WorldWideScience

Sample records for environmental management laboratory

  1. MDOT Materials Laboratories : Environmental Management Plan

    Science.gov (United States)

    2012-06-01

    The goal of this EMP was to develop and implement a comprehensive Environmental : Management Plan for MDOT Materials Laboratories. This goal was achieved through : perfonnance of environmental audits to identify potential environmental impacts, and b...

  2. 40 CFR 262.103 - What is the scope of the laboratory environmental management standard?

    Science.gov (United States)

    2010-07-01

    ... environmental management standard? 262.103 Section 262.103 Protection of Environment ENVIRONMENTAL PROTECTION... University Laboratories XL Project-Laboratory Environmental Management Standard § 262.103 What is the scope of the laboratory environmental management standard? The Laboratory Environmental Management Standard...

  3. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    2009-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia

  4. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  5. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories

  6. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2013-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  7. Sandia National Laboratories, California Environmental Management System program manual

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2014-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  8. Scientific data management in the environmental molecular sciences laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, P.R.; Keller, T.L.

    1995-09-01

    The Environmental Molecular Sciences Laboratory (EMSL) is currently under construction at Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy (DOE). This laboratory will be used for molecular and environmental sciences research to identify comprehensive solutions to DOE`s environmental problems. Major facilities within the EMSL include the Molecular Sciences Computing Facility (MSCF), a laser-surface dynamics laboratory, a high-field nuclear magnetic resonance (NMR) laboratory, and a mass spectrometry laboratory. The EMSL is scheduled to open early in 1997 and will house about 260 resident and visiting scientists. It is anticipated that at least six (6) terabytes of data will be archived in the first year of operation. An object-oriented database management system (OODBMS) and a mass storage system will be integrated to provide an intelligent, automated mechanism to manage data. The resulting system, called the DataBase Computer System (DBCS), will provide total scientific data management capabilities to EMSL users. A prototype mass storage system based on the National Storage Laboratory`s (NSL) UniTree has been procured and is in limited use. This system consists of two independent hierarchies of storage devices. One hierarchy of lower capacity, slower speed devices provides support for smaller files transferred over the Fiber Distributed Data Interface (FDDI) network. Also part of the system is a second hierarchy of higher capacity, higher speed devices that will be used to support high performance clients (e.g., a large scale parallel processor). The ObjectStore OODBMS will be used to manage metadata for archived datasets, maintain relationships between archived datasets, and -hold small, duplicate subsets of archived datasets (i.e., derivative data). The interim system is called DBCS, Phase 0 (DBCS-0). The production system for the EMSL, DBCS Phase 1 (DBCS-1), will be procured and installed in the summer of 1996.

  9. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Irving, John S

    2003-04-01

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  10. Environmental Resource Management Issues in Agronomy: A Lecture/Laboratory Course

    Science.gov (United States)

    Munn, D. A.

    2004-01-01

    Environmental Sciences Technology T272 is a course with a laboratory addressing problems in soil and water quality and organic wastes utilization to serve students from associate degree programs in laboratory science and environmental resources management at a 2-year technical college. Goals are to build basic lab skills and understand the role…

  11. 40 CFR 262.105 - What must be included in the laboratory environmental management plan?

    Science.gov (United States)

    2010-07-01

    ... compliance, waste minimization, risk reduction and continual improvement of the environmental management... its compliance with the Environmental Management Plan and applicable federal and state hazardous waste... laboratory environmental management plan? 262.105 Section 262.105 Protection of Environment ENVIRONMENTAL...

  12. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment - April 2003

    Energy Technology Data Exchange (ETDEWEB)

    Irving, J.S.

    2003-04-30

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  13. Environmental management assessment of the Lawrence Livermore National Laboratory Livermore, California

    International Nuclear Information System (INIS)

    1994-06-01

    This report documents the results of the Environmental Management Assessment performed at the Lawrence Livermore National Laboratory (LLNL), Livermore, CA. LLNL is operated by the University of California (UC) under contract with the U.S. Department of Energy (DOE). Major programs at LLNL include research, development, and test activities associated with the nuclear design aspects of the nuclear weapons life cycle and related national security tasks; inertial confinement fusion; magnetic fusion energy; biomedical and environmental research; laser isotope separation; energy-related research; beam research physics; and support to a variety of Defense and other Federal agencies. During this assessment, activities and records were reviewed and interviews were conducted with personnel from management and operating contractor, Lawrence Livermore National Laboratory; DOE Oakland Operations Office; and DOE Headquarters Program Offices, including the Office of Defense Programs, Office of Environmental Management, the Office of Nuclear Energy, and the Office of Energy Research. The onsite portion was conducted in June 1994, by the DOE Office of Environmental Audit. The goal of EH-24 is enhancement of environmental protection and minimization of risk to public health and the environment. EH-24 accomplishes its mission using systematic and periodic evaluations of DOE's environmental programs within line organizations, and through use of supplemental activities that strengthen self-assessment and oversight functions within program, field, and contractor organizations. The Environmental Management Assessment of LLNL revealed that LLNL's environmental program is exemplary within the DOE complex and that all levels of LLNL management and staff consistently exhibit a high level of commitment to achieve environmental excellence

  14. Management of clandestine drug laboratories: need for evidence-based environmental health policies.

    Science.gov (United States)

    Al-Obaidi, Tamara A; Fletcher, Stephanie M

    2014-01-01

    Clandestine drug laboratories (CDLs) have been emerging and increasing as a public health problem in Australia, with methamphetamine being the dominant illegally manufactured drug. However, management and remediation of contaminated properties are still limited in terms of regulation and direction, especially in relation to public and environmental health practice. Therefore, this review provides an update on the hazards and health effects associated with CDLs, with a specific look at the management of these labs from an Australian perspective. Particularly, the paper attempts to describe the policy landscape for management of CDLs, and identifies current gaps and how further research may be utilised to advance understanding and management of CDLs and inform public health policies. The paper highlights a significant lack of evidence-based policies and guidelines to guide regulatory authority including environmental health officers in Australia. Only recently, the national Clandestine Drug Laboratory Guidelines were developed to assist relevant authority and specialists manage and carry out investigations and remediation of contaminated sites. However, only three states have developed state-based guidelines, some of which are inadequate to meet environmental health requirements. The review recommends well-needed inter-sectoral collaborations and further research to provide an evidence base for the development of robust policies and standard operating procedures for safe and effective environmental health management and remediation of CDLs.

  15. Environmental education for hazardous waste management and risk reduction in laboratories

    Directory of Open Access Journals (Sweden)

    Tomas Rafael Pierre Martinez

    2013-10-01

    Full Text Available The University laboratories are places where teaching, extension and research activities are develop, which harmful substances are manipulated and hazardous waste are generated, the lack of information about this makes them an inadequate provision causing human health and environmental risks. This research proposes the implementation of environmental education as an alternative for waste management and safety in the University of Magdalena laboratories. Applying a series of polls showed the effectiveness with efficiency or assertively rises at 30% cognitive level during the process. It recommends to obtain better results is necessary evaluate the ethic component.  

  16. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes

  17. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes

  18. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement

    International Nuclear Information System (INIS)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes

  19. Environmental Management Plan for the Chemical Engineering Laboratory (LIQ of the National University of Colombia, Bogotá

    Directory of Open Access Journals (Sweden)

    Javier Gama Chávez

    2004-01-01

    Full Text Available An Enviromental Management Plan was formulated with the objective of improving the environmental performance of the Chemical Engineering Laboratory (LIQ. The plan was supported on the principles established by the ISO 140001 standard. In a first step, an environmental politic was proposed. Next, by means of an initial review of the laboratory, the most significant impacts related to the activities developed in the Laboratory were identified: dangerous chemical wastes accumulation, water contamination by effusions generation and air contamination. These impacts were the base for formulating following and control programs, furthermire, a training an communication program was done. All the programs, including the requiered documents and procedures, were published in the Environmental Management Plan and the Environmental Procedures Manual.

  20. 78 FR 58294 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Science.gov (United States)

    2013-09-23

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  1. 77 FR 65374 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Science.gov (United States)

    2012-10-26

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  2. 77 FR 53192 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Science.gov (United States)

    2012-08-31

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  3. 78 FR 30910 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Science.gov (United States)

    2013-05-23

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  4. 77 FR 76475 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Science.gov (United States)

    2012-12-28

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  5. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  6. Lawrence Berkeley Laboratory 1994 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  7. Lawrence Berkeley Laboratory 1993 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This annual Site Environmental Report summarizes Lawrence Berkeley Laboratory`s (LBL`s) environmental activities in calendar year (CY) 1993. The purpose of this report is to characterize site environmental management performance, confirm compliance status with environmental standards and requirements, and highlight significant programs and efforts. Its format and content are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  8. Quality management in environmental programs: Los Alamos National Laboratory's approach

    International Nuclear Information System (INIS)

    Maassen, L.; Day, J.L.

    1998-03-01

    Since its inception in 1943, Los Alamos National Laboratory's (LANL's) primary mission has been nuclear weapons research and development, which involved the use of hazardous and radioactive materials, some of which were disposed of onsite. LANL has established an extensive Environmental Restoration Project (Project) to investigate and remediate those hazardous and radioactive waste disposal sites. This paper describes LANL's identification and resolution of critical issues associated with the integration and management of quality in the Project

  9. Environmental Compliance Management System

    International Nuclear Information System (INIS)

    Brownson, L.W.; Krsul, T.; Peralta, R.A.; Knudson, D.A.; Rosignolo, C.L.

    1992-01-01

    Argonne National Laboratory (ANL) is developing the Environmental Compliance Management System (ECMS) as a comprehensive, cost-effective tool to ensure (1) that the Laboratory complies with all applicable federal and state environmental laws and regulations, (2) that environmental issues and concerns are recognized and considered in the early phases of projects; and (3) that Laboratory personnel conduct Laboratory operations in the most environmentally acceptable manner. The ECMS is an expert computer system which is designed to allow project engineers to perform an environmental evaluation of their projects. The system includes a Master Program which collects basic project information, provide utility functions, and access the environmental expert modules, environmental expert system modules for each federal and state environmental law which allows the user to obtain specific information on how an individual law may affect his project; and site-specific databases which contain information necessary for effective management of the site under environmental regulations. The ECMS will have the capability to complete and print many of the necessary environmental forms required by federal and state agencies, including the Department of Energy

  10. Environmental Management Plan for the Chemical Engineering Laboratory (LIQ) of the National University of Colombia, Bogotá

    OpenAIRE

    Javier Gama Chávez; Martha Lozano García; Paulo César Narváez Rincón; Óscar Javier Suárez Medina

    2004-01-01

    An Enviromental Management Plan was formulated with the objective of improving the environmental performance of the Chemical Engineering Laboratory (LIQ). The plan was supported on the principles established by the ISO 140001 standard. In a first step, an environmental politic was proposed. Next, by means of an initial review of the laboratory, the most significant impacts related to the activities developed in the Laboratory were identified: dangerous chemical wastes accumulation, water cont...

  11. Comprehensive Environmental Management Process

    International Nuclear Information System (INIS)

    Hjeresen, D.L.; Roybal, S.L.

    1994-01-01

    This report contains information about Los Alamos National Laboratory's Comprehensive Environmental Management Plan. The topics covered include: waste minimization, waste generation, environmental concerns, public relations of the laboratory, and how this plan will help to answer to the demands of the laboratory as their mission changes

  12. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities

  13. Laboratory performance evaluation reports for management

    International Nuclear Information System (INIS)

    Lindahl, P.C.; Hensley, J.E.; Bass, D.A.; Johnson, P.L.; Marr, J.J.; Streets, W.E.; Warren, S.W.; Newberry, R.W.

    1995-01-01

    In support of the US DOE's environmental restoration efforts, the Integrated Performance Evaluation Program (IPEP) was developed to produce laboratory performance evaluation reports for management. These reports will provide information necessary to allow DOE headquarters and field offices to determine whether or not contracted analytical laboratories have the capability to produce environmental data of the quality necessary for the remediation program. This document describes the management report

  14. Overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Smith, T.H.; Hedahl, T.G.; Wiersma, G.B.; Chew, E.W.; Mann, L.J.; Pointer, T.F.

    1986-02-01

    The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the US Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological and Environmental Sciences Laboratory (RESL), the US Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG and G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities is integrated with the overall INEL Site surveillance program. Air, water, soil, biota, and environmental radiation are monitored or sampled routinely at the INEL. Results to date indicate very small or no impacts from the INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL. 7 refs., 6 figs., 2 tabs

  15. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures

  16. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  17. Region 7 Laboratory Information Management System

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is metadata documentation for the Region 7 Laboratory Information Management System (R7LIMS) which maintains records for the Regional Laboratory. Any Laboratory...

  18. Proposals for the mitigation of the environmental impact of clinical laboratories.

    Science.gov (United States)

    Lopez, Joseph B; Badrick, Tony

    2012-03-24

    Laboratories should be aware of the carbon footprint resulting from their activities and take steps to mitigate it as part of their societal responsibilities. Once committed to a mitigation programme, they should announce an environmental policy, secure the support of senior management, initiate documentation, institute a staff training programme, schedule environmental audits and appoint an environmental manager. Laboratories may aspire to be accredited to one of the standards for environmental management, such as the ISO 14000. As environmental and quality issues are linked, the improvement in the environmental management of an organisation will ultimately lead to improved quality system performance. Indeed, environmental management could conceivably come under overall quality management. Although there will be initial costs, good environmental practices can bring savings. Environmental improvement should be based on the 3R concept to reduce, reuse and recycle. Several policy initiatives may be introduced. These include a green purchasing policy for equipment, laboratory furniture and reagents as well as the management of packaging wastes. There are several ways to reduce energy, water usage and wastage. A reduction of test numbers and collection tubes should be attempted. Paper management involves all aspects of 3R. The recycling of solvents and general wastes should be practised where feasible. The construction new laboratories or renovations to existing ones are opportunities to make them more environmentally-friendly. The advocacy of policies to associates and the inclusion of environmentally-friendly conditions on contractors are integral parts of the programme.

  19. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.J.; Morris, S. III; Baum, J.W. [and others

    1998-03-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

  20. Lawrence Berkeley Laboratory 1994 site environmental report

    International Nuclear Information System (INIS)

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory's environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program

  1. A Decade of Experience in Implementing Quality Management System at Radiochemistry and Environmental Laboratory (RAS)

    International Nuclear Information System (INIS)

    Norfaizal Mohamed; Nita Salina Abu Bakar; Zal U'yun Wan Mahmood; Wo, Y.M.; Abdul Kadir Ishak; Nurrul Assyikeen Md Jaffary; Noor Fadzilah Yusof

    2016-01-01

    Quality management system has been introduced to a few laboratories in the Malaysian Nuclear Agency (Nuclear Malaysia) for the purpose to enhance the delivery of quality services to customers. Radiochemistry and Environmental Laboratory (RAS) is a service center in Nuclear Malaysia has implemented a quality management system in procedures carried out and has obtained accreditation for MS ISO/ IEC 17025 since 8 December 2005. This paper is intended to share experiences RAS in implementing a quality management system in accordance with standard MS ISO/ IEC 17025 accreditation and managed to keep it to this day. In addition, the RAS achievements including issues and challenges in implementing the quality management system in the past 10 years will also be discussed. (author)

  2. An overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory

    Science.gov (United States)

    Smith, T.H.; Chew, E.W.; Hedahl, T.G.; Mann, L.J.; Pointer, T.F.; Wiersma, G.B.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the U.S. Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological Environmental Sciences Laboratory (RESL), and the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG&G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities radiation is integrated with the overall INEL Site surveillance program. Air, warer, soil, biota, and environmental radiation are monitored or sampled routinely at INEL. Results to date indicate very small or no impacts from INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL.

  3. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.J.; Morris, S.C. III; Baum, J.W. [and others

    1998-01-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique. This document contains the Appendices for the report.

  4. Final Environmental Impact Statement/Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains the Final EIS/EIR technical appendices which provide technical support for the analyses in Volume 1 and also provide additional information and references

  5. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement

    International Nuclear Information System (INIS)

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel

  6. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  7. Ensuring comparability of data generated by multiple analytical laboratories for environmental decision making at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Sutton, C.; Campbell, B.A.; Danahy, R.J.; Dugan, T.A.; Tomlinson, F.K.

    1994-01-01

    The Fernald Environmental Management Project is a US Department of Energy (DOE)-owned facility located 17 miles northwest of Cincinnati, Ohio. From 1952 until 1989, the Fernald site provided high-purity uranium metal products to support US defense programs. In 1989 the mission of Fernald changed from one of uranium production to one of environmental restoration. At Fernald, multiple functional programs require analytical data. Inorganic and organic data for these programs are currently generated by seven laboratories, while radiochemical data are being obtained from six laboratories. Quality Assurance (QA) and Quality Control (QC) programs have been established to help ensure comparability of data generated by multiple laboratories at different times. The quality assurance program for organic and inorganic measurements specifies which analytical methodologies and sample preparation procedures are to be used based on analyte class, sample matrix, and data quality requirements. In contrast, performance specifications have been established for radiochemical analyses. A blind performance evaluation program for all laboratories, both on-site and subcontracted commercial laboratories, provides continuous feedback on data quality. The necessity for subcontractor laboratories to participate in the performance evaluation program is a contractual requirement. Similarly, subcontract laboratories are contractually required to generate data which meet radiochemical performance specifications. The Fernald on-site laboratory must also fulfill these requirements

  8. Environmental surveillance for EG ampersand G Idaho Waste Management facilities at the Idaho National Engineering Laboratory. 1993 annual report

    International Nuclear Information System (INIS)

    Wilhelmsen, R.N.; Wright, K.C.; McBride, D.W.; Borsella, B.W.

    1994-08-01

    This report describes calendar year 1993 environmental surveillance activities of Environmental Monitoring of EG ampersand G Idaho, Inc., performed at EG ampersand G Idaho operated Waste Management facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are results of the sampling performed by the Radiological and Environmental Sciences Laboratory and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1993 environmental surveillance data with US Department of Energy derived concentration guides and with data from previous years

  9. Annual report -- 1992: Environmental surveillance for EG ampersand G Idaho Waste Management Facilities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wilhelmsen, R.N.; Wright, K.C.; McBride, D.W.

    1993-08-01

    This report describes the 1992 environmental surveillance activities of the Environmental Monitoring Unit of EG ampersand G Idaho, Inc., at EG ampersand G Idaho-operated Waste Management facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are some results of the sampling performed by the Radiological and Environmental Sciences Laboratory and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1992 environmental surveillance data with DOE derived concentration guides, and with data from previous years

  10. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains copies of the written comments and transcripts of individual statements at the public hearing and the responses to them

  11. Environmental Audit of the Environmental Measurements Laboratory (EML)

    International Nuclear Information System (INIS)

    1992-02-01

    This document contains the findings identified during the Environmental Audit of the Environmental Measurements Laboratory (EML), conducted from December 2 to 13, 1991. The Audit included the EML facility located in a fifth-floor General Services Administration (GSA) office building located in New York City, and a remote environmental monitoring station located in Chester, New Jersey. The scope of this Environmental Audit was comprehensive, covering all areas of environmental activities and waste management operations, with the exception of the National Environmental Policy Act (NEPA), which is the responsibility of the DOE Headquarters Office of NEPA Oversight. Compliance with applicable Federal, state, and local requirements; applicable DOE Orders; and internal facility requirements was addressed

  12. Environmental Quality Laboratory Research Report, 1985-1987

    OpenAIRE

    Brooks, Norman H.

    1988-01-01

    The Environmental Quality Laboratory at Caltech is a center for research on large-scale systems problems of natural resources and environmental quality. The principal areas of investigation at EQL are: 1. Air quality management. 2. Water resources and water quality management. 3. Control of hazardous substances in the environment. 4. Energy policy, including regulation, conservation and energy-environment tradeoffs. 5. Resources policy (other than energy); residuals m...

  13. Waste management/waste certification plan for the Oak Ridge National Laboratory Environmental Restoration Program

    International Nuclear Information System (INIS)

    Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.

    1995-03-01

    This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency's (EPA's) guidance. Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created

  14. Laboratory interface in support of Environmental Restoration Programs

    International Nuclear Information System (INIS)

    Pardue, G.J. Jr.

    1994-01-01

    A vital part of quality environmental data resides in the communication between the project and the analytical laboratory. It is essential that the project clearly identify its objectives to the laboratory and that the laboratory understands the scope and limitations of the analytical process. Successful completion of an environmental project must include an aggressive program between project managers and subcontracted Lyrical laboratories. All to often, individuals and organizations tend to deflect errors and failures observed in environmental toward open-quotes the other guyclose quotes. The engineering firm will blame the laboratory, the laboratory will blame the field operation, the field operation will blame the engineering, and everyone will blame the customer for not understanding the true variables in the environmental arena. It is the contention of the authors, that the majority of failures derive from a lack of communication and misunderstanding. Several initiatives can be taken to improve communication and understanding between the various pieces of the environmental data quality puzzle. This presentation attempts to outline mechanisms to improve communication between the environmental project and the analytical laboratory with the intent of continuous quality improvement. Concepts include: project specific laboratory statements of work which focus on project and program requirements; project specific analytical laboratory readiness reviews (project kick-off meetings); laboratory team workshops; project/program performance tracking and self assessment and promotion of team success

  15. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains the Final EIS/EIR, which in part relies on the detailed information in the appendices, and comprehensively discusses the proposed action, the alternatives, and the existing conditions and impacts of the proposed action and the alternatives

  16. Comprehensive Environmental Management Plan

    International Nuclear Information System (INIS)

    Hjeresen, D.L.

    1994-01-01

    The Environmental Management Program at Los Alamos National Laboratory is in the process of initiating and then implementing a Comprehensive Environmental Management Plan (CEMP). There are several environmental impact and compliance drivers for this initiative. The Los Alamos CEMP is intended to be a flexible, long-range process that predicts, minimizes, treats, and disposes of any waste generated in execution of the Los Alamos mission - even if that mission changes. The CEMP is also intended to improve stakeholder and private sector involvement and access to environmental information. The total quality environmental management (TQEM) process will benchmark Los Alamos to private sector and DOE operations, identify opportunities for improvement, prioritize among opportunities, implement projects, measure progress, and spur continuous improvement in Environmental Management operations

  17. IPEP: Laboratory performance evaluation reports for management of DOE EM programs

    International Nuclear Information System (INIS)

    Hensley, J.E.; Lindahl, P.C.; Streets, W.E.

    1995-01-01

    Environmental restoration program/project managers at DOE's Office of Environmental Management (EM) are making important decisions based on analytical data generated by contracted laboratories. The Analytical Services Division, EM-263, is developing the Integrated Performance Evaluation Program (IPEP) to assess the performance of those laboratories, based on results from Performance Evaluation (PE) programs. The IPEP reports will be used by the laboratories to foster self-assessment and improvement. In addition, IPEP will produce PE reports for three levels of EM management (Operations/Project Offices, Area Program Offices, and Deputy Assistant Secretary Office). These reports will be used to assess whether contracted analytical laboratories have the capability to produce environmental data of the quality necessary for making environmental restoration and waste management decisions

  18. Environmental Measurements Laboratory fiscal year 1998: Accomplishments and technical activities

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, M.D.

    1999-01-01

    The Environmental Measurements Laboratory (EML) is government-owned, government-operated, and programmatically under the DOE Office of Environmental Management. The Laboratory is administered by the Chicago Operations Office. EML provides program management, technical assistance and data quality assurance for measurements of radiation and radioactivity relating to environmental restoration, global nuclear nonproliferation, and other priority issues for the Department of Energy, as well as for other government, national, and international organizations. This report presents the technical activities and accomplishments of EML for Fiscal Year 1998.

  19. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part B

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities.

  20. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    Volume 1 to the Department of Energy's Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site

  1. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    The US Department of Energy (DOE) is currently deciding the direction of its environmental restoration and waste management programs at the Idaho National Engineering Laboratory (INEL) for the next 10 years. Pertinent to this decision is establishing policies for the environmentally sensitive and safe transport, storage, and management of spent nuclear fuels. To develop these policies, it is necessary to revisit or examine the available options. As a part of the DOE complex, the Hanford Site not only has a large portion of the nationwide DOE-owned inventory of spent nuclear fuel, but also is a participant in the DOE decision for management and ultimate disposition of spent nuclear fuel. Efforts in this process at Hanford include assessment of several options for stabilizing, transporting, and storing all or portions of DOE-owned spent nuclear fuel at the Hanford Site. Such storage and management of spent nuclear fuel will be in a safe and suitable manner until a final decision is made for ultimate disposition of spent nuclear fuel. Five alternatives involving the Hanford Site are being considered for management of the spent nuclear fuel inventory: (1) the No Action Alternative, (2) the Decentralization Alternative, (3) the 1992/1993 Planning Basis Alternative, (4) the Regionalization Alternative, and (5) the Centralization Alternative. AU alternatives will be carefully designed to avoid environmental degradation and to provide protection to human health and safety at the Hanford Site and surrounding region

  2. Reducing the Environmental Impact of Clinical Laboratories.

    Science.gov (United States)

    Lopez, Joseph B; Jackson, David; Gammie, Alistair; Badrick, Tony

    2017-02-01

    Healthcare is a significant contributor to environmental impact but this has received little attention. The typical laboratory uses far more energy and water per unit area than the typical office building. There is a need to sensitise laboratories to the importance of adopting good environmental practices. Since this comes at an initial cost, it is vital to obtain senior management support. Convincing management of the various tangible and intangible benefits that can accrue in the long run should help achieve this support. Many good environmental practices do not have a cost but will require a change in the culture and mind-set of the organisation. Continuing education and training are important keys to successful implementation of good practices. There is a need to undertake a rigorous cost-benefit analysis of every change that is introduced in going green. The adoption of good practices can eventually lead to ISO certification if this is desired. This paper provides suggestions that will allow a laboratory to start going green. It will allow the industry to enhance its corporate citizenship whilst improving its competitive advantage for long-term.

  3. Site environmental report for 2004 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. (Sandia National Laboratories, Livermore, CA)

    2005-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2004 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2004. General site and environmental program information is also included.

  4. Site Environmental Report for 2007: Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Environmental Management Dept.

    2008-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2007 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2007. General site and environmental program information is also included.

  5. Site environmental report for 2008 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2009-04-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2008 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2008. General site and environmental program information is also included.

  6. Site environmental report for 2006 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2006 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2006. General site and environmental program information is also included.

  7. Site environmental report for 2005 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2006-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2005 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2005. General site and environmental program information is also included.

  8. Site environmental report for 2003 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2004-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2003 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2003. General site and environmental program information is also included.

  9. Environmental Management 1995: Progress and plans of the Environmental Management Program

    International Nuclear Information System (INIS)

    1995-02-01

    Environmental Management 1995 is the second report prepared in response to the requirements of the National Defense Authorization Act for Fiscal Year l994. The first report, Environmental Management 1994, was published in February 1994. This report is intended to provide a broad overview of the Environmental Management program's activities in 1994, 1995, and 1996. The first section of this report describes the Department of Energy's Environmental Management program. This is followed by a closer look at what the program is doing across the country, organized by region to help the reader identify and locate sites of interest. Within each region, details of the largest sites are followed by site summaries reported by State and a summary of activities under the Formerly Utilized Sites Remedial Action Program (FUSRAP) and Uranium Mill Tailings Remedial Action Project (UMTRA). For the purposes of this report, a ''site'' is a Department of Energy installation; a ''facility'' is a building located on a Department of Energy site; and an ''area'' is a geographical area, operable unit, or waste area group of unspecified dimension within a site. Throughout this report, ''year'' refers to the Federal Government's Fiscal Year, which begins on October 1. For example, Fiscal Year 1995 began on October 1, 1994 and will end on September 30, 1995. Budget totals for Hanford include the Hanford Site and Richland Operations Office. The Idaho National Engineering Laboratory includes the Idaho Chemical Processing Plant and the Idaho Operations Office. The Oak Ridge Reservation budget includes Oak Ridge National Laboratory, the Y-12 Plant, the K-25 Site, Oak Ridge Associated Laboratories, the Oak Ridge Operations Office, and funding for the FUSRAP program

  10. Environmental Management 1995: Progress and plans of the Environmental Management Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    Environmental Management 1995 is the second report prepared in response to the requirements of the National Defense Authorization Act for Fiscal Year l994. The first report, Environmental Management 1994, was published in February 1994. This report is intended to provide a broad overview of the Environmental Management program`s activities in 1994, 1995, and 1996. The first section of this report describes the Department of Energy`s Environmental Management program. This is followed by a closer look at what the program is doing across the country, organized by region to help the reader identify and locate sites of interest. Within each region, details of the largest sites are followed by site summaries reported by State and a summary of activities under the Formerly Utilized Sites Remedial Action Program (FUSRAP) and Uranium Mill Tailings Remedial Action Project (UMTRA). For the purposes of this report, a ``site`` is a Department of Energy installation; a ``facility`` is a building located on a Department of Energy site; and an ``area`` is a geographical area, operable unit, or waste area group of unspecified dimension within a site. Throughout this report, ``year`` refers to the Federal Government`s Fiscal Year, which begins on October 1. For example, Fiscal Year 1995 began on October 1, 1994 and will end on September 30, 1995. Budget totals for Hanford include the Hanford Site and Richland Operations Office. The Idaho National Engineering Laboratory includes the Idaho Chemical Processing Plant and the Idaho Operations Office. The Oak Ridge Reservation budget includes Oak Ridge National Laboratory, the Y-12 Plant, the K-25 Site, Oak Ridge Associated Laboratories, the Oak Ridge Operations Office, and funding for the FUSRAP program.

  11. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Culp, T.; Cox, W.; Hwang, H.; Irwin, M.; Jones, A.; Matz, B.; Molley, K.; Rhodes, W.; Stermer, D.; Wolff, T.

    1993-09-01

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories' operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment

  12. Lawrence Livermore National Laboratory Environmental Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Henry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Armstrong, Dave [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, Rick G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, Nicholas A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, Steven J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, Craig [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dibley, Valerie R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doman, Jennifer L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, Allen R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heidecker, Kelly R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hollister, Rod K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumamoto, Gene [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, Donald H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nelson, Jennifer C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, Heather L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, Lisa E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, Crystal A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, Alison A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, Anthony M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, Kent R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, Jim S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-19

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security, LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  13. Lawrence Livermore National Laboratory Environmental Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dibley, V. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doman, J. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, A. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heidecker, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumamoto, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montemayor, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, H. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Veseliza, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-01

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security, LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  14. Environmental Management Systems

    Science.gov (United States)

    This site on Environmental Management Systems (EMS) provides information and resources related to EMS for small businesses and private industry, as well as local, state and federal agencies, including all the EPA offices and laboratories.

  15. Site Environmental Report for 2010 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  16. Site environmental report for 2009 : Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2010-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2009 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2009. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2009. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2009. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  17. Site environmental report for 2011. Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2012-05-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractoroperated laboratory. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2011 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2011. General site and environmental program information is also included.

  18. Site Environmental Report for 2012 Sandia National Laboratories California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-05-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2012 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2012. General site and environmental program information is also included.

  19. 1995 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, L.J.; Duncan, D. [eds.; Sanchez, R.

    1996-09-01

    This 1995 report contains data from routine radiological and non-radiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration and various waste management programs at Sandia National Laboratories in Albuquerque, New Mexico, are included.

  20. 1995 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Shyr, L.J.; Duncan, D.; Sanchez, R.

    1996-09-01

    This 1995 report contains data from routine radiological and non-radiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration and various waste management programs at Sandia National Laboratories in Albuquerque, New Mexico, are included

  1. Facility Environmental Management System

    Data.gov (United States)

    Federal Laboratory Consortium — This is the Web site of the Federal Highway Administration's (FHWA's) Turner-Fairbank Highway Research Center (TFHRC) facility Environmental Management System (EMS)....

  2. Development of the environmental management integrated baseline at the Idaho National Engineering Laboratory using systems engineering

    International Nuclear Information System (INIS)

    Murphy, J.A.; Caliva, R.M.; Wixson, J.R.

    1997-01-01

    The Idaho National Engineering Laboratory (INEL) is one of many Department of Energy (DOE) national laboratories that has been performing environmental cleanup and stabilization, which was accelerated upon the end of the cold war. In fact, the INEL currently receives two-thirds of its scope to perform these functions. However, the cleanup is a highly interactive system that creates an opportunity for systems engineering methodology to be employed. At the INEL, a group called EM (Environmental Management) Integration has been given this charter along with a small core of systems engineers. This paper discusses the progress to date of converting the INEL legacy system into one that uses the systems engineering discipline as the method to ensure that external requirements are met

  3. Environmental Measurements Laboratory 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Chieco, N.A. [ed.; Krey, P.W.; Beck, H.L.

    1995-08-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1994 and it serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the manager and staff of the Chicago Field Office, and the authors colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven general program areas: environmental radiation and radioactivity; radiation transport and dosimetry; environmental radon, thoron, and related aerosols; atmospheric and surface pollutant studies related to global climate change; atmospheric chemistry; metrology, consultation, and emergency response; environmental management. EML`s mission is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants, and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues and related national security issues.

  4. Environmental Measurements Laboratory 1994 annual report

    International Nuclear Information System (INIS)

    Chieco, N.A.; Krey, P.W.; Beck, H.L.

    1995-08-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1994 and it serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the manager and staff of the Chicago Field Office, and the authors colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven general program areas: environmental radiation and radioactivity; radiation transport and dosimetry; environmental radon, thoron, and related aerosols; atmospheric and surface pollutant studies related to global climate change; atmospheric chemistry; metrology, consultation, and emergency response; environmental management. EML's mission is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants, and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues and related national security issues

  5. 1994 Site Environmental Report Sandia National Laboratories Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Shyr, L.J.; Wiggins, T.; White, B.B.

    1995-09-01

    This 1994 report contains data from routine radiological and nonradiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum off-site dose impact from air emissions was calculated to be 1.5 x 10 -4 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.012 person-rem during 1994 from the laboratories' operations. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1

  6. Environmental data management at Fernald

    International Nuclear Information System (INIS)

    Jones, B.W.; Williams, J.

    1994-01-01

    FERMCO supports DOE's ongoing initiatives for the continuous improvement of site restoration through the development and application of innovative technologies. A major thrust of FERMCO's efforts has been the enhancement of environmental data management technology for the site. The understanding of environmental data is the fundamental basis for determining the need for environmental restoration, developing and comparing remedial alternatives, and reaching a decision on how to clean up a site. Environmental data management at Fernald is being focused on two major objectives: to improve the efficiency of the data management process, and to provide a better understanding of the meaning of the data at the earliest possible time. Environmental data at Fernald is typically a soil or groundwater sample collected by one of the field geologists. These samples are then shipped to one or more laboratories for analysis. After the analyses are returned from the laboratories the data are reviewed and qualified for usability. The data are then used by environmental professionals for determining nature and extent of contamination. Additionally, hazardous waste materials whether generated during production or during cleanup, may be sampled to characterize the waste before shipment or treatment. The data management process, which uses four major software systems, is presented graphically

  7. EPA Environmental Chemistry Laboratory

    Science.gov (United States)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  8. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    Energy Technology Data Exchange (ETDEWEB)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B. [and others

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

  9. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    International Nuclear Information System (INIS)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B.

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management

  10. Environmental Audit at Santa Barbara Operations, Special Technologies Laboratory, Remote Sensing Laboratory, North Las Vegas Facilities

    International Nuclear Information System (INIS)

    1991-03-01

    This report documents the results of the Environmental Audit of selected facilities under the jurisdiction of the DOE Nevada Operations Office (NV) that are operated by EG and G Energy Measurements, Incorporated (EG and G/EM). The facilities included in this Audit are those of Santa Barbara Operation (SBO) at Goleta, California; the Special Technologies Laboratory (STL) at Santa Barbara, California; and Las Vegas Area Operations (LVAO) including the Remote Sensing Laboratory (RSL) at Nellis Air Force Base in Nevada, and the North Las Vegas Facilities (NLVF) at North Las Vegas, Nevada. The Environmental Audit was conducted by the US Department of Energy's (DOE) Office of Environmental Audit, commencing on January 28, 1991 and ending on February 15, 1991. The scope of the Audit was comprehensive, addressing environmental activities in the technical areas of air, surface water/drinking water, groundwater, waste management, toxic and chemical materials, quality assurance, radiation, inactive waste sites, and environmental management. Also assessed was compliance with applicable Federal, state, and local regulations and requirements; internal operating requirements; DOE Orders; and best management practices. 8 tabs

  11. 1993 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Culp, T.A.; Cheng, C.F.; Cox, W.; Durand, N.; Irwin, M.; Jones, A.; Lauffer, F.; Lincoln, M.; McClellan, Y.; Molley, K.

    1994-11-01

    This 1993 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0016 millirem. The total population within a 50-mile (80 kilometer) radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.027 person-rem during 1993 from the laboratories operations, As in the previous year, the 1993 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1

  12. 2016 Annual Site Environmental Report Sandia National Laboratories/New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Angela Maria [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffith, Stacy R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Sandia National Laboratories (SNL) is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s (DOE’s), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at SNL, New Mexico. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of sustainability, environmental protection, and monitoring programs at SNL/NM during calendar year 2016. Major environmental programs include air quality, water quality, groundwater protection, terrestrial and ecological surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. This ASER is prepared in accordance with and required by DOE O 231.1B, Admin Change 1, Environment, Safety, and Health Reporting.

  13. Preliminary Hanford technical input for the Department of Energy programmatic spent nuclear fuel management and Idaho National Engineering Laboratory environmental restoration and waste management programs environmental impact statement

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1995-03-01

    The US Department of Energy (DOE) is currently evaluating its programmatic options for the safe management of its diverse spent nuclear fuel (SNF) inventory in the Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Environmental Impact Statement (SNF and INEL EIS). In the SNF and INEL EIS, the DOE is assessing five alternatives for SNF management, which consider at which of the DOE sites each of the various SNF types should be managed until ultimate disposition. The range of SNF inventories considered for management at the Hanford Site in the SNF and INEL EIS include the current Hanford Site inventory, only the current Hanford Site defense production SNF inventory, the DOE complex-wide SNF inventory, or none at all. Site-specific SNF management decisions will be evaluated in separate National Environmental Policy Act evaluations. Appendixes A and B include information on (1) additional facilities required to accommodate inventories of SNF within each management alternative, (2) existing and new SNF management facility descriptions, (3) facility costs for construction and operation, (4) facility workforce requirements for construction and operation, and (5) facility discharges. The information was extrapolated from existing analyses to the extent possible. New facility costs, manpower requirements, and similar information are based on rough-order-of-magnitude estimates

  14. Innovative environmental restoration and waste management technologies at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Helt, J.E.

    1993-01-01

    Cleanup of contaminated sites and management of wastes have become major efforts of the US Department of Energy. Argonne National Laboratory (ANL) is developing several new technologies to meet the needs of this national effort. Some of these efforts are being done in collaboration with private sector firms. An overview of the ANL and private sector efforts will be presented. The following four specific technologies will be discussed in detail: (1) a minimum additive waste stabilization (MAWS) system for treating actinide-contaminated soil and groundwater; (2) a magnetic separation system, also for cleanup of actinide-contaminated soil and groundwater; (3) a mobile evaporator/concentrator system for processing aqueous radioactive and mixed waste; and (4) a continuous emission monitor for ensuring that waste incineration meets environmental goals

  15. Data management for environmental research

    International Nuclear Information System (INIS)

    Strand, R.H.

    1976-01-01

    The objective of managing environmental research data is to develop a resource sufficient for the study and potential solution of environmental problems. Consequently, environmnetal data management must include a broad spectrum of activities ranging from statistical analysis and modeling, through data set archiving to computer hardware procurement. This paper briefly summarizes the data management requirements for environmental research and the techniques and automated procedures which are currently used by the Environmental Sciences Division at Oak Ridge National Laboratory. Included in these requirements are readily retrievable data, data indexed by categories for retrieval and application, data documentation (including collection methods), design and error bounds, easily used analysis and display programs, and file manipulation routines. The statistical analysis system (SAS) and other systems provide the automated procedures and techniques for analysis and management of environmental research data

  16. Environmental Measurements Laboratory, annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Krey, P.W.; Heit, M. [eds.

    1996-07-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1995 and serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the Manager and staff of the Chicago Operations Office, and our colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven research program areas: (1) Environmental Radiation and Radioactivity; (2) Radiation Transport and Dosimetry; (3) Environmental Radon, Thoron, and Related Aerosols; (4) Atmospheric and Surface Pollutant Studies Related to Global Climate Change; (5) Atmospheric Chemistry; and (6) Metrology, Consultation, and Emergency Response Environmental Management The mission of EML is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues, and related national security issues.

  17. Environmental Measurements Laboratory, annual report 1995

    International Nuclear Information System (INIS)

    Krey, P.W.; Heit, M.

    1996-07-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1995 and serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the Manager and staff of the Chicago Operations Office, and our colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven research program areas: (1) Environmental Radiation and Radioactivity; (2) Radiation Transport and Dosimetry; (3) Environmental Radon, Thoron, and Related Aerosols; (4) Atmospheric and Surface Pollutant Studies Related to Global Climate Change; (5) Atmospheric Chemistry; and (6) Metrology, Consultation, and Emergency Response Environmental Management The mission of EML is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues, and related national security issues

  18. Analytical laboratory quality assurance guidance in support of EM environmental sampling and analysis activities

    International Nuclear Information System (INIS)

    1994-05-01

    This document introduces QA guidance pertaining to design and implementation of laboratory procedures and processes for collecting DOE Environmental Restoration and Waste Management (EM) ESAA (environmental sampling and analysis activities) data. It addresses several goals: identifying key laboratory issues and program elements to EM HQ and field office managers; providing non-prescriptive guidance; and introducing environmental data collection program elements for EM-263 assessment documents and programs. The guidance describes the implementation of laboratory QA elements within a functional QA program (development of the QA program and data quality objectives are not covered here)

  19. Research report 1987-1989: Environmental Quality Laboratory and Environmental Engineering Science, W. M. Keck Laboratories

    OpenAIRE

    Brooks, Norman H.

    1990-01-01

    This research biennial report for 1987-89 covers the activities of both the Environmental Engineering Science program and the Environmental Quality Laboratory for the period October 1987-November 1989. Environmental Engineering Science is the degree-granting academic program housed in the Keck Laboratories, with associated research projects. The Environmental Quality Laboratory is a research center focusing on large scale problems of environmental quality and natural resources. All the facult...

  20. Environmental audit of the Savannah River Ecology Laboratory (SREL)

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report documents the results of the environmental audit conducted at the Savannah River Ecology Laboratory (SREL) at the Savannah River Site (SRS), principally in Aiken and Barnwell Counties, South Carolina. The audit was conducted by the US Department of Energy`s (DOE`s), Office of Environmental Audit (EH-24), beginning September 13, 1993, and ending September 23, 1993. The scope of the audit at SREL was comprehensive, addressing environmental activities in the technical areas of air; surface water/drinking water; groundwater/soil, sediment, and biota; waste management; toxic and chemical materials; inactive Waste sites; radiation; quality assurance; and environmental management. Specifically assessed was the compliance of SREL operations and activities with Federal, state, and local regulations; DOE Orders; and best management practices.

  1. Environmental audit of the Savannah River Ecology Laboratory (SREL)

    International Nuclear Information System (INIS)

    1993-09-01

    This report documents the results of the environmental audit conducted at the Savannah River Ecology Laboratory (SREL) at the Savannah River Site (SRS), principally in Aiken and Barnwell Counties, South Carolina. The audit was conducted by the US Department of Energy's (DOE's), Office of Environmental Audit (EH-24), beginning September 13, 1993, and ending September 23, 1993. The scope of the audit at SREL was comprehensive, addressing environmental activities in the technical areas of air; surface water/drinking water; groundwater/soil, sediment, and biota; waste management; toxic and chemical materials; inactive Waste sites; radiation; quality assurance; and environmental management. Specifically assessed was the compliance of SREL operations and activities with Federal, state, and local regulations; DOE Orders; and best management practices

  2. Sandia National Laboratories/New Mexico 1994 site environmental report. Summary pamphlet

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents details of the environmental activities that occurred during 1994 at Sandia National Laboratories. Topics include: Background about Sandia; radiation facts; sources of radiation; environmental monitoring; discussion of radiation detectors; radioactive waste management; environmental restoration; and quality assurance

  3. Sandia National Laboratories/New Mexico 1994 site environmental report. Summary pamphlet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents details of the environmental activities that occurred during 1994 at Sandia National Laboratories. Topics include: Background about Sandia; radiation facts; sources of radiation; environmental monitoring; discussion of radiation detectors; radioactive waste management; environmental restoration; and quality assurance.

  4. DOE methods for evaluating environmental and waste management samples

    International Nuclear Information System (INIS)

    Goheen, S.C.; McCulloch, M.; Thomas, B.L.; Riley, R.G.; Sklarew, D.S.; Mong, G.M.; Fadeff, S.K.

    1993-03-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) provides applicable methods in use by. the US Department of Energy (DOE) laboratories for sampling and analyzing constituents of waste and environmental samples. The development of DOE Methods is supported by the Laboratory Management Division (LMD) of the DOE. This document contains chapters and methods that are proposed for use in evaluating components of DOE environmental and waste management samples. DOE Methods is a resource intended to support sampling and analytical activities that will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the US Environmental Protection Agency (EPA), or others

  5. DOE methods for evaluating environmental and waste management samples.

    Energy Technology Data Exchange (ETDEWEB)

    Goheen, S C; McCulloch, M; Thomas, B L; Riley, R G; Sklarew, D S; Mong, G M; Fadeff, S K [eds.; Pacific Northwest Lab., Richland, WA (United States)

    1994-04-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) provides applicable methods in use by. the US Department of Energy (DOE) laboratories for sampling and analyzing constituents of waste and environmental samples. The development of DOE Methods is supported by the Laboratory Management Division (LMD) of the DOE. This document contains chapters and methods that are proposed for use in evaluating components of DOE environmental and waste management samples. DOE Methods is a resource intended to support sampling and analytical activities that will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the US Environmental Protection Agency (EPA), or others.

  6. Environmental Microbiology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Microbiology Laboratory, located in Bldg. 644 provides a dual-gas respirometer for measurement of oxygen consumption and carbon dioxide evolution...

  7. Sandia National Laboratories, California Waste Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2010-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  8. Lawrence Berkeley National Laboratory 1995 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment.

  9. Lawrence Berkeley National Laboratory 1995 site environmental report

    International Nuclear Information System (INIS)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment

  10. Environmental Survey preliminary report, Argonne National Laboratory, Argonne, Illinois

    International Nuclear Information System (INIS)

    1988-11-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Argonne National Laboratory (ANL), conducted June 15 through 26, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ANL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S ampersand A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S ampersand A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the S ampersand A results will be incorporated into the Argonne National Laboratory Environmental Survey findings for inclusion in the Environmental Survey Summary Report. 75 refs., 24 figs., 60 tabs

  11. Environmental Survey preliminary report, Argonne National Laboratory, Argonne, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Argonne National Laboratory (ANL), conducted June 15 through 26, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ANL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the S A results will be incorporated into the Argonne National Laboratory Environmental Survey findings for inclusion in the Environmental Survey Summary Report. 75 refs., 24 figs., 60 tabs.

  12. Cost-time management for environmental restoration activities at the Department of Energy's Idaho National Engineering Laboratory, Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Fourr, B.R.; Owen, A.H.; Williamson, D.J.; Nash, C.L.

    1992-01-01

    Cost-time management methods have been developed by Westinghouse to examine business applications from a cost-time perspective. The initial application of cost-time management within Westinghouse was targeted at reducing cycle time in the manufacturing sector. As a result of the tremendous success of reduced cycle time in manufacturing, Westinghouse initiated application of the management technique to Environmental Restoration activities at its Government Owned Contractor Operated facilities. The Westinghouse initiative was proposed in support of the Department of Energy's goals for cost effective Environmental Restoration activities. This paper describes the application of the cost-time method to Environmental Restoration work currently being performed at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE) by Westinghouse Idaho Nuclear Company (WINCO)

  13. Risk-based priority scoring for Brookhaven National Laboratory environmental restoration programs

    International Nuclear Information System (INIS)

    Morris, S.C.; Meinhold, A.F.

    1995-05-01

    This report describes the process of estimating the risk associated with environmental restoration programs under the Brookhaven National Laboratory Office of Environmental Restoration. The process was part of an effort across all Department of Energy facilities to provide a consistent framework to communicate risk information about the facilities to senior managers in the DOE Office of Environmental Management to foster understanding of risk activities across programs. the risk evaluation was a qualitative exercise. Categories considered included: Public health and safety; site personnel safety and health; compliance; mission impact; cost-effective risk management; environmental protection; inherent worker risk; environmental effects of clean-up; and social, cultural, political, and economic impacts

  14. VKTA Rossendorf: Laboratory for Environmental and Radionuclide Analysis

    International Nuclear Information System (INIS)

    Koehler, M.; Knappik, R.; Fiola, K.

    2015-01-01

    The VKTA (Nuclear Engineering and Analytics Inc.) is charged by the Free State of Saxony with the decommissioning and waste management of the nuclear installations at the research site Dresden-Rossendorf. This task includes the safe management and disposal of fissile material and radioactive wastes. The acquired expertise and our solution-oriented way of working are the basis for a varied range of services especially the environmental and radionuclide analyzes. The Laboratory for Environmental and Radionuclide Analysis is accredited according to DIN EN ISO/IEC 17025 and provides a sound range of analytical and metrological services including their coordination and management. The personnel and the rooms, measuring and technical equipment are particularly designed for our special field, the measuring of radioactivity. We are focussed on measuring artificial and natural radionuclides in a wide range of activity and in different sample matrices (e.g., urine, faeces, metals, soil, concrete, food, liquids). With the flexible accreditation of the radionuclide analytics the Laboratory is able to react shortly to changing requirements in decommissioning, environmental monitoring and radiation protection. Essential chemical and radiochemical methods are e.g.: · Alpha particle spectrometry, · Liquid scintillation counting, · gamma ray spectrometry, including Ultra-Low-Level, · High-resolution ICP-MS, · Chromatographic methods such as ion chromatography, gas chromatography, HPLC, · Electrochemical measuring methods such as potentiometry, voltammetry. The Laboratory offers analytical services to the research site Dresden-Rossendorf and national and international customers adapting its analytical procedures to the special needs of customers. The presentation demonstrates on the basis of examples the work of Laboratory within the scope of decommissioning of nuclear facilities, especially at a research site, from radiological preliminary investigation to declaration of

  15. SNL/CA Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2005-09-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program was developed in accordance with Department of Energy (DOE) Order 450.1 and incorporates the elements of the International Standard on Environmental Management Systems, ISO 14001.

  16. Sandia National Laboratories/New Mexico Environmental Information Document - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    GUERRERO, JOSEPH V.; KUZIO, KENNETH A.; JOHNS, WILLIAM H.; BAYLISS, LINDA S.; BAILEY-WHITE, BRENDA E.

    1999-09-01

    This Sandia National Laboratories/New Mexico Environmental Information Document (EID) compiles information on the existing environment, or environmental baseline, for SNUNM. Much of the information is drawn from existing reports and databases supplemented by new research and data. The SNL/NM EID, together with the Sandia National Laboratories/New Mexico Facilities and Safety Information Document, provide a basis for assessing the environment, safety, and health aspects of operating selected facilities at SNL/NM. The environmental baseline provides a record of the existing physical, biological, and socioeconomic environment at SNL/NLM prior to being altered (beneficially or adversely) by proposed programs or projects. More specifically, the EID provides information on the following topics: Geology; Land Use; Hydrology and Water Resources; Air Quality and Meteorology; Ecology; Noise and Vibration; Cultural Resources; Visual Resources; Socioeconomic and Community Services; Transportation; Material Management; Waste Management; and Regulatory Requirements.

  17. Sandia National Laboratories/New Mexico Environmental Information Document - Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    BAYLISS, LINDA S.; GUERRERO, JOSEPH V.; JOHNS, WILLIAM H.; KUZIO, KENNETH A.; BAILEY-WHITE, BRENDA E.

    1999-09-01

    This Sandia National Laboratories/New Mexico Environmental Information Document (EID) compiles information on the existing environment, or environmental baseline, for SNUNM. Much of the information is drawn from existing reports and databases supplemented by new research and data. The SNL/NM EID, together with the Sandia National Laboratories/New Mexico Facilities and Safety Information Document, provide a basis for assessing the environment, safety, and health aspects of operating selected facilities at SNL/NM. The environmental baseline provides a record of the existing physical, biological, and socioeconomic environment at SNL/NLM prior to being altered (beneficially or adversely) by proposed programs or projects. More specifically, the EID provides information on the following topics: Geology; Land Use; Hydrology and Water Resources; Air Quality and Meteorology; Ecology; Noise and Vibration; Cultural Resources; Visual Resources; Socioeconomic and Community Services; Transportation; Material Management; Waste Management; and Regulatory Requirements.

  18. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    The US Department of Energy (DOE) and the Regents of the University of California (UC) propose the continued operation, including near-term proposed projects, of the Lawrence Livermore National Laboratory (LLNL). In addition, DOE proposes the continued operation, including near-term proposed projects, of Sandia National Laboratories, Livermore (SNL, Livermore). Continued operation plus proposed projects at the two Laboratories is needed so that the research and development missions established by Congress and the President can continue to be supported. As provided and encouraged by the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA), DOE and UC have prepared this document as a joint Environmental Impact Statement (EIS) and Environmental Impact Report (EIR) to analyze the impacts of the proposed action. In addition, this document discusses a no action alternative for continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative focused on specific adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative. This document also examines the alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. The environmental documentation process provides information to the public, government agencies, and decision makers about the environmental impacts of implementing the proposed and alternative actions. In addition, this environmental documentation identifies alternatives and possible ways to reduce or prevent environmental impacts. A list of the issues raised through the EIS/EIR scoping process is presented

  19. Environmental surveillance for the EG and G Idaho Radioactive Waste Management areas at the Idaho National Engineering Laboratory. Annual report 1985

    International Nuclear Information System (INIS)

    Reyes, B.D.; Case, M.J.; Wilhelmsen, R.N.

    1986-08-01

    The 1985 environmental surveillance report for the EG and G Idaho, Inc., radioactive waste management areas at the Idaho National Engineering Laboratory describes the environmental monitoring activities at the Radioactive Waste Management Complex (RWMC), the Waste Experimental Reduction Facility (WERF), the Process Experimental Pilot Plant (PREPP), and two surplus facilities. The purpose of these monitoring activities is to provide for continuous evaluation and awareness of environmental conditions resulting from current operations, to detect significant trends, and to project possible future conditions. This report provides a public record comparing RWMC, WERF, PREPP, and surplus facility environmental data with past results and radiation protection standards or concentration guides established for operation of Department of Energy facilities

  20. Cost-time management for environmental restoration activities at the Department of Energy`s Idaho National Engineering Laboratory, Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Fourr, B.R.; Owen, A.H.; Williamson, D.J. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Nash, C.L. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

    1992-05-22

    Cost-time management methods have been developed by Westinghouse to examine business applications from a cost-time perspective. The initial application of cost-time management within Westinghouse was targeted at reducing cycle time in the manufacturing sector. As a result of the tremendous success of reduced cycle time in manufacturing, Westinghouse initiated application of the management technique to Environmental Restoration activities at its Government Owned Contractor Operated facilities. The Westinghouse initiative was proposed in support of the Department of Energy`s goals for cost effective Environmental Restoration activities. This paper describes the application of the cost-time method to Environmental Restoration work currently being performed at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE) by Westinghouse Idaho Nuclear Company (WINCO).

  1. Guidance document for the preparation of waste management plans for the Environmental Restoration Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Clark, C. Jr.

    1993-07-01

    A project waste management (WM) plan is required for all Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program remedial investigation, decommission and decontamination (D ampersand D), and remedial action (RA) activities. The project WM plan describes the strategy for handling, packaging, treating, transporting, characterizing, storing, and/or disposing of waste produced as part of ORNL ER Program activities. The project WM plan also contains a strategy for ensuring worker and environmental protection during WM activities

  2. Performance evaluation of the food and environmental monitoring radio-analytical laboratory in Ghana

    International Nuclear Information System (INIS)

    Agyeman, Lilian Ataa

    2016-06-01

    Since the establishment of the Radiation Protection Institute’s Food and Environmental Laboratory in 1988, there has never been any thorough evaluation of the activities of the facility to provide assurance of the quality of analytical results produced by the laboratory. The objective of this study, therefore, was to assess the performance level of the Food and Environmental monitoring laboratory with respect to the requirements for a standard analytical laboratory (IAEA, 1989) and ISO 17025. The study focused on the performance of the Gamma Spectrometry laboratory of the Radiation Protection Institute, Ghana Atomic Energy Commission which has been involved in monitoring of radionuclides in food and environmental samples. In doing that, data from 1988 to 2015 was reviewed to ascertain whether the Laboratory has being performing as required in providing quality results on food and environmental samples measured. Besides this data (records kept), the evaluation also covered some Technical Quality Control measures, such as Energy and Efficiency Calibration, that need to be put in place for such laboratories. The laboratory meets almost all conditions and equipment requirements of IAEA (1989), however the laboratory falls short of the management requirements of ISO 17025. Based on the results it was recommended, among others, that management of the laboratory should ensure there are procedures for how calibration and testing is performed for different types of equipment and also the competence of all who operate specific equipment, perform tests, evaluate results and sign test reports ensured. (au)

  3. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2011-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  4. Quality control activities in the environmental radiology laboratory

    International Nuclear Information System (INIS)

    Llaurado, M.; Quesada, D.; Rauret, G.; Tent, J.; Zapata, D.

    2006-01-01

    During the last twenty years many analytical laboratories have implemented quality assurance systems. A quality system implementation requires documentation of all activities (technical and management), evaluation of these activities and its continual improvement. Implementation and adequate management of all the elements a quality system includes are not enough to guarantee quality of the analytical results generated at a time. That is the aim of a group of specific activities labelled as quality control activities. The Laboratori de Radiologia Ambiental (Environmental Radiology Laboratory; LRA) at the University of Barcelona was created in 1984 to carry out part of the quality control assays of the Environmental Radiology Monitoring Programs around some of the Spanish nuclear power plants, which are developed by the Servei Catala d'Activitats Energetiques (SCAR) and the Consejo de Seguridad Nuclear (CSN), organisations responsible for nuclear security and radiological protection. In these kind of laboratories, given the importance of the results they give, quality control activities become an essential aspect. In order to guarantee the quality of its analytical results, the LRA Direction decided to adopt the international standard UNE-EN ISO/IEC 17025 for its internal quality system and to accreditate some of the assays it carries out. In such as system, it is established, the laboratory shall monitor the validity of tests undertaken and data shall be recorded in such a way that trends are detectable. The present work shows the activities carried out in this way by the LRA, which are: Equipment control activities which in the special case of radiochemical techniques include measurement of backgrounds and blanks as well as periodical control of efficiency and resolution. Activities to assure the specifications settled by method validation, which are testing of reference materials and periodical analysis of control samples. Evaluation of the laboratory work quality

  5. Laboratory/industry partnerships for environmental remediation

    International Nuclear Information System (INIS)

    Beskid, N.J.; Zussman, S.K.

    1994-01-01

    There are two measures of ''successful'' technology transfer in DOE's environmental restoration and waste management program. The first is remediation of DOE sites, and the second is commercialization of an environmental remediation process or product. The ideal case merges these two in laboratory/industry partnerships for environmental remediation. The elements to be discussed in terms of their effectiveness in aiding technology transfer include: a decision-making champion; timely and sufficient funding; well organized technology transfer function; well defined DOE and commercial markets; and industry/commercial partnering. Several case studies are presented, including the successful commercialization of a process for vitrification of low-level radioactive waste, the commercial marketing of software for hazardous waste characterization, and the application of a monitoring technique that has won a prestigious technical award. Case studies will include: vitrification of low-level radioactive waste (GTS Duratek, Columbia, MD); borehole liner for emplacing instrumentation and sampling groundwater (Science and Engineering Associates, Inc., Santa Fe, NM); electronic cone penetrometer (Applied Research Associates, Inc., South Royalton, VT); and software for hazardous waste monitoring ConSolve, Inc. (Lexington, MA). The roles of the Department of Energy and Argonne National Laboratory in these successes will be characterized

  6. Future management of hazardous wastes generated at Brookhaven National Laboratory, Upton, New York. Environmental assessment

    International Nuclear Information System (INIS)

    1994-09-01

    This document assesses the potential environmental impacts of a variety of alternatives which could provide a Resource Conservation and Recovery Act (RCRA) permitted waste packaging and storage facility that would handle all hazardous, radioactive, and mixed wastes generated at Brookhaven National Laboratory (BNL) and would operate in full compliance with all federal, state, and local laws and regulations. Location of the existing Hazardous Waste Management Facility (HWMF) with respect to ground water and the site boundary, technical and capacity limitations, inadequate utilities, and required remediation of the area make the existing facility environmentally unacceptable for long term continued use. This Environmental Assessment (EA) describes the need for action by the Department of Energy (DOE). It evaluates the alternatives for fulfilling that need, including the alternative preferred by DOE, a no-action alternative, and other reasonable alternatives. The EA provides a general description of BNL and the existing environment at the current HWMF and alternative locations considered for a new Waste Management Facility (WMF). Finally, the EA describes the potential environmental impacts of the alternatives considered. The preferred alternative, also identified as Alternative D, would be to construct and operate a new WMF on land formerly occupied by barracks during Camp Upton operations, in an area north of Building 830 and the High Flux Beam Reactor/Alternating Gradient Synchrotron (AGS) recharge basins, east of North Railroad Street, and south of East Fifth Avenue. The purpose of this new facility would be to move all storage and transfer activities inside buildings and on paved and curbed areas, consolidate facilities to improve operations management, and provide improved protection of the environment

  7. SNL/CA Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004. Elements of the ISO standard overlap with those of Department of Energy (DOE) Order 450.1, thus SNL/CA's EMS program also meets the DOE requirements.

  8. Cost-time management for environmental restoration activities at the Department of Energy's Idaho National Engineering Laboratory, Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Fourr, B.R.; Owen, A.H.; Williamson, D.J. (Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States)); Nash, C.L. (USDOE Idaho Field Office, Idaho Falls, ID (United States))

    1992-05-22

    Cost-time management methods have been developed by Westinghouse to examine business applications from a cost-time perspective. The initial application of cost-time management within Westinghouse was targeted at reducing cycle time in the manufacturing sector. As a result of the tremendous success of reduced cycle time in manufacturing, Westinghouse initiated application of the management technique to Environmental Restoration activities at its Government Owned Contractor Operated facilities. The Westinghouse initiative was proposed in support of the Department of Energy's goals for cost effective Environmental Restoration activities. This paper describes the application of the cost-time method to Environmental Restoration work currently being performed at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE) by Westinghouse Idaho Nuclear Company (WINCO).

  9. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  10. Hazardous materials management and control program at Oak Ridge National Laboratory - environmental protection

    International Nuclear Information System (INIS)

    Eisenhower, B.M.; Oakes, T.W.

    1982-01-01

    In the Federal Register of May 19, 1980, the US Environmental Protection Agency promulgated final hazardous waste regulations according to the Resource Conservation and Recovery Act (RCRA) of 1976. The major substantive portions of these regulations went into effect on November 19, 1980, and established a federal program to provide comprehensive regulation of hazardous waste from its generation to its disposal. In an effort to comply with these regulations, a Hazardous Materials Management and Control Program was established at Oak Ridge National Laboratory. The program is administered by two Hazardous Materials Coordinators, who together with various support groups, ensure that all hazardous materials and wastes are handled in such a manner that all personnel, the general public, and the environment are adequately protected

  11. Sandia National Laboratories California Waste Management Program Annual Report April 2011

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-04-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  12. Sandia National Laboratories, California Waste Management Program annual report : February 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System rogram Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  13. Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico, Calendar year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Agogino, Karen [National Nuclear Security Administration (NNSA), Washington, DC (United States); Sanchez, Rebecca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2008-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor-operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2007. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).

  14. The Los Alamos National Laboratory Environmental Restoration Program

    International Nuclear Information System (INIS)

    Krueger, J.W.

    1990-01-01

    The LANL Environmental Restoration (ER) Program Office, established in October 1989, is faced with the challenge of assessing and cleaning up nearly 1,8000 potentially hazardous waste sites according to an aggressive corrective action schedule that the Environmental Protection Agency (EPA) mandated on May 23, 1990, in a Resource, Conservation, and Recovery Act (RCRA) Part B Permit. To maximize program efficiency, the ER Program Office will implement a unique management approach designed to maximize the use of laboratory technical expertise. The Installation Work Plan, which provides a blueprint for the program, has been submitted to EPA for review and approval. A work plan for characterization of Technical Area 21, an early plutonium processing facility, is also nearing completion. The feasibility of an expedited cleanup of the Laboratory's worst hazardous waste release has been modelled using a computer code originally developed by LANL to assist the nuclear weapons testing program. A sophisticated Geographic Information System has been implemented to assist in data management and presentation, and the design of a Mixed Waste Disposal Facility is underway. 6 refs., 2 figs

  15. Sandia Laboratories technical capabilities. Auxiliary capabilities: environmental health information science

    International Nuclear Information System (INIS)

    1975-09-01

    Sandia Laboratories is an engineering laboratory in which research, development, testing, and evaluation capabilities are integrated by program management for the generation of advanced designs. In fulfilling its primary responsibility to ERDA, Sandia Laboratories has acquired extensive research and development capabilities. The purpose of this series of documents is to catalog the many technical capabilities of the Laboratories. After the listing of capabilities, supporting information is provided in the form of highlights, which show applications. This document deals with auxiliary capabilities, in particular, environmental health and information science. (11 figures, 1 table) (RWR)

  16. Hazardous waste management in research laboratories

    International Nuclear Information System (INIS)

    Sundstrom, G.

    1989-01-01

    Hazardous waste management in research laboratories benefits from a fundamentally different approach to the hazardous waste determination from industry's. This paper introduces new, statue-based criteria for identifying hazardous wastes (such as radiological mixed wastes and waste oils) and links them to a forward-looking compliance of laboratories, the overall system integrates hazardous waste management activities with other environmental and hazard communication initiatives. It is generalizable to other waste generators, including industry. Although only the waste identification and classification aspects of the system are outlined in detail here, four other components are defined or supported, namely: routine and contingency practices; waste treatment/disposal option definition and selection; waste minimization, recycling, reuse, and substitution opportunities; and key interfaces with other systems, including pollution prevention

  17. 1996 Site environmental report Sandia National Laboratories Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Fink, C.H.; Duncan, D.; Sanchez, R.

    1997-08-01

    Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the U.S. Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs, and to conduct fundamental research and development (R ampersand D) to advance technology in energy research, computer science, waste management, electronics, materials science, and transportation safety for hazardous and nuclear components. In support of this mission, the Environmental Safety and Health (ES ampersand H) Center at SNL/NM conducts extensive environmental monitoring, surveillance, and compliance activities to assist SNL's line organizations in meeting all applicable environmental regulations applicable to the site including those regulating radiological and nonradiological effluents and emissions. Also herein are included, the status of environmental programs that direct and manage activities such as terrestrial surveillance; ambient air and meteorological monitoring; hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental restoration (ER); oil and chemical spill prevention; and National Environmental Policy Act (NEPA) documentation. This report has been prepared in compliance with DOE order 5400.1, General Environmental Protection

  18. 1996 Site environmental report Sandia National Laboratories Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Fink, C.H. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Duncan, D. [ed.] [GRAM, Inc., Albuquerque, NM (United States); Sanchez, R. [Jobs Plus, Albuquerque, NM (United States)

    1997-08-01

    Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the U.S. Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs, and to conduct fundamental research and development (R&D) to advance technology in energy research, computer science, waste management, electronics, materials science, and transportation safety for hazardous and nuclear components. In support of this mission, the Environmental Safety and Health (ES&H) Center at SNL/NM conducts extensive environmental monitoring, surveillance, and compliance activities to assist SNL`s line organizations in meeting all applicable environmental regulations applicable to the site including those regulating radiological and nonradiological effluents and emissions. Also herein are included, the status of environmental programs that direct and manage activities such as terrestrial surveillance; ambient air and meteorological monitoring; hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental restoration (ER); oil and chemical spill prevention; and National Environmental Policy Act (NEPA) documentation. This report has been prepared in compliance with DOE order 5400.1, General Environmental Protection.

  19. Sandia National Laboratories/California site environmental report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Condouris, R.A. [ed.] [Sandia National Labs., Livermore, CA (United States); Holland, R.C. [Science Applications International Corp. (United States)

    1998-06-01

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California`s Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. The Site Environmental Report describes the results of SNL/California`s environmental protection activities during the calendar year. It also summarizes environmental monitoring data and highlights major environmental programs. Overall, it evaluates SNL/California`s environmental management performance and documents the site`s regulatory compliance status.

  20. Sandia National Laboratories, California: site environmental report for 1997

    International Nuclear Information System (INIS)

    Condouris, R.A.; Holland, R.C.

    1998-06-01

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California's Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. The Site Environmental Report describes the results of SNL/California's environmental protection activities during the calendar year. It also summarizes environmental monitoring data and highlights major environmental programs. Overall, it evaluates SNL/California's environmental management performance and documents the site's regulatory compliance status

  1. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  2. Calendar Year 2013 Annual Site Environmental Report for Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Stacy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Sandia National Laboratories, New Mexico is a government-owned/contractor-operated facility. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s sustainability, environmental protection, and monitoring programs through December 31, 2013. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).

  3. Calendar Year 2013 Annual Site Environmental Report for Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Griffith, Stacy

    2014-01-01

    Sandia National Laboratories, New Mexico is a government-owned/contractor-operated facility. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation's sustainability, environmental protection, and monitoring programs through December 31, 2013. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).

  4. Calendar Year 2009 Annual Site Environmental Report for Sandia National Laboratories, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bailey-White, Brenda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bonaguidi, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Mendy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrd, Caroline [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cabble, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Castillo, Dave [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coplen, Amy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Curran, Kelsey [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Deola, Regina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Duran, Leroy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eckstein, Joanna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fitzgerald, Tanja [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); French, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerard, Morgan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzales, Linda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gorman, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jackson, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jarry, Jeff [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Adrian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lauffer, Franz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mauser, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayeux, Lucie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McCord, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oborny, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Perini, Robin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Puissant, Pamela [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reiser, Anita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roma, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Salinas, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Skelly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ullrich, Rebecca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wagner, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wrons, Ralph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2010-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation (LMC), manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Site O ffice (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2009. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1A, Environmental Protection Program (DOE 2008a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).

  5. Environmental Management Performance Report April 2000

    Energy Technology Data Exchange (ETDEWEB)

    EDER, D.M.

    2000-04-01

    The purpose of the Environmental Management Performance Report (EMPR) is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's Environmental Management (EM) performance by: Project Hanford Management Contract (PHMC) through Fluor Hanford, Inc. (FHI) and its subcontractors; Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors; Pacific Northwest National Laboratories (PNNL) for EM and EM Science and Technology (S and T) Mission; and Office of Safety Regulation of the TWRS Privatization Contractor. This report is a monthly publication that summarizes EM Site performance under RL Operations Office. It is organized by the four sections listed above, with each section containing an Executive Summary and Area Performance Summaries.

  6. On-site laboratory support of Oak Ridge National Laboratory environmental restoration field activities

    International Nuclear Information System (INIS)

    Burn, J.L.E.

    1995-07-01

    A remedial investigation/feasibility study has been undertaken at Oak Ridge National Laboratory (ORNL). Bechtel National, Inc. and partners CH2M Hill, Ogden Environmental and Energy Services, and PEER Consultants are contracted to Lockheed Martin Energy Systems, performing this work for ORNL's Environmental Restoration (ER) Program. An on-site Close Support Laboratory (CSL) established at the ER Field Operations Facility has evolved into a laboratory where quality analytical screening results can be provided rapidly (e.g., within 24 hours of sampling). CSL capabilities include three basic areas: radiochemistry, chromatography, and wet chemistry. Radiochemical analyses include gamma spectroscopy, tritium and carbon-14 screens using liquid scintillation analysis, and gross alpha and beta counting. Cerenkov counting and crown-ether-based separation are the two rapid methods used for radiostrontium determination in water samples. By extending count times where appropriate, method detection limits can match those achieved by off-site contract laboratories. Volatile organic compounds are detected by means of gas chromatography using either headspace or purge and trap sample introduction (based on EPA 601/602). Ionic content of water samples is determined using ion chromatography and alkalinity measurement. Ion chromatography is used to quantify both anions (based on EPA 300) and cations. Wet chemistry procedures performed at the CSL include alkalinity, pH (water and soil), soil resistivity, and dissolved/suspended solids. Besides environmental samples, the CSL routinely screens health and safety and waste management samples. The cost savings of the CSL are both direct and indirect

  7. Site Environmental Report for 2016 Sandia National Laboratories California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-06-01

    Sandia National Laboratories, California (SNL/CA) is a Department of Energy (DOE) facility. The management and operations of the facility are under a contract with the DOE’s National Nuclear Security Administration (NNSA). On May 1, 2017, the name of the management and operating contractor changed from Sandia Corporation to National Technology and Engineering Solutions of Sandia, LLC (NTESS). The DOE, NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2016 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2012). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2016, unless noted otherwise. General site and environmental program information is also included.

  8. Environmental resource document for the Idaho National Engineering Laboratory. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  9. Environmental resource document for the Idaho National Engineering Laboratory. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  10. A laboratory information management system for the analysis of tritium (3H) in environmental waters.

    Science.gov (United States)

    Belachew, Dagnachew Legesse; Terzer-Wassmuth, Stefan; Wassenaar, Leonard I; Klaus, Philipp M; Copia, Lorenzo; Araguás, Luis J Araguás; Aggarwal, Pradeep

    2018-07-01

    Accurate and precise measurements of low levels of tritium ( 3 H) in environmental waters are difficult to attain due to complex steps of sample preparation, electrolytic enrichment, liquid scintillation decay counting, and extensive data processing. We present a Microsoft Access™ relational database application, TRIMS (Tritium Information Management System) to assist with sample and data processing of tritium analysis by managing the processes from sample registration and analysis to reporting and archiving. A complete uncertainty propagation algorithm ensures tritium results are reported with robust uncertainty metrics. TRIMS will help to increase laboratory productivity and improve the accuracy and precision of 3 H assays. The software supports several enrichment protocols and LSC counter types. TRIMS is available for download at no cost from the IAEA at www.iaea.org/water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. CNR LARA project, Italy: Airborne laboratory for environmental research

    Science.gov (United States)

    Bianchi, R.; Cavalli, R. M.; Fiumi, L.; Marino, C. M.; Pignatti, S.

    1995-01-01

    The increasing interest for the environmental problems and the study of the impact on the environment due to antropic activity produced an enhancement of remote sensing applications. The Italian National Research Council (CNR) established a new laboratory for airborne hyperspectral imaging, the LARA Project (Laboratorio Aero per Ricerche Ambientali - Airborne Laboratory for Environmental Research), equipping its airborne laboratory, a CASA-212, mainly with the Daedalus AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) instrument. MIVIS's channels, spectral bandwidths, and locations are chosen to meet the needs of scientific research for advanced applications of remote sensing data. MIVIS can make significant contributions to solving problems in many diverse areas such as geologic exploration, land use studies, mineralogy, agricultural crop studies, energy loss analysis, pollution assessment, volcanology, forest fire management and others. The broad spectral range and the many discrete narrow channels of MIVIS provide a fine quantization of spectral information that permits accurate definition of absorption features from a variety of materials, allowing the extraction of chemical and physical information of our environment. The availability of such a hyperspectral imager, that will operate mainly in the Mediterranean area, at the present represents a unique opportunity for those who are involved in environmental studies and land-management to collect systematically large-scale and high spectral-spatial resolution data of this part of the world. Nevertheless, MIVIS deployments will touch other parts of the world, where a major interest from the international scientific community is present.

  12. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    International Nuclear Information System (INIS)

    1988-07-01

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via ''no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is ''no fault'' and is not an ''audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs

  13. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is no fault'' and is not an audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs.

  14. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory's hazardous waste management facility

    International Nuclear Information System (INIS)

    Dionne, B.J.; Morris, S. III; Baum, J.W.

    1998-03-01

    The Department of Energy's (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory's Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an open-quotes As Low as Reasonably Achievableclose quotes (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique

  15. Hertelendi Laboratory of Environmental Studies

    International Nuclear Information System (INIS)

    Svingor, E.; Molnar, M.; Palcsu, L.; Futo, I.; Rinyu, L.; Mogyorosi, M.; Major, Z.; Bihari, A.; Vodila, G.; Janovics, R.; Papp, L.; Major, I.

    2010-01-01

    1. Introduction. The Hertelendi Laboratory for Environmental Studies (HEKAL) belongs to the Section of Environmental and Earth Sciences. It is a multidisciplinary laboratory dedicated to environmental research, to the development of nuclear analytical methods and to systems technology. During its existence of more than 15 years it has gained some reputation as a prime laboratory of analytical techniques, working with both radio- and stable isotopes. It has considerable expertise in isotope concentration measurements, radiocarbon dating, tritium measurements, in monitoring radioactivity around nuclear facilities and in modelling the movement of radionuclides in the environment. Many of its projects are within the scope of interest of the Paks Nuclear Power Plant. Our research activity is mainly concerned with the so-called environmental isotopes. This term denotes isotopes, both stable and radioactive, that are present in the natural environment either as a result of natural processes or of human activities. In environmental research isotopes are generally applied either as tracers or as age indicators. An ideal tracer is defined as a substance that behaves in the system studied exactly as the material to be traced as far as the examined parameters are concerned, but has at least one property that distinguishes it from the traced material. The mass number of an isotope is such an ideal indicator. In 2007 the laboratory assumed the name of Dr. Ede Hertelendi to honour the memory of the reputed environmental physicist who founded the group and headed it for many years. The current core of the laboratory staff is made up of his pupils and coworkers. This team was like a family to him. The group owes it to his fatherly figure that it did not fall apart after his death, but advanced with intense work and tenacity during the last decade. One of his first pupils, Mihaly Veres returned to the laboratory as a private entrepreneur and investor in 2005, and in the framework of

  16. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  17. Environmental Management Performance Report November 2000

    Energy Technology Data Exchange (ETDEWEB)

    EDER, D.M.

    2000-11-01

    The purpose of the Environmental Management Performance Report (EMPR) is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's Environmental Management (EM) performance by: Project Hanford Management Contract (PHMC) through Fluor Hanford, Inc. (FH) and its subcontractors; Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors; Pacific Northwest National Laboratories (PNNL) for Science and Technology support to the EM Mission; and Office of Safety Regulation of the TWRS Privatization Contractor. This report is a monthly publication that summarizes EM Site performance under RL Operations Office. It is organized by the four sections listed above, with each section containing an Executive Summary and Area Performance Summaries. A glossary of terms is provided at the end of this report for reference purposes.

  18. Waste oil management at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Oakes, T.W.; Bird, J.C.; Shank, K.E.; Kelley, B.A.; Harrison, L.L.; Clark, B.R.; Rogers, W.F.

    1980-01-01

    It is the policy of the Oak Ridge National Laboratory (ORNL) to require that oily substances be handled and disposed of in a manner that protects the environment and personnel from harm. Federal regulations prohibit the discharge of oil into navigable waters, with stiff penalties possible to violators. A strict waste oil management program has been developed and implemented because of the potential for oil problems resulting from the large and varied uses of oil at the Laboratory. Also, past records of improper discharges of oil have mandated immediate corrective actions. In order to resolve the problems of waste oil at the Laboratory, the ORNL Waste Oil Investigation Committee was formed on March 14, 1979. The work of the committee included a survey of every building and area of the Laboratory to locate the presence of oil and the pathways of oil discharges to the environment. The committee also provided a basis for the development of oil spill procedures and waste oil disposal. The Department of Environmental Management (DEM) of the Industrial Safety and Applied Health Physics Division at ORNL has the responsibility of developing environmental protection procedures for the handling and disposal of oil. It approves storage and collection facilities, disposal methods, and disposal sites for oil-containing wastes. The DEM has developed and implemented an ORNL Environmental Protection Procedure for oils and an oil spill prevention and countermeasure plan. In order to familiarize ORNL personnel with the problems and procedures of waste oil, the DEM has held seminars on the subject. This report reviews the findings of the Waste Oil Investigation Committee and the actions of the laboratory management and the DEM in dealing with the waste oil problem at ORNL

  19. Implementing an integrated standards-based management system to ensure compliance at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Hjeresen, D.; Roybal, S.; Bertino, P.; Gherman, C.; Hosteny, B.

    1995-01-01

    Los Alamos National Laboratory (LANL or the Laboratory) is developing and implementing a comprehensive, Integrated Standards-Based Management System (ISBMS) to enhance environmental, safety, and health (ESH) compliance efforts and streamline management of ESH throughout the Laboratory. The Laboratory recognizes that to be competitive in today's business environment and attractive to potential Partnerships, Laboratory operations must be efficient and cost-effective. The Laboratory also realizes potential growth opportunities for developing ESH as a strength in providing new or improved services to its customers. Overall, the Laboratory desires to establish and build upon an ESH management system which ensures continuous improvement in protecting public health and safety and the environment and which fosters a working relationship with stakeholders. A team of process experts from the LANL Environmental Management (EM) Program Office, worked with management system consultants, and the Department of Energy (DOE) to develop an ESH management systems process to compare current LANL ESH management Systems and programs against leading industry standards. The process enabled the Laboratory to gauge its performance in each of the following areas: Planning and Policy Setting; Systems and Procedures; Implementation and Education; and Monitoring and Reporting. The information gathered on ESH management systems enabled LANL to pinpoint and prioritize opportunities for improvement in the provision of ESH services throughout the Laboratory and ultimately overall ESH compliance

  20. Environmental assessment of the Environmental Restoration Project at Sandia National Laboratories/New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Sandia National Laboratories/New Mexico (SNL/NM) is managed and operated for the U.S. Department of Energy (DOE) by Sandia Corporation, a subsidiary of the Lockheed Martin Company. SNL/NM is located on land controlled by DOE within the boundaries of Kirtland Air Force Base (KAFB) in Albuquerque, New Mexico. The major responsibilities of SNL/NM are the support of national security and energy projects. This report provides an environmental assessment of proposed remedial action activities at the solid waste management units at SNL/NM. A risk assessment of health hazards is also discussed.

  1. Environmental monitoring for EG and G Idaho facilities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Tkachyk, J.W.; Wright, K.C.; Wilhelmsen, R.N.

    1990-08-01

    This report describes the 1989 environmental-monitoring activities of the Environmental Monitoring Unit of EG ampersand G Idaho, Inc., at EG ampersand G-operated facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Additional monitoring activities performed by Environmental Monitoring are also discussed, including drinking-water monitoring and nonradiological liquid-effluent monitoring, as well as data management. The primary purposes of monitoring are to evaluate environmental conditions and to provide and interpret data, in compliance with applicable regulations, to ensure protection of human health and the environment. This report compares 1989 environmental-monitoring data with derived concentration guides and with data from previous years. This report also presents results of sampling performed by the Radiological and Environmental Sciences Laboratory and by the United States Geological Survey. 17 refs., 49 figs., 11 tabs

  2. INL Site Portion of the April 1995 Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Mamagement Programmatic Final Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2005-06-30

    In April 1995, the Department of Energy (DOE) and the Department of the Navy, as a cooperating agency, issued the Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement (1995 EIS). The 1995 EIS analyzed alternatives for managing The Department's existing and reasonably foreseeable inventories of spent nuclear fuel through the year 2035. It also included a detailed analysis of environmental restoration and waste management activities at the Idaho National Engineering and Environmental Laboratory (INEEL). The analysis supported facility-specific decisions regarding new, continued, or planned environmental restoration and waste management operations. The Record of Decision (ROD) was signed in June 1995 and amended in February 1996. It documented a number of projects or activities that would be implemented as a result of decisions regarding INL Site operations. In addition to the decisions that were made, decisions on a number of projects were deferred or projects have been canceled. DOE National Environmental Policy Act (NEPA) implementing procedures (found in 10 CFR Part 1 021.330(d)) require that a Supplement Analysis of site-wide EISs be done every five years to determine whether the site-wide EIS remains adequate. While the 1995 EIS was not a true site-wide EIS in that several programs were not included, most notably reactor operations, this method was used to evaluate the adequacy of the 1995 EIS. The decision to perform a Supplement Analysis was supported by the multi-program aspect of the 1995 EIS in conjunction with the spirit of the requirement for periodic review. The purpose of the SA is to determine if there have been changes in the basis upon which an EIS was prepared. This provides input for an evaluation of the continued adequacy of the EIS in light of those changes (i.e., whether there are substantial changes in the proposed

  3. Environmental Survey preliminary report, Brookhaven National Laboratory, Upton, New York

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Brookhaven National Laboratory (BNL) conducted April 6 through 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with BNL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at BNL, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by Oak Ridge National Laboratory. When completed, the results will be incorporated into the BNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the BNL Survey. 80 refs., 24 figs., 48 tabs.

  4. Environmental Survey preliminary report, Lawrence Livermore National Laboratory, Livermore, California

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the Department of Energy (DOE) Lawrence Livermore National Laboratory (LLNL), conducted December 1 through 19, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with LLNL. The Survey covers all environmental media all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at LLNL, and interviews with site personnel. A Sampling and Analysis Plan was developed to assist in further assessing certain of the environmental problems identified during performance of on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory. When completed, the results will be incorporated into the LLNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the LLNL Survey. 70 refs., 58 figs., 52 tabs.,

  5. Environmental Survey preliminary report, Brookhaven National Laboratory, Upton, New York

    International Nuclear Information System (INIS)

    1988-06-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Brookhaven National Laboratory (BNL) conducted April 6 through 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with BNL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at BNL, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by Oak Ridge National Laboratory. When completed, the results will be incorporated into the BNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the BNL Survey. 80 refs., 24 figs., 48 tabs

  6. Reengineering of Analytical Data Management for the Environmental Restoration Project at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Bolivar, S.; Dorries, A.; Nasser, K.; Scherma, S.

    2003-01-01

    The Environmental Restoration (ER) Project at Los Alamos National Laboratory (LANL) is responsible for the characterization, clean up, and monitoring of over 2,124 identified potential release sites (PRS). These PRSs have resulted from operations associated with weapons and energy related research which has been conducted at LANL since 1942. To accomplish mission goals, the ER Project conducts field sampling to determine possible types and levels of chemical contamination as well as their geographic extent. Last fiscal year, approximately 4000 samples were collected during ER Project field sampling campaigns. In the past, activities associated with field sampling such as sample campaign planning, paperwork, shipping and analytical laboratory tracking; verification and order fulfillment; validation and data quality assurance were performed by multiple groups working with a variety of software applications, databases and hard copy reports. This resulted in significant management and communication difficulties, data delivery delays, and inconsistent processes; it also represented a potential threat to overall data integrity. Creation of an organization, software applications and a data process that could provide for cost-effective management of the activities and data mentioned above became a management priority, resulting in a development of a reengineering task. This reengineering effort--currently nearing completion--has resulted in personnel reorganization, the development of a centralized data repository, and a powerful web-based sample management system that allows for an appreciably streamlined and more efficient data process. These changes have collectively cut data delivery times, allowed for larger volumes of samples and data to be handled with fewer personnel, and resulted in significant cost savings. This paper will provide a case study of the reengineering effort undertaken by the ER Project of its analytical data management process. It includes

  7. Reengineering of Analytical Data Management for the Environmental Restoration Project at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.; Dorries, A.; Nasser, K.; Scherma, S.

    2003-02-27

    The Environmental Restoration (ER) Project at Los Alamos National Laboratory (LANL) is responsible for the characterization, clean up, and monitoring of over 2,124 identified potential release sites (PRS). These PRSs have resulted from operations associated with weapons and energy related research which has been conducted at LANL since 1942. To accomplish mission goals, the ER Project conducts field sampling to determine possible types and levels of chemical contamination as well as their geographic extent. Last fiscal year, approximately 4000 samples were collected during ER Project field sampling campaigns. In the past, activities associated with field sampling such as sample campaign planning, paperwork, shipping and analytical laboratory tracking; verification and order fulfillment; validation and data quality assurance were performed by multiple groups working with a variety of software applications, databases and hard copy reports. This resulted in significant management and communication difficulties, data delivery delays, and inconsistent processes; it also represented a potential threat to overall data integrity. Creation of an organization, software applications and a data process that could provide for cost-effective management of the activities and data mentioned above became a management priority, resulting in a development of a reengineering task. This reengineering effort--currently nearing completion--has resulted in personnel reorganization, the development of a centralized data repository, and a powerful web-based sample management system that allows for an appreciably streamlined and more efficient data process. These changes have collectively cut data delivery times, allowed for larger volumes of samples and data to be handled with fewer personnel, and resulted in significant cost savings. This paper will provide a case study of the reengineering effort undertaken by the ER Project of its analytical data management process. It includes

  8. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory's hazardous waste management facility

    International Nuclear Information System (INIS)

    Dionne, B.J.; Morris, S.C. III; Baum, J.W.

    1998-01-01

    The Department of Energy's (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory's Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an open-quotes As Low as Reasonably Achievableclose quotes (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique. This document contains the Appendices for the report

  9. Project management plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place nineteen former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. Implementation and completion of the deactivation project win further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S ampersand M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project

  10. Lawrence Berkeley National Laboratory 1997 Site Environmental Report Vol. I

    International Nuclear Information System (INIS)

    Thorson, Patrick

    1998-01-01

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of U.S. Department of Energy Order 231.1. The Site Environmental Report for 1997 is intended to summarize Berkeley Lab's compliance with environmental standards and requirements, characterize environmental management efforts through surveillance and monitoring activities, and highlight significant programs and efforts for calendar year 1997. This report is structured into three basic areas that cover a general overview of the Laboratory, the status of environmental programs, and the results of the surveillance and monitoring activities, including air quality, surface water, groundwater, sanitary sewer, soil and sediment, vegetation and foodstuffs, radiation dose assessment, and quality assurance. The report is separated into two volumes. Volume I contains the body of the report, a list of references, a list of acronyms and abbreviations, a glossary, Appendix A (NESHAPS annual report), and Appendix B (distribution list for volume I). Volume II contains Appendix C, the individual data results from monitoring programs. Each chapter in volume I begins with an outline of the sections that follow

  11. Managing Science: Management for R&D Laboratories

    Science.gov (United States)

    Gelès, Claude; Lindecker, Gilles; Month, Mel; Roche, Christian

    1999-10-01

    A unique "how-to" manual for the management of scientific laboratories This book presents a complete set of tools for the management of research and development laboratories and projects. With an emphasis on knowledge rather than profit as a measure of output and performance, the authors apply standard management principles and techniques to the needs of high-flux, open-ended, separately funded science and technology enterprises. They also propose the novel idea that failure, and incipient failure, is an important measure of an organization's potential. From the management of complex, round-the-clock, high-tech operations to strategies for long-term planning, Managing Science: Management for R&D Laboratories discusses how to build projects with the proper research and development, obtain and account for funding, and deal with rapidly changing technologies, facilities, and trends. The entire second part of the book is devoted to personnel issues and the impact of workplace behavior on the various functions of a knowledge-based organization. Drawing on four decades of involvement with the management of scientific laboratories, the authors thoroughly illustrate their philosophy with real-world examples from the physics field and provide tables and charts. Managers of scientific laboratories as well as scientists and engineers expecting to move into management will find Managing Science: Management for R&D Laboratories an invaluable practical guide.

  12. Sandia National Laboratories, California Hazardous Materials Management Program annual report : February 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental anagement ystem Program Manual. This program annual report describes the activities undertaken during the past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  13. Laboratory Information Management System Chain of Custody: Reliability and Security

    OpenAIRE

    Tomlinson, J. J.; Elliott-Smith, W.; Radosta, T.

    2006-01-01

    A chain of custody (COC) is required in many laboratories that handle forensics, drugs of abuse, environmental, clinical, and DNA testing, as well as other laboratories that want to assure reliability of reported results. Maintaining a dependable COC can be laborious, but with the recent establishment of the criteria for electronic records and signatures by US regulatory agencies, laboratory information management systems (LIMSs) are now being developed to fully automate COCs. The extent of a...

  14. Proposal of implementation of Environmental Management System at the Laboratory of Radioactive Waste In IPEN-SP

    International Nuclear Information System (INIS)

    Moura, Luiz Antonio Abdalla

    2008-01-01

    An increasing use of nuclear technology in the form of its several applications (electricity generation, medical, industrial, agricultural, environment and radiosterilization) is currently being observed in Brazil. Radioactive waste of high, medium or lower activity is produced in all fuel cycle and other research activities, industrial activities of fuel production and electricity generation. Appropriate and safe technologies are available for the treatment and storage of radioactive waste and, when applied, contribute for the acceptance of nuclear energy by the Society. With the increasing importance of demands related to environmental issues, the International Organization for Standardization issued the Standard ISO 14.001 - Environmental Management System, applied to all types and size of organizations, helping them to increase their environment performance. In this research, the standard requirements were commented in detail, being particularized to the Laboratory of Radioactive Waste from IPEN, as a case study. (author)

  15. Environmental management in public hospitals: Environmental management in Colombia

    OpenAIRE

    Juan Pablo Rodríguez-Miranda; César Augusto García-Ubaque; María Camila García-Vaca

    2016-01-01

    Introduction: Activities in hospitals have environmental impacts which may pose risks to human and environmental health if they are not managed correctly. For this reason, it is necessary to implement an environmental management plan in hospitals that not only focuses on solid waste management but includes all aspects associated with health within institutions. Objective: To review environmental management aspects related to public hospitals in order to identify environmental management a...

  16. Environmental Management Performance Report for December 1999

    Energy Technology Data Exchange (ETDEWEB)

    EDER, D.M.

    2000-02-16

    The purpose of the Environmental Management Performance Report (EMPR) is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's Environmental Management (EM) performance by: U. S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Hanford, Inc. (FHI) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for EM and EM Science and Technology (S&T) Mission. This report is a monthly publication that summarizes EM Site performance under RL Operations Office. It is organized by the four sections listed above, with each section containing an Executive Summary and Area Performance Summaries. A listing of what is contained in the sections can be found in the Table of Contents.

  17. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2001

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2002-01-01

    No significant environmental problems were identified at the National Energy Technology Laboratory (NETL) sites in Morgantown (MGN), Pittsburgh (PGH), Tulsa (NPTO) and Fairbanks (AEO) during 2001. No radionuclides were released from the sites during 2001. The sites maintain two major environmental programs: waste management, and environmental media and release management. These two programs encompass waste handling, storage, and disposal, waste minimization and pollution prevention, air quality emissions, surface-water discharges, groundwater impacts, industrial wastewater discharges, and spill control procedures. The Morgantown and Pittsburgh sites currently maintain complete monitoring programs for groundwater, stormwater discharge, laboratory wastewater discharge, and meteorological data. In addition, an annual air emissions inventory is prepared. A comprehensive Directives Program aimed at managing environmental, safety, health requirements, and risks was initiated in 1997, continued through subsequent years, and will be completed in 2003. The primary objective of the program is to identify and implement standards that will protect the health and safety of workers, public, and the environment. This program started with a careful and thorough analysis of risks confronting workers and the communities surrounding NETL sites. Following this analysis, requirements and best management practices were evaluated to determine how requirements could best be used to advance the mission of NETL. Teams of subject-matter experts analyzed the work assigned to determine potential hazards and identify ways to remove or control those hazards. In 2001, NETL developed or revised a series of directives in two major areas: safety analysis and review (SAR) processes, and integrated safety management (ISM) directives. SAR directives were issued for research and development (R andD) operations, support operations, and facilities. ISM directives were released on management processes

  18. Laboratory Waste Management. A Guidebook.

    Science.gov (United States)

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  19. Quality management manual. National EU air quality reference laboratory of the Federal Environmental Agency; Qualitaetsmanagementhandbuch. Nationales EU-Luftqualitaets-Referenzlabor im Umweltbundesamt

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    The 'Air' Department of the Federal Environmental Agency initiated a quality management system according to DIN EN ISO/IEC 17025 in order to carry out its tasks as a EU reference laboratory for air pollution monitoring. Harmonisation of measurements is attempted not only in the Federal Republic of Germany but world-wide. This is to be achieved by standardising the activities of reference laboratories on the basis of the DIN EN standards. The quality management system comprises complex organisational, technical and staff-oriented measures to ensure quality-relevant procedures and to control the interdependences between the individual processes. The specifications contained in this report are to ensure that quality requirements are met, and that the QM system will be updated continuously in order to ensure constant improvement.

  20. 1998 Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D.K.; Fink, C.H.; Sanchez, R.V.

    1999-09-01

    Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the US Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs. SNL/NM also conducts fundamental research and development to advance technology in energy research, computer science, waste management, microelectronics, materials science, and transportation safety for hazardous and nuclear components. In support of SNL's mission, the Environment, Safety and Health (ES&H) Center and the Environmental Restoration (ER) Project at SNL/NM have established extensive environmental programs to assist SNL's line organizations in meeting all applicable local, State, and Federal environmental regulations and DOE requirements. This annual report for calendar year 1998 (CY98) summarizes the compliance status of environmental regulations applicable to SNL site operations. Environmental program activities include terrestrial surveillance; ambient air and meteorological monitoring hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental remediation; oil and chemical spill prevention; and National Environmental Policy Act (NEPA) activities. This report has been prepared in compliance with DOE Order 5400.1, General Environmental Protection Program (DOE 1990).

  1. Identification and analysis of the environmental management documentation related to the activities of environmental and chemical analysis laboratories; Identificacao e analise da documentacao pertinente a gestao ambiental relacionada as atividades de laboratorios de analises quimicas e ambientais

    Energy Technology Data Exchange (ETDEWEB)

    Otomo, Juliana Ikebe; Brandalise, Michele; Romano, Renato Lahos; Marques, Roberto; Szarota, Rosa Maria; Raduan, Rosane Napolitano; Salvetti, Tereza Cristina; Egute, Nayara dos Santos; Almeida, Josimar Ribeiro de; Aquino, Afonso Rodrigues de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: araquino@ipen.br

    2009-08-15

    In the last years, many documents were elaborated by several countries and entities, concerning the environmental question. The implantation of and Environmental Management System requires specific documentation so that a company or laboratory can adjust themselves to the environmental quality. For laboratories of chemical, environmental analyses and also nuclear materials, the needs of attendance to the requirements of the following municipal, state and federal institutions were identified: Corpo de Bombeiros, CNEN - Comissao Nacional de Energia Nuclear, IBAMA - Instituto Brasileiro do Meio Ambiente e dos Recursos Renovaveis, ANVISA - Agencia Nacional de Vigilancia Sanitaria, PMSP - Prefeitura Municipal de Sao Paulo e a CETESB - Companhia Ambiental do Estado de Sao Paulo. (author)

  2. 1991 Environmental monitoring report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Culp, T.; Cox, W.; Hwang, S.; Jones, A.; Longley, S.; Parsons, A.; Wolff, T.; Fish, J.; Ward, S.

    1992-11-01

    This 1991 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, envirorunental restoration (ER), and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 1.3 x 10 -3 mrem. The total population within a 50-mile radius of SNL, Albuquerque, received a collective dose of 0.53 person-rem during 1991 from SNL, Albuquerque, operations. As in the previous year, the 1991 operations at SNL, Albuquerque, had no discernible impact on the general public or on the environment

  3. Environmental Survey preliminary report, Princeton Plasma Physics Laboratory, Princeton, New Jersey

    International Nuclear Information System (INIS)

    1989-05-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), conducted June 13 through 17, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Team members are being provided by private contractors. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with PPPL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at PPPL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S ampersand A) Plan to assist in further assessing certain of the environment problems identified during its on-site activities. The S ampersand A plan is being developed by the Idaho National Engineering Laboratory. When completed, the S ampersand A results will be incorporated into the PPPL Survey findings for inclusion in the Environmental Survey Summary Report. 70 refs., 17 figs., 21 tabs

  4. Environmental Survey preliminary report, Fermi National Accelerator Laboratory, Batavia, Illinois

    International Nuclear Information System (INIS)

    1988-10-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Fermi National Accelerator Laboratory (Fermilab), conducted September 14 through 25, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with Fermilab. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at Fermilab, and interviews with site personnel. 110 refs., 26 figs., 41 tabs

  5. Environmental Survey preliminary report, Fermi National Accelerator Laboratory, Batavia, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Fermi National Accelerator Laboratory (Fermilab), conducted September 14 through 25, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with Fermilab. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at Fermilab, and interviews with site personnel. 110 refs., 26 figs., 41 tabs.

  6. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2002-10-01

    No significant environmental problems were identified at the National Energy Technology Laboratory (NETL) sites in Morgantown (MGN), Pittsburgh (PGH), Tulsa (NPTO) and Fairbanks (AEO) during 2001. No radionuclides were released from the sites during 2001. The sites maintain two major environmental programs: waste management, and environmental media and release management. These two programs encompass waste handling, storage, and disposal, waste minimization and pollution prevention, air quality emissions, surface-water discharges, groundwater impacts, industrial wastewater discharges, and spill control procedures. The Morgantown and Pittsburgh sites currently maintain complete monitoring programs for groundwater, stormwater discharge, laboratory wastewater discharge, and meteorological data. In addition, an annual air emissions inventory is prepared. A comprehensive Directives Program aimed at managing environmental, safety, health requirements, and risks was initiated in 1997, continued through subsequent years, and will be completed in 2003. The primary objective of the program is to identify and implement standards that will protect the health and safety of workers, public, and the environment. This program started with a careful and thorough analysis of risks confronting workers and the communities surrounding NETL sites. Following this analysis, requirements and best management practices were evaluated to determine how requirements could best be used to advance the mission of NETL. Teams of subject-matter experts analyzed the work assigned to determine potential hazards and identify ways to remove or control those hazards. In 2001, NETL developed or revised a series of directives in two major areas: safety analysis and review (SAR) processes, and integrated safety management (ISM) directives. SAR directives were issued for research and development (R&D) operations, support operations, and facilities. ISM directives were released on management processes, such

  7. Environmental Management System

    Science.gov (United States)

    Goals Recycling Green Purchasing Pollution Prevention Reusing Water Resources Environmental Management Stewardship » Environmental Protection » Environmental Management System Environmental Management System An Environmental Management System is a systematic method for assessing mission activities, determining the

  8. Quality assurance guidance for laboratory assessment plates in support of EM environmental sampling and analysis activities

    International Nuclear Information System (INIS)

    1994-05-01

    This document is one of several guidance documents developed to support the EM (DOE Environmental Restoration and Waste Management) Analytical Services program. Its purpose is to introduce assessment plates that can be used to conduct performance assessments of an organization's or project's ability to meet quality goals for analytical laboratory activities. These assessment plates are provided as non-prescriptive guidance to EM-support organizations responsible for collection of environmental data for remediation and waste management programs at DOE facilities. The assessments evaluate objectively all components of the analytical laboratory process to determine their proper selection and use

  9. 1990 Environmental Monitoring Report, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Hwang, S.; Yeager, G.; Wolff, T.; Parsons, A.; Dionne, D.; Massey, C.; Schwartz, B.; Fish, J.; Thompson, D.; Goodrich, M.

    1991-05-01

    This 1990 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 2.0 x 10 -3 mrem. The total 50-mile population received a collective dose of 0.82 person-rem during 1990 from SNL, Albuquerque, operations. As in the previous year, the 1990 SNL operations had no adverse impact on the general public or on the environment. This report is prepared for the US Department of Energy in compliance with DOE Order 5400.1. 97 refs., 30 figs., 137 tabs

  10. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, Diana Lee

    2009-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  11. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, Diana Lee

    2011-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  12. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun Williams

    2013-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices

  13. Environmental Management System Objectives & Targets Results Summary - FY 2015.

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, Douglas W

    2016-02-01

    Sandia National Laboratories (SNL) Environmental Management System is the integrated approach for members of the workforce to identify and manage environmental risks. Each Fiscal Year (FY) SNL performs an analysis to identify environmental aspects, and the environmental programs associated with them are charged with the task of routinely monitoring and measuring the objectives and targets that are established to mitigate potential impacts of SNL's operations on the environment. An annual summary of the results achieved towards meeting established Sandia Corporation and SNL Site-specific objectives and targets provides a connection to, and rational for, annually revised environmental aspects. The purpose of this document is to summarize the results achieved and documented in FY 2015.

  14. Lawrence Livermore National Laboratory Environmental Report 2015

    International Nuclear Information System (INIS)

    Rosene, C. A.; Jones, H. E.

    2016-01-01

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites-the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, ''Environment, Safety and Health Reporting,'' and DOE Order 458.1, ''Radiation Protection of the Public and Environment.''

  15. Environmental Molecular Sciences Laboratory Operations System: Version 4.0 - system requirements specification

    Energy Technology Data Exchange (ETDEWEB)

    Kashporenko, D.

    1996-07-01

    This document is intended to provide an operations standard for the Environmental Molecular Sciences Laboratory OPerations System (EMSL OPS). It is directed toward three primary audiences: (1) Environmental Molecular Sciences Laboratory (EMSL) facility and operations personnel; (2) laboratory line managers and staff; and (3) researchers, equipment operators, and laboratory users. It is also a statement of system requirements for software developers of EMSL OPS. The need for a finely tuned, superior research environment as provided by the US Department of Energy`s (DOE) Environmental Molecular Sciences Laboratory has never been greater. The abrupt end of the Cold War and the realignment of national priorities caused major US and competing overseas laboratories to reposition themselves in a highly competitive research marketplace. For a new laboratory such as the EMSL, this means coming into existence in a rapidly changing external environment. For any major laboratory, these changes create funding uncertainties and increasing global competition along with concomitant demands for higher standards of research product quality and innovation. While more laboratories are chasing fewer funding dollars, research ideas and proposals, especially for molecular-level research in the materials and biological sciences, are burgeoning. In such an economically constrained atmosphere, reduced costs, improved productivity, and strategic research project portfolio building become essential to establish and maintain any distinct competitive advantage. For EMSL, this environment and these demands require clear operational objectives, specific goals, and a well-crafted strategy. Specific goals will evolve and change with the evolution of the nature and definition of DOE`s environmental research needs. Hence, EMSL OPS is designed to facilitate migration of these changes with ease into every pertinent job function, creating a facile {open_quotes}learning organization.{close_quotes}

  16. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    International Nuclear Information System (INIS)

    1995-09-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R ampersand D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)

  17. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R&D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

  18. Calendar year 2004 annual site environmental report:Sandia National Laboratories, Albuquerque, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Amber L.; Goering, Teresa Lynn; Wagner, Katrina; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility owned by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and managed by the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2004. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004a). (DOE 2004a).

  19. Laboratory Information Management System Chain of Custody: Reliability and Security

    Science.gov (United States)

    Tomlinson, J. J.; Elliott-Smith, W.; Radosta, T.

    2006-01-01

    A chain of custody (COC) is required in many laboratories that handle forensics, drugs of abuse, environmental, clinical, and DNA testing, as well as other laboratories that want to assure reliability of reported results. Maintaining a dependable COC can be laborious, but with the recent establishment of the criteria for electronic records and signatures by US regulatory agencies, laboratory information management systems (LIMSs) are now being developed to fully automate COCs. The extent of automation and of data reliability can vary, and FDA- and EPA-compliant electronic signatures and system security are rare. PMID:17671623

  20. Oak Ridge National Laboratory Waste Management Plan. Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  1. IRSN's radiological proficiency testings: a key for managing the quality of test laboratories in charge of the environmental radioactivity survey in France?

    Energy Technology Data Exchange (ETDEWEB)

    Ameon, R.; Gleizes, M.; Maulard, A.; Moine, J.; Vignaud, C. [Institute for Radioprotection and Nuclear Safety, IRSN (France)

    2014-07-01

    In France, many actors are involved in environmental monitoring (IRSN, operators of nuclear facilities, State services, approved air quality monitoring associations, environmental protection associations, private environmental laboratories...). The French National Network for Environmental Radioactivity Monitoring (RNM) federates all these entities. RNM brings together the environmental measurement results made in a regulatory framework on the French territory and make them available to the public through a web site. The quality of these measurements is guaranteed by subjecting the test laboratories to an approval procedure under the control of the French nuclear safety authority (ASN). The approval procedure includes administrative requirements (the laboratory shall meet ISO 17025 requirements) and the participation to proficiency testings (PT) provided by IRSN in order to demonstrate their technical competence. As approvals cover all components of the environment, the five-year PT program is defined on a combination of: - 6 types of environmental matrices: water, soil/sediments, biological matrices (tea, tobacco, fish, milk,...), aerosols on filters, gas-air (activated charcoal cartridge) and ambient air (RPL dosimeters), - 17 categories of radioactive measurements: g-emitters, gross a, gross b, {sup 3}H, {sup 14}C, {sup 90}Sr/{sup 90}Y, pure b-emitters, U isotopes and U content, Th isotopes, {sup 226}Ra and decay products, {sup 228}Ra and decay products, Pu/Am, {sup 129}I/{sup 131}I, noble gases, g-dose rate. Following ISO/CEI 17043 requirements, IRSN, as an accredited PT provider is in charge of: - Preparation and dispatch of test items, - Control of the homogeneity and stability of produced test items, - Determination of the assigned values, - Analysis of the results transmitted by participants in terms of relative bias, En number and z-score, - Publication of the report. PT program managed by IRSN groups 6 to 7 interlaboratory comparisons per year. Each of

  2. Environmental restoration/waste management-applied technology semiannual report, January--June 1992

    International Nuclear Information System (INIS)

    Adamson, M.; Kline-Simon, K.

    1992-01-01

    This is the first issue from the Lawrence Livermore National Laboratory of The Environmental Restoration/Waste Management-Applied Technology (ER/WM-AT) Semiannual Report, a continuation of the Advanced Processing Technology (APT) Semiannual Report. The name change reflects the consolidation of the APT Program with the Environmental Restoration and Waste Management Program to form the Environmental Restoration/Waste Management-Applied Technology (ER/WM-AT) Program. The Livermore site mirrors, on a small scale, many of the environmental and waste management problems of the DOE Complex. The six articles in this issue cover incineration- alternative technologies, process development for waste minimization, the proposed Mixed Waste Management Facility, dynamic underground stripping, electrical resistance tomography, and Raman spectroscopy for remote characterization of underground tanks

  3. Laboratory information management system at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, W.; Barth, D.; Ibsen, T.; Newman, B.

    1994-03-01

    In January of 1994 an important new technology was brought on line to help in the monumental waste management and environmental restoration work at the Hanford Site. Cleanup at the Hanford Site depends on analytical chemistry information to identify contaminates, design and monitor cleanup processes, assure worker safety, evaluate progress, and prove completion. The new technology, a laboratory information management system (LIMS) called ``LABCORE,`` provides the latest systems to organize and communicate the analytical tasks: track work and samples; collect and process data, prepare reports, and store data in readily accessible electronic form.

  4. Laboratory information management system at the Hanford Site

    International Nuclear Information System (INIS)

    Leggett, W.; Barth, D.; Ibsen, T.; Newman, B.

    1994-03-01

    In January of 1994 an important new technology was brought on line to help in the monumental waste management and environmental restoration work at the Hanford Site. Cleanup at the Hanford Site depends on analytical chemistry information to identify contaminates, design and monitor cleanup processes, assure worker safety, evaluate progress, and prove completion. The new technology, a laboratory information management system (LIMS) called ''LABCORE,'' provides the latest systems to organize and communicate the analytical tasks: track work and samples; collect and process data, prepare reports, and store data in readily accessible electronic form

  5. Routine environmental audit of the Sandia National Laboratories, California, Livermore, California

    International Nuclear Information System (INIS)

    1994-03-01

    This report documents the results of the Routine Environmental Audit of the Sandia National Laboratories, Livermore, California (SNL/CA). During this audit the activities the Audit Team conducted included reviews of internal documents and reports from preview audits and assessments; interviews with US Department of Energy (DOE), State of California regulators, and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted from February 22 through March 4, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety, and Health (EH). The audit evaluated the status of programs to ensure compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements. The audit's functional scope was comprehensive and included all areas of environmental management and a programmatic evaluation of NEPA and inactive waste sites

  6. Routine environmental audit of the Sandia National Laboratories, California, Livermore, California

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This report documents the results of the Routine Environmental Audit of the Sandia National Laboratories, Livermore, California (SNL/CA). During this audit the activities the Audit Team conducted included reviews of internal documents and reports from preview audits and assessments; interviews with US Department of Energy (DOE), State of California regulators, and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted from February 22 through March 4, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety, and Health (EH). The audit evaluated the status of programs to ensure compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements. The audit`s functional scope was comprehensive and included all areas of environmental management and a programmatic evaluation of NEPA and inactive waste sites.

  7. Building a Laboratory Information Management System Using Windows4GL

    International Nuclear Information System (INIS)

    Pickens, M.A.; Shaieb, M.R.

    1996-05-01

    The system discussed is currently implemented at LLNL in the Environmental Services program which operates out of the Chemistry ampersand Materials Science (C ampersand MS) directorate. Responsibility is to provide the C ampersand MS Environmental Services (CES) program with an enterprise-wide information system which will aid CES. The specific portion of the information system is the Sample Tracking, Analysis and Reporting System (STARS). Since CES was formed by merging two analytical laboratory organizations in May 1995, a new Laboratory Information Management System (LIMS) had to be developed. The development of a LIMS in Windows4GL was found to be satisfactory. The product STARS was well received by the user community, and it has improved business practices and efficiency in CES. The CES management staff has seen increased personnel productivity since STARS was release. We look forward to upgrading to CA-OpenROAD and taking advantage of its many improved and innovative features to further enhance STARS

  8. Building a Laboratory Information Management System Using Windows4GL

    Energy Technology Data Exchange (ETDEWEB)

    Pickens, M.A.; Shaieb, M.R.

    1996-05-01

    The system discussed is currently implemented at LLNL in the Environmental Services program which operates out of the Chemistry & Materials Science (C&MS) directorate. Responsibility is to provide the C&MS Environmental Services (CES) program with an enterprise-wide information system which will aid CES. The specific portion of the information system is the Sample Tracking, Analysis and Reporting System (STARS). Since CES was formed by merging two analytical laboratory organizations in May 1995, a new Laboratory Information Management System (LIMS) had to be developed. The development of a LIMS in Windows4GL was found to be satisfactory. The product STARS was well received by the user community, and it has improved business practices and efficiency in CES. The CES management staff has seen increased personnel productivity since STARS was release. We look forward to upgrading to CA-OpenROAD and taking advantage of its many improved and innovative features to further enhance STARS.

  9. Calendar year 2003 annual site environmental report for Sandia National Laboratories, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2004-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility owned by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and managed by the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2003. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, ''Environmental Protection Program'' (DOE 2003a) and DOE Order 231.1 Chg.2, ''Environment, Safety, and Health Reporting'' (DOE 1996).

  10. Ames Laboratory site environmental report, Calendar year 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Ames Laboratory conducts fundamental research in the physical, chemical, materials, and mathematical sciences and engineering which underlie energy generating, conversion, transmission and storage technologies, environmental improvement, and other technical areas essential to national needs. These efforts will be maintained so as to contribute to the achievement of the vision of DOE and, more specifically, to increase the general levels of knowledge and technical capabilities, to prepare engineering and physical sciences students for the future, both academia and industry, and to develop new technologies and practical applications from our basic scientific programs that will contribute to a strengthening of the US economy. The Laboratory approaches all its operations with the safety and health of all workers as a constant objective and with genuine concern for the environment. The Laboratory relies upon its strengths in materials synthesis and processing, materials reliability, chemical analysis, chemical sciences, photosynthesis, materials sciences, metallurgy, high-temperature superconductivity, and applied mathematical sciences to conduct the long term basic and intermediate range applied research needed to solve the complex problems encountered in energy production, and utilization as well as environmental restoration and waste management. Ames Laboratory will continue to maintain a very significant and highly beneficial pre-college math and science education program which currently serves both teachers and students at the middle school and high school levels. Our technology transfer program is aided by joint efforts with ISU's technology development and commercialization enterprise and will sustain concerted efforts to implement Cooperative Research and Development Agreements, industrially sponsored Work for Others projects. and scientific personnel exchanges with our various customers

  11. Environmental Safety and Health Analytical Laboratory, Pantex Plant, Amarillo, Texas. Final Environmental Assessment

    International Nuclear Information System (INIS)

    1995-06-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) of the construction and operation of an Environmental Safety and Health (ES ampersand H) Analytical Laboratory and subsequent demolition of the existing Analytical Chemistry Laboratory building at Pantex Plant near Amarillo, Texas. In accordance with the Council on Environmental Quality requirements contained in 40 CFR 1500--1508.9, the Environmental Assessment examined the environmental impacts of the Proposed Action and discussed potential alternatives. Based on the analysis of impacts in the EA, conducting the proposed action, construction of an analytical laboratory and demolition of the existing facility, would not significantly effect the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA) and the Council on Environmental Quality regulations in 40 CFR 1508.18 and 1508.27

  12. Proposed environmental remediation at Argonne National Laboratory, Argonne, Illinois

    International Nuclear Information System (INIS)

    1997-05-01

    The Department of Energy (DOE) has prepared an Environmental Assessment evaluating proposed environmental remediation activity at Argonne National Laboratory-East (ANL-E), Argonne, Illinois. The environmental remediation work would (1) reduce, eliminate, or prevent the release of contaminants from a number of Resource Conservation and Recovery Act (RCRA) Solid Waste Management Units (SWMUs) and two radiologically contaminated sites located in areas contiguous with SWMUs, and (2) decrease the potential for exposure of the public, ANL-E employees, and wildlife to such contaminants. The actions proposed for SWMUs are required to comply with the RCRA corrective action process and corrective action requirements of the Illinois Environmental Protection Agency; the actions proposed are also required to reduce the potential for continued contaminant release. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required

  13. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1999

    International Nuclear Information System (INIS)

    Finley, Virginia

    2001-01-01

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey

  14. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Virginia Finley

    2001-04-20

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary

  15. DOE methods for evaluating environmental and waste management samples

    International Nuclear Information System (INIS)

    Goheen, S.C.; McCulloch, M.; Thomas, B.L.; Riley, R.G.; Sklarew, D.S.; Mong, G.M.; Fadeff, S.K.

    1994-04-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) is a resource intended to support sampling and analytical activities for the evaluation of environmental and waste management samples from U.S. Department of Energy (DOE) sites. DOE Methods is the result of extensive cooperation from all DOE analytical laboratories. All of these laboratories have contributed key information and provided technical reviews as well as significant moral support leading to the success of this document. DOE Methods is designed to encompass methods for collecting representative samples and for determining the radioisotope activity and organic and inorganic composition of a sample. These determinations will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the U.S. Environmental Protection Agency, or others. The development of DOE Methods is supported by the Laboratory Management Division of the DOE. Methods are prepared for entry into DOE Methods as chapter editors, together with DOE and other participants in this program, identify analytical and sampling method needs. Unique methods or methods consolidated from similar procedures in the DOE Procedures Database are selected for potential inclusion in this document. Initial selection is based largely on DOE needs and procedure applicability and completeness. Methods appearing in this document are one of two types. open-quotes Draftclose quotes or open-quotes Verified.close quotes. open-quotes Draftclose quotes methods that have been reviewed internally and show potential for eventual verification are included in this document, but they have not been reviewed externally, and their precision and bias may not be known. open-quotes Verifiedclose quotes methods in DOE Methods have been reviewed by volunteers from various DOE sites and private corporations

  16. Environmental Measurements Laboratory. Environmental report, September 1, 1981-March 1, 1982

    International Nuclear Information System (INIS)

    Hardy, E.P. Jr.; Toonkel, L.E.

    1982-01-01

    This report presents current information from the EML environmental programs, the Radiological and Environmental Research Division at Argonne National Laboratory and the Los Alamos National Laboratory. Two reports on radionuclide data quality assurance are presented in the initial section: one dealing with fallout and biological samples and the other with filtered air samples. These are followed by a report on stratospheric tritium injection by the October 1980 Chinese test. The second section presents recent data from EML progams strontium-90 fallout, radionuclides and trace metals in surface air, radioactivity and trace gases sampled in the stratosphere by aircraft and balloons, strontium-90 in San Francisco and New York diet, milk, and tap water, and cesium-137 in tap water. The third section presents data from Argonne National Laboratory on cesium-137 in Chicago food and from Los Alamos National Laboratory on tritium in the stratosphere. A bibliography of recent publications related to environmental studies is presented. Each section has been abstracted and indexed individually for ERA/EDB

  17. Managing laboratory automation

    OpenAIRE

    Saboe, Thomas J.

    1995-01-01

    This paper discusses the process of managing automated systems through their life cycles within the quality-control (QC) laboratory environment. The focus is on the process of directing and managing the evolving automation of a laboratory; system examples are given. The author shows how both task and data systems have evolved, and how they interrelate. A BIG picture, or continuum view, is presented and some of the reasons for success or failure of the various examples cited are explored. Fina...

  18. Lawrence Livermore National Laboratory Environmental Report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H E; Bertoldo, N A; Campbell, C G; Cerruti, S J; Coty, J D; Dibley, V R; Doman, J L; Grayson, A R; MacQueen, D H; Wegrecki, A M; Armstrong, D H; Brigdon, S L; Heidecker, K R; Hollister, R K; Khan, H N; Lee, G S; Nelson, J C; Paterson, L E; Salvo, V J; Schwartz, W W; Terusaki, S H; Wilson, K R; Woods, J M; Yimbo, P O; Gallegos, G M; Terrill, A A; Revelli, M A; Rosene, C A; Blake, R G; Woollett, J S; Kumamoto, G

    2011-09-14

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff

  19. A DOE University-national laboratory waste-management education and research consortium (WERC)

    International Nuclear Information System (INIS)

    Bhada, R.K.; Morgan, J.D.; Townsend, J.S.

    1991-01-01

    This paper presents the results and current status of a consortium of three universities and two national laboratories working closely with industry for an Education and Research program on waste-management and environmental restoration. The program sponsored by the US Department of Energy has been in effect for 18 months and has achieved significant progress towards establishing: undergraduate, graduate and associate degree programs involving environmental management, interactive TV courses from the consortium members transmitted throughout the United States, Mexico ampersand Canada, a satellite TV network, a professional development teleconference series, research programs at the leading edge of technology training multi-disciplinary students, research laboratories for analyses, testing, and student training, technology transfer programs, including a TV series on research applications, outreach programs, including pre-college and minority education, community monitoring

  20. Reduction of negative environmental impact generated by residues of plant tissue culture laboratory

    Directory of Open Access Journals (Sweden)

    Yusleidys Cortés Martínez

    2016-01-01

    Full Text Available The research is based on the activity developed by teaching and research laboratories for biotechnology purposes with an environmental approach to determine potential contamination risk and analyze the residuals generated. The physical - chemical characterization of the residuals was carried out from contamination indicators that can affect the dumping of residual water. In order to identify the environmental risks and sources of microbial contamination of plant material propagated by in vitro culture that generate residuals, all the risk activities were identified, the type of risk involved in each activity was analyzed, as well as whether or not the standards were met of aseptic normative. The dilution and neutralization was proposed for residuals with extreme values of pH. Since the results of the work a set of measures was proposed to reduce the negative environmental impact of the laboratory residuals. Key words: biosafety, environmental management, microbial contamination

  1. Environmental analytical laboratory setup operation and QA/QC

    International Nuclear Information System (INIS)

    Hsu, J.P.; Boyd, J.A.; DeViney, S.

    1991-01-01

    Environmental analysis requires precise and timely measurements. The required precise measurement is ensured with quality control and timeliness through an efficient operation. The efficiency of the operation also ensures cost-competitiveness. Environmental analysis plays a very important role in the environmental protection program. Due to the possible litigation involvement, most environmental analyses follow stringent criteria, such as the U.S. EPA Contract Laboratory Program procedures with analytical results documented in an orderly manner. The documentation demonstrates that all quality control steps are followed and facilitates data evaluation to determine the quality and usefulness of the data. Furthermore, the tedious documents concerning sample checking, chain-of-custody, standard or surrogate preparation, daily refrigerator and oven temperature monitoring, analytical and extraction logbooks, standard operation procedures, etc., also are an important part of the laboratory documentation. Quality control for environmental analysis is becoming more stringent, required documentation is becoming more detailed and turnaround time is shorter. However, the business is becoming more cost-competitive and it appears that this trend will continue. In this paper, we discuss what should be done to deal this high quality, fast-paced and tedious environmental analysis process at a competitive cost. The success of environmental analysis is people. The knowledge and experience of the staff are the key to a successful environmental analysis program. In order to be successful in this new area, the ability to develop new methods is crucial. In addition, the laboratory information system, laboratory automation and quality assurance/quality control (QA/QC) are major factors for laboratory success. This paper concentrates on these areas

  2. Environmental Survey preliminary report, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    1988-01-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Los Alamos National Laboratory (LANL), conducted March 29, 1987 through April 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the LANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the LANL, and interviews with site personnel. The Survey team developed Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by the Idaho National Engineering Laboratory. When completed, the results will be incorporated into the LANL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Survey for the LANL. 65 refs., 68 figs., 73 tabs

  3. Environmental Survey preliminary report, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Los Alamos National Laboratory (LANL), conducted March 29, 1987 through April 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the LANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the LANL, and interviews with site personnel. The Survey team developed Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by the Idaho National Engineering Laboratory. When completed, the results will be incorporated into the LANL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Survey for the LANL. 65 refs., 68 figs., 73 tabs.

  4. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement

  5. Environmental Molecular Sciences Laboratory 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    White, Julia C.

    2005-04-17

    This 2004 Annual Report describes the research and accomplishments of staff and users of the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), located in Richland, Washington. EMSL is a multidisciplinary, national scientific user facility and research organization, operated by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy's Office of Biological and Environmental Research. The resources and opportunities within the facility are an outgrowth of the U.S. Department of Energy's (DOE) commitment to fundamental research for understanding and resolving environmental and other critical scientific issues.

  6. Brookhaven National Laboratory site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Paquette, D.E.; Schroeder, G.L. [eds.] [and others

    1996-12-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1995. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment. Areas of known contamination are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement established by the Department of Energy, Environmental Protection Agency and the New York Department of Environmental Conservation. Except for identified areas of soil and groundwater contamination, the environmental monitoring data has continued to demonstrate that compliance was achieved with the applicable environmental laws and regulations governing emission and discharge of materials to the environment. Also, the data show that the environmental impacts at Brookhaven National Laboratory are minimal and pose no threat to the public nor to the environment. This report meets the requirements of Department of Energy Orders 5484.1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

  7. Environmental Survey preliminary report, Laboratory for Energy-Related Health Research, Davis, California

    International Nuclear Information System (INIS)

    1988-03-01

    This report presents the preliminary findings from the first phase of the Survey of the United States Department of Energy (DOE) Laboratory for Energy-Related Health Research (LEHR) at the University of California, Davis (UC Davis), conducted November 16 through 20, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the LEHR. The Survey covers all environmental media and all areas of environmental regulation, and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the LEHR and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the LEHR at UC Davis. The Interim Report will reflect the final determinations of the LEHR Survey. 75 refs., 26 figs., 23 tabs

  8. Radionuclide traceability for U.S. Department of Energy Environmental Management Radioanalytical Services

    International Nuclear Information System (INIS)

    Morton, J.S.; McIntyre, T.I.

    2001-01-01

    In 1999, the Department of Energy Office of Environmental Management (DOE-EM) National Analytical Management Program (NAMP) established a Radiological Traceability Program (RTP) as a new initiative for the radioanalytical activities related to the environmental programs conducted throughout the DOE complex. The National Analytical Management Program entered into an interagency agreement with the National Institute of Standards and Technology (NIST) to establish traceability to the national standard for DOE-EM radioanalytical activities through the NIST/reference laboratory concept as described in ANSI N42.23-1996. Using the criteria established by the RTP, NAMP named two DOE-EM laboratories as reference or secondary laboratories and established a program with NIST that demonstrated the concept of traceability. In order to gain and maintain traceability to NIST, each reference laboratory must meet the performance criteria as defined by the RTP and NAMP. Traceability to NIST is tiered down to each radioanalytical laboratory (monitor or service) that successfully participates in the performance-evaluation programs offered by the reference laboratories. Essential to the RTP is the demonstration that the reference laboratories can produce performance-testing (PT) materials of high quality as well as analyze/verify the radionuclide concentration to the required accuracy and precision. Elements of the RTP and the program requirements of NIST and the reference laboratories are presented. (author)

  9. Managing laboratory automation.

    Science.gov (United States)

    Saboe, T J

    1995-01-01

    This paper discusses the process of managing automated systems through their life cycles within the quality-control (QC) laboratory environment. The focus is on the process of directing and managing the evolving automation of a laboratory; system examples are given. The author shows how both task and data systems have evolved, and how they interrelate. A BIG picture, or continuum view, is presented and some of the reasons for success or failure of the various examples cited are explored. Finally, some comments on future automation need are discussed.

  10. Idaho National Laboratory Site Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Nordstrom, Jenifer [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-02-01

    This plan provides a high-level summary of environmental monitoring performed by various organizations within and around the Idaho National Laboratory (INL) Site as required by U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and DOE Order 458.1, Radiation Protection of the Public and the Environment, Guide DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, and in accordance with 40 Code of Federal Regulations (CFR) 61, National Emission Standards for Hazardous Air Pollutants. The purpose of these orders is to 1) implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations, and 2) to establish standards and requirements for the operations of DOE and DOE contractors with respect to protection of the environment and members of the public against undue risk from radiation. This plan describes the organizations responsible for conducting environmental monitoring across the INL Site, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. Detailed monitoring procedures, program plans, or other governing documents used by contractors or agencies to implement requirements are referenced in this plan. This plan covers all planned monitoring and environmental surveillance. Non-routine activities such as special research studies and characterization of individual sites for environmental restoration are outside the scope of this plan.

  11. Integrating Sustainable Development in Chemical Engineering Education: The Application of an Environmental Management System

    Science.gov (United States)

    Montanes, M. T.; Palomares, A. E.; Sanchez-Tovar, R.

    2012-01-01

    The principles of sustainable development have been integrated in chemical engineering education by means of an environmental management system. These principles have been introduced in the teaching laboratories where students perform their practical classes. In this paper, the implementation of the environmental management system, the problems…

  12. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    International Nuclear Information System (INIS)

    Johnson, L.J.

    1980-10-01

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed

  13. Integration of project management and systems engineering: Tools for a total-cycle environmental management system

    International Nuclear Information System (INIS)

    Blacker, P.B.; Winston, R.

    1997-01-01

    An expedited environmental management process has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL). This process is one result of the Lockheed Martin commitment to the US Department of Energy to incorporate proven systems engineering practices with project management and program controls practices at the INEEL. Lockheed Martin uses a graded approach of its management, operations, and systems activities to tailor the level of control to the needs of the individual projects. The Lockheed Martin definition of systems engineering is: ''''Systems Engineering is a proven discipline that defines and manages program requirements, controls risk, ensures program efficiency, supports informed decision making, and verifies that products and services meet customer needs.'''' This paper discusses: the need for an expedited environmental management process; how the system was developed; what the system is; what the system does; and an overview of key components of the process

  14. Risk management at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Cummings, G.E.; Strait, R.S.

    1993-10-01

    Managing risks at a large national laboratory presents a unique set of challenges. These challenges include the management of a broad diversity of activities, the need to balance research flexibility against management control, and a plethora of requirements flowing from regulatory and oversight bodies. This paper will present the experiences of Lawrence Livermore National Laboratory (LLNL) in risk management and in dealing with these challenges. While general risk management has been practiced successfully by all levels of Laboratory management, this paper will focus on the Laboratory's use of probabilistic safety assessment and prioritization techniques and the integration of these techniques into Laboratory operations

  15. Environmental Chemistry in the Undergraduate Laboratory.

    Science.gov (United States)

    Wenzel, Thomas J.; Austin, Rachel N.

    2001-01-01

    Discusses the importance of environmental chemistry and the use of laboratory exercises in analytical and general chemistry courses. Notes the importance of lab work in heightening student interest in coursework including problem-based learning in undergraduate curricula, ready adaptability of environmental coursework to existing curricula, and…

  16. Project management: importance for diagnostic laboratories.

    Science.gov (United States)

    Croxatto, A; Greub, G

    2017-07-01

    The need for diagnostic laboratories to improve both quality and productivity alongside personnel shortages incite laboratory managers to constantly optimize laboratory workflows, organization, and technology. These continuous modifications of the laboratories should be conducted using efficient project and change management approaches to maximize the opportunities for successful completion of the project. This review aims at presenting a general overview of project management with an emphasis on selected critical aspects. Conventional project management tools and models, such as HERMES, described in the literature, associated personal experience, and educational courses on management have been used to illustrate this review. This review presents general guidelines of project management and highlights their importance for microbiology diagnostic laboratories. As an example, some critical aspects of project management will be illustrated with a project of automation, as experienced at the laboratories of bacteriology and hygiene of the University Hospital of Lausanne. It is important to define clearly beforehand the objective of a project, its perimeter, its costs, and its time frame including precise duration estimates of each step. Then, a project management plan including explanations and descriptions on how to manage, execute, and control the project is necessary to continuously monitor the progression of a project to achieve its defined goals. Moreover, a thorough risk analysis with contingency and mitigation measures should be performed at each phase of a project to minimize the impact of project failures. The increasing complexities of modern laboratories mean clinical microbiologists must use several management tools including project and change management to improve the outcome of major projects and activities. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.J. (comp.)

    1980-10-01

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed.

  18. Short-Term and Long-Term Technology Needs/Matching Status at Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Claggett, S.L.

    1999-01-01

    This report identifies potential technology deployment opportunities for the Environmental Management (EM) programs at the Idaho National Engineering and Environmental Laboratory (INEEL). The focus is on identifying candidates for Accelerated Site Technology Deployment (ASTD) proposals within the Environmental Restoration and Waste Management areas. The 86 technology needs on the Site Technology Coordination Group list were verified in the field. Six additional needs were found, and one listed need was no longer required. Potential technology matches were identified and then investigated for applicability, maturity, cost, and performance. Where promising, information on the technologies was provided to INEEL managers for evaluation. Eleven potential ASTD projected were identified, seven for near-term application and four for application within the next five years

  19. Environmental Management Assessment of the Fernald Environmental Management Project (FEMP)

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This report documents the results of the Environmental Management Assessment performed at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio. During this assessment, the activities conducted by the assessment team included review of internal documents and reports from previous audits and assessments; interviews with US Department of Energy (DOE) and FEMP contractor personnel; and inspection and observation of selected facilities and operations. The onsite portion of the assessment was conducted from March 15 through April 1, 1993, by DOE`s Office of Environmental Audit (EH-24) located within the Office of the Assistant Secretary for Environment, Safety, and Health (EH-1). EH-24 carries out independent assessments of DOE facilities and activities as part of the EH-1 Environment, Safety, and Health (ES&H) Oversight Audit Program. The EH-24 program is designed to evaluate the status of DOE facilities and activities with respect to compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, Guidance and Directives; conformance with accepted industry practices and standards of performance; and the status and adequacy of management systems developed to address environmental requirements. The Environmental Management Assessment of FEMP focused on the adequacy of environmental management systems. Further, in response to requests by the Office of Environmental Restoration and Waste Management (EM) and Fernald Field Office (FN), Quality Assurance and Environmental Radiation activities at FEMP were evaluated from a programmatic standpoint. The results of the evaluation of these areas are contained in the Environmental Protection Programs section in this report.

  20. Environmental Management Assessment of the Fernald Environmental Management Project (FEMP)

    International Nuclear Information System (INIS)

    1993-04-01

    This report documents the results of the Environmental Management Assessment performed at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio. During this assessment, the activities conducted by the assessment team included review of internal documents and reports from previous audits and assessments; interviews with US Department of Energy (DOE) and FEMP contractor personnel; and inspection and observation of selected facilities and operations. The onsite portion of the assessment was conducted from March 15 through April 1, 1993, by DOE's Office of Environmental Audit (EH-24) located within the Office of the Assistant Secretary for Environment, Safety, and Health (EH-1). EH-24 carries out independent assessments of DOE facilities and activities as part of the EH-1 Environment, Safety, and Health (ES ampersand H) Oversight Audit Program. The EH-24 program is designed to evaluate the status of DOE facilities and activities with respect to compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, Guidance and Directives; conformance with accepted industry practices and standards of performance; and the status and adequacy of management systems developed to address environmental requirements. The Environmental Management Assessment of FEMP focused on the adequacy of environmental management systems. Further, in response to requests by the Office of Environmental Restoration and Waste Management (EM) and Fernald Field Office (FN), Quality Assurance and Environmental Radiation activities at FEMP were evaluated from a programmatic standpoint. The results of the evaluation of these areas are contained in the Environmental Protection Programs section in this report

  1. Environmental assessment for the Radioactive and Mixed Waste Management Facility: Sandia National Laboratories/New Mexico

    International Nuclear Information System (INIS)

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0466) under the National Environmental Policy Act (NEPA) of 1969 for the proposed completion of construction and subsequent operation of a central Radioactive and Mixed Waste Management Facility (RMWMF), in the southeastern portion of Technical Area III at Sandia National Laboratory, Albuquerque (SNLA). The RMWMF is designed to receive, store, characterize, conduct limited bench-scale treatment of, repackage, and certify low-level waste (LLW) and mixed waste (MW) (as necessary) for shipment to an offsite disposal or treatment facility. The RMWMF was partially constructed in 1989. Due to changing regulatory requirements, planned facility upgrades would be undertaken as part of the proposed action. These upgrades would include paving of road surfaces and work areas, installation of pumping equipment and lines for surface impoundment, and design and construction of air locks and truck decontamination and water treatment systems. The proposed action also includes an adjacent corrosive and reactive metals storage area, and associated roads and paving. LLW and MW generated at SNLA would be transported from the technical areas to the RMWMF in containers approved by the Department of Transportation. The RMWMF would not handle nonradioactive hazardous waste. Based on the analysis in the EA, the proposed completion of construction and operation of the RMWMF does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, preparation of an environmental impact statement for the proposed action is not required

  2. Integrated Safety, Environmental and Emergency Management System (ISEEMS)

    International Nuclear Information System (INIS)

    Silver, R.; Langwell, G.; Thomas, C.; Coffing, S.

    1996-01-01

    The Risk Management and NEPA (National Environmental Policy Act) Department of Sandia National Laboratories/New Mexico (SNL/NM) recognized the need for hazard and environmental data analysis and management to support the line managers' need to know, understand, manage and document the hazards in their facilities and activities. The Integrated Safety, Environmental, and Emergency Management System (ISEEMS) was developed in response to this need. SNL needed a process that would quickly and easily determine if a facility or project activity contained only standard industrial hazards and therefore require minimal safety documentation, or if non-standard industrial hazards existed which would require more extensive analysis and documentation. Many facilities and project activities at SNL would benefit from the quick screening process used in ISEEMS. In addition, a process was needed that would expedite the NEPA process. ISEEMS takes advantage of the fact that there is some information needed for the NEPA process that is also needed for the safety documentation process. The ISEEMS process enables SNL line organizations to identify and manage hazards and environmental concerns at a level of effort commensurate with the hazards themselves by adopting a necessary and sufficient (graded) approach to compliance. All hazard-related information contained within ISEEMS is location based and can be displayed using on-line maps and building floor plans. This visual representation provides for quick assimilation and analysis

  3. Environmental Survey preliminary report, Oak Ridge National Laboratory (X-10), Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Oak Ridge National Laboratory (ORNL), X-10 site, conducted August 17 through September 4, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ORNL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ORNL, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for ORNL. The Interim Report will reflect the final determinations of the ORNL Survey. 120 refs., 68 figs., 71 tabs.

  4. Applications of neural networks to real-time data processing at the Environmental and Molecular Sciences Laboratory (EMSL)

    International Nuclear Information System (INIS)

    Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1993-06-01

    Detailed design of the Environmental and Molecular Sciences Laboratory (EMSL) at the Pacific Northwest Laboratory (PNL) is nearing completion and construction is scheduled to begin later this year. This facility will assist in the environmental restoration and waste management mission at the Hanford Site. This paper identifies several real-time data processing applications within the EMSL where neural networks can potentially be beneficial. These applications include real-time sensor data acquisition and analysis, spectral analysis, process control, theoretical modeling, and data compression

  5. Situation analysis of occupational and environmental health laboratory accreditation in Thailand.

    Science.gov (United States)

    Sithisarankul, Pornchai; Santiyanont, Rachana; Wongpinairat, Chongdee; Silva, Panadda; Rojanajirapa, Pinnapa; Wangwongwatana, Supat; Srinetr, Vithet; Sriratanaban, Jiruth; Chuntutanon, Swanya

    2002-06-01

    The objective of this study was to analyze the current situation of laboratory accreditation (LA) in Thailand, especially on occupational and environmental health. The study integrated both quantitative and qualitative approaches. The response rate of the quantitative questionnaires was 54.5% (226/415). The majority of the responders was environmental laboratories located outside hospital and did not have proficiency testing. The majority used ISO 9000, ISO/IEC 17025 or ISO/ EEC Guide 25, and hospital accreditation (HA) as their quality system. However, only 30 laboratories were currently accredited by one of these systems. Qualitative research revealed that international standard for laboratory accreditation for both testing laboratory and calibration laboratory was ISO/IEC Guide 25, which has been currently revised to be ISO/IEC 17025. The National Accreditation Council (NAC) has authorized 2 organizations as Accreditation Bodies (ABs) for LA: Thai Industrial Standards Institute, Ministry of Industry, and Bureau of Laboratory Quality Standards, Department of Medical Sciences, Ministry of Public Health. Regarding LA in HA, HA considered clinical laboratory as only 1 of 31 items for accreditation. Obtaining HA might satisfy the hospital director and his management team, and hence might actually be one of the obstacles for the hospital to further improve their laboratory quality system and apply for ISO/IEC 17025 which was more technically oriented. On the other hand, HA may be viewed as a good start or even a pre-requisite for laboratories in the hospitals to further improve their quality towards ISO/IEC 17025. Interviewing the director of NAC and some key men in some large laboratories revealed several major problems of Thailand's LA. Both Thai Industrial Standards Institute and Bureau of Laboratory Quality Standards did not yet obtain Mutual Recognition Agreement (MRA) with other international ABs. Several governmental bodies had their own standards and

  6. Routine environmental audit of Ames Laboratory, Ames, Iowa

    International Nuclear Information System (INIS)

    1994-09-01

    This document contains the findings identified during the routine environmental audit of Ames Laboratory, Ames, Iowa, conducted September 12--23, 1994. The audit included a review of all Ames Laboratory operations and facilities supporting DOE-sponsored activities. The audit's objective is to advise the Secretary of Energy, through the Assistant Secretary for Environment, Safety and Health, as to the adequacy of the environmental protection programs established at Ames Laboratory to ensure the protection of the environment, and compliance with Federal, state, and DOE requirements

  7. Environmental surveillance program of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Thomas, R.H.

    1976-04-01

    The major radiological environmental impact of the Lawrence Berkeley Laboratory is due to the operation of four particle accelerators. Potential sources of population exposure at the Laboratory are discussed. The major source of population exposure due to accelerator operation arises from the prompt radiation field which consists principally of neutrons and photons. Release of small quantities of radionuclides is also a potential source of population exposure but is usually an order of magnitude less significant. Accelerator produced radiation levels at the Laboratory boundary are comparable with the magnitudes of the fluctuations found in the natural background radiation. Environmental monitoring of accelerator-produced radiation and of radionuclides is carried on throughout the Laboratory, at the Laboratory perimeter, and in the regions surrounding the Laboratory. The techniques used are described. The models used to calculate population exposure are described and discussed

  8. IPEP: The integrated performance evaluation program for the Department of Energy's Office of Environmental Management

    International Nuclear Information System (INIS)

    Lindahl, P.C.; Streets, W.E.; Bass, D.A.

    1995-01-01

    The quality of the analytical data being provided to DOE's Office of Environmental Management (EM) for environmental restoration activities and the extent to which these data meet the data quality objectives are critical in the decision-making process. One of several quality metrics that can be used in evaluating a laboratory is its performance in performance evaluation (PE) programs. In support of DOE's environmental restoration and waste management efforts, EM has been charged with developing and implementing a program to assess the performance of participating laboratories. Argonne National Laboratory (ANL) and DOE's Environmental Measurements Laboratory (EML) and Radiological and Environmental Sciences Laboratory (RESL) have been collaborating on the development and implementation of a comprehensive Integrated Performance Evaluation Program (IPEP) for DOE-wide implementation. The IPEP will use results from existing inorganic, organic, and radiological PE programs when these are available and appropriate for the analytes and matrices being determined for DOE's EM activities. Existing programs include the U.S. Environmental Protection Agency's (EPA's) Contract Laboratory Program (CLP), the Water Supply (WS) and Water Pollution (WP) PE studies for inorganic and organic analytes, and DOE's Quality Assessment Program (QAP) for radiological analytes. In addition, DOE has begun the development of the Mixed Analyte Performance Evaluation Program (MAPEP) to address the needs of the DOE Complex. These PE programs provide a spectrum of matrices and analytes covering the various inorganic, organic, and low-level radiologic categories found in routine environmental and waste samples. These PE programs already provide some assessment of laboratory performance; IPEP will expand these assessments by evaluating historical performance, as well as results from multiple PE programs, thereby providing an enhanced usage of the PE program information

  9. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards -- Fiscal Year 2002 Mid-Year Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Bredt, Paul R.; Ainsworth, Calvin C.; Brockman, Fred J.; Camaioni, Donald M.; Egorov, Oleg B.; Felmy, Andrew R.; Gorby, Yuri A.; Grate, Jay W.; Greenwood, Margaret S.; Hay, Benjamin P.; Hess, Nancy J.; Hubler, Timothy L.; Icenhower, Jonathan P.; Mattigod, Shas V.; McGrail, B. Peter; Meyer, Philip D.; Murray, Christopher J.; Panetta, Paul D.; Pfund, David M.; Rai, Dhanpat; Su, Yali; Sundaram, S. K.; Weber, William J.; Zachara, John M.

    2002-06-11

    Pacific Northwest National Laboratory has been awarded a total of 80 Environmental Management Science Program (EMSP) research grants since the inception of the program in 1996. The Laboratory has collaborated on an additional 14 EMSP awards with funding received through other institution. This report describes how each of the projects awarded in 1999, 2000, and 2001 addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in the individual project reports included in this document. Projects are under way in three main areas: Tank Waste Remediation, Decontamination and Decommissioning, and Soil and Groundwater Cleanup.

  10. Workshop proceedings: Developing the scientific basis for long-term land management of the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sperber, T.D.; Reynolds, T.D.

    1998-03-01

    Responses to a survey on the INEEL Comprehensive Facility and Land Use Plan (US DOE 1996a) indicated the need for additional discussion on environmental resources, disturbance, and land use issues on the Idaho National Engineering and Environmental Laboratory (INEEL). As a result, in September 1997, a workshop evaluated the existing scientific basis and determined future data needs for long-term land management on the INEEL. This INEEL Long-Term Land Management Workshop examined existing data on biotic, abiotic, and heritage resources and how these resources have been impacted by disturbance activities of the INEEL. Information gained from this workshop will help guide land and facility use decisions, identify data gaps, and focus future research efforts. This report summarizes background information on the INEEL and its long-term land use planning efforts, presentations and discussions at the workshop, and the existing data available at the INEEL. In this document, recommendations for future INEEL land use planning, research efforts, and future workshops are presented. The authors emphasize these are not policy statements, but comments and suggestions made by scientists and others participating in the workshop. Several appendices covering land use disturbance, legal drivers, land use assumptions and workshop participant comments, workshop participants and contributors, and the workshop agenda are also included

  11. Workshop proceedings: Developing the scientific basis for long-term land management of the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sperber, T.D.; Reynolds, T.D. [eds.] [Environmental Science and Research Foundation, Inc., Idaho Falls, ID (United States); Breckenridge, R.P. [ed.] [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

    1998-03-01

    Responses to a survey on the INEEL Comprehensive Facility and Land Use Plan (US DOE 1996a) indicated the need for additional discussion on environmental resources, disturbance, and land use issues on the Idaho National Engineering and Environmental Laboratory (INEEL). As a result, in September 1997, a workshop evaluated the existing scientific basis and determined future data needs for long-term land management on the INEEL. This INEEL Long-Term Land Management Workshop examined existing data on biotic, abiotic, and heritage resources and how these resources have been impacted by disturbance activities of the INEEL. Information gained from this workshop will help guide land and facility use decisions, identify data gaps, and focus future research efforts. This report summarizes background information on the INEEL and its long-term land use planning efforts, presentations and discussions at the workshop, and the existing data available at the INEEL. In this document, recommendations for future INEEL land use planning, research efforts, and future workshops are presented. The authors emphasize these are not policy statements, but comments and suggestions made by scientists and others participating in the workshop. Several appendices covering land use disturbance, legal drivers, land use assumptions and workshop participant comments, workshop participants and contributors, and the workshop agenda are also included.

  12. Management of water hyacinth. Report from India (Regional Research Laboratory, Jorhat, Assam)

    International Nuclear Information System (INIS)

    Baruah, J.N.

    1981-01-01

    The main objective of the project is the development of an environmentally sound management scheme for water hyacinth infestation through its various utilization potentials. Such an approach is considered desirable from the point ov view of economic viability and environmental protection. Accordingly various aspects of the problem have been studied in India in three different laboratories. Regional Research Laboratory, Jorhat, which is the lead laboratory, is concerned with the study of various factors involved in the growth of this weed, production of biogas, paper and board from water hyacinth, screening of compounds and organisms with commercial potential in this plant and utilization of this weed for mushroom cultivation. Developmental and engineering aspects of biogas production from water hyacinth are studied at Central Mechanical Engineering Research Institute, Durgapur, and Nagarjuna Sagar Engineering College, J N Technological University, Hyderabad. Pilot plant investigation on the production of handmade paper and board is being investigated at Regional Research Laboratory, Hyderabad

  13. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2003-01-01

    This Site Environmental Report was prepared by the Environmental, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at NETL sites in Morgantown (MGN), West Virginia, Pittsburgh (PGH), Pennsylvania, Tulsa, Oklahoma, and Fairbanks, Alaska. This report contains the most accurate information that could be collected during the period between January 1, 2002, and December 31, 2002. As stated in DOE Orders 450.1 and 231.1, the purpose of the report is to: (1) Characterize site environmental management performance. (2) Confirm compliance with environmental standards and requirements. (3) Highlight significant facility programs and efforts

  14. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2003-10-30

    This Site Environmental Report was prepared by the Environmental, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at NETL sites in Morgantown (MGN), West Virginia, Pittsburgh (PGH), Pennsylvania, Tulsa, Oklahoma, and Fairbanks, Alaska. This report contains the most accurate information that could be collected during the period between January 1, 2002, and December 31, 2002. As stated in DOE Orders 450.1 and 231.1, the purpose of the report is to: (1) Characterize site environmental management performance. (2) Confirm compliance with environmental standards and requirements. (3) Highlight significant facility programs and efforts.

  15. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2001-11-27

    This Site Environmental Report was prepared by the Environment, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at the NETL sites in Morgantown, West Virginia, and Pittsburgh, Pennsylvania. This report contains the most accurate information that could be collected during the period between January 1, 2000, through December 31, 2000. As stated in DOE Orders 5400.1 and 231.1, the purpose of the report is to: Characterize site environmental management performance; Confirm compliance with environmental standards and requirements and Highlight significant facility programs and efforts.

  16. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2000

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2001-01-01

    This Site Environmental Report was prepared by the Environment, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at the NETL sites in Morgantown, West Virginia, and Pittsburgh, Pennsylvania. This report contains the most accurate information that could be collected during the period between January 1, 2000, through December 31, 2000. As stated in DOE Orders 5400.1 and 231.1, the purpose of the report is to: Characterize site environmental management performance; Confirm compliance with environmental standards and requirements and Highlight significant facility programs and efforts

  17. Environmental Awareness Course 32461

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Debora Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-02

    Los Alamos National Laboratory is committed to an environmental management strategy aimed at reducing the Laboratory's environmental impacts, while still maintaining or increasing operating efficiencies. This training is designed to help you understand the critical importance of environmental management to the continuing success of the Laboratory and your personal role in this essential endeavor. If you are new to this training, you may wish to explore the various links that will take you to more in-depth information. If this is refresher training, you will find new information concerning the Laboratory's current institutional objectives and targets for environmental management.

  18. Ames Laboratory Site Environmental Report, Calendar year 1991

    International Nuclear Information System (INIS)

    Mathison, L.

    1991-01-01

    The summarized data and conclusions from the Ames Laboratory environmental monitoring program are presented in this Annual Site Environmental Report. This program is a working requirement of Department of Energy (DOE) Order 5484.1, ''Environmental Protection, Safety, and Health Protection Information Reporting Requirements'' and Order 5400.1, ''General Environmental Protection Program.'' Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies several buildings owned by the DOE. The Laboratory also leases space in ISU-owned buildings. Laboratory research activities involve less than ten percent of the total chemical use and one percent of the radioisotope use on the ISU campus. Ames Laboratory is responsible for a small chemical burial site, located on ISU property. The site was used for the disposal of chemical and metal slags from thorium and uranium production. Samples of water from existing test wells and upstream and downstream sites on the nearby Squaw Creek show no detectable migration of the contents of the burial site. A Site Assessment plan submitted to the State of Iowa Department of Natural Resources (DNR) was approved. A Remedial Investigation/Feasibility Study work plan has been completed for additional studies at the site. This has been reviewed and approved by the DOE Chicago Field Office and the DNR. A National Environmental Policy Act (NEPA) review of the site resulted in a categorical exclusion finding which has been approved by the DOE. Ames Laboratory has an area contaminated by diesel fuel at the location of a storage tank which was removed in 1970. Soil corings and groundwater have been analyzed for contamination and an assessment written. Pollution awareness and waste minimization programs and plans were implemented in 1990. Included in this effort was the implementation of a waste white paper and green computer paper recycling program

  19. Environmental and other evaluations of alternatives for management of defense transuranic waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1982-04-01

    Appendices to this report contain the following information: INEL history of Waste Management; text of communications between Idaho and the federal government on long-term management; agency and public response to a proposed environmental impact statement; updated estimates on radiological releases from the slagging-pyrolysis incinerator; modeling studies of subsurface migration of radionuclides; nonradiological emissions and their environmental effects; methods for calculating radiological consequences; analysis of abnormal events in conceptual retrieval and processing operations; environmental contamination by accidental releases; hazards to waste management workers; environmental and other effects of rail and truck shipment of wastes; effects of hypothetical worst-case shipping accidents in urban areas; environmental and other effects of processing INEL transuranic waste at the offsite geological repository; and regulations applicable to INEL TRU waste management

  20. Region 7 Laboratory Information Management System

    Science.gov (United States)

    This is metadata documentation for the Region 7 Laboratory Information Management System (R7LIMS) which maintains records for the Regional Laboratory. Any Laboratory analytical work performed is stored in this system which replaces LIMS-Lite, and before that LAST. The EPA and its contractors may use this database. The Office of Policy & Management (PLMG) Division at EPA Region 7 is the primary managing entity; contractors can access this database but it is not accessible to the public.

  1. Life Cycle Environmental Management

    DEFF Research Database (Denmark)

    Pedersen, Claus Stig; Jørgensen, Jørgen; Pedersen, Morten Als

    1996-01-01

    A precondition for environmentally conscious management is the awareness of the environmental impact potentials created by an industrial company. There is an obvious need for management tools to support the implementation of relevant environmental criteria into the industrial decision making...... processes. The discipline of life cycle environmental management (LCEM) focuses on the incorporation of environmental criteria from the life cycles of products and other company activities into the company management processes. This paper introduces the concept of LCEM as an important element...... of the complete set of environmental objects in an industrial manufacturing company....

  2. Management and disposition of off-site laboratory-generated mixed/low level waste

    International Nuclear Information System (INIS)

    Fisher, D.L.

    1993-10-01

    The Fernald Environmental Management Project (FEMP) is the first Department of Energy (DOE) site to take back mixed and low level waste generated at commercial laboratories from chemical analyses and treatability studies on samples taken from the site. This paper discusses the steps addressed and the issues resolved in order to initiate the task of taking back mixed/low level waste. Such issues included regulatory, waste management and contractual issues

  3. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 2: Environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This 1993 Annual Report from Pacific Northwest Laboratory (PNL) to the US DOE describes research in environment and health conducted during fiscal year (FY) 1993. The report is divided into four parts, each in a separate volume. This part, Volume 2, covers Environmental Sciences. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. There are sections on Subsurface Science, Terrestrial Science, Technology Transfer, Interactions with Educational Institutions, and Laboratory Directed Research and Development.

  4. Sandia National Laboratories, California Chemical Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2012-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Chemical Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Chemical Management Program, one of six programs that supports environmental management at SNL/CA. SNL/CA is responsible for tracking chemicals (chemical and biological materials), providing Material Safety Data Sheets (MSDS) and for regulatory compliance reporting according to a variety of chemical regulations. The principal regulations for chemical tracking are the Emergency Planning Community Right-to-Know Act (EPCRA) and the California Right-to-Know regulations. The regulations, the Hazard Communication/Lab Standard of the Occupational Safety and Health Administration (OSHA) are also key to the CM Program. The CM Program is also responsible for supporting chemical safety and information requirements for a variety of Integrated Enabling Services (IMS) programs primarily the Industrial Hygiene, Waste Management, Fire Protection, Air Quality, Emergency Management, Environmental Monitoring and Pollution Prevention programs. The principal program tool is the Chemical Information System (CIS). The system contains two key elements: the MSDS library and the chemical container-tracking database that is readily accessible to all Members of the Sandia Workforce. The primary goal of the CM Program is to ensure safe and effective chemical management at Sandia/CA. This is done by efficiently collecting and managing chemical information for our customers who include Line, regulators, DOE and ES and H programs to ensure compliance with regulations and to streamline customer business processes that require chemical information.

  5. Brookhaven National Laboratory site environmental report for calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A. [eds.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory.

  6. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    V. Finley

    2000-03-06

    The results of the 1998 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1998. One significant initiative is the Integrated Safety Management (ISM) program that embraces environment, safety, and health principles as one.

  7. Exploration of Environmental Management

    OpenAIRE

    Li Shushu; Li Ruilong; Chen Rui

    2012-01-01

    On the basis of domestic and international research, this article takes research on peasant household and agricultural managements as base points, aims to build environmental management model, establish government-led, an effective environmental management mechanism between the government and peasant household. Analyzes the role of peasant household’ environmental management in the regional environmental improvement from the aspect of theoretical analysis and analyze significant factors affec...

  8. Key Management Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a secure environment to research and develop advanced electronic key management and networked key distribution technologies for the Navy and DoD....

  9. Mobile laboratory-based environmental radioactivity analysis capability of the US Environmental Protection Agency

    International Nuclear Information System (INIS)

    Dempsey, G.; Poppell, S.

    1999-01-01

    This poster presentation will highlight the capability of the US Environmental Protection Agency, Office of Radiation and Indoor Air to process and analyze environmental and emergency response samples in mobile radiological laboratories. Philosophy of use, construction, analytical equipment, and procedures will be discussed in the poster presentation. Accompanying the poster presentation, EPA will also have a static display of its mobile laboratories at the meeting site. (author)

  10. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1996

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Levine; V.L. Finley

    1998-03-01

    The results of the 1996 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1996, PPPL's Tokamak Fusion Test Reactor (TFTR) continued to conduct fusion experiments. Having set a world record on November 2, 1994, by achieving approximately 10.7 million watts of controlled fusion power during the deuterium-tritium (D-T) plasma experiments, researchers turned their attention to studying plasma science experiments, which included ''enhanced reverse shear techniques.'' Since November 1993, more than 700 tritium-fueled experiments were conducted, which generated more than 4 x 10(superscript 20) neutrons and 1.4 gigajoules of fusion energy. In 1996, the overall performance of Princeton Plasma Physics Laboratory was rated ''excellent'' by the US Department of Energy in the Laboratory Appraisal report issued in early 1997. The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents) and petroleum hydrocarbons (past leaks of releases of diesel fuel from underground storage tanks). Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and

  11. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1996

    International Nuclear Information System (INIS)

    J.D. Levine; V.L. Finley

    1998-01-01

    The results of the 1996 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1996, PPPL's Tokamak Fusion Test Reactor (TFTR) continued to conduct fusion experiments. Having set a world record on November 2, 1994, by achieving approximately 10.7 million watts of controlled fusion power during the deuterium-tritium (D-T) plasma experiments, researchers turned their attention to studying plasma science experiments, which included ''enhanced reverse shear techniques.'' Since November 1993, more than 700 tritium-fueled experiments were conducted, which generated more than 4 x 10(superscript 20) neutrons and 1.4 gigajoules of fusion energy. In 1996, the overall performance of Princeton Plasma Physics Laboratory was rated ''excellent'' by the US Department of Energy in the Laboratory Appraisal report issued in early 1997. The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents) and petroleum hydrocarbons (past leaks of releases of diesel fuel from underground storage tanks). Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report

  12. Environmental Monitoring Plan, Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    Holland, R.C.

    1992-06-01

    This Environmental Monitoring Plan was written to fulfill the requirements of DOE Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories, Livermore. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. 61 refs

  13. Environmental report 1997, Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Lentzner, H.L.; Morris, J.C.; Harrach, R.J.

    1998-01-01

    This report summarizes the environmental program activities at the Lawrence Livermore National Laboratory (LLNL) for 1997. This report accurately summarizes the results of environmental monitoring, compliance, impacts assessment, and the restoration program at LLNL. It features individual chapters on monitoring of air, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation. It also contains chapters on site overview, environmental program information, radiological dose assessment, and quality assurance

  14. Environmental report 1996, Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Lentzner, H.L.; Napolitano, M.M.; Harrach, R.J.

    1997-01-01

    This report summarizes the environmental program activities at the Lawrence Livermore National Laboratory (LLNL) for 1996. This report accurately summarizes the results of environmental monitoring, compliance, impacts assessment, and the restoration program at LLNL. It features individual chapters on monitoring of air, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation. It also contains chapters on site overview, environmental program information, radiological dose assessment, and quality assurance

  15. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L. and Levine, J.D.

    1999-01-10

    The results of the 1997 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1997, PPPL's Tokamak Fusion Test Reactor (TFTR) completed fifteen years of fusion experiments begun in 1982. Over the course of three and half years of deuterium-tritium (D-T) plasma experiments, PPPL set a world record of 10.7 million watts of controlled fusion power, more than 700 tritium shots pulsed into the reactor vessel generating more than 5.6 x 1020 neutron and 1.6 gigajoules of fusion energy and researchers studied plasma science experimental data, which included "enhanced reverse shear techniques." As TFTR was completing its historic operations, PPPL participated with the Oak Ridge National Laboratory, Columbia University, and the University of Washington (Seattle) in a collaboration effort to design the National Spherical Torus Experiment (NSTX). This next device, NSTX, is located in the former TFTR Hot Cell on D site, and it is designed to be a smaller and more economical torus fusion reactor. Construction of this device began in late 1997, and first plasma in scheduled for early 1999. For 1997, the U.S. Department of Energy in its Laboratory Appraisal report rated the overall performance of Princeton Plasma Physics Laboratory as "excellent." The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey

  16. Program Management Plan for the Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory Site Environmental Restoration Program

    International Nuclear Information System (INIS)

    1994-07-01

    This program management plan describes the scope, objectives, and method of accomplishment for the Martin Marietta Energy Systems, Inc. (Energy Systems) Oak Ridge National laboratory (ORNL) Environmental Restoration (ER) Program. The ORNL ER Program is one of five site program, receiving guidance from and reporting to the Energy Systems ER Division. Therefore, all ORNL ER policies and procedures are consistent with ER Division policies and procedures. This plan covers all ORNL ER activities, the participants involved in these activities (and their roles and responsibilities), and all phases of the remediation process. This plan will also serve as a template that may be supplemented as necessary to produce individual project management plans for specific projects. This document explains how the Energy Systems ORNL ER Program does business, so the ORNL ER Program's management structure is illustrated in detail. Personnel are matrixed to the ER Program from other organizations to assist with specific projects. This plan identifies positions at the program level and discusses responsibilities and interactions with positions at the project level. This plan includes sections that describe requirements for project plans, work breakdown structures, schedules, project management and cost control systems, and information and reporting. Project management plans will utilize the work breakdown structure and dictionary pages in the appropriate life cycle baseline report This plan describes the information that should be contained in ORNL ER project management plans. The most important milestones are primary documents relating to the management and remediation of contaminated sites. Primary document milestones are subject to stipulated penalties and receive paramount attention

  17. Program Management Plan for the Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory Site Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This program management plan describes the scope, objectives, and method of accomplishment for the Martin Marietta Energy Systems, Inc. (Energy Systems) Oak Ridge National laboratory (ORNL) Environmental Restoration (ER) Program. The ORNL ER Program is one of five site program, receiving guidance from and reporting to the Energy Systems ER Division. Therefore, all ORNL ER policies and procedures are consistent with ER Division policies and procedures. This plan covers all ORNL ER activities, the participants involved in these activities (and their roles and responsibilities), and all phases of the remediation process. This plan will also serve as a template that may be supplemented as necessary to produce individual project management plans for specific projects. This document explains how the Energy Systems ORNL ER Program does business, so the ORNL ER Program`s management structure is illustrated in detail. Personnel are matrixed to the ER Program from other organizations to assist with specific projects. This plan identifies positions at the program level and discusses responsibilities and interactions with positions at the project level. This plan includes sections that describe requirements for project plans, work breakdown structures, schedules, project management and cost control systems, and information and reporting. Project management plans will utilize the work breakdown structure and dictionary pages in the appropriate life cycle baseline report This plan describes the information that should be contained in ORNL ER project management plans. The most important milestones are primary documents relating to the management and remediation of contaminated sites. Primary document milestones are subject to stipulated penalties and receive paramount attention.

  18. Environmental Management

    DEFF Research Database (Denmark)

    Lehmann, Martin

    The doctoral research project is co-financed by DUCED-I&UA and is part of a joint effort of Thai, Malay, South African and Danish universities to conduct collaborative research on the overarching theme "Environmental Management: Globalisation and Industrial Governance in Developing Countries......". The PhD project is expected to conclude ultimo 2005. Environmental management and cleaner production (CP) are both internationally recognised as tools for minimising environmental impacts of production or services. However, several studies have shown that especially SMEs, which probably amount to more...

  19. Brookhaven National Laboratory site environmental report for calendar year 1994

    International Nuclear Information System (INIS)

    Naidu, J.R.; Royce, B.A.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory's operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory

  20. The Integrated Cloud-based Environmental Data Management System at Los Alamos National Laboratory - 13391

    Energy Technology Data Exchange (ETDEWEB)

    Schultz Paige, Karen; Gomez, Penny; Patel, Nita P.; EchoHawk, Chris; Dorries, Alison M. [Los Alamos National Laboratory, MS M996, Los Alamos, NM, 87544 (United States)

    2013-07-01

    In today's world, instant access to information is taken for granted. The national labs are no exception; our data users expect immediate access to their data. Los Alamos National Laboratory (LANL) has collected over ten million records, and the data needs to be accessible to scientists as well as the public. The data span a wide range of media, analytes, time periods, formats, and quality and have traditionally existed in scattered databases, making comprehensive work with the data impossible. Recently, LANL has successfully integrated all their environmental data into a single, cloud-based, web-accessible data management system. The system combines data transparency to the public with immediate access required by the technical staff. The use of automatic electronic data validation has been critical to immediate data access while saving millions of dollars and increasing data consistency and quality. The system includes a Google Maps based GIS tool that is simple enough for people to locate potentially contaminated sites near their home or workplace, and complex enough to allow scientists to plot and trend their data at the surface and at depth as well as over time. A variety of formatted reports can be run at any desired frequency to report the most current data available in the data base. The advanced user can also run free form queries of the data base. This data management system has saved LANL time and money, an increasingly important accomplishment during periods of budget cuts with increasing demand for immediate electronic services. (authors)

  1. The Integrated Cloud-based Environmental Data Management System at Los Alamos National Laboratory - 13391

    International Nuclear Information System (INIS)

    Schultz Paige, Karen; Gomez, Penny; Patel, Nita P.; EchoHawk, Chris; Dorries, Alison M.

    2013-01-01

    In today's world, instant access to information is taken for granted. The national labs are no exception; our data users expect immediate access to their data. Los Alamos National Laboratory (LANL) has collected over ten million records, and the data needs to be accessible to scientists as well as the public. The data span a wide range of media, analytes, time periods, formats, and quality and have traditionally existed in scattered databases, making comprehensive work with the data impossible. Recently, LANL has successfully integrated all their environmental data into a single, cloud-based, web-accessible data management system. The system combines data transparency to the public with immediate access required by the technical staff. The use of automatic electronic data validation has been critical to immediate data access while saving millions of dollars and increasing data consistency and quality. The system includes a Google Maps based GIS tool that is simple enough for people to locate potentially contaminated sites near their home or workplace, and complex enough to allow scientists to plot and trend their data at the surface and at depth as well as over time. A variety of formatted reports can be run at any desired frequency to report the most current data available in the data base. The advanced user can also run free form queries of the data base. This data management system has saved LANL time and money, an increasingly important accomplishment during periods of budget cuts with increasing demand for immediate electronic services. (authors)

  2. Brookhaven National Laboratory site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, G.L.; Paquette, D.E.; Naidu, J.R.; Lee, R.J.; Briggs, S.L.K.

    1998-01-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1996. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and non-radiological emissions and effluents to the environment.

  3. [The future of clinical laboratory database management system].

    Science.gov (United States)

    Kambe, M; Imidy, D; Matsubara, A; Sugimoto, Y

    1999-09-01

    To assess the present status of the clinical laboratory database management system, the difference between the Clinical Laboratory Information System and Clinical Laboratory System was explained in this study. Although three kinds of database management systems (DBMS) were shown including the relational model, tree model and network model, the relational model was found to be the best DBMS for the clinical laboratory database based on our experience and developments of some clinical laboratory expert systems. As a future clinical laboratory database management system, the IC card system connected to an automatic chemical analyzer was proposed for personal health data management and a microscope/video system was proposed for dynamic data management of leukocytes or bacteria.

  4. Environmental management

    International Nuclear Information System (INIS)

    Girard, M.; Mondino, M.

    2000-01-01

    Nowadays, unlike in the past, companies have to operate in a context of sustainable development, in which the economic and social development, production and consumption have to take into account the medium and long term impact on environment. The article sets forth some considerations about these subjects, which are assuming a growing importance in the management of companies: the variable environment may for instance be a factor of discrimination between being competitive or not. In order to characterise the context within which the environmental management has to be applied, some basic concepts about environmental management systems, Life Cycle Assessment, and Eco labeling are illustrated. As an example of application of the methodology described, a brief reference to the Italgas Group Environmental Report is given [it

  5. Environmental Requirements Management

    Energy Technology Data Exchange (ETDEWEB)

    Cusack, Laura J.; Bramson, Jeffrey E.; Archuleta, Jose A.; Frey, Jeffrey A.

    2015-01-08

    CH2M HILL Plateau Remediation Company (CH2M HILL) is the U.S. Department of Energy (DOE) prime contractor responsible for the environmental cleanup of the Hanford Site Central Plateau. As part of this responsibility, the CH2M HILL is faced with the task of complying with thousands of environmental requirements which originate from over 200 federal, state, and local laws and regulations, DOE Orders, waste management and effluent discharge permits, Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) response and Resource Conservation and Recovery Act (RCRA) corrective action documents, and official regulatory agency correspondence. The challenge is to manage this vast number of requirements to ensure they are appropriately and effectively integrated into CH2M HILL operations. Ensuring compliance with a large number of environmental requirements relies on an organization’s ability to identify, evaluate, communicate, and verify those requirements. To ensure that compliance is maintained, all changes need to be tracked. The CH2M HILL identified that the existing system used to manage environmental requirements was difficult to maintain and that improvements should be made to increase functionality. CH2M HILL established an environmental requirements management procedure and tools to assure that all environmental requirements are effectively and efficiently managed. Having a complete and accurate set of environmental requirements applicable to CH2M HILL operations will promote a more efficient approach to: • Communicating requirements • Planning work • Maintaining work controls • Maintaining compliance

  6. The Environmental Compliance Office at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Cooper, S.C.

    1990-01-01

    The Idaho Operations Office of the U.S. Department of Energy (DOE-ID) has established an Environmental Compliance Office (ECO) at the Idaho National Engineering Laboratory (INEL). This office has been formed to ensure that INEL operations and activities are in compliance with all applicable environmental state and federal regulations. The ECO is headed by a DOE-ID manager and consists of several teams, each of which is led by a DOE-ID employee with members from DOE-ID, from INEL government contractors, and from DOE-ID consultants. The teams are (a) the negotiated compliance team, (b) the compliance implementation team (CIT), (c) the permits team, (d) the interagency agreement (IAG) team, (e) the consent order and compliance agreement (COCA) oversight team, and (f) the National Environmental Policy Act (NEPA) team. The last two teams were short term and have already completed their respective assignments. The functions of the teams and the results obtained by each are discussed

  7. A Study on improvement of comprehensive environmental management system - activation of liberalized environmental management

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hweu Sung; Kang, Chul Goo [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    As a part of improvement on a comprehensive environmental management system, this study was attempted to find an activating policy for a liberalized environmental management. This study provided an activation plan of reasonable environmental regulation reform and liberalized environmental management through the analysis of foreign examples and domestic situation. Furthermore, it analyzed an institutional mechanism for a smooth operation of liberalized environmental management. 68 refs., 5 figs., 51 tabs.

  8. Sandia National Laboratories, Livermore Environmental Protection Implementation Plan for the period November 9, 1991--November 9, 1992

    International Nuclear Information System (INIS)

    1991-10-01

    Sandia National Laboratories, as part of the DOE complex, is committed to full compliance with all applicable environmental laws and regulations. This Environmental Protection Implementation Plan (EPIP) is intended to ensure that the environmental program objectives of DOE Order 5400.1 are achieved at SNL, Livermore. The EPIP will serve as an aid to management and staff to implement these new programs in a timely manner. 23 refs., 4 figs., 1 tab

  9. Characterization of hazardous waste residuals from Environmental Restoration Program activities at DOE installations: Waste management implications

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Esposito, M.P.

    1995-01-01

    Investigators at Argonne National Laboratory (ANL), with support from associates at the Pacific Northwest Laboratory (PNL), have assembled an inventory of the types and volumes of radioactive, toxic or hazardous, and mixed waste likely to be generated over the next 30 years as the US Department of Energy (DOE) implements its nationwide Environmental Restoration (ER) Program. The inventory and related analyses are being considered for integration into DOE's Programmatic Environmental Impact Statement (PEIS) covering the potential environmental impacts and risks associated with alternative management practices and programs for wastes generated from routine operations. If this happens, the ER-generated waste could be managed under a set of alternatives considered under the PEIS and selected at the end of the current National Environmental Policy Act process

  10. Ames Laboratory annual site environmental report, calendar year 1996

    International Nuclear Information System (INIS)

    1998-04-01

    This report summarizes the environmental status of Ames Laboratory for calendar year 1996. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring programs. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies twelve buildings owned by the Department of Energy (DOE). The Laboratory also leases space in ISU owned buildings. Laboratory activities involve less than ten percent of the total chemical use and approximately one percent of the radioisotope use on the ISU campus. In 1996, the Office of Assurance and Assessment merged with the Environment, Safety and Health Group forming the Environment, Safety, Health and Assurance (ESH and A) office. In 1996, the Laboratory accumulated and disposed of wastes under US Environmental Protection Agency (EPA) issued generator numbers. Ames Laboratory submitted a Proposed Site Treatment Plan to EPA in December 1995. This plan complied with the Federal Facilities Compliance Act (FFCA). It was approved by EPA in January 1996. The consent agreement/consent order was issued in February 1996. Pollution awareness, waste minimization and recycling programs, implemented in 1990 and updated in 1994, continued through 1996. Included in these efforts were a waste white paper and green computer paper recycling program. Ames Laboratory also continued to recycle salvageable metal and used oil, and it recovered freon for recycling. All of the chemical and nearly all of the radiological legacy wastes were properly disposed by the end of 1996. Additional radiological legacy waste will be properly disposed during 1997

  11. Environmental Performance Report 2013: Annual Site Environmental Report per the U.S. Department of Energy Order 231.1-1B (Management Publication)

    Energy Technology Data Exchange (ETDEWEB)

    Schlomberg, K.; Eickhoff, J.; Beatty, B.; Braus, G.; Durbin, L.; Fiehweg, R.; Ray, M.; Ryon, T.; Schmitz, E.

    2014-08-01

    The National Renewable Energy Laboratory's (NREL's) Environmental Performance Report provides a description of the laboratory's environmental management activities for 2013, including information on environmental and sustainability performance, environmental compliance activities and status, and environmental protection programs, highlights, and successes. The purpose of this report is to ensure that U.S. Department of Energy (DOE) and the public receive timely, accurate information about events that have affected or could adversely affect the health, safety, and security of the public or workers; the environment; or the operations of DOE facilities. This report meets the requirements of the Annual Site Environmental Report and is prepared in accordance with the DOE Order 231.1B, Environment, Safety and Health Reporting.

  12. 1998 Environmental Management Science Program Annual Report

    International Nuclear Information System (INIS)

    1999-01-01

    The Environmental Management Science Program (EMSP) is a collaborative partnership between the DOE Office of Environmental Management (EM), Office of Science (DOE-SC), and the Idaho Operations Office (DOE-ID) to sponsor basic environmental and waste management related research. Results are expected to lead to reduction of the costs, schedule, and risks associated with cleaning up the nation's nuclear complex. The EMSP research portfolio addresses the most challenging technical problems of the EM program related to high level waste, spent nuclear fuel, mixed waste, nuclear materials, remedial action, decontamination and decommissioning, and health, ecology, or risk. The EMSP was established in response to a mandate from Congress in the fiscal year 1996 Energy and Water Development Appropriations Act. Congress directed the Department to ''provide sufficient attention and resources to longer-term basic science research which needs to be done to ultimately reduce cleanup costs, develop a program that takes advantage of laboratory and university expertise, and seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective''. This mandate followed similar recommendations from the Galvin Commission to the Secretary of Energy Advisory Board. The EMSP also responds to needs identified by National Academy of Sciences experts, regulators, citizen advisory groups, and other stakeholders

  13. Laboratory Support Services for Environmental Testing

    National Research Council Canada - National Science Library

    1997-01-01

    ...) were effectively managing their contracts for environmental test services and whether DoD organizations were effectively performing quality assurance procedures on environmental test results received...

  14. Public health laboratory quality management in a developing country.

    Science.gov (United States)

    Wangkahat, Khwanjai; Nookhai, Somboon; Pobkeeree, Vallerut

    2012-01-01

    The article aims to give an overview of the system of public health laboratory quality management in Thailand and to produce a strengths, weaknesses, opportunities and threats (SWOT) analysis that is relevant to public health laboratories in the country. The systems for managing laboratory quality that are currently employed were described in the first component. The second component was a SWOT analysis, which used the opinions of laboratory professionals to identify any areas that could be improved to meet quality management systems. Various quality management systems were identified and the number of laboratories that met both international and national quality management requirements was different. The SWOT analysis found the opportunities and strengths factors offered the best chance to improve laboratory quality management in the country. The results are based on observations and brainstorming with medical laboratory professionals who can assist laboratories in accomplishing quality management. The factors derived from the analysis can help improve laboratory quality management in the country. This paper provides viewpoints and evidence-based approaches for the development of best possible practice of services in public health laboratories.

  15. Environmental Assessment for the vacuum process laboratory (VPL) relocation at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-04-01

    This Environmental Assessment (EA) evaluates the potential environmental impacts of relocating a vacuum process laboratory (VPL) from Building 321 to Building 2231 at Lawrence Livermore National Laboratory (LLNL). The VPL provides the latest technology in the field of vacuum deposition of coatings onto various substrates for several weapons-related and energy-related programs at LLNL. Operations within the VPL at LLNL will not be expanded nor reduced by the relocation. No significant environmental impacts are expected as a result of the relocation of the VPL

  16. Science to support DOE site cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program awards. Fiscal year 1997, mid-year progress report

    International Nuclear Information System (INIS)

    1997-06-01

    The Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996. This report gives a summary of how each grant is addressing significant DOE cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is primarily focused in three areas--Tank Waste Remediation, Soil and Groundwater Cleanup, and Health Effects

  17. Science to support DOE site cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program awards. Fiscal year 1997 mid-year progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996. This report gives a summary of how each grant is addressing significant DOE cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is primarily focused in three areas--Tank Waste Remediation, Soil and Groundwater Cleanup, and Health Effects.

  18. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    International Nuclear Information System (INIS)

    Bullock, M.

    1992-04-01

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER ampersand WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG ampersand G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL's roadmapping efforts

  19. Environmental management system

    International Nuclear Information System (INIS)

    2004-01-01

    An Environmental Management System was implemented in ANAV in 1999, including the two nuclear sites of the Asco and Vandellos II nuclear power plants. This implementation entailed formulation of the ANAV Environmental Policy, preparation of an Environmental Management Plan (PLAGMA) supported by the Environmental Aspects Manuals (MASMA) of each site and their operating procedures, modification of the organizational structure to create the Environment Unit, in charge of implementing the SIGEMA, and the Environment Committee, the governing body that reviews the results obtained and environmental goals to be achieved, and direct involvement of all the different ANAV organization in continuous improvement of the SIGEMA implementation. Special attention is paid to evolution of the environmental indicators, to communication and specific training in environmental issues, and to waste management and the different programs for increasing waste recycling and assessment, as well as to minimization programs. The article details the different approaches used to improve the environmental results in these last five years, which have allowed ANAV to maintain the ISO-14001 Certification since 1999. (Author)

  20. DOE methods for evaluating environmental and waste management samples

    Energy Technology Data Exchange (ETDEWEB)

    Goheen, S.C.; McCulloch, M.; Thomas, B.L.; Riley, R.G.; Sklarew, D.S.; Mong, G.M.; Fadeff, S.K. [eds.

    1994-10-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) is a resource intended to support sampling and analytical activities for the evaluation of environmental and waste management samples from U.S. Department of Energy (DOE) sites. DOE Methods is the result of extensive cooperation from all DOE analytical laboratories. All of these laboratories have contributed key information and provided technical reviews as well as significant moral support leading to the success of this document. DOE Methods is designed to encompass methods for collecting representative samples and for determining the radioisotope activity and organic and inorganic composition of a sample. These determinations will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the U.S. Environmental Protection Agency, or others. The development of DOE Methods is supported by the Analytical Services Division of DOE. Unique methods or methods consolidated from similar procedures in the DOE Procedures Database are selected for potential inclusion in this document. Initial selection is based largely on DOE needs and procedure applicability and completeness. Methods appearing in this document are one of two types, {open_quotes}Draft{close_quotes} or {open_quotes}Verified{close_quotes}. {open_quotes}Draft{close_quotes} methods that have been reviewed internally and show potential for eventual verification are included in this document, but they have not been reviewed externally, and their precision and bias may not be known. {open_quotes}Verified{close_quotes} methods in DOE Methods have been reviewed by volunteers from various DOE sites and private corporations. These methods have delineated measures of precision and accuracy.

  1. DOE methods for evaluating environmental and waste management samples

    International Nuclear Information System (INIS)

    Goheen, S.C.; McCulloch, M.; Thomas, B.L.; Riley, R.G.; Sklarew, D.S.; Mong, G.M.; Fadeff, S.K.

    1994-10-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) is a resource intended to support sampling and analytical activities for the evaluation of environmental and waste management samples from U.S. Department of Energy (DOE) sites. DOE Methods is the result of extensive cooperation from all DOE analytical laboratories. All of these laboratories have contributed key information and provided technical reviews as well as significant moral support leading to the success of this document. DOE Methods is designed to encompass methods for collecting representative samples and for determining the radioisotope activity and organic and inorganic composition of a sample. These determinations will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the U.S. Environmental Protection Agency, or others. The development of DOE Methods is supported by the Analytical Services Division of DOE. Unique methods or methods consolidated from similar procedures in the DOE Procedures Database are selected for potential inclusion in this document. Initial selection is based largely on DOE needs and procedure applicability and completeness. Methods appearing in this document are one of two types, open-quotes Draftclose quotes or open-quotes Verifiedclose quotes. open-quotes Draftclose quotes methods that have been reviewed internally and show potential for eventual verification are included in this document, but they have not been reviewed externally, and their precision and bias may not be known. open-quotes Verifiedclose quotes methods in DOE Methods have been reviewed by volunteers from various DOE sites and private corporations. These methods have delineated measures of precision and accuracy

  2. 2016 Annual Site Environmental report Sandia National Laboratories Tonopah Test Range Nevada & Kaua'i Test Facility Hawai'i.

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Angela Maria [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffith, Stacy R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Sandia National Laboratories (SNL) is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s (DOE’s), National Nuclear Security Administration (NNSA) under contract DE-NA0003525. The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at the SNL, Tonopah Test Range (SNL/TTR) in Nevada and the SNL, Kaua‘i Test Facility (SNL/KTF) in Hawai‘i. SNL personnel manage and conduct operations at SNL/TTR in support of the DOE/NNSA’s Weapons Ordnance Program and have operated the site since 1957. Navarro Research and Engineering personnel perform most of the environmental programs activities at SNL/TTR. The DOE/NNSA/Nevada Field Office retains responsibility for cleanup and management of SNL/TTR Environmental Restoration sites. SNL personnel operate SNL/KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of sustainability, environmental protection, and monitoring programs at SNL/TTR and SNL/KTF during calendar year 2016. Major environmental programs include air quality, water quality, groundwater protection, terrestrial and biological surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. This ASER is prepared in accordance with and as required by DOE O 231.1B, Admin Change 1, Environment, Safety, and Health Reporting.

  3. Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1995-01-01

    This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished

  4. CULTURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    DAVIS, M.

    2005-04-01

    The Cultural Resource Management Plan (CRMP) for Brookhaven National Laboratory (BNL) provides an organized guide that describes or references all facets and interrelationships of cultural resources at BNL. This document specifically follows, where applicable, the format of the U.S. Department of Energy (DOE) Environmental Guidelines for Development of Cultural Resource Management Plans, DOE G 450.1-3 (9-22-04[m1]). Management strategies included within this CRMP are designed to adequately identify the cultural resources that BNL and DOE consider significant and to acknowledge associated management actions. A principal objective of the CRMP is to reduce the need for additional regulatory documents and to serve as the basis for a formal agreement between the DOE and the New York State Historic Preservation Officer (NYSHPO). The BNL CRMP is designed to be a ''living document.'' Each section includes identified gaps in the management plan, with proposed goals and actions for addressing each gap. The plan will be periodically revised to incorporate new documentation.

  5. Argonne National Laboratory Site Environmental Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Davis, T. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Gomez, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Moos, L. P. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-09-02

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2013. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with environmental management, sustainability efforts, environmental corrective actions, and habitat restoration. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, Argonne, and other) and are compared with applicable standards intended to protect human health and the environment. A U.S. Department of Energy (DOE) dose calculation methodology, based on International Commission on Radiological Protection (ICRP) recommendations and the U.S. Environmental Protection Agency’s (EPA) CAP-88 Version 3 computer code, was used in preparing this report.

  6. Report on DOE analytical laboratory capacity available to meet EM environmental sampling and analysis needs for FY 93-99

    International Nuclear Information System (INIS)

    1994-01-01

    The DOE Analytical Laboratory Capacity Study was conducted to give EM-263 current information about existing and future analytical capacities and capabilities of site laboratories within the DOE Complex. Each DOE site may have one or more analytical laboratories in operation. These facilities were established to support site missions such as production, research and development, and personnel and environmental monitoring. With changing site missions and the DOE directives for environmental monitoring and cleanup, these laboratories are either devoting or planning to devote resources to support EM activities. The DOE site laboratories represent a considerable amount of capital investment and analytical capability, capacity, and expertise that can be applied to support the EM mission. They not only provide cost-effective high-volume analytical laboratory services, but are also highly recognized analytical research and development centers. Several sites have already transferred their analytical capability from traditional production support to environmental monitoring and waste management support. A model was developed to determine the analytical capacity of all laboratories in the DOE Complex. The model was applied at nearly all the major laboratories and the results collected from these studies are summarized in this report

  7. Environmental management system in companies

    International Nuclear Information System (INIS)

    Bonanno, C.

    1995-01-01

    The environmental management system, as the whole coordinated initiatives 'environmental oriented' introduced by companies in their organization, is discussed. Strategic weight that companies have to be present at the environmental management system is enlisted. Finally, the new professional figures of environmental technicians and environmental manager is discussed

  8. BIOPLUS: An eclectic laboratory information management system for the ORNL Radiobioassay Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, R.L.; Hwang, H.L.; Bishop, C.P.; Blair, R.L.; Cornett, R.L.; Gonzalez, B.D.; Hotchandani, M.; Keaton, J.A.; Miller, J.L.; Myers, R.D.; Ohnesorge, M.J.; Thein, M.

    1992-12-31

    Data management activities in analytical laboratories can include sample scheduling, logging, and tracking, as well as results collection and reporting. In the Radiobioassay Laboratory (RBL) such activities were formerly accomplished by entering data in log books and on forms followed by manual entry of data into a computer database. As sample load has increased and further emphasis has been placed on improving efficiency and on error reduction, it has become worthwhile to automate the laboratory`s information management. In addition, a Bioassay Data Management System (BDMS) has developed for use by all five of the DOE sites managed by Martin Marietta Energy Systems in order to centralize bioassay data management for internal dosimetry purposes. BIOPLUS, the LIMS described in this paper, provides an interface with BDMS and automates RBL information management to a large extent. The system provides for downloading personnel data from a central computer, logging in samples, and bar-code sample tracking, as well as recording, reporting, archiving, and trending of analysis results. Sketches of the hardware and software are presented along with some details of the instrument interface modules.

  9. Preparing Los Alamos National Laboratory's Waste Management Program for the Future - 12175

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Scotty W.; Dorries, Alison M.; Singledecker, Steven [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States); Henckel, George [Los Alamos Site Office, MS-A316, Los Alamos, NM 87544 (United States)

    2012-07-01

    The waste management program at Los Alamos National Laboratory (LANL) is undergoing significant transition to establish a lean highly functioning waste management program that will succeed the large environmental cleanup waste management program. In the coming years, the environmental cleanup activities will be mostly completed and the effort will change to long-term stewardship. What will remain in waste management is a smaller program focused on direct off-site shipping to cost-effectively enable the enduring mission of the laboratory in support of the national nuclear weapons program and fundamental science and research. It is essential that LANL implement a highly functioning efficient waste management program in support of the core missions of the national weapons program and fundamental science and research - and LANL is well on the way to that goal. As LANL continues the transition process, the following concepts have been validated: - Business drivers including the loss of onsite disposal access and completion of major environmental cleanup activities will drive large changes in waste management strategies and program. - A well conceived organizational structure; formal management systems; a customer service attitude; and enthusiastic managers are core to a successful waste management program. - During times of organizational transition, a project management approach to managing change in a complex work place with numerous complex deliverables is successful strategy. - Early and effective engagement with waste generators, especially Project Managers, is critical to successful waste planning. - A well-trained flexible waste management work force is vital. Training plans should include continuous training as a strategy. - A shared fate approach to managing institutional waste decisions, such as the LANL Waste Management Recharge Board is effective. - An efficient WM program benefits greatly from modern technology and innovation in managing waste data and

  10. Environmental management the supply chain perspective

    CERN Document Server

    Wong, Christina W Y; Lun, Y H Venus; Cheng, T C E

    2015-01-01

    In view of the increasing quest for environmental management in businesses, this book provides a good reference to firms to understand how they may manage their supply chains to improve business and environmental performance. The book consists of six chapters covering such topics as environmental management, environmental management practices with supply chain efforts, collaborative environmental management, organizational capabilities in environmental management, environmental disclosure, and closed-loop supply chains. The book presents theory-driven discussions on the link between environmental management and business performance in the context of supply chain management. The book will be useful for firms to learn from the research findings and real-life cases to develop plans to implement environmental management practices jointly with supply chain partners.

  11. The challenge of managing laboratory information in a managed care environment.

    Science.gov (United States)

    Friedman, B A

    1996-04-01

    This article considers some of the major changes that are occurring in pathology and pathology informatics in response to the shift to managed care in the United States. To better understand the relationship between information management in clinical laboratories and managed care, a typology of integrated delivery systems is presented. Following this is a discussion of the evolutionary trajectory for the computer networks that serve these large consolidated healthcare delivery organizations. The most complex of these computer networks is a community health information network. Participation in the planning and deployment of community health information networks will be important for pathologists because information management within pathology will be inexorably integrated into the larger effort by integrated delivery systems to share clinical, financial, and administrative data on a regional basis. Finally, four laboratory information management challenges under managed care are discussed, accompanied by possible approaches to each of them. The challenges presented are (1) organizational integration of departmental information systems such as the laboratory information system; (2) weakening of the best-of-breed approach to laboratory information system selection; (3) the shift away from the centralized laboratory paradigm; and (4) the development of rule-based systems to monitor and control laboratory utilization.

  12. VNML: Virtualized Network Management Laboratory for Educational ...

    African Journals Online (AJOL)

    VNML: Virtualized Network Management Laboratory for Educational Purposes. ... Journal of Fundamental and Applied Sciences ... In this paper, we implement a Virtualized Network Management Laboratory named (VNML) linked to college ...

  13. ENVIRONMENTAL SYSTEMS MANAGEMENT: TOWARDS A NEW SCIENCE OF SUSTAINABLE ENVIRONMENTAL MANAGEMENT

    Science.gov (United States)

    Environmental Systems Management (ESM) is the management of environmental problems at the systems level fully accounting for the multi-dimensional nature of the environment. This includes socio-economic dimensions as well as the usual physical and life science aspects of environm...

  14. Science To Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards; FINAL

    International Nuclear Information System (INIS)

    Bredt, Paul R; Brockman, Fred J; Grate, Jay W; Hess, Nancy J; Meyer, Philip D; Murray, Christopher J; Pfund, David M; Su, Yali; Thornton, Edward C; Weber, William J; Zachara, John M

    2001-01-01

    Pacific Northwest National Laboratory (PNNL) was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, nine in fiscal year 1998, seven in fiscal year 1999, and five in fiscal year 2000. All of the fiscal year 1996 award projects have published final reports. The 1997 and 1998 award projects have been completed or are nearing completion. Final reports for these awards will be published, so their annual updates will not be included in this document. This section summarizes how each of the 1999 and 2000 grants address significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. The 1999 and 2000 EMSP awards at PNNL are focused primarily in two areas: Tank Waste Remediation, and Soil and Groundwater Cleanup

  15. Environmental Awareness, Course 32461

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Debora Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-08

    Los Alamos National Laboratory (LANL or the Laboratory) is committed to an environmental management strategy aimed at reducing the Laboratory's environmental impacts, while still maintaining or increasing operating efficiencies. This training is designed to help you understand the critical importance of environmental management to the continuing success of the Laboratory and your personal role in this essential endeavor. If you are new to this training, you may wish to explore the various links that will take you to more in-depth information.

  16. Developing effective environmental and oil spill management for remote locations

    International Nuclear Information System (INIS)

    Smith, J.P.; Wardrop, J.; Kilborn, A.

    1994-01-01

    Historically, Exploration and Production (E and P) operators' environmental philosophy was a consequence of environmental damages, actual and perceived, caused by hydrocarbon spills. Pertamina/Maxus Southeast Sumatra, Inc. (Maxus), the largest offshore E and P operator in Indonesia has adopted a proactive philosophy as they operate offshore production and shipping facilities immediately adjacent to the Pulau Seribu (Thousand Island) National Marine Park and approximately 30 kilometers from the Southeast Sumatra coast. These ecosystems are of great concern to Indonesia and Maxus as they comprise approximately 250 km of tropical, sparsely inhabited coastline, 106 coral and lagoon islands, and habitats for numerous endangered species. This paper describes the contract zone within which Maxus operates; the environmental risks associated with E and P in this region; and Maxus' response to management of those risks. A significant component of Maxus' overall response has been the ESACOC project (Environmental Sensitivity and Characterization of Crude) undertaken during 1993. ESACOC is described here in regard to the use and interrelation of remote sensing, in-depth laboratory studies, and development of new sensitivity rankings techniques into one computer program for effective environmental and oil spill management. ESACOC illustrates the synthesis of seemingly diverse and unrelated data to develop an effective environmental management plan

  17. Clinical laboratory waste management in Shiraz, Iran.

    Science.gov (United States)

    Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John

    2012-06-01

    Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.

  18. The Coordinating Laboratories for monitoring of environmental radioactivity. History, activities, perspectives

    International Nuclear Information System (INIS)

    Wiechen, A.; Bayer, A.

    2000-10-01

    The article reviews the development of the monitoring of environmental radioactivity in the former Federal Republic of Germany and from 1990 onwards in re-unified Germany. This monitoring originated in the need to investigate the radioactive fallout from the testing of atomic bombs in the atmosphere in the 1950's and 1960's. Monitoring was intensified and became increasingly regulated by law as a response to the large scale use of atomic power and in accordance with the Euratom Treaty of 1957. The necessity of evaluating the radiological effects in old mining regions in some of the new Laender was recognised in 1990. Since then legislation and official monitoring have been extended to include this source of radiation exposure. Also described is the way in which those institutions now termed Coordinating Laboratories were involved in all of the developments mentioned above. They tested and developed sampling, analysis and measurement techniques, carried out research projects on the various contamination pathways, reported regularly on environmental radioactivity and radiation exposure, organised and evaluated interlaboratory comparisons, assisted in the setting up of the Federal Integrated Measurement and Information System (IMIS), and advised the appropriate Federal and Laender Ministries. Some of the Coordinating Laboratories also manage Federal Monitoring Networks. The Precautionary Radiation Protection Act stipulates these tasks and names the institutions appointed as Coordinating Laboratories. (orig.) [de

  19. Environmental Restoration and Waste Management Site-Specific Plan for Fiscal Year 1993

    International Nuclear Information System (INIS)

    1993-03-01

    The Idaho National Engineering Laboratory (INEL) is a US Department of Energy (DOE) multiprogram laboratory whose primary mission has been to research nuclear technologies. Working with these technologies and conducting other types of research generates waste, including radioactive and/or hazardous wastes. While most of the waste treatment, storage, and disposal practices have been effective, some practices have led to the release of contaminants to the environment. As a result, DOE has developed (1) an Environmental Restoration (ER) Program to identify and, where necessary, cleanup releases from inactive waste sites and (2) a Waste Management (WM) Program to safely treat, store, and dispose of DOE wastes generated from current and future activities in an environmentally sound manner. This document describes the plans for FY 1993 for the INEL's ER and WM programs as managed by DOE's Idaho Field Office (DOE-ID)

  20. Environmental Restoration and Waste Management Site-Specific Plan for Fiscal Year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    The Idaho National Engineering Laboratory (INEL) is a US Department of Energy (DOE) multiprogram laboratory whose primary mission has been to research nuclear technologies. Working with these technologies and conducting other types of research generates waste, including radioactive and/or hazardous wastes. While most of the waste treatment, storage, and disposal practices have been effective, some practices have led to the release of contaminants to the environment. As a result, DOE has developed (1) an Environmental Restoration (ER) Program to identify and, where necessary, cleanup releases from inactive waste sites and (2) a Waste Management (WM) Program to safely treat, store, and dispose of DOE wastes generated from current and future activities in an environmentally sound manner. This document describes the plans for FY 1993 for the INEL`s ER and WM programs as managed by DOE`s Idaho Field Office (DOE-ID).

  1. Proposed framework for the Western Area Power Administration Environmental Risk Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, C.S.; DiMassa, F.V.; Pelto, P.J.; Brothers, A.J. [Pacific Northwest Lab., Richland, WA (United States); Roybal, A.L. [Western Area Power Administration, Golden, CO (United States)

    1994-12-01

    The Western Area Power Administration (Western) views environmental protection and compliance as a top priority as it manages the construction, operation, and maintenance of its vast network of transmission lines, substations, and other facilities. A recent Department of Energy audit of Western`s environmental management activities recommends that Western adopt a formal environmental risk program. To accomplish this goal, Western, in conjunction with Pacific Northwest Laboratory, is in the process of developing a centrally coordinated environmental risk program. This report presents the results of this design effort, and indicates the direction in which Western`s environmental risk program is heading. Western`s environmental risk program will consist of three main components: risk communication, risk assessment, and risk management/decision making. Risk communication is defined as an exchange of information on the potential for threats to human health, public safety, or the environment. This information exchange provides a mechanism for public involvement, and also for the participation in the risk assessment and management process by diverse groups or offices within Western. The objective of risk assessment is to evaluate and rank the relative magnitude of risks associated with specific environmental issues that are facing Western. The evaluation and ranking is based on the best available scientific information and judgment and serves as input to the risk management process. Risk management takes risk information and combines it with relevant non-risk factors (e.g., legal mandates, public opinion, costs) to generate risk management options. A risk management tool, such as decision analysis, can be used to help make risk management choices.

  2. Low Energy Accelerator Laboratory Technical Area 53, Los Alamos National Laboratory. Environmental assessment

    International Nuclear Information System (INIS)

    1995-04-01

    This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the Department of Energy (DOE) were to construct and operate a small research and development laboratory building at Technical Area (TA) 53 at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. DOE proposes to construct a small building to be called the Low Energy Accelerator Laboratory (LEAL), at a previously cleared, bladed, and leveled quarter-acre site next to other facilities housing linear accelerator research activities at TA-53. Operations proposed for LEAL would consist of bench-scale research, development, and testing of the initial section of linear particle accelerators. This initial section consists of various components that are collectively called an injector system. The anticipated life span of the proposed development program would be about 15 years

  3. Lawrence Livermore National Laboratory Environmental Report 2014

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buscheck, W. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Byrne, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bish, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratanduono, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, A. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montemayor, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, H. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Swanson, K. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-29

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2014 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  4. Lawrence Livermore National Laboratory Environmental Report 2015

    Energy Technology Data Exchange (ETDEWEB)

    Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-22

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  5. Environmental health research in Japan - management of environmental risks

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Masahisa [Lake Biwa Research Institute (Japan)

    1997-12-31

    Briefly discussed the topics on emerging environmental health risks, their assessment and management, with special emphasis on groundwater management , environmental contamination, source protection, new drinking water and ambient water quality standards; and sophistication in instrumentation in environmental quality measurements, hazards and risk assessment and control, technology development in environmental health risk management.

  6. Environmental health research in Japan - management of environmental risks

    International Nuclear Information System (INIS)

    Masahisa Nakamura

    1996-01-01

    Briefly discussed the topics on emerging environmental health risks, their assessment and management, with special emphasis on groundwater management , environmental contamination, source protection, new drinking water and ambient water quality standards; and sophistication in instrumentation in environmental quality measurements, hazards and risk assessment and control, technology development in environmental health risk management

  7. Idaho National Laboratory Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Joanne L. Knight

    2008-04-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  8. Environmental Molecular Sciences Laboratory Annual Report: Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Nancy S.; Showalter, Mary Ann

    2007-03-23

    This report describes the activities and research performed at the Environmental Molecular Sciences Laboratory, a Department of Energy national scientific user facility at Pacific Northwest National Laboratory, during Fiscal Year 2006.

  9. Environmental management

    NARCIS (Netherlands)

    Guicherit, R.

    1996-01-01

    Elements of a national environmental management system include: • monitoring networks to establish the prevailing environmental quality; • emission inventories, and projected emission inventories based on population growth, increase of traffic density, and economie growth; taking into account

  10. ISO 14001 IMPLEMENTATION AT A NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    BRIGGS, S.L.K.

    2001-01-01

    After a tumultuous year discovering serious lapses in environment, safety and health management at Brookhaven National Laboratory, the Department of Energy established a new management contract. It called for implementation of an IS0 14001 Environmental Management System and registration of key facilities. Brookhaven Science Associates, the managing contractor for the Laboratory, designed and developed a three-year project to change culture and achieve the goals of the contract. The focus of its efforts were to use IS0 14001 to integrate environmental stewardship into all facets of the Laboratory's mission, and manage its programs in a manner that protected the ecosystem and public health. A large multidisciplinary National Laboratory with over 3,000 employees and 4,000 visiting scientists annually posed significant challenges for IS0 14001 implementation. Activities with environmental impacts varied from regulated industrial waste generation, to soil activation from particle accelerator operations, to radioactive groundwater contamination from research reactors. A project management approach was taken to ensure project completion on schedule and within budget. The major work units for the Environmental Management System Project were as follows: Institutional EMS Program Requirements, Communications, Training, Laboratory-wide Implementation, and Program Assessments. To minimize costs and incorporate lessons learned before full-scale deployment throughout the Laboratory, a pilot process was employed at three facilities. Brookhaven National Laboratory has completed its second year of the project in the summer of 2000, successfully registering nine facilities and self-declaring conformance in all remaining facilities. Project controls, including tracking and reporting progress against a model, have been critical to the successful implementation. Costs summaries are lower than initial estimates, but as expected legal requirements, training, and assessments are key cost

  11. Idaho National Engineering and Environmental Laboratory institutional plan -- FY 2000--2004

    Energy Technology Data Exchange (ETDEWEB)

    Enge, R.S.

    1999-12-01

    In this first institutional plan prepared by Bechtel BWXT Idaho, LLC, for the Idaho National Engineering and Environmental Laboratory, the INEEL will focus its efforts on three strategic thrusts: (1) Environmental Management stewardship for DOE-EM, (2) Nuclear reactor technology for DOE-Nuclear Energy (NE), and (3) Energy R and D, demonstration, and deployment (initial focus on biofuels and chemicals from biomass). The first strategic thrust focuses on meeting DOE-EMs environmental cleanup and long-term stewardship needs in a manner that is safe, cost-effective, science-based, and approved by key stakeholders. The science base at the INEEL will be further used to address a grand challenge for the INEEL and the DOE complex--the development of a fundamental scientific understanding of the migration of subsurface contaminants. The second strategic thrust is directed at DOE-NEs needs for safe, economical, waste-minimized, and proliferation-resistant nuclear technologies. As NE lead laboratories, the INEEL and ANL will pursue specific priorities. The third strategic thrust focuses on DOE's needs for clean, efficient, and renewable energy technology. As an initial effort, the INEEL will enhance its capability in biofuels, bioprocessing, and biochemicals. The content of this institutional plan is designed to meet basic DOE requirements for content and structure and reflect the key INEEL strategic thrusts. Updates to this institutional plan will offer additional content and resource refinements.

  12. Assessing the outcome of Strengthening Laboratory Management ...

    African Journals Online (AJOL)

    SLMTA) is a competency-based management training programme designed to bring about immediate and measurable laboratory improvement. The aim of this study is to assess the outcome of SLMTA on laboratory quality management system in ...

  13. Hanford Site Environmental Management Specification

    International Nuclear Information System (INIS)

    DAILY, J.L.

    2001-01-01

    The US Department of Energy, Richland Operations Office (RL) has established a document hierarchy as part of its integrated management system. The Strategic Plan defines the vision, values, missions, strategic goals, high-level outcomes, and the basic strategies in achieving those outcomes. As shown in Figure 1-1, the Site Specification derives requirements from the Strategic Plan and documents the top-level mission technical requirements for the work involved in the RL Hanford Site cleanup and infrastructure activities under the responsibility of the U.S. Department of Energy, Office of Environmental Management (EM). It also provides the basis for all contract technical requirements. Since this is limited to the EM work, neither the Fast Flux Test Facility (FFTF) nor the Pacific Northwest National Laboratory (PNNL) non-EM science activities are included. Figure 1-1 also shows the relationship between this Site Specification and the other Site management and planning documents. Similarly, the documents, orders, and laws referenced in this document represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents

  14. Laboratory biorisk management biosafety and biosecurity

    CERN Document Server

    Salerno, Reynolds M

    2015-01-01

    Over the past two decades bioscience facilities worldwide have experienced multiple safety and security incidents, including many notable incidents at so-called ""sophisticated facilities"" in North America and Western Europe. This demonstrates that a system based solely on biosafety levels and security regulations may not be sufficient.Setting the stage for a substantively different approach for managing the risks of working with biological agents in laboratories, Laboratory Biorisk Management: Biosafety and Biosecurity introduces the concept of biorisk management-a new paradigm that encompas

  15. Annual site environmental report of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schleimer, G.E.; Pauer, R.O.

    1991-05-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1990 are presented, and general trends are discussed. The report is organized under the following topics: Environmental Program Overview; Environmental Permits; Environmental Assessments; Environmental Activities; Penetrating Radiation; Airborne Radionuclides; Waterborne Radionuclides; Public Doses Resulting from LBL Operations; Trends -- LBL Environmental Impact; Waterborne Pollutants; Airborne Pollutants; Groundwater Protection; and Quality Assurance. 20 refs., 26 figs., 23 tabs

  16. Environmental management in public hospitals: Environmental management in Colombia

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rodríguez-Miranda

    2016-10-01

    Conclusions: Hospitals can apply broader environmental management instruments, including life cycle analysis of their products and services and monitoring of the carbon footprint; they may also take into account the different areas of environmental impact of their operation.

  17. Environmental Restoration and Waste Management Site-Specific Plan (SSP) for fiscal year 1992 (FY92)

    International Nuclear Information System (INIS)

    1991-09-01

    The FY-92 Site-Specific Plan (FY-92 SSP) for environmental restoration and waste management at the Idaho National Engineering Laboratory (INEL) is designed to provide the reader with easy access to the status of environmental restoration and waste management activities at INEL. The first chapter provides background on INIEL's physical environment, site history and mission, and general information about the site and its facilities. In addition, this chapter discusses the inter-relationships between the Site Specific Plan, the Environmental Restoration and Waste Management Five-Year Plan, the environmental restoration and waste management prioritization systems, and the Activity Data Sheets (ADSs) for environmental restoration and waste management. This discussion should help readers understand what the SSP is and how it fits into the environmental restoration and waste management process at INEL. This understanding should provide the reader with a better context for understanding the discussions in the SSP as well as a better feel for how and what to comment on during the public comment period that will be held from the first of September through the end of October 1991

  18. DNA decontamination methods for internal quality management in clinical PCR laboratories.

    Science.gov (United States)

    Wu, Yingping; Wu, Jianyong; Zhang, Zhihui; Cheng, Chen

    2018-03-01

    The polymerase chain reaction (PCR) technique, one of the most commonly applied methods in diagnostic and molecular biology, has a frustrating downside: the occurrence of false-positive signals due to contamination. In previous research, various DNA decontamination methods have been developed to overcome this limitation. Unfortunately, the use of random or poorly focused sampling methods for monitoring air and/or object surfaces leads to the incomplete elimination during decontamination procedures. We herein attempted to develop a novel DNA decontamination method (environmental surveillance, including surface and air sampling) and quality management program for clinical molecular diagnostic laboratories (or clinical PCR laboratories). Here, we performed a step-by-step evaluation of current DNA decontamination methods and developed an effective procedure for assessing the presence of decontaminating DNA via PCR analysis. Performing targeted environmental surveillance by sampling, which reached optimal performance over 2 weeks, and the decontamination process had been verified as reliable. Additionally, the process was validated to not affect PCR amplification efficiency based on a comparative study. In this study, effective guidelines for DNA decontamination were developed. The method employed ensured that surface DNA contamination could be effectively identified and eliminated. Furthermore, our study highlighted the importance of overall quality assurance and good clinical laboratory practices for preventing contamination, which are key factors for compliance with regulatory or accreditation requirements. Taken together, we provided the evidence that the presented scheme ranged from troubleshooting to the elimination of surface contamination, could serve as critical foundation for developing regular environmental surveillance guidelines for PCR laboratories. © 2017 Wiley Periodicals, Inc.

  19. Confluence and Contours: Reflexive Management of Environmental Risk.

    Science.gov (United States)

    Soane, Emma; Schubert, Iljana; Pollard, Simon; Rocks, Sophie; Black, Edgar

    2016-06-01

    Government institutions have responsibilities to distribute risk management funds meaningfully and to be accountable for their choices. We took a macro-level sociological approach to understanding the role of government in managing environmental risks, and insights from micro-level psychology to examine individual-level risk-related perceptions and beliefs. Survey data from 2,068 U.K. citizens showed that lay people's funding preferences were associated positively with beliefs about responsibility and trust, yet associations with perception varied depending on risk type. Moreover, there were risk-specific differences in the funding preferences of the lay sample and 29 policymakers. A laboratory-based study of 109 participants examined funding allocation in more detail through iterative presentation of expert information. Quantitative and qualitative data revealed a meso-level framework comprising three types of decisionmakers who varied in their willingness to change funding allocation preferences following expert information: adaptors, responders, and resistors. This research highlights the relevance of integrated theoretical approaches to understanding the policy process, and the benefits of reflexive dialogue to managing environmental risks. © 2015 Society for Risk Analysis.

  20. BROOKHAVEN NATIONAL LABORATORY SITE ENVIRONMENTAL REPORT FOR CALENDAR YEAR 1994.

    Energy Technology Data Exchange (ETDEWEB)

    NAIDU,J.R.; ROYCE,B.A.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory's operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory. Brookhaven National Laboratory's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment were evaluated. Among the permitted facilities, two instances of pH exceedances were observed at recharge basins, possibly related to rain-water run-off to these recharge basins. Also, the discharge from the Sewage Treatment Plant to the Peconic River exceeded. on ten occasions, one each for fecal coliform and 5-day Biochemical Oxygen Demand (avg.) and eight for ammonia nitrogen. The ammonia and Biochemical Oxygen Demand exceedances were attributed to the cold winter and the routine cultivation of the sand filter beds which resulted in the hydraulic overloading of the filter beds and the possible destruction of nitrifying bacteria. The on-set of warm weather and increased aeration of the filter beds via cultivation helped to alleviate this condition. The discharge of fecal coliform may also be linked to this occurrence, in that the increase in fecal coliform coincided with the increased cultivation of the sand filter beds. The environmental monitoring data has identified site-specific contamination of groundwater and soil. These areas are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement. Except for the above, the environmental monitoring data has continued to demonstrate that compliance was achieved with

  1. Environmental Management in Product Chains

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Forman, Marianne

    2009-01-01

    between existing resources, norms and values and external pressures for environmental management (second section). A model for the types of corporate network relations that need to be mapped and understood in order to analyze and/or develop environmental management in a product chain (third section......The chapter aims at giving background to companies, consultants, governmental regulators, NGOs etc. for the analysis and planning of environmental management in specific product chains through: A framework for understanding environmental management in product chains as shaped by the interaction......). An overview of examples from our own research and from literature of the type and the role of environmental issues and initiatives in product chains (fourth section). A typology for characterizing corporate strategies as part of environmental management in product chains and characterizing those competencies...

  2. Science to support DOE site cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program awards. Fiscal year 1998 mid-year progress report

    International Nuclear Information System (INIS)

    1998-05-01

    Pacific Northwest National Laboratory was awarded ten (10) Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996 and six (6) in Fiscal Year 1997. This section summarizes how each grant addresses significant US Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in four areas: Tank Waste Remediation, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Cleanup, and Health Effects

  3. Science to support DOE site cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program awards. Fiscal year 1998 mid-year progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Pacific Northwest National Laboratory was awarded ten (10) Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996 and six (6) in Fiscal Year 1997. This section summarizes how each grant addresses significant US Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in four areas: Tank Waste Remediation, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Cleanup, and Health Effects.

  4. Assessment of laboratory logistics management information system ...

    African Journals Online (AJOL)

    Introduction: Logistics management information system for health commodities remained poorly implemented in most of developing countries. To assess the status of laboratory logistics management information system for HIV/AIDS and tuberculosis laboratory commodities in public health facilities in Addis Ababa. Methods: ...

  5. Supplement Analysis for Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory -- Modification of Management Methods for Transuranic Waste Characterization at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    2002-01-01

    This Supplement Analysis (SA) has been prepared to determine if the Site-Wide Environmental Impact Statement for Continued Operations of Los Alamos National Laboratory (SWEIS) (DOE/EIS-0238) adequately addresses the environmental effects of a waste management proposal for installing and operating modular units for the characterization of transuranic (TRU) waste1 at the Los Alamos National Laboratory (LANL) Technical Area (TA)-54, Area G, or if the SWEIS needs to be supplemented. Council on Environmental Quality regulations at Title 40, Section 1502.9 (c) of the Code of Federal Regulations (40 CFR 1502.9[c]) require federal agencies to prepare a supplement to an EIS when an agency makes substantial changes in the proposed action that are relevant to environmental concerns or there are circumstances or information relevant to concerns and bearing on the proposed action or its impacts. This SA is prepared in accordance with Section 10 CFR 1021.314(c) of the Department of Energy's (DOE's) regulations for NEPA implementation stating that ''When it is unclear whether or not an EIS supplement is required, DOE shall prepare a Supplement Analysis.'' This SA specifically compares key impact assessment parameters of the waste management program evaluated in the SWEIS with those of a proposal that would change the approach of a portion of this management program. It also provides an explanation of any differences between the proposed action and activities described in the previous SWEIS analysis. DOE proposes to expedite the shipment of legacy TRU waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The Cerro Grande Fire in 2000 and events of September 11, 2001, have focused attention on the potential risk to the public and the credible security hazard posed by the amount of plutonium stored above ground at LANL and the increased necessity to safeguard our nation's nuclear waste. The safest place for defense-generated TRU waste has been determined to be DOE

  6. The relationship between top managers' environmental attitudes and environmental management in hotel companies

    OpenAIRE

    Park, Jeongdoo

    2009-01-01

    Environmental management and sustainability have been recent important issues in the hospitality industry. The hotel industry, as a main sector of the hospitality industry, has benefited from environmental initiatives through improving corporate image and increasing resource and energy efficiency. Among various environmental issues that have been addressed in the hotel industry, managerial influence on environmental management is rarely investigated. The purpose of this study was to ex...

  7. Safety, health and environmental committee (JKSHE): Establishing chemical hazard management

    International Nuclear Information System (INIS)

    Shyen, A.K.S.; Noriah Mod Ali; Sangau, J.K.

    2012-01-01

    Most of the laboratories in Malaysian Nuclear Agency are using chemicals in their research activities. However, it is known that using of chemicals without proper knowledge especially on the material characteristics as well as safe handling procedure may cause great harm to the workers. Therefore, Safety, Health and Environmental Committee (JKSHE) sees the need to establish a good chemical hazard management to ensure that a safe and healthy workplace and environment is provided. One of the elements in chemical hazard management is to carry out Chemical Hazard Risk Assessment (CHRA). The assessment was done so that decision can be made on suitable control measures upon use of such chemicals, such as induction and training courses to be given to the workers and health surveillance activities that may be needed to protect the workers. For this, JKSHE has recommended to conduct CHRA for one of the laboratories at Secondary Standard Dosimetry Laboratory (SSDL) namely Film Dosimeter Processing Room (dark room) as the initial effort towards a better chemical hazard management. This paper presents the case study where CHRA was conducted to identify the chemical hazards at the selected laboratory, the adequacy of existing control measures and finally the recommendation for more effective control measures. (author)

  8. Auditing of environmental management system

    Directory of Open Access Journals (Sweden)

    Čuchranová Katarína

    2001-12-01

    Full Text Available Environmental auditing has estabilished itself as a valueable instrument to verify and help to improve the environmental performance.Organizations of all kinds may have a need to demonstrate the environmental responsibility. The concept of environmental management systems and the associated practice of environmental auditing have been advanced as one way to satisfy this need.These system are intended to help an organization to establish and continue to meet its environmental policies, objectives, standards and other requirements.Environmental auditing is a systematic and documented verification process of objectively obtaining and evaluating audit evidence to determine whether an organizations environmental management system conforms to the environmental management system audit criteria set by the organization and for the communication of the results of this process to the management.The following article intercepts all parts of preparation environmental auditing.The audit programme and procedures should cover the activities and areas to be considered in audits, the frequency of audits, the responsibilities associated with managing and conducting audits, the communication of audit results, auditor competence, and how audits will be conducted.The International Standard ISO 140011 estabilishes the audit procedures that determine conformance with EMS audit criteria.

  9. Environmental isotope hydrology laboratories in developing countries

    International Nuclear Information System (INIS)

    Gonfiantini, R.; Stichler, W.

    1991-01-01

    This article reports on the role, experience, and problems of environmental isotope hydrology laboratories in developing countries, based upon the IAEA's experience. It specifically offers guidance on important aspects of organization, staffing, and operation

  10. Brookhaven National Laboratory, Upton, New York final environmental impact statement

    International Nuclear Information System (INIS)

    Liverman, J.L.

    1977-07-01

    Generally, data used for the statement were those which had been accumulated through the calendar year 1973. Since 1973, Environmental Monitoring Reports have been published for calendar years 1974 and 1975. A review of these more recent documents reveals that the data contained therein lead to no significant change in the conclusions drawn in this Environmental Impact Statement. Past Laboratory operations were considered only insofar as they contribute to continuing environmental impacts. Environmental effects were considered solely with respect to off-site consequences, the only exception being those cases where on-site effects have had or will have an impact on the long-term productivity of the Laboratory site

  11. Environmental impact report addendum for the continued operation of Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Weston, R. F.

    1996-01-01

    An environmental impact statement/environmental impact report (ES/EIR) for the continued operation and management of Lawrence Livermore National Laboratory (LLNL) was prepared jointly by the U.S. Department of Energy (DOE) and the University of California (UC). The scope of the document included near-term (within 5-10 years) proposed projects. The UC Board of Regents, as state lead agency under the California Environmental Quality Act (CEQA), certified and adopted the EIR by issuing a Notice of Determination on November 20, 1992. The DOE, as the lead federal agency under the National Environmental Policy Act (NEPA), adopted a Record of Decision for the ES on January 27, 1993 (58 Federal Register [FR] 6268). The DOE proposed action was to continue operation of the facility, including near-term proposed projects. The specific project evaluated by UC was extension of the contract between UC and DOE for UC's continued operation and management of LLNL (both sites) from October 1, 1992, through September 30, 1997. The 1992 ES/EIR analyzed impacts through the year 2002. The 1992 ES/EIR comprehensively evaluated the potential environmental impacts of operation and management of LLNL within the near-term future. Activities evaluated included programmatic enhancements and modifications of facilities and programs at the LLNL Livermore site and at LLNL's Experimental Test Site (Site 300) in support of research and development missions 2048 established for LLNL by Congress and the President. The evaluation also considered the impacts of infrastructure and building maintenance, minor modifications to buildings, general landscaping, road maintenance, and similar routine support activities

  12. Sandia National Laboratories performance assessment methodology for long-term environmental programs : the history of nuclear waste management.

    Energy Technology Data Exchange (ETDEWEB)

    Marietta, Melvin Gary; Anderson, D. Richard; Bonano, Evaristo J.; Meacham, Paul Gregory (Raytheon Ktech, Albuquerque, NM)

    2011-11-01

    Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of the SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems

  13. ETHICAL ASPECTS OF ENVIRONMENTAL MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Cîrstea Ştefan-Dragoş

    2013-07-01

    Full Text Available The purpose of this article is to outline the main economical and social benefits that can be obtained by adopting an ethical attitude of the organisations which use a performant environmental management. From the idea that the human being is the master of nature, it was passed to the view according to which the human being must ensure a balance between consumption and the use of resources. In order to achieve our goal we identified the factors that lead to long term or even permanent destructive effects over the environment and we briefly present the reasons for which the organizations adopt and implement environmental management systems. Also, the difficulties encountered in implementing environmental strategies have been briefly enumerated and the competitive and economic advantages that can be achieved by adopting an efficient environmental management and the main reasons that grant to the environmental management a special significance were exposed. This theoretical paper emphasizes the importance of the adoption by organizations of a "green behavior" and reveals correlations between sustainability, economic growth and environmental performance in organizations. The analysis of the ethical aspects of environmental management shows the links that can be created between the development of an ethical culture of organizations and the achievement of the environmental excellence. The research provides an overview of the concept of environmental ethics and encloses it within the scope of environmental management. Someone needs to explain why an increasing number of organizations, both large and small, are setting up environmental management systems, making environmental investments and reducing risks over and beyond legal requirements, even when the benefits are not at all obvious, even in the long run. Also, this paper provides some practical examples of organizations environmental problems and points out how these organizations adapted their

  14. Analysis of DOE international environmental management activities

    Energy Technology Data Exchange (ETDEWEB)

    Ragaini, R.C.

    1995-09-01

    The Department of Energy`s (DOE) Strategic Plan (April 1994) states that DOE`s long-term vision includes world leadership in environmental restoration and waste management activities. The activities of the DOE Office of Environmental Management (EM) can play a key role in DOE`s goals of maintaining U.S. global competitiveness and ensuring the continuation of a world class science and technology community. DOE`s interest in attaining these goals stems partly from its participation in organizations like the Trade Policy Coordinating Committee (TPCC), with its National Environmental Export Promotion Strategy, which seeks to strengthen U.S. competitiveness and the building of public-private partnerships as part of U.S. industrial policy. The International Interactions Field Office task will build a communication network which will facilitate the efficient and effective communication between DOE Headquarters, Field Offices, and contractors. Under this network, Headquarters will provide the Field Offices with information on the Administration`s policies and activities (such as the DOE Strategic Plan), interagency activities, as well as relevant information from other field offices. Lawrence Livermore National Laboratory (LLNL) will, in turn, provide Headquarters with information on various international activities which, when appropriate, will be included in reports to groups like the TPCC and the EM Focus Areas. This task provides for the collection, review, and analysis of information on the more significant international environmental restoration and waste management initiatives and activities which have been used or are being considered at LLNL. Information gathering will focus on efforts and accomplishments in meeting the challenges of providing timely and cost effective cleanup of its environmentally damaged sites and facilities, especially through international technical exchanges and/or the implementation of foreign-development technologies.

  15. Environmental Management Science Program awards. Fiscal year 1997 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, A. [ed.; Benner, W.H.; DePaolo, D.J.; Faybishenko, B.; Majer, E.L.; Pallavicini, M.; Russo, R.E.; Shultz, P.G.; Wan, J.

    1997-10-01

    Lawrence Berkeley National Laboratory was awarded eight Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996. This report summarizes the progress of each grant in addressing significant DOE site cleanup issues after completion of the first year of research. The technical progress made to date in each of the research projects is described in greater detail in individual progress reports. The focus of the research projects covers a diversity of areas relevant to site cleanup, including bioremediation, health effects, characterization, and mixed waste. Some of the projects cut across a number of focus areas. Three of the projects are directed toward characterization and monitoring at the Idaho National Engineering and Environmental Laboratory, as a test case for application to other sites.

  16. Environmental Management Science Program awards. Fiscal year 1997 annual progress report

    International Nuclear Information System (INIS)

    Simmons, A.; Benner, W.H.; DePaolo, D.J.; Faybishenko, B.; Majer, E.L.; Pallavicini, M.; Russo, R.E.; Shultz, P.G.; Wan, J.

    1997-10-01

    Lawrence Berkeley National Laboratory was awarded eight Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996. This report summarizes the progress of each grant in addressing significant DOE site cleanup issues after completion of the first year of research. The technical progress made to date in each of the research projects is described in greater detail in individual progress reports. The focus of the research projects covers a diversity of areas relevant to site cleanup, including bioremediation, health effects, characterization, and mixed waste. Some of the projects cut across a number of focus areas. Three of the projects are directed toward characterization and monitoring at the Idaho National Engineering and Environmental Laboratory, as a test case for application to other sites

  17. Appendices to report on DOE analytical laboratory capacity available to meet EM environmental sampling and analysis needs for FY 93-99

    International Nuclear Information System (INIS)

    1994-01-01

    The DOE Analytical Laboratory Capacity Study was conducted to give EM-263 current information about existing and future analytical capacities and capabilities of site laboratories within the DOE Complex. Each DOE site may have one or more analytical laboratories in operation. These facilities were established to support site missions such as production, research and development, and personnel and environmental monitoring. With changing site missions and the DOE directives for environmental monitoring and cleanup, these laboratories are either devoting or planning to devote resources to support EM activities. The DOE site laboratories represent a considerable amount of capital investment and analytical capability, capacity, and expertise that can be applied to support the EM mission. They not only provide cost-effective high-volume analytical laboratory services, but are also highly recognized analytical research and development centers. Several sites have already transferred their analytical capability from traditional production support to environmental monitoring and waste management support. A model was developed to determine the analytical capacity of all laboratories in the DOE Complex. The model was applied at nearly all the major laboratories and the results collected from these studies are summarized in this report

  18. Project management plan for the gunite and associated tanks treatability studies project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-12-01

    This plan for the Gunite and Associated Tanks (GAAT) Treatability Studies Project satisfies the requirements of the program management plan for the Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program as established in the Program Management Plan for the Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory Site Environmental Restoration Program. This plan is a subtier of several other ER documents designed to satisfy the US Department of Energy (DOE) Order 4700.1 requirement for major systems acquisitions. This project management plan identifies the major activities of the GAAT Treatability Studies Project; establishes performance criteria; discusses the roles and responsibilities of the organizations that will perform the work; and summarizes the work breakdown structure, schedule, milestones, and cost estimate for the project

  19. Empirical insights and considerations for the OBT inter-laboratory comparison of environmental samples

    International Nuclear Information System (INIS)

    Kim, Sang-Bog; Roche, Jennifer

    2013-01-01

    Organically bound tritium (OBT) is an important tritium species that can be measured in most environmental samples, but has only recently been recognized as a species of tritium in these samples. Currently, OBT is not routinely measured by environmental monitoring laboratories around the world. There are no certified reference materials (CRMs) for environmental samples. Thus, quality assurance (QA), or verification of the accuracy of the OBT measurement, is not possible. Alternatively, quality control (QC), or verification of the precision of the OBT measurement, can be achieved. In the past, there have been differences in OBT analysis results between environmental laboratories. A possible reason for the discrepancies may be differences in analytical methods. Therefore, inter-laboratory OBT comparisons among the environmental laboratories are important and would provide a good opportunity for adopting a reference OBT analytical procedure. Due to the analytical issues, only limited information is available on OBT measurement. Previously conducted OBT inter-laboratory practices are reviewed and the findings are described. Based on our experiences, a few considerations were suggested for the international OBT inter-laboratory comparison exercise to be completed in the near future. -- Highlights: ► Inter-laboratory OBT comparisons would provide a good opportunity for developing reference OBT analytical procedures. ► The measurement of environmental OBT concentrations has a higher associated uncertainty. ► Certified reference materials for OBT in environmental samples are required

  20. BIOPLUS: An eclectic laboratory information management system for the ORNL Radiobioassay Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, R.L.; Hwang, H.L.; Bishop, C.P.; Blair, R.L.; Cornett, R.L.; Gonzalez, B.D.; Hotchandani, M.; Keaton, J.A.; Miller, J.L.; Myers, R.D.; Ohnesorge, M.J.; Thein, M.

    1992-01-01

    Data management activities in analytical laboratories can include sample scheduling, logging, and tracking, as well as results collection and reporting. In the Radiobioassay Laboratory (RBL) such activities were formerly accomplished by entering data in log books and on forms followed by manual entry of data into a computer database. As sample load has increased and further emphasis has been placed on improving efficiency and on error reduction, it has become worthwhile to automate the laboratory's information management. In addition, a Bioassay Data Management System (BDMS) has developed for use by all five of the DOE sites managed by Martin Marietta Energy Systems in order to centralize bioassay data management for internal dosimetry purposes. BIOPLUS, the LIMS described in this paper, provides an interface with BDMS and automates RBL information management to a large extent. The system provides for downloading personnel data from a central computer, logging in samples, and bar-code sample tracking, as well as recording, reporting, archiving, and trending of analysis results. Sketches of the hardware and software are presented along with some details of the instrument interface modules.

  1. BIOPLUS: An eclectic laboratory information management system for the ORNL Radiobioassay Laboratory

    International Nuclear Information System (INIS)

    Ferguson, R.L.; Hwang, H.L.; Bishop, C.P.; Blair, R.L.; Cornett, R.L.; Gonzalez, B.D.; Hotchandani, M.; Keaton, J.A.; Miller, J.L.; Myers, R.D.; Ohnesorge, M.J.; Thein, M.

    1992-01-01

    Data management activities in analytical laboratories can include sample scheduling, logging, and tracking, as well as results collection and reporting. In the Radiobioassay Laboratory (RBL) such activities were formerly accomplished by entering data in log books and on forms followed by manual entry of data into a computer database. As sample load has increased and further emphasis has been placed on improving efficiency and on error reduction, it has become worthwhile to automate the laboratory's information management. In addition, a Bioassay Data Management System (BDMS) has developed for use by all five of the DOE sites managed by Martin Marietta Energy Systems in order to centralize bioassay data management for internal dosimetry purposes. BIOPLUS, the LIMS described in this paper, provides an interface with BDMS and automates RBL information management to a large extent. The system provides for downloading personnel data from a central computer, logging in samples, and bar-code sample tracking, as well as recording, reporting, archiving, and trending of analysis results. Sketches of the hardware and software are presented along with some details of the instrument interface modules

  2. On-site vs off-site management of environmental restoration waste: A cost effectiveness analysis

    International Nuclear Information System (INIS)

    Morse, M.A.; Aamodt, P.L.; Cox, W.B.

    1996-01-01

    The Sandia National Laboratories Environmental Restoration Project is expected to generate relatively large volumes of hazardous waste as a result of cleanup operations. These volumes will exceed the Laboratories existing waste management capacity. This paper presents four options for managing remediation wastes, including three alternatives for on-site waste management utilizing a corrective action management unit (CAMU). Costs are estimated for each of the four options based on current volumetric estimates of hazardous waste. Cost equations are derived for each of the options with the variables being waste volumes, the major unknowns in the analysis. These equations provide a means to update cost estimates as volume estimates change. This approach may be helpful to others facing similar waste management decisions

  3. Sandia National Laboratories 1979 environmental monitoring report

    International Nuclear Information System (INIS)

    Simmons, T.N.

    1980-04-01

    Sandia National Laboratories in Albuquerque is located south of the city on two broad mesas. The local climate is arid continental. Radionuclides are released from five technical areas from the Laboratories' resarch activities. Sandia's environmental monitoring program searches for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. No activity was found in public areas in excess of local background in 1979. The Albuquerque population receives only 0.076 person-rem (estimated) from airborne radioactive releases. While national security research is the laboratories' major responsibility, energy research is a major area of activity. Both these research areas cause radioactive releases

  4. Data management and statistical analysis for environmental assessment

    International Nuclear Information System (INIS)

    Wendelberger, J.R.; McVittie, T.I.

    1995-01-01

    Data management and statistical analysis for environmental assessment are important issues on the interface of computer science and statistics. Data collection for environmental decision making can generate large quantities of various types of data. A database/GIS system developed is described which provides efficient data storage as well as visualization tools which may be integrated into the data analysis process. FIMAD is a living database and GIS system. The system has changed and developed over time to meet the needs of the Los Alamos National Laboratory Restoration Program. The system provides a repository for data which may be accessed by different individuals for different purposes. The database structure is driven by the large amount and varied types of data required for environmental assessment. The integration of the database with the GIS system provides the foundation for powerful visualization and analysis capabilities

  5. Environmental Measurements Laboratory program review, December 1983

    International Nuclear Information System (INIS)

    Volchok, H.L.; de Planque, G.

    1984-03-01

    This volume contains all of the written material that was submitted to the panel of Reviewers in advance of a Program Review conducted by the US Department of Energy, Office of Health and Environmental Research at the Environmental Measurements Laboratory (EML) December 7-9, 1983. In addition to a general introduction there are nineteen papers grouped into the five broad program categories covering all of the scientific and engineering projects of the Laboratory: Natural Radioactivity and Radiation, Anthropogenic Radioactivity and Radiation, Non-nuclear, Quality Assurance, and Development and Support. These short articles, for the most part, focus on the rationale for EML's involvement in each project, emphasizing their relevance to the EML and Department of Energy missions. Project results and their interpretation were presented at the Review and can be found in the material referenced in this volume

  6. Good Laboratory Practice. Part 3. Implementing Good Laboratory Practice in the Analytical Lab

    Science.gov (United States)

    Wedlich, Richard C.; Pires, Amanda; Fazzino, Lisa; Fransen, Joseph M.

    2013-01-01

    Laboratories submitting experimental results to the Food and Drug Administration (FDA) or the Environmental Protection Agency (EPA) in support of Good Laboratory Practice (GLP) nonclinical laboratory studies must conduct such work in compliance with the GLP regulations. To consistently meet these requirements, lab managers employ a "divide…

  7. Environmental and other evaluations of alternatives for management of defense transuranic waste at the Idaho National Engineering Laboratory. Volume 1 of 2

    International Nuclear Information System (INIS)

    1982-04-01

    The US Department of Energy (DOE) is responsible for developing and implementing methods for the safe and environmentally acceptable disposal of radioactive wastes. In connection with this responsibility, the DOE is formulating a program for the long-term management of transuranic (TRU) waste buried and stored at the Idaho National Engineering Laboratory (INEL). This report has been prepared to document the results of environmental and other evaluations for three decisions that the DOE is considering: (1) the selection of a general method for the long-term management of the buried TRU waste; (2) the selection of a method for processing the stored waste and for processing the buried waste, if it is retrieved; (3) the selection of a location for the waste-processing facility. This document pertains only to the contact-handled TRU waste buried in pits and trenches and the contact-handled TRU waste held in aboveground storage at the INEL. A decision has previously been made on a method for the long-term management of the stored waste; it will be retrieved and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. The WIPP is also used in this report as a reference repository for evaluation purposes for the buried waste. This report is contained in two volumes. Volume I is arranged as follows: the summary is an overview of the analyses contained in this document. Section 1 is a statement of the underlying purpose and need to which the report is responding. Section 2 describes the alterntives. Section 3 describes the affected environment at the INEL and the WIPP sites. Section 4 analyzes the environmental effects of each alternative. The appendices in Volume II contain data and discussions supporting the material presented in Volume I

  8. Environmental survey at Lucas Heights Research Laboratories, 1993

    International Nuclear Information System (INIS)

    Hoffmann, E.L.; Looz, T.

    1995-04-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1993. No activity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne discharges during this period is estimated to be less than 0.01 mSv, which is one per cent of the dose limit for long term exposure that is recommended by the National Health and Medical Research Council. A list of previous environmental survey reports is attached. 22 refs., 21 tabs., 4 figs

  9. Brookhaven National Laboratory site environmental report for calendar year 1990

    International Nuclear Information System (INIS)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1992-01-01

    Brookhaven National Laboratory (BNL) carries out basic and applied research in the following fields: high-energy nuclear and solid state physics; fundamental material and structure properties and the interactions of matter; nuclear medicine, biomedical and environmental sciences; and selected energy technologies. In conducting these research activities, it is Laboratory policy to protect the health and safety of employees and the public, and to minimize the impact of BNL operations on the environment. This document is the BNL environmental report for the calendar year 1990 for the safety and Environmental Protection division and corners topics on effluents, surveillance, regulations, assessments, and compliance

  10. Brookhaven National Laboratory site environmental report for calendar year 1990

    Energy Technology Data Exchange (ETDEWEB)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1992-01-01

    Brookhaven National Laboratory (BNL) carries out basic and applied research in the following fields: high-energy nuclear and solid state physics; fundamental material and structure properties and the interactions of matter; nuclear medicine, biomedical and environmental sciences; and selected energy technologies. In conducting these research activities, it is Laboratory policy to protect the health and safety of employees and the public, and to minimize the impact of BNL operations on the environment. This document is the BNL environmental report for the calendar year 1990 for the safety and Environmental Protection division and corners topics on effluents, surveillance, regulations, assessments, and compliance.

  11. International Environmental Institute

    International Nuclear Information System (INIS)

    DiSibio, R.R.

    1992-01-01

    The International Environmental Institute is being established at the Hanford Site to provide training and education in environmental restoration and waste management technologies and to serve as an interface for exchange of information among government laboratories, regional and federal governments, universities, and US industries. Recognized as the flagship of the nation's environmental management effort, the Hanford Site provides a unique living environmental laboratory that represents the most extensive, complex, and diverse cleanup challenges anywhere. An Environmental Institute director has been selected, the organizational structure has been established, and initial phases of operation have begun. The combined resources of the Hanford Site and the Environmental Institute offer unprecedented technological capabilities for dealing with the nation's environmental issues

  12. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards-Fiscal Year 1999 Mid-Year Progress Report

    International Nuclear Information System (INIS)

    Peurrung, L.M.

    1999-05-01

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, and eight in fiscal year 1998. This section summarizes how each grant addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in five areas: Tank Waste Remediation, Decontamination and Decommissioning, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Clean Up, and Health Effects

  13. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards-Fiscal Year 1999 Mid-Year Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Peurrung, L.M.

    1999-06-30

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, and eight in fiscal year 1998. This section summarizes how each grant addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in five areas: Tank Waste Remediation, Decontamination and Decommissioning, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Clean Up, and Health Effects.

  14. Environmental Accounting as a Tool for Environmental Management ...

    African Journals Online (AJOL)

    Environmental Accounting as a Tool for Environmental Management System. ... This paper reviews about the relationship of environmental accounting and environmental ... to legal and regulation requirement, to reduce cost from customer

  15. Raising environmental awareness through applied biochemistry laboratory experiments.

    Science.gov (United States)

    Salman Ashraf, S

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment is described that guides students to learn about the applicability of peroxidase enzymes to degrade organic dyes (as model pollutants) in simulated waste water. In addition to showing how enzymes can potentially be used for waste water remediation, various factors than can affect enzyme-based reactions such as pH, temperature, concentration of substrates/enzymes, and denaturants can also be tested. This "applied biotechnology" experiment was successfully implemented in an undergraduate biochemistry laboratory course to enhance students' learning of environmental issues as well important biochemistry concepts. Student survey confirmed that this laboratory experiment was successful in achieving the objectives of raising environmental awareness in students and illustrating the usefulness of chemistry in solving real-life problems. This experiment can be easily adopted in an introductory biochemistry laboratory course and taught as an inquiry-guided exercise. © 2013 by The International Union of Biochemistry and Molecular Biology.

  16. Draft environmental assessment of Argonne National Laboratory, East

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-01

    This environmental assessment of the operation of the Argonne National Laboratory is related to continuation of research and development work being conducted at the Laboratory site at Argonne, Illinois. The Laboratory has been monitoring various environmental parameters both offsite and onsite since 1949. Meteorological data have been collected to support development of models for atmospheric dispersion of radioactive and other pollutants. Gaseous and liquid effluents, both radioactive and non-radioactive, have been measured by portable monitors and by continuous monitors at fixed sites. Monitoring of constituents of the terrestrial ecosystem provides a basis for identifying changes should they occur in this regime. The Laboratory has established a position of leadership in monitoring methodologies and their application. Offsite impacts of nonradiological accidents are primarily those associated with the release of chlorine and with sodium fires. Both result in releases that cause no health damage offsite. Radioactive materials released to the environment result in a cumulative dose to persons residing within 50 miles of the site of about 47 man-rem per year, compared to an annual total of about 950,000 man-rem delivered to the same population from natural background radiation. 100 refs., 17 figs., 33 tabs.

  17. Implementation of ISO 17025 in the Eletronuclear Environmental Monitoring Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Baliza, Ana Rosa; Caetano, Carla de Brito, E-mail: baliza@eletronuclear.gov.br [Eletrobrás Termonuclear S.A. (ELETRONUCLEAR), Angra dos Reis, RJ (Brazil)

    2017-07-01

    In order to grant Angra 3 power plant operation license, the Brazilian Institute for the Environment and Renewable Natural Resources (IBAMA), in the IBAMA Installation License 591/2009 condition 2.24, required that Eletronuclear has to obtain the Environmental Monitoring Laboratory accreditation, in accordance with the requirements of NBR ISO / IEC 17025 standard. The accreditation is the formal recognition that a laboratory has a quality assurance system and technical competence to perform specific tests, evaluated according to the criteria based on NBR ISO/IEC 17025 (General requirements for testing and calibration laboratories competence) standard. In Brazil, the General Accreditation Coordination (CGCRE), according to the guidelines already explained by the Brazilian System of Conformity Assessment (INMETRO), does accreditation. The INMETRO is the only official accrediting body in Brazil and internationally recognized by the International Accreditation Forum (IAF). The Environmental Monitoring Laboratory at Eletronuclear is an analytical laboratory of chemical, radiochemical and biological tests, which analyzes several matrices, such as seawater, river water, marine sediment, beach sand, soil, pasture, banana, milk, besides marine sea life, around the Central Almirante Álvaro Alberto power plant station. It is licensed by CNEN, INEA, IBAMA and it follows national and international standards in the performance of the tests as well as in the collection and preparation of samples. This article describes the main steps that the Eletronuclear Environmental Monitoring Laboratory followed to implement ISO 17025. (author)

  18. Implementation of ISO 17025 in the Eletronuclear Environmental Monitoring Laboratory

    International Nuclear Information System (INIS)

    Baliza, Ana Rosa; Caetano, Carla de Brito

    2017-01-01

    In order to grant Angra 3 power plant operation license, the Brazilian Institute for the Environment and Renewable Natural Resources (IBAMA), in the IBAMA Installation License 591/2009 condition 2.24, required that Eletronuclear has to obtain the Environmental Monitoring Laboratory accreditation, in accordance with the requirements of NBR ISO / IEC 17025 standard. The accreditation is the formal recognition that a laboratory has a quality assurance system and technical competence to perform specific tests, evaluated according to the criteria based on NBR ISO/IEC 17025 (General requirements for testing and calibration laboratories competence) standard. In Brazil, the General Accreditation Coordination (CGCRE), according to the guidelines already explained by the Brazilian System of Conformity Assessment (INMETRO), does accreditation. The INMETRO is the only official accrediting body in Brazil and internationally recognized by the International Accreditation Forum (IAF). The Environmental Monitoring Laboratory at Eletronuclear is an analytical laboratory of chemical, radiochemical and biological tests, which analyzes several matrices, such as seawater, river water, marine sediment, beach sand, soil, pasture, banana, milk, besides marine sea life, around the Central Almirante Álvaro Alberto power plant station. It is licensed by CNEN, INEA, IBAMA and it follows national and international standards in the performance of the tests as well as in the collection and preparation of samples. This article describes the main steps that the Eletronuclear Environmental Monitoring Laboratory followed to implement ISO 17025. (author)

  19. Technology-based management of environmental organizations using an Environmental Management Information System (EMIS): Design and development

    Science.gov (United States)

    Kouziokas, Georgios N.

    2016-01-01

    The adoption of Information and Communication Technologies (ICT) in environmental management has become a significant demand nowadays with the rapid growth of environmental information. This paper presents a prototype Environmental Management Information System (EMIS) that was developed to provide a systematic way of managing environmental data and human resources of an environmental organization. The system was designed using programming languages, a Database Management System (DBMS) and other technologies and programming tools and combines information from the relational database in order to achieve the principal goals of the environmental organization. The developed application can be used to store and elaborate information regarding: human resources data, environmental projects, observations, reports, data about the protected species, environmental measurements of pollutant factors or other kinds of analytical measurements and also the financial data of the organization. Furthermore, the system supports the visualization of spatial data structures by using geographic information systems (GIS) and web mapping technologies. This paper describes this prototype software application, its structure, its functions and how this system can be utilized to facilitate technology-based environmental management and decision-making process.

  20. AFSC Laboratory Management Information Requirements Project

    National Research Council Canada - National Science Library

    1982-01-01

    This document was developed under the auspices of the Laboratory IRM (LIRM) Management Working Group in response to AFSC Program Directive 0008-81-1, Management Information Requirement Project (23 February 1981...

  1. Adaptive Management of Environmental Flows

    Science.gov (United States)

    Webb, J. Angus; Watts, Robyn J.; Allan, Catherine; Conallin, John C.

    2018-03-01

    Adaptive management enables managers to work with complexity and uncertainty, and to respond to changing biophysical and social conditions. Amid considerable uncertainty over the benefits of environmental flows, governments are embracing adaptive management as a means to inform decision making. This Special Issue of Environmental Management presents examples of adaptive management of environmental flows and addresses claims that there are few examples of its successful implementation. It arose from a session at the 11th International Symposium on Ecohydraulics held in Australia, and is consequently dominated by papers from Australia. We classified the papers according to the involvement of researchers, managers and the local community in adaptive management. Five papers report on approaches developed by researchers, and one paper on a community-led program; these case studies currently have little impact on decision making. Six papers provide examples involving water managers and researchers, and two papers provide examples involving water managers and the local community. There are no papers where researchers, managers and local communities all contribute equally to adaptive management. Successful adaptive management of environmental flows occurs more often than is perceived. The final paper explores why successes are rarely reported, suggesting a lack of emphasis on reflection on management practices. One major challenge is to increase the documentation of successful adaptive management, so that benefits of learning extend beyond the project where it takes place. Finally, moving towards greater involvement of all stakeholders is critical if we are to realize the benefits of adaptive management for improving outcomes from environmental flows.

  2. 1985 Effluent and environmental monitoring report for the Bettis Atomic Power Laboratory

    International Nuclear Information System (INIS)

    1985-01-01

    The results of the radiological and non-radiological environmental monitoring programs for 1985 at the Bettis Laboratory are presented. The results obtained from the monitoring programs demonstrate that the existing procedures ensure that all environmental releases during 1985 were in accordance with applicable State and Federal regulations. Evaluation of the environmental data indicates that operation of the Laboratory continued to have no adverse effect on the quality of the environment. Furthermore, a conservative assessment of radiation exposure to the general public as a result of Laboratory operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the Environmental Protection Agency and the Department of Energy

  3. [Knowledge management system for laboratory work and clinical decision support].

    Science.gov (United States)

    Inada, Masanori; Sato, Mayumi; Yoneyama, Akiko

    2011-05-01

    This paper discusses a knowledge management system for clinical laboratories. In the clinical laboratory of Toranomon Hospital, we receive about 20 questions relevant to laboratory tests per day from medical doctors or co-medical staff. These questions mostly involve the essence to appropriately accomplish laboratory tests. We have to answer them carefully and suitably because an incorrect answer may cause a medical accident. Up to now, no method has been in place to achieve a rapid response and standardized answers. For this reason, the laboratory staff have responded to various questions based on their individual knowledge. We began to develop a knowledge management system to promote the knowledge of staff working for the laboratory. This system is a type of knowledge base for assisting the work, such as inquiry management, laboratory consultation, process management, and clinical support. It consists of several functions: guiding laboratory test information, managing inquiries from medical staff, reporting results of patient consultation, distributing laboratory staffs notes, and recording guidelines for laboratory medicine. The laboratory test information guide has 2,000 records of medical test information registered in the database with flexible retrieval. The inquiry management tool provides a methos to record all questions, answer easily, and retrieve cases. It helps staff to respond appropriately in a short period of time. The consulting report system treats patients' claims regarding medical tests. The laboratory staffs notes enter a file management system so they can be accessed to aid in clinical support. Knowledge sharing using this function can achieve the transition from individual to organizational learning. Storing guidelines for laboratory medicine will support EBM. Finally, it is expected that this system will support intellectual activity concerning laboratory work and contribute to the practice of knowledge management for clinical work support.

  4. Sandia National Laboratories, California proposed CREATE facility environmental baseline survey.

    Energy Technology Data Exchange (ETDEWEB)

    Catechis, Christopher Spyros

    2013-10-01

    Sandia National Laboratories, Environmental Programs completed an environmental baseline survey (EBS) of 12.6 acres located at Sandia National Laboratories/California (SNL/CA) in support of the proposed Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) Facility. The survey area is comprised of several parcels of land within SNL/CA, County of Alameda, California. The survey area is located within T 3S, R 2E, Section 13. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

  5. Development of an Integrated Performance Evaluation Program (IPEP) for the Department of Energy's Office of Environmental Restoration and Waste Management

    International Nuclear Information System (INIS)

    Streets, W.E.; Ka; Lindahl, P.C.; Bottrell, D.; Newberry, R.; Morton, S.; Karp, K.

    1993-01-01

    Argonne National Laboratory (ANL), in collaboration with DOE's Radiological and Environmental Sciences Laboratory (RESL), Environmental Measurements Laboratory (EML), and Grand Junction Project Office (GJPO), is working with the Department of Energy (DOE) Headquarters and the US Environmental Protection Agency (EPA) to develop the Integrated Performance Evaluation Program (IPEP). The purpose of IPEP is to integrate performance evaluation (PE) information from existing PE programs with expanded quality assurance (QA) activities to develop information about the quality of radiological, mixed waste, and hazardous environmental sample analyses provided by all laboratories supporting DOE Environmental Restoration and Waste Management (EM) programs. The IPEP plans to utilize existing PE programs when available and appropriate for use by DOE-EM; new PE programs will be developed only when no existing program meets DOE's needs

  6. Kinetics of Carbaryl Hydrolysis: An Undergraduate Environmental Chemistry Laboratory

    Science.gov (United States)

    Hawker, Darryl

    2015-01-01

    Kinetics is an important part of undergraduate environmental chemistry curricula and relevant laboratory exercises are helpful in assisting students to grasp concepts. Such exercises are also useful in general chemistry courses because students can see relevance to real-world issues. The laboratory exercise described here involves determination of…

  7. Idaho National Laboratory Site Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Joanne L. Knight

    2012-08-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  8. Idaho National Laboratory Site Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Joanne L. Knight

    2010-10-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  9. Environmental Governance as a Model of Environmental Management

    Directory of Open Access Journals (Sweden)

    Budi Kristianto

    2016-02-01

    Full Text Available The concept of environmental governance does not promise practical solutions and provides short guidance in solving intertwined environmental problems in Indonesia. But at least environmental concept is useful when we try to realize environmental management in Indonesia currently. The worst is that the mistake has become routine manifesting in pragmatism in environmental management. Before it all too late, it is better that we keep in mind a German proverb in the beginning of this writing, which more or less, means “ we do not know what the future brings, but we know that we should act.”

  10. Health, Safety and Environmental Risk Assessment in Laboratory Sites

    Directory of Open Access Journals (Sweden)

    2012-05-01

    Full Text Available Introduction: ”Exposing to danger” or in other words, “risk” is a process which is led to an uncertain result in every field. Project risks are uncertain contingent events or situations that if they occur will have positive or negative effects on project’s objectives. Todays, research and educational process and more complicated and the professional risk management become much more difficult, as a result. .Material and Method: In this research, the health and safety issues have been studied and analyzed using ISO 14121 and the environmental issues by EMEA to determine the risk level separately for research laboratories and to prioritize corrective measure in each field (school. .Result: The finding in this study showed that from all the main risks within the rage of 38-86 percent have been decreased. Moreover average of the risk level for the health, safety and environment cases showed a significant decrease (Pvalue<0.0001 by implement controlling and protective countermeasures compariy to the priority state without any measures. . Conclusion: The risk assessment with hazards control strategy based on ISO 14121 is a compatible method in laboratory site as universities and other reasearch sites.

  11. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This volume addresses the interim storage of spent nuclear fuel (SNF) at two US Department of Energy sites, the Nevada Test Site (NTS) and the Oak Ridge Reservation (ORR). These sites are being considered to provide a reasonable range of alternative settings at which future SNF management activities could be conducted. These locations are not currently involved in management of large quantities of SNF; NTS has none, and ORR has only small quantities. But NTS and ORR do offer experience and infrastructure for the handling, processing and storage of radioactive materials, and they do exemplify a broad spectrum of environmental parameters. This broad spectrum of environmental parameters will provide, a perspective on whether and how such location attributes may relate to potential environmental impacts. Consideration of these two sites will permit a programmatic decision to be based upon an assessment of the feasible options without bias, to the current storage sites. This volume is divided into four parts. Part One is the volume introduction. Part Two contains chapters one through five for the NTS, as well as references contained in chapter six. Part Three contains chapters one through five for the ORR, as well as references contained in chapter six. Part Four is summary information including the list of preparers, organizations contacted, acronyms, and abbreviations for both the NTS and the ORR. A Table of Contents, List of Figures, and List of Tables are included in parts Two, Three, and Four. This approach permitted the inclusion of both sites in one volume while maintaining consistent chapter numbering

  12. INTEGRATION OF ENVIRONMENTAL MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Tomescu Ada Mirela

    2012-07-01

    Full Text Available The relevance of management as significant factor of business activity can be established on various management systems. These will help to obtain, organise, administrate, evaluate and control particulars: information, quality, environmental protection, health and safety, various resources (time, human, finance, inventory etc. The complexity of nowadays days development, forced us to think ‘integrated’. Sustainable development principles require that environment management policies and practices are not good in themselves but also integrate with all other environmental objectives, and with social and economic development objectives. The principles of sustainable development involve that environment management policies and practices. These are not sound in them-self but also integrate with all other environmental objectives, and with social and economic development objectives. Those objectives were realized, and followed by development of strategies to effects the objective of sustainable development. Environmental management should embrace recent change in the area of environmental protection, and suit the recently regulations of the field -entire legal and economic, as well as perform management systems to meet the requirements of the contemporary model for economic development. These changes are trailed by abandon the conventional approach of environmental protection and it is replaced by sustainable development (SD. The keys and the aims of Cleaner Productions (CP are presented being implemented in various companies as a non-formalised environmental management system (EMS. This concept is suggested here as a proper model for practice where possible environmental harmful technologies are used -e.g. Rosia Montana. Showing the features and the power of CP this paper is a signal oriented to involve the awareness of policy-makers and top management of diverse Romanian companies. Many companies in European countries are developing

  13. Management of wildlife causing damage at Argonne National Laboratory-East, DuPage County, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The DOE, after an independent review, has adopted an Environmental Assessment (EA) prepared by the US Department of Agriculture (USDA) which evaluates use of an Integrated Wildlife Damage Management approach at Argonne National Laboratory-East (ANL-E) in DuPage County, Illinois (April 1995). In 1994, the USDA issued a programmatic Environmental Impact Statement (EIS) that covers nationwide animal damage control activities. The EA for Management of Wildlife Causing Damage at ANL-E tiers off this programmatic EIS. The USDA wrote the EA as a result of DOE`s request to USDA to prepare and implement a comprehensive Wildlife Management Damage Plan; the USDA has authority for animal damage control under the Animal Damage Control Act of 1931, as amended, and the Rural Development, Agriculture and Related Agencies Appropriations Act of 1988. DOE has determined, based on the analysis in the EA, that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an EIS is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  14. Empirical insights and considerations for the OBT inter-laboratory comparison of environmental samples.

    Science.gov (United States)

    Kim, Sang-Bog; Roche, Jennifer

    2013-08-01

    Organically bound tritium (OBT) is an important tritium species that can be measured in most environmental samples, but has only recently been recognized as a species of tritium in these samples. Currently, OBT is not routinely measured by environmental monitoring laboratories around the world. There are no certified reference materials (CRMs) for environmental samples. Thus, quality assurance (QA), or verification of the accuracy of the OBT measurement, is not possible. Alternatively, quality control (QC), or verification of the precision of the OBT measurement, can be achieved. In the past, there have been differences in OBT analysis results between environmental laboratories. A possible reason for the discrepancies may be differences in analytical methods. Therefore, inter-laboratory OBT comparisons among the environmental laboratories are important and would provide a good opportunity for adopting a reference OBT analytical procedure. Due to the analytical issues, only limited information is available on OBT measurement. Previously conducted OBT inter-laboratory practices are reviewed and the findings are described. Based on our experiences, a few considerations were suggested for the international OBT inter-laboratory comparison exercise to be completed in the near future. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. Sandia National Laboratories California Environmental Monitoring Program Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C.

    2007-03-01

    The annual program report provides detailed information about all aspects of the SNL/CA Environmental Monitoring Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2006 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/CA.

  16. Essays on environmental management

    OpenAIRE

    Marbuah, George

    2016-01-01

    This thesis contributes to the economic literature on invasive species, social capital connection to climate change and environmental good provision as well as energy demand management. It contains five independent papers connected by the broader theme of environmental management. Two papers (I and II) deal with invasive species while the third and fourth probes the effect of social capital on carbon dioxide emissions (CO₂) and individuals’ decision to contribute toward environmental protecti...

  17. Assessment of transportation risk for the U.S. Department of Energy Environmental Management programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Chen, S.Y.; Monette, F.A.; Biwer, B.M.; Lazaro, M.A.; Hartmann, H.M.; Policastro, A.J.

    1995-01-01

    In its Programmatic Environmental Impact Statement (PEIS), the Office of Environmental Management (EM) of the U.S. Department of Energy (DOE) is considering a broad range of alternatives for the future management of radioactive and hazardous waste at the facilities of the DOE complex. The alternatives involve facilities to be used for treatment, storage, and disposal of various wastes generated from DOE environmental restoration activities and waste management operations. The evaluation includes five types of waste (four types of radioactive waste plus hazardous waste), 49 sites, and numerous cases associated with each alternative for waste management. In general, the alternatives are evaluated independently for each type of waste and reflect decentralized, regionalized, and centralized approaches. Transportation of waste materials is an integral component of the EM PEIS alternatives for waste management. The estimated impact on human health that is associated with various waste transportation activities is an important component of a complete appraisal of the alternatives. The transportation risk assessment performed for the EM PEIS is designed to ensure through uniform and judicious selection of models, data, and assumptions that relative comparisons of risk among the various alternatives are meaningful and consistent. Among other tasks, Argonne National Laboratory is providing technical assistance to the EM PEIS on transportation risk assessment. The objective is to perform a human health risk assessment for each type of waste relative to the EM PEIS alternatives for waste management. The transportation risk assessed is part of the overall impacts being analyzed for the EM PEIS to determine the safest, most environmentally and economically sound manner in which to satisfy requirements for waste management in the coming decades

  18. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs

  19. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E. (ed.)

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs.

  20. Environmental Measurements Laboratory (EML) procedures manual

    International Nuclear Information System (INIS)

    Chieco, N.A.; Bogen, D.C.; Knutson, E.O.

    1990-11-01

    Volume 1 of this manual documents the procedures and existing technology that are currently used by the Environmental Measurements Laboratory. A section devoted to quality assurance has been included. These procedures have been updated and revised and new procedures have been added. They include: sampling; radiation measurements; analytical chemistry; radionuclide data; special facilities; and specifications. 228 refs., 62 figs., 37 tabs. (FL)

  1. Draft and final Supplemental Environmental Impact Report for the proposed renewal of the contract between the United States Department of Energy and the Regents of the University of California for operation and management of the Lawrence berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    This Supplemental Environmental Impact Report (SEIR) has been prepared in conformance with the California Environmental Quality Act (CEQA) and the University of California Procedures for the Implementation of CEQA (UC Procedures) to evaluate the potential environmental impacts associated with the University of California`s operation of the Lawrence Berkeley Laboratory (LBL) for the next five years. The specific project under consideration in this SEIR is the renewal of a five-year contract between the University and the United States Department of Energy (DOE) to manage and operate the Lawrence Berkeley Laboratory. As the California agency responsible for carrying out the proposed project, the University is the lead agency responsible for CEQA compliance. Environmental impacts, mitigation, and a site overview are presented.

  2. Draft and final Supplemental Environmental Impact Report for the proposed renewal of the contract between the United States Department of Energy and the Regents of the University of California for operation and management of the Lawrence berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    This Supplemental Environmental Impact Report (SEIR) has been prepared in conformance with the California Environmental Quality Act (CEQA) and the University of California Procedures for the Implementation of CEQA (UC Procedures) to evaluate the potential environmental impacts associated with the University of California's operation of the Lawrence Berkeley Laboratory (LBL) for the next five years. The specific project under consideration in this SEIR is the renewal of a five-year contract between the University and the United States Department of Energy (DOE) to manage and operate the Lawrence Berkeley Laboratory. As the California agency responsible for carrying out the proposed project, the University is the lead agency responsible for CEQA compliance. Environmental impacts, mitigation, and a site overview are presented.

  3. A bayesian approach to laboratory utilization management

    Directory of Open Access Journals (Sweden)

    Ronald G Hauser

    2015-01-01

    Full Text Available Background: Laboratory utilization management describes a process designed to increase healthcare value by altering requests for laboratory services. A typical approach to monitor and prioritize interventions involves audits of laboratory orders against specific criteria, defined as rule-based laboratory utilization management. This approach has inherent limitations. First, rules are inflexible. They adapt poorly to the ambiguity of medical decision-making. Second, rules judge the context of a decision instead of the patient outcome allowing an order to simultaneously save a life and break a rule. Third, rules can threaten physician autonomy when used in a performance evaluation. Methods: We developed an alternative to rule-based laboratory utilization. The core idea comes from a formula used in epidemiology to estimate disease prevalence. The equation relates four terms: the prevalence of disease, the proportion of positive tests, test sensitivity and test specificity. When applied to a laboratory utilization audit, the formula estimates the prevalence of disease (pretest probability [PTP] in the patients tested. The comparison of PTPs among different providers, provider groups, or patient cohorts produces an objective evaluation of laboratory requests. We demonstrate the model in a review of tests for enterovirus (EV meningitis. Results: The model identified subpopulations within the cohort with a low prevalence of disease. These low prevalence groups shared demographic and seasonal factors known to protect against EV meningitis. This suggests too many orders occurred from patients at low risk for EV. Conclusion: We introduce a new method for laboratory utilization management programs to audit laboratory services.

  4. Design and management of hot-laboratories

    International Nuclear Information System (INIS)

    1976-09-01

    This document is a manual for the design and management of hot-laboratories. It is composed of three parts. The first part is devoted to the design of hot-laboratories. Items included here are; conceptual design; many regulations which must be considered at design stage; design of cave and its shielding; and the design of building, ventilation, and draining. Many examples of specific designs are presented by figures and photographs. The second part is concerned with the methods of operation management. Organizational structure, scheduling of operation, process management, and regulatory problems are discussed with some examples. Technological problems associated with the operation of a hot laboratory (e.g., manipulator, transfer machine, maintenance, and decontamination) are also discussed based on the authors' experiences. An example of the operation manual is presented for reference. The third part is devoted to the safety management and the training of personnel. The regulations by law are briefly explained. Most of this part is devoted to the problem of monitoring radio-activity. Monitoring of control areas, radio-active wastes, and personal dosage is discussed together with many other specific monitoring problems. As for training, the purpose and the present status are explained. (Aoki, K.)

  5. Environmental monitoring report: Sandia Laboratories, 1976

    International Nuclear Information System (INIS)

    Simmons, T.N.

    1977-04-01

    Water and vegetation are monitored to determine Sandia Laboratories impact on the surrounding environment. Nonradioactive pollutants released are reported. Radioactive effluents are also reported and their person-rem contribution to the Albuquerque population is calculated. The environmental monitoring for calendar year 1976 shows that concentrations of radioactive materials in the Albuquerque area are typical of natural background for the area. An exception is a single onsite location where slightly abnormal uranium concentrations are expected. An estimated 0.044 person-rem Albuquerque area (80 km radius) population dose commitment results from calculated Sandia Laboratories releases. Over the same area 57,000 person-rem is accumulated from natural background. There were no measurable offsite radioactive effluent releases in CY 1976

  6. Environmental management & audit 2: Management systems

    OpenAIRE

    2018-01-01

    The present scientific monograph, entitled “Environmental management & audit“, is the result of three years’ work on an international project entitled “Environmental management in Russian companies – retraining courses for the sensibilization for and integration of Eco-Audit programs in corporate decision-making (RECOAUD)”. Within its more than 600 pages, the monograph features interesting texts written by 31 authors from the European Union and the Russian Federation, edited by dr. Borut Jere...

  7. Natural Resource Management Plan for Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    green, T.

    2011-08-15

    This comprehensive Natural Resource Management Plan (NRMP) for Brookhaven National Laboratory (BNL) was built on the successful foundation of the Wildlife Management Plan for BNL, which it replaces. This update to the 2003 plan continues to build on successes and efforts to better understand the ecosystems and natural resources found on the BNL site. The plan establishes the basis for managing the varied natural resources located on the 5,265 acre BNL site, setting goals and actions to achieve those goals. The planning of this document is based on the knowledge and expertise gained over the past 10 years by the Natural Resources management staff at BNL in concert with local natural resource agencies including the New York State Department of Environmental Conservation, Long Island Pine Barrens Joint Planning and Policy Commission, The Nature Conservancy, and others. The development of this plan is an attempt at sound ecological management that not only benefits BNL's ecosystems but also benefits the greater Pine Barrens habitats in which BNL is situated. This plan applies equally to the Upton Ecological and Research Reserve (Upton Reserve). Any difference in management between the larger BNL area and the Upton Reserve are noted in the text. The purpose of the Natural Resource Management Plan (NRMP) is to provide management guidance, promote stewardship of the natural resources found at BNL, and to sustainably integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, sustainability, adaptive ecosystem management, compliance, integration with other plans and requirements, and the incorporation of community involvement, where applicable. The NRMP is periodically reviewed and updated, typically every five years. This review and update was delayed to develop documents associated with a new third party facility, the Long Island Solar Farm. This two hundred acre facility will result in

  8. Environmental management systems and organizational change

    DEFF Research Database (Denmark)

    Jørgensen, Tine Herreborg

    2000-01-01

    and environmental management systems. The structure of the organizations has changed, the relationships with external partners have strengthened and the implementation of quality and environmental management systems has trimmed the organizations to manage and develop these areas. The organization analysis is based......The establishment of an environmental management system and its continuous improvements is a process towards a reduction of the companies' and the products' environmental impact. The organizations' ability to change is crucial in order to establish a dynamic environmental management system...... and to achieve continuous environmental improvements. The study of changes gives an insight into how organizations function, as well as their forces and barriers. This article focuses on the organizational changes that two companies have undergone from 1992 up until today in connection with their quality...

  9. Hanford Environmental Management Program implementation plan

    International Nuclear Information System (INIS)

    1988-08-01

    The Hanford Environmental Management Program (HEMP) was established to facilitate compliance with the applicable environmental statues, regulations, and standards on the Hanford Site. The HEMP provides a structured approach to achieve environmental management objectives. The Hanford Environmental Management Program Plan (HEMP Plan) was prepared as a strategic level planning document to describe the program management, technical implementation, verification, and communications activities that guide the HEMP. Four basic program objectives are identified in the HEMP Plan as follows: establish ongoing monitoring to ensure that Hanford Site operations comply with environmental requirements; attain regulatory compliance through the modification of activities; mitigate any environmental consequences; and minimize the environmental impacts of future operations at the Hanford Site. 2 refs., 24 figs., 27 tabs

  10. Environmental Survey Report for the ETTP: Environmental Management Waste Management Facility (EMWMF) Haul Road Corridor, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, M.J.

    2005-12-20

    This report summarizes the results of environmental surveys conducted within the corridor of a temporary haul road (''Haul Road'') to be constructed from East Tennessee Technology Park (ETTP) to the Environmental Management Waste Management Facility (EMWMF) located just west of the Y-12 National Security Complex (Y-12). Environmental surveys were conducted by natural resource experts at Oak Ridge National Laboratory who routinely assess the significance of various project activities on the Oak Ridge Reservation (ORR). ORNL assistance to the Haul Road Project included environmental assessments necessary to determine the best route for minimizing impacts to sensitive resources such as wetlands or rare plants. Once the final route was chosen, environmental surveys were conducted within the corridor to evaluate the impacts to sensitive resources that could not be avoided. The final Haul Road route follows established roads and a power-line corridor to the extent possible (Fig. 1). Detailed explanation regarding the purpose of the Haul Road and the regulatory context associated with its construction is provided in at least two major documents and consequently is not presented here: (1) Explanation of Significant Differences for the Record of Decision for the Disposal of Oak Ridge Reservation Comprehensive Environmental Response, Compensation, and Liability Act of 1980 Waste, Oak Ridge, Tennessee (January 2005, DOE/OR/01-2194&D2), and (2) Environmental Monitoring Plan for The ETTP to EMWMF Haul Road for the Disposal of Oak Ridge Reservation Comprehensive Environmental Response, Compensation, and Liability Act of 1980 Waste, Oak Ridge, Tennessee (April 2005, BJC/OR-2152). The focus of this report is a description of the sensitive resources to be impacted by Haul Road construction. Following a short description of the methods used for the environmental surveys, results and observations are presented in the following subsections: (1) General description

  11. The Environmental and Molecular Sciences Laboratory project -- Continuous evolution in leadership

    International Nuclear Information System (INIS)

    Knutson, D.E.; McClusky, J.K.

    1994-10-01

    The Environmental and Molecular Sciences Laboratory (EMSL) construction project at Pacific Northwest Laboratory (PNL) in Richland, Washington, is a $230M Major Systems Acquisition for the US Department of Energy (DOE). The completed laboratory will be a national user facility that provides unparalleled capabilities for scientists involved in environmental molecular science research. This project, approved for construction by the Secretary of Energy in October 1993, is underway. The United States is embarking on an environmental cleanup effort that dwarfs previous scientific enterprise. Using current best available technology, the projected costs of cleaning up the tens of thousands of toxic waste sites, including DOE sites, is estimated to exceed one trillion dollars. The present state of scientific knowledge regarding the effects of exogenous chemicals on human biology is very limited. Long term environmental research at the molecular level is needed to resolve the concerns, and form the building blocks for a structure of cost effective process improvement and regulatory reform

  12. The Environmental and Molecular Sciences Laboratory project -- Continuous evolution in leadership

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, D.E.; McClusky, J.K.

    1994-10-01

    The Environmental and Molecular Sciences Laboratory (EMSL) construction project at Pacific Northwest Laboratory (PNL) in Richland, Washington, is a $230M Major Systems Acquisition for the US Department of Energy (DOE). The completed laboratory will be a national user facility that provides unparalleled capabilities for scientists involved in environmental molecular science research. This project, approved for construction by the Secretary of Energy in October 1993, is underway. The United States is embarking on an environmental cleanup effort that dwarfs previous scientific enterprise. Using current best available technology, the projected costs of cleaning up the tens of thousands of toxic waste sites, including DOE sites, is estimated to exceed one trillion dollars. The present state of scientific knowledge regarding the effects of exogenous chemicals on human biology is very limited. Long term environmental research at the molecular level is needed to resolve the concerns, and form the building blocks for a structure of cost effective process improvement and regulatory reform.

  13. Laboratory of environmental radiological surveillance

    International Nuclear Information System (INIS)

    Mendez G, A.; Marcial M, F.; Giber F, J.; Montiel R, E.; Leon del V, E.; Rivas C, I.; Leon G, M.V.; Lagunas G, E.; Aragon S, R.; Juarez N, A.; Alfaro L, M.M.

    1991-12-01

    The department of radiological protection of the ININ requests the collaboration of the Engineering Unit for the elaboration of the work project of the laboratory of environmental radiological surveillance. The emission of radioactive substances to the atmosphere like consequence of the normal operation of the Nuclear Center, constitutes an exhibition source from the man to the radiations that it should be appropriately watched over and controlled to be able to determine the population's potential exhibition that it lives in the area of influence of the installation. (Author)

  14. Spatial data on energy, environmental, and socioeconomic themes at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R. J.; Watts, J. A.; Shonka, D. B.; Leobe, A. S.; Johnson, M. L.; Ogle, M. C.; Malthouse, N. S.; Madewell, D. G.; Hull, J. F.

    1977-02-01

    Spatial data files covering energy, environmental, and socioeconomic themes at Oak Ridge National Laboratory (ORNL) are described. The textual descriptions are maintained by the Regional and Urban Studies Information Center (RUSTIC) within the Data Management and Analysis Group, Energy Division, as part of the Oak Ridge Computerized Hierarchical Information System (ORCHIS) and are available for online retrieval using the ORLOOK program. Descriptions provide abstracts, geographic coverage, original data source, availability limitations, and contact person. Most of the files described in this document are available on a cost-recovery basis.

  15. The management of radioactive waste in laboratories

    International Nuclear Information System (INIS)

    McLintock, I.S.

    1996-01-01

    Many laboratories in universities, colleges, research institutions and hospitals produce radioactive wastes. The recently-coined term for them is small users of radioactive materials, to distinguish them from concerns such as the nuclear industry. Until recently the accepted official view was that small users had few problems in disposing of their radioactive wastes. This misconception was dispelled in 1991 by the 12th Annual Report of the Radioactive Waste Management Advisory Committee. This book includes a description of the principles of the management and disposal of radioactive wastes from these laboratories. Its main intention, however, is to provide practical information and data for laboratory workers as well as for those responsible for management and ultimate disposal of radioactive wastes. I hope that it succeeds in this intention. (UK)

  16. Environmental Sciences Laboratory dedication, February 26-27, 1979

    International Nuclear Information System (INIS)

    Auerbach, S.I.; Millemann, N.T.

    1980-09-01

    The dedication of the new Environmental Sciences Laboratory coincided with the 25th year of the establishment of the science of ecology at Oak Ridge National Laboratory. That quarter century witnessed the evolution of ecology from an obscure, backwater discipline of biology to a broadly used, everyday household word. The transition reflected broad and basic changes in our social and cultural view of the world. This was brought about as a result of the awareness developed in our society of the importance of the environment, coupled with efforts of ecologists and other environmental scientists who identified, clarified, and formulated the issues and challenges of environmental protection for both the lay public and the scientific community. In many respects, the activities in ecology at ORNL were a microcosm of the broader social scene; the particular problems of the environment associated with atomic energy needed to be defined in scientific terms and articulated in both the specific and general sense for a larger audience which was unfamiliar with the field and somewhat alien to its concepts and philosophy. The success of this effort is reflected in the existence of the new Environmental Sciences Laboratory. This dedication volume brings together the thoughts and reflections of many of these scientists whose efforts contributed in a unique and individualistic fashion not only to ORNL but also to the national identification of ecology and its importance to the achievement of our national goals. Their remarks and presentations are not only a pleasant and personally gratifying recapitulation of the past and of ORNL's contributions to ecology but also portend some of the challenges to ecology in the future

  17. Environmental Sciences Laboratory dedication, February 26-27, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, S.I.; Millemann, N.T. (eds.)

    1980-09-01

    The dedication of the new Environmental Sciences Laboratory coincided with the 25th year of the establishment of the science of ecology at Oak Ridge National Laboratory. That quarter century witnessed the evolution of ecology from an obscure, backwater discipline of biology to a broadly used, everyday household word. The transition reflected broad and basic changes in our social and cultural view of the world. This was brought about as a result of the awareness developed in our society of the importance of the environment, coupled with efforts of ecologists and other environmental scientists who identified, clarified, and formulated the issues and challenges of environmental protection for both the lay public and the scientific community. In many respects, the activities in ecology at ORNL were a microcosm of the broader social scene; the particular problems of the environment associated with atomic energy needed to be defined in scientific terms and articulated in both the specific and general sense for a larger audience which was unfamiliar with the field and somewhat alien to its concepts and philosophy. The success of this effort is reflected in the existence of the new Environmental Sciences Laboratory. This dedication volume brings together the thoughts and reflections of many of these scientists whose efforts contributed in a unique and individualistic fashion not only to ORNL but also to the national identification of ecology and its importance to the achievement of our national goals. Their remarks and presentations are not only a pleasant and personally gratifying recapitulation of the past and of ORNL's contributions to ecology but also portend some of the challenges to ecology in the future.

  18. Environmental consequences to water resources from alternatives of managing spent nuclear fuel at Hanford

    International Nuclear Information System (INIS)

    Whelan, G.; McDonald, J.P.; Sato, C.

    1994-11-01

    With an environmental restoration and waste management program, the U.S. Department of Energy (DOE) is involved in developing policies pertinent to the transport, storage, and management of spent nuclear fuel (SNF). The DOE Environmental Impact Statement (EIS) for Programmatic SNF management is documented in a Volume 1 report, which contains an assessment of the Hanford installation, among others. Because the Hanford installation contains approximately 80% of the SNF associated with the DOE complex, it has been included in the decision for the ultimate disposition of the fuel. The Pacific Northwest Laboratory performed a series of assessments on five alternatives at Hanford for managing the SNF: No-Action, Decentralization, 1992/1993 Planning Basis, Regionalization, and Centralization. The environmental consequences associated with implementing these assessment alternatives potentially impact socioeconomic conditions; environmental quality of the air, groundwater, surface water, and surface soil; ecological, cultural, and geological resources; and land-use considerations. The purpose of this report is to support the Programmatic SNF-EIS by investigating the environmental impacts associated with water quality and related consequences, as they apply to the five assessment alternatives at the Hanford installation. The results of these scenarios are discussed and documented

  19. Environmental management compliance reengineering project, FY 1997 report

    International Nuclear Information System (INIS)

    VanVliet, J.A.; Davis, J.N.

    1997-09-01

    Through an integrated reengineering effort, the Idaho National Engineering and Environmental Laboratory (INEEL) is successfully implementing process improvements that will permit safe and compliant operations to continue during the next 5 years, even though $80 million was removed from the Environmental Management (EM) program budget. A 2-year analysis, design, and implementation project will reengineer compliance-related activities and reduce operating costs by approximately $17 million per year from Fiscal Year (FY) 1998 through 2002, while continuing to meet the INEEL''s environment, safety, and health requirements and milestone commitments. Compliance reengineer''s focus is improving processes, not avoiding full compliance with environmental, safety, and health laws. In FY 1997, compliance reengineering used a three-phase approach to analyze, design, and implement the changes that would decrease operating costs. Implementation for seven specific improvement projects was completed in FY 1997, while five projects will complete implementation in FY 1998. During FY 1998, the three-phase process will be repeated to continue reengineering the INEEL

  20. Environmental management compliance reengineering project, FY 1997 report

    Energy Technology Data Exchange (ETDEWEB)

    VanVliet, J.A.; Davis, J.N.

    1997-09-01

    Through an integrated reengineering effort, the Idaho National Engineering and Environmental Laboratory (INEEL) is successfully implementing process improvements that will permit safe and compliant operations to continue during the next 5 years, even though $80 million was removed from the Environmental Management (EM) program budget. A 2-year analysis, design, and implementation project will reengineer compliance-related activities and reduce operating costs by approximately $17 million per year from Fiscal Year (FY) 1998 through 2002, while continuing to meet the INEEL`s environment, safety, and health requirements and milestone commitments. Compliance reengineer`s focus is improving processes, not avoiding full compliance with environmental, safety, and health laws. In FY 1997, compliance reengineering used a three-phase approach to analyze, design, and implement the changes that would decrease operating costs. Implementation for seven specific improvement projects was completed in FY 1997, while five projects will complete implementation in FY 1998. During FY 1998, the three-phase process will be repeated to continue reengineering the INEEL.

  1. Women's Environmental Literacy As Social Capital In Environmental Management For Environmental Security of Urban Area

    Science.gov (United States)

    Asteria, Donna; Herdiansyah, Herdis; Wayan Agus Apriana, I.

    2016-02-01

    This study is about experience of women's role in environmental management to raise environmental security and form of women's emancipation movement. Environmental concerns conducted by residents of urban women who become environmental activists based on environmental literacy. Because of that, women's experience in interacting with both physic and social environment have differences in managing the environment including managing household waste by applying the principles of the 3Rs (reduce, reuse, recycle) and their persuasive efforts on their communities. This is the key to achieving sustainable development by anticipating environmental problem and preserving the environment. This study is conducted qualitative research method and its type is descriptive-explanative. The result of this study is environmental literacy of women activist on pro-environment action in their community that has achieved spiritual environmental literacy. Environmental literacy may differ due to internal and external condition of each individual. Pro-environment activities conducted as a form of responsibility of environmental concern such as eco-management, educational, and economic action, by persuading residents to proactively and consistently continue to do environmental management and develop a sense of community in shaping the networks of environmental concern in local context for global effect.

  2. The science of laboratory and project management in regulated bioanalysis.

    Science.gov (United States)

    Unger, Steve; Lloyd, Thomas; Tan, Melvin; Hou, Jingguo; Wells, Edward

    2014-05-01

    Pharmaceutical drug development is a complex and lengthy process, requiring excellent project and laboratory management skills. Bioanalysis anchors drug safety and efficacy with systemic and site of action exposures. Development of scientific talent and a willingness to innovate or adopt new technology is essential. Taking unnecessary risks, however, should be avoided. Scientists must strategically assess all risks and find means to minimize or negate them. Laboratory Managers must keep abreast of ever-changing technology. Investments in instrumentation and laboratory design are critical catalysts to efficiency and safety. Matrix management requires regular communication between Project Managers and Laboratory Managers. When properly executed, it aligns the best resources at the right times for a successful outcome. Attention to detail is a critical aspect that separates excellent laboratories. Each assay is unique and requires attention in its development, validation and execution. Methods, training and facilities are the foundation of a bioanalytical laboratory.

  3. Environmental Management Audit: Southwestern Power Administration (Southwestern)

    International Nuclear Information System (INIS)

    1993-03-01

    This report documents the results of the Environmental Management Audit completed for the Southwestern Power Administration. During this Audit, activities and records were reviewed and personnel interviewed. The onsite portion of the Southwestern Audit was conducted from November 30 through December 11, 1992, by the US Department of Energy's Office of Environmental Audit (EH-24). EH-24 carries out independent assessments of Department of Energy (DOE) facilities and activities as part of the Assistant Secretary's Environmental Audit Program. This program is designed to evaluate the status of DOE facilities/activities regarding compliance with laws, regulations, DOE Orders, formal written procedures, compliance agreements, and Best Management Practices (BMPs). This internal oversight function plays an important role in improving the compliance status of DOE operations. The Environmental Management Audit stresses DOE's policy that it is the responsibility of line management to conduct operations in an environmentally sound and safe manner. The Environmental Management Audit focuses on management systems and programs, whereas the Environmental Baseline Audit conducted in March 1991 focused on specific compliance issues. The scope of the Southwestern Environmental Management Audit included a review of all systems and functions necessary for effective environmental management. Specific areas of review included: Organizational Structure; Environmental Commitment; Environmental Protection Programs; Formality of Environmental Programs; Internal and External Communication; Staff Resources, Training, and Development; and Program Evaluation, Reporting, and Corrective Action

  4. Environmental management systems: An industry viewpoint

    International Nuclear Information System (INIS)

    Ottenbreit, R.

    1993-01-01

    Imperial Oil is upgrading systems used to ensure protection of health and safety and to facilitate the internalization and integration of environmental considerations into its business. Work in progress related to this upgrading is reported. The upgrading was undertaken partly in response to increased expectations from stakeholders and from the notion that improvement of the environmental, health, and safety (EH ampersand S) aspects of business can have the effect of improving reliability, lowering expenses, and minimizing liabilities. The responsibility for establishing environmental policy and direction as well as the environmental management framework rests with Imperial Oil's management committee and the EH ampersand S committee of the board of directors. Responsibility and accountability for implementation and sustainment of environmental processes and systems resides with line management. One of the management systems, the Operations Integrity Management Framework, is described. Elements of this framework include management leadership, accountability, and commitment; risk assessment and management; management of change; personnel and training; incident investigation and analysis; and facilities design and construction. 2 figs

  5. NATURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    GREEN,T.ET AL.

    2003-12-31

    Brookhaven National Laboratory (BNL) is located near the geographic center of Long Island, New York. The Laboratory is situated on 5,265 acres of land composed of Pine Barrens habitat with a central area developed for Laboratory work. In the mid-1990s BNL began developing a wildlife management program. This program was guided by the Wildlife Management Plan (WMP), which was reviewed and approved by various state and federal agencies in September 1999. The WMP primarily addressed concerns with the protection of New York State threatened, endangered, or species of concern, as well as deer populations, invasive species management, and the revegetation of the area surrounding the Relativistic Heavy Ion Collider (RHIC). The WMP provided a strong and sound basis for wildlife management and established a basis for forward motion and the development of this document, the Natural Resource Management Plan (NRMP), which will guide the natural resource management program for BNL. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B respectively), lists of actions in tabular format (Appendix C), and regulatory drivers for the Natural Resource Program (Appendix D). The purpose of the Natural Resource Management Plan is to provide management guidance, promote stewardship of the natural resources found at BNL, and to integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, adaptive ecosystem management, compliance, integration with other plans and requirements, and incorporation of community involvement, where applicable.

  6. Joint Coordinating Committee on environmental restoration and waste management (JCCEM) support, technology transfer, and special projects

    International Nuclear Information System (INIS)

    Edgar, D.E.

    1993-01-01

    Argonne National Laboratory (ANL) assisted in identifying and evaluating foreign technologies to meet EM needs; supported the evaluation, removal, and/or revision of barriers to international technology and information transfer/exchange; facilitated the integration and coordination of U.S. government international environmental restoration and waste management activities; and enhanced U.S. industry's competitiveness in the international environmental technology market

  7. 78 FR 299 - Environmental Laboratory Advisory Board Meeting Dates and Agenda

    Science.gov (United States)

    2013-01-03

    ... p.m. Eastern Time (ET) and two face-to-face meetings each calendar year. FOR FURTHER INFORMATION... and Agenda AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of teleconference and face-to-face meetings. SUMMARY: The Environmental Protection Agency's Environmental Laboratory Advisory Board...

  8. 1994 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  9. Environmental Survey preliminary report, Department of Energy (DOE) activities at Santa Susana Field Laboratories, Ventura County, California

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) activities at the Santa Susana Field Laboratories Site (DOE/SSFL), conducted May 16 through 26, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by an private contractor. The objective of the survey is to identify environmental problems and areas of environmental risk associated with DOE activities at SSFL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at SSFL, and interviews with site personnel. 90 refs., 17 figs., 28 tabs.

  10. Assessing the outcome of Strengthening Laboratory Management Towards Accreditation (SLMTA) on laboratory quality management system in city government of Addis Ababa, Ethiopia.

    Science.gov (United States)

    Sisay, Abay; Mindaye, Tedla; Tesfaye, Abrham; Abera, Eyob; Desale, Adino

    2015-01-01

    Strengthening Laboratory Management Toward Accreditation (SLMTA) is a competency-based management training programme designed to bring about immediate and measurable laboratory improvement. The aim of this study is to assess the outcome of SLMTA on laboratory quality management system in Addis Ababa, Ethiopia. The study used an Institutional based cross sectional study design that employed a secondary and primary data collection approach on the participated institution of medical laboratory in SLMTA. The study was conducted in Addis Ababa city government and the data was collected from February 'April 2014 and data was entered in to EPI-data version 3.1 and was analyzed by SPSS version 20. The assessment finding indicate that there was a significant improvement in average scores (141.4; range of 65-196, 95%CI=86.275-115.5, p=0.000) at final with 3 laboratories become 3 star, 6 laboratories were at 2 star, 11 were 1 star. Laboratory facilities respondents which thought getting adequate and timely manner mentorship were found 2.5 times more likely to get good success in the final score(AOR=2.501, 95% CI=1.109-4.602) than which did not get it. At the end of SLMTA implementation,3 laboratories score 3 star, 6 laboratories were at 2 star, 11 were at 1 star. The most important contributing factor for not scoring star in the final outcome of SLMTA were not conducting their customer satisfaction survey, poor staff motivation, and lack of regular equipment service maintenance. Mentorship, onsite and offsite coaching and training activities had shown a great improvement on laboratory quality management system in most laboratories.

  11. Environmental restoration plan for the transfer of surplus facilities to the Facility Transition Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-08-01

    This report will provide guidance on management, coordination, and integration of plans to transition facilities to the Facility Transition Program and activities as related to the Oak Ridge National Laboratory (ORNL) Environmental Restoration Program facilities. This report gives (1) guidance on the steps necessary for identifying ORNL surplus facilities, (2) interfaces of Surveillance and Maintenance (S and M) and Isotope Facility Deactivation program managers, (3) roles and responsibilities of the facility managers, and (4) initial S and M requirements upon acceptance into the Facility Transition Program

  12. Overview of environmental research at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Harvey, R.S.

    1977-01-01

    Research in the environmental sciences by the Savannah River Laboratory (SRL) has the general objective of improving our understanding of transport through ecosystems and functional processes within ecosystems. With increased understanding, the basis for environmental assessments can be improved for releases from the Savannah River Plant or from the power industry of the southeastern United States

  13. Implementing Environmental Management Accounting: Status and Challenges

    DEFF Research Database (Denmark)

    Cost Accounting - and its Interaction with Eco-Efficiency Performance Measurement and Indicators; Stefan Schaltegger and Marcus Wagner. 4. Environmental Accounting Dimensions: Pros and Cons of Trajectory Convergence and Increased Efficiency; Pontus Cerin and Staffan Laestadius. 5. Process and Content......Table of contents Preface. 1. Environmental Management Accounting: Innovation or Managerial Fad?; Pall Rikhardsson, Martin Bennett, Jan Jaap Bouma and Stefan Schaltegger. Section 1 Progress. 2. Challenges for Environmental Management Accounting; Roger L. Burritt 3. Current Trends in Environmental......: Visualizing the Policy Challenges of Environmental Management Accounting; Dick Osborn. Section 2 Exploring EMA implementation issues. 6. Environmental Performance and the Quality of Corporate Environmental Reports: The Role of Environmental Management Accounting; Marcus Wagner. 7. Environmental Risk...

  14. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs. Final Environmental Impact Statement: Volume 1, Appendix L, Environmental Justice

    International Nuclear Information System (INIS)

    1995-04-01

    Appendix L provides an assessment of the areas surrounding the 10 sites under consideration for the management of spent nuclear fuels (SNF) under all programmatic alternatives considered in this volume. It is divided into two sections: (a) the five sites considered for the management of DOE naval SNF only (under the No Action and Decentralization alternatives, and (b) the five DOE sites being considered for the management of all types of DOE SNF under all alternatives. The five sites considered for the management of naval SNF only are the Norfolk Naval Shipyard, Portsmouth, Virginia; Portsmouth Naval Shipyard, Kittery, Maine; Pearl Harbor Naval Shipyard, Honolulu, Hawaii; Puget Sound Naval Shipyard, Bremerton, Washington; and Kesselring Site, West Milton, New York. The five DOE sites considered for the management of some portion or all DOE SNF are the Savannah River Site, Aiken, South Carolina; Oak Ridge Reservation, Oak Ridge, Tennessee; Idaho National Engineering Laboratory, Idaho Falls, Idaho; Hanford Site, Richland, Washington; and Nevada Test Site, Mercury, Nevada. This assessment includes potential adverse impacts resulting from both onsite activities and associated transportation of materials. Based on this assessment, it is concluded that none of the alternatives analyzed results in disproportionately high and adverse effects on minority populations or low-income communities surrounding any of the sites under consideration for the management of SNF or associated offsite transportation routes

  15. Environmental Risk Assessment of antimicrobials applied in veterinary medicine-A field study and laboratory approach.

    Science.gov (United States)

    Slana, Marko; Dolenc, Marija Sollner

    2013-01-01

    The fate and environmental risk of antimicrobial compounds of different groups of veterinary medicine pharmaceuticals (VMP's) have been compared. The aim was to demonstrate a correlation between the physical and chemical properties of active compounds and their metabolism in target animals, as well as their fate in the environment. In addition, the importance of techniques for manure management and agricultural practice and their influence on the fate of active compounds is discussed. The selected active compounds are shown to be susceptible to at least one environmental factor (sun, water, bacterial or fungal degradation) to which they are exposed during their life cycle, which contributes to its degradation. Degradation under a number of environmental factors has also to be considered as authentic information additional to that observed in the limited conditions in laboratory studies and in Environmental Risk Assessment calculations. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. 1996 LMITCO environmental monitoring program report for the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report describes the calendar year 1996 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory (INEEL). Results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs are included in this report. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1996 data with program-specific regulatory guidelines and past data to evaluate trends.

  17. 1996 LMITCO environmental monitoring program report for the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    1997-09-01

    This report describes the calendar year 1996 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory (INEEL). Results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs are included in this report. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1996 data with program-specific regulatory guidelines and past data to evaluate trends

  18. Community Relations Plan for Lawrence Berkeley Laboratory. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The Lawrence Berkeley Laboratory (LBL) has applied to the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), for renewal of its Hazardous Waste Handling Facility Permit. A permit is required under Resource Conservation and Recovery Act (RCRA) regulations. The permit will allow LBL to continue using its current hazardous waste handling facility, upgrade the existing facility, and construct a replacement facility. The new facility is scheduled for completion in 1995. The existing facility will be closed under RCRA guidelines by 1996. As part of the permitting process, LBL is required to investigate areas of soil and groundwater contamination at its main site in the Berkeley Hills. The investigations are being conducted by LBL`s Environmental Restoration Program and are overseen by a number of regulatory agencies. The regulatory agencies working with LBL include the California Environmental Protection Agency`s Department of Toxic Substances Control, the California Regional Water Quality Control Board, the Bay Area Air Quality Management District, the East Bay Municipal Utilities District, and the Berkeley Department of Environmental Health. RCRA requires that the public be informed of LBL`s investigations and site cleanup, and that opportunities be available for the public to participate in making decisions about how LBL will address contamination issues. LBL has prepared this Community Relations Plan (CRP) to describe activities that LBL will use to keep the community informed of environmental restoration progress and to provide for an open dialogue with the public on issues of importance. The CRP documents the community`s current concerns about LBL`s Environmental Restoration Program. Interviews conducted between February and April 1993 with elected officials, agency staff, environmental organizations, businesses, site neighbors, and LBL employees form the basis for the information contained in this document.

  19. Environmental monitoring systems: a new type of mobile laboratory

    International Nuclear Information System (INIS)

    Bruecher, L.; Langmueller, G.; Tuerschmann, G.

    1999-01-01

    Nuclear facilities are obligated to monitor the environmental radiation in their vicinity, which is often fulfilled by monitoring cars, combined with fixed monitoring stations. The MOLAR Mobile Laboratory for Environmental Radiation Monitoring as described here is being used under normal and accident conditions as a spot check monitoring system or to perform continuous measurements along a driving track. The mobile laboratories are continuously connected with the control centre's CRCS Central Radiological Computer System, where the RIS Radiological Information System provides corresponding evaluation functions. The mobile labs contain measuring and controlling units like γ-dose rate monitors, γ-spectrometer with a HpGe High Purity Germanium detector, a lead shielded measuring cell and MCA Multi-Channel Analyser, portable β-contamination monitor, α/β/γ multipurpose quick measuring unit, aerosol and iodine sampling units. The collected samples are safely stored for the transport to the environmental laboratory for being analysed later. The geographical location of the moving car is continuously determined by the satellite based GPS Global Positioning System and transferred in the on-board rack mounted computer system for being stored and locally displayed. Real-time data transmission via radio and mobile phone is continuously performed to supply the RIS Radiological Information System in the control centre via radio and mobile phone. The latter also serves for voice communication. Currently three MOLAR systems can be operated parallel and independent from the control centre. The system is ready to be extended to more mobile labs. This combination of mobile monitoring, sample analysis and radiological assessment of environmental data in combination with process occurrences has turned out to be a powerful instrument for emergency preparedness and environmental supervising. (orig.) [de

  20. Martin Marietta Energy Systems Environmental Management Plan, FY 1985-1989

    International Nuclear Information System (INIS)

    Furth, W.F.; Cowser, K.E.; Jones, C.G.; Mitchell, M.E.; Perry, T.P.A.; Stair, C.L.; Stinton, L.H.

    1985-05-01

    This plan contains the most recent revisions (as of April 1, 1985) identifying and resolving environmental problems during the next five years at the four installations managed for DOE by Martin Marietta Energy Systems, Inc. (Energy Systems). These installations are Oak Ridge National Laboratory (ORNL), Oak Ridge Gaseous Diffusion Plant (ORGDP), Oak Ridge Y-12 Plant (Y-12), and Paducah Gaseous Diffusion Plant (PGDP). The report is not an exhaustive catalogue of environmental programs for which funds will be or have been requested. The thrust is to categorize the environmental challenges by the nature of the challenge. The challenges are identified by categories: (1) radioactive waste, (2) hazardous waste, (3) co-contaminated waste (hazardous and radioactive contaminated), (4) conventional waste, (5) monitoring, and (6) remedial actions and decommissioning

  1. Martin Marietta Energy Systems Environmental Management Plan, FY 1985-1989

    Energy Technology Data Exchange (ETDEWEB)

    Furth, W.F.; Cowser, K.E.; Jones, C.G.; Mitchell, M.E.; Perry, T.P.A.; Stair, C.L.; Stinton, L.H.

    1985-05-01

    This plan contains the most recent revisions (as of April 1, 1985) identifying and resolving environmental problems during the next five years at the four installations managed for DOE by Martin Marietta Energy Systems, Inc. (Energy Systems). These installations are Oak Ridge National Laboratory (ORNL), Oak Ridge Gaseous Diffusion Plant (ORGDP), Oak Ridge Y-12 Plant (Y-12), and Paducah Gaseous Diffusion Plant (PGDP). The report is not an exhaustive catalogue of environmental programs for which funds will be or have been requested. The thrust is to categorize the environmental challenges by the nature of the challenge. The challenges are identified by categories: (1) radioactive waste, (2) hazardous waste, (3) co-contaminated waste (hazardous and radioactive contaminated), (4) conventional waste, (5) monitoring, and (6) remedial actions and decommissioning.

  2. Laboratory cost control and financial management software.

    Science.gov (United States)

    Mayer, M

    1998-02-09

    Economical constraints within the health care system advocate the introduction of tighter control of costs in clinical laboratories. Detailed cost information forms the basis for cost control and financial management. Based on the cost information, proper decisions regarding priorities, procedure choices, personnel policies and investments can be made. This presentation outlines some principles of cost analysis, describes common limitations of cost analysis, and exemplifies use of software to achieve optimized cost control. One commercially available cost analysis software, LabCost, is described in some detail. In addition to provision of cost information, LabCost also serves as a general management tool for resource handling, accounting, inventory management and billing. The application of LabCost in the selection process of a new high throughput analyzer for a large clinical chemistry service is taken as an example for decisions that can be assisted by cost evaluation. It is concluded that laboratory management that wisely utilizes cost analysis to support the decision-making process will undoubtedly have a clear advantage over those laboratories that fail to employ cost considerations to guide their actions.

  3. Strategic Environmental Assessment: Integrated environmental management

    CSIR Research Space (South Africa)

    Department of Environmental Affairs and Tourism

    2004-01-01

    Full Text Available stream_source_info Department of Environmental Affairs and Tourism_2004.pdf.txt stream_content_type text/plain stream_size 70155 Content-Encoding ISO-8859-1 stream_name Department of Environmental Affairs and Tourism_2004.pdf... and Tourism Other topics in the series of overview information documents on the concepts of, and approaches to, integrated environmental management are listed below. Further titles in this series are being prepared and will be made available periodically...

  4. Environmental assessment for construction and operation of a Human Genome Laboratory at Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    Lawrence Berkeley Laboratory (LBL) proposes to construct and operate a new laboratory for consolidation of current and future activities of the Human Genome Center (HGC). This document addresses the potential direct, indirect, and cumulative environmental and human-health effects from the proposed facility construction and operation. This document was prepared in accordance the National Environmental Policy Act of 1969 (United States Codes 42 USC 4321-4347) (NEPA) and the US Department of Energy`s (DOE) Final Rule for NEPA Implementing Procedures [Code of Federal Regulations 10CFR 1021].

  5. Environmental management in nuclear industry

    International Nuclear Information System (INIS)

    Pillai, K.C.; Bhat, I.S.

    1988-01-01

    Safety of the environment is given due attention right at the design state of nuclear energy installations. Besides this engineered safety environmental protection measures are taken on (a) site selection criteria (b) waste management practices (c) prescribing dose limits for the public (d) having intensive environmental surveillance programme and (e) emergency preparedness. The paper enumerates the application of these protection measures in the environmental management to make the nuclear industry as an example to follow in the goal of environmental safety. (author)

  6. Environmental Management Science Program Workshop. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as that performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.

  7. Is environmental management an economically sustainable business?

    Science.gov (United States)

    Gotschol, Antje; De Giovanni, Pietro; Esposito Vinzi, Vincenzo

    2014-11-01

    This paper investigates whether environmental management is an economically sustainable business. While firms invest in green production and green supply chain activities with the primary purpose of reducing their environmental impact, the reciprocal relationships with economic performance need to be clarified. Would firms and suppliers adjust their environmental strategies if the higher economic value that environmental management generates is reinvested in greening actions? We found out that environmental management positively influences economic performance as second order (long term) target, to be reached conditioned by higher environmental performance; in addition, firms can increase their performance if they reinvest the higher economic value gained through environmental management in green practices: While investing in environmental management programs is a short term strategy, economic rewards can be obtained only with some delays. Consequently, environmental management is an economically sustainable business only for patient firms. In the evaluation of these reciprocal relationships, we discovered that green supply chain initiatives are more effective and more economically sustainable than internal actions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    International Nuclear Information System (INIS)

    1988-09-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S ampersand A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S ampersand A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S ampersand A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs

  9. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  10. ELAN - expert system supported information and management system for analytical laboratories

    International Nuclear Information System (INIS)

    Jaeschke, A.; Orth, H.; Zilly, G.

    1990-08-01

    The demand for high efficiency and short response time calls for the use of computer support in chemico-analytical laboratories. This is usually achieved by laboratory information and management systems covering the three levels of analytical instrument automation, laboratory operation support and laboratory management. The management component of the systems implemented up to now suffers from a lack of flexibility as far as unforeseen analytical investigations outside the laboratory routine work are concerned. Another drawback is the lack of adaptability with respect to structural changes in laboratory organization. It can be eliminated by the application of expert system structures and methods for the implementation of this system level. The ELAN laboratory information and management system has been developed on the basis of this concept. (orig.) [de

  11. Site Environmental Report for 2007 Volume I

    International Nuclear Information System (INIS)

    Lackner, Regina E.; Baskin, David; Fox, Robert; Jelinski, John; Pauer, Ron; Thorson, Patrick; Wahl, Linnea

    2008-01-01

    The Site Environmental Report is an integrated report on Berkeley Lab's environmental programs to satisfy the requirements of DOE Order 231.1A, Environment, Safety, and Health Reporting. It summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2007. Volume I is organized into an executive summary followed by six chapters that contain an overview of the Laboratory, a discussion of the Laboratory's environmental management system, the status of environmental programs, and summarized results from surveillance and monitoring activities

  12. Annual Site Environmental Report Calendar Year 2007

    International Nuclear Information System (INIS)

    Dan Kayser-Ames Laboratory

    2007-01-01

    This report summarizes the environmental status of Ames Laboratory for calendar year 2007. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring activities. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies 11 buildings owned by the Department of Energy (DOE). See the Laboratory's Web page at www.external.ameslab.gov for locations and Laboratory overview. The Laboratory also leases space in ISU owned buildings. In 2007, the Laboratory accumulated and disposed of waste under U.S. Environmental Protection Agency (EPA) issued generator numbers. All waste is handled according to all applicable EPA, State, Local and DOE Orders. In 2006 the Laboratory reduced its generator status from a Large Quantity Generator (LQG) to a Small Quantity Generator (SQG). EPA Region VII was notified of this change. The Laboratory's RCRA hazardous waste management program was inspected by EPA Region VII in April 2006. There were no notices of violations. The inspector was impressed with the improvements of the Laboratory's waste management program over the past ten years. The Laboratory was in compliance with all applicable federal, state, local and DOE regulations and orders in 2007. There were no radiological air emissions or exposures to the general public due to Laboratory activities in 2007. See U.S. Department of Energy Air Emissions Annual Report in Appendix B. As indicated in prior SERs, pollution awareness, waste minimization and recycling programs have been in practice since 1990, with improvements implemented most recently in 2003. Included in these efforts were battery and CRT recycling, waste white paper and green computer paper-recycling. Ames Laboratory also recycles/reuses salvageable metal, used oil, styrofoam peanuts

  13. Radiochemistry methods in DOE methods for evaluating environmental and waste management samples

    International Nuclear Information System (INIS)

    Fadeff, S.K.; Goheen, S.C.

    1994-08-01

    Current standard sources of radiochemistry methods are often inappropriate for use in evaluating US Department of Energy environmental and waste management (DOE/EW) samples. Examples of current sources include EPA, ASTM, Standard Methods for the Examination of Water and Wastewater and HASL-300. Applicability of these methods is limited to specific matrices (usually water), radiation levels (usually environmental levels), and analytes (limited number). Radiochemistry methods in DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) attempt to fill the applicability gap that exists between standard methods and those needed for DOE/EM activities. The Radiochemistry chapter in DOE Methods includes an ''analysis and reporting'' guidance section as well as radiochemistry methods. A basis for identifying the DOE/EM radiochemistry needs is discussed. Within this needs framework, the applicability of standard methods and targeted new methods is identified. Sources of new methods (consolidated methods from DOE laboratories and submissions from individuals) and the methods review process will be discussed. The processes involved in generating consolidated methods add editing individually submitted methods will be compared. DOE Methods is a living document and continues to expand by adding various kinds of methods. Radiochemistry methods are highlighted in this paper. DOE Methods is intended to be a resource for methods applicable to DOE/EM problems. Although it is intended to support DOE, the guidance and methods are not necessarily exclusive to DOE. The document is available at no cost through the Laboratory Management Division of DOE, Office of Technology Development

  14. Environmental Aspects of Load Management

    International Nuclear Information System (INIS)

    Abaravicius, Juozas

    2004-02-01

    This study approaches load management from an environmental perspective. It identifies and discusses the possible environmental benefits of load management and evaluates their significance, primary focusing on CO 2 emissions reduction. The analysis is carried out on two levels: national - the Swedish electricity market, and local - one electric utility in southern Sweden. Our results show the importance of considering the influence of site-specific or level-specific conditions on the environmental effects of load management. On the national level, load management measures can hardly provide significant environmental benefits, due to the high hydropower production in Sweden, which is the demand following production source. Emission reductions will rather be the result of energy efficiency measures, which will cut the load demand as well as the energy demand. However, when it comes to a local (utility) level, where load management is considered as an alternative to an installation of peak diesel power plant, the benefits are clear. It is demonstrated that significant CO 2 emissions savings can be achieved due to avoided peak diesel power production

  15. Environmental management in the Hydro-Electric Commission

    International Nuclear Information System (INIS)

    Scanlon, A.

    1995-01-01

    The Tasmanian Hydro Electric Commission (HEC) is a large and diverse organization, providing electricity generation, transmission, distribution and retail services throughout Tasmania. It is a significant manager of Tasmania's land and water resources and, as a consequence, has important environmental responsibilities. This paper outlines the background to conflict with the environmental movement over power generation development projects in south western Tasmania and the development of an environmental policy. As part of the environmental policy, the HEC has prepared environmental reviews, audits and risk assessment and is currently developing and implementing a comprehensive environmental management system. The HEC sees the introduction of the environmental management system as demonstrating a commitment to continuing environmental improvement and in establishing itself as a Tasmanian and national leader in the area of environmental management. 1 tab., 2 figs., 4 refs

  16. Environmental management: A system approach

    Science.gov (United States)

    Petak, William J.

    1981-05-01

    This paper presents a system framework whose purpose is to improve understanding of environmental management. By analyzing the links between elements of the environmental management system, it is possible to construct a model that aids thinking systematically about the decision-making subsystem, and other subsystems, of the entire environmental management system. Through a multidisciplinary environmental approach, each of the individual subsystems is able to adapt to threats and opportunities. The fields of government, market economics, social responsibility and ecology, for example, are so complex that it is extremely difficult to develop a framework that gives full consideration to all aspects. This paper, through the application of a highly idealized system framework, attempts to show the general relationships that exist between complex system elements.

  17. Strategic plan and strategy of the Oak Ridge National Laboratory Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-06-01

    This report provides information about the use of an integrated strategic plan, strategy, and life-cycle baseline in the long range planning and risk process employed by the environmental restoration program at the Oak Ridge National Laboratory (ORNL). Long-range planning is essential because the ER Program encompasses hundreds of sites; will last several decades; and requires complex technology, management, and policy. Long-range planning allows a focused, cost-effective approach to identify and meet Program objectives. This is accomplished through a strategic plan, a strategy, and a life-cycle baseline. This long-range methodology is illustrated below

  18. Results of the Interlaboratory Exercise CSN/CIEMAT-02 Among Environmental Radioactivity Laboratories (Sea Fish)

    International Nuclear Information System (INIS)

    Romero Gonzalez, M.L.

    2003-01-01

    The document describes the outcome of the CSN/CIEMAT-02 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonized Protocol for the proficiency testing of analytical laboratories. The test sample was a reference materials provided by the IAEA-MEL (IAE Marine Environmental Laboratory, Monaco), a sea fish containing environmental levels of U-238, U-234, K-40, Pb-210, Ra-226, Sr-90, Cs-137, Co-60, Pu-(239+240), Am-241 and Tc-99. The results of the exercise were computed for 32 participating laboratories, and their analytical performance was assessed using the z-score approach. A raised percentage of satisfactory laboratory performance has been obtained for all the analysis, being the best performance in gamma measurements. The laboratories have made an effort to calculate the combined uncertainty of the radiochemical determinations. Most of the laboratories have demonstrated its competence in performing the study analysis and also the adequate measuring capability of their detection equipment even in conditions close to detection limits. The study has shown the capacity of participant laboratories to perform radioactive determinations in environmental sea fish samples with satisfactory quality levels. (Author) 6 refs

  19. Implementation of the Environmental Management System in Radioactive Waste Management

    International Nuclear Information System (INIS)

    Fabjan, M.; Kralj, M.; Rojc, J.

    2008-01-01

    Agency for Radwaste Management (ARAO) is a public institution assigned to provide effective, safe and responsible management of all kinds of radioactive waste in Slovenia from the moment they arise to their final disposal. Therefore it holds an important role in environmental protection. Its main assignment is to provide conditions for permanent disposal of radioactive waste. It is also authorised to perform public service of radioactive waste management from small producers that includes: collection of the waste from small producers at the producers' premises, transportation to the storage facility, treatment, conditioning storage of RW from small producers; acceptance of radioactive waste in case of emergency situation (e.g. transport accidents); acceptance of radioactive waste in case of unknown producer; operation and management of Central Interim Storage of Radioactive Waste. The quality of ARAO performance in carrying out its mission is assured by implementing the environmental management system according to the standard ISO 14001:2004. Its effectiveness was confirmed by certification in October 2007. The ISO 14001:2004 certificate represents a permanent commitment of ARAO to implement and improve the environmental management system and to include environmental aspects in all its activities, especially in performing the public service. We developed own evaluation criteria for determination of relevant environmental impacts and aspects. ARAO has defined its environmental policy and objectives, it evaluates its environmental impacts yearly, and defines its environmental programmes that not only fulfil legal requirements but tend even to reduce the impacts below legally set levels. A very important environmental programme in the last few years was the reconstruction of the storage facility. Public information and communication programmes are considered to be important also from the environmental management point of view, because public shows great interest in

  20. Power Management Controls, Ernest Orlando Lawrence Berkeley National Laboratory; Power Management Controls, Ernest Orlando Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, Emil [Dalarna Univ., Borlaenge (Sweden). Graphic Art Technology

    2002-12-01

    This report describes the work that is being conducted on power management controls at Berkeley National Laboratory. We can see a significant increasing amount of electronic equipment in our work places and in our every day life. Today's modern society depends on a constant energy flow. The future's increasing need of energy will burden our economy as well as our environment. The project group at Berkeley National Laboratory is working with leading manufacturers of office equipment. The goal is to agree on how interfaces for power management should be presented on office equipment. User friendliness and a more consistent power management interface is the project focus. The project group's role is to analyze data that is relevant to power management, as well as to coordinate communication and discussions among the involved parties.

  1. Development of educational programs for environmental restoration/waste management at two Department of Energy sites

    International Nuclear Information System (INIS)

    Harrison, R.J.; Toth, W.J.; Smith, T.H.

    1991-01-01

    Availability of appropriately educated personnel is perhaps the greatest obstacle faced by the nation in addressing its waste management and environmental restoration activities. The US Department of Energy (DOE) Idaho National Engineering Laboratory (INEL) and the DOE Grand Junction, Colorado, Projects Office (GJPO) have developed two educational degree programs that respond to the human resource needs of the environmental restoration/waste management effort in ways that reflect the programmatic and cultural diversity at the two sites. The INEL has worked with the University of Idaho and Idaho States University to develop a set of master's degree programs focusing on waste management and environmental restoration. GJPO has developed an associate degree program and is developing a baccalaureate program in environmental restoration with Mesa State College. The development of these two programs was coordinated through the INEL University Relations Committee. They were conceived as parts of an overall effort to provide the human resources for environmental restoration and waste management. The background, need, and development of these two programs are presented, as well as information on associated industry parternships, employee scholarship programs, and plans for integration and articulation of curricula. 3 refs

  2. Scope of environmental risk management

    Energy Technology Data Exchange (ETDEWEB)

    O' Riordan, T

    1979-01-01

    Environmental risk management embraces three techniques for project appraisal: cost/benefit analysis, environmental impact analysis and risk assessment. It also explicitly relates scientific investigations to political judgments, sometimes so closely that the two cannot be separated. Indeed it is now apparent that environmental risk management encompasses procedures both to review the relative merits and priorities of policies as well as to appraise the environmental risks of particular schemes. Until recently this relationship has not been fully appreciated, so much imagination and innovation is still required to develop the most-suitable mechanisms for review.

  3. Synchrotron environmental laboratory (SUL) at Anka

    International Nuclear Information System (INIS)

    Denecke, M.A.

    2002-01-01

    A research facility dedicated to environmental/geochemical research, the Synchrotron Environmental Laboratory (SUL), is planned to be installed and operated at ANKA. ANKA is the new synchrotron facility at the Research Centre Karlsruhe (FZK), Karlsruhe, Germany. ANKA is now in commissioning and planning operations for the fall of 2000. As the Institute for Nuclear Waste Disposal (INE) at FZK conducts a vigorous synchrotron-based research programme, INE was instrumental in the original impetus for installing such a facility at ANKA. These research activities at INE concentrate on actinide speciation in nuclear waste forms, geological media and geochemical model systems. In order for INE to direct their synchrotron research activities to ANKA, equipment and licensing required for performing experiments on actinide-containing samples is required. One great advantage of performing experiments on actinide-containing samples at ANKA is that the INE radiological laboratories lie in the near vicinity of the facility. This will minimise transport hazards and costs and allow experiments to be performed on samples whose characteristics may change with time. Experiments on radioactive samples with activities below the exemption level, according to German regulations, will be possible at ANKA at the start of operations. Licensing for work on higher levels of activity will be applied for in the future. The decades of experience in radiological work at FZK will facilitate development of procedure and equipment as prerequisites to licensing. A consortium of synchrotron radiation-user groups with environmental research interests has specified their requirements and needs for this facility. This scientific case serves as the foundation for the SUL design and is the basis for an application for federal funding. The SUL design reflects the heterogeneity and complexity of challenges facing researchers in the environmental/geochemical sciences. X-ray absorption fine structure (XAFS

  4. 75 FR 51026 - Environmental Management Advisory Board

    Science.gov (United States)

    2010-08-18

    ... DEPARTMENT OF ENERGY Environmental Management Advisory Board AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Environmental Management Advisory... EMAB is to provide the Assistant Secretary for Environmental Management (EM) with advice and...

  5. 76 FR 21877 - Environmental Management Advisory Board

    Science.gov (United States)

    2011-04-19

    ... DEPARTMENT OF ENERGY Environmental Management Advisory Board AGENCY: Department of Energy. ACTION: Notice of call for nominations for appointment to the Environmental Management Advisory Board. SUMMARY... Environmental Management Advisory Board. DATES: Nominations will be accepted through May 13, 2011. ADDRESSES...

  6. Sandia National Laboratories:

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  7. Training and Education of Environmental Managers

    DEFF Research Database (Denmark)

    Ulhøi, John Parm; Sinding, Knud; Madsen, Henning

    An analysis of the training backgrounds of environmental managers in a range of environmentally advanced European companies reveals the very broad qualifications ideally required of these managers. At the same time, however, it is found that the provision of training opportunities relevant...... for this important category of managers is both limited in scope and foundation, and highly dependent on the randomly distributed efforts of educators with an environmental interest....

  8. The Aalborg Approach to Environmental Management

    DEFF Research Database (Denmark)

    Jamison, Andrew; Nielsen, Eskild Holm

    2002-01-01

    The Article Briefly Presents the Master Programme in Environmental Management at Aalborg University......The Article Briefly Presents the Master Programme in Environmental Management at Aalborg University...

  9. 24 CFR 50.22 - Environmental management and monitoring.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Environmental management and... and Urban Development PROTECTION AND ENHANCEMENT OF ENVIRONMENTAL QUALITY General Policy: Environmental Review Procedures § 50.22 Environmental management and monitoring. An Environmental Management and...

  10. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  11. Oak Ridge National Laboratory Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  12. Communicating risks from the environmental management program of the United States Department of Energy

    International Nuclear Information System (INIS)

    Bollinger, M.E.; Stenner, R.; Picel, K.; McGinn, W.

    2000-01-01

    With the inception of the Department of Energy (DOE) Environmental Management (EM) program, the need for better communication of the Department's environmental risks was highlighted. A number of database systems were used to describe the EM program's risk with limited success. Then in December 1997, the Assistant Secretary for Environmental Management charged the DOE operations and field offices and the Center for Risk Excellence (CRE) to work together to create 'Risk Profiles' or 'Risk Stories.' The purpose of the Profiles is to increase effective communication of risks at a national level for DOE sites by creating a common sense approach to describing risks. This paper describes the progress to date and looks at the plans for future activities. Abbreviations. BGRR: Brookhaven Graphite Research Reactor; CERCLA: Comprehensive Response, Compensation and Liability Act; CRE: Center for Risk Excellence; DOE: U.S. Department of Energy; EM: environmental management; ORNL: Oak Ridge National Laboratory; PBSs: Project Baseline Summaries; PtC: Paths to Closure; RDSs: Risk Data Sheets; RH: relative hazard; SRS CAB: Savannah River Site Citizens Advisory Board; VOCs: volatile organic compounds

  13. Site Environmental Report for 2007 Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, Regina E.; Baskin, David; Fox, Robert; Jelinski, John; Pauer, Ron; Thorson, Patrick; Wahl, Linnea

    2008-09-15

    The Site Environmental Report is an integrated report on Berkeley Lab's environmental programs to satisfy the requirements of DOE Order 231.1A, Environment, Safety, and Health Reporting. It summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2007. Volume I is organized into an executive summary followed by six chapters that contain an overview of the Laboratory, a discussion of the Laboratory's environmental management system, the status of environmental programs, and summarized results from surveillance and monitoring activities.

  14. Corporate environmental management and information technology

    DEFF Research Database (Denmark)

    Rikhardsson, Pall M.

    2001-01-01

    software, the Internet, computer networks, telecommunications devices, etc. Information technology also has an impact on how companies perform environmental management. This paper looks at the relations between corporate environmental management and information technology. First it presents a framework...... for mapping information technology. Using this framework it focuses on the use of information technology in corporate environmental management, describes the market for standard environmental management information systems and implementation experiences from one large international company.......Information technology has changed, is changing and will continue to change the face of business as we further enter the Information Society. Today it would be difficult for a company to function effectively without the aid of various information technologies such as accounting software, production...

  15. Corporate Environmental Management and Information Technology

    DEFF Research Database (Denmark)

    Rikhardsson, Pall M.

    2000-01-01

    software, the internet, computer networks, telecommunications devices, etc. Information technology also has an impact on how companies perform environmental management. This paper explores the relations between environmental management and information technology in general terms. It offers a classification...... framework for the use of information technology in corporate environmental management (CEM), describes the market for standard environmental management information systems solutions, what main functionalities are available and what main trends are visible.......Information technology has changed, is changing and will continue to change the face of business as we further enter the Information Society. Today it would be difficult for a company to function effectively without the aid of various information technologies such as accounting software, production...

  16. Analysis of environmental contamination resulting from catastrophic incidents: part 1. Building and sustaining capacity in laboratory networks.

    Science.gov (United States)

    Magnuson, Matthew; Ernst, Hiba; Griggs, John; Fitz-James, Schatzi; Mapp, Latisha; Mullins, Marissa; Nichols, Tonya; Shah, Sanjiv; Smith, Terry; Hedrick, Elizabeth

    2014-11-01

    Catastrophic incidents, such as natural disasters, terrorist attacks, and industrial accidents, can occur suddenly and have high impact. However, they often occur at such a low frequency and in unpredictable locations that planning for the management of the consequences of a catastrophe can be difficult. For those catastrophes that result in the release of contaminants, the ability to analyze environmental samples is critical and contributes to the resilience of affected communities. Analyses of environmental samples are needed to make appropriate decisions about the course of action to restore the area affected by the contamination. Environmental samples range from soil, water, and air to vegetation, building materials, and debris. In addition, processes used to decontaminate any of these matrices may also generate wastewater and other materials that require analyses to determine the best course for proper disposal. This paper summarizes activities and programs the United States Environmental Protection Agency (USEPA) has implemented to ensure capability and capacity for the analysis of contaminated environmental samples following catastrophic incidents. USEPA's focus has been on building capability for a wide variety of contaminant classes and on ensuring national laboratory capacity for potential surges in the numbers of samples that could quickly exhaust the resources of local communities. USEPA's efforts have been designed to ensure a strong and resilient laboratory infrastructure in the United States to support communities as they respond to contamination incidents of any magnitude. The efforts include not only addressing technical issues related to the best-available methods for chemical, biological, and radiological contaminants, but also include addressing the challenges of coordination and administration of an efficient and effective response. Laboratory networks designed for responding to large scale contamination incidents can be sustained by applying

  17. 1998 Environmental Monitoring Program Report for the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    L. V. Street

    1999-09-01

    This report describes the calendar year 1998 compliance monitoring and environmental surveillance activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Drinking Water, Effluent, Storm Water, Groundwater Monitoring, and Environmental Surveillance Programs. This report compares the 1998 results to program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the monitoring and surveillance activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of public health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends, which would indicate a loss of control or unplanned releases from facility operations. The INEEL complied with permits and applicable regulations, with the exception of nitrogen samples in a disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond. Data collected by the Environmental Monitoring Program demonstrate that the public health and environment were protected.

  18. 2010 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Ratel, K.; Lee, R; Remien, J; Hooda, B; Green, T; Williams, J; Pohlot, P; Dorsch, W; Paquette, D; Burke, J

    2011-10-01

    Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory's environmental performance during the calendar year in review. Volume I of the SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and performance in restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. Volume II of the SER, the Groundwater Status Report, also is prepared annually to report on the status of and evaluate the performance of groundwater treatment systems at the Laboratory. Volume II includes detailed technical summaries of groundwater data and its interpretation, and is intended for internal BNL users, regulators, and other technically oriented stakeholders. A brief summary of the information contained in Volume II is included in Chapter 7, Groundwater Protection, of this volume. Both reports are available in print and as downloadable files on the BNL web page at http://www.bnl.gov/ewms/ser/. An electronic version on compact disc is distributed with each printed report. In addition, a summary of Volume I is prepared each year to provide a general overview of the report, and is distributed with a compact disc containing the full report. BNL is operated and managed for DOE's Office of Science by Brookhaven Science Associates (BSA), a partnership formed by Stony Brook University and Battelle Memorial Institute. For more than 60 years, the Laboratory has played a lead role in the DOE Science and Technology mission and continues to contribute to the DOE missions in energy resources, environmental quality, and

  19. Argonne National Laboratory Summary Site Environmental Report for Calendar Year 2005

    International Nuclear Information System (INIS)

    Golchert, N. W.; ESH/QA Oversight

    2007-01-01

    Argonne National Laboratory is a place where scientists and engineers come together to open up new possibilities for the future. Argonne has brought us many important projects in the past. It was at Argonne that researchers confirmed that Beethoven suffered from lead poisoning, and it was through the amazing Access Grid, pioneered at Argonne, that researchers in the United States were able to aid doctors on the other side of the world who were fighting the SARS outbreak. Researchers at Argonne are currently researching and developing new strategies in areas as varied as advanced nuclear reactors and other energy sources, medicine, and environmental science that will likely prove to be just as significant as Argonne's past achievements. Nuclear reactor development has been a priority at Argonne since its beginning. Argonne is very involved with the development of alternate strategies for safely treating and disposing of nuclear wastes. The first designs and prototypes of most of the nuclear reactors producing energy around the world today were originally conceived and tested by Argonne. While it may seem intimidating to live near a nuclear research site, the community surrounding Argonne is in no danger. The laboratory's Environmental Management Program provides Argonne's neighbors with quantitative risk data and has determined that the Argonne site is very safe. As a U.S. Department of Energy laboratory, Argonne has always been interested in finding new and more efficient energy sources. Current energy projects include fuel efficient cars, new batteries and fuel cells, and the conservation of U.S. oil and gas resources. The U.S. Department of Energy recently named Argonne the lead laboratory to test and evaluate new technologies for plug-in hybrid vehicles. Pharmaceutical companies use Argonne in their research, including a study discovering the structure of the HIV virus. Conducted at Argonne's Advanced Photon Source, this landmark research led Abbott Labs to

  20. Ames Laboratory Site Environmental Report, Calendar year 1992

    International Nuclear Information System (INIS)

    1992-01-01

    The summarized data and conclusions from the Ames Laboratory environmental monitoring program are presented in this Annual Site Environmental Report. Pollution awareness and waste minimization programs and plans implemented in 1990 are continuing to date. Ames Laboratory (AL) is responsible for a small chemical burial site, located on ISU property. The site was used for the disposal of chemical and metal slags from thorium and uranium production. Samples of water from existing test wells, and upstream and downstream sites on the nearby Squaw Creek, have not detected migration of the buried materials off site. Surface, hand auger and deep boring soil samples have been collected from the site. The analytical results are pending, Six new monitoring wells have been installed and sampled. Analytical results are pending. Ames Laboratory is responsible for an area contaminated by diesel fuel that leaked from an underground storage tank (UST) in 1970. The tank was removed that year. Soil borings and groundwater have been analyzed for contamination and a preliminary assessment written. Nine small inactive waste sites have been identified for characterization. The NEPA review for this work resulted in a CX determination. The work plans were approved by AL and CH. A subcontractor has surveyed and sampled the sites. Analytical results are pending

  1. Environmental restoration and management of low-level radioactive and mixed waste at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kendrick, C.M.

    1994-01-01

    Management of radioactive waste at Oak Ridge National Laboratory (ORNL) must address several major challenges. First, contaminants from some disposed wastes are leaching into the groundwater and these disposal sites must be remediated. Second, some of these ''legacy'' wastes, as well as currently generated radioactive wastes, are also contaminated with chemicals, including polychlorinated biphenyls (PCBs), solvents, and metals (i.e., mixed waste). Third, wastes containing long-lived radionuclides in concentrations above established limits have been determined unsuited for disposal on the Oak Ridge Reservation. Reflecting these challenges, ORNL's strategy for managing its radioactive wastes continues to evolve with the development of improved technologies and site-specific adaptation of some standard technologies

  2. 78 FR 47007 - National Environmental Policy Act; Santa Susana Field Laboratory

    Science.gov (United States)

    2013-08-02

    ... project Web site address listed below. http://www.nasa.gov/agency/nepa/news/SSFL.html . ADDRESSES...; Santa Susana Field Laboratory AGENCY: National Aeronautics and Space Administration (NASA). ACTION... Environmental Cleanup Activities for the NASA-administered portion of the Santa Susana Field Laboratory (SSFL...

  3. NETL-EERC ENVIRONMENTAL MANAGEMENT COOPERATIVE AGREEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Christina B. Behr-Andres; Daniel J. Daly

    2001-07-31

    This final report summarizes the accomplishments of the 6-year Environmental Management Cooperative Agreement (EMCA) between the Energy and Environmental Research Center (EERC), a nonprofit, contract-supported unit of the University of North Dakota, and the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). The first portion of the report summarizes EMCA's structure, activities, and accomplishments. The appendix contains profiles of the individual EMCA tasks. Detailed descriptions and results of the tasks can be found separately in published Final Topical Reports. EMCA (DOE Contract No. DE-FC21-94MC31388) was in place from the fall of 1994 to the summer of 2001. Under EMCA, approximately $5.4 million was applied in three program areas to expedite the commercialization of 15 innovative technologies for application in DOE's EM Program ($3.8 million, or 69% of funds), provide technical support to the Deactivation and Decommissioning Focus Area (DDFA; $1.04 million, or 19% of funds), and provide for the coordination of the EMCA activities ($0.62 million, or 11% of funds). The following sections profile the overall accomplishments of the EMCA program followed by a summary of the accomplishments under each of the EMCA areas: commercialization, DDFA technical support, and management. Table 1 provides an overview of EMCA, including program areas, program activities, the duration and funding of each activity, and the associated industry partner, if appropriate.

  4. Expansion of the Idaho National Engineering Laboratory Research Center: Environmental assessment

    International Nuclear Information System (INIS)

    1994-03-01

    The US Department of Energy (DOE) proposes to expand and upgrade facilities at the Idaho National Engineering Laboratory (INEL) Research Center (IRC) by constructing a research laboratory addition on the northeast corner of existing laboratory building; upgrading the fume hood system in the existing laboratory building; and constructing a hazardous waste handling facility and a chemical storage building. The DOE also proposes to expand the capabilities of biotechnology research programs by increasing use of radiolabeled compounds to levels in excess of current facility limits for three radionuclides (carbon-14, sulfur-35, and phosphorus-32). This Environmental assessment identifies the need for the new facilities, describes the proposed projects and environmental setting, and evaluates the potential environmental effects. Impacts associated with current operation are discussed and established as a baseline. Impacts associated with the proposed action and cumulative impacts are described against this background. Alternatives to the proposed action (No action; Locating proposed facilities at a different site) are discussed and a list of applicable regulations is provided. The no action alternative is continuation of existing operations at existing levels as described in Section 4 of this EA. Proposed facilities could be constructed at a different location, but these facilities would not be useful or practical since they are needed to provide a support function for IRC operations. Further, the potential environmental impacts would not be reduced if a different site was selected

  5. Customizable Electronic Laboratory Online (CELO): A Web-based Data Management System Builder for Biomedical Research Laboratories

    Science.gov (United States)

    Fong, Christine; Brinkley, James F.

    2006-01-01

    A common challenge among today’s biomedical research labs is managing growing amounts of research data. In order to reduce the time and resource costs of building data management tools, we designed the Customizable Electronic Laboratory Online (CELO) system. CELO automatically creates a generic database and web interface for laboratories that submit a simple web registration form. Laboratories can then use a collection of predefined XML templates to assist with the design of a database schema. Users can immediately utilize the web-based system to query data, manage multimedia files, and securely share data remotely over the internet. PMID:17238541

  6. 1986 environmental monitoring program report for the Idaho National Engineering Laboratory Site

    International Nuclear Information System (INIS)

    Hoff, D.L.; Chew, E.W.; Rope, S.K.

    1987-05-01

    This report presents onsite and offsite data collected in 1986 for the routine environmental monitoring program conducted by the Radiological and Environmental Sciences Laboratory (RESL) of the Department of Energy (DOE) at the Idaho National Engineering Laboratory (INEL) Site. The purpose of this routine program is to monitor radioactive and nonradioactive materials resulting from INEL Site operations which may reach the surrounding offsite environment and population. This report is prepared in accordance with the DOE requirements in draft DOE Order 5484.1 and is not intended to cover the numerous special environmental research programs being conducted at the INEL by RESL and others

  7. Technical Data Management Center: a focal point for meteorological and other environmental transport computing technology

    International Nuclear Information System (INIS)

    McGill, B.; Maskewitz, B.F.; Trubey, D.K.

    1981-01-01

    The Technical Data Management Center, collecting, packaging, analyzing, and distributing information, computer technology and data which includes meteorological and other environmental transport work is located at the Oak Ridge National Laboratory, within the Engineering Physics Division. Major activities include maintaining a collection of computing technology and associated literature citations to provide capabilities for meteorological and environmental work. Details of the activities on behalf of TDMC's sponsoring agency, the US Nuclear Regulatory Commission, are described

  8. Argonne National Laboratory-East site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N.W.; Kolzow, R.G. [Environmental Management Operation, Argonne National Lab., IL (United States)

    1996-09-01

    This report presents the environmental report for the Argonne National Laboratory-East for the year of 1995. Topics discussed include: general description of the site including climatology, geology, seismicity, hydrology, vegetation, endangered species, population, water and land use, and archaeology; compliance summary; environmental program information; environmental nonradiological program information; ground water protection; and radiological monitoring program.

  9. Laboratory Information Management Systems for Forensic Laboratories: A White Paper for Directors and Decision Makers

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Hendrickson; Brian Mennecke; Kevin Scheibe; Anthony Townsend

    2005-10-01

    Modern, forensics laboratories need Laboratory Information Management Systems (LIMS) implementations that allow the lab to track evidentiary items through their examination lifecycle and also serve all pertinent laboratory personnel. The research presented here presents LIMS core requirements as viewed by respondents serving in different forensic laboratory capacities as well as different forensic laboratory environments. A product-development methodology was employed to evaluate the relative value of the key features that constitute a LIMS, in order to develop a set of relative values for these features and the specifics of their implementation. In addition to the results of the product development analysis, this paper also provides an extensive review of LIMS and provides an overview of the preparation and planning process for the successful upgrade or implementation of a LIMS. Analysis of the data indicate that the relative value of LIMS components are viewed differently depending upon respondents' job roles (i.e., evidence technicians, scientists, and lab management), as well as by laboratory size. Specifically, the data show that: (1) Evidence technicians place the most value on chain of evidence capabilities and on chain of custody tracking; (2) Scientists generally place greatest value on report writing and generation, and on tracking daughter evidence that develops during their analyses; (3) Lab. Managers place the greatest value on chain of custody, daughter evidence, and not surprisingly, management reporting capabilities; and (4) Lab size affects LIMS preference in that, while all labs place daughter evidence tracking, chain of custody, and management and analyst report generation as their top three priorities, the order of this prioritization is size dependent.

  10. Practical Environmental Education and Local Contribution in the Environmental Science Laboratory Circle in the College of Science and Technology in Nihon University

    Science.gov (United States)

    Taniai, Tetsuyuki; Ito, Ken-Ichi; Sakamaki, Hiroshi

    In this paper, we presented a method and knowledge about a practical and project management education and local contribution obtained through the student activities of “Environmental science laboratory circle in the College of Science and technology in Nihon University” from 1991 to 2001. In this circle, four major projects were acted such as research, protection, clean up and enlightenment projects. Due to some problems from inside or outside of this circle, this circle projects have been stopped. The diffusion and popularization of the internet technology will help to resolve some of these problems.

  11. Environmental management in the National Power Corporation

    International Nuclear Information System (INIS)

    Petel, M.R.L.

    1996-01-01

    Environmental management in the National Power Corporation (NPC) is enshrined in the corporate charter. Environmental management practice can be traced back to the past purely hydroelectric power generation days, of the corporation. One good thing about nuclear power plant project of NPC, is that it required a formalization and documentation of environmental management, as part of the licensing procedure for the project. Thereafter, environmental management had been strengthened and institutionalized in the corporation. Succeeding years had also witnessed the escalation of the development and diversification of electricity generation sources, including the development of geothermal power, and to a small extent yet, renewable energy, such as wind power. The corporation has also intensified the installation of transmission lines of varying sizes in various locations and has gone, for now, for its internal needs, into telecommunications. With the anticipated further developments in the power sector, i.e., the ever increasing demand for power and the privitization of the power industry, new challenges loom in environmental management for the sector. The parallel developments in the environmental sciences and the collective experiences in power generation and environmental management, locally and abroad, will be very handy in meeting the challenges. The increasing stringency of environmental regulations and standards are also providing continuing challenges to all power utilities like NPC. Globally, the power scenario points towards challenging environmental management requirements, in view of the increasing complexity and gravity of environmental problems facing nations. NPC will still be a player in this scenario and therefore, will need to respond accordingly. (author)

  12. Annual Site Environmental Report Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Dan Kayser-Ames Laboratory

    2007-12-31

    This report summarizes the environmental status of Ames Laboratory for calendar year 2007. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring activities. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies 11 buildings owned by the Department of Energy (DOE). See the Laboratory's Web page at www.external.ameslab.gov for locations and Laboratory overview. The Laboratory also leases space in ISU owned buildings. In 2007, the Laboratory accumulated and disposed of waste under U.S. Environmental Protection Agency (EPA) issued generator numbers. All waste is handled according to all applicable EPA, State, Local and DOE Orders. In 2006 the Laboratory reduced its generator status from a Large Quantity Generator (LQG) to a Small Quantity Generator (SQG). EPA Region VII was notified of this change. The Laboratory's RCRA hazardous waste management program was inspected by EPA Region VII in April 2006. There were no notices of violations. The inspector was impressed with the improvements of the Laboratory's waste management program over the past ten years. The Laboratory was in compliance with all applicable federal, state, local and DOE regulations and orders in 2007. There were no radiological air emissions or exposures to the general public due to Laboratory activities in 2007. See U.S. Department of Energy Air Emissions Annual Report in Appendix B. As indicated in prior SERs, pollution awareness, waste minimization and recycling programs have been in practice since 1990, with improvements implemented most recently in 2003. Included in these efforts were battery and CRT recycling, waste white paper and green computer paper-recycling. Ames Laboratory also recycles/reuses salvageable metal, used oil

  13. Environmental surveillance report for the INEL radioactive waste management complex. Annual report, 1976

    International Nuclear Information System (INIS)

    Dolenc, M.R.; Janke, D.H.

    1977-05-01

    This report describes the environmental surveillance activities during 1976 at the two solid waste facilities of the Idaho National Engineering Laboratory. The monitoring program encompasses periodic and random sampling of air, water, and soil within and adjacent to the Radioactive Waste Management Complex and SL-1 Burial Ground. It was found that operation of the Radioactive Waste Management Complex and SL-1 during 1976 had little radiological impact on the environment and radioactivity levels were shown to be within appropriate guidelines for worker safety

  14. Environmental management in Slovenian industrial enterprises - Empirical study

    Directory of Open Access Journals (Sweden)

    Vesna Čančer

    2002-01-01

    Full Text Available timulated with the firm belief that environmental management helps enterprises to achieve business success, expressed by a majority of managers in the sample enterprises, we present the results of an empirical study in the Slovene processing industry. The purpose of our research work is to identify, analyse and present the importance of the environment in business decision-making, the role of environmental management in strategic decision-making and its distribution across the business functions; environmental performance in business processes; the use of the methods for environmentally oriented business decision-making and the developmental tendencies of environmental management in Slovene enterprises of the processing industry. We define the key drivers of environmental management and their effect on the environmental behaviour of these enterprises. We present and interpret data indicating that environmental management is caused not only by compliance and regulation, but also by competition and enterprises’ own initiative.

  15. Environmental management activities

    International Nuclear Information System (INIS)

    1997-01-01

    The Office of Environmental Management (EM) has been delegated the responsibility for the Department of Energy's (DOE's) cleanup of the nuclear weapons complex. The nature and magnitude of the waste management and environmental remediation problem requires the identification of technologies and scientific expertise from domestic and foreign sources. Within the United States, operational DOE facilities, as well as the decontamination and decommissioning of inactive facilities, have produced significant amounts of radioactive, hazardous, and mixed wastes. In order to ensure worker safety and the protection of the public, DOE must: (1) assess, remediate, and monitor sites and facilities; (2) store, treat, and dispose of wastes from past and current operations; and (3) develop and implement innovative technologies for environmental restoration and waste management. The EM directive necessitates looking beyond domestic capabilities to technological solutions found outside US borders. Following the collapse of the Soviet regime, formerly restricted elite Soviet scientific expertise became available to the West. EM has established a cooperative technology development program with Russian scientific institutes that meets domestic cleanup objectives by: (1) identifying and accessing Russian EM-related technologies, thereby leveraging investments and providing cost-savings; (2) improving access to technical information, scientific expertise, and technologies applicable to EM needs; and (3) increasing US private sector opportunities in Russian in EM-related areas

  16. Establishment of a clean chemistry laboratory at JAERI. Clean laboratory for environmental analysis and research (CLEAR)

    Energy Technology Data Exchange (ETDEWEB)

    Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    2003-02-01

    The JAERI has established a facility with a cleanroom: the Clean Laboratory for Environmental Analysis and Research (CLEAR). This report is an overview of the design, construction and performance evaluation of the CLEAR in the initial stage of the laboratory operation in June 2001. The CLEAR is a facility to be used for analyses of ultra trace amounts of nuclear materials in environmental samples for the safeguards, for the CTBT verification and for researches on environmental sciences. One of the special features of the CLEAR is that it meets double requirements of a cleanroom and for handling of nuclear materials. As another feature of the CLEAR, much attention was paid to the construction materials of the cleanroom for trace analysis of metal elements using considerable amounts of corrosive acids. The air conditioning and purification system, specially designed experimental equipment to provide clean work surfaces, utilities and safety systems are also demonstrated. The potential contamination from the completed cleanroom atmosphere during the analytical procedure was evaluated. It can be concluded that the CLEAR has provided a suitable condition for reliable analysis of ultra trace amounts of nuclear materials and other heavy elements in environmental samples. (author)

  17. Empirical research on drive mechanism of firms' environmental management

    Institute of Scientific and Technical Information of China (English)

    Cao Jingshan; Qin Ying

    2007-01-01

    Firms'transformation from passive envrionmental management to active environmental management is the key to solving environmental problems. This paper empirically studies the impact of environmental management incentives on environmental management through model construction. Based on the data and reality of China, we can build a concept model of environmental management driving mechanism, and put forward theoretical hypothesis that can be tested: take the 13 environmental management behaviors (EMBs) as substitute of the comprehensiveness, introduce counting variables, and use NB model, Possion Model and Ordered Probit model the regression analysis. The theory and methods brought forward in this paper will provide references for firms in China to further implement voluntary environmental management, and offer advises and countertneasures for leaders to implement environmental management effectively.

  18. Alternative techniques for environmental project management

    International Nuclear Information System (INIS)

    Reeves, S.

    1994-01-01

    Beginning in the late 1970s and early 1980s, increased regulation and recognition of ground water as an important natural resource led industry to address subsurface contamination at many sites. This caused the industry's dependence on environmental consultants to increase drastically. Initially, the accepted practice for addressing environmental concerns was to rely upon consultants to determine appropriate work scope, budgets, procedures and regulatory interaction. While significant advances have been made in technology and consulting services, improvement in project management and cost containment have been limited. In order to effectively manage environmental projects, it is imperative that business risks and standardized project management practices be factored into environmental solutions. A standardized environmental project management program was developed and applied to projects at petroleum marketing facilities throughout the United States. Following development and implementation, detailed studies were conducted to measure the value of standardization in reducing costs and enhancing efficiencies. The results indicate significant improvement in both reducing project costs and in enhancing the efficiency of consultants

  19. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management

  20. ISO 14000 - the International Environmental Management Standard: Potential impacts on environmental management and auditing in the electric power generation industry

    International Nuclear Information System (INIS)

    Gauntlett, S.B.; Pierce, J.L.; Pierce, J.L.

    1995-01-01

    In the framework of environmental management, the concept of voluntary environmental compliance auditing is not in itself a new development. Environmentally conscious firms have for more than a decade, undertaken voluntary audits to help achieve and maintain compliance with environmental regulations and to help identify and correct unregulated or poorly regulated environmental hazard. The firms undertaking the audits were motivated by a desire to mitigate legal and financial risks and/or the desire to be a highly responsible member of the corporate community. Much of the early attention to environmental auditing was in the chemical process industries. Today, there are four current trends affecting environmental auditing: (1) the practice is becoming widespread in all industry groups in both large and small firms; (2) environmental management and audit methodolgies and approaches are being codified in the form of written national and International standards; (3) environmental management programs and in-house audits are increasingly being certified by independent auditors (who are not associated with regulatory agencies); and (4) the certifications are being viewed as marketing and public relations tools. The adoption of ISO 14000 is destined to become the most significant development in international environmental management and auditing. International standards for the development of Environmental Management Systems and the execution of environmental audits do not currently exist. Individual countries, such as England and France, have national standards. One multi-national standard currently exists--the European Economic Community's Eco-Management and Audit Scheme (EMAS). The United States does not have a national environmental management and auditing standard