretizations and the residual-based variational multiscale approach to large eddy simulation. In this method, the resolved motion is represented using a divergence-conforming discretization, that is, a discretization that preserves the incompressibility constraint in a pointwise manner, and the unresolved fluid motion is explicitly modeled by subgrid vortices that lie within individual grid cells. The evolution of the subgrid vortices is governed by dynamical model equations driven by the residual of the resolved motion. Consequently, the subgrid vortices appropriately vanish for laminar flow and fully resolved turbulent flow. As the resolved velocity field and subgrid vortices are both divergence-free, the methodology conserves mass in a pointwise sense and admits discrete balance laws for energy, enstrophy, and helicity. Numerical results demonstrate the methodology yields improved results versus state-of-the-art eddy viscosity models in the context of transitional, wall-bounded, and rotational flow when a divergence-conforming B-spline discretization is utilized to represent the resolved motion.
de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás
2017-12-01
The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of
Schoorl, J.M.
2002-01-01
"Addressing the Multi-scale Lapsus of Landscape" with the sub-title "Multi-scale landscape process modelling to support sustainable land use: A case study for the Lower Guadalhorce valley South Spain" focuses on the role of
Incremental testing of the Community Multiscale Air Quality (CMAQ modeling system version 4.7
Directory of Open Access Journals (Sweden)
K. M. Foley
2010-03-01
Full Text Available This paper describes the scientific and structural updates to the latest release of the Community Multiscale Air Quality (CMAQ modeling system version 4.7 (v4.7 and points the reader to additional resources for further details. The model updates were evaluated relative to observations and results from previous model versions in a series of simulations conducted to incrementally assess the effect of each change. The focus of this paper is on five major scientific upgrades: (a updates to the heterogeneous N_{2}O_{5} parameterization, (b improvement in the treatment of secondary organic aerosol (SOA, (c inclusion of dynamic mass transfer for coarse-mode aerosol, (d revisions to the cloud model, and (e new options for the calculation of photolysis rates. Incremental test simulations over the eastern United States during January and August 2006 are evaluated to assess the model response to each scientific improvement, providing explanations of differences in results between v4.7 and previously released CMAQ model versions. Particulate sulfate predictions are improved across all monitoring networks during both seasons due to cloud module updates. Numerous updates to the SOA module improve the simulation of seasonal variability and decrease the bias in organic carbon predictions at urban sites in the winter. Bias in the total mass of fine particulate matter (PM_{2.5} is dominated by overpredictions of unspeciated PM_{2.5} (PM_{other} in the winter and by underpredictions of carbon in the summer. The CMAQv4.7 model results show slightly worse performance for ozone predictions. However, changes to the meteorological inputs are found to have a much greater impact on ozone predictions compared to changes to the CMAQ modules described here. Model updates had little effect on existing biases in wet deposition predictions.
Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen
Energy Technology Data Exchange (ETDEWEB)
Plechac, Petr [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mathematics; Univ. of Delaware, Newark, DE (United States). Dept. of Mathematics; Vlachos, Dionisios [Univ. of Delaware, Newark, DE (United States). Dept. of Chemical and Biomolecular Engineering; Katsoulakis, Markos [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Mathematics
2013-09-05
The overall objective of this project is to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals. Specific goals include: (i) Development of rigorous spatio-temporal coarse-grained kinetic Monte Carlo (KMC) mathematics and simulation for microscopic processes encountered in biomass transformation. (ii) Development of hybrid multiscale simulation that links stochastic simulation to a deterministic partial differential equation (PDE) model for an entire reactor. (iii) Development of hybrid multiscale simulation that links KMC simulation with quantum density functional theory (DFT) calculations. (iv) Development of parallelization of models of (i)-(iii) to take advantage of Petaflop computing and enable real world applications of complex, multiscale models. In this NCE period, we continued addressing these objectives and completed the proposed work. Main initiatives, key results, and activities are outlined.
PSI-BOIL, a building block towards the multi-scale modeling of flow boiling phenomena
International Nuclear Information System (INIS)
Niceno, Bojan; Andreani, Michele; Prasser, Horst-Michael
2008-01-01
Full text of publication follows: In these work we report the current status of the Swiss project Multi-scale Modeling Analysis (MSMA), jointly financed by PSI and Swissnuclear. The project aims at addressing the multi-scale (down to nano-scale) modelling of convective boiling phenomena, and the development of physically-based closure laws for the physical scales appropriate to the problem considered, to be used within Computational Fluid Dynamics (CFD) codes. The final goal is to construct a new computational tool, called Parallel Simulator of Boiling phenomena (PSI-BOIL) for the direct simulation of processes all the way down to the small-scales of interest and an improved CFD code for the mechanistic prediction of two-phase flow and heat transfer in the fuel rod bundle of a nuclear reactor. An improved understanding of the physics of boiling will be gained from the theoretical work as well as from novel small- and medium scale experiments targeted to assist the development of closure laws. PSI-BOIL is a computer program designed for efficient simulation of turbulent fluid flow and heat transfer phenomena in simple geometries. Turbulence is simulated directly (DNS) and its efficiency plays a vital role in a successful simulation. Having high performance as one of the main prerequisites, PSIBOIL is tailored in such a way to be as efficient a tool as possible, relying on well-established numerical techniques and sacrificing all the features which are not essential for the success of this project and which might slow down the solution procedure. The governing equations are discretized in space with orthogonal staggered finite volume method. Time discretization is performed with projection method, the most obvious a the most widely used choice for DNS. Systems of linearized equation, stemming from the discretization of governing equations, are solved with the Additive Correction Multigrid (ACM). methods. Two distinguished features of PSI-BOIL are the possibility to
Laleian, A.; Valocchi, A. J.; Werth, C. J.
2017-12-01
Multiscale models of reactive transport in porous media are capable of capturing complex pore-scale processes while leveraging the efficiency of continuum-scale models. In particular, porosity changes caused by biofilm development yield complex feedbacks between transport and reaction that are difficult to quantify at the continuum scale. Pore-scale models, needed to accurately resolve these dynamics, are often impractical for applications due to their computational cost. To address this challenge, we are developing a multiscale model of biofilm growth in which non-overlapping regions at pore and continuum spatial scales are coupled with a mortar method providing continuity at interfaces. We explore two decompositions of coupled pore-scale and continuum-scale regions to study biofilm growth in a transverse mixing zone. In the first decomposition, all reaction is confined to a pore-scale region extending the transverse mixing zone length. Only solute transport occurs in the surrounding continuum-scale regions. Relative to a fully pore-scale result, we find the multiscale model with this decomposition has a reduced run time and consistent result in terms of biofilm growth and solute utilization. In the second decomposition, reaction occurs in both an up-gradient pore-scale region and a down-gradient continuum-scale region. To quantify clogging, the continuum-scale model implements empirical relations between porosity and continuum-scale parameters, such as permeability and the transverse dispersion coefficient. Solutes are sufficiently mixed at the end of the pore-scale region, such that the initial reaction rate is accurately computed using averaged concentrations in the continuum-scale region. Relative to a fully pore-scale result, we find accuracy of biomass growth in the multiscale model with this decomposition improves as the interface between pore-scale and continuum-scale regions moves downgradient where transverse mixing is more fully developed. Also, this
Energy Technology Data Exchange (ETDEWEB)
David A. Randall; Marat Khairoutdinov
2007-12-14
The Colorado State University (CSU) Multi-scale Modeling Framework (MMF) is a new type of general circulation model (GCM) that replaces the conventional parameterizations of convection, clouds and boundary layer with a cloud-resolving model (CRM) embedded into each grid column. The MMF that we have been working with is a “super-parameterized” version of the Community Atmosphere Model (CAM). As reported in the publications listed below, we have done extensive work with the model. We have explored the MMF’s performance in several studies, including an AMIP run and a CAPT test, and we have applied the MMF to an analysis of climate sensitivity.
Directory of Open Access Journals (Sweden)
Aurélie Carlier
Full Text Available The healing of a fracture depends largely on the development of a new blood vessel network (angiogenesis in the callus. During angiogenesis tip cells lead the developing sprout in response to extracellular signals, amongst which vascular endothelial growth factor (VEGF is critical. In order to ensure a correct development of the vasculature, the balance between stalk and tip cell phenotypes must be tightly controlled, which is primarily achieved by the Dll4-Notch1 signaling pathway. This study presents a novel multiscale model of osteogenesis and sprouting angiogenesis, incorporating lateral inhibition of endothelial cells (further denoted MOSAIC model through Dll4-Notch1 signaling, and applies it to fracture healing. The MOSAIC model correctly predicted the bone regeneration process and recapitulated many experimentally observed aspects of tip cell selection: the salt and pepper pattern seen for cell fates, an increased tip cell density due to the loss of Dll4 and an excessive number of tip cells in high VEGF environments. When VEGF concentration was even further increased, the MOSAIC model predicted the absence of a vascular network and fracture healing, thereby leading to a non-union, which is a direct consequence of the mutual inhibition of neighboring cells through Dll4-Notch1 signaling. This result was not retrieved for a more phenomenological model that only considers extracellular signals for tip cell migration, which illustrates the importance of implementing the actual signaling pathway rather than phenomenological rules. Finally, the MOSAIC model demonstrated the importance of a proper criterion for tip cell selection and the need for experimental data to further explore this. In conclusion, this study demonstrates that the MOSAIC model creates enhanced capabilities for investigating the influence of molecular mechanisms on angiogenesis and its relation to bone formation in a more mechanistic way and across different time and spatial
Sehgal, V.; Lakhanpal, A.; Maheswaran, R.; Khosa, R.; Sridhar, Venkataramana
2018-01-01
This study proposes a wavelet-based multi-resolution modeling approach for statistical downscaling of GCM variables to mean monthly precipitation for five locations at Krishna Basin, India. Climatic dataset from NCEP is used for training the proposed models (Jan.'69 to Dec.'94) and are applied to corresponding CanCM4 GCM variables to simulate precipitation for the validation (Jan.'95-Dec.'05) and forecast (Jan.'06-Dec.'35) periods. The observed precipitation data is obtained from the India Meteorological Department (IMD) gridded precipitation product at 0.25 degree spatial resolution. This paper proposes a novel Multi-Scale Wavelet Entropy (MWE) based approach for clustering climatic variables into suitable clusters using k-means methodology. Principal Component Analysis (PCA) is used to obtain the representative Principal Components (PC) explaining 90-95% variance for each cluster. A multi-resolution non-linear approach combining Discrete Wavelet Transform (DWT) and Second Order Volterra (SoV) is used to model the representative PCs to obtain the downscaled precipitation for each downscaling location (W-P-SoV model). The results establish that wavelet-based multi-resolution SoV models perform significantly better compared to the traditional Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) based frameworks. It is observed that the proposed MWE-based clustering and subsequent PCA, helps reduce the dimensionality of the input climatic variables, while capturing more variability compared to stand-alone k-means (no MWE). The proposed models perform better in estimating the number of precipitation events during the non-monsoon periods whereas the models with clustering without MWE over-estimate the rainfall during the dry season.
Modeling and Simulation of Electromutagenic Processes for Multiscale Modification of Concrete
Directory of Open Access Journals (Sweden)
Daniela S. Mainardi
2009-04-01
Full Text Available Concrete contains numerous pores that allow degradation when chloride ions migrate through these paths and make contact with the steel reinforcement in a structure. Chlorides come mainly from the sea or de-icing salts. To keep the reinforcement from being exposed to chlorides, it is possible to electrokinetically force nanoparticles into the pores, blocking access. This procedure is called electrokinetic nanoparticle treatment. When the particles used are reactive in nature, the process becomes both structural and chemical in nature. We use the term electromutagenic processing to describe such extensive electrochemical remodeling. Filling the pores in a block of concrete with solid materials or nanoparticles tends to improve the strength significantly. In this paper, results obtained from modeling and simulation were aimed at multi-scale porosity reduction of concrete. Since nanoparticles and pores were modeled with spheres and cylinders having different sizes, the results were compared with traditional sphere packing problems in mathematics. There were significant differences observed related to the sizes of spheres and allowable boundary conditions. From traditional sphere packing analysis the highest porosity reduction anticipated was 74%. In contrast, the highest pore reduction obtained in this work was approximately 50%, which matched results from actual electrokinetic nanoparticle treatments. This work also compared the analytical and simulation methods used for several sizes of nanoparticles and pores.
Multiscale Modeling of Plasmon-Exciton Dynamics of Malachite Green Monolayers on Gold Nanoparticles
Smith, Holden; Karam, Tony; Haber, Louis; Lopata, Kenneth
A multi-scale hybrid quantum/classical approach using classical electrodynamics and a collection of discrete two-level quantum system is used to investigate the coupling dynamics of malachite green monolayers adsorbed to the surface of a spherical gold nanoparticle (NP). This method utilizes finite difference time domain (FDTD) to describe the plasmonic response of the NP and a two-level quantum description for the molecule via the Maxwell/Liouville equation. The molecular parameters are parameterized using CASPT2 for the energies and transition dipole moments, with the dephasing lifetime fit to experiment. This approach is suited to simulating thousands of molecules on the surface of a plasmonic NP. There is good agreement with experimental extinction measurements, predicting the plasmon and molecule depletions. Additionally, this model captures the polariton peaks overlapped with a Fano-type resonance profile observed in the experimental extinction measurements. This technique shows promise for modeling plasmon/molecule interactions in chemical sensing and light harvesting in multi-chromophore systems. This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 and by the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.
Multi-scale modeling of interaction between vacancies and alloying elements in ferritic alloys
International Nuclear Information System (INIS)
Barouh, Caroline
2015-01-01
This PhD thesis is devoted to the study of interaction between vacancies and alloying elements in Oxide Dispersion Strengthened (ODS) steels, which are promising candidate materials for future nuclear reactors. This work is based on multi-scale modeling of a simplified system composed by oxygen, yttrium and titanium atoms and vacancies in an α-iron lattice. We particularly focused on the role of vacancies which are created in excess during the fabrication of these steels. The stability and mobility of vacancy-solute clusters have been examined using ab initio calculations for oxygen, on one hand, which has been systematically compared to carbon and nitrogen, interstitial solutes frequently present in iron-based materials, and, on the other hand, for substitutional solutes: titanium and yttrium. The three interstitial solutes show very similar energetic and kinetic behaviors. The impact of small mobile vacancy-solute clusters has been verified using a cluster dynamics model based on our ab initio results. It has been thus demonstrated that with over-saturation of vacancies, diffusion of interstitial solutes may be accelerated, while substitutional solutes do not become necessarily faster. These conclusions are consistent with existing experimental observations. All these results have been then used to complete our understanding of nano-clusters formation mechanisms. It appeared that the relative mobility of yttrium and titanium, as well as the number of potential nuclei to form nanoparticles strongly depend on the total vacancy concentration in the system. (author) [fr
Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocomposites
Energy Technology Data Exchange (ETDEWEB)
Montazeri, A. [Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); Rafii-Tabar, H., E-mail: rafii-tabar@nano.ipm.ac.ir [Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, and Research Centre for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of)
2011-10-31
A combination of molecular dynamics, molecular structural mechanics, and finite element method is employed to compute the elastic constants of a polymeric nanocomposite embedded with graphene sheets, and carbon nanotubes. The model is first applied to study the effect of inclusion of graphene sheets on the Young modulus of the composite. To explore the significance of the nanofiller geometry, the elastic constants of nanotube-based and graphene-based polymer composites are computed under identical conditions. The reinforcement role of these nanofillers is also investigated in transverse directions. Moreover, the dependence of the nanocomposite's axial Young modulus on the presence of ripples on the surface of the embedded graphene sheets, due to thermal fluctuations, is examined via MD simulations. Finally, we have also studied the effect of sliding motion of graphene layers on the elastic constants of the nanocomposite. -- Highlights: → A hierarchical MD/FEM multiscale model of nanocomposites is developed. → At low nanofiller content, graphene layers perform significantly better than CNTs. → Ripples in the graphene layers reduce the Young modulus of nanocomposites. → The elastic moduli is considerably affected by the shear of graphene layers.
Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocomposites
International Nuclear Information System (INIS)
Montazeri, A.; Rafii-Tabar, H.
2011-01-01
A combination of molecular dynamics, molecular structural mechanics, and finite element method is employed to compute the elastic constants of a polymeric nanocomposite embedded with graphene sheets, and carbon nanotubes. The model is first applied to study the effect of inclusion of graphene sheets on the Young modulus of the composite. To explore the significance of the nanofiller geometry, the elastic constants of nanotube-based and graphene-based polymer composites are computed under identical conditions. The reinforcement role of these nanofillers is also investigated in transverse directions. Moreover, the dependence of the nanocomposite's axial Young modulus on the presence of ripples on the surface of the embedded graphene sheets, due to thermal fluctuations, is examined via MD simulations. Finally, we have also studied the effect of sliding motion of graphene layers on the elastic constants of the nanocomposite. -- Highlights: → A hierarchical MD/FEM multiscale model of nanocomposites is developed. → At low nanofiller content, graphene layers perform significantly better than CNTs. → Ripples in the graphene layers reduce the Young modulus of nanocomposites. → The elastic moduli is considerably affected by the shear of graphene layers.
Hosseini, Seyed Ali; Shah, Nilay
2011-01-01
There is a large body of literature regarding the choice and optimization of different processes for converting feedstock to bioethanol and bio-commodities; moreover, there has been some reasonable technological development in bioconversion methods over the past decade. However, the eventual cost and other important metrics relating to sustainability of biofuel production will be determined not only by the performance of the conversion process, but also by the performance of the entire supply chain from feedstock production to consumption. Moreover, in order to ensure world-class biorefinery performance, both the network and the individual components must be designed appropriately, and allocation of resources over the resulting infrastructure must effectively be performed. The goal of this work is to describe the key challenges in bioenergy supply chain modelling and then to develop a framework and methodology to show how multi-scale modelling can pave the way to answer holistic supply chain questions, such as the prospects for second generation bioenergy crops. PMID:22482032
2017-10-31
resolved by the recognition that cities are first and foremost self- organizing social networks embedded in space and enabled by urban infrastructure and...AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS b. ABSTRACT 2. REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF PAGES 5d...Report: Energy and Environmental Drivers of Stress and Conflict in Multi-scale Models of Human Social Behavior The views, opinions and/or findings
Toward Multi-scale Modeling and simulation of conduction in heterogeneous materials
Energy Technology Data Exchange (ETDEWEB)
Lechman, Jeremy B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bolintineanu, Dan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Cooper, Marcia A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Erikson, William W. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Foiles, Stephen M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Kay, Jeffrey J [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Phinney, Leslie M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Piekos, Edward S. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Specht, Paul Elliott [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Wixom, Ryan R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Yarrington, Cole [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2015-01-01
This report summarizes a project in which the authors sought to develop and deploy: (i) experimental techniques to elucidate the complex, multiscale nature of thermal transport in particle-based materials; and (ii) modeling approaches to address current challenges in predicting performance variability of materials (e.g., identifying and characterizing physical- chemical processes and their couplings across multiple length and time scales, modeling information transfer between scales, and statically and dynamically resolving material structure and its evolution during manufacturing and device performance). Experimentally, several capabilities were successfully advanced. As discussed in Chapter 2 a flash diffusivity capability for measuring homogeneous thermal conductivity of pyrotechnic powders (and beyond) was advanced; leading to enhanced characterization of pyrotechnic materials and properties impacting component development. Chapter 4 describes success for the first time, although preliminary, in resolving thermal fields at speeds and spatial scales relevant to energetic components. Chapter 7 summarizes the first ever (as far as the authors know) application of TDTR to actual pyrotechnic materials. This is the first attempt to actually characterize these materials at the interfacial scale. On the modeling side, new capabilities in image processing of experimental microstructures and direct numerical simulation on complicated structures were advanced (see Chapters 3 and 5). In addition, modeling work described in Chapter 8 led to improved prediction of interface thermal conductance from first principles calculations. Toward the second point, for a model system of packed particles, significant headway was made in implementing numerical algorithms and collecting data to justify the approach in terms of highlighting the phenomena at play and pointing the way forward in developing and informing the kind of modeling approach originally envisioned (see Chapter 6). In
Multiscale empirical modeling of the geomagnetic field: From storms to substorms
Stephens, G. K.; Sitnov, M. I.; Korth, H.; Gkioulidou, M.; Ukhorskiy, A. Y.; Merkin, V. G.
2017-12-01
An advanced version of the TS07D empirical geomagnetic field model, herein called SST17, is used to model the global picture of the geomagnetic field and its characteristic variations on both storm and substorm scales. The new SST17 model uses two regular expansions describing the equatorial currents with each having distinctly different scales, one corresponding to a thick and one to a thin current sheet relative to the thermal ion gyroradius. These expansions have an arbitrary distribution of currents in the equatorial plane that is constrained only by magnetometer data. This multi-scale description allows one to reproduce the current sheet thinning during the growth phase. Additionaly, the model uses a flexible description of field-aligned currents that reproduces their spiral structure at low altitudes and provides a continuous transition from region 1 to region 2 current systems. The empirical picture of substorms is obtained by combining magnetometer data from Geotail, THEMIS, Van Allen Probes, Cluster II, Polar, IMP-8, GOES 8, 9, 10 and 12 and then binning this data based on similar values of the auroral index AL, its time derivative and the integral of the solar wind electric field parameter (from ACE, Wind, and IMP-8) in time over substorm scales. The performance of the model is demonstrated for several events, including the 3 July 2012 substorm, which had multi-probe coverage and a series of substorms during the March 2008 storm. It is shown that the AL binning helps reproduce dipolarization signatures in the northward magnetic field Bz, while the solar wind electric field integral allows one to capture the current sheet thinning during the growth phase. The model allows one to trace the substorm dipolarization from the tail to the inner magnetosphere where the dipolarization of strongly stretched tail field lines causes a redistribution of the tail current resulting in an enhancement of the partial ring current in the premidnight sector.
Modelling an industrial anaerobic granular reactor using a multi-scale approach.
Feldman, H; Flores-Alsina, X; Ramin, P; Kjellberg, K; Jeppsson, U; Batstone, D J; Gernaey, K V
2017-12-01
The objective of this paper is to show the results of an industrial project dealing with modelling of anaerobic digesters. A multi-scale mathematical approach is developed to describe reactor hydrodynamics, granule growth/distribution and microbial competition/inhibition for substrate/space within the biofilm. The main biochemical and physico-chemical processes in the model are based on the Anaerobic Digestion Model No 1 (ADM1) extended with the fate of phosphorus (P), sulfur (S) and ethanol (Et-OH). Wastewater dynamic conditions are reproduced and data frequency increased using the Benchmark Simulation Model No 2 (BSM2) influent generator. All models are tested using two plant data sets corresponding to different operational periods (#D1, #D2). Simulation results reveal that the proposed approach can satisfactorily describe the transformation of organics, nutrients and minerals, the production of methane, carbon dioxide and sulfide and the potential formation of precipitates within the bulk (average deviation between computer simulations and measurements for both #D1, #D2 is around 10%). Model predictions suggest a stratified structure within the granule which is the result of: 1) applied loading rates, 2) mass transfer limitations and 3) specific (bacterial) affinity for substrate. Hence, inerts (X I ) and methanogens (X ac ) are situated in the inner zone, and this fraction lowers as the radius increases favouring the presence of acidogens (X su ,X aa , X fa ) and acetogens (X c4 ,X pro ). Additional simulations show the effects on the overall process performance when operational (pH) and loading (S:COD) conditions are modified. Lastly, the effect of intra-granular precipitation on the overall organic/inorganic distribution is assessed at: 1) different times; and, 2) reactor heights. Finally, the possibilities and opportunities offered by the proposed approach for conducting engineering optimization projects are discussed. Copyright © 2017 Elsevier Ltd. All
May, Christian P; Kolokotroni, Eleni; Stamatakos, Georgios S; Büchler, Philippe
2011-10-01
Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning. Copyright © 2011 Elsevier Ltd. All rights reserved.
Simulations of ecosystem hydrological processes using a unified multi-scale model
Energy Technology Data Exchange (ETDEWEB)
Yang, Xiaofan; Liu, Chongxuan; Fang, Yilin; Hinkle, Ross; Li, Hong-Yi; Bailey, Vanessa; Bond-Lamberty, Ben
2015-01-01
This paper presents a unified multi-scale model (UMSM) that we developed to simulate hydrological processes in an ecosystem containing both surface water and groundwater. The UMSM approach modifies the Navier–Stokes equation by adding a Darcy force term to formulate a single set of equations to describe fluid momentum and uses a generalized equation to describe fluid mass balance. The advantage of the approach is that the single set of the equations can describe hydrological processes in both surface water and groundwater where different models are traditionally required to simulate fluid flow. This feature of the UMSM significantly facilitates modelling of hydrological processes in ecosystems, especially at locations where soil/sediment may be frequently inundated and drained in response to precipitation, regional hydrological and climate changes. In this paper, the UMSM was benchmarked using WASH123D, a model commonly used for simulating coupled surface water and groundwater flow. Disney Wilderness Preserve (DWP) site at the Kissimmee, Florida, where active field monitoring and measurements are ongoing to understand hydrological and biogeochemical processes, was then used as an example to illustrate the UMSM modelling approach. The simulations results demonstrated that the DWP site is subject to the frequent changes in soil saturation, the geometry and volume of surface water bodies, and groundwater and surface water exchange. All the hydrological phenomena in surface water and groundwater components including inundation and draining, river bank flow, groundwater table change, soil saturation, hydrological interactions between groundwater and surface water, and the migration of surface water and groundwater interfaces can be simultaneously simulated using the UMSM. Overall, the UMSM offers a cross-scale approach that is particularly suitable to simulate coupled surface and ground water flow in ecosystems with strong surface water and groundwater interactions.
International Nuclear Information System (INIS)
Varloteaux, C.
2012-01-01
The geo-sequestration of carbon dioxide (CO 2 ) is an attractive option to reduce the emission of greenhouse gases. Within carbonate reservoirs, acidification of brine in place can occur during CO 2 injection. This acidification leads to mineral dissolution which can modify the transport properties of a solute in porous media. The aim of this study is to quantify the impact of reactive transport on a solute distribution and on the structural modification induced by the reaction from the pore to the reservoir scale. This study is focused on reactive transport problem in the case of single phase flow in the limit of long time. To do so, we used a multi-scale up-scaling method that takes into account (i) the local scale, where flow, reaction and transport are known; (ii) the pore scale, where the reactive transport is addressed by using averaged formulation of the local equations; (iii) the Darcy scale (also called core scale), where the structure of the rock is taken into account by using a three-dimensions network of pore-bodies connected by pore-throats; and (iv) the reservoir scale, where physical phenomenon, within each cell of the reservoir model, are taken into account by introducing macroscopic coefficients deduced from the study of these phenomenon at the Darcy scale, such as the permeability, the apparent reaction rate, the solute apparent velocity and dispersion. (author)
Directory of Open Access Journals (Sweden)
B. Harris
2012-07-01
Full Text Available Digital Elevation Models (DEMs allow for the efficient and consistent creation of waterways and catchment boundaries over large areas. Studies of waterway delineation from DEMs are usually undertaken over small or single catchment areas due to the nature of the problems being investigated. Improvements in Geographic Information Systems (GIS techniques, software, hardware and data allow for analysis of larger data sets and also facilitate a consistent tool for the creation and analysis of waterways over extensive areas. However, rarely are they developed over large regional areas because of the lack of available raw data sets and the amount of work required to create the underlying DEMs. This paper examines definition of waterways and catchments over an area of approximately 25,000 km2 to establish the optimal DEM scale required for waterway delineation over large regional projects. The comparative study analysed multi-scale DEMs over two test areas (Wivenhoe catchment, 543 km2 and a detailed 13 km2 within the Wivenhoe catchment including various data types, scales, quality, and variable catchment input parameters. Historic and available DEM data was compared to high resolution Lidar based DEMs to assess variations in the formation of stream networks. The results identified that, particularly in areas of high elevation change, DEMs at 20 m cell size created from broad scale 1:25,000 data (combined with more detailed data or manual delineation in flat areas are adequate for the creation of waterways and catchments at a regional scale.
International Nuclear Information System (INIS)
Sathyamoorthy, Dinesh
2014-01-01
The derivation of spatial significance is an important aspect of geospatial analysis and hence, various methods have been proposed to compute the spatial significance of entities based on spatial distances with other entities within the cluster. This paper is aimed at studying the spatial significance of mountain objects extracted from multiscale digital elevation models (DEMs). At each scale, the value of spatial significance index SSI of a mountain object is the minimum number of morphological dilation iterations required to occupy all the other mountain objects in the terrain. The mountain object with the lowest value of SSI is the spatially most significant mountain object, indicating that it has the shortest distance to the other mountain objects. It is observed that as the area of the mountain objects reduce with increasing scale, the distances between the mountain objects increase, resulting in increasing values of SSI. The results obtained indicate that the strategic location of a mountain object at the centre of the terrain is more important than its size in determining its reach to other mountain objects and thus, its spatial significance
Harris, B.; McDougall, K.; Barry, M.
2012-07-01
Digital Elevation Models (DEMs) allow for the efficient and consistent creation of waterways and catchment boundaries over large areas. Studies of waterway delineation from DEMs are usually undertaken over small or single catchment areas due to the nature of the problems being investigated. Improvements in Geographic Information Systems (GIS) techniques, software, hardware and data allow for analysis of larger data sets and also facilitate a consistent tool for the creation and analysis of waterways over extensive areas. However, rarely are they developed over large regional areas because of the lack of available raw data sets and the amount of work required to create the underlying DEMs. This paper examines definition of waterways and catchments over an area of approximately 25,000 km2 to establish the optimal DEM scale required for waterway delineation over large regional projects. The comparative study analysed multi-scale DEMs over two test areas (Wivenhoe catchment, 543 km2 and a detailed 13 km2 within the Wivenhoe catchment) including various data types, scales, quality, and variable catchment input parameters. Historic and available DEM data was compared to high resolution Lidar based DEMs to assess variations in the formation of stream networks. The results identified that, particularly in areas of high elevation change, DEMs at 20 m cell size created from broad scale 1:25,000 data (combined with more detailed data or manual delineation in flat areas) are adequate for the creation of waterways and catchments at a regional scale.
Multiscale modeling, coarse-graining and shock wave computer simulationsin materials science
Directory of Open Access Journals (Sweden)
Martin O. Steinhauser
2017-12-01
Full Text Available My intention in this review article is to briefly discuss several major topics of presentdaycomputational materials science in order to show their importance for state-of-the-art materialsmodeling and computer simulation. The topics I discuss are multiscale modeling approaches forhierarchical systems such as biological macromolecules and related coarse-graining techniques, whichprovide an effcient means to investigate systems on the mesoscale, and shock wave physics whichhas many important and interesting multi- and interdisciplinary applications in research areas wherephysics, biology, chemistry, computer science, medicine and even engineering meet. In fact, recently,as a new emerging field, the use of coarse-grained approaches for the simulation of biologicalmacromolecules such as lipids and bilayer membranes and the investigation of their interaction withshock waves has become very popular. This emerging area of research may contribute not only toan improved understanding of the microscopic details of molecular self-assembly but may also leadto enhanced medical tumor treatments which are based on the destructive effects of High IntensityFocused Ultrasound (HIFU or shock waves when interacting with biological cells and tissue; theseare treatments which have been used in medicine for many years, but which are not well understoodfrom a fundamental physical point of view.
This article describes the governing equations, computational algorithms, and other components entering into the Community Multiscale Air Quality (CMAQ) modeling system. This system has been designed to approach air quality as a whole by including state-of-the-science capabiliti...
Multi-Scale Model of Galactic Cosmic Ray Effects on the Hippocampus
Cucinotta, Francis
An important concern for risk assessment from galactic cosmic ray (GCR) exposures is impacts to the central nervous systems including changes in cognition, and associations with increased risk of Alzheimer’s disease (AD). AD, which affects about 50 percent of the population above age 80-yr, is a degenerative disease that worsens with time after initial onset leading to death, and has no known cure. AD is difficult to detect at early stages, and the small number of epidemiology studies that have considered the possibility have not identified an association with low dose radiation. However, experimental studies in transgenic mice suggest the possibility exits. We discuss modeling approaches to consider mechanisms whereby GCR would accelerate the occurrence of AD to earlier ages. Biomarkers of AD include Amyloid beta plaques, and neurofibrillary tangles (NFT) made up of aggregates of the hyper-phosphorylated form of the micro-tubule associated, tau protein. Related markers include synaptic degeneration, dendritic spine loss, and neuronal cell loss through apoptosis. GCR may affect these processes by causing oxidative stress, aberrant signaling following DNA damage, and chronic neuro-inflammation. Cell types considered in multi-scale models are neurons, astrocytes, and microglia. We developed biochemical and cell kinetics models of DNA damage signaling related to glycogen synthase kinase-3 beta and neuro-inflammation, and considered approaches to develop computer simulations of GCR induced cell interactions and their relationships to Amyloid beta plaques and NFTs. Comparison of model results to experimental data for the age specific development of plaques in transgenic mice and predictions of space radiation effects will be discussed.
A Multiscale Agent-Based in silico Model of Liver Fibrosis Progression
Energy Technology Data Exchange (ETDEWEB)
Dutta-Moscato, Joyeeta [Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA (United States); Department of Surgery, University of Pittsburgh, Pittsburgh, PA (United States); Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Solovyev, Alexey [Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Department of Mathematics, University of Pittsburgh, Pittsburgh, PA (United States); Mi, Qi [Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA (United States); Nishikawa, Taichiro [McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA (United States); Soto-Gutierrez, Alejandro [McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Department of Pathology, University of Pittsburgh, Pittsburgh, PA (United States); Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA (United States); Fox, Ira J. [McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA (United States); Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA (United States); Vodovotz, Yoram, E-mail: vodovotzy@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, PA (United States); Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA (United States)
2014-05-30
Chronic hepatic inflammation involves a complex interplay of inflammatory and mechanical influences, ultimately manifesting in a characteristic histopathology of liver fibrosis. We created an agent-based model (ABM) of liver tissue in order to computationally examine the consequence of liver inflammation. Our liver fibrosis ABM (LFABM) is comprised of literature-derived rules describing molecular and histopathological aspects of inflammation and fibrosis in a section of chemically injured liver. Hepatocytes are modeled as agents within hexagonal lobules. Injury triggers an inflammatory reaction, which leads to activation of local Kupffer cells and recruitment of monocytes from circulation. Portal fibroblasts and hepatic stellate cells are activated locally by the products of inflammation. The various agents in the simulation are regulated by above-threshold concentrations of pro- and anti-inflammatory cytokines and damage-associated molecular pattern molecules. The simulation progresses from chronic inflammation to collagen deposition, exhibiting periportal fibrosis followed by bridging fibrosis, and culminating in disruption of the regular lobular structure. The ABM exhibited key histopathological features observed in liver sections from rats treated with carbon tetrachloride (CCl{sub 4}). An in silico “tension test” for the hepatic lobules predicted an overall increase in tissue stiffness, in line with clinical elastography literature and published studies in CCl{sub 4}-treated rats. Therapy simulations suggested differential anti-fibrotic effects of neutralizing tumor necrosis factor alpha vs. enhancing M2 Kupffer cells. We conclude that a computational model of liver inflammation on a structural skeleton of physical forces can recapitulate key histopathological and macroscopic properties of CCl{sub 4}-injured liver. This multiscale approach linking molecular and chemomechanical stimuli enables a model that could be used to gain translationally relevant
Performance of the Goddard multiscale modeling framework with Goddard ice microphysical schemes
Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Matsui, Toshihisa; Li, J.-L. F.; Mohr, Karen I.; Skofronick-Jackson, Gail M.; Peters-Lidard, Christa D.
2016-03-01
The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount, total cloud fractions, net radiation, and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow and graupel. Despite the cloud microphysics improvements, systematic errors associated with subgrid processes, cyclic lateral boundaries in the embedded CRMs, and momentum transport remain and will require future improvement.
A Multiscale Agent-Based in silico Model of Liver Fibrosis Progression
International Nuclear Information System (INIS)
Dutta-Moscato, Joyeeta; Solovyev, Alexey; Mi, Qi; Nishikawa, Taichiro; Soto-Gutierrez, Alejandro; Fox, Ira J.; Vodovotz, Yoram
2014-01-01
Chronic hepatic inflammation involves a complex interplay of inflammatory and mechanical influences, ultimately manifesting in a characteristic histopathology of liver fibrosis. We created an agent-based model (ABM) of liver tissue in order to computationally examine the consequence of liver inflammation. Our liver fibrosis ABM (LFABM) is comprised of literature-derived rules describing molecular and histopathological aspects of inflammation and fibrosis in a section of chemically injured liver. Hepatocytes are modeled as agents within hexagonal lobules. Injury triggers an inflammatory reaction, which leads to activation of local Kupffer cells and recruitment of monocytes from circulation. Portal fibroblasts and hepatic stellate cells are activated locally by the products of inflammation. The various agents in the simulation are regulated by above-threshold concentrations of pro- and anti-inflammatory cytokines and damage-associated molecular pattern molecules. The simulation progresses from chronic inflammation to collagen deposition, exhibiting periportal fibrosis followed by bridging fibrosis, and culminating in disruption of the regular lobular structure. The ABM exhibited key histopathological features observed in liver sections from rats treated with carbon tetrachloride (CCl 4 ). An in silico “tension test” for the hepatic lobules predicted an overall increase in tissue stiffness, in line with clinical elastography literature and published studies in CCl 4 -treated rats. Therapy simulations suggested differential anti-fibrotic effects of neutralizing tumor necrosis factor alpha vs. enhancing M2 Kupffer cells. We conclude that a computational model of liver inflammation on a structural skeleton of physical forces can recapitulate key histopathological and macroscopic properties of CCl 4 -injured liver. This multiscale approach linking molecular and chemomechanical stimuli enables a model that could be used to gain translationally relevant insights into
Valocchi, A. J.; Laleian, A.; Werth, C. J.
2017-12-01
Perturbation of natural subsurface systems by fluid inputs may induce geochemical or microbiological reactions that change porosity and permeability, leading to complex coupled feedbacks between reaction and transport processes. Some examples are precipitation/dissolution processes associated with carbon capture and storage and biofilm growth associated with contaminant transport and remediation. We study biofilm growth due to mixing controlled reaction of multiple substrates. As biofilms grow, pore clogging occurs which alters pore-scale flow paths thus changing the mixing and reaction. These interactions are challenging to quantify using conventional continuum-scale porosity-permeability relations. Pore-scale models can accurately resolve coupled reaction, biofilm growth and transport processes, but modeling at this scale is not feasible for practical applications. There are two approaches to address this challenge. Results from pore-scale models in generic pore structures can be used to develop empirical relations between porosity and continuum-scale parameters, such as permeability and dispersion coefficients. The other approach is to develop a multiscale model of biofilm growth in which non-overlapping regions at pore and continuum spatial scales are coupled by a suitable method that ensures continuity of flux across the interface. Thus, regions of high reactivity where flow alteration occurs are resolved at the pore scale for accuracy while regions of low reactivity are resolved at the continuum scale for efficiency. This approach thus avoids the need for empirical upscaling relations in regions with strong feedbacks between reaction and porosity change. We explore and compare these approaches for several two-dimensional cases.
International Nuclear Information System (INIS)
Gu, T.; Medy, J.-R.; Volpi, F.; Castelnau, O.; Forest, S.; Hervé-Luanco, E.; Lecouturier, F.; Proudhon, H.; Renault, P.-O.
2017-01-01
Nanostructured and architectured copper niobium composite wires are excellent candidates for the generation of intense pulsed magnetic fields (> 90T) as they combine both high electrical conductivity and high strength. Multi-scaled Cu-Nb wires can be fabricated by accumulative drawing and bundling (a severe plastic deformation technique), leading to a multiscale, architectured and nanostructured microstructure providing a unique set of properties. This work presents a comprehensive multiscale study to predict the anisotropic effective electrical conductivity based on material nanostructure and architecture. Two homogenization methods are applied: a mean-field theory and a full-field approach. The size effect associated with the microstructure refinement is taken into account in the definition of the conductivity of each component in the composites. The multiscale character of the material is then accounted for through an iterative process. Both methods show excellent agreement with each other. The results are further compared, for the first time, with experimental data obtained by the four-point probe technique, and also show excellent agreement. Finally, the qualitative and quantitative understanding provided by these models demonstrates that the microstructure of Cu-Nb wires has a significant effect on the electrical conductivity.
Directory of Open Access Journals (Sweden)
Luca Faes
2017-01-01
Full Text Available The most common approach to assess the dynamical complexity of a time series across multiple temporal scales makes use of the multiscale entropy (MSE and refined MSE (RMSE measures. In spite of their popularity, MSE and RMSE lack an analytical framework allowing their calculation for known dynamic processes and cannot be reliably computed over short time series. To overcome these limitations, we propose a method to assess RMSE for autoregressive (AR stochastic processes. The method makes use of linear state-space (SS models to provide the multiscale parametric representation of an AR process observed at different time scales and exploits the SS parameters to quantify analytically the complexity of the process. The resulting linear MSE (LMSE measure is first tested in simulations, both theoretically to relate the multiscale complexity of AR processes to their dynamical properties and over short process realizations to assess its computational reliability in comparison with RMSE. Then, it is applied to the time series of heart period, arterial pressure, and respiration measured for healthy subjects monitored in resting conditions and during physiological stress. This application to short-term cardiovascular variability documents that LMSE can describe better than RMSE the activity of physiological mechanisms producing biological oscillations at different temporal scales.
Cartier, V.; Claret, C.; Garnier, R.; Fayolle, S.; Franquet, E.
2010-03-01
The complexity of the relationships between environmental factors and organisms can be revealed by sampling designs which consider the contribution to variability of different temporal and spatial scales, compared to total variability. From a management perspective, a multi-scale approach can lead to time-saving. Identifying environmental patterns that help maintain patchy distribution is fundamental in studying coastal lagoons, transition zones between continental and marine waters characterised by great environmental variability on spatial and temporal scales. They often present organic enrichment inducing decreased species richness and increased densities of opportunist species like C hironomus salinarius, a common species that tends to swarm and thus constitutes a nuisance for human populations. This species is dominant in the Bolmon lagoon, a French Mediterranean coastal lagoon under eutrophication. Our objective was to quantify variability due to both spatial and temporal scales and identify the contribution of different environmental factors to this variability. The population of C. salinarius was sampled from June 2007 to June 2008 every two months at 12 sites located in two areas of the Bolmon lagoon, at two different depths, with three sites per area-depth combination. Environmental factors (temperature, dissolved oxygen both in sediment and under water surface, sediment organic matter content and grain size) and microbial activities (i.e. hydrolase activities) were also considered as explanatory factors of chironomid densities and distribution. ANOVA analysis reveals significant spatial differences regarding the distribution of chironomid larvae for the area and the depth scales and their interaction. The spatial effect is also revealed for dissolved oxygen (water), salinity and fine particles (area scale), and for water column depth. All factors but water column depth show a temporal effect. Spearman's correlations highlight the seasonal effect
Pârvu, Ovidiu; Gilbert, David
2016-01-01
Insights gained from multilevel computational models of biological systems can be translated into real-life applications only if the model correctness has been verified first. One of the most frequently employed in silico techniques for computational model verification is model checking. Traditional model checking approaches only consider the evolution of numeric values, such as concentrations, over time and are appropriate for computational models of small scale systems (e.g. intracellular networks). However for gaining a systems level understanding of how biological organisms function it is essential to consider more complex large scale biological systems (e.g. organs). Verifying computational models of such systems requires capturing both how numeric values and properties of (emergent) spatial structures (e.g. area of multicellular population) change over time and across multiple levels of organization, which are not considered by existing model checking approaches. To address this limitation we have developed a novel approximate probabilistic multiscale spatio-temporal meta model checking methodology for verifying multilevel computational models relative to specifications describing the desired/expected system behaviour. The methodology is generic and supports computational models encoded using various high-level modelling formalisms because it is defined relative to time series data and not the models used to generate it. In addition, the methodology can be automatically adapted to case study specific types of spatial structures and properties using the spatio-temporal meta model checking concept. To automate the computational model verification process we have implemented the model checking approach in the software tool Mule (http://mule.modelchecking.org). Its applicability is illustrated against four systems biology computational models previously published in the literature encoding the rat cardiovascular system dynamics, the uterine contractions of labour
Integrated Environmental Assessment Modelling
Energy Technology Data Exchange (ETDEWEB)
Guardanz, R; Gimeno, B S; Bermejo, V; Elvira, S; Martin, F; Palacios, M; Rodriguez, E; Donaire, I [Ciemat, Madrid (Spain)
2000-07-01
This report describes the results of the Spanish participation in the project Coupling CORINAIR data to cost-effect emission reduction strategies based on critical threshold. (EU/LIFE97/ENV/FIN/336). The subproject has focused on three tasks. Develop tools to improve knowledge on the spatial and temporal details of emissions of air pollutants in Spain. Exploit existing experimental information on plant response to air pollutants in temperate ecosystem and Integrate these findings in a modelling framework that can asses with more accuracy the impact of air pollutants to temperate ecosystems. The results obtained during the execution of this project have significantly improved the models of the impact of alternative emission control strategies on ecosystems and crops in the Iberian Peninsula. (Author) 375 refs.
A software framework for process flow execution of stochastic multi-scale integrated models
Schmitz, Oliver; de Kok, Jean Luc; Karssenberg, Derek
2016-01-01
Dynamic environmental models use a state transition function, external inputs and parameters to simulate the change of real-world processes over time. Modellers specify the state transition function and the external inputs required in the process calculation of each time step in a component model, a
Lardeau, Sylvain; Ferrari, Simone; Rossi, Lionel
2008-12-01
Three-dimensional (3D) direct numerical simulations of a flow driven by multiscale electromagnetic forcing are performed in order to reproduce with maximum accuracy the quasi-two-dimensional (2D) flow generated by the same multiscale forcing in the laboratory. The method presented is based on a 3D description of the flow and the electromagnetic forcing. Very good agreements between our simulations and the experiments are found both on velocity and acceleration field, this last comparison being, to our knowledge, done for the first time. Such agreement requires that both experiments and simulations are carefully performed and, more importantly, that the underlying simplification to model the experiments and the multiscale electromagnetic forcing do not introduce significant errors. The results presented in this paper differ significantly from previous 2D direct numerical simulation in which a classical linear Rayleigh friction modeling term was used to mimic the effect of the wall-normal friction. Indeed, purely 2D simulations are found to underestimate the Reynolds number and, due to the dominance of nonhomogeneous bottom friction, lead to the wrong physical mechanism. For the range of conditions presented in this paper, the Reynolds number, defined by the ratio between acceleration and viscous terms, remains the order of unity, and the Hartmann number, defined by the ratio between electromagnetic force terms and viscous terms, is about 2. The main conclusion is that 3D simulations are required to model the (3D) electromagnetic forces and the wall-normal shear. Indeed, even if the flow is quasi-2D in terms of energy, a full 3D approach is required to simulate these shallow layer flows driven by multiscale electromagnetic forcing. In the range of forcing intensity investigated in this paper, these multiscale flows remain quasi-2D, with negligible energy in the wall-normal velocity component. It is also shown that the driving terms are the electromagnetic forcing and
Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle
Sheng, Nuo; Boyce, Mary C.; Parks, David M.; Manovitch, Oleg; Rutledge, Gregory C.; Lee, Hojun; McKinley, Gareth H.
2003-03-01
Polymer/clay nanocomposites have been observed to exhibit enhanced mechanical properties at low weight fractions (Wp) of clay. Continuum-based composite modeling reveals that the enhanced properties are strongly dependent on particular features of the second-phase ¡°particles¡+/-; in particular, the particle volume fraction (fp), the particle aspect ratio (L/t), and the ratio of particle mechanical properties to those of the matrix. However, these important aspects of as-processed nanoclay composites have yet to be consistently and accurately defined. A multiscale modeling strategy was developed to account for the hierarchical morphology of the nanocomposite: at a lengthscale of thousands of microns, the structure is one of high aspect ratio particles within a matrix; at the lengthscale of microns, the clay particle structure is either (a) exfoliated clay sheets of nanometer level thickness or (b) stacks of parallel clay sheets separated from one another by interlayer galleries of nanometer level height. Here, quantitative structural parameters extracted from XRD patterns and TEM micrographs are used to determine geometric features of the as-processed clay ¡°particles¡+/-, including L/t and the ratio of fp to Wp. These geometric features, together with estimates of silicate lamina stiffness obtained from molecular dynamics simulations, provide a basis for modeling effective mechanical properties of the clay particle. The structure-based predictions of the macroscopic elastic modulus of the nanocomposite as a function of clay weight fraction are in excellent agreement with experimental data. The adopted methodology offers promise for study of related properties in polymer/clay nanocomposites.
Multiscale modeling of a conditionally disordered pH-sensing chaperone.
Ahlstrom, Logan S; Law, Sean M; Dickson, Alex; Brooks, Charles L
2015-04-24
The pH-sensing chaperone HdeA promotes the survival of enteropathogenic bacteria during transit through the harshly acidic environment of the mammalian stomach. At low pH, HdeA transitions from an inactive, folded, dimer to chaperone-active, disordered, monomers to protect against the acid-induced aggregation of periplasmic proteins. Toward achieving a detailed mechanistic understanding of the pH response of HdeA, we develop a multiscale modeling approach to capture its pH-dependent thermodynamics. Our approach combines pK(a) (logarithmic acid dissociation constant) calculations from all-atom constant pH molecular dynamics simulations with coarse-grained modeling and yields new, atomic-level, insights into HdeA chaperone function that can be directly tested by experiment. "pH triggers" that significantly destabilize the dimer are each located near the N-terminus of a helix, suggesting that their neutralization at low pH destabilizes the helix macrodipole as a mechanism of monomer disordering. Moreover, we observe a non-monotonic change in the pH-dependent stability of HdeA, with maximal stability of the dimer near pH5. This affect is attributed to the protonation Glu37, which exhibits an anomalously high pK(a) value and is located within the hydrophobic dimer interface. Finally, the pH-dependent binding pathway of HdeA comprises a partially unfolded, dimeric intermediate that becomes increasingly stable relative to the native dimer at lower pH values and displays key structural features for chaperone-substrate interaction. We anticipate that the insights from our model will help inform ongoing NMR and biochemical investigations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hamlet, A. F.; Chiu, C. M.; Sharma, A.; Byun, K.; Hanson, Z.
2016-12-01
Physically based hydrologic modeling of surface and groundwater resources that can be flexibly and efficiently applied to support water resources policy/planning/management decisions at a wide range of spatial and temporal scales are greatly needed in the Midwest, where stakeholder access to such tools is currently a fundamental barrier to basic climate change assessment and adaptation efforts, and also the co-production of useful products to support detailed decision making. Based on earlier pilot studies in the Pacific Northwest Region, we are currently assembling a suite of end-to-end tools and resources to support various kinds of water resources planning and management applications across the region. One of the key aspects of these integrated tools is that the user community can access gridded products at any point along the end-to-end chain of models, looking backwards in time about 100 years (1915-2015), and forwards in time about 85 years using CMIP5 climate model projections. The integrated model is composed of historical and projected future meteorological data based on station observations and statistical and dynamically downscaled climate model output respectively. These gridded meteorological data sets serve as forcing data for the macro-scale VIC hydrologic model implemented over the Midwest at 1/16 degree resolution. High-resolution climate model (4km WRF) output provides inputs for the analyses of urban impacts, hydrologic extremes, agricultural impacts, and impacts to the Great Lakes. Groundwater recharge estimated by the surface water model provides input data for fine-scale and macro-scale groundwater models needed for specific applications. To highlight the multi-scale use of the integrated models in support of co-production of scientific information for decision making, we briefly describe three current case studies addressing different spatial scales of analysis: 1) Effects of climate change on the water balance of the Great Lakes, 2) Future
Multi-scale model analysis of boundary layer ozone over East Asia
Directory of Open Access Journals (Sweden)
M. Lin
2009-05-01
Full Text Available This study employs the regional Community Multiscale Air Quality (CMAQ model to examine seasonal and diurnal variations of boundary layer ozone (O_{3} over East Asia. We evaluate the response of model simulations of boundary layer O_{3} to the choice of chemical mechanisms, meteorological fields, boundary conditions, and model resolutions. Data obtained from surface stations, aircraft measurements, and satellites are used to advance understanding of O_{3} chemistry and mechanisms over East Asia and evaluate how well the model represents the observed features. Satellite measurements and model simulations of summertime rainfall are used to assess the impact of the Asian monsoon on O_{3} production. Our results suggest that summertime O_{3} over Central Eastern China is highly sensitive to cloud cover and monsoonal rainfall over this region. Thus, accurate simulation of the East Asia summer monsoon is critical to model analysis of atmospheric chemistry over China. Examination of hourly summertime O_{3} mixing ratios from sites in Japan confirms the important role of diurnal boundary layer fluctuations in controlling ground-level O_{3}. By comparing five different model configurations with observations at six sites, the specific mechanisms responsible for model behavior are identified and discussed. In particular, vertical mixing, urban chemistry, and dry deposition depending on boundary layer height strongly affect model ability to capture observed behavior. Central Eastern China appears to be the most sensitive region in our study to the choice of chemical mechanisms. Evaluation with TRACE-P aircraft measurements reveals that neither the CB4 nor the SAPRC99 mechanisms consistently capture observed behavior of key photochemical oxidants in springtime. However, our analysis finds that SAPRC99 performs somewhat better in simulating mixing ratios of H_{2}O_{2} (hydrogen peroxide
Zheleznyak, M.; Kivva, S.; Nanba, K.; Wakiyama, Y.; Konoplev, A.; Onda, Y.; Gallego, E.; Papush, L.; Maderych, V.
2015-12-01
The highest densities of the radioisotopes in fallout from the Fukushima Daiichi NPP in March 2011 were measured at the north eastern part of Fukushima Prefecture. The post-accidental aquatic transfer of cesium -134/137 includes multiscale processes: wash-off from the watersheds in solute and with the eroded soil, long-range transport in the rivers, deposition and resuspension of contaminated sediments in reservoirs and floodplains. The models of EU decision support system RODOS are used for predicting dynamics of 137Cs in the Fukushima surface waters and for assessing efficiency of the remediation measures. The transfer of 137Cs through the watershed of Niida River was simulated by DHSVM -R model that includes the modified code of the distributed hydrological and sediment transport model DHSVM (Lettenmayer, Wigmosta et al.) and new module of radionuclide transport. DHSMV-R was tested by modelling the wash-off from the USLE experimental plots in Fukushima prefecture. The model helps to quantify the influence of the differentiators of Fukushima and Chernobyl watersheds, - intensity of extreme precipitation and steepness of watershed, on the much higher values of the ratio "particulated cesium /soluted cesium" in Fukushima rivers than in Chernobyl rivers. Two dimensional model COASTOX and three dimensional model THREETOX are used to simulate the fate of 137Cs in water and sediments of reservoirs in the Manogawa River, Otagawa River, Mizunashigawa River, which transport 137Cs from the heavy contaminated watersheds to the populated areas at the Pacific coast. The modeling of the extreme floods generated by typhoons shows the resuspension of the bottom sediments from the heavy contaminated areas in reservoirs at the mouths of inflowing rivers at the peaks of floods and then re-deposition of 137Cs downstream in the deeper areas. The forecasts of 137Cs dynamics in bottom sediments of the reservoirs were calculated for the set of the scenarios of the sequences of the high
Multi-Scale Computational Modeling of Ni-Base Superalloy Brazed Joints for Gas Turbine Applications
Riggs, Bryan
Brazed joints are commonly used in the manufacture and repair of aerospace components including high temperature gas turbine components made of Ni-base superalloys. For such critical applications, it is becoming increasingly important to account for the mechanical strength and reliability of the brazed joint. However, material properties of brazed joints are not readily available and methods for evaluating joint strength such as those listed in AWS C3.2 have inherent challenges compared with testing bulk materials. In addition, joint strength can be strongly influenced by the degree of interaction between the filler metal (FM) and the base metal (BM), the joint design, and presence of flaws or defects. As a result, there is interest in the development of a multi-scale computational model to predict the overall mechanical behavior and fitness-for-service of brazed joints. Therefore, the aim of this investigation was to generate data and methodology to support such a model for Ni-base superalloy brazed joints with conventional Ni-Cr-B based FMs. Based on a review of the technical literature a multi-scale modeling approach was proposed to predict the overall performance of brazed joints by relating mechanical properties to the brazed joint microstructure. This approach incorporates metallurgical characterization, thermodynamic/kinetic simulations, mechanical testing, fracture mechanics and finite element analysis (FEA) modeling to estimate joint properties based on the initial BM/FM composition and brazing process parameters. Experimental work was carried out in each of these areas to validate the multi-scale approach and develop improved techniques for quantifying brazed joint properties. Two Ni-base superalloys often used in gas turbine applications, Inconel 718 and CMSX-4, were selected for study and vacuum furnace brazed using two common FMs, BNi-2 and BNi-9. Metallurgical characterization of these brazed joints showed two primary microstructural regions; a soft
Multiscale Modeling using Molecular Dynamics and Dual Domain Material Point Method
Energy Technology Data Exchange (ETDEWEB)
Dhakal, Tilak Raj [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division. Fluid Dynamics and Solid Mechanics Group, T-3; Rice Univ., Houston, TX (United States)
2016-07-07
For problems involving large material deformation rate, the material deformation time scale can be shorter than the material takes to reach a thermodynamical equilibrium. For such problems, it is difficult to obtain a constitutive relation. History dependency become important because of thermodynamic non-equilibrium. Our goal is to build a multi-scale numerical method which can bypass the need for a constitutive relation. In conclusion, multi-scale simulation method is developed based on the dual domain material point (DDMP). Molecular dynamics (MD) simulation is performed to calculate stress. Since the communication among material points is not necessary, the computation can be done embarrassingly parallel in CPU-GPU platform.
Updating Sea Spray Aerosol Emissions in the Community Multiscale Air Quality Model
Gantt, B.; Bash, J. O.; Kelly, J.
2014-12-01
Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions, include sea surface temperature (SST) dependency, and revise surf zone emissions. Based on evaluation with several regional and national observational datasets in the continental U.S., the updated emissions generally improve surface concentrations predictions of primary aerosols composed of sea-salt and secondary aerosols affected by sea-salt chemistry in coastal and near-coastal sites. Specifically, the updated emissions lead to better predictions of the magnitude and coastal-to-inland gradient of sodium, chloride, and nitrate concentrations at Bay Regional Atmospheric Chemistry Experiment (BRACE) sites near Tampa, FL. Including SST-dependency to the SSA emission parameterization leads to increased sodium concentrations in the southeast U.S. and decreased concentrations along the Pacific coast and northeastern U.S., bringing predictions into closer agreement with observations at most Interagency Monitoring of Protected Visual Environments (IMPROVE) and Chemical Speciation Network (CSN) sites. Model comparison with California Research at the Nexus of Air Quality and Climate Change (CalNex) observations will also be discussed, with particular focus on the South Coast Air Basin where clean marine air mixes with anthropogenic pollution in a complex environment. These SSA emission updates enable more realistic simulation of chemical processes in coastal environments, both in clean marine air masses and mixtures of clean marine and polluted conditions.
Multi-Scale Modeling of Microstructural Evolution in Structural Metallic Systems
Zhao, Lei
Metallic alloys are a widely used class of structural materials, and the mechanical properties of these alloys are strongly dependent on the microstructure. Therefore, the scientific design of metallic materials with superior mechanical properties requires the understanding of the microstructural evolution. Computational models and simulations offer a number of advantages over experimental techniques in the prediction of microstructural evolution, because they can allow studies of microstructural evolution in situ, i.e., while the material is mechanically loaded (meso-scale simulations), and bring atomic-level insights into the microstructure (atomistic simulations). In this thesis, we applied a multi-scale modeling approach to study the microstructural evolution in several metallic systems, including polycrystalline materials and metallic glasses (MGs). Specifically, for polycrystalline materials, we developed a coupled finite element model that combines phase field method and crystal plasticity theory to study the plasticity effect on grain boundary (GB) migration. Our model is not only coupled strongly (i.e., we include plastic driving force on GB migration directly) and concurrently (i.e., coupled equations are solved simultaneously), but also it qualitatively captures such phenomena as the dislocation absorption by mobile GBs. The developed model provides a tool to study the microstructural evolution in plastically deformed metals and alloys. For MGs, we used molecular dynamics (MD) simulations to investigate the nucleation kinetics in the primary crystallization in Al-Sm system. We calculated the time-temperature-transformation curves for low Sm concentrations, from which the strong suppressing effect of Sm solute on Al nucleation and its influencing mechanism are revealed. Also, through the comparative analysis of both Al attachment and Al diffusion in MGs, it has been found that the nucleation kinetics is controlled by interfacial attachment of Al, and that
International Nuclear Information System (INIS)
Julien, Jerome
2008-01-01
Within the frame of the problematic of pellet-sheath interaction in a nuclear fuel rod, a good description of the fuel thermo-mechanical behaviour is required. This research thesis reports the coupling of physics-chemistry (simulation of gas transfers between different cavities) and mechanics (assessment of fuel viscoplastic strains). A new micromechanical model is developed which uses a multi-scale approach to describe the evolution of the double population of cavities (cavities with two different scales) w