WorldWideScience

Sample records for environmental management laboratory

  1. MDOT Materials Laboratories : Environmental Management Plan

    Science.gov (United States)

    2012-06-01

    The goal of this EMP was to develop and implement a comprehensive Environmental : Management Plan for MDOT Materials Laboratories. This goal was achieved through : perfonnance of environmental audits to identify potential environmental impacts, and b...

  2. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2013-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  3. Sandia National Laboratories, California Environmental Management System program manual

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2014-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  4. 40 CFR 262.103 - What is the scope of the laboratory environmental management standard?

    Science.gov (United States)

    2010-07-01

    ... environmental management standard? 262.103 Section 262.103 Protection of Environment ENVIRONMENTAL PROTECTION... University Laboratories XL Project-Laboratory Environmental Management Standard § 262.103 What is the scope of the laboratory environmental management standard? The Laboratory Environmental Management Standard...

  5. Scientific data management in the environmental molecular sciences laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, P.R.; Keller, T.L.

    1995-09-01

    The Environmental Molecular Sciences Laboratory (EMSL) is currently under construction at Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy (DOE). This laboratory will be used for molecular and environmental sciences research to identify comprehensive solutions to DOE`s environmental problems. Major facilities within the EMSL include the Molecular Sciences Computing Facility (MSCF), a laser-surface dynamics laboratory, a high-field nuclear magnetic resonance (NMR) laboratory, and a mass spectrometry laboratory. The EMSL is scheduled to open early in 1997 and will house about 260 resident and visiting scientists. It is anticipated that at least six (6) terabytes of data will be archived in the first year of operation. An object-oriented database management system (OODBMS) and a mass storage system will be integrated to provide an intelligent, automated mechanism to manage data. The resulting system, called the DataBase Computer System (DBCS), will provide total scientific data management capabilities to EMSL users. A prototype mass storage system based on the National Storage Laboratory`s (NSL) UniTree has been procured and is in limited use. This system consists of two independent hierarchies of storage devices. One hierarchy of lower capacity, slower speed devices provides support for smaller files transferred over the Fiber Distributed Data Interface (FDDI) network. Also part of the system is a second hierarchy of higher capacity, higher speed devices that will be used to support high performance clients (e.g., a large scale parallel processor). The ObjectStore OODBMS will be used to manage metadata for archived datasets, maintain relationships between archived datasets, and -hold small, duplicate subsets of archived datasets (i.e., derivative data). The interim system is called DBCS, Phase 0 (DBCS-0). The production system for the EMSL, DBCS Phase 1 (DBCS-1), will be procured and installed in the summer of 1996.

  6. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    2009-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia

  7. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  8. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories

  9. Quality management in environmental programs: Los Alamos National Laboratory's approach

    International Nuclear Information System (INIS)

    Maassen, L.; Day, J.L.

    1998-03-01

    Since its inception in 1943, Los Alamos National Laboratory's (LANL's) primary mission has been nuclear weapons research and development, which involved the use of hazardous and radioactive materials, some of which were disposed of onsite. LANL has established an extensive Environmental Restoration Project (Project) to investigate and remediate those hazardous and radioactive waste disposal sites. This paper describes LANL's identification and resolution of critical issues associated with the integration and management of quality in the Project

  10. 40 CFR 262.105 - What must be included in the laboratory environmental management plan?

    Science.gov (United States)

    2010-07-01

    ... compliance, waste minimization, risk reduction and continual improvement of the environmental management... its compliance with the Environmental Management Plan and applicable federal and state hazardous waste... laboratory environmental management plan? 262.105 Section 262.105 Protection of Environment ENVIRONMENTAL...

  11. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Irving, John S

    2003-04-01

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  12. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment - April 2003

    Energy Technology Data Exchange (ETDEWEB)

    Irving, J.S.

    2003-04-30

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  13. Environmental Resource Management Issues in Agronomy: A Lecture/Laboratory Course

    Science.gov (United States)

    Munn, D. A.

    2004-01-01

    Environmental Sciences Technology T272 is a course with a laboratory addressing problems in soil and water quality and organic wastes utilization to serve students from associate degree programs in laboratory science and environmental resources management at a 2-year technical college. Goals are to build basic lab skills and understand the role…

  14. 78 FR 58294 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Science.gov (United States)

    2013-09-23

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  15. 77 FR 65374 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Science.gov (United States)

    2012-10-26

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  16. 77 FR 53192 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Science.gov (United States)

    2012-08-31

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  17. 78 FR 30910 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Science.gov (United States)

    2013-05-23

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  18. 77 FR 76475 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Science.gov (United States)

    2012-12-28

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  19. An overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory

    Science.gov (United States)

    Smith, T.H.; Chew, E.W.; Hedahl, T.G.; Mann, L.J.; Pointer, T.F.; Wiersma, G.B.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the U.S. Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological Environmental Sciences Laboratory (RESL), and the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG&G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities radiation is integrated with the overall INEL Site surveillance program. Air, warer, soil, biota, and environmental radiation are monitored or sampled routinely at INEL. Results to date indicate very small or no impacts from INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL.

  20. Overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Smith, T.H.; Hedahl, T.G.; Wiersma, G.B.; Chew, E.W.; Mann, L.J.; Pointer, T.F.

    1986-02-01

    The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the US Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological and Environmental Sciences Laboratory (RESL), the US Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG and G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities is integrated with the overall INEL Site surveillance program. Air, water, soil, biota, and environmental radiation are monitored or sampled routinely at the INEL. Results to date indicate very small or no impacts from the INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL. 7 refs., 6 figs., 2 tabs

  1. Environmental education for hazardous waste management and risk reduction in laboratories

    Directory of Open Access Journals (Sweden)

    Tomas Rafael Pierre Martinez

    2013-10-01

    Full Text Available The University laboratories are places where teaching, extension and research activities are develop, which harmful substances are manipulated and hazardous waste are generated, the lack of information about this makes them an inadequate provision causing human health and environmental risks. This research proposes the implementation of environmental education as an alternative for waste management and safety in the University of Magdalena laboratories. Applying a series of polls showed the effectiveness with efficiency or assertively rises at 30% cognitive level during the process. It recommends to obtain better results is necessary evaluate the ethic component.  

  2. Environmental management assessment of the Lawrence Livermore National Laboratory Livermore, California

    International Nuclear Information System (INIS)

    1994-06-01

    This report documents the results of the Environmental Management Assessment performed at the Lawrence Livermore National Laboratory (LLNL), Livermore, CA. LLNL is operated by the University of California (UC) under contract with the U.S. Department of Energy (DOE). Major programs at LLNL include research, development, and test activities associated with the nuclear design aspects of the nuclear weapons life cycle and related national security tasks; inertial confinement fusion; magnetic fusion energy; biomedical and environmental research; laser isotope separation; energy-related research; beam research physics; and support to a variety of Defense and other Federal agencies. During this assessment, activities and records were reviewed and interviews were conducted with personnel from management and operating contractor, Lawrence Livermore National Laboratory; DOE Oakland Operations Office; and DOE Headquarters Program Offices, including the Office of Defense Programs, Office of Environmental Management, the Office of Nuclear Energy, and the Office of Energy Research. The onsite portion was conducted in June 1994, by the DOE Office of Environmental Audit. The goal of EH-24 is enhancement of environmental protection and minimization of risk to public health and the environment. EH-24 accomplishes its mission using systematic and periodic evaluations of DOE's environmental programs within line organizations, and through use of supplemental activities that strengthen self-assessment and oversight functions within program, field, and contractor organizations. The Environmental Management Assessment of LLNL revealed that LLNL's environmental program is exemplary within the DOE complex and that all levels of LLNL management and staff consistently exhibit a high level of commitment to achieve environmental excellence

  3. Management of clandestine drug laboratories: need for evidence-based environmental health policies.

    Science.gov (United States)

    Al-Obaidi, Tamara A; Fletcher, Stephanie M

    2014-01-01

    Clandestine drug laboratories (CDLs) have been emerging and increasing as a public health problem in Australia, with methamphetamine being the dominant illegally manufactured drug. However, management and remediation of contaminated properties are still limited in terms of regulation and direction, especially in relation to public and environmental health practice. Therefore, this review provides an update on the hazards and health effects associated with CDLs, with a specific look at the management of these labs from an Australian perspective. Particularly, the paper attempts to describe the policy landscape for management of CDLs, and identifies current gaps and how further research may be utilised to advance understanding and management of CDLs and inform public health policies. The paper highlights a significant lack of evidence-based policies and guidelines to guide regulatory authority including environmental health officers in Australia. Only recently, the national Clandestine Drug Laboratory Guidelines were developed to assist relevant authority and specialists manage and carry out investigations and remediation of contaminated sites. However, only three states have developed state-based guidelines, some of which are inadequate to meet environmental health requirements. The review recommends well-needed inter-sectoral collaborations and further research to provide an evidence base for the development of robust policies and standard operating procedures for safe and effective environmental health management and remediation of CDLs.

  4. A Decade of Experience in Implementing Quality Management System at Radiochemistry and Environmental Laboratory (RAS)

    International Nuclear Information System (INIS)

    Norfaizal Mohamed; Nita Salina Abu Bakar; Zal U'yun Wan Mahmood; Wo, Y.M.; Abdul Kadir Ishak; Nurrul Assyikeen Md Jaffary; Noor Fadzilah Yusof

    2016-01-01

    Quality management system has been introduced to a few laboratories in the Malaysian Nuclear Agency (Nuclear Malaysia) for the purpose to enhance the delivery of quality services to customers. Radiochemistry and Environmental Laboratory (RAS) is a service center in Nuclear Malaysia has implemented a quality management system in procedures carried out and has obtained accreditation for MS ISO/ IEC 17025 since 8 December 2005. This paper is intended to share experiences RAS in implementing a quality management system in accordance with standard MS ISO/ IEC 17025 accreditation and managed to keep it to this day. In addition, the RAS achievements including issues and challenges in implementing the quality management system in the past 10 years will also be discussed. (author)

  5. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.J.; Morris, S.C. III; Baum, J.W. [and others

    1998-01-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique. This document contains the Appendices for the report.

  6. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.J.; Morris, S. III; Baum, J.W. [and others

    1998-03-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

  7. Ensuring comparability of data generated by multiple analytical laboratories for environmental decision making at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Sutton, C.; Campbell, B.A.; Danahy, R.J.; Dugan, T.A.; Tomlinson, F.K.

    1994-01-01

    The Fernald Environmental Management Project is a US Department of Energy (DOE)-owned facility located 17 miles northwest of Cincinnati, Ohio. From 1952 until 1989, the Fernald site provided high-purity uranium metal products to support US defense programs. In 1989 the mission of Fernald changed from one of uranium production to one of environmental restoration. At Fernald, multiple functional programs require analytical data. Inorganic and organic data for these programs are currently generated by seven laboratories, while radiochemical data are being obtained from six laboratories. Quality Assurance (QA) and Quality Control (QC) programs have been established to help ensure comparability of data generated by multiple laboratories at different times. The quality assurance program for organic and inorganic measurements specifies which analytical methodologies and sample preparation procedures are to be used based on analyte class, sample matrix, and data quality requirements. In contrast, performance specifications have been established for radiochemical analyses. A blind performance evaluation program for all laboratories, both on-site and subcontracted commercial laboratories, provides continuous feedback on data quality. The necessity for subcontractor laboratories to participate in the performance evaluation program is a contractual requirement. Similarly, subcontract laboratories are contractually required to generate data which meet radiochemical performance specifications. The Fernald on-site laboratory must also fulfill these requirements

  8. Environmental Microbiology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Microbiology Laboratory, located in Bldg. 644 provides a dual-gas respirometer for measurement of oxygen consumption and carbon dioxide evolution...

  9. Development of the environmental management integrated baseline at the Idaho National Engineering Laboratory using systems engineering

    International Nuclear Information System (INIS)

    Murphy, J.A.; Caliva, R.M.; Wixson, J.R.

    1997-01-01

    The Idaho National Engineering Laboratory (INEL) is one of many Department of Energy (DOE) national laboratories that has been performing environmental cleanup and stabilization, which was accelerated upon the end of the cold war. In fact, the INEL currently receives two-thirds of its scope to perform these functions. However, the cleanup is a highly interactive system that creates an opportunity for systems engineering methodology to be employed. At the INEL, a group called EM (Environmental Management) Integration has been given this charter along with a small core of systems engineers. This paper discusses the progress to date of converting the INEL legacy system into one that uses the systems engineering discipline as the method to ensure that external requirements are met

  10. EPA Environmental Chemistry Laboratory

    Science.gov (United States)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  11. Waste management/waste certification plan for the Oak Ridge National Laboratory Environmental Restoration Program

    International Nuclear Information System (INIS)

    Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.

    1995-03-01

    This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency's (EPA's) guidance. Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created

  12. Environmental Management Plan for the Chemical Engineering Laboratory (LIQ) of the National University of Colombia, Bogotá

    OpenAIRE

    Javier Gama Chávez; Martha Lozano García; Paulo César Narváez Rincón; Óscar Javier Suárez Medina

    2004-01-01

    An Enviromental Management Plan was formulated with the objective of improving the environmental performance of the Chemical Engineering Laboratory (LIQ). The plan was supported on the principles established by the ISO 140001 standard. In a first step, an environmental politic was proposed. Next, by means of an initial review of the laboratory, the most significant impacts related to the activities developed in the Laboratory were identified: dangerous chemical wastes accumulation, water cont...

  13. A laboratory information management system for the analysis of tritium (3H) in environmental waters.

    Science.gov (United States)

    Belachew, Dagnachew Legesse; Terzer-Wassmuth, Stefan; Wassenaar, Leonard I; Klaus, Philipp M; Copia, Lorenzo; Araguás, Luis J Araguás; Aggarwal, Pradeep

    2018-07-01

    Accurate and precise measurements of low levels of tritium ( 3 H) in environmental waters are difficult to attain due to complex steps of sample preparation, electrolytic enrichment, liquid scintillation decay counting, and extensive data processing. We present a Microsoft Access™ relational database application, TRIMS (Tritium Information Management System) to assist with sample and data processing of tritium analysis by managing the processes from sample registration and analysis to reporting and archiving. A complete uncertainty propagation algorithm ensures tritium results are reported with robust uncertainty metrics. TRIMS will help to increase laboratory productivity and improve the accuracy and precision of 3 H assays. The software supports several enrichment protocols and LSC counter types. TRIMS is available for download at no cost from the IAEA at www.iaea.org/water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Future management of hazardous wastes generated at Brookhaven National Laboratory, Upton, New York. Environmental assessment

    International Nuclear Information System (INIS)

    1994-09-01

    This document assesses the potential environmental impacts of a variety of alternatives which could provide a Resource Conservation and Recovery Act (RCRA) permitted waste packaging and storage facility that would handle all hazardous, radioactive, and mixed wastes generated at Brookhaven National Laboratory (BNL) and would operate in full compliance with all federal, state, and local laws and regulations. Location of the existing Hazardous Waste Management Facility (HWMF) with respect to ground water and the site boundary, technical and capacity limitations, inadequate utilities, and required remediation of the area make the existing facility environmentally unacceptable for long term continued use. This Environmental Assessment (EA) describes the need for action by the Department of Energy (DOE). It evaluates the alternatives for fulfilling that need, including the alternative preferred by DOE, a no-action alternative, and other reasonable alternatives. The EA provides a general description of BNL and the existing environment at the current HWMF and alternative locations considered for a new Waste Management Facility (WMF). Finally, the EA describes the potential environmental impacts of the alternatives considered. The preferred alternative, also identified as Alternative D, would be to construct and operate a new WMF on land formerly occupied by barracks during Camp Upton operations, in an area north of Building 830 and the High Flux Beam Reactor/Alternating Gradient Synchrotron (AGS) recharge basins, east of North Railroad Street, and south of East Fifth Avenue. The purpose of this new facility would be to move all storage and transfer activities inside buildings and on paved and curbed areas, consolidate facilities to improve operations management, and provide improved protection of the environment

  15. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures

  16. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement

    International Nuclear Information System (INIS)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes

  17. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes

  18. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  19. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes

  20. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  1. Reengineering of Analytical Data Management for the Environmental Restoration Project at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Bolivar, S.; Dorries, A.; Nasser, K.; Scherma, S.

    2003-01-01

    The Environmental Restoration (ER) Project at Los Alamos National Laboratory (LANL) is responsible for the characterization, clean up, and monitoring of over 2,124 identified potential release sites (PRS). These PRSs have resulted from operations associated with weapons and energy related research which has been conducted at LANL since 1942. To accomplish mission goals, the ER Project conducts field sampling to determine possible types and levels of chemical contamination as well as their geographic extent. Last fiscal year, approximately 4000 samples were collected during ER Project field sampling campaigns. In the past, activities associated with field sampling such as sample campaign planning, paperwork, shipping and analytical laboratory tracking; verification and order fulfillment; validation and data quality assurance were performed by multiple groups working with a variety of software applications, databases and hard copy reports. This resulted in significant management and communication difficulties, data delivery delays, and inconsistent processes; it also represented a potential threat to overall data integrity. Creation of an organization, software applications and a data process that could provide for cost-effective management of the activities and data mentioned above became a management priority, resulting in a development of a reengineering task. This reengineering effort--currently nearing completion--has resulted in personnel reorganization, the development of a centralized data repository, and a powerful web-based sample management system that allows for an appreciably streamlined and more efficient data process. These changes have collectively cut data delivery times, allowed for larger volumes of samples and data to be handled with fewer personnel, and resulted in significant cost savings. This paper will provide a case study of the reengineering effort undertaken by the ER Project of its analytical data management process. It includes

  2. Reengineering of Analytical Data Management for the Environmental Restoration Project at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.; Dorries, A.; Nasser, K.; Scherma, S.

    2003-02-27

    The Environmental Restoration (ER) Project at Los Alamos National Laboratory (LANL) is responsible for the characterization, clean up, and monitoring of over 2,124 identified potential release sites (PRS). These PRSs have resulted from operations associated with weapons and energy related research which has been conducted at LANL since 1942. To accomplish mission goals, the ER Project conducts field sampling to determine possible types and levels of chemical contamination as well as their geographic extent. Last fiscal year, approximately 4000 samples were collected during ER Project field sampling campaigns. In the past, activities associated with field sampling such as sample campaign planning, paperwork, shipping and analytical laboratory tracking; verification and order fulfillment; validation and data quality assurance were performed by multiple groups working with a variety of software applications, databases and hard copy reports. This resulted in significant management and communication difficulties, data delivery delays, and inconsistent processes; it also represented a potential threat to overall data integrity. Creation of an organization, software applications and a data process that could provide for cost-effective management of the activities and data mentioned above became a management priority, resulting in a development of a reengineering task. This reengineering effort--currently nearing completion--has resulted in personnel reorganization, the development of a centralized data repository, and a powerful web-based sample management system that allows for an appreciably streamlined and more efficient data process. These changes have collectively cut data delivery times, allowed for larger volumes of samples and data to be handled with fewer personnel, and resulted in significant cost savings. This paper will provide a case study of the reengineering effort undertaken by the ER Project of its analytical data management process. It includes

  3. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  4. Hazardous materials management and control program at Oak Ridge National Laboratory - environmental protection

    International Nuclear Information System (INIS)

    Eisenhower, B.M.; Oakes, T.W.

    1982-01-01

    In the Federal Register of May 19, 1980, the US Environmental Protection Agency promulgated final hazardous waste regulations according to the Resource Conservation and Recovery Act (RCRA) of 1976. The major substantive portions of these regulations went into effect on November 19, 1980, and established a federal program to provide comprehensive regulation of hazardous waste from its generation to its disposal. In an effort to comply with these regulations, a Hazardous Materials Management and Control Program was established at Oak Ridge National Laboratory. The program is administered by two Hazardous Materials Coordinators, who together with various support groups, ensure that all hazardous materials and wastes are handled in such a manner that all personnel, the general public, and the environment are adequately protected

  5. Innovative environmental restoration and waste management technologies at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Helt, J.E.

    1993-01-01

    Cleanup of contaminated sites and management of wastes have become major efforts of the US Department of Energy. Argonne National Laboratory (ANL) is developing several new technologies to meet the needs of this national effort. Some of these efforts are being done in collaboration with private sector firms. An overview of the ANL and private sector efforts will be presented. The following four specific technologies will be discussed in detail: (1) a minimum additive waste stabilization (MAWS) system for treating actinide-contaminated soil and groundwater; (2) a magnetic separation system, also for cleanup of actinide-contaminated soil and groundwater; (3) a mobile evaporator/concentrator system for processing aqueous radioactive and mixed waste; and (4) a continuous emission monitor for ensuring that waste incineration meets environmental goals

  6. Environmental assessment for the Radioactive and Mixed Waste Management Facility: Sandia National Laboratories/New Mexico

    International Nuclear Information System (INIS)

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0466) under the National Environmental Policy Act (NEPA) of 1969 for the proposed completion of construction and subsequent operation of a central Radioactive and Mixed Waste Management Facility (RMWMF), in the southeastern portion of Technical Area III at Sandia National Laboratory, Albuquerque (SNLA). The RMWMF is designed to receive, store, characterize, conduct limited bench-scale treatment of, repackage, and certify low-level waste (LLW) and mixed waste (MW) (as necessary) for shipment to an offsite disposal or treatment facility. The RMWMF was partially constructed in 1989. Due to changing regulatory requirements, planned facility upgrades would be undertaken as part of the proposed action. These upgrades would include paving of road surfaces and work areas, installation of pumping equipment and lines for surface impoundment, and design and construction of air locks and truck decontamination and water treatment systems. The proposed action also includes an adjacent corrosive and reactive metals storage area, and associated roads and paving. LLW and MW generated at SNLA would be transported from the technical areas to the RMWMF in containers approved by the Department of Transportation. The RMWMF would not handle nonradioactive hazardous waste. Based on the analysis in the EA, the proposed completion of construction and operation of the RMWMF does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, preparation of an environmental impact statement for the proposed action is not required

  7. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement

    International Nuclear Information System (INIS)

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel

  8. Preliminary Hanford technical input for the Department of Energy programmatic spent nuclear fuel management and Idaho National Engineering Laboratory environmental restoration and waste management programs environmental impact statement

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1995-03-01

    The US Department of Energy (DOE) is currently evaluating its programmatic options for the safe management of its diverse spent nuclear fuel (SNF) inventory in the Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Environmental Impact Statement (SNF and INEL EIS). In the SNF and INEL EIS, the DOE is assessing five alternatives for SNF management, which consider at which of the DOE sites each of the various SNF types should be managed until ultimate disposition. The range of SNF inventories considered for management at the Hanford Site in the SNF and INEL EIS include the current Hanford Site inventory, only the current Hanford Site defense production SNF inventory, the DOE complex-wide SNF inventory, or none at all. Site-specific SNF management decisions will be evaluated in separate National Environmental Policy Act evaluations. Appendixes A and B include information on (1) additional facilities required to accommodate inventories of SNF within each management alternative, (2) existing and new SNF management facility descriptions, (3) facility costs for construction and operation, (4) facility workforce requirements for construction and operation, and (5) facility discharges. The information was extrapolated from existing analyses to the extent possible. New facility costs, manpower requirements, and similar information are based on rough-order-of-magnitude estimates

  9. Environmental Management Plan for the Chemical Engineering Laboratory (LIQ of the National University of Colombia, Bogotá

    Directory of Open Access Journals (Sweden)

    Javier Gama Chávez

    2004-01-01

    Full Text Available An Enviromental Management Plan was formulated with the objective of improving the environmental performance of the Chemical Engineering Laboratory (LIQ. The plan was supported on the principles established by the ISO 140001 standard. In a first step, an environmental politic was proposed. Next, by means of an initial review of the laboratory, the most significant impacts related to the activities developed in the Laboratory were identified: dangerous chemical wastes accumulation, water contamination by effusions generation and air contamination. These impacts were the base for formulating following and control programs, furthermire, a training an communication program was done. All the programs, including the requiered documents and procedures, were published in the Environmental Management Plan and the Environmental Procedures Manual.

  10. Facility Environmental Management System

    Data.gov (United States)

    Federal Laboratory Consortium — This is the Web site of the Federal Highway Administration's (FHWA's) Turner-Fairbank Highway Research Center (TFHRC) facility Environmental Management System (EMS)....

  11. Environmental surveillance for EG ampersand G Idaho Waste Management facilities at the Idaho National Engineering Laboratory. 1993 annual report

    International Nuclear Information System (INIS)

    Wilhelmsen, R.N.; Wright, K.C.; McBride, D.W.; Borsella, B.W.

    1994-08-01

    This report describes calendar year 1993 environmental surveillance activities of Environmental Monitoring of EG ampersand G Idaho, Inc., performed at EG ampersand G Idaho operated Waste Management facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are results of the sampling performed by the Radiological and Environmental Sciences Laboratory and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1993 environmental surveillance data with US Department of Energy derived concentration guides and with data from previous years

  12. Annual report -- 1992: Environmental surveillance for EG ampersand G Idaho Waste Management Facilities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wilhelmsen, R.N.; Wright, K.C.; McBride, D.W.

    1993-08-01

    This report describes the 1992 environmental surveillance activities of the Environmental Monitoring Unit of EG ampersand G Idaho, Inc., at EG ampersand G Idaho-operated Waste Management facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are some results of the sampling performed by the Radiological and Environmental Sciences Laboratory and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1992 environmental surveillance data with DOE derived concentration guides, and with data from previous years

  13. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities

  14. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part B

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities.

  15. The Integrated Cloud-based Environmental Data Management System at Los Alamos National Laboratory - 13391

    International Nuclear Information System (INIS)

    Schultz Paige, Karen; Gomez, Penny; Patel, Nita P.; EchoHawk, Chris; Dorries, Alison M.

    2013-01-01

    In today's world, instant access to information is taken for granted. The national labs are no exception; our data users expect immediate access to their data. Los Alamos National Laboratory (LANL) has collected over ten million records, and the data needs to be accessible to scientists as well as the public. The data span a wide range of media, analytes, time periods, formats, and quality and have traditionally existed in scattered databases, making comprehensive work with the data impossible. Recently, LANL has successfully integrated all their environmental data into a single, cloud-based, web-accessible data management system. The system combines data transparency to the public with immediate access required by the technical staff. The use of automatic electronic data validation has been critical to immediate data access while saving millions of dollars and increasing data consistency and quality. The system includes a Google Maps based GIS tool that is simple enough for people to locate potentially contaminated sites near their home or workplace, and complex enough to allow scientists to plot and trend their data at the surface and at depth as well as over time. A variety of formatted reports can be run at any desired frequency to report the most current data available in the data base. The advanced user can also run free form queries of the data base. This data management system has saved LANL time and money, an increasingly important accomplishment during periods of budget cuts with increasing demand for immediate electronic services. (authors)

  16. The Integrated Cloud-based Environmental Data Management System at Los Alamos National Laboratory - 13391

    Energy Technology Data Exchange (ETDEWEB)

    Schultz Paige, Karen; Gomez, Penny; Patel, Nita P.; EchoHawk, Chris; Dorries, Alison M. [Los Alamos National Laboratory, MS M996, Los Alamos, NM, 87544 (United States)

    2013-07-01

    In today's world, instant access to information is taken for granted. The national labs are no exception; our data users expect immediate access to their data. Los Alamos National Laboratory (LANL) has collected over ten million records, and the data needs to be accessible to scientists as well as the public. The data span a wide range of media, analytes, time periods, formats, and quality and have traditionally existed in scattered databases, making comprehensive work with the data impossible. Recently, LANL has successfully integrated all their environmental data into a single, cloud-based, web-accessible data management system. The system combines data transparency to the public with immediate access required by the technical staff. The use of automatic electronic data validation has been critical to immediate data access while saving millions of dollars and increasing data consistency and quality. The system includes a Google Maps based GIS tool that is simple enough for people to locate potentially contaminated sites near their home or workplace, and complex enough to allow scientists to plot and trend their data at the surface and at depth as well as over time. A variety of formatted reports can be run at any desired frequency to report the most current data available in the data base. The advanced user can also run free form queries of the data base. This data management system has saved LANL time and money, an increasingly important accomplishment during periods of budget cuts with increasing demand for immediate electronic services. (authors)

  17. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    Volume 1 to the Department of Energy's Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site

  18. Comprehensive Environmental Management Process

    International Nuclear Information System (INIS)

    Hjeresen, D.L.; Roybal, S.L.

    1994-01-01

    This report contains information about Los Alamos National Laboratory's Comprehensive Environmental Management Plan. The topics covered include: waste minimization, waste generation, environmental concerns, public relations of the laboratory, and how this plan will help to answer to the demands of the laboratory as their mission changes

  19. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    The US Department of Energy (DOE) is currently deciding the direction of its environmental restoration and waste management programs at the Idaho National Engineering Laboratory (INEL) for the next 10 years. Pertinent to this decision is establishing policies for the environmentally sensitive and safe transport, storage, and management of spent nuclear fuels. To develop these policies, it is necessary to revisit or examine the available options. As a part of the DOE complex, the Hanford Site not only has a large portion of the nationwide DOE-owned inventory of spent nuclear fuel, but also is a participant in the DOE decision for management and ultimate disposition of spent nuclear fuel. Efforts in this process at Hanford include assessment of several options for stabilizing, transporting, and storing all or portions of DOE-owned spent nuclear fuel at the Hanford Site. Such storage and management of spent nuclear fuel will be in a safe and suitable manner until a final decision is made for ultimate disposition of spent nuclear fuel. Five alternatives involving the Hanford Site are being considered for management of the spent nuclear fuel inventory: (1) the No Action Alternative, (2) the Decentralization Alternative, (3) the 1992/1993 Planning Basis Alternative, (4) the Regionalization Alternative, and (5) the Centralization Alternative. AU alternatives will be carefully designed to avoid environmental degradation and to provide protection to human health and safety at the Hanford Site and surrounding region

  20. Guidance document for the preparation of waste management plans for the Environmental Restoration Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Clark, C. Jr.

    1993-07-01

    A project waste management (WM) plan is required for all Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program remedial investigation, decommission and decontamination (D ampersand D), and remedial action (RA) activities. The project WM plan describes the strategy for handling, packaging, treating, transporting, characterizing, storing, and/or disposing of waste produced as part of ORNL ER Program activities. The project WM plan also contains a strategy for ensuring worker and environmental protection during WM activities

  1. Environmental management

    NARCIS (Netherlands)

    Guicherit, R.

    1996-01-01

    Elements of a national environmental management system include: • monitoring networks to establish the prevailing environmental quality; • emission inventories, and projected emission inventories based on population growth, increase of traffic density, and economie growth; taking into account

  2. Lawrence Berkeley Laboratory 1993 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This annual Site Environmental Report summarizes Lawrence Berkeley Laboratory`s (LBL`s) environmental activities in calendar year (CY) 1993. The purpose of this report is to characterize site environmental management performance, confirm compliance status with environmental standards and requirements, and highlight significant programs and efforts. Its format and content are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  3. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory's hazardous waste management facility

    International Nuclear Information System (INIS)

    Dionne, B.J.; Morris, S. III; Baum, J.W.

    1998-03-01

    The Department of Energy's (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory's Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an open-quotes As Low as Reasonably Achievableclose quotes (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique

  4. Environmental Management Systems

    Science.gov (United States)

    This site on Environmental Management Systems (EMS) provides information and resources related to EMS for small businesses and private industry, as well as local, state and federal agencies, including all the EPA offices and laboratories.

  5. Environmental Management

    DEFF Research Database (Denmark)

    Lehmann, Martin

    The doctoral research project is co-financed by DUCED-I&UA and is part of a joint effort of Thai, Malay, South African and Danish universities to conduct collaborative research on the overarching theme "Environmental Management: Globalisation and Industrial Governance in Developing Countries......". The PhD project is expected to conclude ultimo 2005. Environmental management and cleaner production (CP) are both internationally recognised as tools for minimising environmental impacts of production or services. However, several studies have shown that especially SMEs, which probably amount to more...

  6. Region 7 Laboratory Information Management System

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is metadata documentation for the Region 7 Laboratory Information Management System (R7LIMS) which maintains records for the Regional Laboratory. Any Laboratory...

  7. Lawrence Berkeley Laboratory 1994 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  8. Environmental management

    International Nuclear Information System (INIS)

    Girard, M.; Mondino, M.

    2000-01-01

    Nowadays, unlike in the past, companies have to operate in a context of sustainable development, in which the economic and social development, production and consumption have to take into account the medium and long term impact on environment. The article sets forth some considerations about these subjects, which are assuming a growing importance in the management of companies: the variable environment may for instance be a factor of discrimination between being competitive or not. In order to characterise the context within which the environmental management has to be applied, some basic concepts about environmental management systems, Life Cycle Assessment, and Eco labeling are illustrated. As an example of application of the methodology described, a brief reference to the Italgas Group Environmental Report is given [it

  9. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory's hazardous waste management facility

    International Nuclear Information System (INIS)

    Dionne, B.J.; Morris, S.C. III; Baum, J.W.

    1998-01-01

    The Department of Energy's (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory's Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an open-quotes As Low as Reasonably Achievableclose quotes (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique. This document contains the Appendices for the report

  10. Proposal of implementation of Environmental Management System at the Laboratory of Radioactive Waste In IPEN-SP

    International Nuclear Information System (INIS)

    Moura, Luiz Antonio Abdalla

    2008-01-01

    An increasing use of nuclear technology in the form of its several applications (electricity generation, medical, industrial, agricultural, environment and radiosterilization) is currently being observed in Brazil. Radioactive waste of high, medium or lower activity is produced in all fuel cycle and other research activities, industrial activities of fuel production and electricity generation. Appropriate and safe technologies are available for the treatment and storage of radioactive waste and, when applied, contribute for the acceptance of nuclear energy by the Society. With the increasing importance of demands related to environmental issues, the International Organization for Standardization issued the Standard ISO 14.001 - Environmental Management System, applied to all types and size of organizations, helping them to increase their environment performance. In this research, the standard requirements were commented in detail, being particularized to the Laboratory of Radioactive Waste from IPEN, as a case study. (author)

  11. Environmental Compliance Management System

    International Nuclear Information System (INIS)

    Brownson, L.W.; Krsul, T.; Peralta, R.A.; Knudson, D.A.; Rosignolo, C.L.

    1992-01-01

    Argonne National Laboratory (ANL) is developing the Environmental Compliance Management System (ECMS) as a comprehensive, cost-effective tool to ensure (1) that the Laboratory complies with all applicable federal and state environmental laws and regulations, (2) that environmental issues and concerns are recognized and considered in the early phases of projects; and (3) that Laboratory personnel conduct Laboratory operations in the most environmentally acceptable manner. The ECMS is an expert computer system which is designed to allow project engineers to perform an environmental evaluation of their projects. The system includes a Master Program which collects basic project information, provide utility functions, and access the environmental expert modules, environmental expert system modules for each federal and state environmental law which allows the user to obtain specific information on how an individual law may affect his project; and site-specific databases which contain information necessary for effective management of the site under environmental regulations. The ECMS will have the capability to complete and print many of the necessary environmental forms required by federal and state agencies, including the Department of Energy

  12. INL Site Portion of the April 1995 Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Mamagement Programmatic Final Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2005-06-30

    In April 1995, the Department of Energy (DOE) and the Department of the Navy, as a cooperating agency, issued the Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement (1995 EIS). The 1995 EIS analyzed alternatives for managing The Department's existing and reasonably foreseeable inventories of spent nuclear fuel through the year 2035. It also included a detailed analysis of environmental restoration and waste management activities at the Idaho National Engineering and Environmental Laboratory (INEEL). The analysis supported facility-specific decisions regarding new, continued, or planned environmental restoration and waste management operations. The Record of Decision (ROD) was signed in June 1995 and amended in February 1996. It documented a number of projects or activities that would be implemented as a result of decisions regarding INL Site operations. In addition to the decisions that were made, decisions on a number of projects were deferred or projects have been canceled. DOE National Environmental Policy Act (NEPA) implementing procedures (found in 10 CFR Part 1 021.330(d)) require that a Supplement Analysis of site-wide EISs be done every five years to determine whether the site-wide EIS remains adequate. While the 1995 EIS was not a true site-wide EIS in that several programs were not included, most notably reactor operations, this method was used to evaluate the adequacy of the 1995 EIS. The decision to perform a Supplement Analysis was supported by the multi-program aspect of the 1995 EIS in conjunction with the spirit of the requirement for periodic review. The purpose of the SA is to determine if there have been changes in the basis upon which an EIS was prepared. This provides input for an evaluation of the continued adequacy of the EIS in light of those changes (i.e., whether there are substantial changes in the proposed

  13. Lawrence Berkeley Laboratory 1994 site environmental report

    International Nuclear Information System (INIS)

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory's environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program

  14. Comprehensive Environmental Management Plan

    International Nuclear Information System (INIS)

    Hjeresen, D.L.

    1994-01-01

    The Environmental Management Program at Los Alamos National Laboratory is in the process of initiating and then implementing a Comprehensive Environmental Management Plan (CEMP). There are several environmental impact and compliance drivers for this initiative. The Los Alamos CEMP is intended to be a flexible, long-range process that predicts, minimizes, treats, and disposes of any waste generated in execution of the Los Alamos mission - even if that mission changes. The CEMP is also intended to improve stakeholder and private sector involvement and access to environmental information. The total quality environmental management (TQEM) process will benchmark Los Alamos to private sector and DOE operations, identify opportunities for improvement, prioritize among opportunities, implement projects, measure progress, and spur continuous improvement in Environmental Management operations

  15. Project management plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place nineteen former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. Implementation and completion of the deactivation project win further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S ampersand M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project

  16. Environmental Management System

    Science.gov (United States)

    Goals Recycling Green Purchasing Pollution Prevention Reusing Water Resources Environmental Management Stewardship » Environmental Protection » Environmental Management System Environmental Management System An Environmental Management System is a systematic method for assessing mission activities, determining the

  17. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement

  18. Key Management Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a secure environment to research and develop advanced electronic key management and networked key distribution technologies for the Navy and DoD....

  19. Managing laboratory automation

    OpenAIRE

    Saboe, Thomas J.

    1995-01-01

    This paper discusses the process of managing automated systems through their life cycles within the quality-control (QC) laboratory environment. The focus is on the process of directing and managing the evolving automation of a laboratory; system examples are given. The author shows how both task and data systems have evolved, and how they interrelate. A BIG picture, or continuum view, is presented and some of the reasons for success or failure of the various examples cited are explored. Fina...

  20. Program Management Plan for the Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory Site Environmental Restoration Program

    International Nuclear Information System (INIS)

    1994-07-01

    This program management plan describes the scope, objectives, and method of accomplishment for the Martin Marietta Energy Systems, Inc. (Energy Systems) Oak Ridge National laboratory (ORNL) Environmental Restoration (ER) Program. The ORNL ER Program is one of five site program, receiving guidance from and reporting to the Energy Systems ER Division. Therefore, all ORNL ER policies and procedures are consistent with ER Division policies and procedures. This plan covers all ORNL ER activities, the participants involved in these activities (and their roles and responsibilities), and all phases of the remediation process. This plan will also serve as a template that may be supplemented as necessary to produce individual project management plans for specific projects. This document explains how the Energy Systems ORNL ER Program does business, so the ORNL ER Program's management structure is illustrated in detail. Personnel are matrixed to the ER Program from other organizations to assist with specific projects. This plan identifies positions at the program level and discusses responsibilities and interactions with positions at the project level. This plan includes sections that describe requirements for project plans, work breakdown structures, schedules, project management and cost control systems, and information and reporting. Project management plans will utilize the work breakdown structure and dictionary pages in the appropriate life cycle baseline report This plan describes the information that should be contained in ORNL ER project management plans. The most important milestones are primary documents relating to the management and remediation of contaminated sites. Primary document milestones are subject to stipulated penalties and receive paramount attention

  1. Program Management Plan for the Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory Site Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This program management plan describes the scope, objectives, and method of accomplishment for the Martin Marietta Energy Systems, Inc. (Energy Systems) Oak Ridge National laboratory (ORNL) Environmental Restoration (ER) Program. The ORNL ER Program is one of five site program, receiving guidance from and reporting to the Energy Systems ER Division. Therefore, all ORNL ER policies and procedures are consistent with ER Division policies and procedures. This plan covers all ORNL ER activities, the participants involved in these activities (and their roles and responsibilities), and all phases of the remediation process. This plan will also serve as a template that may be supplemented as necessary to produce individual project management plans for specific projects. This document explains how the Energy Systems ORNL ER Program does business, so the ORNL ER Program`s management structure is illustrated in detail. Personnel are matrixed to the ER Program from other organizations to assist with specific projects. This plan identifies positions at the program level and discusses responsibilities and interactions with positions at the project level. This plan includes sections that describe requirements for project plans, work breakdown structures, schedules, project management and cost control systems, and information and reporting. Project management plans will utilize the work breakdown structure and dictionary pages in the appropriate life cycle baseline report This plan describes the information that should be contained in ORNL ER project management plans. The most important milestones are primary documents relating to the management and remediation of contaminated sites. Primary document milestones are subject to stipulated penalties and receive paramount attention.

  2. Workshop proceedings: Developing the scientific basis for long-term land management of the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sperber, T.D.; Reynolds, T.D.

    1998-03-01

    Responses to a survey on the INEEL Comprehensive Facility and Land Use Plan (US DOE 1996a) indicated the need for additional discussion on environmental resources, disturbance, and land use issues on the Idaho National Engineering and Environmental Laboratory (INEEL). As a result, in September 1997, a workshop evaluated the existing scientific basis and determined future data needs for long-term land management on the INEEL. This INEEL Long-Term Land Management Workshop examined existing data on biotic, abiotic, and heritage resources and how these resources have been impacted by disturbance activities of the INEEL. Information gained from this workshop will help guide land and facility use decisions, identify data gaps, and focus future research efforts. This report summarizes background information on the INEEL and its long-term land use planning efforts, presentations and discussions at the workshop, and the existing data available at the INEEL. In this document, recommendations for future INEEL land use planning, research efforts, and future workshops are presented. The authors emphasize these are not policy statements, but comments and suggestions made by scientists and others participating in the workshop. Several appendices covering land use disturbance, legal drivers, land use assumptions and workshop participant comments, workshop participants and contributors, and the workshop agenda are also included

  3. Workshop proceedings: Developing the scientific basis for long-term land management of the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sperber, T.D.; Reynolds, T.D. [eds.] [Environmental Science and Research Foundation, Inc., Idaho Falls, ID (United States); Breckenridge, R.P. [ed.] [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

    1998-03-01

    Responses to a survey on the INEEL Comprehensive Facility and Land Use Plan (US DOE 1996a) indicated the need for additional discussion on environmental resources, disturbance, and land use issues on the Idaho National Engineering and Environmental Laboratory (INEEL). As a result, in September 1997, a workshop evaluated the existing scientific basis and determined future data needs for long-term land management on the INEEL. This INEEL Long-Term Land Management Workshop examined existing data on biotic, abiotic, and heritage resources and how these resources have been impacted by disturbance activities of the INEEL. Information gained from this workshop will help guide land and facility use decisions, identify data gaps, and focus future research efforts. This report summarizes background information on the INEEL and its long-term land use planning efforts, presentations and discussions at the workshop, and the existing data available at the INEEL. In this document, recommendations for future INEEL land use planning, research efforts, and future workshops are presented. The authors emphasize these are not policy statements, but comments and suggestions made by scientists and others participating in the workshop. Several appendices covering land use disturbance, legal drivers, land use assumptions and workshop participant comments, workshop participants and contributors, and the workshop agenda are also included.

  4. Science To Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards; FINAL

    International Nuclear Information System (INIS)

    Bredt, Paul R; Brockman, Fred J; Grate, Jay W; Hess, Nancy J; Meyer, Philip D; Murray, Christopher J; Pfund, David M; Su, Yali; Thornton, Edward C; Weber, William J; Zachara, John M

    2001-01-01

    Pacific Northwest National Laboratory (PNNL) was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, nine in fiscal year 1998, seven in fiscal year 1999, and five in fiscal year 2000. All of the fiscal year 1996 award projects have published final reports. The 1997 and 1998 award projects have been completed or are nearing completion. Final reports for these awards will be published, so their annual updates will not be included in this document. This section summarizes how each of the 1999 and 2000 grants address significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. The 1999 and 2000 EMSP awards at PNNL are focused primarily in two areas: Tank Waste Remediation, and Soil and Groundwater Cleanup

  5. Implementation of a laboratory information management system for environmental regulatory analyses

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, W.A.; Aiken, H.B.; Spatz, T.L.; Miles, W.F.; Griffin, J.C.

    1993-09-07

    The Savannah River Technology Center created a second instance of its ORACLE based PEN LIMS to support site Environmental Restoration projects. The first instance of the database had been optimized for R&D support and did not implement rigorous sample tracking, verification, and holding times needed to support regulatory commitments. Much of the R&D instance was transferable such as the work control functions for backlog reports, work assignment sheets, and hazard communication support. A major enhancement of the regulatory LIMS was the addition of features to support a {open_quotes}standardized{close_quotes} electronic data format for environmental data reporting. The electronic format, called {open_quotes}AN92{close_quotes}, was developed by the site environmental monitoring organization and applies to both onsite and offsite environmental analytical contracts. This format incorporates EPA CLP data validation codes as well as details holding time and analytical result reporting requirements. The authors support this format by using special SQL queries to the database. The data is then automatically transferred to the environmental databases for trending and geological mapping.

  6. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  7. Best management practices plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-02-01

    This Best Management Practices (BMP) Plan has been developed as part of the environmental monitoring program at Waste Area Grouping (WAG) 6. The BMP Plan describes the requirements for personnel training, spill prevention and control, environmental compliance, and sediment/erosion control as they relate to environmental monitoring activities and installation of Monitoring Station 4 at WAG 6

  8. Managing laboratory automation.

    Science.gov (United States)

    Saboe, T J

    1995-01-01

    This paper discusses the process of managing automated systems through their life cycles within the quality-control (QC) laboratory environment. The focus is on the process of directing and managing the evolving automation of a laboratory; system examples are given. The author shows how both task and data systems have evolved, and how they interrelate. A BIG picture, or continuum view, is presented and some of the reasons for success or failure of the various examples cited are explored. Finally, some comments on future automation need are discussed.

  9. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  10. Environmental and other evaluations of alternatives for management of defense transuranic waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1982-04-01

    Appendices to this report contain the following information: INEL history of Waste Management; text of communications between Idaho and the federal government on long-term management; agency and public response to a proposed environmental impact statement; updated estimates on radiological releases from the slagging-pyrolysis incinerator; modeling studies of subsurface migration of radionuclides; nonradiological emissions and their environmental effects; methods for calculating radiological consequences; analysis of abnormal events in conceptual retrieval and processing operations; environmental contamination by accidental releases; hazards to waste management workers; environmental and other effects of rail and truck shipment of wastes; effects of hypothetical worst-case shipping accidents in urban areas; environmental and other effects of processing INEL transuranic waste at the offsite geological repository; and regulations applicable to INEL TRU waste management

  11. Sandia National Laboratories performance assessment methodology for long-term environmental programs : the history of nuclear waste management.

    Energy Technology Data Exchange (ETDEWEB)

    Marietta, Melvin Gary; Anderson, D. Richard; Bonano, Evaristo J.; Meacham, Paul Gregory (Raytheon Ktech, Albuquerque, NM)

    2011-11-01

    Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of the SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems

  12. Hertelendi Laboratory of Environmental Studies

    International Nuclear Information System (INIS)

    Svingor, E.; Molnar, M.; Palcsu, L.; Futo, I.; Rinyu, L.; Mogyorosi, M.; Major, Z.; Bihari, A.; Vodila, G.; Janovics, R.; Papp, L.; Major, I.

    2010-01-01

    1. Introduction. The Hertelendi Laboratory for Environmental Studies (HEKAL) belongs to the Section of Environmental and Earth Sciences. It is a multidisciplinary laboratory dedicated to environmental research, to the development of nuclear analytical methods and to systems technology. During its existence of more than 15 years it has gained some reputation as a prime laboratory of analytical techniques, working with both radio- and stable isotopes. It has considerable expertise in isotope concentration measurements, radiocarbon dating, tritium measurements, in monitoring radioactivity around nuclear facilities and in modelling the movement of radionuclides in the environment. Many of its projects are within the scope of interest of the Paks Nuclear Power Plant. Our research activity is mainly concerned with the so-called environmental isotopes. This term denotes isotopes, both stable and radioactive, that are present in the natural environment either as a result of natural processes or of human activities. In environmental research isotopes are generally applied either as tracers or as age indicators. An ideal tracer is defined as a substance that behaves in the system studied exactly as the material to be traced as far as the examined parameters are concerned, but has at least one property that distinguishes it from the traced material. The mass number of an isotope is such an ideal indicator. In 2007 the laboratory assumed the name of Dr. Ede Hertelendi to honour the memory of the reputed environmental physicist who founded the group and headed it for many years. The current core of the laboratory staff is made up of his pupils and coworkers. This team was like a family to him. The group owes it to his fatherly figure that it did not fall apart after his death, but advanced with intense work and tenacity during the last decade. One of his first pupils, Mihaly Veres returned to the laboratory as a private entrepreneur and investor in 2005, and in the framework of

  13. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This volume addresses the interim storage of spent nuclear fuel (SNF) at two US Department of Energy sites, the Nevada Test Site (NTS) and the Oak Ridge Reservation (ORR). These sites are being considered to provide a reasonable range of alternative settings at which future SNF management activities could be conducted. These locations are not currently involved in management of large quantities of SNF; NTS has none, and ORR has only small quantities. But NTS and ORR do offer experience and infrastructure for the handling, processing and storage of radioactive materials, and they do exemplify a broad spectrum of environmental parameters. This broad spectrum of environmental parameters will provide, a perspective on whether and how such location attributes may relate to potential environmental impacts. Consideration of these two sites will permit a programmatic decision to be based upon an assessment of the feasible options without bias, to the current storage sites. This volume is divided into four parts. Part One is the volume introduction. Part Two contains chapters one through five for the NTS, as well as references contained in chapter six. Part Three contains chapters one through five for the ORR, as well as references contained in chapter six. Part Four is summary information including the list of preparers, organizations contacted, acronyms, and abbreviations for both the NTS and the ORR. A Table of Contents, List of Figures, and List of Tables are included in parts Two, Three, and Four. This approach permitted the inclusion of both sites in one volume while maintaining consistent chapter numbering

  14. Laboratory Waste Management. A Guidebook.

    Science.gov (United States)

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  15. Identification and analysis of the environmental management documentation related to the activities of environmental and chemical analysis laboratories; Identificacao e analise da documentacao pertinente a gestao ambiental relacionada as atividades de laboratorios de analises quimicas e ambientais

    Energy Technology Data Exchange (ETDEWEB)

    Otomo, Juliana Ikebe; Brandalise, Michele; Romano, Renato Lahos; Marques, Roberto; Szarota, Rosa Maria; Raduan, Rosane Napolitano; Salvetti, Tereza Cristina; Egute, Nayara dos Santos; Almeida, Josimar Ribeiro de; Aquino, Afonso Rodrigues de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: araquino@ipen.br

    2009-08-15

    In the last years, many documents were elaborated by several countries and entities, concerning the environmental question. The implantation of and Environmental Management System requires specific documentation so that a company or laboratory can adjust themselves to the environmental quality. For laboratories of chemical, environmental analyses and also nuclear materials, the needs of attendance to the requirements of the following municipal, state and federal institutions were identified: Corpo de Bombeiros, CNEN - Comissao Nacional de Energia Nuclear, IBAMA - Instituto Brasileiro do Meio Ambiente e dos Recursos Renovaveis, ANVISA - Agencia Nacional de Vigilancia Sanitaria, PMSP - Prefeitura Municipal de Sao Paulo e a CETESB - Companhia Ambiental do Estado de Sao Paulo. (author)

  16. Laboratory performance evaluation reports for management

    International Nuclear Information System (INIS)

    Lindahl, P.C.; Hensley, J.E.; Bass, D.A.; Johnson, P.L.; Marr, J.J.; Streets, W.E.; Warren, S.W.; Newberry, R.W.

    1995-01-01

    In support of the US DOE's environmental restoration efforts, the Integrated Performance Evaluation Program (IPEP) was developed to produce laboratory performance evaluation reports for management. These reports will provide information necessary to allow DOE headquarters and field offices to determine whether or not contracted analytical laboratories have the capability to produce environmental data of the quality necessary for the remediation program. This document describes the management report

  17. 1995 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Shyr, L.J.; Duncan, D.; Sanchez, R.

    1996-09-01

    This 1995 report contains data from routine radiological and non-radiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration and various waste management programs at Sandia National Laboratories in Albuquerque, New Mexico, are included

  18. 1995 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, L.J.; Duncan, D. [eds.; Sanchez, R.

    1996-09-01

    This 1995 report contains data from routine radiological and non-radiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration and various waste management programs at Sandia National Laboratories in Albuquerque, New Mexico, are included.

  19. Environmental surveillance for the EG and G Idaho Radioactive Waste Management areas at the Idaho National Engineering Laboratory. Annual report 1985

    International Nuclear Information System (INIS)

    Reyes, B.D.; Case, M.J.; Wilhelmsen, R.N.

    1986-08-01

    The 1985 environmental surveillance report for the EG and G Idaho, Inc., radioactive waste management areas at the Idaho National Engineering Laboratory describes the environmental monitoring activities at the Radioactive Waste Management Complex (RWMC), the Waste Experimental Reduction Facility (WERF), the Process Experimental Pilot Plant (PREPP), and two surplus facilities. The purpose of these monitoring activities is to provide for continuous evaluation and awareness of environmental conditions resulting from current operations, to detect significant trends, and to project possible future conditions. This report provides a public record comparing RWMC, WERF, PREPP, and surplus facility environmental data with past results and radiation protection standards or concentration guides established for operation of Department of Energy facilities

  20. Cost-time management for environmental restoration activities at the Department of Energy's Idaho National Engineering Laboratory, Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Fourr, B.R.; Owen, A.H.; Williamson, D.J. (Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States)); Nash, C.L. (USDOE Idaho Field Office, Idaho Falls, ID (United States))

    1992-05-22

    Cost-time management methods have been developed by Westinghouse to examine business applications from a cost-time perspective. The initial application of cost-time management within Westinghouse was targeted at reducing cycle time in the manufacturing sector. As a result of the tremendous success of reduced cycle time in manufacturing, Westinghouse initiated application of the management technique to Environmental Restoration activities at its Government Owned Contractor Operated facilities. The Westinghouse initiative was proposed in support of the Department of Energy's goals for cost effective Environmental Restoration activities. This paper describes the application of the cost-time method to Environmental Restoration work currently being performed at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE) by Westinghouse Idaho Nuclear Company (WINCO).

  1. Cost-time management for environmental restoration activities at the Department of Energy`s Idaho National Engineering Laboratory, Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Fourr, B.R.; Owen, A.H.; Williamson, D.J. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Nash, C.L. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

    1992-05-22

    Cost-time management methods have been developed by Westinghouse to examine business applications from a cost-time perspective. The initial application of cost-time management within Westinghouse was targeted at reducing cycle time in the manufacturing sector. As a result of the tremendous success of reduced cycle time in manufacturing, Westinghouse initiated application of the management technique to Environmental Restoration activities at its Government Owned Contractor Operated facilities. The Westinghouse initiative was proposed in support of the Department of Energy`s goals for cost effective Environmental Restoration activities. This paper describes the application of the cost-time method to Environmental Restoration work currently being performed at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE) by Westinghouse Idaho Nuclear Company (WINCO).

  2. Cost-time management for environmental restoration activities at the Department of Energy's Idaho National Engineering Laboratory, Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Fourr, B.R.; Owen, A.H.; Williamson, D.J.; Nash, C.L.

    1992-01-01

    Cost-time management methods have been developed by Westinghouse to examine business applications from a cost-time perspective. The initial application of cost-time management within Westinghouse was targeted at reducing cycle time in the manufacturing sector. As a result of the tremendous success of reduced cycle time in manufacturing, Westinghouse initiated application of the management technique to Environmental Restoration activities at its Government Owned Contractor Operated facilities. The Westinghouse initiative was proposed in support of the Department of Energy's goals for cost effective Environmental Restoration activities. This paper describes the application of the cost-time method to Environmental Restoration work currently being performed at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE) by Westinghouse Idaho Nuclear Company (WINCO)

  3. Environmental Audit of the Environmental Measurements Laboratory (EML)

    International Nuclear Information System (INIS)

    1992-02-01

    This document contains the findings identified during the Environmental Audit of the Environmental Measurements Laboratory (EML), conducted from December 2 to 13, 1991. The Audit included the EML facility located in a fifth-floor General Services Administration (GSA) office building located in New York City, and a remote environmental monitoring station located in Chester, New Jersey. The scope of this Environmental Audit was comprehensive, covering all areas of environmental activities and waste management operations, with the exception of the National Environmental Policy Act (NEPA), which is the responsibility of the DOE Headquarters Office of NEPA Oversight. Compliance with applicable Federal, state, and local requirements; applicable DOE Orders; and internal facility requirements was addressed

  4. Laboratory of environmental radiological surveillance

    International Nuclear Information System (INIS)

    Mendez G, A.; Marcial M, F.; Giber F, J.; Montiel R, E.; Leon del V, E.; Rivas C, I.; Leon G, M.V.; Lagunas G, E.; Aragon S, R.; Juarez N, A.; Alfaro L, M.M.

    1991-12-01

    The department of radiological protection of the ININ requests the collaboration of the Engineering Unit for the elaboration of the work project of the laboratory of environmental radiological surveillance. The emission of radioactive substances to the atmosphere like consequence of the normal operation of the Nuclear Center, constitutes an exhibition source from the man to the radiations that it should be appropriately watched over and controlled to be able to determine the population's potential exhibition that it lives in the area of influence of the installation. (Author)

  5. Lawrence Livermore National Laboratory Environmental Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dibley, V. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doman, J. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, A. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heidecker, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumamoto, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montemayor, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, H. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Veseliza, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-01

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security, LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  6. Lawrence Livermore National Laboratory Environmental Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Henry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Armstrong, Dave [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, Rick G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, Nicholas A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, Steven J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, Craig [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dibley, Valerie R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doman, Jennifer L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, Allen R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heidecker, Kelly R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hollister, Rod K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumamoto, Gene [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, Donald H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nelson, Jennifer C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, Heather L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, Lisa E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, Crystal A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, Alison A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, Anthony M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, Kent R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, Jim S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-19

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security, LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  7. Environmental Measurements Laboratory, annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Krey, P.W.; Heit, M. [eds.

    1996-07-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1995 and serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the Manager and staff of the Chicago Operations Office, and our colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven research program areas: (1) Environmental Radiation and Radioactivity; (2) Radiation Transport and Dosimetry; (3) Environmental Radon, Thoron, and Related Aerosols; (4) Atmospheric and Surface Pollutant Studies Related to Global Climate Change; (5) Atmospheric Chemistry; and (6) Metrology, Consultation, and Emergency Response Environmental Management The mission of EML is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues, and related national security issues.

  8. Environmental Measurements Laboratory, annual report 1995

    International Nuclear Information System (INIS)

    Krey, P.W.; Heit, M.

    1996-07-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1995 and serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the Manager and staff of the Chicago Operations Office, and our colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven research program areas: (1) Environmental Radiation and Radioactivity; (2) Radiation Transport and Dosimetry; (3) Environmental Radon, Thoron, and Related Aerosols; (4) Atmospheric and Surface Pollutant Studies Related to Global Climate Change; (5) Atmospheric Chemistry; and (6) Metrology, Consultation, and Emergency Response Environmental Management The mission of EML is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues, and related national security issues

  9. Environmental Measurements Laboratory 1994 annual report

    International Nuclear Information System (INIS)

    Chieco, N.A.; Krey, P.W.; Beck, H.L.

    1995-08-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1994 and it serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the manager and staff of the Chicago Field Office, and the authors colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven general program areas: environmental radiation and radioactivity; radiation transport and dosimetry; environmental radon, thoron, and related aerosols; atmospheric and surface pollutant studies related to global climate change; atmospheric chemistry; metrology, consultation, and emergency response; environmental management. EML's mission is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants, and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues and related national security issues

  10. Environmental Measurements Laboratory 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Chieco, N.A. [ed.; Krey, P.W.; Beck, H.L.

    1995-08-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1994 and it serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the manager and staff of the Chicago Field Office, and the authors colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven general program areas: environmental radiation and radioactivity; radiation transport and dosimetry; environmental radon, thoron, and related aerosols; atmospheric and surface pollutant studies related to global climate change; atmospheric chemistry; metrology, consultation, and emergency response; environmental management. EML`s mission is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants, and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues and related national security issues.

  11. Reducing the Environmental Impact of Clinical Laboratories.

    Science.gov (United States)

    Lopez, Joseph B; Jackson, David; Gammie, Alistair; Badrick, Tony

    2017-02-01

    Healthcare is a significant contributor to environmental impact but this has received little attention. The typical laboratory uses far more energy and water per unit area than the typical office building. There is a need to sensitise laboratories to the importance of adopting good environmental practices. Since this comes at an initial cost, it is vital to obtain senior management support. Convincing management of the various tangible and intangible benefits that can accrue in the long run should help achieve this support. Many good environmental practices do not have a cost but will require a change in the culture and mind-set of the organisation. Continuing education and training are important keys to successful implementation of good practices. There is a need to undertake a rigorous cost-benefit analysis of every change that is introduced in going green. The adoption of good practices can eventually lead to ISO certification if this is desired. This paper provides suggestions that will allow a laboratory to start going green. It will allow the industry to enhance its corporate citizenship whilst improving its competitive advantage for long-term.

  12. Environmental restoration and management of low-level radioactive and mixed waste at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kendrick, C.M.

    1994-01-01

    Management of radioactive waste at Oak Ridge National Laboratory (ORNL) must address several major challenges. First, contaminants from some disposed wastes are leaching into the groundwater and these disposal sites must be remediated. Second, some of these ''legacy'' wastes, as well as currently generated radioactive wastes, are also contaminated with chemicals, including polychlorinated biphenyls (PCBs), solvents, and metals (i.e., mixed waste). Third, wastes containing long-lived radionuclides in concentrations above established limits have been determined unsuited for disposal on the Oak Ridge Reservation. Reflecting these challenges, ORNL's strategy for managing its radioactive wastes continues to evolve with the development of improved technologies and site-specific adaptation of some standard technologies

  13. Environmental restoration and management of low-level radioactive and mixed waste at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kendrick, C.M.

    1994-03-01

    Management of radioactive waste at Oak Ridge National Laboratory (ORNL) must address several major challenges. First, contaminants from some disposed wastes are leaching into the groundwater and these disposal sites must be remediated. Second, some of these ``legacy`` wastes, as well as currently generated radioactive wastes, are also contaminated with chemicals, including polychlorinated biphenyls (PCBs), solvents, and metals (i.e., mixed waste). Third, wastes containing long-lived radionuclides in concentrations above established limits have been determined unsuited for disposal on the Oak Ridge Reservation. Reflecting these challenges, ORNL`s strategy for managing its radioactive wastes continues to evolve with the development of improved technologies and site-specific adaptation of some standard technologies.

  14. Quality management manual. National EU air quality reference laboratory of the Federal Environmental Agency; Qualitaetsmanagementhandbuch. Nationales EU-Luftqualitaets-Referenzlabor im Umweltbundesamt

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    The 'Air' Department of the Federal Environmental Agency initiated a quality management system according to DIN EN ISO/IEC 17025 in order to carry out its tasks as a EU reference laboratory for air pollution monitoring. Harmonisation of measurements is attempted not only in the Federal Republic of Germany but world-wide. This is to be achieved by standardising the activities of reference laboratories on the basis of the DIN EN standards. The quality management system comprises complex organisational, technical and staff-oriented measures to ensure quality-relevant procedures and to control the interdependences between the individual processes. The specifications contained in this report are to ensure that quality requirements are met, and that the QM system will be updated continuously in order to ensure constant improvement.

  15. Exploration of Environmental Management

    OpenAIRE

    Li Shushu; Li Ruilong; Chen Rui

    2012-01-01

    On the basis of domestic and international research, this article takes research on peasant household and agricultural managements as base points, aims to build environmental management model, establish government-led, an effective environmental management mechanism between the government and peasant household. Analyzes the role of peasant household’ environmental management in the regional environmental improvement from the aspect of theoretical analysis and analyze significant factors affec...

  16. IRSN's radiological proficiency testings: a key for managing the quality of test laboratories in charge of the environmental radioactivity survey in France?

    Energy Technology Data Exchange (ETDEWEB)

    Ameon, R.; Gleizes, M.; Maulard, A.; Moine, J.; Vignaud, C. [Institute for Radioprotection and Nuclear Safety, IRSN (France)

    2014-07-01

    In France, many actors are involved in environmental monitoring (IRSN, operators of nuclear facilities, State services, approved air quality monitoring associations, environmental protection associations, private environmental laboratories...). The French National Network for Environmental Radioactivity Monitoring (RNM) federates all these entities. RNM brings together the environmental measurement results made in a regulatory framework on the French territory and make them available to the public through a web site. The quality of these measurements is guaranteed by subjecting the test laboratories to an approval procedure under the control of the French nuclear safety authority (ASN). The approval procedure includes administrative requirements (the laboratory shall meet ISO 17025 requirements) and the participation to proficiency testings (PT) provided by IRSN in order to demonstrate their technical competence. As approvals cover all components of the environment, the five-year PT program is defined on a combination of: - 6 types of environmental matrices: water, soil/sediments, biological matrices (tea, tobacco, fish, milk,...), aerosols on filters, gas-air (activated charcoal cartridge) and ambient air (RPL dosimeters), - 17 categories of radioactive measurements: g-emitters, gross a, gross b, {sup 3}H, {sup 14}C, {sup 90}Sr/{sup 90}Y, pure b-emitters, U isotopes and U content, Th isotopes, {sup 226}Ra and decay products, {sup 228}Ra and decay products, Pu/Am, {sup 129}I/{sup 131}I, noble gases, g-dose rate. Following ISO/CEI 17043 requirements, IRSN, as an accredited PT provider is in charge of: - Preparation and dispatch of test items, - Control of the homogeneity and stability of produced test items, - Determination of the assigned values, - Analysis of the results transmitted by participants in terms of relative bias, En number and z-score, - Publication of the report. PT program managed by IRSN groups 6 to 7 interlaboratory comparisons per year. Each of

  17. Lawrence Livermore National Laboratory Environmental Report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H E; Bertoldo, N A; Campbell, C G; Cerruti, S J; Coty, J D; Dibley, V R; Doman, J L; Grayson, A R; MacQueen, D H; Wegrecki, A M; Armstrong, D H; Brigdon, S L; Heidecker, K R; Hollister, R K; Khan, H N; Lee, G S; Nelson, J C; Paterson, L E; Salvo, V J; Schwartz, W W; Terusaki, S H; Wilson, K R; Woods, J M; Yimbo, P O; Gallegos, G M; Terrill, A A; Revelli, M A; Rosene, C A; Blake, R G; Woollett, J S; Kumamoto, G

    2011-09-14

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff

  18. Life Cycle Environmental Management

    DEFF Research Database (Denmark)

    Pedersen, Claus Stig; Jørgensen, Jørgen; Pedersen, Morten Als

    1996-01-01

    A precondition for environmentally conscious management is the awareness of the environmental impact potentials created by an industrial company. There is an obvious need for management tools to support the implementation of relevant environmental criteria into the industrial decision making...... processes. The discipline of life cycle environmental management (LCEM) focuses on the incorporation of environmental criteria from the life cycles of products and other company activities into the company management processes. This paper introduces the concept of LCEM as an important element...... of the complete set of environmental objects in an industrial manufacturing company....

  19. Data management for environmental research

    International Nuclear Information System (INIS)

    Strand, R.H.

    1976-01-01

    The objective of managing environmental research data is to develop a resource sufficient for the study and potential solution of environmental problems. Consequently, environmnetal data management must include a broad spectrum of activities ranging from statistical analysis and modeling, through data set archiving to computer hardware procurement. This paper briefly summarizes the data management requirements for environmental research and the techniques and automated procedures which are currently used by the Environmental Sciences Division at Oak Ridge National Laboratory. Included in these requirements are readily retrievable data, data indexed by categories for retrieval and application, data documentation (including collection methods), design and error bounds, easily used analysis and display programs, and file manipulation routines. The statistical analysis system (SAS) and other systems provide the automated procedures and techniques for analysis and management of environmental research data

  20. Science to support DOE site cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program awards. Fiscal year 1997, mid-year progress report

    International Nuclear Information System (INIS)

    1997-06-01

    The Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996. This report gives a summary of how each grant is addressing significant DOE cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is primarily focused in three areas--Tank Waste Remediation, Soil and Groundwater Cleanup, and Health Effects

  1. Science to support DOE site cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program awards. Fiscal year 1998 mid-year progress report

    International Nuclear Information System (INIS)

    1998-05-01

    Pacific Northwest National Laboratory was awarded ten (10) Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996 and six (6) in Fiscal Year 1997. This section summarizes how each grant addresses significant US Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in four areas: Tank Waste Remediation, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Cleanup, and Health Effects

  2. Science to support DOE site cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program awards. Fiscal year 1997 mid-year progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996. This report gives a summary of how each grant is addressing significant DOE cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is primarily focused in three areas--Tank Waste Remediation, Soil and Groundwater Cleanup, and Health Effects.

  3. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards-Fiscal Year 1999 Mid-Year Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Peurrung, L.M.

    1999-06-30

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, and eight in fiscal year 1998. This section summarizes how each grant addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in five areas: Tank Waste Remediation, Decontamination and Decommissioning, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Clean Up, and Health Effects.

  4. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards-Fiscal Year 1999 Mid-Year Progress Report

    International Nuclear Information System (INIS)

    Peurrung, L.M.

    1999-05-01

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, and eight in fiscal year 1998. This section summarizes how each grant addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in five areas: Tank Waste Remediation, Decontamination and Decommissioning, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Clean Up, and Health Effects

  5. Science to support DOE site cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program awards. Fiscal year 1998 mid-year progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Pacific Northwest National Laboratory was awarded ten (10) Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996 and six (6) in Fiscal Year 1997. This section summarizes how each grant addresses significant US Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in four areas: Tank Waste Remediation, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Cleanup, and Health Effects.

  6. Laboratory Support Services for Environmental Testing

    National Research Council Canada - National Science Library

    1997-01-01

    ...) were effectively managing their contracts for environmental test services and whether DoD organizations were effectively performing quality assurance procedures on environmental test results received...

  7. Idaho National Laboratory Site Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Nordstrom, Jenifer [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-02-01

    This plan provides a high-level summary of environmental monitoring performed by various organizations within and around the Idaho National Laboratory (INL) Site as required by U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and DOE Order 458.1, Radiation Protection of the Public and the Environment, Guide DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, and in accordance with 40 Code of Federal Regulations (CFR) 61, National Emission Standards for Hazardous Air Pollutants. The purpose of these orders is to 1) implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations, and 2) to establish standards and requirements for the operations of DOE and DOE contractors with respect to protection of the environment and members of the public against undue risk from radiation. This plan describes the organizations responsible for conducting environmental monitoring across the INL Site, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. Detailed monitoring procedures, program plans, or other governing documents used by contractors or agencies to implement requirements are referenced in this plan. This plan covers all planned monitoring and environmental surveillance. Non-routine activities such as special research studies and characterization of individual sites for environmental restoration are outside the scope of this plan.

  8. Environmental Waste Management in a School Hospital and in a Laboratory of Human Anatomy of a University

    Directory of Open Access Journals (Sweden)

    Kira Lusa Manfredini

    2013-12-01

    Full Text Available The scientific and professional activities developed in a Hospital School and a Laboratory of Human Anatomy of a university can generate parallel, chemical residues from various degrees of angerousness, which may require physical treatment and / or suitable chemical, before being sent to final destination. The General Hospital (GH generates monthly 10 L of xylenes and 50 L of glutaraldehyde to provide ass instance to their patients. Already the Laboratory of Human Anatomy of University de Caxias do Sul (AL-UCS uses more than 10,000 liters for preserving corpses in tanks. The present study aims to analyze the chemical waste management of the GH and the AL-UCS and propose techniques for recovery and reuse of chemicals formaldehyde, glutaraldehyde and xylenes, minimizing the impacts generated by the use, often indispensable and sometimes questionable, of such waste. So far two sets of samples were collected (in March and April 2013 of xylene, glutaraldehyde and formaldehyde in the GH and also at the AL-UCS and it is intended to repeat the collections with monthly periodicity, in the next two semesters. Partial results show that, comparing the relationship of area and the medium areas of the chromatographic (in µV.s of patterns with compounds of interest, an increase in the percentage of formaldehyde relative to the samples in standard formalin (121.84% may be due to contamination with organic compounds with a retention time close to the compound of interest, the xylene was little degradation in the samples, indicating that this compound can be reused in the common procedures of healthcare institutions, with respect to glutaraldehyde significant degradation was observed for the compound in samples represents only 61.88% of the chromatographic peak area of the standard, therefore the reuse of these compounds may require the use of purification methods such as simple distillation and fractional distillation

  9. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards -- Fiscal Year 2002 Mid-Year Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Bredt, Paul R.; Ainsworth, Calvin C.; Brockman, Fred J.; Camaioni, Donald M.; Egorov, Oleg B.; Felmy, Andrew R.; Gorby, Yuri A.; Grate, Jay W.; Greenwood, Margaret S.; Hay, Benjamin P.; Hess, Nancy J.; Hubler, Timothy L.; Icenhower, Jonathan P.; Mattigod, Shas V.; McGrail, B. Peter; Meyer, Philip D.; Murray, Christopher J.; Panetta, Paul D.; Pfund, David M.; Rai, Dhanpat; Su, Yali; Sundaram, S. K.; Weber, William J.; Zachara, John M.

    2002-06-11

    Pacific Northwest National Laboratory has been awarded a total of 80 Environmental Management Science Program (EMSP) research grants since the inception of the program in 1996. The Laboratory has collaborated on an additional 14 EMSP awards with funding received through other institution. This report describes how each of the projects awarded in 1999, 2000, and 2001 addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in the individual project reports included in this document. Projects are under way in three main areas: Tank Waste Remediation, Decontamination and Decommissioning, and Soil and Groundwater Cleanup.

  10. Documentation of a simple environmental pathways model of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Shuman, R.D.; Case, M.J.; Rope, S.K.

    1985-09-01

    The DOSTOMAN code calculates compartment inventories of radioactivity for all model compartments defined. Calculations are performed for the entire period of time simulated, at user-designated intervals. This output permits tracking of radionuclide movement within and from the disposal site. Simulation runs were performed for 60 Co, 90 Sr, 137 Cs, 239 Pu, and 241 Am for the duration of the site's operational period. For calculational purposes only, this period was assumed to extend to the year 2093. Sensitivity analyses, in which the relative importance of biotic and abiotic transport processes in radionuclide migration was evaluated, were performed for the EDS and CDS models. Interactive effects between transport processes were examined, as were time-dependent changes in process sensitivities. Results of the analyses are useful in defining the adequacy of present environmental monitoring activities. The current monitoring program addresses all pertinent environmental media. The level of comprehensiveness in sampling each medium, however, does not reflect differences in importance of the various transport processes. A number of special studies, in progress or planned, are expected to aid in improving the monitoring program. Limitations of the DOSTOMAN model, as applied to the Radioactive Waste Management Complex, are discussed. Modeling of atmospheric and hydrologic dispersion of contaminants, and consideration of seasonal dynamics of transport processes, are identified as most deserving of attention. It is recognized that, to the extent that further refinements of the monitoring program are based on model projections, resolution of these limitations is important. Recommendations are offered for work needed to deal with these limitations, many of which are already planned for implementation

  11. Laboratory/industry partnerships for environmental remediation

    International Nuclear Information System (INIS)

    Beskid, N.J.; Zussman, S.K.

    1994-01-01

    There are two measures of ''successful'' technology transfer in DOE's environmental restoration and waste management program. The first is remediation of DOE sites, and the second is commercialization of an environmental remediation process or product. The ideal case merges these two in laboratory/industry partnerships for environmental remediation. The elements to be discussed in terms of their effectiveness in aiding technology transfer include: a decision-making champion; timely and sufficient funding; well organized technology transfer function; well defined DOE and commercial markets; and industry/commercial partnering. Several case studies are presented, including the successful commercialization of a process for vitrification of low-level radioactive waste, the commercial marketing of software for hazardous waste characterization, and the application of a monitoring technique that has won a prestigious technical award. Case studies will include: vitrification of low-level radioactive waste (GTS Duratek, Columbia, MD); borehole liner for emplacing instrumentation and sampling groundwater (Science and Engineering Associates, Inc., Santa Fe, NM); electronic cone penetrometer (Applied Research Associates, Inc., South Royalton, VT); and software for hazardous waste monitoring ConSolve, Inc. (Lexington, MA). The roles of the Department of Energy and Argonne National Laboratory in these successes will be characterized

  12. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs. Final Environmental Impact Statement: Volume 1, Appendix L, Environmental Justice

    International Nuclear Information System (INIS)

    1995-04-01

    Appendix L provides an assessment of the areas surrounding the 10 sites under consideration for the management of spent nuclear fuels (SNF) under all programmatic alternatives considered in this volume. It is divided into two sections: (a) the five sites considered for the management of DOE naval SNF only (under the No Action and Decentralization alternatives, and (b) the five DOE sites being considered for the management of all types of DOE SNF under all alternatives. The five sites considered for the management of naval SNF only are the Norfolk Naval Shipyard, Portsmouth, Virginia; Portsmouth Naval Shipyard, Kittery, Maine; Pearl Harbor Naval Shipyard, Honolulu, Hawaii; Puget Sound Naval Shipyard, Bremerton, Washington; and Kesselring Site, West Milton, New York. The five DOE sites considered for the management of some portion or all DOE SNF are the Savannah River Site, Aiken, South Carolina; Oak Ridge Reservation, Oak Ridge, Tennessee; Idaho National Engineering Laboratory, Idaho Falls, Idaho; Hanford Site, Richland, Washington; and Nevada Test Site, Mercury, Nevada. This assessment includes potential adverse impacts resulting from both onsite activities and associated transportation of materials. Based on this assessment, it is concluded that none of the alternatives analyzed results in disproportionately high and adverse effects on minority populations or low-income communities surrounding any of the sites under consideration for the management of SNF or associated offsite transportation routes

  13. Management of intermediate level radioactive waste, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Final environmental impact statement

    International Nuclear Information System (INIS)

    1977-09-01

    Chapters are devoted to the following topics: background and description; environmental impact of the proposed action; unavoidable adverse environmental effects; alternatives; relationship between short-term uses and long term productivity; state, local, or regional conflicts; irreversible and irretrievable commitments of resources; and cost benefit analysis. Four Appendices are provided: Glossary of terms; Characterization of existing environment; Calculations; Environmental monitoring of existing environment

  14. Laboratory interface in support of Environmental Restoration Programs

    International Nuclear Information System (INIS)

    Pardue, G.J. Jr.

    1994-01-01

    A vital part of quality environmental data resides in the communication between the project and the analytical laboratory. It is essential that the project clearly identify its objectives to the laboratory and that the laboratory understands the scope and limitations of the analytical process. Successful completion of an environmental project must include an aggressive program between project managers and subcontracted Lyrical laboratories. All to often, individuals and organizations tend to deflect errors and failures observed in environmental toward open-quotes the other guyclose quotes. The engineering firm will blame the laboratory, the laboratory will blame the field operation, the field operation will blame the engineering, and everyone will blame the customer for not understanding the true variables in the environmental arena. It is the contention of the authors, that the majority of failures derive from a lack of communication and misunderstanding. Several initiatives can be taken to improve communication and understanding between the various pieces of the environmental data quality puzzle. This presentation attempts to outline mechanisms to improve communication between the environmental project and the analytical laboratory with the intent of continuous quality improvement. Concepts include: project specific laboratory statements of work which focus on project and program requirements; project specific analytical laboratory readiness reviews (project kick-off meetings); laboratory team workshops; project/program performance tracking and self assessment and promotion of team success

  15. Research report 1987-1989: Environmental Quality Laboratory and Environmental Engineering Science, W. M. Keck Laboratories

    OpenAIRE

    Brooks, Norman H.

    1990-01-01

    This research biennial report for 1987-89 covers the activities of both the Environmental Engineering Science program and the Environmental Quality Laboratory for the period October 1987-November 1989. Environmental Engineering Science is the degree-granting academic program housed in the Keck Laboratories, with associated research projects. The Environmental Quality Laboratory is a research center focusing on large scale problems of environmental quality and natural resources. All the facult...

  16. Environmental data management at Fernald

    International Nuclear Information System (INIS)

    Jones, B.W.; Williams, J.

    1994-01-01

    FERMCO supports DOE's ongoing initiatives for the continuous improvement of site restoration through the development and application of innovative technologies. A major thrust of FERMCO's efforts has been the enhancement of environmental data management technology for the site. The understanding of environmental data is the fundamental basis for determining the need for environmental restoration, developing and comparing remedial alternatives, and reaching a decision on how to clean up a site. Environmental data management at Fernald is being focused on two major objectives: to improve the efficiency of the data management process, and to provide a better understanding of the meaning of the data at the earliest possible time. Environmental data at Fernald is typically a soil or groundwater sample collected by one of the field geologists. These samples are then shipped to one or more laboratories for analysis. After the analyses are returned from the laboratories the data are reviewed and qualified for usability. The data are then used by environmental professionals for determining nature and extent of contamination. Additionally, hazardous waste materials whether generated during production or during cleanup, may be sampled to characterize the waste before shipment or treatment. The data management process, which uses four major software systems, is presented graphically

  17. Site Environmental Report for 2007: Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Environmental Management Dept.

    2008-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2007 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2007. General site and environmental program information is also included.

  18. Site environmental report for 2011. Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2012-05-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractoroperated laboratory. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2011 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2011. General site and environmental program information is also included.

  19. Site environmental report for 2008 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2009-04-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2008 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2008. General site and environmental program information is also included.

  20. Site environmental report for 2004 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. (Sandia National Laboratories, Livermore, CA)

    2005-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2004 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2004. General site and environmental program information is also included.

  1. Site environmental report for 2003 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2004-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2003 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2003. General site and environmental program information is also included.

  2. Site environmental report for 2006 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2006 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2006. General site and environmental program information is also included.

  3. Site environmental report for 2005 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2006-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2005 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2005. General site and environmental program information is also included.

  4. Site Environmental Report for 2012 Sandia National Laboratories California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-05-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2012 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2012. General site and environmental program information is also included.

  5. Lawrence Livermore National Laboratory Environmental Report 2015

    International Nuclear Information System (INIS)

    Rosene, C. A.; Jones, H. E.

    2016-01-01

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites-the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, ''Environment, Safety and Health Reporting,'' and DOE Order 458.1, ''Radiation Protection of the Public and Environment.''

  6. Great Lakes Environmental Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NOAA-GLERL and its partners conduct innovative research on the dynamic environments and ecosystems of the Great Lakes and coastal regions to provide information for...

  7. Environmental Measurements Laboratory fiscal year 1998: Accomplishments and technical activities

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, M.D.

    1999-01-01

    The Environmental Measurements Laboratory (EML) is government-owned, government-operated, and programmatically under the DOE Office of Environmental Management. The Laboratory is administered by the Chicago Operations Office. EML provides program management, technical assistance and data quality assurance for measurements of radiation and radioactivity relating to environmental restoration, global nuclear nonproliferation, and other priority issues for the Department of Energy, as well as for other government, national, and international organizations. This report presents the technical activities and accomplishments of EML for Fiscal Year 1998.

  8. Essays on environmental management

    OpenAIRE

    Marbuah, George

    2016-01-01

    This thesis contributes to the economic literature on invasive species, social capital connection to climate change and environmental good provision as well as energy demand management. It contains five independent papers connected by the broader theme of environmental management. Two papers (I and II) deal with invasive species while the third and fourth probes the effect of social capital on carbon dioxide emissions (CO₂) and individuals’ decision to contribute toward environmental protecti...

  9. 1993 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Culp, T.A.; Cheng, C.F.; Cox, W.; Durand, N.; Irwin, M.; Jones, A.; Lauffer, F.; Lincoln, M.; McClellan, Y.; Molley, K.

    1994-11-01

    This 1993 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0016 millirem. The total population within a 50-mile (80 kilometer) radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.027 person-rem during 1993 from the laboratories operations, As in the previous year, the 1993 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1

  10. Environmental and other evaluations of alternatives for management of defense transuranic waste at the Idaho National Engineering Laboratory. Volume 1 of 2

    International Nuclear Information System (INIS)

    1982-04-01

    The US Department of Energy (DOE) is responsible for developing and implementing methods for the safe and environmentally acceptable disposal of radioactive wastes. In connection with this responsibility, the DOE is formulating a program for the long-term management of transuranic (TRU) waste buried and stored at the Idaho National Engineering Laboratory (INEL). This report has been prepared to document the results of environmental and other evaluations for three decisions that the DOE is considering: (1) the selection of a general method for the long-term management of the buried TRU waste; (2) the selection of a method for processing the stored waste and for processing the buried waste, if it is retrieved; (3) the selection of a location for the waste-processing facility. This document pertains only to the contact-handled TRU waste buried in pits and trenches and the contact-handled TRU waste held in aboveground storage at the INEL. A decision has previously been made on a method for the long-term management of the stored waste; it will be retrieved and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. The WIPP is also used in this report as a reference repository for evaluation purposes for the buried waste. This report is contained in two volumes. Volume I is arranged as follows: the summary is an overview of the analyses contained in this document. Section 1 is a statement of the underlying purpose and need to which the report is responding. Section 2 describes the alterntives. Section 3 describes the affected environment at the INEL and the WIPP sites. Section 4 analyzes the environmental effects of each alternative. The appendices in Volume II contain data and discussions supporting the material presented in Volume I

  11. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards - Fiscal Year 2000 Mid-Year Progress Report

    International Nuclear Information System (INIS)

    CD Carlson; SQ Bennett

    2000-01-01

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, eight in fiscal year 1998, and seven in fiscal year 1999. All of the fiscal year 1996 award projects have been completed and will publish final reports, so their annual updates will not be included in this document. This section summarizes how each of the currently funded grants addresses significant US Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research performed at PNNL is focused primarily in four areas: Tank Waste Remediation; Decontamination and Decommissioning; Spent Nuclear Fuel and Nuclear Materials; and Soil and Groundwater Cleanup

  12. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards - Fiscal Year 2000 Mid-Year Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Clark D.; Bennett, Sheila Q.

    2000-07-25

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, eight in fiscal year 1998 and seven in fiscal year 1999.(a) All of the fiscal year 1996 awards have been completed and the Principal Investigators are writing final reports, so their summaries will not be included in this document. This section summarizes how each of the currently funded grants addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research performed at PNNL is focused primarily in four areas: Tank Waste Remediation, Decontamination and Decommissioning, Spent Nuclear Fuel and Nuclear Materials, and Soil and Groundwater Cleanup.

  13. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards - Fiscal Year 2000 Mid-Year Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    CD Carlson; SQ Bennett

    2000-07-25

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, eight in fiscal year 1998, and seven in fiscal year 1999. All of the fiscal year 1996 award projects have been completed and will publish final reports, so their annual updates will not be included in this document. This section summarizes how each of the currently funded grants addresses significant US Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research performed at PNNL is focused primarily in four areas: Tank Waste Remediation; Decontamination and Decommissioning; Spent Nuclear Fuel and Nuclear Materials; and Soil and Groundwater Cleanup.

  14. Lawrence Berkeley National Laboratory 1995 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment.

  15. Lawrence Berkeley National Laboratory 1995 site environmental report

    International Nuclear Information System (INIS)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment

  16. Environmental Monitoring Plan, Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    Holland, R.C.

    1992-06-01

    This Environmental Monitoring Plan was written to fulfill the requirements of DOE Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories, Livermore. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. 61 refs

  17. Environmental report 1997, Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Lentzner, H.L.; Morris, J.C.; Harrach, R.J.

    1998-01-01

    This report summarizes the environmental program activities at the Lawrence Livermore National Laboratory (LLNL) for 1997. This report accurately summarizes the results of environmental monitoring, compliance, impacts assessment, and the restoration program at LLNL. It features individual chapters on monitoring of air, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation. It also contains chapters on site overview, environmental program information, radiological dose assessment, and quality assurance

  18. Environmental report 1996, Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Lentzner, H.L.; Napolitano, M.M.; Harrach, R.J.

    1997-01-01

    This report summarizes the environmental program activities at the Lawrence Livermore National Laboratory (LLNL) for 1996. This report accurately summarizes the results of environmental monitoring, compliance, impacts assessment, and the restoration program at LLNL. It features individual chapters on monitoring of air, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation. It also contains chapters on site overview, environmental program information, radiological dose assessment, and quality assurance

  19. Environmental isotope hydrology laboratories in developing countries

    International Nuclear Information System (INIS)

    Gonfiantini, R.; Stichler, W.

    1991-01-01

    This article reports on the role, experience, and problems of environmental isotope hydrology laboratories in developing countries, based upon the IAEA's experience. It specifically offers guidance on important aspects of organization, staffing, and operation

  20. Environmental Quality Laboratory Research Report, 1985-1987

    OpenAIRE

    Brooks, Norman H.

    1988-01-01

    The Environmental Quality Laboratory at Caltech is a center for research on large-scale systems problems of natural resources and environmental quality. The principal areas of investigation at EQL are: 1. Air quality management. 2. Water resources and water quality management. 3. Control of hazardous substances in the environment. 4. Energy policy, including regulation, conservation and energy-environment tradeoffs. 5. Resources policy (other than energy); residuals m...

  1. Environmental Requirements Management

    Energy Technology Data Exchange (ETDEWEB)

    Cusack, Laura J.; Bramson, Jeffrey E.; Archuleta, Jose A.; Frey, Jeffrey A.

    2015-01-08

    CH2M HILL Plateau Remediation Company (CH2M HILL) is the U.S. Department of Energy (DOE) prime contractor responsible for the environmental cleanup of the Hanford Site Central Plateau. As part of this responsibility, the CH2M HILL is faced with the task of complying with thousands of environmental requirements which originate from over 200 federal, state, and local laws and regulations, DOE Orders, waste management and effluent discharge permits, Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) response and Resource Conservation and Recovery Act (RCRA) corrective action documents, and official regulatory agency correspondence. The challenge is to manage this vast number of requirements to ensure they are appropriately and effectively integrated into CH2M HILL operations. Ensuring compliance with a large number of environmental requirements relies on an organization’s ability to identify, evaluate, communicate, and verify those requirements. To ensure that compliance is maintained, all changes need to be tracked. The CH2M HILL identified that the existing system used to manage environmental requirements was difficult to maintain and that improvements should be made to increase functionality. CH2M HILL established an environmental requirements management procedure and tools to assure that all environmental requirements are effectively and efficiently managed. Having a complete and accurate set of environmental requirements applicable to CH2M HILL operations will promote a more efficient approach to: • Communicating requirements • Planning work • Maintaining work controls • Maintaining compliance

  2. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Culp, T.; Cox, W.; Hwang, H.; Irwin, M.; Jones, A.; Matz, B.; Molley, K.; Rhodes, W.; Stermer, D.; Wolff, T.

    1993-09-01

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories' operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment

  3. Environmental Chemistry in the Undergraduate Laboratory.

    Science.gov (United States)

    Wenzel, Thomas J.; Austin, Rachel N.

    2001-01-01

    Discusses the importance of environmental chemistry and the use of laboratory exercises in analytical and general chemistry courses. Notes the importance of lab work in heightening student interest in coursework including problem-based learning in undergraduate curricula, ready adaptability of environmental coursework to existing curricula, and…

  4. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  5. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement; Volume 1, Appendix F, Nevada Test Site and Oak Ridge Reservation Spent Nuclear Fuel Management Programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    This volume addresses the interim storage of spent nuclear fuel (SNF) at two US Department of Energy sites, the Nevada Test Site (NTS) and the Oak Ridge Reservation (ORR). These sites are being considered to provide a reasonable range of alternative settings at which future SNF management activities could be conducted. These locations are not currently involved in management of large quantities of SNF; NTS has none, and ORR has only small quantities. But NTS and ORR do offer experience and infrastructure for the handling, processing and storage of radioactive materials, and they do exemplify a broad spectrum of environmental parameters. This broad spectrum of environmental parameters will provide, a perspective on whether and how such location attributes may relate to potential environmental impacts. Consideration of these two sites will permit a programmatic decision to be based upon an assessment of the feasible options without bias, to the current storage sites. This volume is divided into four parts. Part One is the volume introduction. Part Two contains chapters one through five for the NTS, as well as references contained in chapter six. Part Three contains chapters one through five for the ORR, as well as references contained in chapter six. Part Four is summary information including the list of preparers, organizations contacted, acronyms, and abbreviations for both the NTS and the ORR. A Table of Contents, List of Figures, and List of Tables are included in parts Two, Three, and Four. This approach permitted the inclusion of both sites in one volume while maintaining consistent chapter numbering.

  6. Sandia National Laboratories/New Mexico 1994 site environmental report. Summary pamphlet

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents details of the environmental activities that occurred during 1994 at Sandia National Laboratories. Topics include: Background about Sandia; radiation facts; sources of radiation; environmental monitoring; discussion of radiation detectors; radioactive waste management; environmental restoration; and quality assurance

  7. Sandia National Laboratories/New Mexico 1994 site environmental report. Summary pamphlet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents details of the environmental activities that occurred during 1994 at Sandia National Laboratories. Topics include: Background about Sandia; radiation facts; sources of radiation; environmental monitoring; discussion of radiation detectors; radioactive waste management; environmental restoration; and quality assurance.

  8. 1994 Site Environmental Report Sandia National Laboratories Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Shyr, L.J.; Wiggins, T.; White, B.B.

    1995-09-01

    This 1994 report contains data from routine radiological and nonradiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum off-site dose impact from air emissions was calculated to be 1.5 x 10 -4 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.012 person-rem during 1994 from the laboratories' operations. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1

  9. Use of a simplified pathways model to improve the environmental surveillance program at the radioactive waste management complex of the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Case, M.J.; Rope, S.K.

    1985-01-01

    Systems analysis, including a simple pathways model based on first-order kinetics, is a useful way to design or improve environmental monitoring networks. This method allows investigators and administrators to consider interactions that may be occurring in the system and provides guidance in determining the need to collect data on various system components and processes. A simplified pathways model of radionuclide movement from low-level waste and transuranic waste buried at the Radioactive Waste Management Complex was developed (1) to identify critical pathways that should be monitored and (2) to identify key input parameters that need investigation by special studies. The model was modified from the Savannah River Laboratory DOSTOMAN code. Site-specific data were used in the model, if available. Physical and biological pathways include airborne and waterborne transport of surface soil, subsurface migration to the aquifer, waste container degradation, plant uptake, small mammal burrowing, and a few simplified food chain pathways. The model was run using a set of radionuclides determined to be significant in terms of relative hazard. Critical transport pathways which should be monitored were selected based on relative influence on model results. Key input parameters were identified for possible special studies by evaluating the sensitivity of model response to the parameters used to define transport pathways. A description of the approaches used and the guidance recommended to improve the environmental surveillance program are presented in this paper. 5 references, 1 figure, 2 tables

  10. Environmental Molecular Sciences Laboratory 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    White, Julia C.

    2005-04-17

    This 2004 Annual Report describes the research and accomplishments of staff and users of the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), located in Richland, Washington. EMSL is a multidisciplinary, national scientific user facility and research organization, operated by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy's Office of Biological and Environmental Research. The resources and opportunities within the facility are an outgrowth of the U.S. Department of Energy's (DOE) commitment to fundamental research for understanding and resolving environmental and other critical scientific issues.

  11. Environmental Survey preliminary report, Argonne National Laboratory, Argonne, Illinois

    International Nuclear Information System (INIS)

    1988-11-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Argonne National Laboratory (ANL), conducted June 15 through 26, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ANL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S ampersand A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S ampersand A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the S ampersand A results will be incorporated into the Argonne National Laboratory Environmental Survey findings for inclusion in the Environmental Survey Summary Report. 75 refs., 24 figs., 60 tabs

  12. Environmental Survey preliminary report, Argonne National Laboratory, Argonne, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Argonne National Laboratory (ANL), conducted June 15 through 26, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ANL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the S A results will be incorporated into the Argonne National Laboratory Environmental Survey findings for inclusion in the Environmental Survey Summary Report. 75 refs., 24 figs., 60 tabs.

  13. Data and Model-Driven Decision Support for Environmental Management of a Chromium Plume at Los Alamos National Laboratory - 13264

    Energy Technology Data Exchange (ETDEWEB)

    Vesselinov, Velimir V.; Broxton, David; Birdsell, Kay; Reneau, Steven; Harp, Dylan; Mishra, Phoolendra [Computational Earth Science - EES-16, Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos NM 87545 (United States); Katzman, Danny; Goering, Tim [Environmental Programs (ADEP), Los Alamos National Laboratory, Los Alamos NM 87545 (United States); Vaniman, David; Longmire, Pat; Fabryka-Martin, June; Heikoop, Jeff; Ding, Mei; Hickmott, Don; Jacobs, Elaine [Earth Systems Observations - EES-14, Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos NM 87545 (United States)

    2013-07-01

    A series of site investigations and decision-support analyses have been performed related to a chromium plume in the regional aquifer beneath the Los Alamos National Laboratory (LANL). Based on the collected data and site information, alternative conceptual and numerical models representing governing subsurface processes with different complexity and resolution have been developed. The current conceptual model is supported by multiple lines of evidence based on comprehensive analyses of the available data and modeling results. The model is applied for decision-support analyses related to estimation of contaminant- arrival locations and chromium mass flux reaching the regional aquifer, and to optimization of a site monitoring-well network. Plume characterization is a challenging and non-unique problem because multiple models and contamination scenarios are consistent with the site data and conceptual knowledge. To solve this complex problem, an advanced methodology based on model calibration and uncertainty quantification has been developed within the computational framework MADS (http://mads.lanl.gov). This work implements high-performance computing and novel, efficient and robust model analysis techniques for optimization and uncertainty quantification (ABAGUS, Squads, multi-try (multi-start) techniques), which allow for solving problems with large degrees of freedom. (authors)

  14. Environmental Management Fact Sheets.

    Science.gov (United States)

    Department of Energy, Washington, DC.

    In recent years, the need for nuclear materials has decreased and the Department of Energy (DOE) has focused greater attention on cleaning up contamination left from past activities. The Office of Environmental Management (EM) within DOE is responsible for managing waste and cleaning up contamination at DOE sites across the nation. This collection…

  15. Environmental Survey preliminary report, Fermi National Accelerator Laboratory, Batavia, Illinois

    International Nuclear Information System (INIS)

    1988-10-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Fermi National Accelerator Laboratory (Fermilab), conducted September 14 through 25, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with Fermilab. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at Fermilab, and interviews with site personnel. 110 refs., 26 figs., 41 tabs

  16. Environmental Survey preliminary report, Fermi National Accelerator Laboratory, Batavia, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Fermi National Accelerator Laboratory (Fermilab), conducted September 14 through 25, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with Fermilab. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at Fermilab, and interviews with site personnel. 110 refs., 26 figs., 41 tabs.

  17. Sandia Laboratories technical capabilities. Auxiliary capabilities: environmental health information science

    International Nuclear Information System (INIS)

    1975-09-01

    Sandia Laboratories is an engineering laboratory in which research, development, testing, and evaluation capabilities are integrated by program management for the generation of advanced designs. In fulfilling its primary responsibility to ERDA, Sandia Laboratories has acquired extensive research and development capabilities. The purpose of this series of documents is to catalog the many technical capabilities of the Laboratories. After the listing of capabilities, supporting information is provided in the form of highlights, which show applications. This document deals with auxiliary capabilities, in particular, environmental health and information science. (11 figures, 1 table) (RWR)

  18. Environmental management system

    International Nuclear Information System (INIS)

    2004-01-01

    An Environmental Management System was implemented in ANAV in 1999, including the two nuclear sites of the Asco and Vandellos II nuclear power plants. This implementation entailed formulation of the ANAV Environmental Policy, preparation of an Environmental Management Plan (PLAGMA) supported by the Environmental Aspects Manuals (MASMA) of each site and their operating procedures, modification of the organizational structure to create the Environment Unit, in charge of implementing the SIGEMA, and the Environment Committee, the governing body that reviews the results obtained and environmental goals to be achieved, and direct involvement of all the different ANAV organization in continuous improvement of the SIGEMA implementation. Special attention is paid to evolution of the environmental indicators, to communication and specific training in environmental issues, and to waste management and the different programs for increasing waste recycling and assessment, as well as to minimization programs. The article details the different approaches used to improve the environmental results in these last five years, which have allowed ANAV to maintain the ISO-14001 Certification since 1999. (Author)

  19. Laboratory information management system proposal

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.; Schweitzer, S.; Adams, C.; White, S. [Tennessee Univ., Knoxville, TN (United States)

    1992-08-01

    The objectives of this paper is design a user friendly information management system using a relational database in order to: allow customers direct access to the system; provide customers with direct sample tracking capabilities; provide customers with more timely, consistent reporting; better allocate costs for analyses to appropriate customers; eliminate cumbersome and costly papertrails; and enhance facility utilization by laboratory personnel. The resultant savings through increased efficiency provided by this system should more than offset its cost in the long-term.

  20. Laboratory information management system proposal

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.; Schweitzer, S.; Adams, C.; White, S. (Tennessee Univ., Knoxville, TN (United States))

    1992-01-01

    The objectives of this paper is design a user friendly information management system using a relational database in order to: allow customers direct access to the system; provide customers with direct sample tracking capabilities; provide customers with more timely, consistent reporting; better allocate costs for analyses to appropriate customers; eliminate cumbersome and costly papertrails; and enhance facility utilization by laboratory personnel. The resultant savings through increased efficiency provided by this system should more than offset its cost in the long-term.

  1. Environmental management in public hospitals: Environmental management in Colombia

    OpenAIRE

    Juan Pablo Rodríguez-Miranda; César Augusto García-Ubaque; María Camila García-Vaca

    2016-01-01

    Introduction: Activities in hospitals have environmental impacts which may pose risks to human and environmental health if they are not managed correctly. For this reason, it is necessary to implement an environmental management plan in hospitals that not only focuses on solid waste management but includes all aspects associated with health within institutions. Objective: To review environmental management aspects related to public hospitals in order to identify environmental management a...

  2. Environmental management system in companies

    International Nuclear Information System (INIS)

    Bonanno, C.

    1995-01-01

    The environmental management system, as the whole coordinated initiatives 'environmental oriented' introduced by companies in their organization, is discussed. Strategic weight that companies have to be present at the environmental management system is enlisted. Finally, the new professional figures of environmental technicians and environmental manager is discussed

  3. Environmental management systems

    OpenAIRE

    Misiak, Małgorzata

    2016-01-01

    Considering environmental protection requirements in business operations may, in the long run, determine if a lasting comparative advantage can be achieved. That is why our textbook, rich in case studies, identifies not only the threats a business may pose to the environment but stresses the ways of reducing its negative impact. It discusses, among other things, the concept of corporate social responsibility, environmental management systems, methods and the importance of eco-labelling goods ...

  4. Hydrologic and Meteorological Data for an Unsaturated-Zone Study Area near the Radioactive Waste Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho, 1990-96

    International Nuclear Information System (INIS)

    Perkins, K. S.; Nimmo, J. R.; Pittman, J. R.

    1998-01-01

    Trenches and pits at the Radioactive Waste Management Complex (RWMC) Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (formerly known as the Idaho National Engineering Laboratory) have been used for burial of radioactive waste since 1952. In 1985, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, began a multi-phase study of the geohydrology of the RWMC to provide a basis for estimating the extent of and the potential for migration of radionuclides in the unsaturated zone beneath the waste trenches and pits. This phase of the study provides hydrologic and meteorological data collected at a designated test trench area adjacent to the northern boundary of the RWMC SDA from 1990 through 1996. The test trench area was constructed by the USGS in 1985. Hydrologic data presented in this report were collected during 1990-96 in the USGS test trench area. Soil-moisture content measurement from disturbed and undisturbed soil were collected approximately monthly during 1990-96 from 11 neutron-probe access holes with a neutron moisture gage. In 1994, three additional neutron access holes were completed for monitoring. A meteorological station inside the test trench area provided data for determination of evapotranspiration rates. The soil-moisture and meteorological data are contained in files on 3-1/2 inch diskettes (disks 1 and 2) included with this report. The data are presented in simple American Standard Code for Information Interchange (ASCII) format with tab-delimited fields. The files occupy a total of 1.5 megabytes of disk space

  5. Determination of Background Uranium Concentration in the Snake River Plain Aquifer under the Idaho National Engineering and Environmental Laboratory's Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    Molly K. Leecaster; L. Don Koeppen; Gail L. Olson

    2003-01-01

    Uranium occurs naturally in the environment and is also a contaminant that is disposed of at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory. To determine whether uranium concentrations in the Snake River Plain Aquifer, which underlies the laboratory, are elevated as a result of migration of anthropogenic uranium from the Subsurface Disposal Area in the RWMC, uranium background concentrations are necessary. Guideline values are calculated for total uranium, 234U, 235U, and 238U from analytical results from up to five datasets. Three of the datasets include results of samples analyzed using isotope dilution thermal ionization mass spectrometry (ID-TIMS) and two of the datasets include results obtained using alpha spectrometry. All samples included in the statistical testing were collected from aquifer monitoring wells located within 10 miles of the RWMC. Results from ID-TIMS and alpha spectrometry are combined when the data are not statistically different. Guideline values for total uranium were calculated using four of the datasets, while guideline values for 234U were calculated using only the alpha spectrometry results (2 datasets). Data from all five datasets were used to calculate 238U guideline values. No limit is calculated for 235U because the ID-TIMS results are not useful for comparison with routine monitoring data, and the alpha spectrometry results are too close to the detection limit to be deemed accurate or reliable for calculating a 235U guideline value. All guideline values presented represent the upper 95% coverage 95% confidence tolerance limits for background concentration. If a future monitoring result is above this guideline, then the exceedance will be noted in the quarterly monitoring report and assessed with respect to other aquifer information. The guidelines (tolerance limits) for total U, 234U, and 238U are 2.75 pCi/L, 1.92 pCi/L, and 0.90 pCi/L, respectively

  6. Sandia National Laboratories 1979 environmental monitoring report

    International Nuclear Information System (INIS)

    Simmons, T.N.

    1980-04-01

    Sandia National Laboratories in Albuquerque is located south of the city on two broad mesas. The local climate is arid continental. Radionuclides are released from five technical areas from the Laboratories' resarch activities. Sandia's environmental monitoring program searches for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. No activity was found in public areas in excess of local background in 1979. The Albuquerque population receives only 0.076 person-rem (estimated) from airborne radioactive releases. While national security research is the laboratories' major responsibility, energy research is a major area of activity. Both these research areas cause radioactive releases

  7. Hazardous waste management in research laboratories

    International Nuclear Information System (INIS)

    Sundstrom, G.

    1989-01-01

    Hazardous waste management in research laboratories benefits from a fundamentally different approach to the hazardous waste determination from industry's. This paper introduces new, statue-based criteria for identifying hazardous wastes (such as radiological mixed wastes and waste oils) and links them to a forward-looking compliance of laboratories, the overall system integrates hazardous waste management activities with other environmental and hazard communication initiatives. It is generalizable to other waste generators, including industry. Although only the waste identification and classification aspects of the system are outlined in detail here, four other components are defined or supported, namely: routine and contingency practices; waste treatment/disposal option definition and selection; waste minimization, recycling, reuse, and substitution opportunities; and key interfaces with other systems, including pollution prevention

  8. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    Energy Technology Data Exchange (ETDEWEB)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B. [and others

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

  9. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    International Nuclear Information System (INIS)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B.

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management

  10. Sandia National Laboratories, California Waste Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2010-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  11. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2011-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  12. Environmental Measurements Laboratory (EML) procedures manual

    International Nuclear Information System (INIS)

    Chieco, N.A.; Bogen, D.C.; Knutson, E.O.

    1990-11-01

    Volume 1 of this manual documents the procedures and existing technology that are currently used by the Environmental Measurements Laboratory. A section devoted to quality assurance has been included. These procedures have been updated and revised and new procedures have been added. They include: sampling; radiation measurements; analytical chemistry; radionuclide data; special facilities; and specifications. 228 refs., 62 figs., 37 tabs. (FL)

  13. Site Environmental Report for 2010 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  14. Site environmental report for 2009 : Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2010-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2009 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2009. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2009. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2009. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  15. Assessing the outcome of Strengthening Laboratory Management ...

    African Journals Online (AJOL)

    SLMTA) is a competency-based management training programme designed to bring about immediate and measurable laboratory improvement. The aim of this study is to assess the outcome of SLMTA on laboratory quality management system in ...

  16. VNML: Virtualized Network Management Laboratory for Educational ...

    African Journals Online (AJOL)

    VNML: Virtualized Network Management Laboratory for Educational Purposes. ... Journal of Fundamental and Applied Sciences ... In this paper, we implement a Virtualized Network Management Laboratory named (VNML) linked to college ...

  17. Environmental and resource management

    DEFF Research Database (Denmark)

    Madsen, Henning; Ulhøi, John Parm

    1996-01-01

    Artiklen bringer bl.a. de seneste resultater (i forkortet udgave) fra et igangværende flerårigt forskningsprojekt - The Danish Environmental Management Survey (DEMS) - der sigter efter løbende at analysere og vurdere den igangværende 'forgrønnelse' i erhvervslivet i et longitudinalt perspektiv...

  18. Environmental Survey preliminary report, Brookhaven National Laboratory, Upton, New York

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Brookhaven National Laboratory (BNL) conducted April 6 through 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with BNL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at BNL, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by Oak Ridge National Laboratory. When completed, the results will be incorporated into the BNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the BNL Survey. 80 refs., 24 figs., 48 tabs.

  19. Sandia National Laboratories, California: site environmental report for 1997

    International Nuclear Information System (INIS)

    Condouris, R.A.; Holland, R.C.

    1998-06-01

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California's Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. The Site Environmental Report describes the results of SNL/California's environmental protection activities during the calendar year. It also summarizes environmental monitoring data and highlights major environmental programs. Overall, it evaluates SNL/California's environmental management performance and documents the site's regulatory compliance status

  20. Environmental Survey preliminary report, Lawrence Livermore National Laboratory, Livermore, California

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the Department of Energy (DOE) Lawrence Livermore National Laboratory (LLNL), conducted December 1 through 19, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with LLNL. The Survey covers all environmental media all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at LLNL, and interviews with site personnel. A Sampling and Analysis Plan was developed to assist in further assessing certain of the environmental problems identified during performance of on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory. When completed, the results will be incorporated into the LLNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the LLNL Survey. 70 refs., 58 figs., 52 tabs.,

  1. Sandia National Laboratories/California site environmental report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Condouris, R.A. [ed.] [Sandia National Labs., Livermore, CA (United States); Holland, R.C. [Science Applications International Corp. (United States)

    1998-06-01

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California`s Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. The Site Environmental Report describes the results of SNL/California`s environmental protection activities during the calendar year. It also summarizes environmental monitoring data and highlights major environmental programs. Overall, it evaluates SNL/California`s environmental management performance and documents the site`s regulatory compliance status.

  2. Environmental Survey preliminary report, Brookhaven National Laboratory, Upton, New York

    International Nuclear Information System (INIS)

    1988-06-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Brookhaven National Laboratory (BNL) conducted April 6 through 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with BNL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at BNL, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by Oak Ridge National Laboratory. When completed, the results will be incorporated into the BNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the BNL Survey. 80 refs., 24 figs., 48 tabs

  3. Idaho National Laboratory Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Joanne L. Knight

    2008-04-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  4. Lawrence Livermore National Laboratory Environmental Report 2014

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buscheck, W. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Byrne, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bish, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratanduono, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, A. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montemayor, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, H. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Swanson, K. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-29

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2014 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  5. Idaho National Laboratory Site Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Joanne L. Knight

    2012-08-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  6. Idaho National Laboratory Site Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Joanne L. Knight

    2010-10-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  7. Lawrence Livermore National Laboratory Environmental Report 2015

    Energy Technology Data Exchange (ETDEWEB)

    Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-22

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  8. Risk management at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Cummings, G.E.; Strait, R.S.

    1993-10-01

    Managing risks at a large national laboratory presents a unique set of challenges. These challenges include the management of a broad diversity of activities, the need to balance research flexibility against management control, and a plethora of requirements flowing from regulatory and oversight bodies. This paper will present the experiences of Lawrence Livermore National Laboratory (LLNL) in risk management and in dealing with these challenges. While general risk management has been practiced successfully by all levels of Laboratory management, this paper will focus on the Laboratory's use of probabilistic safety assessment and prioritization techniques and the integration of these techniques into Laboratory operations

  9. Supplement Analysis for Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory -- Modification of Management Methods for Transuranic Waste Characterization at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    2002-01-01

    This Supplement Analysis (SA) has been prepared to determine if the Site-Wide Environmental Impact Statement for Continued Operations of Los Alamos National Laboratory (SWEIS) (DOE/EIS-0238) adequately addresses the environmental effects of a waste management proposal for installing and operating modular units for the characterization of transuranic (TRU) waste1 at the Los Alamos National Laboratory (LANL) Technical Area (TA)-54, Area G, or if the SWEIS needs to be supplemented. Council on Environmental Quality regulations at Title 40, Section 1502.9 (c) of the Code of Federal Regulations (40 CFR 1502.9[c]) require federal agencies to prepare a supplement to an EIS when an agency makes substantial changes in the proposed action that are relevant to environmental concerns or there are circumstances or information relevant to concerns and bearing on the proposed action or its impacts. This SA is prepared in accordance with Section 10 CFR 1021.314(c) of the Department of Energy's (DOE's) regulations for NEPA implementation stating that ''When it is unclear whether or not an EIS supplement is required, DOE shall prepare a Supplement Analysis.'' This SA specifically compares key impact assessment parameters of the waste management program evaluated in the SWEIS with those of a proposal that would change the approach of a portion of this management program. It also provides an explanation of any differences between the proposed action and activities described in the previous SWEIS analysis. DOE proposes to expedite the shipment of legacy TRU waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The Cerro Grande Fire in 2000 and events of September 11, 2001, have focused attention on the potential risk to the public and the credible security hazard posed by the amount of plutonium stored above ground at LANL and the increased necessity to safeguard our nation's nuclear waste. The safest place for defense-generated TRU waste has been determined to be DOE

  10. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, Diana Lee

    2009-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  11. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, Diana Lee

    2011-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  12. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun Williams

    2013-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices

  13. Environmental audit of the Savannah River Ecology Laboratory (SREL)

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report documents the results of the environmental audit conducted at the Savannah River Ecology Laboratory (SREL) at the Savannah River Site (SRS), principally in Aiken and Barnwell Counties, South Carolina. The audit was conducted by the US Department of Energy`s (DOE`s), Office of Environmental Audit (EH-24), beginning September 13, 1993, and ending September 23, 1993. The scope of the audit at SREL was comprehensive, addressing environmental activities in the technical areas of air; surface water/drinking water; groundwater/soil, sediment, and biota; waste management; toxic and chemical materials; inactive Waste sites; radiation; quality assurance; and environmental management. Specifically assessed was the compliance of SREL operations and activities with Federal, state, and local regulations; DOE Orders; and best management practices.

  14. Environmental audit of the Savannah River Ecology Laboratory (SREL)

    International Nuclear Information System (INIS)

    1993-09-01

    This report documents the results of the environmental audit conducted at the Savannah River Ecology Laboratory (SREL) at the Savannah River Site (SRS), principally in Aiken and Barnwell Counties, South Carolina. The audit was conducted by the US Department of Energy's (DOE's), Office of Environmental Audit (EH-24), beginning September 13, 1993, and ending September 23, 1993. The scope of the audit at SREL was comprehensive, addressing environmental activities in the technical areas of air; surface water/drinking water; groundwater/soil, sediment, and biota; waste management; toxic and chemical materials; inactive Waste sites; radiation; quality assurance; and environmental management. Specifically assessed was the compliance of SREL operations and activities with Federal, state, and local regulations; DOE Orders; and best management practices

  15. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    International Nuclear Information System (INIS)

    1995-09-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R ampersand D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)

  16. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R&D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

  17. Draft and final Supplemental Environmental Impact Report for the proposed renewal of the contract between the United States Department of Energy and the Regents of the University of California for operation and management of the Lawrence berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    This Supplemental Environmental Impact Report (SEIR) has been prepared in conformance with the California Environmental Quality Act (CEQA) and the University of California Procedures for the Implementation of CEQA (UC Procedures) to evaluate the potential environmental impacts associated with the University of California`s operation of the Lawrence Berkeley Laboratory (LBL) for the next five years. The specific project under consideration in this SEIR is the renewal of a five-year contract between the University and the United States Department of Energy (DOE) to manage and operate the Lawrence Berkeley Laboratory. As the California agency responsible for carrying out the proposed project, the University is the lead agency responsible for CEQA compliance. Environmental impacts, mitigation, and a site overview are presented.

  18. Draft and final Supplemental Environmental Impact Report for the proposed renewal of the contract between the United States Department of Energy and the Regents of the University of California for operation and management of the Lawrence berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    This Supplemental Environmental Impact Report (SEIR) has been prepared in conformance with the California Environmental Quality Act (CEQA) and the University of California Procedures for the Implementation of CEQA (UC Procedures) to evaluate the potential environmental impacts associated with the University of California's operation of the Lawrence Berkeley Laboratory (LBL) for the next five years. The specific project under consideration in this SEIR is the renewal of a five-year contract between the University and the United States Department of Energy (DOE) to manage and operate the Lawrence Berkeley Laboratory. As the California agency responsible for carrying out the proposed project, the University is the lead agency responsible for CEQA compliance. Environmental impacts, mitigation, and a site overview are presented.

  19. Environmental Measurements Laboratory program review, December 1983

    International Nuclear Information System (INIS)

    Volchok, H.L.; de Planque, G.

    1984-03-01

    This volume contains all of the written material that was submitted to the panel of Reviewers in advance of a Program Review conducted by the US Department of Energy, Office of Health and Environmental Research at the Environmental Measurements Laboratory (EML) December 7-9, 1983. In addition to a general introduction there are nineteen papers grouped into the five broad program categories covering all of the scientific and engineering projects of the Laboratory: Natural Radioactivity and Radiation, Anthropogenic Radioactivity and Radiation, Non-nuclear, Quality Assurance, and Development and Support. These short articles, for the most part, focus on the rationale for EML's involvement in each project, emphasizing their relevance to the EML and Department of Energy missions. Project results and their interpretation were presented at the Review and can be found in the material referenced in this volume

  20. Environmental management activities

    International Nuclear Information System (INIS)

    1997-01-01

    The Office of Environmental Management (EM) has been delegated the responsibility for the Department of Energy's (DOE's) cleanup of the nuclear weapons complex. The nature and magnitude of the waste management and environmental remediation problem requires the identification of technologies and scientific expertise from domestic and foreign sources. Within the United States, operational DOE facilities, as well as the decontamination and decommissioning of inactive facilities, have produced significant amounts of radioactive, hazardous, and mixed wastes. In order to ensure worker safety and the protection of the public, DOE must: (1) assess, remediate, and monitor sites and facilities; (2) store, treat, and dispose of wastes from past and current operations; and (3) develop and implement innovative technologies for environmental restoration and waste management. The EM directive necessitates looking beyond domestic capabilities to technological solutions found outside US borders. Following the collapse of the Soviet regime, formerly restricted elite Soviet scientific expertise became available to the West. EM has established a cooperative technology development program with Russian scientific institutes that meets domestic cleanup objectives by: (1) identifying and accessing Russian EM-related technologies, thereby leveraging investments and providing cost-savings; (2) improving access to technical information, scientific expertise, and technologies applicable to EM needs; and (3) increasing US private sector opportunities in Russian in EM-related areas

  1. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    International Nuclear Information System (INIS)

    1988-07-01

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via ''no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is ''no fault'' and is not an ''audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs

  2. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is no fault'' and is not an audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs.

  3. Managing quality in laboratory analysis

    International Nuclear Information System (INIS)

    Piciorea, Iuliana

    2007-01-01

    For the results of analyses to be reliable, the laboratories has to be authorized or to prove that they follows ISO/CEI standard no. 17025:2005 'General requirements for the competence of testing and calibration laboratories'. Analytic measurements are the results of analytic methods and procedures. It is considered that the chosen analytic method or procedure is appropriated for the desired purpose. From the legal point of view 'matching for a purpose' means that all methods and procedures are valid and this validation is made using qualified and verified equipment. Using state of art equipment in a laboratory, it is not enough to obtain correct results. The type, the extension and management of a validation action permit to obtain conclusions regarding the existence of adequate equipment, showing at the same time that the lab has an adequate management and competent personnel. To give results of required quality ensuring the conformity with national and international regulations, hence to prove its qualifications and competence some of measures are required as follows: - the usage of validated testing methods; - the usage of their quality control procedures; - participating to capability testing of the lab; -accreditation according to the requirements of an international standard as ISO/CEI 17025:2005. This accreditation is a set of technical and organization requirements about equipment checking, the way of choosing test methods, personal competence, determination of measurement uncertainty, etc. According to ISO, the validation represents the confirmation throughout examination and supplying of realistic proofs showing that the necessary requirements needed for utilization are fulfilled. The object of validation is checking the fact that the measurement conditions and the equation used to get the final result include all influences that could affect it. For validation studies, a series of checks is made: - linearity check - it is checked if the method is

  4. 1990 Environmental Monitoring Report, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Hwang, S.; Yeager, G.; Wolff, T.; Parsons, A.; Dionne, D.; Massey, C.; Schwartz, B.; Fish, J.; Thompson, D.; Goodrich, M.

    1991-05-01

    This 1990 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 2.0 x 10 -3 mrem. The total 50-mile population received a collective dose of 0.82 person-rem during 1990 from SNL, Albuquerque, operations. As in the previous year, the 1990 SNL operations had no adverse impact on the general public or on the environment. This report is prepared for the US Department of Energy in compliance with DOE Order 5400.1. 97 refs., 30 figs., 137 tabs

  5. Waste management plan for inactive LLLW tanks 3001-B, 3004-B, 3013, and T-30 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-07-01

    This Project Waste Management Plan identifies the waste that is expected to be generated in connection with the removal and disposition of inactive liquid low-level radioactive waste tanks 3001-B, 3004-B, and T-30, and grouting of tank 3013 at the Oak Ridge National Laboratory and the isolation of these tanks' associated piping systems. The plan also identifies the organization, responsibilities, and administrative controls that will be followed to ensure proper handling of the waste

  6. Laboratory Information Management System Chain of Custody: Reliability and Security

    OpenAIRE

    Tomlinson, J. J.; Elliott-Smith, W.; Radosta, T.

    2006-01-01

    A chain of custody (COC) is required in many laboratories that handle forensics, drugs of abuse, environmental, clinical, and DNA testing, as well as other laboratories that want to assure reliability of reported results. Maintaining a dependable COC can be laborious, but with the recent establishment of the criteria for electronic records and signatures by US regulatory agencies, laboratory information management systems (LIMSs) are now being developed to fully automate COCs. The extent of a...

  7. Environmental management report 2011

    International Nuclear Information System (INIS)

    Braathen, Ole-Anders

    2012-01-01

    One of NILU's main goals is to study the impact of pollution. It is thus very important for the institute to have control of the impact the institute's own activities may have on the environment and to reduce the impact as far as possible. NILU has for many years been working to reduce the impact. In order to take this one step further, it was decided that the institute should restructure the work according to a relevant environmental standard and to seek certification according to the same standard. The chosen standard is ISO 14001:2004 (Environmental management systems: Requirements with guidance for use) and NILU achieved certification according to this standard in October 2010.(Author)

  8. Environmental management report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Braathen, Ole-Anders

    2012-07-01

    One of NILU's main goals is to study the impact of pollution. It is thus very important for the institute to have control of the impact the institute's own activities may have on the environment and to reduce the impact as far as possible. NILU has for many years been working to reduce the impact. In order to take this one step further, it was decided that the institute should restructure the work according to a relevant environmental standard and to seek certification according to the same standard. The chosen standard is ISO 14001:2004 (Environmental management systems: Requirements with guidance for use) and NILU achieved certification according to this standard in October 2010.(Author)

  9. Environmental management report 2010

    International Nuclear Information System (INIS)

    Braathen, Ole-Anders

    2011-01-01

    One of NILU's main goals is to study the impact of pollution. It is thus very important for the institute to have control of the impact the institute's own activities may have on the environment and to reduce the impact as far as possible. NILU has for many years been working to reduce the impact. In order to take this one step further, it was decided that the institute should restructure the work according to a relevant environmental standard and to seek certification according to the same standard. The chosen standard is ISO 14001:2004 (Environmental management systems: Requirements with guidance for use) and NILU achieved certification according to this standard in October 2010.(Author)

  10. Environmental management report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Braathen, Ole-Anders

    2011-07-01

    One of NILU's main goals is to study the impact of pollution. It is thus very important for the institute to have control of the impact the institute's own activities may have on the environment and to reduce the impact as far as possible. NILU has for many years been working to reduce the impact. In order to take this one step further, it was decided that the institute should restructure the work according to a relevant environmental standard and to seek certification according to the same standard. The chosen standard is ISO 14001:2004 (Environmental management systems: Requirements with guidance for use) and NILU achieved certification according to this standard in October 2010.(Author)

  11. 1996 Site environmental report Sandia National Laboratories Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Fink, C.H. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Duncan, D. [ed.] [GRAM, Inc., Albuquerque, NM (United States); Sanchez, R. [Jobs Plus, Albuquerque, NM (United States)

    1997-08-01

    Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the U.S. Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs, and to conduct fundamental research and development (R&D) to advance technology in energy research, computer science, waste management, electronics, materials science, and transportation safety for hazardous and nuclear components. In support of this mission, the Environmental Safety and Health (ES&H) Center at SNL/NM conducts extensive environmental monitoring, surveillance, and compliance activities to assist SNL`s line organizations in meeting all applicable environmental regulations applicable to the site including those regulating radiological and nonradiological effluents and emissions. Also herein are included, the status of environmental programs that direct and manage activities such as terrestrial surveillance; ambient air and meteorological monitoring; hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental restoration (ER); oil and chemical spill prevention; and National Environmental Policy Act (NEPA) documentation. This report has been prepared in compliance with DOE order 5400.1, General Environmental Protection.

  12. 1996 Site environmental report Sandia National Laboratories Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Fink, C.H.; Duncan, D.; Sanchez, R.

    1997-08-01

    Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the U.S. Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs, and to conduct fundamental research and development (R ampersand D) to advance technology in energy research, computer science, waste management, electronics, materials science, and transportation safety for hazardous and nuclear components. In support of this mission, the Environmental Safety and Health (ES ampersand H) Center at SNL/NM conducts extensive environmental monitoring, surveillance, and compliance activities to assist SNL's line organizations in meeting all applicable environmental regulations applicable to the site including those regulating radiological and nonradiological effluents and emissions. Also herein are included, the status of environmental programs that direct and manage activities such as terrestrial surveillance; ambient air and meteorological monitoring; hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental restoration (ER); oil and chemical spill prevention; and National Environmental Policy Act (NEPA) documentation. This report has been prepared in compliance with DOE order 5400.1, General Environmental Protection

  13. ENVIRONMENTAL MANAGEMENT SYSTEMS CERTIFICATION

    Directory of Open Access Journals (Sweden)

    Aniko Miler-Virc

    2012-12-01

    Full Text Available ISO 14001 prescribes the requirements for a system, not environmental performance itself. Similarly, certification is of the management system itself, not environmental performance. An audit is not conducted to ascertain whether your flue gas emissions are less than X part per million nitrous oxide or that your wastewater effluent contains less that Y milligrams of bacteria per litre. Consequently, the procces of auditing the system for compliance to the standard entails checking to see that all of the necessary components of a functioning system are present and working properly.           A company can have a complete and fully functional EMS as prescribed by ISO 14001 without being certified. As certification can add to the time and expense of EMS development, it is important for you to establish, in advance, whether certification is of net benefit to you. Although most companies that develop an EMS do in fact certify, there are cases where certification does not add immediate value. Certification is not always beneficial to small and medium sized companies. Certification is not always necessary for companies with one or two large clients with environmental demands who are satisfied that you have a functional EMS (second-party declaration. Whatever decision you make, it is important to remember that just as a driver′s licence does not automatically make you a good driver, ISO 14001 certification does not automatically make your company environmentally benign or ensure that you will continually improve environmental performance. The system is only as good as the people who operate it.

  14. Quality control activities in the environmental radiology laboratory

    International Nuclear Information System (INIS)

    Llaurado, M.; Quesada, D.; Rauret, G.; Tent, J.; Zapata, D.

    2006-01-01

    During the last twenty years many analytical laboratories have implemented quality assurance systems. A quality system implementation requires documentation of all activities (technical and management), evaluation of these activities and its continual improvement. Implementation and adequate management of all the elements a quality system includes are not enough to guarantee quality of the analytical results generated at a time. That is the aim of a group of specific activities labelled as quality control activities. The Laboratori de Radiologia Ambiental (Environmental Radiology Laboratory; LRA) at the University of Barcelona was created in 1984 to carry out part of the quality control assays of the Environmental Radiology Monitoring Programs around some of the Spanish nuclear power plants, which are developed by the Servei Catala d'Activitats Energetiques (SCAR) and the Consejo de Seguridad Nuclear (CSN), organisations responsible for nuclear security and radiological protection. In these kind of laboratories, given the importance of the results they give, quality control activities become an essential aspect. In order to guarantee the quality of its analytical results, the LRA Direction decided to adopt the international standard UNE-EN ISO/IEC 17025 for its internal quality system and to accreditate some of the assays it carries out. In such as system, it is established, the laboratory shall monitor the validity of tests undertaken and data shall be recorded in such a way that trends are detectable. The present work shows the activities carried out in this way by the LRA, which are: Equipment control activities which in the special case of radiochemical techniques include measurement of backgrounds and blanks as well as periodical control of efficiency and resolution. Activities to assure the specifications settled by method validation, which are testing of reference materials and periodical analysis of control samples. Evaluation of the laboratory work quality

  15. Region 7 Laboratory Information Management System

    Science.gov (United States)

    This is metadata documentation for the Region 7 Laboratory Information Management System (R7LIMS) which maintains records for the Regional Laboratory. Any Laboratory analytical work performed is stored in this system which replaces LIMS-Lite, and before that LAST. The EPA and its contractors may use this database. The Office of Policy & Management (PLMG) Division at EPA Region 7 is the primary managing entity; contractors can access this database but it is not accessible to the public.

  16. Environmental monitoring report: Sandia Laboratories, 1976

    International Nuclear Information System (INIS)

    Simmons, T.N.

    1977-04-01

    Water and vegetation are monitored to determine Sandia Laboratories impact on the surrounding environment. Nonradioactive pollutants released are reported. Radioactive effluents are also reported and their person-rem contribution to the Albuquerque population is calculated. The environmental monitoring for calendar year 1976 shows that concentrations of radioactive materials in the Albuquerque area are typical of natural background for the area. An exception is a single onsite location where slightly abnormal uranium concentrations are expected. An estimated 0.044 person-rem Albuquerque area (80 km radius) population dose commitment results from calculated Sandia Laboratories releases. Over the same area 57,000 person-rem is accumulated from natural background. There were no measurable offsite radioactive effluent releases in CY 1976

  17. Environmental Audit at Santa Barbara Operations, Special Technologies Laboratory, Remote Sensing Laboratory, North Las Vegas Facilities

    International Nuclear Information System (INIS)

    1991-03-01

    This report documents the results of the Environmental Audit of selected facilities under the jurisdiction of the DOE Nevada Operations Office (NV) that are operated by EG and G Energy Measurements, Incorporated (EG and G/EM). The facilities included in this Audit are those of Santa Barbara Operation (SBO) at Goleta, California; the Special Technologies Laboratory (STL) at Santa Barbara, California; and Las Vegas Area Operations (LVAO) including the Remote Sensing Laboratory (RSL) at Nellis Air Force Base in Nevada, and the North Las Vegas Facilities (NLVF) at North Las Vegas, Nevada. The Environmental Audit was conducted by the US Department of Energy's (DOE) Office of Environmental Audit, commencing on January 28, 1991 and ending on February 15, 1991. The scope of the Audit was comprehensive, addressing environmental activities in the technical areas of air, surface water/drinking water, groundwater, waste management, toxic and chemical materials, quality assurance, radiation, inactive waste sites, and environmental management. Also assessed was compliance with applicable Federal, state, and local regulations and requirements; internal operating requirements; DOE Orders; and best management practices. 8 tabs

  18. Managing Complex Environmental Risks

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Mikael [Karlstad Univ. (Sweden). Dept. of Environmental Sciences

    2006-09-15

    Environmental and public health risks are often handled in a process in which experts, and sometimes policy makers, try their best to quantitatively assess, evaluate and manage risks. This approach harmonises with mainstream interpretations of sustainable development, which aim at defining a desirable relationship between human and natural systems, for instance by policies that define limit values of different forms of disturbances. However, under conditions of high scientific incertitude, diverging values and distrust, this approach is far from satisfactory. The use of cell phones, hazardous chemicals, nuclear or fossil energy systems, and modern biotechnology are examples of activities causing such risks with high complexity. Against this background, a complementary interpretation of the concept of sustainable development is suggested. This interpretation is operationalised through new formulations of three common principles for public risk management; the precautionary principle, the polluter pays principle and the principle of public participation. Implementation of these reformulated principles would challenge some foundations of present mainstream views on environmental decision-making, but would on the other hand contribute to improved practices for long-term human welfare and planetary survival (full text of contribution)

  19. Managing Complex Environmental Risks

    International Nuclear Information System (INIS)

    Karlsson, Mikael

    2006-01-01

    Environmental and public health risks are often handled in a process in which experts, and sometimes policy makers, try their best to quantitatively assess, evaluate and manage risks. This approach harmonises with mainstream interpretations of sustainable development, which aim at defining a desirable relationship between human and natural systems, for instance by policies that define limit values of different forms of disturbances. However, under conditions of high scientific incertitude, diverging values and distrust, this approach is far from satisfactory. The use of cell phones, hazardous chemicals, nuclear or fossil energy systems, and modern biotechnology are examples of activities causing such risks with high complexity. Against this background, a complementary interpretation of the concept of sustainable development is suggested. This interpretation is operationalised through new formulations of three common principles for public risk management; the precautionary principle, the polluter pays principle and the principle of public participation. Implementation of these reformulated principles would challenge some foundations of present mainstream views on environmental decision-making, but would on the other hand contribute to improved practices for long-term human welfare and planetary survival (full text of contribution)

  20. Synchrotron environmental laboratory (SUL) at Anka

    International Nuclear Information System (INIS)

    Denecke, M.A.

    2002-01-01

    A research facility dedicated to environmental/geochemical research, the Synchrotron Environmental Laboratory (SUL), is planned to be installed and operated at ANKA. ANKA is the new synchrotron facility at the Research Centre Karlsruhe (FZK), Karlsruhe, Germany. ANKA is now in commissioning and planning operations for the fall of 2000. As the Institute for Nuclear Waste Disposal (INE) at FZK conducts a vigorous synchrotron-based research programme, INE was instrumental in the original impetus for installing such a facility at ANKA. These research activities at INE concentrate on actinide speciation in nuclear waste forms, geological media and geochemical model systems. In order for INE to direct their synchrotron research activities to ANKA, equipment and licensing required for performing experiments on actinide-containing samples is required. One great advantage of performing experiments on actinide-containing samples at ANKA is that the INE radiological laboratories lie in the near vicinity of the facility. This will minimise transport hazards and costs and allow experiments to be performed on samples whose characteristics may change with time. Experiments on radioactive samples with activities below the exemption level, according to German regulations, will be possible at ANKA at the start of operations. Licensing for work on higher levels of activity will be applied for in the future. The decades of experience in radiological work at FZK will facilitate development of procedure and equipment as prerequisites to licensing. A consortium of synchrotron radiation-user groups with environmental research interests has specified their requirements and needs for this facility. This scientific case serves as the foundation for the SUL design and is the basis for an application for federal funding. The SUL design reflects the heterogeneity and complexity of challenges facing researchers in the environmental/geochemical sciences. X-ray absorption fine structure (XAFS

  1. Site Environmental Report for 2016 Sandia National Laboratories California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-06-01

    Sandia National Laboratories, California (SNL/CA) is a Department of Energy (DOE) facility. The management and operations of the facility are under a contract with the DOE’s National Nuclear Security Administration (NNSA). On May 1, 2017, the name of the management and operating contractor changed from Sandia Corporation to National Technology and Engineering Solutions of Sandia, LLC (NTESS). The DOE, NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2016 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2012). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2016, unless noted otherwise. General site and environmental program information is also included.

  2. Proposals for the mitigation of the environmental impact of clinical laboratories.

    Science.gov (United States)

    Lopez, Joseph B; Badrick, Tony

    2012-03-24

    Laboratories should be aware of the carbon footprint resulting from their activities and take steps to mitigate it as part of their societal responsibilities. Once committed to a mitigation programme, they should announce an environmental policy, secure the support of senior management, initiate documentation, institute a staff training programme, schedule environmental audits and appoint an environmental manager. Laboratories may aspire to be accredited to one of the standards for environmental management, such as the ISO 14000. As environmental and quality issues are linked, the improvement in the environmental management of an organisation will ultimately lead to improved quality system performance. Indeed, environmental management could conceivably come under overall quality management. Although there will be initial costs, good environmental practices can bring savings. Environmental improvement should be based on the 3R concept to reduce, reuse and recycle. Several policy initiatives may be introduced. These include a green purchasing policy for equipment, laboratory furniture and reagents as well as the management of packaging wastes. There are several ways to reduce energy, water usage and wastage. A reduction of test numbers and collection tubes should be attempted. Paper management involves all aspects of 3R. The recycling of solvents and general wastes should be practised where feasible. The construction new laboratories or renovations to existing ones are opportunities to make them more environmentally-friendly. The advocacy of policies to associates and the inclusion of environmentally-friendly conditions on contractors are integral parts of the programme.

  3. AFSC Laboratory Management Information Requirements Project

    National Research Council Canada - National Science Library

    1982-01-01

    This document was developed under the auspices of the Laboratory IRM (LIRM) Management Working Group in response to AFSC Program Directive 0008-81-1, Management Information Requirement Project (23 February 1981...

  4. Environmental management in public hospitals: Environmental management in Colombia

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rodríguez-Miranda

    2016-10-01

    Conclusions: Hospitals can apply broader environmental management instruments, including life cycle analysis of their products and services and monitoring of the carbon footprint; they may also take into account the different areas of environmental impact of their operation.

  5. Environmental Management Performance Report

    International Nuclear Information System (INIS)

    EDER, D.M.

    2002-01-01

    The purpose of this report is to provide the Department of Energy Richland Operations Office (RL) a monthly summary of the Central Plateau Contractor's Environmental Management (EM) performance by Fluor Hanford (FH) and its subcontractors. Only current FH workscope responsibilities are described and other contractor/RL managed work is excluded. Please refer to other sections (BHI, PNNL) for other contractor information. Section A, Executive Summary, provides an executive level summary of the cost, schedule, and technical performance described in this report. It summarizes performance for the period covered, highlights areas worthy of management attention, and provides a forward look to some of the upcoming key performance activities as extracted from the contractor baseline. The remaining sections provide detailed performance data relative to each individual subproject (e.g., Plutonium Finishing Plant, Spent Nuclear Fuels, etc.), in support of Section A of the report. All information is updated as of January 31, 2002 unless otherwise noted. ''Stoplight'' boxes are used to indicate at a glance the condition of a particular safety area. Green boxes denote either (1) the data are stable at a level representing ''acceptable'' performance, or (2) an improving trend exists. Yellows denote the data are stable at a level from which improvement is needed. Red denotes a trend exists in a non-improving direction

  6. Environmental Management Performance Report

    International Nuclear Information System (INIS)

    EDER, D.M.

    2002-01-01

    The purpose of this report is to provide the Department of Energy Richland Operations Office (RL) a monthly summary of the Central Plateau Contractor's Environmental Management (EM) performance by Fluor Hanford (FH) and its subcontractors. Only current FH workscope responsibilities are described and other contractor/RL managed work is excluded. Please refer to other sections (BHI, PNNL) for other contractor information. Section A, Executive Summary, provides an executive level summary of the cost, schedule, and technical performance described in this report. It summarizes performance for the period covered, highlights areas worthy of management attention, and provides a forward look to some of the upcoming key performance activities as extracted from the contractor baseline. The remaining sections provide detailed performance data relative to each individual subproject (e.g., Plutonium Finishing Plant, Spent Nuclear Fuels, etc.), in support of Section A of the report. All information is updated as of the end of May 2002 unless otherwise noted. ''Stoplight'' boxes are used to indicate at a glance the condition of a particular safety area. Green boxes denote either (1) the data are stable at a level representing ''acceptable'' performance, or (2) an improving trend exists. Yellows denote the data are stable at a level from which improvement is needed. Red denotes a trend exists in a non-improving direction

  7. 1991 Environmental monitoring report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Culp, T.; Cox, W.; Hwang, S.; Jones, A.; Longley, S.; Parsons, A.; Wolff, T.; Fish, J.; Ward, S.

    1992-11-01

    This 1991 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, envirorunental restoration (ER), and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 1.3 x 10 -3 mrem. The total population within a 50-mile radius of SNL, Albuquerque, received a collective dose of 0.53 person-rem during 1991 from SNL, Albuquerque, operations. As in the previous year, the 1991 operations at SNL, Albuquerque, had no discernible impact on the general public or on the environment

  8. CNR LARA project, Italy: Airborne laboratory for environmental research

    Science.gov (United States)

    Bianchi, R.; Cavalli, R. M.; Fiumi, L.; Marino, C. M.; Pignatti, S.

    1995-01-01

    The increasing interest for the environmental problems and the study of the impact on the environment due to antropic activity produced an enhancement of remote sensing applications. The Italian National Research Council (CNR) established a new laboratory for airborne hyperspectral imaging, the LARA Project (Laboratorio Aero per Ricerche Ambientali - Airborne Laboratory for Environmental Research), equipping its airborne laboratory, a CASA-212, mainly with the Daedalus AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) instrument. MIVIS's channels, spectral bandwidths, and locations are chosen to meet the needs of scientific research for advanced applications of remote sensing data. MIVIS can make significant contributions to solving problems in many diverse areas such as geologic exploration, land use studies, mineralogy, agricultural crop studies, energy loss analysis, pollution assessment, volcanology, forest fire management and others. The broad spectral range and the many discrete narrow channels of MIVIS provide a fine quantization of spectral information that permits accurate definition of absorption features from a variety of materials, allowing the extraction of chemical and physical information of our environment. The availability of such a hyperspectral imager, that will operate mainly in the Mediterranean area, at the present represents a unique opportunity for those who are involved in environmental studies and land-management to collect systematically large-scale and high spectral-spatial resolution data of this part of the world. Nevertheless, MIVIS deployments will touch other parts of the world, where a major interest from the international scientific community is present.

  9. Environmental Management vitrification activities

    Energy Technology Data Exchange (ETDEWEB)

    Krumrine, P.H. [Waste Policy Institute, Gaithersburg, MD (United States)

    1996-05-01

    Both the Mixed Waste and Landfill Stabilization Focus Areas as part of the Office of Technology Development efforts within the Department of Energy`s (DOE) Environmental Management (EM) Division have been developing various vitrification technologies as a treatment approach for the large quantities of transuranic (TRU), TRU mixed and Mixed Low Level Wastes that are stored in either landfills or above ground storage facilities. The technologies being developed include joule heated, plasma torch, plasma arc, induction, microwave, combustion, molten metal, and in situ methods. There are related efforts going into development glass, ceramic, and slag waste form windows of opportunity for the diverse quantities of heterogeneous wastes needing treatment. These studies look at both processing parameters, and long term performance parameters as a function of composition to assure that developed technologies have the right chemistry for success.

  10. Environmental Management vitrification activities

    International Nuclear Information System (INIS)

    Krumrine, P.H.

    1996-01-01

    Both the Mixed Waste and Landfill Stabilization Focus Areas as part of the Office of Technology Development efforts within the Department of Energy's (DOE) Environmental Management (EM) Division have been developing various vitrification technologies as a treatment approach for the large quantities of transuranic (TRU), TRU mixed and Mixed Low Level Wastes that are stored in either landfills or above ground storage facilities. The technologies being developed include joule heated, plasma torch, plasma arc, induction, microwave, combustion, molten metal, and in situ methods. There are related efforts going into development glass, ceramic, and slag waste form windows of opportunity for the diverse quantities of heterogeneous wastes needing treatment. These studies look at both processing parameters, and long term performance parameters as a function of composition to assure that developed technologies have the right chemistry for success

  11. Assessment of laboratory logistics management information system ...

    African Journals Online (AJOL)

    Introduction: Logistics management information system for health commodities remained poorly implemented in most of developing countries. To assess the status of laboratory logistics management information system for HIV/AIDS and tuberculosis laboratory commodities in public health facilities in Addis Ababa. Methods: ...

  12. Environmental management in nuclear industry

    International Nuclear Information System (INIS)

    Pillai, K.C.; Bhat, I.S.

    1988-01-01

    Safety of the environment is given due attention right at the design state of nuclear energy installations. Besides this engineered safety environmental protection measures are taken on (a) site selection criteria (b) waste management practices (c) prescribing dose limits for the public (d) having intensive environmental surveillance programme and (e) emergency preparedness. The paper enumerates the application of these protection measures in the environmental management to make the nuclear industry as an example to follow in the goal of environmental safety. (author)

  13. VKTA Rossendorf: Laboratory for Environmental and Radionuclide Analysis

    International Nuclear Information System (INIS)

    Koehler, M.; Knappik, R.; Fiola, K.

    2015-01-01

    The VKTA (Nuclear Engineering and Analytics Inc.) is charged by the Free State of Saxony with the decommissioning and waste management of the nuclear installations at the research site Dresden-Rossendorf. This task includes the safe management and disposal of fissile material and radioactive wastes. The acquired expertise and our solution-oriented way of working are the basis for a varied range of services especially the environmental and radionuclide analyzes. The Laboratory for Environmental and Radionuclide Analysis is accredited according to DIN EN ISO/IEC 17025 and provides a sound range of analytical and metrological services including their coordination and management. The personnel and the rooms, measuring and technical equipment are particularly designed for our special field, the measuring of radioactivity. We are focussed on measuring artificial and natural radionuclides in a wide range of activity and in different sample matrices (e.g., urine, faeces, metals, soil, concrete, food, liquids). With the flexible accreditation of the radionuclide analytics the Laboratory is able to react shortly to changing requirements in decommissioning, environmental monitoring and radiation protection. Essential chemical and radiochemical methods are e.g.: · Alpha particle spectrometry, · Liquid scintillation counting, · gamma ray spectrometry, including Ultra-Low-Level, · High-resolution ICP-MS, · Chromatographic methods such as ion chromatography, gas chromatography, HPLC, · Electrochemical measuring methods such as potentiometry, voltammetry. The Laboratory offers analytical services to the research site Dresden-Rossendorf and national and international customers adapting its analytical procedures to the special needs of customers. The presentation demonstrates on the basis of examples the work of Laboratory within the scope of decommissioning of nuclear facilities, especially at a research site, from radiological preliminary investigation to declaration of

  14. Environmental Management Assessment of the Fernald Environmental Management Project (FEMP)

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This report documents the results of the Environmental Management Assessment performed at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio. During this assessment, the activities conducted by the assessment team included review of internal documents and reports from previous audits and assessments; interviews with US Department of Energy (DOE) and FEMP contractor personnel; and inspection and observation of selected facilities and operations. The onsite portion of the assessment was conducted from March 15 through April 1, 1993, by DOE`s Office of Environmental Audit (EH-24) located within the Office of the Assistant Secretary for Environment, Safety, and Health (EH-1). EH-24 carries out independent assessments of DOE facilities and activities as part of the EH-1 Environment, Safety, and Health (ES&H) Oversight Audit Program. The EH-24 program is designed to evaluate the status of DOE facilities and activities with respect to compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, Guidance and Directives; conformance with accepted industry practices and standards of performance; and the status and adequacy of management systems developed to address environmental requirements. The Environmental Management Assessment of FEMP focused on the adequacy of environmental management systems. Further, in response to requests by the Office of Environmental Restoration and Waste Management (EM) and Fernald Field Office (FN), Quality Assurance and Environmental Radiation activities at FEMP were evaluated from a programmatic standpoint. The results of the evaluation of these areas are contained in the Environmental Protection Programs section in this report.

  15. Environmental Management Assessment of the Fernald Environmental Management Project (FEMP)

    International Nuclear Information System (INIS)

    1993-04-01

    This report documents the results of the Environmental Management Assessment performed at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio. During this assessment, the activities conducted by the assessment team included review of internal documents and reports from previous audits and assessments; interviews with US Department of Energy (DOE) and FEMP contractor personnel; and inspection and observation of selected facilities and operations. The onsite portion of the assessment was conducted from March 15 through April 1, 1993, by DOE's Office of Environmental Audit (EH-24) located within the Office of the Assistant Secretary for Environment, Safety, and Health (EH-1). EH-24 carries out independent assessments of DOE facilities and activities as part of the EH-1 Environment, Safety, and Health (ES ampersand H) Oversight Audit Program. The EH-24 program is designed to evaluate the status of DOE facilities and activities with respect to compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, Guidance and Directives; conformance with accepted industry practices and standards of performance; and the status and adequacy of management systems developed to address environmental requirements. The Environmental Management Assessment of FEMP focused on the adequacy of environmental management systems. Further, in response to requests by the Office of Environmental Restoration and Waste Management (EM) and Fernald Field Office (FN), Quality Assurance and Environmental Radiation activities at FEMP were evaluated from a programmatic standpoint. The results of the evaluation of these areas are contained in the Environmental Protection Programs section in this report

  16. Brookhaven National Laboratory site environmental report for calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A. [eds.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory.

  17. Adaptive Management of Environmental Flows

    Science.gov (United States)

    Webb, J. Angus; Watts, Robyn J.; Allan, Catherine; Conallin, John C.

    2018-03-01

    Adaptive management enables managers to work with complexity and uncertainty, and to respond to changing biophysical and social conditions. Amid considerable uncertainty over the benefits of environmental flows, governments are embracing adaptive management as a means to inform decision making. This Special Issue of Environmental Management presents examples of adaptive management of environmental flows and addresses claims that there are few examples of its successful implementation. It arose from a session at the 11th International Symposium on Ecohydraulics held in Australia, and is consequently dominated by papers from Australia. We classified the papers according to the involvement of researchers, managers and the local community in adaptive management. Five papers report on approaches developed by researchers, and one paper on a community-led program; these case studies currently have little impact on decision making. Six papers provide examples involving water managers and researchers, and two papers provide examples involving water managers and the local community. There are no papers where researchers, managers and local communities all contribute equally to adaptive management. Successful adaptive management of environmental flows occurs more often than is perceived. The final paper explores why successes are rarely reported, suggesting a lack of emphasis on reflection on management practices. One major challenge is to increase the documentation of successful adaptive management, so that benefits of learning extend beyond the project where it takes place. Finally, moving towards greater involvement of all stakeholders is critical if we are to realize the benefits of adaptive management for improving outcomes from environmental flows.

  18. Lawrence Berkeley National Laboratory 1997 Site Environmental Report Vol. I

    International Nuclear Information System (INIS)

    Thorson, Patrick

    1998-01-01

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of U.S. Department of Energy Order 231.1. The Site Environmental Report for 1997 is intended to summarize Berkeley Lab's compliance with environmental standards and requirements, characterize environmental management efforts through surveillance and monitoring activities, and highlight significant programs and efforts for calendar year 1997. This report is structured into three basic areas that cover a general overview of the Laboratory, the status of environmental programs, and the results of the surveillance and monitoring activities, including air quality, surface water, groundwater, sanitary sewer, soil and sediment, vegetation and foodstuffs, radiation dose assessment, and quality assurance. The report is separated into two volumes. Volume I contains the body of the report, a list of references, a list of acronyms and abbreviations, a glossary, Appendix A (NESHAPS annual report), and Appendix B (distribution list for volume I). Volume II contains Appendix C, the individual data results from monitoring programs. Each chapter in volume I begins with an outline of the sections that follow

  19. Hanford Site Environmental Management Specification

    International Nuclear Information System (INIS)

    DAILY, J.L.

    2001-01-01

    The US Department of Energy, Richland Operations Office (RL) has established a document hierarchy as part of its integrated management system. The Strategic Plan defines the vision, values, missions, strategic goals, high-level outcomes, and the basic strategies in achieving those outcomes. As shown in Figure 1-1, the Site Specification derives requirements from the Strategic Plan and documents the top-level mission technical requirements for the work involved in the RL Hanford Site cleanup and infrastructure activities under the responsibility of the U.S. Department of Energy, Office of Environmental Management (EM). It also provides the basis for all contract technical requirements. Since this is limited to the EM work, neither the Fast Flux Test Facility (FFTF) nor the Pacific Northwest National Laboratory (PNNL) non-EM science activities are included. Figure 1-1 also shows the relationship between this Site Specification and the other Site management and planning documents. Similarly, the documents, orders, and laws referenced in this document represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents

  20. On-site laboratory support of Oak Ridge National Laboratory environmental restoration field activities

    International Nuclear Information System (INIS)

    Burn, J.L.E.

    1995-07-01

    A remedial investigation/feasibility study has been undertaken at Oak Ridge National Laboratory (ORNL). Bechtel National, Inc. and partners CH2M Hill, Ogden Environmental and Energy Services, and PEER Consultants are contracted to Lockheed Martin Energy Systems, performing this work for ORNL's Environmental Restoration (ER) Program. An on-site Close Support Laboratory (CSL) established at the ER Field Operations Facility has evolved into a laboratory where quality analytical screening results can be provided rapidly (e.g., within 24 hours of sampling). CSL capabilities include three basic areas: radiochemistry, chromatography, and wet chemistry. Radiochemical analyses include gamma spectroscopy, tritium and carbon-14 screens using liquid scintillation analysis, and gross alpha and beta counting. Cerenkov counting and crown-ether-based separation are the two rapid methods used for radiostrontium determination in water samples. By extending count times where appropriate, method detection limits can match those achieved by off-site contract laboratories. Volatile organic compounds are detected by means of gas chromatography using either headspace or purge and trap sample introduction (based on EPA 601/602). Ionic content of water samples is determined using ion chromatography and alkalinity measurement. Ion chromatography is used to quantify both anions (based on EPA 300) and cations. Wet chemistry procedures performed at the CSL include alkalinity, pH (water and soil), soil resistivity, and dissolved/suspended solids. Besides environmental samples, the CSL routinely screens health and safety and waste management samples. The cost savings of the CSL are both direct and indirect

  1. Environmental Management in Product Chains

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Forman, Marianne

    2009-01-01

    between existing resources, norms and values and external pressures for environmental management (second section). A model for the types of corporate network relations that need to be mapped and understood in order to analyze and/or develop environmental management in a product chain (third section......The chapter aims at giving background to companies, consultants, governmental regulators, NGOs etc. for the analysis and planning of environmental management in specific product chains through: A framework for understanding environmental management in product chains as shaped by the interaction......). An overview of examples from our own research and from literature of the type and the role of environmental issues and initiatives in product chains (fourth section). A typology for characterizing corporate strategies as part of environmental management in product chains and characterizing those competencies...

  2. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  3. Oak Ridge National Laboratory Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  4. Strategic Environmental Assessment: Integrated environmental management

    CSIR Research Space (South Africa)

    Department of Environmental Affairs and Tourism

    2004-01-01

    Full Text Available stream_source_info Department of Environmental Affairs and Tourism_2004.pdf.txt stream_content_type text/plain stream_size 70155 Content-Encoding ISO-8859-1 stream_name Department of Environmental Affairs and Tourism_2004.pdf... and Tourism Other topics in the series of overview information documents on the concepts of, and approaches to, integrated environmental management are listed below. Further titles in this series are being prepared and will be made available periodically...

  5. Project management: importance for diagnostic laboratories.

    Science.gov (United States)

    Croxatto, A; Greub, G

    2017-07-01

    The need for diagnostic laboratories to improve both quality and productivity alongside personnel shortages incite laboratory managers to constantly optimize laboratory workflows, organization, and technology. These continuous modifications of the laboratories should be conducted using efficient project and change management approaches to maximize the opportunities for successful completion of the project. This review aims at presenting a general overview of project management with an emphasis on selected critical aspects. Conventional project management tools and models, such as HERMES, described in the literature, associated personal experience, and educational courses on management have been used to illustrate this review. This review presents general guidelines of project management and highlights their importance for microbiology diagnostic laboratories. As an example, some critical aspects of project management will be illustrated with a project of automation, as experienced at the laboratories of bacteriology and hygiene of the University Hospital of Lausanne. It is important to define clearly beforehand the objective of a project, its perimeter, its costs, and its time frame including precise duration estimates of each step. Then, a project management plan including explanations and descriptions on how to manage, execute, and control the project is necessary to continuously monitor the progression of a project to achieve its defined goals. Moreover, a thorough risk analysis with contingency and mitigation measures should be performed at each phase of a project to minimize the impact of project failures. The increasing complexities of modern laboratories mean clinical microbiologists must use several management tools including project and change management to improve the outcome of major projects and activities. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. Auditing of environmental management system

    Directory of Open Access Journals (Sweden)

    Čuchranová Katarína

    2001-12-01

    Full Text Available Environmental auditing has estabilished itself as a valueable instrument to verify and help to improve the environmental performance.Organizations of all kinds may have a need to demonstrate the environmental responsibility. The concept of environmental management systems and the associated practice of environmental auditing have been advanced as one way to satisfy this need.These system are intended to help an organization to establish and continue to meet its environmental policies, objectives, standards and other requirements.Environmental auditing is a systematic and documented verification process of objectively obtaining and evaluating audit evidence to determine whether an organizations environmental management system conforms to the environmental management system audit criteria set by the organization and for the communication of the results of this process to the management.The following article intercepts all parts of preparation environmental auditing.The audit programme and procedures should cover the activities and areas to be considered in audits, the frequency of audits, the responsibilities associated with managing and conducting audits, the communication of audit results, auditor competence, and how audits will be conducted.The International Standard ISO 140011 estabilishes the audit procedures that determine conformance with EMS audit criteria.

  7. Proposed environmental remediation at Argonne National Laboratory, Argonne, Illinois

    International Nuclear Information System (INIS)

    1997-05-01

    The Department of Energy (DOE) has prepared an Environmental Assessment evaluating proposed environmental remediation activity at Argonne National Laboratory-East (ANL-E), Argonne, Illinois. The environmental remediation work would (1) reduce, eliminate, or prevent the release of contaminants from a number of Resource Conservation and Recovery Act (RCRA) Solid Waste Management Units (SWMUs) and two radiologically contaminated sites located in areas contiguous with SWMUs, and (2) decrease the potential for exposure of the public, ANL-E employees, and wildlife to such contaminants. The actions proposed for SWMUs are required to comply with the RCRA corrective action process and corrective action requirements of the Illinois Environmental Protection Agency; the actions proposed are also required to reduce the potential for continued contaminant release. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required

  8. Argonne National Laboratory Site Environmental Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Davis, T. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Gomez, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Moos, L. P. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-09-02

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2013. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with environmental management, sustainability efforts, environmental corrective actions, and habitat restoration. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, Argonne, and other) and are compared with applicable standards intended to protect human health and the environment. A U.S. Department of Energy (DOE) dose calculation methodology, based on International Commission on Radiological Protection (ICRP) recommendations and the U.S. Environmental Protection Agency’s (EPA) CAP-88 Version 3 computer code, was used in preparing this report.

  9. Environmental Molecular Sciences Laboratory Annual Report: Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Nancy S.; Showalter, Mary Ann

    2007-03-23

    This report describes the activities and research performed at the Environmental Molecular Sciences Laboratory, a Department of Energy national scientific user facility at Pacific Northwest National Laboratory, during Fiscal Year 2006.

  10. A bayesian approach to laboratory utilization management

    Directory of Open Access Journals (Sweden)

    Ronald G Hauser

    2015-01-01

    Full Text Available Background: Laboratory utilization management describes a process designed to increase healthcare value by altering requests for laboratory services. A typical approach to monitor and prioritize interventions involves audits of laboratory orders against specific criteria, defined as rule-based laboratory utilization management. This approach has inherent limitations. First, rules are inflexible. They adapt poorly to the ambiguity of medical decision-making. Second, rules judge the context of a decision instead of the patient outcome allowing an order to simultaneously save a life and break a rule. Third, rules can threaten physician autonomy when used in a performance evaluation. Methods: We developed an alternative to rule-based laboratory utilization. The core idea comes from a formula used in epidemiology to estimate disease prevalence. The equation relates four terms: the prevalence of disease, the proportion of positive tests, test sensitivity and test specificity. When applied to a laboratory utilization audit, the formula estimates the prevalence of disease (pretest probability [PTP] in the patients tested. The comparison of PTPs among different providers, provider groups, or patient cohorts produces an objective evaluation of laboratory requests. We demonstrate the model in a review of tests for enterovirus (EV meningitis. Results: The model identified subpopulations within the cohort with a low prevalence of disease. These low prevalence groups shared demographic and seasonal factors known to protect against EV meningitis. This suggests too many orders occurred from patients at low risk for EV. Conclusion: We introduce a new method for laboratory utilization management programs to audit laboratory services.

  11. Analytical laboratory quality assurance guidance in support of EM environmental sampling and analysis activities

    International Nuclear Information System (INIS)

    1994-05-01

    This document introduces QA guidance pertaining to design and implementation of laboratory procedures and processes for collecting DOE Environmental Restoration and Waste Management (EM) ESAA (environmental sampling and analysis activities) data. It addresses several goals: identifying key laboratory issues and program elements to EM HQ and field office managers; providing non-prescriptive guidance; and introducing environmental data collection program elements for EM-263 assessment documents and programs. The guidance describes the implementation of laboratory QA elements within a functional QA program (development of the QA program and data quality objectives are not covered here)

  12. Corporate environmental management

    DEFF Research Database (Denmark)

    Madsen, Henning; Ulhøi, John Parm

    With increasing population and economic growth and related demand for energy and natural resources as well, pollution, waste production and environmental sustainability have become issues of uttermost importance. For quite some time self-regulation, i.e. voluntary implementation of environmental......: how does industry respond to the environmental challenge? The paper concludes that despite the apparent attractiveness of self-regulation in industry, voluntary options tend not to be widely adopted thus pointing to a continued strong need for an effective regulation of industry’s environmental...

  13. Brookhaven National Laboratory site environmental report for calendar year 1994

    International Nuclear Information System (INIS)

    Naidu, J.R.; Royce, B.A.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory's operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory

  14. Radiobioassay economics and laboratory management

    International Nuclear Information System (INIS)

    Gilchrist, J.

    1983-01-01

    The economic situation faced by laboratories in the US is less than ideal. Inflation/interest rates are in the area of 10 to 20% per year, reimbursement policies are putting pressures on the laboratories, hospitals are in a cost-containment mode in the best of cases, and in the worst, are closing for a lack of funds. In the past six years, there has been a national net loss of 186 hospitals, according to American Hospital Association figures. The pressure is acute on community hospitals; 135 have failed. Many hospitals (160) have applied for federal grants as financially distressed hospitals. Since the community hospitals account for 85% of all admissions in the US, it is obvious that the pressure has been greatest on the hospitals that account for the greatest number of admissions. To put the general economic scene in perspective, according to 1977 Medicare data, 24% of all community hospitals had total expenses that exceeded their total revenues. Many social and economic factors contribute to this picture, but the rapidly rising operating expenses due to inflation, new high cost medical technology, surplus of hospital beds, and inadequate planning, purchasing, accounting, and hiring practices play a noticeable part in contributing to this problem

  15. Environmental management & audit 2: Management systems

    OpenAIRE

    2018-01-01

    The present scientific monograph, entitled “Environmental management & audit“, is the result of three years’ work on an international project entitled “Environmental management in Russian companies – retraining courses for the sensibilization for and integration of Eco-Audit programs in corporate decision-making (RECOAUD)”. Within its more than 600 pages, the monograph features interesting texts written by 31 authors from the European Union and the Russian Federation, edited by dr. Borut Jere...

  16. Brookhaven National Laboratory site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, G.L.; Paquette, D.E.; Naidu, J.R.; Lee, R.J.; Briggs, S.L.K.

    1998-01-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1996. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and non-radiological emissions and effluents to the environment.

  17. Laboratory Information Management System Chain of Custody: Reliability and Security

    Science.gov (United States)

    Tomlinson, J. J.; Elliott-Smith, W.; Radosta, T.

    2006-01-01

    A chain of custody (COC) is required in many laboratories that handle forensics, drugs of abuse, environmental, clinical, and DNA testing, as well as other laboratories that want to assure reliability of reported results. Maintaining a dependable COC can be laborious, but with the recent establishment of the criteria for electronic records and signatures by US regulatory agencies, laboratory information management systems (LIMSs) are now being developed to fully automate COCs. The extent of automation and of data reliability can vary, and FDA- and EPA-compliant electronic signatures and system security are rare. PMID:17671623

  18. Risk-based priority scoring for Brookhaven National Laboratory environmental restoration programs

    International Nuclear Information System (INIS)

    Morris, S.C.; Meinhold, A.F.

    1995-05-01

    This report describes the process of estimating the risk associated with environmental restoration programs under the Brookhaven National Laboratory Office of Environmental Restoration. The process was part of an effort across all Department of Energy facilities to provide a consistent framework to communicate risk information about the facilities to senior managers in the DOE Office of Environmental Management to foster understanding of risk activities across programs. the risk evaluation was a qualitative exercise. Categories considered included: Public health and safety; site personnel safety and health; compliance; mission impact; cost-effective risk management; environmental protection; inherent worker risk; environmental effects of clean-up; and social, cultural, political, and economic impacts

  19. Scope of environmental risk management

    Energy Technology Data Exchange (ETDEWEB)

    O' Riordan, T

    1979-01-01

    Environmental risk management embraces three techniques for project appraisal: cost/benefit analysis, environmental impact analysis and risk assessment. It also explicitly relates scientific investigations to political judgments, sometimes so closely that the two cannot be separated. Indeed it is now apparent that environmental risk management encompasses procedures both to review the relative merits and priorities of policies as well as to appraise the environmental risks of particular schemes. Until recently this relationship has not been fully appreciated, so much imagination and innovation is still required to develop the most-suitable mechanisms for review.

  20. Environmental Management Performance Report for December 1999

    Energy Technology Data Exchange (ETDEWEB)

    EDER, D.M.

    2000-02-16

    The purpose of the Environmental Management Performance Report (EMPR) is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's Environmental Management (EM) performance by: U. S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Hanford, Inc. (FHI) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for EM and EM Science and Technology (S&T) Mission. This report is a monthly publication that summarizes EM Site performance under RL Operations Office. It is organized by the four sections listed above, with each section containing an Executive Summary and Area Performance Summaries. A listing of what is contained in the sections can be found in the Table of Contents.

  1. Environmental Management Performance Report April 2000

    Energy Technology Data Exchange (ETDEWEB)

    EDER, D.M.

    2000-04-01

    The purpose of the Environmental Management Performance Report (EMPR) is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's Environmental Management (EM) performance by: Project Hanford Management Contract (PHMC) through Fluor Hanford, Inc. (FHI) and its subcontractors; Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors; Pacific Northwest National Laboratories (PNNL) for EM and EM Science and Technology (S and T) Mission; and Office of Safety Regulation of the TWRS Privatization Contractor. This report is a monthly publication that summarizes EM Site performance under RL Operations Office. It is organized by the four sections listed above, with each section containing an Executive Summary and Area Performance Summaries.

  2. Environmental Management Performance Report November 2000

    Energy Technology Data Exchange (ETDEWEB)

    EDER, D.M.

    2000-11-01

    The purpose of the Environmental Management Performance Report (EMPR) is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's Environmental Management (EM) performance by: Project Hanford Management Contract (PHMC) through Fluor Hanford, Inc. (FH) and its subcontractors; Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors; Pacific Northwest National Laboratories (PNNL) for Science and Technology support to the EM Mission; and Office of Safety Regulation of the TWRS Privatization Contractor. This report is a monthly publication that summarizes EM Site performance under RL Operations Office. It is organized by the four sections listed above, with each section containing an Executive Summary and Area Performance Summaries. A glossary of terms is provided at the end of this report for reference purposes.

  3. Environmental risk management

    International Nuclear Information System (INIS)

    Parris, P.A.

    1994-01-01

    A professional, audit able environmental approach is the only path a responsible government, institution or company can take. Such an approach can be applied to a small petrol station, an oil refinery or a multi-million dollar mining development. Environmental issues cannot be divorced from socio-economic criteria; each impacts on the other. Twenty years ago, financial criteria ruled decision making and the environment tagged along a poor third to social and safety issues. Today, financial issued are still dominant, but decision makers realised that environmental issues hold the same weight as socio-economic criteria and the three are inexorably intertwined. (author)

  4. Managing Science: Management for R&D Laboratories

    Science.gov (United States)

    Gelès, Claude; Lindecker, Gilles; Month, Mel; Roche, Christian

    1999-10-01

    A unique "how-to" manual for the management of scientific laboratories This book presents a complete set of tools for the management of research and development laboratories and projects. With an emphasis on knowledge rather than profit as a measure of output and performance, the authors apply standard management principles and techniques to the needs of high-flux, open-ended, separately funded science and technology enterprises. They also propose the novel idea that failure, and incipient failure, is an important measure of an organization's potential. From the management of complex, round-the-clock, high-tech operations to strategies for long-term planning, Managing Science: Management for R&D Laboratories discusses how to build projects with the proper research and development, obtain and account for funding, and deal with rapidly changing technologies, facilities, and trends. The entire second part of the book is devoted to personnel issues and the impact of workplace behavior on the various functions of a knowledge-based organization. Drawing on four decades of involvement with the management of scientific laboratories, the authors thoroughly illustrate their philosophy with real-world examples from the physics field and provide tables and charts. Managers of scientific laboratories as well as scientists and engineers expecting to move into management will find Managing Science: Management for R&D Laboratories an invaluable practical guide.

  5. Annual site environmental report of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schleimer, G.E.; Pauer, R.O.

    1991-05-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1990 are presented, and general trends are discussed. The report is organized under the following topics: Environmental Program Overview; Environmental Permits; Environmental Assessments; Environmental Activities; Penetrating Radiation; Airborne Radionuclides; Waterborne Radionuclides; Public Doses Resulting from LBL Operations; Trends -- LBL Environmental Impact; Waterborne Pollutants; Airborne Pollutants; Groundwater Protection; and Quality Assurance. 20 refs., 26 figs., 23 tabs

  6. Annual report of decommissioning and remedial action S and M activities for the Environmental Management Program at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-11-01

    The Oak Ridge National Laboratory (ORNL) Surveillance and Maintenance (S ampersand M) Program performs a variety of activities to ensure that sites and facilities within its responsibility remain in a safe condition and in compliance with applicable regulations. All S ampersand M Program activities during fiscal year (FY) 1997 were accomplished safely, with no health and safety incidents, no lost work days, and no environmental noncompliances. In addition, all activities were performed within schedule thresholds and under budget. Many remedial action (RA) sites and decontamination and decommissioning (D ampersand D) facilities are inspected and maintained by the S ampersand M Program. RA sites encompass approximately 650 acres and 33 D ampersand D facilities, including 4 inactive reactors. During FY 1997, routine, preventative, and emergency maintenance activities were performed as needed at these sites and facilities. Stabilization activities were also performed to reduce risks and reduce future S ampersand M costs. Major activities at the RA sites during FY 1997 included maintaining proper liquid levels in surface impoundments and inactive -liquid low-level waste storage tanks as well as installing a new cover at the tumulus pads in Waste Area Grouping (WAG) 6, planting trees in the First Creek Riparian Corridor, and performing over 900 well inspections. Postremediation monitoring was conducted at the 3001 Canal, Core Hole 8, the WAG 6 Resource Conservation and Recovery caps, and WAG 5 Seeps C and D; groundwater monitoring was performed in WAGs 4, 5, and 6 and at the 3001 Canal Well. At ORNL D ampersand D facilities, significant accomplishments included contaminated lead brick removal, asbestos abatement, contaminated equipment and debris removal, and radiologically contaminated area painting

  7. The Los Alamos National Laboratory Environmental Restoration Program

    International Nuclear Information System (INIS)

    Krueger, J.W.

    1990-01-01

    The LANL Environmental Restoration (ER) Program Office, established in October 1989, is faced with the challenge of assessing and cleaning up nearly 1,8000 potentially hazardous waste sites according to an aggressive corrective action schedule that the Environmental Protection Agency (EPA) mandated on May 23, 1990, in a Resource, Conservation, and Recovery Act (RCRA) Part B Permit. To maximize program efficiency, the ER Program Office will implement a unique management approach designed to maximize the use of laboratory technical expertise. The Installation Work Plan, which provides a blueprint for the program, has been submitted to EPA for review and approval. A work plan for characterization of Technical Area 21, an early plutonium processing facility, is also nearing completion. The feasibility of an expedited cleanup of the Laboratory's worst hazardous waste release has been modelled using a computer code originally developed by LANL to assist the nuclear weapons testing program. A sophisticated Geographic Information System has been implemented to assist in data management and presentation, and the design of a Mixed Waste Disposal Facility is underway. 6 refs., 2 figs

  8. Laboratory biorisk management biosafety and biosecurity

    CERN Document Server

    Salerno, Reynolds M

    2015-01-01

    Over the past two decades bioscience facilities worldwide have experienced multiple safety and security incidents, including many notable incidents at so-called ""sophisticated facilities"" in North America and Western Europe. This demonstrates that a system based solely on biosafety levels and security regulations may not be sufficient.Setting the stage for a substantively different approach for managing the risks of working with biological agents in laboratories, Laboratory Biorisk Management: Biosafety and Biosecurity introduces the concept of biorisk management-a new paradigm that encompas

  9. ETHICAL ASPECTS OF ENVIRONMENTAL MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Cîrstea Ştefan-Dragoş

    2013-07-01

    Full Text Available The purpose of this article is to outline the main economical and social benefits that can be obtained by adopting an ethical attitude of the organisations which use a performant environmental management. From the idea that the human being is the master of nature, it was passed to the view according to which the human being must ensure a balance between consumption and the use of resources. In order to achieve our goal we identified the factors that lead to long term or even permanent destructive effects over the environment and we briefly present the reasons for which the organizations adopt and implement environmental management systems. Also, the difficulties encountered in implementing environmental strategies have been briefly enumerated and the competitive and economic advantages that can be achieved by adopting an efficient environmental management and the main reasons that grant to the environmental management a special significance were exposed. This theoretical paper emphasizes the importance of the adoption by organizations of a "green behavior" and reveals correlations between sustainability, economic growth and environmental performance in organizations. The analysis of the ethical aspects of environmental management shows the links that can be created between the development of an ethical culture of organizations and the achievement of the environmental excellence. The research provides an overview of the concept of environmental ethics and encloses it within the scope of environmental management. Someone needs to explain why an increasing number of organizations, both large and small, are setting up environmental management systems, making environmental investments and reducing risks over and beyond legal requirements, even when the benefits are not at all obvious, even in the long run. Also, this paper provides some practical examples of organizations environmental problems and points out how these organizations adapted their

  10. Peat in environmental management

    International Nuclear Information System (INIS)

    Rinttilae, R.

    1998-01-01

    Peat is the largest natural resource of Finland. The DS-reserves of peat are more than seven times larger than those of wood. Peat is known as a domestic source of energy. Peat is, however, more than an energy source. The most significant problem of water protection in Finland is the eutrophication of the water courses. The reduction of concentrated loads and large emissions sources has up to now been the target for the water protection. The control of diffuse loads has been more difficult. The environmental use of peat can reduce the loads on watercourses, and especially the diffuse emissions. The natural and unique properties of peat can be utilized in several targets: agriculture, pisciculture, fur farming, in small and medium sized industry, and in processing of waste waters of both municipalities and rural areas, as well as in different environmental hazards. The present use of environmental peat is just a small fragment of the annual growth of peat reserves in Finland. The amount of protected mires is about ten times larger than the amount of peatlands taken into peat production. The use of environmental peat makes it possible to reduce the diffuse loads significantly in the future. This, however, requires willingness of cooperation and development by the entrepreneurs, authorities, and peat producers. The present use of agricultural peat binds about three times more phosphor and nearly one and a half fold nitrogen fertilizers compare to the emissions caused by peat production. It has to be noticed that the utilization of peat in reduction of environmental loads does not cause any secondary waste problem. The final product formed can usually be composted and used e.g. in soil remediation or in construction of green areas. The tightening environmental regulations and international agreements increase the utilization of peat. As the demand of peat increased the quality requirements for peat will be increased. Certain grain size and the restoration of the

  11. Environmental assessment of the Environmental Restoration Project at Sandia National Laboratories/New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Sandia National Laboratories/New Mexico (SNL/NM) is managed and operated for the U.S. Department of Energy (DOE) by Sandia Corporation, a subsidiary of the Lockheed Martin Company. SNL/NM is located on land controlled by DOE within the boundaries of Kirtland Air Force Base (KAFB) in Albuquerque, New Mexico. The major responsibilities of SNL/NM are the support of national security and energy projects. This report provides an environmental assessment of proposed remedial action activities at the solid waste management units at SNL/NM. A risk assessment of health hazards is also discussed.

  12. Clinical laboratory waste management in Shiraz, Iran.

    Science.gov (United States)

    Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John

    2012-06-01

    Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.

  13. 76 FR 21877 - Environmental Management Advisory Board

    Science.gov (United States)

    2011-04-19

    ... DEPARTMENT OF ENERGY Environmental Management Advisory Board AGENCY: Department of Energy. ACTION: Notice of call for nominations for appointment to the Environmental Management Advisory Board. SUMMARY... Environmental Management Advisory Board. DATES: Nominations will be accepted through May 13, 2011. ADDRESSES...

  14. Environmental Programs: National Renewable Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    2001-05-01

    Major NREL environmental programs and initiatives include: integrated energy and environmental strategies; implementation of air pollution programs and climate change programs; Green Power Network; environmental and economic impacts and benefits of energy efficiency and renewable energy (EERE) technologies; technology transfer between developed and developing countries; greenhouse gas emission reduction projects; climate change action plans with developing countries and development of life cycle assessments.

  15. SNL/CA Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2005-09-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program was developed in accordance with Department of Energy (DOE) Order 450.1 and incorporates the elements of the International Standard on Environmental Management Systems, ISO 14001.

  16. Brookhaven National Laboratory site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Paquette, D.E.; Schroeder, G.L. [eds.] [and others

    1996-12-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1995. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment. Areas of known contamination are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement established by the Department of Energy, Environmental Protection Agency and the New York Department of Environmental Conservation. Except for identified areas of soil and groundwater contamination, the environmental monitoring data has continued to demonstrate that compliance was achieved with the applicable environmental laws and regulations governing emission and discharge of materials to the environment. Also, the data show that the environmental impacts at Brookhaven National Laboratory are minimal and pose no threat to the public nor to the environment. This report meets the requirements of Department of Energy Orders 5484.1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

  17. Resilience and environmental management

    Science.gov (United States)

    Environmental law plays a key role in shaping policy for sustainability. In particular, the types of legal instruments, institutions, and the response of law to the inherent variability in socio-ecological systems is critical. Sustainability likely must occur via the institutions...

  18. Community Relations Plan for Lawrence Berkeley Laboratory. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The Lawrence Berkeley Laboratory (LBL) has applied to the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), for renewal of its Hazardous Waste Handling Facility Permit. A permit is required under Resource Conservation and Recovery Act (RCRA) regulations. The permit will allow LBL to continue using its current hazardous waste handling facility, upgrade the existing facility, and construct a replacement facility. The new facility is scheduled for completion in 1995. The existing facility will be closed under RCRA guidelines by 1996. As part of the permitting process, LBL is required to investigate areas of soil and groundwater contamination at its main site in the Berkeley Hills. The investigations are being conducted by LBL`s Environmental Restoration Program and are overseen by a number of regulatory agencies. The regulatory agencies working with LBL include the California Environmental Protection Agency`s Department of Toxic Substances Control, the California Regional Water Quality Control Board, the Bay Area Air Quality Management District, the East Bay Municipal Utilities District, and the Berkeley Department of Environmental Health. RCRA requires that the public be informed of LBL`s investigations and site cleanup, and that opportunities be available for the public to participate in making decisions about how LBL will address contamination issues. LBL has prepared this Community Relations Plan (CRP) to describe activities that LBL will use to keep the community informed of environmental restoration progress and to provide for an open dialogue with the public on issues of importance. The CRP documents the community`s current concerns about LBL`s Environmental Restoration Program. Interviews conducted between February and April 1993 with elected officials, agency staff, environmental organizations, businesses, site neighbors, and LBL employees form the basis for the information contained in this document.

  19. New standard environmental management

    International Nuclear Information System (INIS)

    Andriola, Luca; Luciani, Roberto

    2006-01-01

    The ISO 14001:2004 standard, like ISO 9001:2000 on quality management, transcends the preventive approach (based on a rigid and more or less adequate process-management model still mainly inspired by traditional production methods) and introduces in its stead a highly flexible approach applicable to any socio-economic activity. It is structured by processes rather than system elements, and is based on the quest for efficacy and ongoing improvement [it

  20. The management of radioactive waste in laboratories

    International Nuclear Information System (INIS)

    McLintock, I.S.

    1996-01-01

    Many laboratories in universities, colleges, research institutions and hospitals produce radioactive wastes. The recently-coined term for them is small users of radioactive materials, to distinguish them from concerns such as the nuclear industry. Until recently the accepted official view was that small users had few problems in disposing of their radioactive wastes. This misconception was dispelled in 1991 by the 12th Annual Report of the Radioactive Waste Management Advisory Committee. This book includes a description of the principles of the management and disposal of radioactive wastes from these laboratories. Its main intention, however, is to provide practical information and data for laboratory workers as well as for those responsible for management and ultimate disposal of radioactive wastes. I hope that it succeeds in this intention. (UK)

  1. The Aalborg Approach to Environmental Management

    DEFF Research Database (Denmark)

    Jamison, Andrew; Nielsen, Eskild Holm

    2002-01-01

    The Article Briefly Presents the Master Programme in Environmental Management at Aalborg University......The Article Briefly Presents the Master Programme in Environmental Management at Aalborg University...

  2. Ames Laboratory site environmental report, Calendar year 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Ames Laboratory conducts fundamental research in the physical, chemical, materials, and mathematical sciences and engineering which underlie energy generating, conversion, transmission and storage technologies, environmental improvement, and other technical areas essential to national needs. These efforts will be maintained so as to contribute to the achievement of the vision of DOE and, more specifically, to increase the general levels of knowledge and technical capabilities, to prepare engineering and physical sciences students for the future, both academia and industry, and to develop new technologies and practical applications from our basic scientific programs that will contribute to a strengthening of the US economy. The Laboratory approaches all its operations with the safety and health of all workers as a constant objective and with genuine concern for the environment. The Laboratory relies upon its strengths in materials synthesis and processing, materials reliability, chemical analysis, chemical sciences, photosynthesis, materials sciences, metallurgy, high-temperature superconductivity, and applied mathematical sciences to conduct the long term basic and intermediate range applied research needed to solve the complex problems encountered in energy production, and utilization as well as environmental restoration and waste management. Ames Laboratory will continue to maintain a very significant and highly beneficial pre-college math and science education program which currently serves both teachers and students at the middle school and high school levels. Our technology transfer program is aided by joint efforts with ISU's technology development and commercialization enterprise and will sustain concerted efforts to implement Cooperative Research and Development Agreements, industrially sponsored Work for Others projects. and scientific personnel exchanges with our various customers

  3. Environmental performance management

    International Nuclear Information System (INIS)

    Kwant, J.W.H.; Grant, R.O.H.

    1991-01-01

    This paper describes the environmental programme developed by Shell U.K. Exploration and Production (EXPRO) aiming at a continuous improvement of its environmental performance. The company operates a total of 33 platforms in the North Sea and has 3 land based gas treatment plants. This paper, therefore, relates mainly to the offshore environment. The programme is driven by adopting a goal setting policy. The plan was initiated mid 1990 when an inventory was made of all gaseous emissions, liquid effluents and solid waste discharges of EXPRO's operations during 1989. This baseline was used to identify the largest waste steams and to set priorities for the subsequent improvement programme. Areas for improvement are: atmospheric emissions from venting, flaring and the use of Freons and Halons, the use of Oil Based Mud (OBM), produced water and the disposal of industrial waste. The programme has gained momentum and targets have been set

  4. Environmental management: A system approach

    Science.gov (United States)

    Petak, William J.

    1981-05-01

    This paper presents a system framework whose purpose is to improve understanding of environmental management. By analyzing the links between elements of the environmental management system, it is possible to construct a model that aids thinking systematically about the decision-making subsystem, and other subsystems, of the entire environmental management system. Through a multidisciplinary environmental approach, each of the individual subsystems is able to adapt to threats and opportunities. The fields of government, market economics, social responsibility and ecology, for example, are so complex that it is extremely difficult to develop a framework that gives full consideration to all aspects. This paper, through the application of a highly idealized system framework, attempts to show the general relationships that exist between complex system elements.

  5. Environmental Accounting as a Tool for Environmental Management ...

    African Journals Online (AJOL)

    Environmental Accounting as a Tool for Environmental Management System. ... This paper reviews about the relationship of environmental accounting and environmental ... to legal and regulation requirement, to reduce cost from customer

  6. INTEGRATION OF ENVIRONMENTAL MANAGEMENT SYSTEM

    OpenAIRE

    Tomescu Ada Mirela

    2012-01-01

    The relevance of management as significant factor of business activity can be established on various management systems. These will help to obtain, organise, administrate, evaluate and control particulars: information, quality, environmental protection, health and safety, various resources (time, human, finance, inventory etc). The complexity of nowadays days development, forced us to think ‘integrated’. Sustainable development principles require that environment management policies and p...

  7. Performance evaluation of the food and environmental monitoring radio-analytical laboratory in Ghana

    International Nuclear Information System (INIS)

    Agyeman, Lilian Ataa

    2016-06-01

    Since the establishment of the Radiation Protection Institute’s Food and Environmental Laboratory in 1988, there has never been any thorough evaluation of the activities of the facility to provide assurance of the quality of analytical results produced by the laboratory. The objective of this study, therefore, was to assess the performance level of the Food and Environmental monitoring laboratory with respect to the requirements for a standard analytical laboratory (IAEA, 1989) and ISO 17025. The study focused on the performance of the Gamma Spectrometry laboratory of the Radiation Protection Institute, Ghana Atomic Energy Commission which has been involved in monitoring of radionuclides in food and environmental samples. In doing that, data from 1988 to 2015 was reviewed to ascertain whether the Laboratory has being performing as required in providing quality results on food and environmental samples measured. Besides this data (records kept), the evaluation also covered some Technical Quality Control measures, such as Energy and Efficiency Calibration, that need to be put in place for such laboratories. The laboratory meets almost all conditions and equipment requirements of IAEA (1989), however the laboratory falls short of the management requirements of ISO 17025. Based on the results it was recommended, among others, that management of the laboratory should ensure there are procedures for how calibration and testing is performed for different types of equipment and also the competence of all who operate specific equipment, perform tests, evaluate results and sign test reports ensured. (au)

  8. Environmental monitoring report, Sandia Laboratories 1975

    International Nuclear Information System (INIS)

    Holley, W.L.; Simmons, T.N.

    1976-04-01

    Water and vegetation are monitored to determine Sandia Laboratories impact on the surrounding environment. Nonradioactive pollutants released are reported. Radioactive effluents are also reported and their person-rem contribution to the population is calculated

  9. Lawrence Livermore National Laboratory Environmental Report 2016

    Energy Technology Data Exchange (ETDEWEB)

    Rosene, Crystal [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-21

    The purposes of the Environmental Report 2016 are to record LLNL’s compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring. Specifically, the report discusses LLNL’s EMS; describes significant accomplishments in pollution prevention; presents the results of air, water, vegetation, and foodstuff monitoring; reports radiological doses from LLNL operations; summarizes LLNL’s activities involving special status wildlife, plants, and habitats; and describes the progress LLNL has made in remediating groundwater contamination. Environmental monitoring at LLNL, including analysis of samples and data, is conducted according to documented standard operating procedures. Duplicate samples are collected and analytical results are reviewed and compared to internal acceptance standards. This report is prepared for DOE by LLNL’s Environmental Functional Area (EFA). Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.” The report is distributed in electronic form and is available to the public at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning with 1994 are also on the website.

  10. INTEGRATION OF ENVIRONMENTAL MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Tomescu Ada Mirela

    2012-07-01

    Full Text Available The relevance of management as significant factor of business activity can be established on various management systems. These will help to obtain, organise, administrate, evaluate and control particulars: information, quality, environmental protection, health and safety, various resources (time, human, finance, inventory etc. The complexity of nowadays days development, forced us to think ‘integrated’. Sustainable development principles require that environment management policies and practices are not good in themselves but also integrate with all other environmental objectives, and with social and economic development objectives. The principles of sustainable development involve that environment management policies and practices. These are not sound in them-self but also integrate with all other environmental objectives, and with social and economic development objectives. Those objectives were realized, and followed by development of strategies to effects the objective of sustainable development. Environmental management should embrace recent change in the area of environmental protection, and suit the recently regulations of the field -entire legal and economic, as well as perform management systems to meet the requirements of the contemporary model for economic development. These changes are trailed by abandon the conventional approach of environmental protection and it is replaced by sustainable development (SD. The keys and the aims of Cleaner Productions (CP are presented being implemented in various companies as a non-formalised environmental management system (EMS. This concept is suggested here as a proper model for practice where possible environmental harmful technologies are used -e.g. Rosia Montana. Showing the features and the power of CP this paper is a signal oriented to involve the awareness of policy-makers and top management of diverse Romanian companies. Many companies in European countries are developing

  11. Laboratory Information Systems Management and Operations.

    Science.gov (United States)

    Cucoranu, Ioan C

    2015-06-01

    The main mission of a laboratory information system (LIS) is to manage workflow and deliver accurate results for clinical management. Successful selection and implementation of an anatomic pathology LIS is not complete unless it is complemented by specialized information technology support and maintenance. LIS is required to remain continuously operational with minimal or no downtime and the LIS team has to ensure that all operations are compliant with the mandated rules and regulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Environmental health research in Japan - management of environmental risks

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Masahisa [Lake Biwa Research Institute (Japan)

    1997-12-31

    Briefly discussed the topics on emerging environmental health risks, their assessment and management, with special emphasis on groundwater management , environmental contamination, source protection, new drinking water and ambient water quality standards; and sophistication in instrumentation in environmental quality measurements, hazards and risk assessment and control, technology development in environmental health risk management.

  13. Environmental health research in Japan - management of environmental risks

    International Nuclear Information System (INIS)

    Masahisa Nakamura

    1996-01-01

    Briefly discussed the topics on emerging environmental health risks, their assessment and management, with special emphasis on groundwater management , environmental contamination, source protection, new drinking water and ambient water quality standards; and sophistication in instrumentation in environmental quality measurements, hazards and risk assessment and control, technology development in environmental health risk management

  14. Building a Laboratory Information Management System Using Windows4GL

    Energy Technology Data Exchange (ETDEWEB)

    Pickens, M.A.; Shaieb, M.R.

    1996-05-01

    The system discussed is currently implemented at LLNL in the Environmental Services program which operates out of the Chemistry & Materials Science (C&MS) directorate. Responsibility is to provide the C&MS Environmental Services (CES) program with an enterprise-wide information system which will aid CES. The specific portion of the information system is the Sample Tracking, Analysis and Reporting System (STARS). Since CES was formed by merging two analytical laboratory organizations in May 1995, a new Laboratory Information Management System (LIMS) had to be developed. The development of a LIMS in Windows4GL was found to be satisfactory. The product STARS was well received by the user community, and it has improved business practices and efficiency in CES. The CES management staff has seen increased personnel productivity since STARS was release. We look forward to upgrading to CA-OpenROAD and taking advantage of its many improved and innovative features to further enhance STARS.

  15. Building a Laboratory Information Management System Using Windows4GL

    International Nuclear Information System (INIS)

    Pickens, M.A.; Shaieb, M.R.

    1996-05-01

    The system discussed is currently implemented at LLNL in the Environmental Services program which operates out of the Chemistry ampersand Materials Science (C ampersand MS) directorate. Responsibility is to provide the C ampersand MS Environmental Services (CES) program with an enterprise-wide information system which will aid CES. The specific portion of the information system is the Sample Tracking, Analysis and Reporting System (STARS). Since CES was formed by merging two analytical laboratory organizations in May 1995, a new Laboratory Information Management System (LIMS) had to be developed. The development of a LIMS in Windows4GL was found to be satisfactory. The product STARS was well received by the user community, and it has improved business practices and efficiency in CES. The CES management staff has seen increased personnel productivity since STARS was release. We look forward to upgrading to CA-OpenROAD and taking advantage of its many improved and innovative features to further enhance STARS

  16. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains the Final EIS/EIR, which in part relies on the detailed information in the appendices, and comprehensively discusses the proposed action, the alternatives, and the existing conditions and impacts of the proposed action and the alternatives

  17. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains copies of the written comments and transcripts of individual statements at the public hearing and the responses to them

  18. Final Environmental Impact Statement/Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains the Final EIS/EIR technical appendices which provide technical support for the analyses in Volume 1 and also provide additional information and references

  19. Oak Ridge National Laboratory Waste Management Plan. Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  20. The Environmental Compliance Office at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Cooper, S.C.

    1990-01-01

    The Idaho Operations Office of the U.S. Department of Energy (DOE-ID) has established an Environmental Compliance Office (ECO) at the Idaho National Engineering Laboratory (INEL). This office has been formed to ensure that INEL operations and activities are in compliance with all applicable environmental state and federal regulations. The ECO is headed by a DOE-ID manager and consists of several teams, each of which is led by a DOE-ID employee with members from DOE-ID, from INEL government contractors, and from DOE-ID consultants. The teams are (a) the negotiated compliance team, (b) the compliance implementation team (CIT), (c) the permits team, (d) the interagency agreement (IAG) team, (e) the consent order and compliance agreement (COCA) oversight team, and (f) the National Environmental Policy Act (NEPA) team. The last two teams were short term and have already completed their respective assignments. The functions of the teams and the results obtained by each are discussed

  1. Environmental Management Science Program Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    This program summary book is a compendium of project summaries submitted by principal investigators in the Environmental Management Science Program and Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program). These summaries provide information about the most recent project activities and accomplishments. All projects will be represented at the workshop poster sessions, so you will have an opportunity to meet with the researchers. The projects will be presented in the same order at the poster session as they are presented in this summary book. Detailed questions about an individual project may be directed to the investigators involved.

  2. Radiological protection and environmental management

    International Nuclear Information System (INIS)

    Perez Fonseca, A.

    2010-01-01

    From the beginning of its industrial activity twenty five years ago, the Juzbado Factory of Enusa Group has always upheld a strong commitment with Radiological Protection and environmental respect and protection. Consequently, the evolution of dose shows a downward trend over the years. Although production has been increased gradually, the average doses to workers have stayed below 1 mSv. In order to identify and prevent the potential environmental impacts of its industrial activity and minimize its impact on the surroundings, the facility develops and environmental management system according to UNE-EN-ISO 14001 since 1999. (Author)

  3. Environmental management in product chains

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Forman, Marianne; Hansen, Anne Grethe

    of environmental initiatives, a number of recommendations for governmental regulation, which can support the further diffusion of environmental management in product chains, are developed. Furthermore, the report describes a number of theoretical perspectives from sociology of technology, organisation theory......This report presents the analyses of the shaping, implementation and embedding of eight types of environmental initiatives in product chains. The analyses focus on • the role of the type of product and branch, of the size of the companies and of governmental regulation • the focus...... of the environmental concerns and the reductions in environmental impact • organisational changes which have been part of the embedding of the initiatives The analyses are based on 25 cases from national and international product chains involving one or more Danish companies. Based on the analyses of the eight types...

  4. Environmental Aspects of Load Management

    International Nuclear Information System (INIS)

    Abaravicius, Juozas

    2004-02-01

    This study approaches load management from an environmental perspective. It identifies and discusses the possible environmental benefits of load management and evaluates their significance, primary focusing on CO 2 emissions reduction. The analysis is carried out on two levels: national - the Swedish electricity market, and local - one electric utility in southern Sweden. Our results show the importance of considering the influence of site-specific or level-specific conditions on the environmental effects of load management. On the national level, load management measures can hardly provide significant environmental benefits, due to the high hydropower production in Sweden, which is the demand following production source. Emission reductions will rather be the result of energy efficiency measures, which will cut the load demand as well as the energy demand. However, when it comes to a local (utility) level, where load management is considered as an alternative to an installation of peak diesel power plant, the benefits are clear. It is demonstrated that significant CO 2 emissions savings can be achieved due to avoided peak diesel power production

  5. Sandia National Laboratories California Environmental Monitoring Program Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C.

    2007-03-01

    The annual program report provides detailed information about all aspects of the SNL/CA Environmental Monitoring Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2006 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/CA.

  6. Brookhaven National Laboratory, Upton, New York final environmental impact statement

    International Nuclear Information System (INIS)

    Liverman, J.L.

    1977-07-01

    Generally, data used for the statement were those which had been accumulated through the calendar year 1973. Since 1973, Environmental Monitoring Reports have been published for calendar years 1974 and 1975. A review of these more recent documents reveals that the data contained therein lead to no significant change in the conclusions drawn in this Environmental Impact Statement. Past Laboratory operations were considered only insofar as they contribute to continuing environmental impacts. Environmental effects were considered solely with respect to off-site consequences, the only exception being those cases where on-site effects have had or will have an impact on the long-term productivity of the Laboratory site

  7. Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico, Calendar year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Agogino, Karen [National Nuclear Security Administration (NNSA), Washington, DC (United States); Sanchez, Rebecca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2008-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor-operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2007. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).

  8. Calendar Year 2009 Annual Site Environmental Report for Sandia National Laboratories, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bailey-White, Brenda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bonaguidi, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Mendy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrd, Caroline [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cabble, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Castillo, Dave [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coplen, Amy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Curran, Kelsey [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Deola, Regina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Duran, Leroy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eckstein, Joanna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fitzgerald, Tanja [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); French, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerard, Morgan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzales, Linda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gorman, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jackson, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jarry, Jeff [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Adrian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lauffer, Franz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mauser, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayeux, Lucie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McCord, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oborny, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Perini, Robin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Puissant, Pamela [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reiser, Anita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roma, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Salinas, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Skelly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ullrich, Rebecca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wagner, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wrons, Ralph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2010-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation (LMC), manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Site O ffice (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2009. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1A, Environmental Protection Program (DOE 2008a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).

  9. Environmental monitoring for EG and G Idaho facilities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Tkachyk, J.W.; Wright, K.C.; Wilhelmsen, R.N.

    1990-08-01

    This report describes the 1989 environmental-monitoring activities of the Environmental Monitoring Unit of EG ampersand G Idaho, Inc., at EG ampersand G-operated facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Additional monitoring activities performed by Environmental Monitoring are also discussed, including drinking-water monitoring and nonradiological liquid-effluent monitoring, as well as data management. The primary purposes of monitoring are to evaluate environmental conditions and to provide and interpret data, in compliance with applicable regulations, to ensure protection of human health and the environment. This report compares 1989 environmental-monitoring data with derived concentration guides and with data from previous years. This report also presents results of sampling performed by the Radiological and Environmental Sciences Laboratory and by the United States Geological Survey. 17 refs., 49 figs., 11 tabs

  10. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    The US Department of Energy (DOE) and the Regents of the University of California (UC) propose the continued operation, including near-term proposed projects, of the Lawrence Livermore National Laboratory (LLNL). In addition, DOE proposes the continued operation, including near-term proposed projects, of Sandia National Laboratories, Livermore (SNL, Livermore). Continued operation plus proposed projects at the two Laboratories is needed so that the research and development missions established by Congress and the President can continue to be supported. As provided and encouraged by the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA), DOE and UC have prepared this document as a joint Environmental Impact Statement (EIS) and Environmental Impact Report (EIR) to analyze the impacts of the proposed action. In addition, this document discusses a no action alternative for continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative focused on specific adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative. This document also examines the alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. The environmental documentation process provides information to the public, government agencies, and decision makers about the environmental impacts of implementing the proposed and alternative actions. In addition, this environmental documentation identifies alternatives and possible ways to reduce or prevent environmental impacts. A list of the issues raised through the EIS/EIR scoping process is presented

  11. Integration of Environmental Restoration and Waste Management Activities for a More Cost-Effective Tank Remediation Program Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Brill, A.; Clark, R.; Stewart, R.

    1998-01-01

    This paper presents plans and strategies for remediation of the liquid low-level radioactive waste (LLLW) tanks that have been removed from service (also known as inactive tanks) at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. Much of the LLLW system at ORNL was installed more than 50 years ago. The overall objective of the Inactive Tank Program is to remediate all LLLW tanks that have been removed from service to the extent practicable in accordance with the regulatory requirements

  12. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1980

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1981-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data on air and water sampling and continuous radiation monitoring for 1980 are presented, and general trends are discussed

  13. Environmental Measurements Laboratory 2002 Unit Performance Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-10-01

    This EML Unit Performance Plan provides the key goals and performance measures for FY 2002 and continuing to FY 2003. The purpose of the Plan is to inform EML's stakeholders and customers of the Laboratory's products and services, and its accomplishments and future challenges. Also incorporated in the Unit Performance Plan is EML's Communication Plan for FY 2002.

  14. Design and management of hot-laboratories

    International Nuclear Information System (INIS)

    1976-09-01

    This document is a manual for the design and management of hot-laboratories. It is composed of three parts. The first part is devoted to the design of hot-laboratories. Items included here are; conceptual design; many regulations which must be considered at design stage; design of cave and its shielding; and the design of building, ventilation, and draining. Many examples of specific designs are presented by figures and photographs. The second part is concerned with the methods of operation management. Organizational structure, scheduling of operation, process management, and regulatory problems are discussed with some examples. Technological problems associated with the operation of a hot laboratory (e.g., manipulator, transfer machine, maintenance, and decontamination) are also discussed based on the authors' experiences. An example of the operation manual is presented for reference. The third part is devoted to the safety management and the training of personnel. The regulations by law are briefly explained. Most of this part is devoted to the problem of monitoring radio-activity. Monitoring of control areas, radio-active wastes, and personal dosage is discussed together with many other specific monitoring problems. As for training, the purpose and the present status are explained. (Aoki, K.)

  15. Laboratory cost control and financial management software.

    Science.gov (United States)

    Mayer, M

    1998-02-09

    Economical constraints within the health care system advocate the introduction of tighter control of costs in clinical laboratories. Detailed cost information forms the basis for cost control and financial management. Based on the cost information, proper decisions regarding priorities, procedure choices, personnel policies and investments can be made. This presentation outlines some principles of cost analysis, describes common limitations of cost analysis, and exemplifies use of software to achieve optimized cost control. One commercially available cost analysis software, LabCost, is described in some detail. In addition to provision of cost information, LabCost also serves as a general management tool for resource handling, accounting, inventory management and billing. The application of LabCost in the selection process of a new high throughput analyzer for a large clinical chemistry service is taken as an example for decisions that can be assisted by cost evaluation. It is concluded that laboratory management that wisely utilizes cost analysis to support the decision-making process will undoubtedly have a clear advantage over those laboratories that fail to employ cost considerations to guide their actions.

  16. Environmental surveillance program of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Thomas, R.H.

    1976-04-01

    The major radiological environmental impact of the Lawrence Berkeley Laboratory is due to the operation of four particle accelerators. Potential sources of population exposure at the Laboratory are discussed. The major source of population exposure due to accelerator operation arises from the prompt radiation field which consists principally of neutrons and photons. Release of small quantities of radionuclides is also a potential source of population exposure but is usually an order of magnitude less significant. Accelerator produced radiation levels at the Laboratory boundary are comparable with the magnitudes of the fluctuations found in the natural background radiation. Environmental monitoring of accelerator-produced radiation and of radionuclides is carried on throughout the Laboratory, at the Laboratory perimeter, and in the regions surrounding the Laboratory. The techniques used are described. The models used to calculate population exposure are described and discussed

  17. Environmental resource document for the Idaho National Engineering Laboratory. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  18. Environmental resource document for the Idaho National Engineering Laboratory. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  19. Waste oil management at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Oakes, T.W.; Bird, J.C.; Shank, K.E.; Kelley, B.A.; Harrison, L.L.; Clark, B.R.; Rogers, W.F.

    1980-01-01

    It is the policy of the Oak Ridge National Laboratory (ORNL) to require that oily substances be handled and disposed of in a manner that protects the environment and personnel from harm. Federal regulations prohibit the discharge of oil into navigable waters, with stiff penalties possible to violators. A strict waste oil management program has been developed and implemented because of the potential for oil problems resulting from the large and varied uses of oil at the Laboratory. Also, past records of improper discharges of oil have mandated immediate corrective actions. In order to resolve the problems of waste oil at the Laboratory, the ORNL Waste Oil Investigation Committee was formed on March 14, 1979. The work of the committee included a survey of every building and area of the Laboratory to locate the presence of oil and the pathways of oil discharges to the environment. The committee also provided a basis for the development of oil spill procedures and waste oil disposal. The Department of Environmental Management (DEM) of the Industrial Safety and Applied Health Physics Division at ORNL has the responsibility of developing environmental protection procedures for the handling and disposal of oil. It approves storage and collection facilities, disposal methods, and disposal sites for oil-containing wastes. The DEM has developed and implemented an ORNL Environmental Protection Procedure for oils and an oil spill prevention and countermeasure plan. In order to familiarize ORNL personnel with the problems and procedures of waste oil, the DEM has held seminars on the subject. This report reviews the findings of the Waste Oil Investigation Committee and the actions of the laboratory management and the DEM in dealing with the waste oil problem at ORNL

  20. Brookhaven National Laboratory environmental monitoring plan for Calendar Year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Paquette, D.; Lee, R. [and others

    1996-10-01

    As required by DOE Order 5400.1, each U.S. Department of Energy (DOE) site, facility, or activity that uses, generates, releases, or manages significant quantities of hazardous materials shall provide a written Environmental Monitoring Plan (EMP) covering effluent monitoring and environmental surveillance. DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, provides specific guidance regarding environmental monitoring activities.

  1. Brookhaven National Laboratory environmental monitoring plan for Calendar Year 1996

    International Nuclear Information System (INIS)

    Naidu, J.R.; Paquette, D.; Lee, R.

    1996-01-01

    As required by DOE Order 5400.1, each U.S. Department of Energy (DOE) site, facility, or activity that uses, generates, releases, or manages significant quantities of hazardous materials shall provide a written Environmental Monitoring Plan (EMP) covering effluent monitoring and environmental surveillance. DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, provides specific guidance regarding environmental monitoring activities

  2. Kinetics of Carbaryl Hydrolysis: An Undergraduate Environmental Chemistry Laboratory

    Science.gov (United States)

    Hawker, Darryl

    2015-01-01

    Kinetics is an important part of undergraduate environmental chemistry curricula and relevant laboratory exercises are helpful in assisting students to grasp concepts. Such exercises are also useful in general chemistry courses because students can see relevance to real-world issues. The laboratory exercise described here involves determination of…

  3. Tunnel Vision in Environmental Management.

    Science.gov (United States)

    Miller, Alan

    1982-01-01

    Discusses problem-solving styles in environmental management and the specific deficiencies in these styles that might be grouped under the label "tunnel vision," a form of selective attention contributing to inadequate problem-formulation, partial solutions to complex problems, and generation of additional problems. Includes educational…

  4. Interactions management in environmental policy

    NARCIS (Netherlands)

    Krozer, Yoram; Franco Garcia, Maria Maria; Micallef, David

    2013-01-01

    Purpose: The paper aims to address regulator-management interactions in environmental policy with reference to direct regulations, social regulations and market-based regulation. Design/methodology/approach: Revision of literature to identify the European Union regulations for companies producing

  5. DOE methods for evaluating environmental and waste management samples

    International Nuclear Information System (INIS)

    Goheen, S.C.; McCulloch, M.; Thomas, B.L.; Riley, R.G.; Sklarew, D.S.; Mong, G.M.; Fadeff, S.K.

    1993-03-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) provides applicable methods in use by. the US Department of Energy (DOE) laboratories for sampling and analyzing constituents of waste and environmental samples. The development of DOE Methods is supported by the Laboratory Management Division (LMD) of the DOE. This document contains chapters and methods that are proposed for use in evaluating components of DOE environmental and waste management samples. DOE Methods is a resource intended to support sampling and analytical activities that will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the US Environmental Protection Agency (EPA), or others

  6. DOE methods for evaluating environmental and waste management samples.

    Energy Technology Data Exchange (ETDEWEB)

    Goheen, S C; McCulloch, M; Thomas, B L; Riley, R G; Sklarew, D S; Mong, G M; Fadeff, S K [eds.; Pacific Northwest Lab., Richland, WA (United States)

    1994-04-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) provides applicable methods in use by. the US Department of Energy (DOE) laboratories for sampling and analyzing constituents of waste and environmental samples. The development of DOE Methods is supported by the Laboratory Management Division (LMD) of the DOE. This document contains chapters and methods that are proposed for use in evaluating components of DOE environmental and waste management samples. DOE Methods is a resource intended to support sampling and analytical activities that will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the US Environmental Protection Agency (EPA), or others.

  7. Laboratory information management system at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, W.; Barth, D.; Ibsen, T.; Newman, B.

    1994-03-01

    In January of 1994 an important new technology was brought on line to help in the monumental waste management and environmental restoration work at the Hanford Site. Cleanup at the Hanford Site depends on analytical chemistry information to identify contaminates, design and monitor cleanup processes, assure worker safety, evaluate progress, and prove completion. The new technology, a laboratory information management system (LIMS) called ``LABCORE,`` provides the latest systems to organize and communicate the analytical tasks: track work and samples; collect and process data, prepare reports, and store data in readily accessible electronic form.

  8. Laboratory information management system at the Hanford Site

    International Nuclear Information System (INIS)

    Leggett, W.; Barth, D.; Ibsen, T.; Newman, B.

    1994-03-01

    In January of 1994 an important new technology was brought on line to help in the monumental waste management and environmental restoration work at the Hanford Site. Cleanup at the Hanford Site depends on analytical chemistry information to identify contaminates, design and monitor cleanup processes, assure worker safety, evaluate progress, and prove completion. The new technology, a laboratory information management system (LIMS) called ''LABCORE,'' provides the latest systems to organize and communicate the analytical tasks: track work and samples; collect and process data, prepare reports, and store data in readily accessible electronic form

  9. Environmental management of business processes

    Directory of Open Access Journals (Sweden)

    Vesna Čančer

    2000-01-01

    Full Text Available Since the decision-makers in enterprises will accept the goals of environmental management only if they are motivated enough, comprehensible and useful tools should be generated to support environmentally oriented business decision-making. For that reason, a general optimisation model of the multiphase business process is presented in this paper. This model includes the possibilities for an integrated approach to environmental protection so that it can be applied as a scenario by the business process simulation for the evaluation of environmentally oriented business decisions on business performance. Furthermore, development and application possibilities of the presented model are introduced. Some measures of resource efficiency are developed using the presented optimisation model.

  10. Environmental management (Republic of Macedonia)

    International Nuclear Information System (INIS)

    1997-01-01

    A number of institutions are responsible for environmental monitoring, however, coordination between these agencies is poor. Also, not all parameters typically used to index pollution are measured due to lack of resources, unavailability of chemicals for analysis and obsolete equipment. The cause-effect relationship between health and pollution is not clearly known, except for a new urban areas. In order to create an efficient environmental management system, alterations of the present institutional structure are imperative. It is necessary to strengthen the Ministry of Urban Planning, Construction and Development as a short-term task to consider the need for establishing a separate Ministry of Environment in the long-term. The Ministry of Environment should be supported by an Environmental Institute, a modern inspection service and a department for staff training and international cooperation. The need to reinforce local units responsible for environmental enforcement is especially emphasized. (author)

  11. Conference on Environmental Data Management

    CERN Document Server

    Oppenheimer, Dorothy; Brogden, William; Environmental Data Management

    1976-01-01

    Throughout the world a staggering amount of resources have been used to obtain billions of environmental data points. Some, such as meteorological data, have been organized for weather map display where many thousands of data points are synthesized in one compressed map. Most environmental data, however, are still widely scattered and generally not used for a systems approach, but only for the purpose for which they were originally taken. These data are contained in relatively small computer programs, research files, government and industrial reports, etc. This Conference was called to bring together some of the world's leaders from research centers and government agencies, and others concerned with environmental data management. The purpose of the Conference was to organize discussion on the scope of world environmental data, its present form and documentation, and whether a systematic approach to a total system is feasible now or in the future. This same subject permeated indirectly the Stockholm Conference...

  12. The laboratory test utilization management toolbox.

    Science.gov (United States)

    Baird, Geoffrey

    2014-01-01

    Efficiently managing laboratory test utilization requires both ensuring adequate utilization of needed tests in some patients and discouraging superfluous tests in other patients. After the difficult clinical decision is made to define the patients that do and do not need a test, a wealth of interventions are available to the clinician and laboratorian to help guide appropriate utilization. These interventions are collectively referred to here as the utilization management toolbox. Experience has shown that some tools in the toolbox are weak and other are strong, and that tools are most effective when many are used simultaneously. While the outcomes of utilization management studies are not always as concrete as may be desired, what data is available in the literature indicate that strong utilization management interventions are safe and effective measures to improve patient health and reduce waste in an era of increasing financial pressure.

  13. Site management plan: Douglas Point Ecological Laboratory

    International Nuclear Information System (INIS)

    Jensen, B.L.; Miles, K.J.; Strass, P.K.; McDonald, B.

    1979-01-01

    A portion of the Douglas Point Site has been set aside for use as an ecological monitoring facility (DPEL). Plans call for it to provide for long-term scientific study and analysis of specific terrestrial and aquatic ecological systems representative of the coastal plain region of the mid-Atlantic United States. Discussion of the program is presented under the following section headings: goals and objectives; management and organization of DPEL; laboratory director; site manager; monitoring manager; research manager; and, organizational chart. The seven appendixes are entitled: detailed site description; supplemental land use plan; contract between Potomac Electric Power Company and Charles County Community Collge (CCCC); research and monitoring projects initiated at the Douglas Point Power Plant site; advisory committees; facilities and equipment; and CCCC personnel resumes

  14. Health, Safety and Environmental Risk Assessment in Laboratory Sites

    Directory of Open Access Journals (Sweden)

    2012-05-01

    Full Text Available Introduction: ”Exposing to danger” or in other words, “risk” is a process which is led to an uncertain result in every field. Project risks are uncertain contingent events or situations that if they occur will have positive or negative effects on project’s objectives. Todays, research and educational process and more complicated and the professional risk management become much more difficult, as a result. .Material and Method: In this research, the health and safety issues have been studied and analyzed using ISO 14121 and the environmental issues by EMEA to determine the risk level separately for research laboratories and to prioritize corrective measure in each field (school. .Result: The finding in this study showed that from all the main risks within the rage of 38-86 percent have been decreased. Moreover average of the risk level for the health, safety and environment cases showed a significant decrease (Pvalue<0.0001 by implement controlling and protective countermeasures compariy to the priority state without any measures. . Conclusion: The risk assessment with hazards control strategy based on ISO 14121 is a compatible method in laboratory site as universities and other reasearch sites.

  15. Overview of environmental research at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Harvey, R.S.

    1977-01-01

    Research in the environmental sciences by the Savannah River Laboratory (SRL) has the general objective of improving our understanding of transport through ecosystems and functional processes within ecosystems. With increased understanding, the basis for environmental assessments can be improved for releases from the Savannah River Plant or from the power industry of the southeastern United States

  16. Routine environmental audit of Ames Laboratory, Ames, Iowa

    International Nuclear Information System (INIS)

    1994-09-01

    This document contains the findings identified during the routine environmental audit of Ames Laboratory, Ames, Iowa, conducted September 12--23, 1994. The audit included a review of all Ames Laboratory operations and facilities supporting DOE-sponsored activities. The audit's objective is to advise the Secretary of Energy, through the Assistant Secretary for Environment, Safety and Health, as to the adequacy of the environmental protection programs established at Ames Laboratory to ensure the protection of the environment, and compliance with Federal, state, and DOE requirements

  17. Environmental management the supply chain perspective

    CERN Document Server

    Wong, Christina W Y; Lun, Y H Venus; Cheng, T C E

    2015-01-01

    In view of the increasing quest for environmental management in businesses, this book provides a good reference to firms to understand how they may manage their supply chains to improve business and environmental performance. The book consists of six chapters covering such topics as environmental management, environmental management practices with supply chain efforts, collaborative environmental management, organizational capabilities in environmental management, environmental disclosure, and closed-loop supply chains. The book presents theory-driven discussions on the link between environmental management and business performance in the context of supply chain management. The book will be useful for firms to learn from the research findings and real-life cases to develop plans to implement environmental management practices jointly with supply chain partners.

  18. Brookhaven National Laboratory site environmental report for calendar year 1990

    Energy Technology Data Exchange (ETDEWEB)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1992-01-01

    Brookhaven National Laboratory (BNL) carries out basic and applied research in the following fields: high-energy nuclear and solid state physics; fundamental material and structure properties and the interactions of matter; nuclear medicine, biomedical and environmental sciences; and selected energy technologies. In conducting these research activities, it is Laboratory policy to protect the health and safety of employees and the public, and to minimize the impact of BNL operations on the environment. This document is the BNL environmental report for the calendar year 1990 for the safety and Environmental Protection division and corners topics on effluents, surveillance, regulations, assessments, and compliance.

  19. Brookhaven National Laboratory site environmental report for calendar year 1990

    International Nuclear Information System (INIS)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1992-01-01

    Brookhaven National Laboratory (BNL) carries out basic and applied research in the following fields: high-energy nuclear and solid state physics; fundamental material and structure properties and the interactions of matter; nuclear medicine, biomedical and environmental sciences; and selected energy technologies. In conducting these research activities, it is Laboratory policy to protect the health and safety of employees and the public, and to minimize the impact of BNL operations on the environment. This document is the BNL environmental report for the calendar year 1990 for the safety and Environmental Protection division and corners topics on effluents, surveillance, regulations, assessments, and compliance

  20. Quality assurance guidance for laboratory assessment plates in support of EM environmental sampling and analysis activities

    International Nuclear Information System (INIS)

    1994-05-01

    This document is one of several guidance documents developed to support the EM (DOE Environmental Restoration and Waste Management) Analytical Services program. Its purpose is to introduce assessment plates that can be used to conduct performance assessments of an organization's or project's ability to meet quality goals for analytical laboratory activities. These assessment plates are provided as non-prescriptive guidance to EM-support organizations responsible for collection of environmental data for remediation and waste management programs at DOE facilities. The assessments evaluate objectively all components of the analytical laboratory process to determine their proper selection and use

  1. 2016 Annual Site Environmental Report Sandia National Laboratories/New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Angela Maria [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffith, Stacy R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Sandia National Laboratories (SNL) is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s (DOE’s), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at SNL, New Mexico. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of sustainability, environmental protection, and monitoring programs at SNL/NM during calendar year 2016. Major environmental programs include air quality, water quality, groundwater protection, terrestrial and ecological surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. This ASER is prepared in accordance with and required by DOE O 231.1B, Admin Change 1, Environment, Safety, and Health Reporting.

  2. Calendar Year 2013 Annual Site Environmental Report for Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Stacy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Sandia National Laboratories, New Mexico is a government-owned/contractor-operated facility. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s sustainability, environmental protection, and monitoring programs through December 31, 2013. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).

  3. Calendar Year 2013 Annual Site Environmental Report for Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Griffith, Stacy

    2014-01-01

    Sandia National Laboratories, New Mexico is a government-owned/contractor-operated facility. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation's sustainability, environmental protection, and monitoring programs through December 31, 2013. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).

  4. The radioactive waste management at IAEA laboratories

    International Nuclear Information System (INIS)

    Deron, S.; Ouvrard, R.; Hartmann, R.; Klose, H.

    1992-10-01

    The report gives a brief description of the nature of the radioactive wastes generated at the IAEA Laboratories in Seibersdorf, their origin and composition, their management and monitoring. The management of the radioactive waste produced at IAEA Laboratories in Seibersdorf is governed by the Technical Agreements of 1985 between the IAEA and the Austrian Health Ministry. In the period of 1982 to 1991 waste containers of low activity and radiotoxicity generated at laboratories other than the Safeguards Analytical Laboratory (SAL) were transferred to the FZS waste treatment and storage plant: The total activity contained in these drums amounted to < 65 MBq alpha activity; < 1030 MBq beta activity; < 2900 MBq gamma activity. The radioactive waste generated at SAL and transferred to the FZs during the same period included. Uranium contaminated solid burnable waste in 200 1 drums, uranium contaminated solid unburnable waste in 200 1 drums, uranium contaminated liquid unburnable waste in 30 1 bottles, plutonium contaminated solid unburnable waste in 200 1 drums. In the same period SAL received a total of 146 Kg uranium and 812 g plutonium and exported out of Austria, unused residues of samples. The balance, i.e.: uranium 39 kg, plutonium 133 g constitutes the increase of the inventory of reference materials, and unused residues awaiting export, accumulated at SAL and SIL fissile store as a result of SAL operation during this 10 year period. The IAEA reexports all unused residues of samples of radioactive and fissile materials analyzed at his laboratories, so that the amount of radioactive materials ending in the wastes treated and stored at FZS is kept to a minimum. 5 refs, 7 figs, 3 tabs

  5. IPEP: Laboratory performance evaluation reports for management of DOE EM programs

    International Nuclear Information System (INIS)

    Hensley, J.E.; Lindahl, P.C.; Streets, W.E.

    1995-01-01

    Environmental restoration program/project managers at DOE's Office of Environmental Management (EM) are making important decisions based on analytical data generated by contracted laboratories. The Analytical Services Division, EM-263, is developing the Integrated Performance Evaluation Program (IPEP) to assess the performance of those laboratories, based on results from Performance Evaluation (PE) programs. The IPEP reports will be used by the laboratories to foster self-assessment and improvement. In addition, IPEP will produce PE reports for three levels of EM management (Operations/Project Offices, Area Program Offices, and Deputy Assistant Secretary Office). These reports will be used to assess whether contracted analytical laboratories have the capability to produce environmental data of the quality necessary for making environmental restoration and waste management decisions

  6. Environmental management as situated practice

    DEFF Research Database (Denmark)

    Lippert, Ingmar; Krause, Franz; Hartmann, Niklas Klaus

    2015-01-01

    We propose an analysis of environmental management (EM) as work and as practical activity. This approach enables empirical studies of the diverse ways in which professionals, scientists, NGO staffers, and activists achieve the partial manageability of specific “environments”. In this introduction......, we sketch the debates in Human Geography, Management Studies, and Science and Technology Studies to which this special issue contributes. We identify the limits of understanding EM though the framework of ecological modernisation, and show how political ecology and work-place studies provide...... to be assessed, or as simply the implementation of dominant projects and the materialisation of hegemonic discourse. Such a shift renders EM as always messy practices of engagement, critique and improvisation. We conclude that studying the distributed and situated managing agencies, actors and their practices...

  7. ISO 14000 : environmental management systems

    International Nuclear Information System (INIS)

    Boutin, C.; Emard, C.; Lalonde, G.; Levesque, A.; Robitaille, R.; Rollin, A.L.; Thibeault, I.

    1996-01-01

    This book is addressed to the managers, professionals, and government agents which wish to know the philosophy of the step as well as the stages to be followed for the establishment of a system of environmental management in conformity with the standards of the series ISO 14000. This work locates ISO 14000 in the historical context of its development by describing the bonds with other standards in place of which those of the series ISO 9000. This book answers questions that arise regarding a companies step toward accreditation to ISO 14000

  8. Environmental protection and management guidebook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-15

    In British Columbia, oil and gas activities on private or Crown land are subject to regulations in terms of environmental practices. This environmental protection and management guidebook seeks to provide information on the Oil and Gas Activities Act. All sections from the regulation: water, riparian values, wildlife and wildlife habitat, conserving soil, forest health, invasive plants, natural range barriers, seismic lines, areas to be restored and old growth management areas, resource features and cultural heritage resources, are covered in this document. The minimum acceptable operational standards and practices for oil and gas activities in British Columbia are described. This guide is intended to provide clients and stakeholders with recommendations concerning the planning phase, before any permits are applied for, and concerning permissions or authorizations generally for oil and gas activities in British Columbia.

  9. The Idaho National Engineering and Environmental Laboratory Source Water Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sehlke, G.

    2003-03-17

    The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 square miles and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL's drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey's Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency's Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a this vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL's Source Water Assessment. Of the INEEL's 12 public water systems, three systems rated as low susceptibility (EBR-1, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead

  10. Idaho National Laboratory Comprehensive Land Use and Environmental Stewardship Report

    Energy Technology Data Exchange (ETDEWEB)

    No name listed on publication

    2011-08-01

    Land and facility use planning and decisions at the Idaho National Laboratory (INL) Site are guided by a comprehensive site planning process in accordance with Department of Energy Policy 430.1, 'Land and Facility Use Policy,' that integrates mission, economic, ecologic, social, and cultural factors. The INL Ten-Year Site Plan, prepared in accordance with Department of Energy Order 430.1B, 'Real Property Asset Management,' outlines the vision and strategy to transform INL to deliver world-leading capabilities that will enable the Department of Energy to accomplish its mission. Land use planning is the overarching function within real property asset management that integrates the other functions of acquisition, recapitalization, maintenance, disposition, real property utilization, and long-term stewardship into a coordinated effort to ensure current and future mission needs are met. All land and facility use projects planned at the INL Site are considered through a formal planning process that supports the Ten-Year Site Plan. This Comprehensive Land Use and Environmental Stewardship Report describes that process. The land use planning process identifies the current condition of existing land and facility assets and the scope of constraints across INL and in the surrounding region. Current land use conditions are included in the Comprehensive Land Use and Environmental Stewardship Report and facility assets and scope of constraints are discussed in the Ten-Year Site Plan. This report also presents the past, present, and future uses of land at the INL Site that are considered during the planning process, as well as outlining the future of the INL Site for the 10, 30, and 100-year timeframes.

  11. Motivations for Proactive Environmental Management

    OpenAIRE

    Khanna, Madhu; Speir, Cameron

    2013-01-01

    This paper examines the extent to which there are differential incentives that motivate the adoption of environmental management practices (EMPs) and pollution prevention (P2) methods. We analyze the role of internal drivers such as managerial attitudes towards the environment and external pressures using both observed characteristics of facilities and perceived pressures. We estimate a structural equation model using survey data from facilities in Oregon that involves simultaneous estimation...

  12. Sandia National Laboratories California Waste Management Program Annual Report April 2011

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-04-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  13. Sandia National Laboratories, California Waste Management Program annual report : February 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System rogram Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  14. Hanford Site environmental management specification

    International Nuclear Information System (INIS)

    Grygiel, M.L.

    1998-01-01

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL's application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents

  15. Hanford Site environmental management specification

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.

    1998-06-10

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL`s application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents.

  16. Environmental Land Management in Tajikistan

    Science.gov (United States)

    Makhmudov, Zafar; Ergashev, Murod

    2015-04-01

    Tackling Environmental Land Management in Tajikistan "Project approach" Khayrullo Ibodzoda, Zafar Mahmoudov, Murod Ergashev, Kamoliddin Abdulloev Among 28 countries in Europe and Central Asia, Tajikistan is estimated to be the most vulnerable to the climate change impacts depending on its high exposure and sensitivity combined with a very low adaptive capacity. The agricultural sector of Tajikistan is subject to lower and more erratic rainfalls, as well as dryness of water resources due to the possible temperature rising in the region, high evaporation, reducing the accumulation of snow in the mountain glaciers and increased frequency of extreme events. Climate change and variability are likely to pose certain risks, especially for those who prefer natural agriculture or pasture management that just reinforces the need for sound, adapted to new climatic conditions and improved principles of land management. Adoption of new strategies and best practices on sustainable land and water management for agricultural ecosystems will help the farmers and communities in addressing the abovementioned problems, adapt and become more resilient to changing climate by increasing wellbeing of local population, and contributing to food security and restoring productive natural resources. The Environmental Land Management and Rural Livelihoods Project is being financed by the Pilot Program for Climate Resilience (PPCR) and Global Environment Facility (GEF). The Project goal is to enable the rural population to increase their productive assets by improving management of natural resources and building resilience to climate change in selected climate vulnerable sites. The project will facilitate introduction of innovative measures on land use and agricultural production by providing small grants at the village level and grants for the Pasture User Groups (PUGs) at jamoat level in order to implement joint plans of pasture management and wellbred livestock, also for the Water User

  17. Radioactive wastes management in a radiochemistry laboratory

    International Nuclear Information System (INIS)

    Silva, Ana C.A.; Pereira, Wagner de S; Py Junior, Delcy de A.; Antunes, Ivan M.; Kelecom, Alphonse

    2009-01-01

    The Laboratorio de Monitoracao Ambiental (AMB) of the Unidade de Tratamento de Minerio (UTM) belonging to the Industrias Nucleares do Brasil is a chemical, radiochemical and radiometric laboratory, that analyses the natural radionuclides present in samples coming from the various installation of Industrias Nucleares do Brasil (INB). To minimize the radiological environmental impact, that laboratory has adopted a washing system of the chapel exhausting, that recirculate the washing water. These water can accumulate the radionuclides coming from the samples, that are liberated together the exhaustion gases from the chapels. Also, the water coming from the analyses and the sample releases (environmental and of the process) represent the liquid effluents of the AMB. The release of this effluent must pass by chemical and radiological criteria. From the radiological viewpoint, that release must be based on the Brazilian Nuclear Energy Commission (CNEN) regulations. This work try to establish the monitoring frequency, the radionuclides to be analysed, the form of liberation of those effluents, and the analytical techniques to be used. The radionuclides to be analysed will be U-nat, Ra-226 and Pb-210, of the uranium series, and the Th-232 and Ra-228, of the thorium series. The effluents must be monitored either before the release or, at least, twice a year. The effluents considered radioactive wastes, will be send to waste dam by the radioprotection service, or to the effluent treatment for controlled liberation for the environment

  18. Environmental Assessment for the vacuum process laboratory (VPL) relocation at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-04-01

    This Environmental Assessment (EA) evaluates the potential environmental impacts of relocating a vacuum process laboratory (VPL) from Building 321 to Building 2231 at Lawrence Livermore National Laboratory (LLNL). The VPL provides the latest technology in the field of vacuum deposition of coatings onto various substrates for several weapons-related and energy-related programs at LLNL. Operations within the VPL at LLNL will not be expanded nor reduced by the relocation. No significant environmental impacts are expected as a result of the relocation of the VPL

  19. Biosecurity management recommendations for rinderpest laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Benjamin H [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Caskey, Susan Adele [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Arndt, William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Rinderpest is a virus that can affect cattle and other even toes ungulates; evidence of outbreaks from over 10,000 years ago highlights the potential impact of this virus. During the 18th century, Rinderpest caused huge losses in cattle throughout Europe. Starting in the mid 1900’s vaccination efforts seemed feasible and work was initiated to vaccinate large populations of cattle. Walter Plowright received numerous awards for updating the Rinderpest vaccine which many believed would be the key to eradication. Vaccination of the disease lead to a massive drop in outbreaks and the last confirmed case of Rinderpest in Asia was in 2000 and in Africa in 2001.1 At this point, Rinderpest has been declared eradicated from nature. However, stocks of the virus are still in many laboratories.2 Rinderpest was investigated as a biological weapon agent during the Second World War. However, following WWII, rinderpest was not considered a high risk as a biological weapon as there was no direct military advantage. Now, with the concern of the use of biological agents as weapons in acts of terrorism, concern regarding rinderpest has resurfaced. Since the eradication of this virus, cattle populations are highly susceptibility to the virus and the economic impacts would be significant. This paper will discuss the specific nature of the terrorism risks associated with rinderpest; and based upon those risks provide recommendations regarding biosecurity management. The biosecurity management measures will be defined in a manner to align with the CWA 15793: the laboratory biorisk management document.

  20. 1998 Environmental Management Science Program Annual Report

    International Nuclear Information System (INIS)

    1999-01-01

    The Environmental Management Science Program (EMSP) is a collaborative partnership between the DOE Office of Environmental Management (EM), Office of Science (DOE-SC), and the Idaho Operations Office (DOE-ID) to sponsor basic environmental and waste management related research. Results are expected to lead to reduction of the costs, schedule, and risks associated with cleaning up the nation's nuclear complex. The EMSP research portfolio addresses the most challenging technical problems of the EM program related to high level waste, spent nuclear fuel, mixed waste, nuclear materials, remedial action, decontamination and decommissioning, and health, ecology, or risk. The EMSP was established in response to a mandate from Congress in the fiscal year 1996 Energy and Water Development Appropriations Act. Congress directed the Department to ''provide sufficient attention and resources to longer-term basic science research which needs to be done to ultimately reduce cleanup costs, develop a program that takes advantage of laboratory and university expertise, and seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective''. This mandate followed similar recommendations from the Galvin Commission to the Secretary of Energy Advisory Board. The EMSP also responds to needs identified by National Academy of Sciences experts, regulators, citizen advisory groups, and other stakeholders

  1. Environmental analytical laboratory setup operation and QA/QC

    International Nuclear Information System (INIS)

    Hsu, J.P.; Boyd, J.A.; DeViney, S.

    1991-01-01

    Environmental analysis requires precise and timely measurements. The required precise measurement is ensured with quality control and timeliness through an efficient operation. The efficiency of the operation also ensures cost-competitiveness. Environmental analysis plays a very important role in the environmental protection program. Due to the possible litigation involvement, most environmental analyses follow stringent criteria, such as the U.S. EPA Contract Laboratory Program procedures with analytical results documented in an orderly manner. The documentation demonstrates that all quality control steps are followed and facilitates data evaluation to determine the quality and usefulness of the data. Furthermore, the tedious documents concerning sample checking, chain-of-custody, standard or surrogate preparation, daily refrigerator and oven temperature monitoring, analytical and extraction logbooks, standard operation procedures, etc., also are an important part of the laboratory documentation. Quality control for environmental analysis is becoming more stringent, required documentation is becoming more detailed and turnaround time is shorter. However, the business is becoming more cost-competitive and it appears that this trend will continue. In this paper, we discuss what should be done to deal this high quality, fast-paced and tedious environmental analysis process at a competitive cost. The success of environmental analysis is people. The knowledge and experience of the staff are the key to a successful environmental analysis program. In order to be successful in this new area, the ability to develop new methods is crucial. In addition, the laboratory information system, laboratory automation and quality assurance/quality control (QA/QC) are major factors for laboratory success. This paper concentrates on these areas

  2. SNL/CA Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004. Elements of the ISO standard overlap with those of Department of Energy (DOE) Order 450.1, thus SNL/CA's EMS program also meets the DOE requirements.

  3. Hanford Environmental Information System Configuration Management Plan

    International Nuclear Information System (INIS)

    1996-06-01

    The Hanford Environmental Information System (HEIS) Configuration Management Plan establishes the software and data configuration control requirements for the HEIS and project-related databases maintained within the Environmental Restoration Contractor's data management department

  4. Assessment of the implementation of environmental management ...

    African Journals Online (AJOL)

    Assessment of the implementation of environmental management system in the construction ... Journal of Fundamental and Applied Sciences ... The Environmental Management System (EMS) illustrates a possible solution to reduce the ...

  5. Ethiopian Journal of Environmental Studies and Management ...

    African Journals Online (AJOL)

    Ethiopian Journal of Environmental Studies and Management: About this journal. Journal Home > Ethiopian Journal of Environmental Studies and Management: About this journal. Log in or Register to get access to full text downloads.

  6. Ames Laboratory annual site environmental report, calendar year 1996

    International Nuclear Information System (INIS)

    1998-04-01

    This report summarizes the environmental status of Ames Laboratory for calendar year 1996. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring programs. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies twelve buildings owned by the Department of Energy (DOE). The Laboratory also leases space in ISU owned buildings. Laboratory activities involve less than ten percent of the total chemical use and approximately one percent of the radioisotope use on the ISU campus. In 1996, the Office of Assurance and Assessment merged with the Environment, Safety and Health Group forming the Environment, Safety, Health and Assurance (ESH and A) office. In 1996, the Laboratory accumulated and disposed of wastes under US Environmental Protection Agency (EPA) issued generator numbers. Ames Laboratory submitted a Proposed Site Treatment Plan to EPA in December 1995. This plan complied with the Federal Facilities Compliance Act (FFCA). It was approved by EPA in January 1996. The consent agreement/consent order was issued in February 1996. Pollution awareness, waste minimization and recycling programs, implemented in 1990 and updated in 1994, continued through 1996. Included in these efforts were a waste white paper and green computer paper recycling program. Ames Laboratory also continued to recycle salvageable metal and used oil, and it recovered freon for recycling. All of the chemical and nearly all of the radiological legacy wastes were properly disposed by the end of 1996. Additional radiological legacy waste will be properly disposed during 1997

  7. Implementing an integrated standards-based management system to ensure compliance at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Hjeresen, D.; Roybal, S.; Bertino, P.; Gherman, C.; Hosteny, B.

    1995-01-01

    Los Alamos National Laboratory (LANL or the Laboratory) is developing and implementing a comprehensive, Integrated Standards-Based Management System (ISBMS) to enhance environmental, safety, and health (ESH) compliance efforts and streamline management of ESH throughout the Laboratory. The Laboratory recognizes that to be competitive in today's business environment and attractive to potential Partnerships, Laboratory operations must be efficient and cost-effective. The Laboratory also realizes potential growth opportunities for developing ESH as a strength in providing new or improved services to its customers. Overall, the Laboratory desires to establish and build upon an ESH management system which ensures continuous improvement in protecting public health and safety and the environment and which fosters a working relationship with stakeholders. A team of process experts from the LANL Environmental Management (EM) Program Office, worked with management system consultants, and the Department of Energy (DOE) to develop an ESH management systems process to compare current LANL ESH management Systems and programs against leading industry standards. The process enabled the Laboratory to gauge its performance in each of the following areas: Planning and Policy Setting; Systems and Procedures; Implementation and Education; and Monitoring and Reporting. The information gathered on ESH management systems enabled LANL to pinpoint and prioritize opportunities for improvement in the provision of ESH services throughout the Laboratory and ultimately overall ESH compliance

  8. Analysis of DOE international environmental management activities

    Energy Technology Data Exchange (ETDEWEB)

    Ragaini, R.C.

    1995-09-01

    The Department of Energy`s (DOE) Strategic Plan (April 1994) states that DOE`s long-term vision includes world leadership in environmental restoration and waste management activities. The activities of the DOE Office of Environmental Management (EM) can play a key role in DOE`s goals of maintaining U.S. global competitiveness and ensuring the continuation of a world class science and technology community. DOE`s interest in attaining these goals stems partly from its participation in organizations like the Trade Policy Coordinating Committee (TPCC), with its National Environmental Export Promotion Strategy, which seeks to strengthen U.S. competitiveness and the building of public-private partnerships as part of U.S. industrial policy. The International Interactions Field Office task will build a communication network which will facilitate the efficient and effective communication between DOE Headquarters, Field Offices, and contractors. Under this network, Headquarters will provide the Field Offices with information on the Administration`s policies and activities (such as the DOE Strategic Plan), interagency activities, as well as relevant information from other field offices. Lawrence Livermore National Laboratory (LLNL) will, in turn, provide Headquarters with information on various international activities which, when appropriate, will be included in reports to groups like the TPCC and the EM Focus Areas. This task provides for the collection, review, and analysis of information on the more significant international environmental restoration and waste management initiatives and activities which have been used or are being considered at LLNL. Information gathering will focus on efforts and accomplishments in meeting the challenges of providing timely and cost effective cleanup of its environmentally damaged sites and facilities, especially through international technical exchanges and/or the implementation of foreign-development technologies.

  9. Environmental Safety and Health Analytical Laboratory, Pantex Plant, Amarillo, Texas. Final Environmental Assessment

    International Nuclear Information System (INIS)

    1995-06-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) of the construction and operation of an Environmental Safety and Health (ES ampersand H) Analytical Laboratory and subsequent demolition of the existing Analytical Chemistry Laboratory building at Pantex Plant near Amarillo, Texas. In accordance with the Council on Environmental Quality requirements contained in 40 CFR 1500--1508.9, the Environmental Assessment examined the environmental impacts of the Proposed Action and discussed potential alternatives. Based on the analysis of impacts in the EA, conducting the proposed action, construction of an analytical laboratory and demolition of the existing facility, would not significantly effect the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA) and the Council on Environmental Quality regulations in 40 CFR 1508.18 and 1508.27

  10. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs

  11. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E. (ed.)

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs.

  12. Implementation of ISO 17025 in the Eletronuclear Environmental Monitoring Laboratory

    International Nuclear Information System (INIS)

    Baliza, Ana Rosa; Caetano, Carla de Brito

    2017-01-01

    In order to grant Angra 3 power plant operation license, the Brazilian Institute for the Environment and Renewable Natural Resources (IBAMA), in the IBAMA Installation License 591/2009 condition 2.24, required that Eletronuclear has to obtain the Environmental Monitoring Laboratory accreditation, in accordance with the requirements of NBR ISO / IEC 17025 standard. The accreditation is the formal recognition that a laboratory has a quality assurance system and technical competence to perform specific tests, evaluated according to the criteria based on NBR ISO/IEC 17025 (General requirements for testing and calibration laboratories competence) standard. In Brazil, the General Accreditation Coordination (CGCRE), according to the guidelines already explained by the Brazilian System of Conformity Assessment (INMETRO), does accreditation. The INMETRO is the only official accrediting body in Brazil and internationally recognized by the International Accreditation Forum (IAF). The Environmental Monitoring Laboratory at Eletronuclear is an analytical laboratory of chemical, radiochemical and biological tests, which analyzes several matrices, such as seawater, river water, marine sediment, beach sand, soil, pasture, banana, milk, besides marine sea life, around the Central Almirante Álvaro Alberto power plant station. It is licensed by CNEN, INEA, IBAMA and it follows national and international standards in the performance of the tests as well as in the collection and preparation of samples. This article describes the main steps that the Eletronuclear Environmental Monitoring Laboratory followed to implement ISO 17025. (author)

  13. Implementation of ISO 17025 in the Eletronuclear Environmental Monitoring Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Baliza, Ana Rosa; Caetano, Carla de Brito, E-mail: baliza@eletronuclear.gov.br [Eletrobrás Termonuclear S.A. (ELETRONUCLEAR), Angra dos Reis, RJ (Brazil)

    2017-07-01

    In order to grant Angra 3 power plant operation license, the Brazilian Institute for the Environment and Renewable Natural Resources (IBAMA), in the IBAMA Installation License 591/2009 condition 2.24, required that Eletronuclear has to obtain the Environmental Monitoring Laboratory accreditation, in accordance with the requirements of NBR ISO / IEC 17025 standard. The accreditation is the formal recognition that a laboratory has a quality assurance system and technical competence to perform specific tests, evaluated according to the criteria based on NBR ISO/IEC 17025 (General requirements for testing and calibration laboratories competence) standard. In Brazil, the General Accreditation Coordination (CGCRE), according to the guidelines already explained by the Brazilian System of Conformity Assessment (INMETRO), does accreditation. The INMETRO is the only official accrediting body in Brazil and internationally recognized by the International Accreditation Forum (IAF). The Environmental Monitoring Laboratory at Eletronuclear is an analytical laboratory of chemical, radiochemical and biological tests, which analyzes several matrices, such as seawater, river water, marine sediment, beach sand, soil, pasture, banana, milk, besides marine sea life, around the Central Almirante Álvaro Alberto power plant station. It is licensed by CNEN, INEA, IBAMA and it follows national and international standards in the performance of the tests as well as in the collection and preparation of samples. This article describes the main steps that the Eletronuclear Environmental Monitoring Laboratory followed to implement ISO 17025. (author)

  14. Sandia National Laboratories, California Chemical Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2012-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Chemical Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Chemical Management Program, one of six programs that supports environmental management at SNL/CA. SNL/CA is responsible for tracking chemicals (chemical and biological materials), providing Material Safety Data Sheets (MSDS) and for regulatory compliance reporting according to a variety of chemical regulations. The principal regulations for chemical tracking are the Emergency Planning Community Right-to-Know Act (EPCRA) and the California Right-to-Know regulations. The regulations, the Hazard Communication/Lab Standard of the Occupational Safety and Health Administration (OSHA) are also key to the CM Program. The CM Program is also responsible for supporting chemical safety and information requirements for a variety of Integrated Enabling Services (IMS) programs primarily the Industrial Hygiene, Waste Management, Fire Protection, Air Quality, Emergency Management, Environmental Monitoring and Pollution Prevention programs. The principal program tool is the Chemical Information System (CIS). The system contains two key elements: the MSDS library and the chemical container-tracking database that is readily accessible to all Members of the Sandia Workforce. The primary goal of the CM Program is to ensure safe and effective chemical management at Sandia/CA. This is done by efficiently collecting and managing chemical information for our customers who include Line, regulators, DOE and ES and H programs to ensure compliance with regulations and to streamline customer business processes that require chemical information.

  15. 75 FR 51026 - Environmental Management Advisory Board

    Science.gov (United States)

    2010-08-18

    ... DEPARTMENT OF ENERGY Environmental Management Advisory Board AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Environmental Management Advisory... EMAB is to provide the Assistant Secretary for Environmental Management (EM) with advice and...

  16. Sandia National Laboratories, California proposed CREATE facility environmental baseline survey.

    Energy Technology Data Exchange (ETDEWEB)

    Catechis, Christopher Spyros

    2013-10-01

    Sandia National Laboratories, Environmental Programs completed an environmental baseline survey (EBS) of 12.6 acres located at Sandia National Laboratories/California (SNL/CA) in support of the proposed Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) Facility. The survey area is comprised of several parcels of land within SNL/CA, County of Alameda, California. The survey area is located within T 3S, R 2E, Section 13. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

  17. Environmental Management 1995: Progress and plans of the Environmental Management Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    Environmental Management 1995 is the second report prepared in response to the requirements of the National Defense Authorization Act for Fiscal Year l994. The first report, Environmental Management 1994, was published in February 1994. This report is intended to provide a broad overview of the Environmental Management program`s activities in 1994, 1995, and 1996. The first section of this report describes the Department of Energy`s Environmental Management program. This is followed by a closer look at what the program is doing across the country, organized by region to help the reader identify and locate sites of interest. Within each region, details of the largest sites are followed by site summaries reported by State and a summary of activities under the Formerly Utilized Sites Remedial Action Program (FUSRAP) and Uranium Mill Tailings Remedial Action Project (UMTRA). For the purposes of this report, a ``site`` is a Department of Energy installation; a ``facility`` is a building located on a Department of Energy site; and an ``area`` is a geographical area, operable unit, or waste area group of unspecified dimension within a site. Throughout this report, ``year`` refers to the Federal Government`s Fiscal Year, which begins on October 1. For example, Fiscal Year 1995 began on October 1, 1994 and will end on September 30, 1995. Budget totals for Hanford include the Hanford Site and Richland Operations Office. The Idaho National Engineering Laboratory includes the Idaho Chemical Processing Plant and the Idaho Operations Office. The Oak Ridge Reservation budget includes Oak Ridge National Laboratory, the Y-12 Plant, the K-25 Site, Oak Ridge Associated Laboratories, the Oak Ridge Operations Office, and funding for the FUSRAP program.

  18. Environmental Management 1995: Progress and plans of the Environmental Management Program

    International Nuclear Information System (INIS)

    1995-02-01

    Environmental Management 1995 is the second report prepared in response to the requirements of the National Defense Authorization Act for Fiscal Year l994. The first report, Environmental Management 1994, was published in February 1994. This report is intended to provide a broad overview of the Environmental Management program's activities in 1994, 1995, and 1996. The first section of this report describes the Department of Energy's Environmental Management program. This is followed by a closer look at what the program is doing across the country, organized by region to help the reader identify and locate sites of interest. Within each region, details of the largest sites are followed by site summaries reported by State and a summary of activities under the Formerly Utilized Sites Remedial Action Program (FUSRAP) and Uranium Mill Tailings Remedial Action Project (UMTRA). For the purposes of this report, a ''site'' is a Department of Energy installation; a ''facility'' is a building located on a Department of Energy site; and an ''area'' is a geographical area, operable unit, or waste area group of unspecified dimension within a site. Throughout this report, ''year'' refers to the Federal Government's Fiscal Year, which begins on October 1. For example, Fiscal Year 1995 began on October 1, 1994 and will end on September 30, 1995. Budget totals for Hanford include the Hanford Site and Richland Operations Office. The Idaho National Engineering Laboratory includes the Idaho Chemical Processing Plant and the Idaho Operations Office. The Oak Ridge Reservation budget includes Oak Ridge National Laboratory, the Y-12 Plant, the K-25 Site, Oak Ridge Associated Laboratories, the Oak Ridge Operations Office, and funding for the FUSRAP program

  19. Calendar year 2003 annual site environmental report for Sandia National Laboratories, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2004-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility owned by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and managed by the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2003. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, ''Environmental Protection Program'' (DOE 2003a) and DOE Order 231.1 Chg.2, ''Environment, Safety, and Health Reporting'' (DOE 1996).

  20. Calendar year 2004 annual site environmental report:Sandia National Laboratories, Albuquerque, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Amber L.; Goering, Teresa Lynn; Wagner, Katrina; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility owned by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and managed by the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2004. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004a). (DOE 2004a).

  1. National Environmental Policy Act (NEPA) Compliance Guide, Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1995-08-01

    This report contains a comprehensive National Environmental Policy Act (NEPA) Compliance Guide for the Sandia National Laboratories. It is based on the Council on Environmental Quality (CEQ) NEPA regulations in 40 CFR Parts 1500 through 1508; the US Department of Energy (DOE) N-EPA implementing procedures in 10 CFR Part 102 1; DOE Order 5440.1E; the DOE ``Secretarial Policy Statement on the National Environmental Policy Act`` of June 1994- Sandia NEPA compliance procedures-, and other CEQ and DOE guidance. The Guide includes step-by-step procedures for preparation of Environmental Checklists/Action Descriptions Memoranda (ECL/ADMs), Environmental Assessments (EAs), and Environmental Impact Statements (EISs). It also includes sections on ``Dealing With NEPA Documentation Problems`` and ``Special N-EPA Compliance Issues.``

  2. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    International Nuclear Information System (INIS)

    Bullock, M.

    1992-04-01

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER ampersand WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG ampersand G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL's roadmapping efforts

  3. Ames Laboratory Site Environmental Report, Calendar year 1991

    International Nuclear Information System (INIS)

    Mathison, L.

    1991-01-01

    The summarized data and conclusions from the Ames Laboratory environmental monitoring program are presented in this Annual Site Environmental Report. This program is a working requirement of Department of Energy (DOE) Order 5484.1, ''Environmental Protection, Safety, and Health Protection Information Reporting Requirements'' and Order 5400.1, ''General Environmental Protection Program.'' Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies several buildings owned by the DOE. The Laboratory also leases space in ISU-owned buildings. Laboratory research activities involve less than ten percent of the total chemical use and one percent of the radioisotope use on the ISU campus. Ames Laboratory is responsible for a small chemical burial site, located on ISU property. The site was used for the disposal of chemical and metal slags from thorium and uranium production. Samples of water from existing test wells and upstream and downstream sites on the nearby Squaw Creek show no detectable migration of the contents of the burial site. A Site Assessment plan submitted to the State of Iowa Department of Natural Resources (DNR) was approved. A Remedial Investigation/Feasibility Study work plan has been completed for additional studies at the site. This has been reviewed and approved by the DOE Chicago Field Office and the DNR. A National Environmental Policy Act (NEPA) review of the site resulted in a categorical exclusion finding which has been approved by the DOE. Ames Laboratory has an area contaminated by diesel fuel at the location of a storage tank which was removed in 1970. Soil corings and groundwater have been analyzed for contamination and an assessment written. Pollution awareness and waste minimization programs and plans were implemented in 1990. Included in this effort was the implementation of a waste white paper and green computer paper recycling program

  4. Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994

    International Nuclear Information System (INIS)

    Turner, J.W.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, open-quotes Waste Management Plan Outline.close quotes These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES ampersand H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY) 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are

  5. Brookhaven National Laboratory site environmental report for calendar year 1991

    International Nuclear Information System (INIS)

    Naidu, J.R.; Royce, B.A.; Miltenberger, R.P.

    1992-09-01

    This publication presents the results of BNL's environmental monitoring and compliance effort and provides an assessment of the impact of Brookhaven National Laboratory (BNL) operations on the environment. This document is the responsibility of the Environmental Protection Section of the Safety and Envirorunental Protection Division. Within this Section, the Environmental Monitoring Group (EMG) sample the environment, interpreted the results, performed the impact analysis of the emissions from BNL, and compiled the information presented here. In this effort, other groups of the Section: Compliance; Analytical; Ground Water; and Quality played a key role in addressing the regulatory aspects and the analysis and documentation of the data, respectively

  6. Radon and environmental radioactivity in the Canfranc Underground Laboratory

    International Nuclear Information System (INIS)

    Bandac, I.; Bettini, A.; Borjabad, S.; Nunez-Lagos, R.; Perez, C.; Rodriguez, S.; Sanchez, P.; Villar, J. A.

    2014-01-01

    The results of more than one year of measurements of Radon and environmental radioactivity in the Canfranc Underground Laboratory (LSC) are presented. Radon and atmospheric parameters have registered by an Alpha guard P30 equipment and the environmental radioactivity has been measured by means of UD-802A Panasonic thermoluminescent dosimeters (TLD) processed by an UD716 Panasonic unit. Series of results along with their possible correlations are presented. Both the Radon level and the ambient dose equivalent H (10) are much lower than the allowed ones so no radiological risk exists to persons working in the LSC. Also its excellent environmental radiological quality has been confirmed. (Author)

  7. Brookhaven National Laboratory site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A.; Miltenberger, R.P.

    1992-09-01

    This publication presents the results of BNL's environmental monitoring and compliance effort and provides an assessment of the impact of Brookhaven National Laboratory (BNL) operations on the environment. This document is the responsibility of the Environmental Protection Section of the Safety and Envirorunental Protection Division. Within this Section, the Environmental Monitoring Group (EMG) sample the environment, interpreted the results, performed the impact analysis of the emissions from BNL, and compiled the information presented here. In this effort, other groups of the Section: Compliance; Analytical; Ground Water; and Quality played a key role in addressing the regulatory aspects and the analysis and documentation of the data, respectively.

  8. Brookhaven National Laboratory site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A.; Miltenberger, R.P.

    1992-09-01

    This publication presents the results of BNL`s environmental monitoring and compliance effort and provides an assessment of the impact of Brookhaven National Laboratory (BNL) operations on the environment. This document is the responsibility of the Environmental Protection Section of the Safety and Envirorunental Protection Division. Within this Section, the Environmental Monitoring Group (EMG) sample the environment, interpreted the results, performed the impact analysis of the emissions from BNL, and compiled the information presented here. In this effort, other groups of the Section: Compliance; Analytical; Ground Water; and Quality played a key role in addressing the regulatory aspects and the analysis and documentation of the data, respectively.

  9. 1987 environmental monitoring report, Sandia National Laboratories, Livermore, California

    International Nuclear Information System (INIS)

    Devlin, T.K.

    1988-04-01

    Sandia National Labortories conduct various research activities related to Department of Energy interests which have the potential for release of hazardous materials or radionuclides to the environment. A strict environmental control program places maximum emphasis on limiting releases. The environmental monitoring program conducted by Lawrence Livermore National Laboratory and augmented by Sandia is designed to measure the performance of the environmental controls. The program includes analysis of air, water, soil, vegetation, sewer effluent, ground water, and foodstuffs for various toxic, hazardous, or radioactive materials. Based on these studies, the releases of materials of concern at Sandia during 1987 were well below applicable Department of Energy standards. 8 refs., 3 figs., 12 tabs

  10. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1986

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1987-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1986 are presented and general trends are discussed. Topics include radiation monitoring, wastewater discharge monitoring, dose distribution estimates, and ground water monitoring. 9 refs., 8 figs., 20 tabs

  11. Sequim Marine Research Laboratory routine environmental measurements during CY-1978

    International Nuclear Information System (INIS)

    Houston, J.R.; Blumer, P.J.

    1979-03-01

    Environmental data collected during 1978 in the vicinity of the Marine Research Laboratory show continued compliance with all applicable state and federal regulations and furthermore show no detectable change from conditions that existed in previous years. Samples collected for radiological analysis included soil, drinking water, bay water, clams, and seaweed. Radiation dose rates at 1 meter aboveground were also measured

  12. Environmental monitoring at the Lawrence Livermore Laboratory. 1979 annual report

    International Nuclear Information System (INIS)

    Silver, W.J.; Lindeken, C.L.; White, J.H.; Buddemeir, R.W.

    1980-01-01

    Information on monitoring activities is reported in two sections for EDB/ERA/INIS. The first section covers all information reported except Appendix D, which gives details of sampling and analytical procedures for environmental monitoring used at Lawrence Livermore Laboratory. A separate abstract was prepared for Appendix D

  13. Strategic environmental assessment: Integrated environmental management

    CSIR Research Space (South Africa)

    Audouin, M

    2004-01-01

    Full Text Available This document has been written for a wide audience. Its objective is to serve as an initial reference text. The aim is to provide an introductory information source to government authorities, environmental practitioners, nongovernmental...

  14. Sandia National Laboratories, California Hazardous Materials Management Program annual report : February 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental anagement ystem Program Manual. This program annual report describes the activities undertaken during the past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  15. Environmental Survey preliminary report, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Los Alamos National Laboratory (LANL), conducted March 29, 1987 through April 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the LANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the LANL, and interviews with site personnel. The Survey team developed Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by the Idaho National Engineering Laboratory. When completed, the results will be incorporated into the LANL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Survey for the LANL. 65 refs., 68 figs., 73 tabs.

  16. Environmental Survey preliminary report, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    1988-01-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Los Alamos National Laboratory (LANL), conducted March 29, 1987 through April 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the LANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the LANL, and interviews with site personnel. The Survey team developed Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by the Idaho National Engineering Laboratory. When completed, the results will be incorporated into the LANL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Survey for the LANL. 65 refs., 68 figs., 73 tabs

  17. Environmental Survey preliminary report, Oak Ridge National Laboratory (X-10), Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Oak Ridge National Laboratory (ORNL), X-10 site, conducted August 17 through September 4, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ORNL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ORNL, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for ORNL. The Interim Report will reflect the final determinations of the ORNL Survey. 120 refs., 68 figs., 71 tabs.

  18. BROOKHAVEN NATIONAL LABORATORY SITE ENVIRONMENTAL REPORT FOR CALENDAR YEAR 1994.

    Energy Technology Data Exchange (ETDEWEB)

    NAIDU,J.R.; ROYCE,B.A.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory's operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory. Brookhaven National Laboratory's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment were evaluated. Among the permitted facilities, two instances of pH exceedances were observed at recharge basins, possibly related to rain-water run-off to these recharge basins. Also, the discharge from the Sewage Treatment Plant to the Peconic River exceeded. on ten occasions, one each for fecal coliform and 5-day Biochemical Oxygen Demand (avg.) and eight for ammonia nitrogen. The ammonia and Biochemical Oxygen Demand exceedances were attributed to the cold winter and the routine cultivation of the sand filter beds which resulted in the hydraulic overloading of the filter beds and the possible destruction of nitrifying bacteria. The on-set of warm weather and increased aeration of the filter beds via cultivation helped to alleviate this condition. The discharge of fecal coliform may also be linked to this occurrence, in that the increase in fecal coliform coincided with the increased cultivation of the sand filter beds. The environmental monitoring data has identified site-specific contamination of groundwater and soil. These areas are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement. Except for the above, the environmental monitoring data has continued to demonstrate that compliance was achieved with

  19. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management

  20. Situation analysis of occupational and environmental health laboratory accreditation in Thailand.

    Science.gov (United States)

    Sithisarankul, Pornchai; Santiyanont, Rachana; Wongpinairat, Chongdee; Silva, Panadda; Rojanajirapa, Pinnapa; Wangwongwatana, Supat; Srinetr, Vithet; Sriratanaban, Jiruth; Chuntutanon, Swanya

    2002-06-01

    The objective of this study was to analyze the current situation of laboratory accreditation (LA) in Thailand, especially on occupational and environmental health. The study integrated both quantitative and qualitative approaches. The response rate of the quantitative questionnaires was 54.5% (226/415). The majority of the responders was environmental laboratories located outside hospital and did not have proficiency testing. The majority used ISO 9000, ISO/IEC 17025 or ISO/ EEC Guide 25, and hospital accreditation (HA) as their quality system. However, only 30 laboratories were currently accredited by one of these systems. Qualitative research revealed that international standard for laboratory accreditation for both testing laboratory and calibration laboratory was ISO/IEC Guide 25, which has been currently revised to be ISO/IEC 17025. The National Accreditation Council (NAC) has authorized 2 organizations as Accreditation Bodies (ABs) for LA: Thai Industrial Standards Institute, Ministry of Industry, and Bureau of Laboratory Quality Standards, Department of Medical Sciences, Ministry of Public Health. Regarding LA in HA, HA considered clinical laboratory as only 1 of 31 items for accreditation. Obtaining HA might satisfy the hospital director and his management team, and hence might actually be one of the obstacles for the hospital to further improve their laboratory quality system and apply for ISO/IEC 17025 which was more technically oriented. On the other hand, HA may be viewed as a good start or even a pre-requisite for laboratories in the hospitals to further improve their quality towards ISO/IEC 17025. Interviewing the director of NAC and some key men in some large laboratories revealed several major problems of Thailand's LA. Both Thai Industrial Standards Institute and Bureau of Laboratory Quality Standards did not yet obtain Mutual Recognition Agreement (MRA) with other international ABs. Several governmental bodies had their own standards and

  1. Environmental Survey preliminary report, Sandia National Laboratories, Livermore, California

    International Nuclear Information System (INIS)

    1988-01-01

    This report contains the preliminary findings based on the first phase of an Environmental Survey at the Department of Energy (DOE) Sandia National Laboratories Livermore (SNLL), located at Livermore, California. The Survey is being conducted by DOE's Office of Environment, Safety and Health. The SNLL Survey is a portion of the larger, comprehensive DOE Environmental Survey encompassing all major operating facilities of DOE. The DOE Environmental Survey is one of a series of initiatives announced on September 18, 1985, by Secretary of Energy, John S. Herrington, to strengthen the environmental, safety, and health programs and activities within DOE. The purpose of the Environmental Survey is to identify, via a ''no fault'' baseline Survey of all the Department's major operating facilities, environmental problems and areas of environmental risk. The identified problem areas will be prioritized on a Department-wide basis in order of importance in 1989. The findings in this report are subject to modification based on the results from the Sampling and Analysis Phase of the Survey. The findings are also subject to modification based on comments from the Albuquerque Operations Office concerning the technical accuracy of the findings. The modified preliminary findings and any other appropriate changes will be incorporated into an Interim Report. The Interim Report will serve as the site-specific source for environmental information generated by the Survey, and ultimately as the primary source of information for the DOE-wide prioritization of environmental problems in the Survey Summary Report. 43 refs., 21 figs., 24 tabs

  2. Mobile laboratory-based environmental radioactivity analysis capability of the US Environmental Protection Agency

    International Nuclear Information System (INIS)

    Dempsey, G.; Poppell, S.

    1999-01-01

    This poster presentation will highlight the capability of the US Environmental Protection Agency, Office of Radiation and Indoor Air to process and analyze environmental and emergency response samples in mobile radiological laboratories. Philosophy of use, construction, analytical equipment, and procedures will be discussed in the poster presentation. Accompanying the poster presentation, EPA will also have a static display of its mobile laboratories at the meeting site. (author)

  3. Quality management system in hospital radiopharmacy laboratory

    International Nuclear Information System (INIS)

    Poch, Carolina; Rabiller, Graciela; Basualdo, Daniel A.; El Tamer, Elias A.

    2009-01-01

    Objective: 1) To determine the necessary conditions for increasing the complexity of the Radiopharmacy Laboratory and reach an operational level defined by the IAEA as 3a (Operational Guidance on Hospital Radiopharmacy). Our aim is that, within a framework of quality, last generation radiopharmaceuticals can be used, by sophisticated techniques such as labeling with bifunctional chelating agents, like HYNIC; 2) Consequently, we decided to implement a Quality Management System (QMS) in the field of Hospital Radiopharmacy in order to guarantee the safe and effective preparation and handling of radiopharmaceuticals for the diagnosis of patients, based on recommendations of the IAEA. Procedure For the implementation of the QMS, the sector of Radiopharmacy was capacitated in the application of ISO 9001. In a first stage it had begun with the formulation of the main documents and their enumeration. According to the recommendations of the IAEA Operational Guide, this year we proceeded to the optimization of the documents produced in the first stage and formulation of new documents essential to the improvement of work in the Radiopharmacy Laboratory. Results: Corrections were made to the performed procedures, and new ones were composed such as: Reception of raw materials, Control dose calibrator (Activity meter), General procedure of dosage, Procedure for decontamination, for Using the bio safety cabinet, for Cleaning the hot laboratory, etc. The Quality Controls were added to each of the Work Instructions of radiopharmaceuticals to be undertaken and how and when to carry out, with their respective references. Records were modified and new ones incorporated, in order to ensure traceability of the results before and after injection. Finally, the require documentation has been completed with the addition of the Staff Training Plan, and other records such as Nonconformance and Corrective and Preventive Actions. Conclusion: With the application of a QMS correctly implemented

  4. Sandia National Laboratories/New Mexico Environmental Information Document - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    GUERRERO, JOSEPH V.; KUZIO, KENNETH A.; JOHNS, WILLIAM H.; BAYLISS, LINDA S.; BAILEY-WHITE, BRENDA E.

    1999-09-01

    This Sandia National Laboratories/New Mexico Environmental Information Document (EID) compiles information on the existing environment, or environmental baseline, for SNUNM. Much of the information is drawn from existing reports and databases supplemented by new research and data. The SNL/NM EID, together with the Sandia National Laboratories/New Mexico Facilities and Safety Information Document, provide a basis for assessing the environment, safety, and health aspects of operating selected facilities at SNL/NM. The environmental baseline provides a record of the existing physical, biological, and socioeconomic environment at SNL/NLM prior to being altered (beneficially or adversely) by proposed programs or projects. More specifically, the EID provides information on the following topics: Geology; Land Use; Hydrology and Water Resources; Air Quality and Meteorology; Ecology; Noise and Vibration; Cultural Resources; Visual Resources; Socioeconomic and Community Services; Transportation; Material Management; Waste Management; and Regulatory Requirements.

  5. Sandia National Laboratories/New Mexico Environmental Information Document - Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    BAYLISS, LINDA S.; GUERRERO, JOSEPH V.; JOHNS, WILLIAM H.; KUZIO, KENNETH A.; BAILEY-WHITE, BRENDA E.

    1999-09-01

    This Sandia National Laboratories/New Mexico Environmental Information Document (EID) compiles information on the existing environment, or environmental baseline, for SNUNM. Much of the information is drawn from existing reports and databases supplemented by new research and data. The SNL/NM EID, together with the Sandia National Laboratories/New Mexico Facilities and Safety Information Document, provide a basis for assessing the environment, safety, and health aspects of operating selected facilities at SNL/NM. The environmental baseline provides a record of the existing physical, biological, and socioeconomic environment at SNL/NLM prior to being altered (beneficially or adversely) by proposed programs or projects. More specifically, the EID provides information on the following topics: Geology; Land Use; Hydrology and Water Resources; Air Quality and Meteorology; Ecology; Noise and Vibration; Cultural Resources; Visual Resources; Socioeconomic and Community Services; Transportation; Material Management; Waste Management; and Regulatory Requirements.

  6. Implementing Environmental Management Accounting: Status and Challenges

    DEFF Research Database (Denmark)

    Cost Accounting - and its Interaction with Eco-Efficiency Performance Measurement and Indicators; Stefan Schaltegger and Marcus Wagner. 4. Environmental Accounting Dimensions: Pros and Cons of Trajectory Convergence and Increased Efficiency; Pontus Cerin and Staffan Laestadius. 5. Process and Content......Table of contents Preface. 1. Environmental Management Accounting: Innovation or Managerial Fad?; Pall Rikhardsson, Martin Bennett, Jan Jaap Bouma and Stefan Schaltegger. Section 1 Progress. 2. Challenges for Environmental Management Accounting; Roger L. Burritt 3. Current Trends in Environmental......: Visualizing the Policy Challenges of Environmental Management Accounting; Dick Osborn. Section 2 Exploring EMA implementation issues. 6. Environmental Performance and the Quality of Corporate Environmental Reports: The Role of Environmental Management Accounting; Marcus Wagner. 7. Environmental Risk...

  7. Environmental restoration and waste management

    International Nuclear Information System (INIS)

    Middleman, L.I.

    1989-01-01

    The purpose of this Five-Year Plan is to establish an agenda for compliance and cleanup against which progress will be measured. DOE is committed to an open and participatory process for developing a national priority system for expenditure of funds. This system will be based on scientific principles and risk reduction in terms that are understandable to the public. The Plan will be revised annually, with a five-year planning horizon. For FY 1991--1995, this Plan encompasses total program activities and costs for DOE Corrective Activities, Environmental Restoration, Waste Management Operations, and Applied R ampersand D. It addresses hazardous wastes, radioactive wastes, mixed wastes (radioactive and hazardous), and sanitary wastes. It also addresses facilities and sites contaminated with or used in the management of those wastes. The Plan does not include the Safety and Health Program (Office of the Assistant Secretary for Environment, Safety, and Health) or programs of the Office of Civilian Radioactive Waste Management. It does include the annual Defense Programs contribution to the Nuclear Waste Fund for disposal of defense high-level waste and research toward characterizing the defense waste form for repository disposal

  8. Environmental Management Audit: Southwestern Power Administration (Southwestern)

    International Nuclear Information System (INIS)

    1993-03-01

    This report documents the results of the Environmental Management Audit completed for the Southwestern Power Administration. During this Audit, activities and records were reviewed and personnel interviewed. The onsite portion of the Southwestern Audit was conducted from November 30 through December 11, 1992, by the US Department of Energy's Office of Environmental Audit (EH-24). EH-24 carries out independent assessments of Department of Energy (DOE) facilities and activities as part of the Assistant Secretary's Environmental Audit Program. This program is designed to evaluate the status of DOE facilities/activities regarding compliance with laws, regulations, DOE Orders, formal written procedures, compliance agreements, and Best Management Practices (BMPs). This internal oversight function plays an important role in improving the compliance status of DOE operations. The Environmental Management Audit stresses DOE's policy that it is the responsibility of line management to conduct operations in an environmentally sound and safe manner. The Environmental Management Audit focuses on management systems and programs, whereas the Environmental Baseline Audit conducted in March 1991 focused on specific compliance issues. The scope of the Southwestern Environmental Management Audit included a review of all systems and functions necessary for effective environmental management. Specific areas of review included: Organizational Structure; Environmental Commitment; Environmental Protection Programs; Formality of Environmental Programs; Internal and External Communication; Staff Resources, Training, and Development; and Program Evaluation, Reporting, and Corrective Action

  9. Integration of operational research and environmental management

    NARCIS (Netherlands)

    Bloemhof - Ruwaard, J.M.

    1996-01-01


    The subject of this thesis is the integration of Operational Research and Environmental Management. Both sciences play an important role in the research of environmental issues. Part I describes a framework for the interactions between Operational Research and Environmental Management.

  10. Environmental Survey preliminary report, Princeton Plasma Physics Laboratory, Princeton, New Jersey

    International Nuclear Information System (INIS)

    1989-05-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), conducted June 13 through 17, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Team members are being provided by private contractors. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with PPPL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at PPPL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S ampersand A) Plan to assist in further assessing certain of the environment problems identified during its on-site activities. The S ampersand A plan is being developed by the Idaho National Engineering Laboratory. When completed, the S ampersand A results will be incorporated into the PPPL Survey findings for inclusion in the Environmental Survey Summary Report. 70 refs., 17 figs., 21 tabs

  11. Environmental Survey preliminary report, Laboratory for Energy-Related Health Research, Davis, California

    International Nuclear Information System (INIS)

    1988-03-01

    This report presents the preliminary findings from the first phase of the Survey of the United States Department of Energy (DOE) Laboratory for Energy-Related Health Research (LEHR) at the University of California, Davis (UC Davis), conducted November 16 through 20, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the LEHR. The Survey covers all environmental media and all areas of environmental regulation, and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the LEHR and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the LEHR at UC Davis. The Interim Report will reflect the final determinations of the LEHR Survey. 75 refs., 26 figs., 23 tabs

  12. Low Energy Accelerator Laboratory Technical Area 53, Los Alamos National Laboratory. Environmental assessment

    International Nuclear Information System (INIS)

    1995-04-01

    This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the Department of Energy (DOE) were to construct and operate a small research and development laboratory building at Technical Area (TA) 53 at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. DOE proposes to construct a small building to be called the Low Energy Accelerator Laboratory (LEAL), at a previously cleared, bladed, and leveled quarter-acre site next to other facilities housing linear accelerator research activities at TA-53. Operations proposed for LEAL would consist of bench-scale research, development, and testing of the initial section of linear particle accelerators. This initial section consists of various components that are collectively called an injector system. The anticipated life span of the proposed development program would be about 15 years

  13. Environmental survey at Lucas Heights Research Laboratories, 1989

    International Nuclear Information System (INIS)

    Hoffman, E.L.; Arthur, J.

    1990-09-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1989. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 9 refs., 17 tabs., 2 figs

  14. Environmental survey at Lucas Heights Research Laboratories, 1990

    International Nuclear Information System (INIS)

    Hoffmann, E.L.

    1991-10-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1990. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 11 refs., 16 tabs., 2 figs

  15. Environmental survey at Lucas Heights Research Laboratories, 1987

    International Nuclear Information System (INIS)

    Giles, M.S.; Foy, J.J.; Hoffmann, E.L.

    1989-12-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1987. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorized limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 9 refs., 18 tabs., 2 figs

  16. Environmental survey at Lucas Heights Research Laboratories, 1984

    International Nuclear Information System (INIS)

    Giles, M.S.; Dudaitis, A.

    1986-12-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1984. These results are satisfactory. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste discharges during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council

  17. Environmental survey at the Lucas Heights Research Laboratories. 1983

    International Nuclear Information System (INIS)

    Giles, M.S.; Dudaitis, A.

    1985-12-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1983. These results are satisfactory. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste discharges during this period is estimated to be less than 0.01 millisieverts, which is 1 per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council

  18. Profiling the environmental risk management of Chinese local environmental agencies

    NARCIS (Netherlands)

    He, G.; Zhang, L.; Mol, A.P.J.; Lu, Y.

    2013-01-01

    The increasing frequency and impact of environmental accidents have pushed the issue of environmental risk management (ERM) to the top of the Chinese governments’ agendas and popularized the term ‘emergency response.’ Although the boundary between environmental accidents and other types of accidents

  19. Reduction of negative environmental impact generated by residues of plant tissue culture laboratory

    Directory of Open Access Journals (Sweden)

    Yusleidys Cortés Martínez

    2016-01-01

    Full Text Available The research is based on the activity developed by teaching and research laboratories for biotechnology purposes with an environmental approach to determine potential contamination risk and analyze the residuals generated. The physical - chemical characterization of the residuals was carried out from contamination indicators that can affect the dumping of residual water. In order to identify the environmental risks and sources of microbial contamination of plant material propagated by in vitro culture that generate residuals, all the risk activities were identified, the type of risk involved in each activity was analyzed, as well as whether or not the standards were met of aseptic normative. The dilution and neutralization was proposed for residuals with extreme values of pH. Since the results of the work a set of measures was proposed to reduce the negative environmental impact of the laboratory residuals. Key words: biosafety, environmental management, microbial contamination

  20. Environmental Governance as a Model of Environmental Management

    Directory of Open Access Journals (Sweden)

    Budi Kristianto

    2016-02-01

    Full Text Available The concept of environmental governance does not promise practical solutions and provides short guidance in solving intertwined environmental problems in Indonesia. But at least environmental concept is useful when we try to realize environmental management in Indonesia currently. The worst is that the mistake has become routine manifesting in pragmatism in environmental management. Before it all too late, it is better that we keep in mind a German proverb in the beginning of this writing, which more or less, means “ we do not know what the future brings, but we know that we should act.”

  1. Lawrence Livermore National Laboratory environmental report for 1990

    International Nuclear Information System (INIS)

    Sims, J.M.; Surano, K.A.; Lamson, K.C.; Balke, B.K.; Steenhoven, J.C.; Schwoegler, D.R.

    1990-01-01

    This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore National Laboratory (LLNL) and presents summary information about environmental compliance for 1990. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent surface water, groundwater, vegetation, and foodstuff were made at both the Livermore site and at Site 300 nearly. LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment was evaluated. Aside from an August 13 observation of silver concentrations slightly above guidelines for discharges to the sanitary sewer, all the monitoring data demonstrated LLNL compliance with environmental laws and regulations governing emission and discharge of materials to the environment. In addition, the monitoring data demonstrated that the environmental impacts of LLNL are minimal and pose no threat to the public to or to the environment. 114 refs., 46 figs., 79 tabs

  2. Japanese experiences of environmental management

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, T. [Toyo University, Itakura (Japan)

    2003-07-01

    Japan experienced a very rapid industrialization and economic growth in the era of income doubling in 1960s and at the same time it experienced very severe damage from various types of environmental pollution. In this paper, historical development of population, GNP, energy consumption with classification of petroleum, coal and electric power, and CO{sub 2} emission are introduced as basic background data on Japanese development. The tragic experience of Minamata disease and Itai-itai disease caused by methyl mercury and cadmium, respectively, are introduced. In two tables, historical development of water pollution and air pollution are summarized. Regarding solid wastes management, the total mass balance in Japan and recent development in legislation framework for enhancement of recycling of wastes are introduced briefly.

  3. Environmental Restoration Program Management Control Plan

    International Nuclear Information System (INIS)

    1991-09-01

    This Management Control Plan has been prepared to define the Energy Systems approach to managing its participation in the US DOE's Environmental Restoration (ER) Program in a manner consistent with DOE/ORO 931: Management Plan for the DOE Field Office, Oak Ridge, Decontamination and Decommissioning Program; and the Energy Systems Environmental Restoration Contract Management Plan (CMP). This plan discusses the systems, procedures, methodology, and controls to be used by the program management team to attain these objectives

  4. Brookhaven National Laboratory site environmental report for calendar year 1993

    International Nuclear Information System (INIS)

    Naidu, J.R.; Royce, B.A.

    1994-05-01

    This report documents the results of the Environmental Monitoring Program at BNL and presents summary information about environmental compliance for 1993. To evaluate the effect of BNL operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, ground water and vegetation were made at the BNL site and at sites adjacent to the Laboratory. Brookhaven National Laboratory's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment were evaluated. Among the permitted facilities, two instances, of pH exceedances were observed at recharge basins, possible related to rain-water run-off to these recharge basins. Also, the discharge from the Sewage Treatment Plant (STP) to the Peconic River exceeded on five occasions, three for residual chlorine and one each for iron and ammonia nitrogen. The chlorine exceedances were related to a malfunctioning hypochlorite dosing pump and ceased when the pump was repaired. While the iron and ammonia-nitrogen could be the result of disturbances to the sand filter beds during maintenance. The environmental monitoring data has identified site-specific contamination of ground water and soil. These areas are subject to Remedial Investigation/Feasibility Studies (RI/FS) under the Inter Agency Agreement (IAG). Except for the above, the environmental monitoring data has continued to demonstrate that compliance was achieved with applicable environmental laws and regulations governing emission and discharge of materials to the environment, and that the environmental impacts at BNL are minimal and pose no threat to the public or to the environment. This report meets the requirements of DOE Orders 5484. 1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs

  5. Natural Resource Management Plan for Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    green, T.

    2011-08-15

    This comprehensive Natural Resource Management Plan (NRMP) for Brookhaven National Laboratory (BNL) was built on the successful foundation of the Wildlife Management Plan for BNL, which it replaces. This update to the 2003 plan continues to build on successes and efforts to better understand the ecosystems and natural resources found on the BNL site. The plan establishes the basis for managing the varied natural resources located on the 5,265 acre BNL site, setting goals and actions to achieve those goals. The planning of this document is based on the knowledge and expertise gained over the past 10 years by the Natural Resources management staff at BNL in concert with local natural resource agencies including the New York State Department of Environmental Conservation, Long Island Pine Barrens Joint Planning and Policy Commission, The Nature Conservancy, and others. The development of this plan is an attempt at sound ecological management that not only benefits BNL's ecosystems but also benefits the greater Pine Barrens habitats in which BNL is situated. This plan applies equally to the Upton Ecological and Research Reserve (Upton Reserve). Any difference in management between the larger BNL area and the Upton Reserve are noted in the text. The purpose of the Natural Resource Management Plan (NRMP) is to provide management guidance, promote stewardship of the natural resources found at BNL, and to sustainably integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, sustainability, adaptive ecosystem management, compliance, integration with other plans and requirements, and the incorporation of community involvement, where applicable. The NRMP is periodically reviewed and updated, typically every five years. This review and update was delayed to develop documents associated with a new third party facility, the Long Island Solar Farm. This two hundred acre facility will result in

  6. NETL-EERC ENVIRONMENTAL MANAGEMENT COOPERATIVE AGREEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Christina B. Behr-Andres; Daniel J. Daly

    2001-07-31

    This final report summarizes the accomplishments of the 6-year Environmental Management Cooperative Agreement (EMCA) between the Energy and Environmental Research Center (EERC), a nonprofit, contract-supported unit of the University of North Dakota, and the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). The first portion of the report summarizes EMCA's structure, activities, and accomplishments. The appendix contains profiles of the individual EMCA tasks. Detailed descriptions and results of the tasks can be found separately in published Final Topical Reports. EMCA (DOE Contract No. DE-FC21-94MC31388) was in place from the fall of 1994 to the summer of 2001. Under EMCA, approximately $5.4 million was applied in three program areas to expedite the commercialization of 15 innovative technologies for application in DOE's EM Program ($3.8 million, or 69% of funds), provide technical support to the Deactivation and Decommissioning Focus Area (DDFA; $1.04 million, or 19% of funds), and provide for the coordination of the EMCA activities ($0.62 million, or 11% of funds). The following sections profile the overall accomplishments of the EMCA program followed by a summary of the accomplishments under each of the EMCA areas: commercialization, DDFA technical support, and management. Table 1 provides an overview of EMCA, including program areas, program activities, the duration and funding of each activity, and the associated industry partner, if appropriate.

  7. Environmental Molecular Sciences Laboratory Operations System: Version 4.0 - system requirements specification

    Energy Technology Data Exchange (ETDEWEB)

    Kashporenko, D.

    1996-07-01

    This document is intended to provide an operations standard for the Environmental Molecular Sciences Laboratory OPerations System (EMSL OPS). It is directed toward three primary audiences: (1) Environmental Molecular Sciences Laboratory (EMSL) facility and operations personnel; (2) laboratory line managers and staff; and (3) researchers, equipment operators, and laboratory users. It is also a statement of system requirements for software developers of EMSL OPS. The need for a finely tuned, superior research environment as provided by the US Department of Energy`s (DOE) Environmental Molecular Sciences Laboratory has never been greater. The abrupt end of the Cold War and the realignment of national priorities caused major US and competing overseas laboratories to reposition themselves in a highly competitive research marketplace. For a new laboratory such as the EMSL, this means coming into existence in a rapidly changing external environment. For any major laboratory, these changes create funding uncertainties and increasing global competition along with concomitant demands for higher standards of research product quality and innovation. While more laboratories are chasing fewer funding dollars, research ideas and proposals, especially for molecular-level research in the materials and biological sciences, are burgeoning. In such an economically constrained atmosphere, reduced costs, improved productivity, and strategic research project portfolio building become essential to establish and maintain any distinct competitive advantage. For EMSL, this environment and these demands require clear operational objectives, specific goals, and a well-crafted strategy. Specific goals will evolve and change with the evolution of the nature and definition of DOE`s environmental research needs. Hence, EMSL OPS is designed to facilitate migration of these changes with ease into every pertinent job function, creating a facile {open_quotes}learning organization.{close_quotes}

  8. A Study on improvement of comprehensive environmental management system - activation of liberalized environmental management

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hweu Sung; Kang, Chul Goo [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    As a part of improvement on a comprehensive environmental management system, this study was attempted to find an activating policy for a liberalized environmental management. This study provided an activation plan of reasonable environmental regulation reform and liberalized environmental management through the analysis of foreign examples and domestic situation. Furthermore, it analyzed an institutional mechanism for a smooth operation of liberalized environmental management. 68 refs., 5 figs., 51 tabs.

  9. Ethiopian Journal of Environmental Studies and Management ...

    African Journals Online (AJOL)

    Author Guidelines; » Copyright Notice. Author Guidelines. Guide to Authors: The Ethiopian Journal of Environmental Studies and Management (EJESM) are based in Department of Geography and Environmental Studies, Bahir Dar University, ...

  10. Environmental survey at Lucas Heights Research Laboratories, 1993

    International Nuclear Information System (INIS)

    Hoffmann, E.L.; Looz, T.

    1995-04-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1993. No activity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne discharges during this period is estimated to be less than 0.01 mSv, which is one per cent of the dose limit for long term exposure that is recommended by the National Health and Medical Research Council. A list of previous environmental survey reports is attached. 22 refs., 21 tabs., 4 figs

  11. Environmental Monitoring Of Microbiological Laboratory: Expose Plate Method

    International Nuclear Information System (INIS)

    Yahaya Talib; Othman Mahmud; Noraisyah Mohd Yusof; Asmah Mohibat; Muhamad Syazwan Zulkifli

    2013-01-01

    Monitoring of microorganism is important and conducted regularly on environment of microbiological laboratory at Medical Technology Division. Its objective is to ensure the quality of working environment is maintained according to microbial contamination, consequently to assure the quality of microbiological tests. This paper presents report of environmental monitoring since year 2007. The test involved was bacterial colony counts after the growth media was exposed to air at identified location. (author)

  12. Training and Education of Environmental Managers

    DEFF Research Database (Denmark)

    Ulhøi, John Parm; Sinding, Knud; Madsen, Henning

    An analysis of the training backgrounds of environmental managers in a range of environmentally advanced European companies reveals the very broad qualifications ideally required of these managers. At the same time, however, it is found that the provision of training opportunities relevant...... for this important category of managers is both limited in scope and foundation, and highly dependent on the randomly distributed efforts of educators with an environmental interest....

  13. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    International Nuclear Information System (INIS)

    Johnson, L.J.

    1980-10-01

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed

  14. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.J. (comp.)

    1980-10-01

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed.

  15. Public health laboratory quality management in a developing country.

    Science.gov (United States)

    Wangkahat, Khwanjai; Nookhai, Somboon; Pobkeeree, Vallerut

    2012-01-01

    The article aims to give an overview of the system of public health laboratory quality management in Thailand and to produce a strengths, weaknesses, opportunities and threats (SWOT) analysis that is relevant to public health laboratories in the country. The systems for managing laboratory quality that are currently employed were described in the first component. The second component was a SWOT analysis, which used the opinions of laboratory professionals to identify any areas that could be improved to meet quality management systems. Various quality management systems were identified and the number of laboratories that met both international and national quality management requirements was different. The SWOT analysis found the opportunities and strengths factors offered the best chance to improve laboratory quality management in the country. The results are based on observations and brainstorming with medical laboratory professionals who can assist laboratories in accomplishing quality management. The factors derived from the analysis can help improve laboratory quality management in the country. This paper provides viewpoints and evidence-based approaches for the development of best possible practice of services in public health laboratories.

  16. Raising environmental awareness through applied biochemistry laboratory experiments.

    Science.gov (United States)

    Salman Ashraf, S

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment is described that guides students to learn about the applicability of peroxidase enzymes to degrade organic dyes (as model pollutants) in simulated waste water. In addition to showing how enzymes can potentially be used for waste water remediation, various factors than can affect enzyme-based reactions such as pH, temperature, concentration of substrates/enzymes, and denaturants can also be tested. This "applied biotechnology" experiment was successfully implemented in an undergraduate biochemistry laboratory course to enhance students' learning of environmental issues as well important biochemistry concepts. Student survey confirmed that this laboratory experiment was successful in achieving the objectives of raising environmental awareness in students and illustrating the usefulness of chemistry in solving real-life problems. This experiment can be easily adopted in an introductory biochemistry laboratory course and taught as an inquiry-guided exercise. © 2013 by The International Union of Biochemistry and Molecular Biology.

  17. Draft environmental assessment of Argonne National Laboratory, East

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-01

    This environmental assessment of the operation of the Argonne National Laboratory is related to continuation of research and development work being conducted at the Laboratory site at Argonne, Illinois. The Laboratory has been monitoring various environmental parameters both offsite and onsite since 1949. Meteorological data have been collected to support development of models for atmospheric dispersion of radioactive and other pollutants. Gaseous and liquid effluents, both radioactive and non-radioactive, have been measured by portable monitors and by continuous monitors at fixed sites. Monitoring of constituents of the terrestrial ecosystem provides a basis for identifying changes should they occur in this regime. The Laboratory has established a position of leadership in monitoring methodologies and their application. Offsite impacts of nonradiological accidents are primarily those associated with the release of chlorine and with sodium fires. Both result in releases that cause no health damage offsite. Radioactive materials released to the environment result in a cumulative dose to persons residing within 50 miles of the site of about 47 man-rem per year, compared to an annual total of about 950,000 man-rem delivered to the same population from natural background radiation. 100 refs., 17 figs., 33 tabs.

  18. CULTURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    DAVIS, M.

    2005-04-01

    The Cultural Resource Management Plan (CRMP) for Brookhaven National Laboratory (BNL) provides an organized guide that describes or references all facets and interrelationships of cultural resources at BNL. This document specifically follows, where applicable, the format of the U.S. Department of Energy (DOE) Environmental Guidelines for Development of Cultural Resource Management Plans, DOE G 450.1-3 (9-22-04[m1]). Management strategies included within this CRMP are designed to adequately identify the cultural resources that BNL and DOE consider significant and to acknowledge associated management actions. A principal objective of the CRMP is to reduce the need for additional regulatory documents and to serve as the basis for a formal agreement between the DOE and the New York State Historic Preservation Officer (NYSHPO). The BNL CRMP is designed to be a ''living document.'' Each section includes identified gaps in the management plan, with proposed goals and actions for addressing each gap. The plan will be periodically revised to incorporate new documentation.

  19. Environmental monitoring systems: a new type of mobile laboratory

    International Nuclear Information System (INIS)

    Bruecher, L.; Langmueller, G.; Tuerschmann, G.

    1999-01-01

    Nuclear facilities are obligated to monitor the environmental radiation in their vicinity, which is often fulfilled by monitoring cars, combined with fixed monitoring stations. The MOLAR Mobile Laboratory for Environmental Radiation Monitoring as described here is being used under normal and accident conditions as a spot check monitoring system or to perform continuous measurements along a driving track. The mobile laboratories are continuously connected with the control centre's CRCS Central Radiological Computer System, where the RIS Radiological Information System provides corresponding evaluation functions. The mobile labs contain measuring and controlling units like γ-dose rate monitors, γ-spectrometer with a HpGe High Purity Germanium detector, a lead shielded measuring cell and MCA Multi-Channel Analyser, portable β-contamination monitor, α/β/γ multipurpose quick measuring unit, aerosol and iodine sampling units. The collected samples are safely stored for the transport to the environmental laboratory for being analysed later. The geographical location of the moving car is continuously determined by the satellite based GPS Global Positioning System and transferred in the on-board rack mounted computer system for being stored and locally displayed. Real-time data transmission via radio and mobile phone is continuously performed to supply the RIS Radiological Information System in the control centre via radio and mobile phone. The latter also serves for voice communication. Currently three MOLAR systems can be operated parallel and independent from the control centre. The system is ready to be extended to more mobile labs. This combination of mobile monitoring, sample analysis and radiological assessment of environmental data in combination with process occurrences has turned out to be a powerful instrument for emergency preparedness and environmental supervising. (orig.) [de

  20. OPTIMAL CONTROL THEORY FOR SUSTAINABLE ENVIRONMENTAL MANAGEMENT

    Science.gov (United States)

    With growing world population, diminishing resources, and realization of the harmful effects of various pollutants, research focus in environmental management has shifted towards sustainability. The goal of a sustainable management strategy is to promote the structure and operati...

  1. Environmental Survey preliminary report, Sandia National Laboratories, Livermore, California

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    This report contains the preliminary findings based on the first phase of an Environmental Survey at the Department of Energy (DOE) Sandia National Laboratories Livermore (SNLL), located at Livermore, California. The Survey is being conducted by DOE's Office of Environment, Safety and Health. The SNLL Survey is a portion of the larger, comprehensive DOE Environmental Survey encompassing all major operating facilities of DOE. The DOE Environmental Survey is one of a series of initiatives announced on September 18, 1985, by Secretary of Energy, John S. Herrington, to strengthen the environmental, safety, and health programs and activities within DOE. The purpose of the Environmental Survey is to identify, via a no fault'' baseline Survey of all the Department's major operating facilities, environmental problems and areas of environmental risk. The identified problem areas will be prioritized on a Department-wide basis in order of importance in 1989. The findings in this report are subject to modification based on the results from the Sampling and Analysis Phase of the Survey. The findings are also subject to modification based on comments from the Albuquerque Operations Office concerning the technical accuracy of the findings. The modified preliminary findings and any other appropriate changes will be incorporated into an Interim Report. The Interim Report will serve as the site-specific source for environmental information generated by the Survey, and ultimately as the primary source of information for the DOE-wide prioritization of environmental problems in the Survey Summary Report. 43 refs., 21 figs., 24 tabs.

  2. Hanford Environmental Management Program implementation plan

    International Nuclear Information System (INIS)

    1988-08-01

    The Hanford Environmental Management Program (HEMP) was established to facilitate compliance with the applicable environmental statues, regulations, and standards on the Hanford Site. The HEMP provides a structured approach to achieve environmental management objectives. The Hanford Environmental Management Program Plan (HEMP Plan) was prepared as a strategic level planning document to describe the program management, technical implementation, verification, and communications activities that guide the HEMP. Four basic program objectives are identified in the HEMP Plan as follows: establish ongoing monitoring to ensure that Hanford Site operations comply with environmental requirements; attain regulatory compliance through the modification of activities; mitigate any environmental consequences; and minimize the environmental impacts of future operations at the Hanford Site. 2 refs., 24 figs., 27 tabs

  3. Environmental management systems and organizational change

    DEFF Research Database (Denmark)

    Jørgensen, Tine Herreborg

    2000-01-01

    and environmental management systems. The structure of the organizations has changed, the relationships with external partners have strengthened and the implementation of quality and environmental management systems has trimmed the organizations to manage and develop these areas. The organization analysis is based......The establishment of an environmental management system and its continuous improvements is a process towards a reduction of the companies' and the products' environmental impact. The organizations' ability to change is crucial in order to establish a dynamic environmental management system...... and to achieve continuous environmental improvements. The study of changes gives an insight into how organizations function, as well as their forces and barriers. This article focuses on the organizational changes that two companies have undergone from 1992 up until today in connection with their quality...

  4. Environmental monitoring at Argonne National Laboratory. Annual report for 1983

    International Nuclear Information System (INIS)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1984-03-01

    The results of the environmental monitoring program at Argonne National Laboratory for 1983 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in air, surface water, ground water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The potential radiation dose to off-site population groups is also estimated. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. 19 references, 8 figures, 49 tables

  5. Environmental monitoring at Argonne National Laboratory. Annual report for 1982

    International Nuclear Information System (INIS)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1983-03-01

    The results of the environmental monitoring program at Argonne Ntaional Laboratory for 1982 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in air, surface water, ground water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and masurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. The potential radiation dose to off-site population groups is also estimated

  6. Environmental monitoring at Argonne National Laboratory. Annual report for 1980

    International Nuclear Information System (INIS)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1981-03-01

    The results of the environmental monitoring program at Argonne National Laboratory for 1980 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, soil, grass, bottom sediment, and foodstuffs; for a variety of chemical constituents in air, surface water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. The potential radiation dose to off-site population groups is also estimated

  7. Environmental monitoring at Argonne National Laboratory. Annual report for 1978

    International Nuclear Information System (INIS)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1979-03-01

    The results of the environmental monitoring program at Argonne National Laboratory for 1978 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, Argonne effluent water, soil, grass, bottom sediment, and foodstuffs; for a variety of chemical constituents in air, surface water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements wee made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. The potential radiation dose to off-site population groups is also estimated

  8. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-12-01

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the three KAPL Sites [Knolls Site, Niskayuna, New York; Kesselring Site, West Milton, New York; S1C Site, Windsor, Connecticut] during calendar year 1999 resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations.

  9. Environmental monitoring at Argonne National Laboratory. Annual report, 1981

    International Nuclear Information System (INIS)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1982-03-01

    The results of the environmental monitoring program at Argonne National Laboratory for 1981 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in air, surface water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. The potential radiation dose to off-site population groups is also estimated

  10. Environmental monitoring at Argonne National Laboratory. Annual report for 1976

    International Nuclear Information System (INIS)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1977-03-01

    The results of the environmental monitoring program at Argonne National Laboratory for 1976 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, Argonne effluent water, soil, grass, bottom sediment, and foodstuffs; for a variety of chemical constituents in surface and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with accepted environmental quality standards. The potential radiation dose to off-site population groups is also estimated

  11. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the three KAPL Sites [Knolls Site, Niskayuna, New York; Kesselring Site, West Milton, New York; S1C Site, Windsor, Connecticut] during calendar year 1999 resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations

  12. Routine environmental reaudit of the Argonne National Laboratory - West

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This report documents the results of the Routine Environmental Reaudit of the Argonne National Laboratory - West (ANL-W), Idaho Falls, Idaho. During this audit, the activities conducted by the audit team included reviews of internal documents and reports from previous audits and assessments; interviews with U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), State of Idaho Department of Health and Welfare (IDHW), and DOE contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted from October 11 to October 22, 1993, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health (EH). DOE 5482.113, {open_quotes}Environment, Safety, and Health Appraisal Program,{close_quotes} established the mission of EH-24 to provide comprehensive, independent oversight of Department-wide environmental programs on behalf of the Secretary of Energy. The ultimate goal of EH-24 is enhancement of environmental protection and minimization of risk to public health and the environment. EH-24 accomplishes its mission by conducting systematic and periodic evaluations of the Department`s environmental programs within line organizations, and by utilizing supplemental activities that serve to strengthen self-assessment and oversight functions within program, field, and contractor organizations.

  13. Routine environmental reaudit of the Argonne National Laboratory - West

    International Nuclear Information System (INIS)

    1996-01-01

    This report documents the results of the Routine Environmental Reaudit of the Argonne National Laboratory - West (ANL-W), Idaho Falls, Idaho. During this audit, the activities conducted by the audit team included reviews of internal documents and reports from previous audits and assessments; interviews with U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), State of Idaho Department of Health and Welfare (IDHW), and DOE contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted from October 11 to October 22, 1993, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health (EH). DOE 5482.113, open-quotes Environment, Safety, and Health Appraisal Program,close quotes established the mission of EH-24 to provide comprehensive, independent oversight of Department-wide environmental programs on behalf of the Secretary of Energy. The ultimate goal of EH-24 is enhancement of environmental protection and minimization of risk to public health and the environment. EH-24 accomplishes its mission by conducting systematic and periodic evaluations of the Department's environmental programs within line organizations, and by utilizing supplemental activities that serve to strengthen self-assessment and oversight functions within program, field, and contractor organizations

  14. Argonne National Laboratory Site Environmental report for calendar year 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N. W.; Davis, T. M.; Moos, L. P.

    2010-08-04

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2009. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, Argonne, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy (DOE) dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's (EPA) CAP-88 Version 3 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  15. Argonne National Laboratory site environmental report for calendar year 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N. W.; Davis, T. M.; Moos, L. P.; ESH/QA Oversight

    2008-09-09

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2007. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's CAP-88 Version 3 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  16. Argonne National Laboratory site environmental report for calendar year 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N. W.; Kolzow, R. G.

    2005-09-02

    This report discusses the accomplishments of the environmental protection program at Argonne National Laboratory (ANL) for calendar year 2004. The status of ANL environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of ANL operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the ANL site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and ANL effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, ANL, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's CAP-88 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  17. Argonne National Laboratory site environmental report for calendar year 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N. W.; ESH/QA Oversight

    2007-09-13

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2006. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's CAP-88 Version 3 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  18. Environmental management in the National Power Corporation

    International Nuclear Information System (INIS)

    Petel, M.R.L.

    1996-01-01

    Environmental management in the National Power Corporation (NPC) is enshrined in the corporate charter. Environmental management practice can be traced back to the past purely hydroelectric power generation days, of the corporation. One good thing about nuclear power plant project of NPC, is that it required a formalization and documentation of environmental management, as part of the licensing procedure for the project. Thereafter, environmental management had been strengthened and institutionalized in the corporation. Succeeding years had also witnessed the escalation of the development and diversification of electricity generation sources, including the development of geothermal power, and to a small extent yet, renewable energy, such as wind power. The corporation has also intensified the installation of transmission lines of varying sizes in various locations and has gone, for now, for its internal needs, into telecommunications. With the anticipated further developments in the power sector, i.e., the ever increasing demand for power and the privitization of the power industry, new challenges loom in environmental management for the sector. The parallel developments in the environmental sciences and the collective experiences in power generation and environmental management, locally and abroad, will be very handy in meeting the challenges. The increasing stringency of environmental regulations and standards are also providing continuing challenges to all power utilities like NPC. Globally, the power scenario points towards challenging environmental management requirements, in view of the increasing complexity and gravity of environmental problems facing nations. NPC will still be a player in this scenario and therefore, will need to respond accordingly. (author)

  19. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2002-10-01

    No significant environmental problems were identified at the National Energy Technology Laboratory (NETL) sites in Morgantown (MGN), Pittsburgh (PGH), Tulsa (NPTO) and Fairbanks (AEO) during 2001. No radionuclides were released from the sites during 2001. The sites maintain two major environmental programs: waste management, and environmental media and release management. These two programs encompass waste handling, storage, and disposal, waste minimization and pollution prevention, air quality emissions, surface-water discharges, groundwater impacts, industrial wastewater discharges, and spill control procedures. The Morgantown and Pittsburgh sites currently maintain complete monitoring programs for groundwater, stormwater discharge, laboratory wastewater discharge, and meteorological data. In addition, an annual air emissions inventory is prepared. A comprehensive Directives Program aimed at managing environmental, safety, health requirements, and risks was initiated in 1997, continued through subsequent years, and will be completed in 2003. The primary objective of the program is to identify and implement standards that will protect the health and safety of workers, public, and the environment. This program started with a careful and thorough analysis of risks confronting workers and the communities surrounding NETL sites. Following this analysis, requirements and best management practices were evaluated to determine how requirements could best be used to advance the mission of NETL. Teams of subject-matter experts analyzed the work assigned to determine potential hazards and identify ways to remove or control those hazards. In 2001, NETL developed or revised a series of directives in two major areas: safety analysis and review (SAR) processes, and integrated safety management (ISM) directives. SAR directives were issued for research and development (R&D) operations, support operations, and facilities. ISM directives were released on management processes, such

  20. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2001

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2002-01-01

    No significant environmental problems were identified at the National Energy Technology Laboratory (NETL) sites in Morgantown (MGN), Pittsburgh (PGH), Tulsa (NPTO) and Fairbanks (AEO) during 2001. No radionuclides were released from the sites during 2001. The sites maintain two major environmental programs: waste management, and environmental media and release management. These two programs encompass waste handling, storage, and disposal, waste minimization and pollution prevention, air quality emissions, surface-water discharges, groundwater impacts, industrial wastewater discharges, and spill control procedures. The Morgantown and Pittsburgh sites currently maintain complete monitoring programs for groundwater, stormwater discharge, laboratory wastewater discharge, and meteorological data. In addition, an annual air emissions inventory is prepared. A comprehensive Directives Program aimed at managing environmental, safety, health requirements, and risks was initiated in 1997, continued through subsequent years, and will be completed in 2003. The primary objective of the program is to identify and implement standards that will protect the health and safety of workers, public, and the environment. This program started with a careful and thorough analysis of risks confronting workers and the communities surrounding NETL sites. Following this analysis, requirements and best management practices were evaluated to determine how requirements could best be used to advance the mission of NETL. Teams of subject-matter experts analyzed the work assigned to determine potential hazards and identify ways to remove or control those hazards. In 2001, NETL developed or revised a series of directives in two major areas: safety analysis and review (SAR) processes, and integrated safety management (ISM) directives. SAR directives were issued for research and development (R andD) operations, support operations, and facilities. ISM directives were released on management processes

  1. [The future of clinical laboratory database management system].

    Science.gov (United States)

    Kambe, M; Imidy, D; Matsubara, A; Sugimoto, Y

    1999-09-01

    To assess the present status of the clinical laboratory database management system, the difference between the Clinical Laboratory Information System and Clinical Laboratory System was explained in this study. Although three kinds of database management systems (DBMS) were shown including the relational model, tree model and network model, the relational model was found to be the best DBMS for the clinical laboratory database based on our experience and developments of some clinical laboratory expert systems. As a future clinical laboratory database management system, the IC card system connected to an automatic chemical analyzer was proposed for personal health data management and a microscope/video system was proposed for dynamic data management of leukocytes or bacteria.

  2. The science of laboratory and project management in regulated bioanalysis.

    Science.gov (United States)

    Unger, Steve; Lloyd, Thomas; Tan, Melvin; Hou, Jingguo; Wells, Edward

    2014-05-01

    Pharmaceutical drug development is a complex and lengthy process, requiring excellent project and laboratory management skills. Bioanalysis anchors drug safety and efficacy with systemic and site of action exposures. Development of scientific talent and a willingness to innovate or adopt new technology is essential. Taking unnecessary risks, however, should be avoided. Scientists must strategically assess all risks and find means to minimize or negate them. Laboratory Managers must keep abreast of ever-changing technology. Investments in instrumentation and laboratory design are critical catalysts to efficiency and safety. Matrix management requires regular communication between Project Managers and Laboratory Managers. When properly executed, it aligns the best resources at the right times for a successful outcome. Attention to detail is a critical aspect that separates excellent laboratories. Each assay is unique and requires attention in its development, validation and execution. Methods, training and facilities are the foundation of a bioanalytical laboratory.

  3. [Knowledge management system for laboratory work and clinical decision support].

    Science.gov (United States)

    Inada, Masanori; Sato, Mayumi; Yoneyama, Akiko

    2011-05-01

    This paper discusses a knowledge management system for clinical laboratories. In the clinical laboratory of Toranomon Hospital, we receive about 20 questions relevant to laboratory tests per day from medical doctors or co-medical staff. These questions mostly involve the essence to appropriately accomplish laboratory tests. We have to answer them carefully and suitably because an incorrect answer may cause a medical accident. Up to now, no method has been in place to achieve a rapid response and standardized answers. For this reason, the laboratory staff have responded to various questions based on their individual knowledge. We began to develop a knowledge management system to promote the knowledge of staff working for the laboratory. This system is a type of knowledge base for assisting the work, such as inquiry management, laboratory consultation, process management, and clinical support. It consists of several functions: guiding laboratory test information, managing inquiries from medical staff, reporting results of patient consultation, distributing laboratory staffs notes, and recording guidelines for laboratory medicine. The laboratory test information guide has 2,000 records of medical test information registered in the database with flexible retrieval. The inquiry management tool provides a methos to record all questions, answer easily, and retrieve cases. It helps staff to respond appropriately in a short period of time. The consulting report system treats patients' claims regarding medical tests. The laboratory staffs notes enter a file management system so they can be accessed to aid in clinical support. Knowledge sharing using this function can achieve the transition from individual to organizational learning. Storing guidelines for laboratory medicine will support EBM. Finally, it is expected that this system will support intellectual activity concerning laboratory work and contribute to the practice of knowledge management for clinical work support.

  4. Environmental Sciences Laboratory dedication, February 26-27, 1979

    International Nuclear Information System (INIS)

    Auerbach, S.I.; Millemann, N.T.

    1980-09-01

    The dedication of the new Environmental Sciences Laboratory coincided with the 25th year of the establishment of the science of ecology at Oak Ridge National Laboratory. That quarter century witnessed the evolution of ecology from an obscure, backwater discipline of biology to a broadly used, everyday household word. The transition reflected broad and basic changes in our social and cultural view of the world. This was brought about as a result of the awareness developed in our society of the importance of the environment, coupled with efforts of ecologists and other environmental scientists who identified, clarified, and formulated the issues and challenges of environmental protection for both the lay public and the scientific community. In many respects, the activities in ecology at ORNL were a microcosm of the broader social scene; the particular problems of the environment associated with atomic energy needed to be defined in scientific terms and articulated in both the specific and general sense for a larger audience which was unfamiliar with the field and somewhat alien to its concepts and philosophy. The success of this effort is reflected in the existence of the new Environmental Sciences Laboratory. This dedication volume brings together the thoughts and reflections of many of these scientists whose efforts contributed in a unique and individualistic fashion not only to ORNL but also to the national identification of ecology and its importance to the achievement of our national goals. Their remarks and presentations are not only a pleasant and personally gratifying recapitulation of the past and of ORNL's contributions to ecology but also portend some of the challenges to ecology in the future

  5. Environmental Sciences Laboratory dedication, February 26-27, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, S.I.; Millemann, N.T. (eds.)

    1980-09-01

    The dedication of the new Environmental Sciences Laboratory coincided with the 25th year of the establishment of the science of ecology at Oak Ridge National Laboratory. That quarter century witnessed the evolution of ecology from an obscure, backwater discipline of biology to a broadly used, everyday household word. The transition reflected broad and basic changes in our social and cultural view of the world. This was brought about as a result of the awareness developed in our society of the importance of the environment, coupled with efforts of ecologists and other environmental scientists who identified, clarified, and formulated the issues and challenges of environmental protection for both the lay public and the scientific community. In many respects, the activities in ecology at ORNL were a microcosm of the broader social scene; the particular problems of the environment associated with atomic energy needed to be defined in scientific terms and articulated in both the specific and general sense for a larger audience which was unfamiliar with the field and somewhat alien to its concepts and philosophy. The success of this effort is reflected in the existence of the new Environmental Sciences Laboratory. This dedication volume brings together the thoughts and reflections of many of these scientists whose efforts contributed in a unique and individualistic fashion not only to ORNL but also to the national identification of ecology and its importance to the achievement of our national goals. Their remarks and presentations are not only a pleasant and personally gratifying recapitulation of the past and of ORNL's contributions to ecology but also portend some of the challenges to ecology in the future.

  6. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2003-01-01

    This Site Environmental Report was prepared by the Environmental, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at NETL sites in Morgantown (MGN), West Virginia, Pittsburgh (PGH), Pennsylvania, Tulsa, Oklahoma, and Fairbanks, Alaska. This report contains the most accurate information that could be collected during the period between January 1, 2002, and December 31, 2002. As stated in DOE Orders 450.1 and 231.1, the purpose of the report is to: (1) Characterize site environmental management performance. (2) Confirm compliance with environmental standards and requirements. (3) Highlight significant facility programs and efforts

  7. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2003-10-30

    This Site Environmental Report was prepared by the Environmental, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at NETL sites in Morgantown (MGN), West Virginia, Pittsburgh (PGH), Pennsylvania, Tulsa, Oklahoma, and Fairbanks, Alaska. This report contains the most accurate information that could be collected during the period between January 1, 2002, and December 31, 2002. As stated in DOE Orders 450.1 and 231.1, the purpose of the report is to: (1) Characterize site environmental management performance. (2) Confirm compliance with environmental standards and requirements. (3) Highlight significant facility programs and efforts.

  8. Environmental Management System Objectives & Targets Results Summary - FY 2015.

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, Douglas W

    2016-02-01

    Sandia National Laboratories (SNL) Environmental Management System is the integrated approach for members of the workforce to identify and manage environmental risks. Each Fiscal Year (FY) SNL performs an analysis to identify environmental aspects, and the environmental programs associated with them are charged with the task of routinely monitoring and measuring the objectives and targets that are established to mitigate potential impacts of SNL's operations on the environment. An annual summary of the results achieved towards meeting established Sandia Corporation and SNL Site-specific objectives and targets provides a connection to, and rational for, annually revised environmental aspects. The purpose of this document is to summarize the results achieved and documented in FY 2015.

  9. Environmental Sciences Division Toxicology Laboratory standard operating procedures

    International Nuclear Information System (INIS)

    Kszos, L.A.; Stewart, A.J.; Wicker, L.F.; Logsdon, G.M.

    1989-09-01

    This document was developed to provide the personnel working in the Environmental Sciences Division's Toxicology Laboratory with documented methods for conducting toxicity tests. The document consists of two parts. The first part includes the standard operating procedures (SOPs) that are used by the laboratory in conducting toxicity tests. The second part includes reference procedures from the US Environmental Protection Agency document entitled Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, upon which the Toxicology Laboratory's SOPs are based. Five of the SOPs include procedures for preparing Ceriodaphnia survival and reproduction test. These SOPs include procedures for preparing Ceriodaphnia food (SOP-3), maintaining Ceriodaphnia cultures (SOP-4), conducting the toxicity test (SOP-13), analyzing the test data (SOP-13), and conducting a Ceriodaphnia reference test (SOP-15). Five additional SOPs relate specifically to the fathead minnow (Pimephales promelas) larval survival and growth test: methods for preparing fathead minnow larvae food (SOP-5), maintaining fathead minnow cultures (SOP-6), conducting the toxicity test (SOP-9), analyzing the test data (SOP-12), and conducting a fathead minnow reference test (DOP-14). The six remaining SOPs describe methods that are used with either or both tests: preparation of control/dilution water (SOP-1), washing of glassware (SOP-2), collection and handling of samples (SOP-7), preparation of samples (SOP-8), performance of chemical analyses (SOP-11), and data logging and care of technical notebooks (SOP-16)

  10. Ames Laboratory Site Environmental Report, Calendar year 1992

    International Nuclear Information System (INIS)

    1992-01-01

    The summarized data and conclusions from the Ames Laboratory environmental monitoring program are presented in this Annual Site Environmental Report. Pollution awareness and waste minimization programs and plans implemented in 1990 are continuing to date. Ames Laboratory (AL) is responsible for a small chemical burial site, located on ISU property. The site was used for the disposal of chemical and metal slags from thorium and uranium production. Samples of water from existing test wells, and upstream and downstream sites on the nearby Squaw Creek, have not detected migration of the buried materials off site. Surface, hand auger and deep boring soil samples have been collected from the site. The analytical results are pending, Six new monitoring wells have been installed and sampled. Analytical results are pending. Ames Laboratory is responsible for an area contaminated by diesel fuel that leaked from an underground storage tank (UST) in 1970. The tank was removed that year. Soil borings and groundwater have been analyzed for contamination and a preliminary assessment written. Nine small inactive waste sites have been identified for characterization. The NEPA review for this work resulted in a CX determination. The work plans were approved by AL and CH. A subcontractor has surveyed and sampled the sites. Analytical results are pending

  11. US - Former Soviet Union environmental management activities

    International Nuclear Information System (INIS)

    1995-09-01

    The Office of Environmental Management (EM) has been delegated the responsibility for US DOE's cleanup of nuclear weapons complex. The nature and the magnitude of the waste management and environmental remediation problem requires the identification of technologies and scientific expertise from domestic and foreign sources. This booklet makes comparisons and describes coordinated projects and workshops between the USA and the former Soviet Union

  12. Environmental Management Performance Report 11/1999

    Energy Technology Data Exchange (ETDEWEB)

    EDER, D.M.

    2000-02-01

    The purpose of the Environmental Management Performance Report (EMPR) is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's Environmental Management performance by: US Department of Energy, Richland Operation

  13. Environmental management systems in South Africa

    DEFF Research Database (Denmark)

    Jørgensen, Tine Herreborg; Smink, Carla

    2004-01-01

    The article presents som empirical findings regarding environmental management systems of four companies in the automotive industry in South Africa.......The article presents som empirical findings regarding environmental management systems of four companies in the automotive industry in South Africa....

  14. Application of remote sensing to environmental management

    Energy Technology Data Exchange (ETDEWEB)

    Handley, J F

    1980-01-01

    The contribution of remote sensing to environmental management procedures at the sub-regional scale is examined in relation to the County Structure environmental management plan for Merseyside County, England. The various seasons, scales and emulsions used for aerial photography in the county are indicated, and results of aerial surveys of the distribution of derelict and despoiled land and of natural environments are presented and compared with ground surveys. The use of color infrared and panchromatic aerial photographs indicating areas of environmental stress and land use in the formulation, implementation and monitoring of environmental management activities is then discussed.

  15. Environmental conflicts: Key issues and management implications ...

    African Journals Online (AJOL)

    Environmental crises and problems throughout the world are widespread and increasing rapidly. In relation to these concerns, the article discusses the following aspects: people and the environment, environmental conflicts, climate change and environmental conflicts, and management implications. The section on people ...

  16. Establishment of a clean chemistry laboratory at JAERI. Clean laboratory for environmental analysis and research (CLEAR)

    Energy Technology Data Exchange (ETDEWEB)

    Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    2003-02-01

    The JAERI has established a facility with a cleanroom: the Clean Laboratory for Environmental Analysis and Research (CLEAR). This report is an overview of the design, construction and performance evaluation of the CLEAR in the initial stage of the laboratory operation in June 2001. The CLEAR is a facility to be used for analyses of ultra trace amounts of nuclear materials in environmental samples for the safeguards, for the CTBT verification and for researches on environmental sciences. One of the special features of the CLEAR is that it meets double requirements of a cleanroom and for handling of nuclear materials. As another feature of the CLEAR, much attention was paid to the construction materials of the cleanroom for trace analysis of metal elements using considerable amounts of corrosive acids. The air conditioning and purification system, specially designed experimental equipment to provide clean work surfaces, utilities and safety systems are also demonstrated. The potential contamination from the completed cleanroom atmosphere during the analytical procedure was evaluated. It can be concluded that the CLEAR has provided a suitable condition for reliable analysis of ultra trace amounts of nuclear materials and other heavy elements in environmental samples. (author)

  17. Sequim Marine Research Laboratory routine environmental measurements during CY-1977

    International Nuclear Information System (INIS)

    Fix, J.J.; Blumer, P.J.

    1978-06-01

    Beginning in 1976, a routine environmental program was established at the Marine Research Laboratory (MRL) at Sequim, Washington. The program is intended to demonstrate the negligible impact of current MRL operations on the surrounding environs and to provide baseline data through which any cumulative impact could be detected. The sampling frequency is greater during the first 2 years of the program to provide sufficient initial information to allow reliable estimates of observed radionuclide concentrations and to construct a long-term sampling program. The program is designed, primarily, to determine levels of radioactivity present in selected biota in Sequim Bay. The biota were selected because of their presence near the laboratory and their capacity to concentrate trace elements. Other samples were obtained to determine the radionuclides in Sequim Bay and laboratory drinking water, as well as the ambient radiation exposure levels and surface deposition of fallout radionuclides for the laboratory area. Appendix A provides a summary of the analytical methods used. The present document includes data obtained during CY 1977 in addition to CY-1976 data published previously

  18. Development of the environmental data management system

    International Nuclear Information System (INIS)

    Tatebe, Kazuaki; Suzuki, Yurina; Shirato, Seiichi; Sato, Yoshinori

    2012-02-01

    The recent society requires business activities with environmental consideration to every enterprise. Also, Japanese laws require those activities. For example, 'Law Concerning the Promotion of Business Activities with Environmental Consideration by Specified Corporations, etc, by Facilitating Access to Environmental Information, and Other Measures' (Environmental Consideration Law) mandates publication of a report relating to the activities of environmental consideration to each enterprise above designated size. 'Act on the Rational Use of Energy' mandates the report of the results of energy consumption and the long-term plan of the rational use of energy. Moreover, 'Act on Promotion of Global Warming Countermeasures' mandates the report of the greenhouse gas emissions. In addition to those, 'Water Pollution Control Law', 'Waste Management and Public Cleaning Law' and other environmental laws as well as environmental ordinances require business activities with environmental consideration to all companies. So, it is very important for Japan Atomic Energy Agency (JAEA) to report business activities with environmental consideration in order to build up trustful relations with the nation and communities. The Environmental Data Management System has been developed as the data base of business activities with environmental consideration in JAEA and as the means to promote the activities at every site and office of JAEA. This report summarizes the structure of the Environmental Data Management System, kinds of environmental performance data treated by the system, and gathering methods of the data. (author)

  19. 1998 Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D.K.; Fink, C.H.; Sanchez, R.V.

    1999-09-01

    Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the US Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs. SNL/NM also conducts fundamental research and development to advance technology in energy research, computer science, waste management, microelectronics, materials science, and transportation safety for hazardous and nuclear components. In support of SNL's mission, the Environment, Safety and Health (ES&H) Center and the Environmental Restoration (ER) Project at SNL/NM have established extensive environmental programs to assist SNL's line organizations in meeting all applicable local, State, and Federal environmental regulations and DOE requirements. This annual report for calendar year 1998 (CY98) summarizes the compliance status of environmental regulations applicable to SNL site operations. Environmental program activities include terrestrial surveillance; ambient air and meteorological monitoring hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental remediation; oil and chemical spill prevention; and National Environmental Policy Act (NEPA) activities. This report has been prepared in compliance with DOE Order 5400.1, General Environmental Protection Program (DOE 1990).

  20. Common ground: An environmental ethic for Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, F.L.

    1991-01-01

    Three predominant philosophies have characterized American business ethical thinking over the past several decades. The first phase is the ethics of self-interest'' which argues that maximizing self-interest coincidentally maximizes the common good. The second phase is legality ethics.'' Proponents argue that what is important is knowing the rules and following them scrupulously. The third phase might be called stake-holder ethics.'' A central tenant is that everyone affected by a decision has a moral hold on the decision maker. This paper will discuss one recent initiative of the Los Alamos National Laboratory to move beyond rules and regulations toward an environmental ethic that integrates the values of stakeholder ethics'' into the Laboratory's historical culture and value systems. These Common Ground Principles are described. 11 refs.