WorldWideScience

Sample records for environmental laboratory institutional

  1. Idaho National Engineering and Environmental Laboratory institutional plan -- FY 2000--2004

    Energy Technology Data Exchange (ETDEWEB)

    Enge, R.S.

    1999-12-01

    In this first institutional plan prepared by Bechtel BWXT Idaho, LLC, for the Idaho National Engineering and Environmental Laboratory, the INEEL will focus its efforts on three strategic thrusts: (1) Environmental Management stewardship for DOE-EM, (2) Nuclear reactor technology for DOE-Nuclear Energy (NE), and (3) Energy R and D, demonstration, and deployment (initial focus on biofuels and chemicals from biomass). The first strategic thrust focuses on meeting DOE-EMs environmental cleanup and long-term stewardship needs in a manner that is safe, cost-effective, science-based, and approved by key stakeholders. The science base at the INEEL will be further used to address a grand challenge for the INEEL and the DOE complex--the development of a fundamental scientific understanding of the migration of subsurface contaminants. The second strategic thrust is directed at DOE-NEs needs for safe, economical, waste-minimized, and proliferation-resistant nuclear technologies. As NE lead laboratories, the INEEL and ANL will pursue specific priorities. The third strategic thrust focuses on DOE's needs for clean, efficient, and renewable energy technology. As an initial effort, the INEEL will enhance its capability in biofuels, bioprocessing, and biochemicals. The content of this institutional plan is designed to meet basic DOE requirements for content and structure and reflect the key INEEL strategic thrusts. Updates to this institutional plan will offer additional content and resource refinements.

  2. International Environmental Institute

    International Nuclear Information System (INIS)

    DiSibio, R.R.

    1992-01-01

    The International Environmental Institute is being established at the Hanford Site to provide training and education in environmental restoration and waste management technologies and to serve as an interface for exchange of information among government laboratories, regional and federal governments, universities, and US industries. Recognized as the flagship of the nation's environmental management effort, the Hanford Site provides a unique living environmental laboratory that represents the most extensive, complex, and diverse cleanup challenges anywhere. An Environmental Institute director has been selected, the organizational structure has been established, and initial phases of operation have begun. The combined resources of the Hanford Site and the Environmental Institute offer unprecedented technological capabilities for dealing with the nation's environmental issues

  3. Environmental Microbiology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Microbiology Laboratory, located in Bldg. 644 provides a dual-gas respirometer for measurement of oxygen consumption and carbon dioxide evolution...

  4. EPA Environmental Chemistry Laboratory

    Science.gov (United States)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  5. Creation of a dynamic database and analysis of LIDAR measurements in web format at the Laboratory of Environmental Laser Applications at the Nuclear and Energy Research Institute

    International Nuclear Information System (INIS)

    Pozzetti, Lucila Maria Viola

    2006-01-01

    The LIDAR system (Light Detection and Ranging) laser remote sensing at the Nuclear and Energy Research Institute - Laboratory of Environmental Laser Applications allows on line measurements of variations in the concentrations of atmospheric aerosols by sending a laser beam to the atmosphere and collecting the backscattered light. Such a system supplies a great number of physical parameters that must be managed in an agile form to the attainment of a real time analysis. Database implementation therefore becomes an important toll of communication and graphical visualization of measurements. A criterion for classification of this valuable information was adopted, establishing defined levels of storage from specific characteristics of the determined data types. The compilation and automation of these measurements will promote optimized integration between data, analysis and retrieval of the resulting properties and of the atmosphere, improving future research and data analysis. (author)

  6. Institute of Laboratory Animal Research

    National Research Council Canada - National Science Library

    Dell, Ralph

    2000-01-01

    ...; and reports on specific issues of humane care and use of laboratory animals. ILAR's mission is to help improve the availability, quality, care, and humane and scientifically valid use of laboratory animals...

  7. Institute of Laboratory Animal Resources

    Science.gov (United States)

    1992-06-01

    special issues: Special Issues on Animal Models in Biomedical Research1 °, New Ra Models of Obesity and Type II Diabetes ", and Pain in Animals and...country of Central and South America, as well as to the Caribbean, and Mexico and published notices in newsletters. Young scientists from Mexico, Peru , and... diabetes ) Kom MowaKi Ph.D, Department of Cell Genetics, National Institute of Genetics, 25 S . . .. ,2

  8. Pacific Northwest National Laboratory Institutional Plan FY 2004-2008

    Energy Technology Data Exchange (ETDEWEB)

    Quadrel, Marilyn J.

    2004-04-15

    This Institutional Plan for FY 2004-2008 is the principal annual planning document submitted to the Department of Energy's Office of Science by Pacific Northwest National Laboratory in Richland, Washington. This plan describes the Laboratory's mission, roles, and technical capabilities in support of Department of Energy priorities, missions, and plans. It also describes the Laboratory strategic plan, key planning assumptions, major research initiatives, and program strategy for fundamental science, energy resources, environmental quality, and national security.

  9. Rationality, institutions and environmental policy

    Energy Technology Data Exchange (ETDEWEB)

    Vatn, Arild [Department of Economics and Resource Management, Norwegian University of Life Sciences, Aas (Norway)

    2005-11-01

    This paper is about how institutions determine choices and the importance of this for environmental policy. The model of individual rational choice from neoclassical economics is compared with the model of socially determined behavior. While in the first case, institutions are either exempted from or understood as mere economizing constraints on behavior, the latter perspective views institutions as basic structures necessary also to enable people to act. The paper develops a way to integrate the individualistic model into the wider perspective of social constructivism by viewing it as a special form of such construction. On the basis of this synthesis three issues with relevance for environmental economics are discussed. First, the role of institutional factors in the process of preference formation is emphasized. Next, the role of institutions for the choice of desired states of the environment is analyzed. Finally, the effect of various policy instruments to motivate people to produce these states is discussed. It is concluded that the core policy issue is to determine which institutional frameworks are most reasonable to apply to which kind of problem. Issues, which from the perspective of neoclassical economics are pure technical, become serious value questions if understood from an institutional perspective.

  10. Hertelendi Laboratory of Environmental Studies

    International Nuclear Information System (INIS)

    Svingor, E.; Molnar, M.; Palcsu, L.; Futo, I.; Rinyu, L.; Mogyorosi, M.; Major, Z.; Bihari, A.; Vodila, G.; Janovics, R.; Papp, L.; Major, I.

    2010-01-01

    1. Introduction. The Hertelendi Laboratory for Environmental Studies (HEKAL) belongs to the Section of Environmental and Earth Sciences. It is a multidisciplinary laboratory dedicated to environmental research, to the development of nuclear analytical methods and to systems technology. During its existence of more than 15 years it has gained some reputation as a prime laboratory of analytical techniques, working with both radio- and stable isotopes. It has considerable expertise in isotope concentration measurements, radiocarbon dating, tritium measurements, in monitoring radioactivity around nuclear facilities and in modelling the movement of radionuclides in the environment. Many of its projects are within the scope of interest of the Paks Nuclear Power Plant. Our research activity is mainly concerned with the so-called environmental isotopes. This term denotes isotopes, both stable and radioactive, that are present in the natural environment either as a result of natural processes or of human activities. In environmental research isotopes are generally applied either as tracers or as age indicators. An ideal tracer is defined as a substance that behaves in the system studied exactly as the material to be traced as far as the examined parameters are concerned, but has at least one property that distinguishes it from the traced material. The mass number of an isotope is such an ideal indicator. In 2007 the laboratory assumed the name of Dr. Ede Hertelendi to honour the memory of the reputed environmental physicist who founded the group and headed it for many years. The current core of the laboratory staff is made up of his pupils and coworkers. This team was like a family to him. The group owes it to his fatherly figure that it did not fall apart after his death, but advanced with intense work and tenacity during the last decade. One of his first pupils, Mihaly Veres returned to the laboratory as a private entrepreneur and investor in 2005, and in the framework of

  11. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.

    2000-10-01

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure success in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.

  12. Calibration Laboratory of the Paul Scherrer Institute

    International Nuclear Information System (INIS)

    Gmuer, K.; Wernli, C.

    1994-01-01

    Calibration and working checks of radiation protection instruments are carried out at the Calibration Laboratory of the Paul Scherrer Institute. In view of the new radiation protection regulation, the calibration laboratory received an official federal status. The accreditation procedure in cooperation with the Federal Office of Metrology enabled a critical review of the techniques and methods applied. Specifically, personal responsibilities, time intervals for recalibration of standard instruments, maximum permissible errors of verification, traceability and accuracy of the standard instruments, form and content of the certificates were defined, and the traceability of the standards and quality assurance were reconsidered. (orig.) [de

  13. Laboratory of environmental radiological surveillance

    International Nuclear Information System (INIS)

    Mendez G, A.; Marcial M, F.; Giber F, J.; Montiel R, E.; Leon del V, E.; Rivas C, I.; Leon G, M.V.; Lagunas G, E.; Aragon S, R.; Juarez N, A.; Alfaro L, M.M.

    1991-12-01

    The department of radiological protection of the ININ requests the collaboration of the Engineering Unit for the elaboration of the work project of the laboratory of environmental radiological surveillance. The emission of radioactive substances to the atmosphere like consequence of the normal operation of the Nuclear Center, constitutes an exhibition source from the man to the radiations that it should be appropriately watched over and controlled to be able to determine the population's potential exhibition that it lives in the area of influence of the installation. (Author)

  14. MDOT Materials Laboratories : Environmental Management Plan

    Science.gov (United States)

    2012-06-01

    The goal of this EMP was to develop and implement a comprehensive Environmental : Management Plan for MDOT Materials Laboratories. This goal was achieved through : perfonnance of environmental audits to identify potential environmental impacts, and b...

  15. Oak Ridge National Laboratory institutional plan, FY 1992--FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    In operation for fifty years, the Oak Ridge National Laboratory (ORNL) is managed by Martin Marietta Energy Systems, Inc., for the US Department of Energy (DOE). ORNL is one of DOE's major multiprogram national laboratories. Activities at the Laboratory are focused on basic and applied research, on technology development, and on other technological challenges that are important to DOE and to the nation. The Laboratory also performs research and development (R D) for non-DOE sponsors when such activities complement DOE missions and address important national or international issues. The Laboratory is committed to the pursuit of excellence in all its activities, including the commitment to carry out its missions in compliance with environmental, safety, and health laws and regulations. The principal elements of the Laboratory's missions in support of DOE include activities in each of the following areas: (1) Energy production and conservation technologies; (2) physical and life sciences; (3) scientific and technical user facilities; (4) environmental protection and waste management; (5) science technology transfer; and, (6) education. This institutional plan for ORNL activities is for the next five years: FY 1992--1997.

  16. Lawrence Berkeley Laboratory 1993 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This annual Site Environmental Report summarizes Lawrence Berkeley Laboratory`s (LBL`s) environmental activities in calendar year (CY) 1993. The purpose of this report is to characterize site environmental management performance, confirm compliance status with environmental standards and requirements, and highlight significant programs and efforts. Its format and content are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  17. Institutional Assessment of Environmentally Oriented Subsoil Use

    Directory of Open Access Journals (Sweden)

    Irina Gennadyevna Polyanskaya

    2017-06-01

    Full Text Available The article solves two relevant problems related to the implementation of the institutional assessment of environmentally oriented subsoil use: 1 the definition of the ‘environmental security’ and 2 the determination of the development level of institutional bases of environmentally oriented subsoil use including the institutional capacity of subsoil use and institutional capacity of environmental security. The article shows an analysis of the existing definitions of “environmental security” and offers the own one. Despite the significant national and foreign experience in the institutional capacity assessment of various processes, there are still some difficulties in defining and measuring the institutional capacity. We eliminate these difficulties by employing 1 original factors, previously identified, and the content of the “institutional capacity” term; 2 quality characteristics for the institutional capacity assessment of the process regulated at the macroeconomic level, and 3 a consistent methodological tool for the institutional assessment of environmentally oriented subsoil use. The study is based on the hypothesis of the necessity of legal and discreet state intervention in the process of subsoil use. Therefore, we identify the evaluation indicator of state regulation in the environmentally oriented subsoil use as the institutional capacity level calculated by using the fuzzy-set theory. As a result, the institutional capacity levels of the environmentally oriented subsoil use have been defined for both the transport corridor «Arctic-Central Asia» and for the countries composing it. The obtained values of the assessment of institutional capacity levels of the environmentally oriented subsoil use can serve as a basis for identifying the vector of its increase

  18. Lawrence Berkeley Laboratory 1994 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  19. Oak Ridge National Laboratory Institutional Plan, FY 1995--FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years (1995-2000). Included in this report are the: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; and resource projections.

  20. Growth, environmental quality and institutions

    International Nuclear Information System (INIS)

    Benavides, Juan

    1999-01-01

    The paper is about of the analysis and design of political environmental and is emphasized the necessity of avoiding the adoption of environmental politics appropriate or inappropriate, characteristic of countries already industrialized. The author shows the relationship among the entrance per capita and the contamination using the Stokey pattern; it outlines the form in that the matter of the contamination and the consumption of energy resources is minimized before the urgency of to solve the problems of the present and to form a sustained human capital, finally it contributes with opinions related to mechanisms of environmental regulation

  1. Synchrotron environmental laboratory (SUL) at Anka

    International Nuclear Information System (INIS)

    Denecke, M.A.

    2002-01-01

    A research facility dedicated to environmental/geochemical research, the Synchrotron Environmental Laboratory (SUL), is planned to be installed and operated at ANKA. ANKA is the new synchrotron facility at the Research Centre Karlsruhe (FZK), Karlsruhe, Germany. ANKA is now in commissioning and planning operations for the fall of 2000. As the Institute for Nuclear Waste Disposal (INE) at FZK conducts a vigorous synchrotron-based research programme, INE was instrumental in the original impetus for installing such a facility at ANKA. These research activities at INE concentrate on actinide speciation in nuclear waste forms, geological media and geochemical model systems. In order for INE to direct their synchrotron research activities to ANKA, equipment and licensing required for performing experiments on actinide-containing samples is required. One great advantage of performing experiments on actinide-containing samples at ANKA is that the INE radiological laboratories lie in the near vicinity of the facility. This will minimise transport hazards and costs and allow experiments to be performed on samples whose characteristics may change with time. Experiments on radioactive samples with activities below the exemption level, according to German regulations, will be possible at ANKA at the start of operations. Licensing for work on higher levels of activity will be applied for in the future. The decades of experience in radiological work at FZK will facilitate development of procedure and equipment as prerequisites to licensing. A consortium of synchrotron radiation-user groups with environmental research interests has specified their requirements and needs for this facility. This scientific case serves as the foundation for the SUL design and is the basis for an application for federal funding. The SUL design reflects the heterogeneity and complexity of challenges facing researchers in the environmental/geochemical sciences. X-ray absorption fine structure (XAFS

  2. Argonne National Laboratory institutional plan FY 2001--FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, S.D.

    2000-12-07

    This Institutional Plan describes what Argonne management regards as the optimal future development of Laboratory activities. The document outlines the development of both research programs and support operations in the context of the nation's R and D priorities, the missions of the Department of Energy (DOE) and Argonne, and expected resource constraints. The Draft Institutional Plan is the product of many discussions between DOE and Argonne program managers, and it also reflects programmatic priorities developed during Argonne's summer strategic planning process. That process serves additionally to identify new areas of strategic value to DOE and Argonne, to which Laboratory Directed Research and Development funds may be applied. The Draft Plan is provided to the Department before Argonne's On-Site Review. Issuance of the final Institutional Plan in the fall, after further comment and discussion, marks the culmination of the Laboratory's annual planning cycle. Chapter II of this Institutional Plan describes Argonne's missions and roles within the DOE laboratory system, its underlying core competencies in science and technology, and six broad planning objectives whose achievement is considered critical to the future of the Laboratory. Chapter III presents the Laboratory's ''Science and Technology Strategic Plan,'' which summarizes key features of the external environment, presents Argonne's vision, and describes how Argonne's strategic goals and objectives support DOE's four business lines. The balance of Chapter III comprises strategic plans for 23 areas of science and technology at Argonne, grouped according to the four DOE business lines. The Laboratory's 14 major initiatives, presented in Chapter IV, propose important advances in key areas of fundamental science and technology development. The ''Operations and Infrastructure Strategic Plan'' in Chapter V includes

  3. Research report 1987-1989: Environmental Quality Laboratory and Environmental Engineering Science, W. M. Keck Laboratories

    OpenAIRE

    Brooks, Norman H.

    1990-01-01

    This research biennial report for 1987-89 covers the activities of both the Environmental Engineering Science program and the Environmental Quality Laboratory for the period October 1987-November 1989. Environmental Engineering Science is the degree-granting academic program housed in the Keck Laboratories, with associated research projects. The Environmental Quality Laboratory is a research center focusing on large scale problems of environmental quality and natural resources. All the facult...

  4. Oak Ridge National Laboratory institutional plan, FY 1996--FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years. Included in the report are: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory strategic plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; resource projections; appendix which contains data for site and facilities, user facility, science and mathematic education and human resources; and laboratory organization chart.

  5. Lawrence Livermore National Laboratory Environmental Report 2015

    International Nuclear Information System (INIS)

    Rosene, C. A.; Jones, H. E.

    2016-01-01

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites-the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, ''Environment, Safety and Health Reporting,'' and DOE Order 458.1, ''Radiation Protection of the Public and Environment.''

  6. Lawrence Berkeley Laboratory 1994 site environmental report

    International Nuclear Information System (INIS)

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory's environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program

  7. Great Lakes Environmental Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NOAA-GLERL and its partners conduct innovative research on the dynamic environments and ecosystems of the Great Lakes and coastal regions to provide information for...

  8. The Legislative and Institutional Framework of Environmental ...

    African Journals Online (AJOL)

    This article shall present a detailed and critical review of the legislative and institutional framework of environmental protection and pollution control in the oil and gas sector in Nigeria; it shall conclude with some recommendations for a better, more efficient and effective environmental protection and pollution control regime ...

  9. Environmental Monitoring Plan, Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    Holland, R.C.

    1992-06-01

    This Environmental Monitoring Plan was written to fulfill the requirements of DOE Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories, Livermore. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. 61 refs

  10. Environmental report 1997, Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Lentzner, H.L.; Morris, J.C.; Harrach, R.J.

    1998-01-01

    This report summarizes the environmental program activities at the Lawrence Livermore National Laboratory (LLNL) for 1997. This report accurately summarizes the results of environmental monitoring, compliance, impacts assessment, and the restoration program at LLNL. It features individual chapters on monitoring of air, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation. It also contains chapters on site overview, environmental program information, radiological dose assessment, and quality assurance

  11. Environmental report 1996, Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Lentzner, H.L.; Napolitano, M.M.; Harrach, R.J.

    1997-01-01

    This report summarizes the environmental program activities at the Lawrence Livermore National Laboratory (LLNL) for 1996. This report accurately summarizes the results of environmental monitoring, compliance, impacts assessment, and the restoration program at LLNL. It features individual chapters on monitoring of air, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation. It also contains chapters on site overview, environmental program information, radiological dose assessment, and quality assurance

  12. Environmental isotope hydrology laboratories in developing countries

    International Nuclear Information System (INIS)

    Gonfiantini, R.; Stichler, W.

    1991-01-01

    This article reports on the role, experience, and problems of environmental isotope hydrology laboratories in developing countries, based upon the IAEA's experience. It specifically offers guidance on important aspects of organization, staffing, and operation

  13. Environmental consequences of postulated radionuclide releases from the Battelle Memorial Institute Columbus Laboratories JN-1b Building at the West Jefferson site as a result of severe natural phenomena

    International Nuclear Information System (INIS)

    Jamison, J.D.; Watson, E.C.

    1982-02-01

    Potential environmental consequences in terms of radiation dose to people are presented for postulated radionuclide releases caused by severe natural phenomena at the Battelle Memorial Institute Columbus Laboratories JN-1b Building at the West Jefferson site. The severe natural phenomena considered are earthquakes, tornadoes, and high straight-line winds. Maximum radioactive material deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum radioactive material deposition values likely to occur offsite are also given. The most likely calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays. The most likely maximum residual plutonium contamination estimated to be deposited offsite following the events are well below the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 μCi/m 2 . The likely maximum residual contamination from beta and gamma emitters are far below the background produced by fallout from nuclear weapons tests in the atmosphere

  14. Argonne National Laboratory institutional plan FY 2002 - FY 2007

    International Nuclear Information System (INIS)

    Beggs, S. D.

    2001-01-01

    The national laboratory system provides a unique resource for addressing the national needs inherent in the mission of the Department of Energy. Argonne, which grew out of Enrico Fermi's pioneering work on the development of nuclear power, was the first national laboratory and, in many ways, has set the standard for those that followed. As the Laboratory's new director, I am pleased to present the Argonne National Laboratory Institutional Plan for FY 2002 through FY 2007 on behalf of the extraordinary group of scientists, engineers, technicians, administrators, and others who re responsible for the Laboratory's distinguished record of achievement. Like our sister DOE laboratories, Argonne uses a multifaceted approach to advance U.S. R and D priorities. First, we assemble interdisciplinary teams of scientists and engineers to address complex problems. For example, our initiative in Functional Genomics will bring together biologists, computer scientists, environmental scientists, and staff of the Advanced Photon Source to develop complete maps of cellular function. Second, we cultivate specific core competencies in science and technology; this Institutional Plan discusses the many ways in which our core competencies support DOE's four mission areas. Third, we serve the scientific community by designing, building, and operating world-class user facilities, such as the Advanced Photon Source, the Intense Pulsed Neutron Source, and the Argonne Tandem-Linac Accelerator System. This Plan summarizes the visions, missions, and strategic plans for the Laboratory's existing major user facilities, and it explains our approach to the planned Rare Isotope Accelerator. Fourth, we help develop the next generation of scientists and engineers through educational programs, many of which involve bright young people in research. This Plan summarizes our vision, objectives, and strategies in the education area, and it gives statistics on student and faculty participation. Finally, we

  15. Environmental Chemistry in the Undergraduate Laboratory.

    Science.gov (United States)

    Wenzel, Thomas J.; Austin, Rachel N.

    2001-01-01

    Discusses the importance of environmental chemistry and the use of laboratory exercises in analytical and general chemistry courses. Notes the importance of lab work in heightening student interest in coursework including problem-based learning in undergraduate curricula, ready adaptability of environmental coursework to existing curricula, and…

  16. Environmental Molecular Sciences Laboratory 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    White, Julia C.

    2005-04-17

    This 2004 Annual Report describes the research and accomplishments of staff and users of the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), located in Richland, Washington. EMSL is a multidisciplinary, national scientific user facility and research organization, operated by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy's Office of Biological and Environmental Research. The resources and opportunities within the facility are an outgrowth of the U.S. Department of Energy's (DOE) commitment to fundamental research for understanding and resolving environmental and other critical scientific issues.

  17. National Institute for Global Environmental Change

    International Nuclear Information System (INIS)

    Werth, G.C.

    1992-01-01

    This document is the Semi-Annual Report of the National Institute for Global Environmental Change for the reporting period July 1 to December 31, 1991. The report is in two parts. Part I presents the mission of the Institute, examples of progress toward that mission, a brief description of the revised management plan, and the financial report. Part II presents the statements of the Regional Center Directors along with progress reports of the projects written by the researchers themselves

  18. National Institute for Global Environmental Change

    Energy Technology Data Exchange (ETDEWEB)

    Werth, G.C.

    1992-04-01

    This document is the Semi-Annual Report of the National Institute for Global Environmental Change for the reporting period July 1 to December 31, 1991. The report is in two parts. Part I presents the mission of the Institute, examples of progress toward that mission, a brief description of the revised management plan, and the financial report. Part II presents the statements of the Regional Center Directors along with progress reports of the projects written by the researchers themselves.

  19. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  20. Sandia National Laboratories 1979 environmental monitoring report

    International Nuclear Information System (INIS)

    Simmons, T.N.

    1980-04-01

    Sandia National Laboratories in Albuquerque is located south of the city on two broad mesas. The local climate is arid continental. Radionuclides are released from five technical areas from the Laboratories' resarch activities. Sandia's environmental monitoring program searches for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. No activity was found in public areas in excess of local background in 1979. The Albuquerque population receives only 0.076 person-rem (estimated) from airborne radioactive releases. While national security research is the laboratories' major responsibility, energy research is a major area of activity. Both these research areas cause radioactive releases

  1. Sandia National Laboratories Institutional Plan: FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Sandia`s Institutional Plan is by necessity a large document. As their missions have grown and diversified over the past decades, the variety of technical and site activities has increased. The programs and activities described here cover an enormous breadth of scientific and technological effort--from the creation of new materials to the development of a Sandia-wide electronic communications system. Today, there are three major themes that greatly influence this work. First, every federally funded institution is being challenged to find ways to become more cost effective, as the US seeks to reduce the deficit and achieve a balanced federal spending plan. Sandia is evaluating its business and operational processes to reduce the overall costs. Second, in response to the Galvin Task Force`s report ``Alternative Futures for the Department of Energy National Laboratories``, Sandia and the Department of Energy are working jointly to reduce the burden of administrative and compliance activities in order to devote more of the total effort to their principal research and development missions. Third, they are reevaluating the match between their missions and the programs they will emphasize in the future. They must demonstrate that Sandia`s roles--in national security, energy security, environmental integrity, and national scientific and technology agenda support--fit their special capabilities and skills and thus ensure their place in these missions for the longer planning horizon. The following areas are covered here: Sandia`s mission; laboratory directives; programmatic activities; technology partnerships and commercialization; Sandia`s resources; and protecting resources and the community.

  2. Secondary standard dosimetry laboratory at the Boris Kidric Institute

    International Nuclear Information System (INIS)

    Kovacevic, M.; Velickovic, D.; Vukcevic, M.

    1989-01-01

    Essential data about Secondary Standard Dosimetry Laboratory at the Boris Kidric Institute are stated in this paper. The description of the laboratory is given and the possibilities of X, gamma and neutron dose measurements, as well as the basic equipment (author)

  3. Environmental Measurements Laboratory (EML) procedures manual

    International Nuclear Information System (INIS)

    Chieco, N.A.; Bogen, D.C.; Knutson, E.O.

    1990-11-01

    Volume 1 of this manual documents the procedures and existing technology that are currently used by the Environmental Measurements Laboratory. A section devoted to quality assurance has been included. These procedures have been updated and revised and new procedures have been added. They include: sampling; radiation measurements; analytical chemistry; radionuclide data; special facilities; and specifications. 228 refs., 62 figs., 37 tabs. (FL)

  4. Idaho National Laboratory Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Joanne L. Knight

    2008-04-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  5. Lawrence Livermore National Laboratory Environmental Report 2014

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buscheck, W. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Byrne, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bish, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratanduono, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, A. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montemayor, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, H. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Swanson, K. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-29

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2014 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  6. Idaho National Laboratory Site Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Joanne L. Knight

    2012-08-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  7. Idaho National Laboratory Site Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Joanne L. Knight

    2010-10-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  8. Lawrence Livermore National Laboratory Environmental Report 2015

    Energy Technology Data Exchange (ETDEWEB)

    Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-22

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  9. Pacific Northwest National Laboratory institutional plan FY 1997--2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research fundamental knowledge is created of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. Legacy environmental problems are solved by delivering technologies that remedy existing environmental hazards, today`s environmental needs are addressed with technologies that prevent pollution and minimize waste, and the technical foundation is being laid for tomorrow`s inherently clean energy and industrial processes. Pacific Northwest National Laboratory also applies its capabilities to meet selected national security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. Brief summaries are given of the various tasks being carried out under these broad categories.

  10. Implementation of ISO 17025 in the Eletronuclear Environmental Monitoring Laboratory

    International Nuclear Information System (INIS)

    Baliza, Ana Rosa; Caetano, Carla de Brito

    2017-01-01

    In order to grant Angra 3 power plant operation license, the Brazilian Institute for the Environment and Renewable Natural Resources (IBAMA), in the IBAMA Installation License 591/2009 condition 2.24, required that Eletronuclear has to obtain the Environmental Monitoring Laboratory accreditation, in accordance with the requirements of NBR ISO / IEC 17025 standard. The accreditation is the formal recognition that a laboratory has a quality assurance system and technical competence to perform specific tests, evaluated according to the criteria based on NBR ISO/IEC 17025 (General requirements for testing and calibration laboratories competence) standard. In Brazil, the General Accreditation Coordination (CGCRE), according to the guidelines already explained by the Brazilian System of Conformity Assessment (INMETRO), does accreditation. The INMETRO is the only official accrediting body in Brazil and internationally recognized by the International Accreditation Forum (IAF). The Environmental Monitoring Laboratory at Eletronuclear is an analytical laboratory of chemical, radiochemical and biological tests, which analyzes several matrices, such as seawater, river water, marine sediment, beach sand, soil, pasture, banana, milk, besides marine sea life, around the Central Almirante Álvaro Alberto power plant station. It is licensed by CNEN, INEA, IBAMA and it follows national and international standards in the performance of the tests as well as in the collection and preparation of samples. This article describes the main steps that the Eletronuclear Environmental Monitoring Laboratory followed to implement ISO 17025. (author)

  11. Implementation of ISO 17025 in the Eletronuclear Environmental Monitoring Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Baliza, Ana Rosa; Caetano, Carla de Brito, E-mail: baliza@eletronuclear.gov.br [Eletrobrás Termonuclear S.A. (ELETRONUCLEAR), Angra dos Reis, RJ (Brazil)

    2017-07-01

    In order to grant Angra 3 power plant operation license, the Brazilian Institute for the Environment and Renewable Natural Resources (IBAMA), in the IBAMA Installation License 591/2009 condition 2.24, required that Eletronuclear has to obtain the Environmental Monitoring Laboratory accreditation, in accordance with the requirements of NBR ISO / IEC 17025 standard. The accreditation is the formal recognition that a laboratory has a quality assurance system and technical competence to perform specific tests, evaluated according to the criteria based on NBR ISO/IEC 17025 (General requirements for testing and calibration laboratories competence) standard. In Brazil, the General Accreditation Coordination (CGCRE), according to the guidelines already explained by the Brazilian System of Conformity Assessment (INMETRO), does accreditation. The INMETRO is the only official accrediting body in Brazil and internationally recognized by the International Accreditation Forum (IAF). The Environmental Monitoring Laboratory at Eletronuclear is an analytical laboratory of chemical, radiochemical and biological tests, which analyzes several matrices, such as seawater, river water, marine sediment, beach sand, soil, pasture, banana, milk, besides marine sea life, around the Central Almirante Álvaro Alberto power plant station. It is licensed by CNEN, INEA, IBAMA and it follows national and international standards in the performance of the tests as well as in the collection and preparation of samples. This article describes the main steps that the Eletronuclear Environmental Monitoring Laboratory followed to implement ISO 17025. (author)

  12. Legal and Institutional Foundations of Adaptive Environmental ...

    Science.gov (United States)

    Legal and institutional structures fundamentally shape opportunities for adaptive governance of environmental resources at multiple ecological and societal scales. Properties of adaptive governance are widely studied. However, these studies have not resulted in consolidated frameworks for legal and institutional design, limiting our ability to promote adaptation and social-ecological resilience. We develop an overarching framework that describes the current and potential role of law in enabling adaptation. We apply this framework to different social-ecological settings, centers of activity, and scales, illustrating the multidimensional and polycentric nature of water governance. Adaptation typically emerges organically among multiple centers of agency and authority in society as a relatively self-organized or autonomous process marked by innovation, social learning, and political deliberation. This self-directed and emergent process is difficult to create in an exogenous, top-down fashion. However, traditional centers of authority may establish enabling conditions for adaptation using a suite of legal, economic, and democratic tools to legitimize and facilitate self-organization, coordination, and collaboration across scales. The principles outlined here provide preliminary legal and institutional foundations for adaptive environmental governance, which may inform institutional design and guide future scholarship. Adaptation typically emerges organically among m

  13. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    International Nuclear Information System (INIS)

    1995-09-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R ampersand D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)

  14. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R&D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

  15. Environmental Audit of the Environmental Measurements Laboratory (EML)

    International Nuclear Information System (INIS)

    1992-02-01

    This document contains the findings identified during the Environmental Audit of the Environmental Measurements Laboratory (EML), conducted from December 2 to 13, 1991. The Audit included the EML facility located in a fifth-floor General Services Administration (GSA) office building located in New York City, and a remote environmental monitoring station located in Chester, New Jersey. The scope of this Environmental Audit was comprehensive, covering all areas of environmental activities and waste management operations, with the exception of the National Environmental Policy Act (NEPA), which is the responsibility of the DOE Headquarters Office of NEPA Oversight. Compliance with applicable Federal, state, and local requirements; applicable DOE Orders; and internal facility requirements was addressed

  16. Pacific Northwest National Laboratory Institutional Plan FY 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Erik W.

    2000-03-01

    The Pacific Northwest National Laboratory Institutional Plan for FY 2000-2004 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; management practices and standards; and communications and trust.

  17. Pacific Northwest National Laboratory Institutional Plan FY 2001-2005

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Darrell R.; Pearson, Erik W.

    2000-12-29

    The Pacific Northwest National Laboratory Institutional Plan for FY 2001-2005 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; managaement procatices and standards; and communications and trust.

  18. Lawrence Livermore National Laboratory Environmental Report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H E; Bertoldo, N A; Campbell, C G; Cerruti, S J; Coty, J D; Dibley, V R; Doman, J L; Grayson, A R; MacQueen, D H; Wegrecki, A M; Armstrong, D H; Brigdon, S L; Heidecker, K R; Hollister, R K; Khan, H N; Lee, G S; Nelson, J C; Paterson, L E; Salvo, V J; Schwartz, W W; Terusaki, S H; Wilson, K R; Woods, J M; Yimbo, P O; Gallegos, G M; Terrill, A A; Revelli, M A; Rosene, C A; Blake, R G; Woollett, J S; Kumamoto, G

    2011-09-14

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff

  19. Lawrence Livermore National Laboratory Environmental Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dibley, V. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doman, J. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, A. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heidecker, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumamoto, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montemayor, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, H. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Veseliza, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-01

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security, LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  20. Lawrence Livermore National Laboratory Environmental Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Henry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Armstrong, Dave [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, Rick G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, Nicholas A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, Steven J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, Craig [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dibley, Valerie R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doman, Jennifer L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, Allen R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heidecker, Kelly R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hollister, Rod K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumamoto, Gene [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, Donald H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nelson, Jennifer C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, Heather L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, Lisa E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, Crystal A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, Alison A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, Anthony M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, Kent R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, Jim S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-19

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security, LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  1. Environmental Measurements Laboratory program review, December 1983

    International Nuclear Information System (INIS)

    Volchok, H.L.; de Planque, G.

    1984-03-01

    This volume contains all of the written material that was submitted to the panel of Reviewers in advance of a Program Review conducted by the US Department of Energy, Office of Health and Environmental Research at the Environmental Measurements Laboratory (EML) December 7-9, 1983. In addition to a general introduction there are nineteen papers grouped into the five broad program categories covering all of the scientific and engineering projects of the Laboratory: Natural Radioactivity and Radiation, Anthropogenic Radioactivity and Radiation, Non-nuclear, Quality Assurance, and Development and Support. These short articles, for the most part, focus on the rationale for EML's involvement in each project, emphasizing their relevance to the EML and Department of Energy missions. Project results and their interpretation were presented at the Review and can be found in the material referenced in this volume

  2. Environmental Measurements Laboratory, annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Krey, P.W.; Heit, M. [eds.

    1996-07-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1995 and serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the Manager and staff of the Chicago Operations Office, and our colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven research program areas: (1) Environmental Radiation and Radioactivity; (2) Radiation Transport and Dosimetry; (3) Environmental Radon, Thoron, and Related Aerosols; (4) Atmospheric and Surface Pollutant Studies Related to Global Climate Change; (5) Atmospheric Chemistry; and (6) Metrology, Consultation, and Emergency Response Environmental Management The mission of EML is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues, and related national security issues.

  3. Environmental Measurements Laboratory, annual report 1995

    International Nuclear Information System (INIS)

    Krey, P.W.; Heit, M.

    1996-07-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1995 and serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the Manager and staff of the Chicago Operations Office, and our colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven research program areas: (1) Environmental Radiation and Radioactivity; (2) Radiation Transport and Dosimetry; (3) Environmental Radon, Thoron, and Related Aerosols; (4) Atmospheric and Surface Pollutant Studies Related to Global Climate Change; (5) Atmospheric Chemistry; and (6) Metrology, Consultation, and Emergency Response Environmental Management The mission of EML is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues, and related national security issues

  4. Environmental Measurements Laboratory 1994 annual report

    International Nuclear Information System (INIS)

    Chieco, N.A.; Krey, P.W.; Beck, H.L.

    1995-08-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1994 and it serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the manager and staff of the Chicago Field Office, and the authors colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven general program areas: environmental radiation and radioactivity; radiation transport and dosimetry; environmental radon, thoron, and related aerosols; atmospheric and surface pollutant studies related to global climate change; atmospheric chemistry; metrology, consultation, and emergency response; environmental management. EML's mission is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants, and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues and related national security issues

  5. Environmental Measurements Laboratory 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Chieco, N.A. [ed.; Krey, P.W.; Beck, H.L.

    1995-08-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1994 and it serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the manager and staff of the Chicago Field Office, and the authors colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven general program areas: environmental radiation and radioactivity; radiation transport and dosimetry; environmental radon, thoron, and related aerosols; atmospheric and surface pollutant studies related to global climate change; atmospheric chemistry; metrology, consultation, and emergency response; environmental management. EML`s mission is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants, and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues and related national security issues.

  6. Pacific Northwest National Laboratory institutional plan FY 1998--2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research the lab creates fundamental knowledge of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. They solve legacy environmental problems by delivering technologies that remedy existing environmental hazards, they address today`s environmental needs with technologies that prevent pollution and minimize waste, and they are laying the technical foundation for tomorrow`s inherently clean energy and industrial processes. The lab also applies their capabilities to meet selected national security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. The paper summarizes individual research activities under each of these areas.

  7. Reducing the Environmental Impact of Clinical Laboratories.

    Science.gov (United States)

    Lopez, Joseph B; Jackson, David; Gammie, Alistair; Badrick, Tony

    2017-02-01

    Healthcare is a significant contributor to environmental impact but this has received little attention. The typical laboratory uses far more energy and water per unit area than the typical office building. There is a need to sensitise laboratories to the importance of adopting good environmental practices. Since this comes at an initial cost, it is vital to obtain senior management support. Convincing management of the various tangible and intangible benefits that can accrue in the long run should help achieve this support. Many good environmental practices do not have a cost but will require a change in the culture and mind-set of the organisation. Continuing education and training are important keys to successful implementation of good practices. There is a need to undertake a rigorous cost-benefit analysis of every change that is introduced in going green. The adoption of good practices can eventually lead to ISO certification if this is desired. This paper provides suggestions that will allow a laboratory to start going green. It will allow the industry to enhance its corporate citizenship whilst improving its competitive advantage for long-term.

  8. Oak Ridge National Laboratory Institutional Plan, FY 1991--FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    The Oak Ridge National Laboratory -- one of DOE's major multiprogram laboratories -- focuses its resources on energy research and development (R D). To be able to meet these R D challenges, the Laboratory must achieve excellence in its operations relative to environmental, safety, and health (ES H) protection and to restore its aging facility infrastructure. ORNL's missions are carried out in compliance with all applicable ES H regulations. The Laboratory conducts applied R D in energy technologies -- in conservation; fission; magnetic fusion; health and environmental protection; waste management; renewable resources; and fossil energy. Experimental and theoretical research is undertaken to investigate fundamental problems in physical, chemical, materials, computational, biomedical, earth, and environmental sciences; to advance scientific knowledge; and to support energy technology R D. ORNL designs, builds, and operates unique research facilities for the benefit of university, industrial, and national laboratory researchers. The Laboratory serves as a catalyst in bringing national and international research elements together for important scientific and technical collaborations. ORNL helps to prepare the scientific and technical work force of the future by offering innovative and varied learning and R D experiences at the Laboratory for students and faculty from preschool level through postdoctoral candidates. The transfer of science and technology to US industries and universities is an integral component of ORNL's R D missions. ORNL also undertakes research and development for non-DOE sponsors when such work is synergistic with DOE mission. 66 figs., 55 tabs.

  9. Oak Ridge National Laboratory Institutional Plan, FY 1991--FY 1996

    International Nuclear Information System (INIS)

    1991-02-01

    The Oak Ridge National Laboratory -- one of DOE's major multiprogram laboratories -- focuses its resources on energy research and development (R ampersand D). To be able to meet these R ampersand D challenges, the Laboratory must achieve excellence in its operations relative to environmental, safety, and health (ES ampersand H) protection and to restore its aging facility infrastructure. ORNL's missions are carried out in compliance with all applicable ES ampersand H regulations. The Laboratory conducts applied R ampersand D in energy technologies -- in conservation; fission; magnetic fusion; health and environmental protection; waste management; renewable resources; and fossil energy. Experimental and theoretical research is undertaken to investigate fundamental problems in physical, chemical, materials, computational, biomedical, earth, and environmental sciences; to advance scientific knowledge; and to support energy technology R ampersand D. ORNL designs, builds, and operates unique research facilities for the benefit of university, industrial, and national laboratory researchers. The Laboratory serves as a catalyst in bringing national and international research elements together for important scientific and technical collaborations. ORNL helps to prepare the scientific and technical work force of the future by offering innovative and varied learning and R ampersand D experiences at the Laboratory for students and faculty from preschool level through postdoctoral candidates. The transfer of science and technology to US industries and universities is an integral component of ORNL's R ampersand D missions. ORNL also undertakes research and development for non-DOE sponsors when such work is synergistic with DOE mission. 66 figs., 55 tabs

  10. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.

  11. Idaho National Laboratory Site Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Nordstrom, Jenifer [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-02-01

    This plan provides a high-level summary of environmental monitoring performed by various organizations within and around the Idaho National Laboratory (INL) Site as required by U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and DOE Order 458.1, Radiation Protection of the Public and the Environment, Guide DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, and in accordance with 40 Code of Federal Regulations (CFR) 61, National Emission Standards for Hazardous Air Pollutants. The purpose of these orders is to 1) implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations, and 2) to establish standards and requirements for the operations of DOE and DOE contractors with respect to protection of the environment and members of the public against undue risk from radiation. This plan describes the organizations responsible for conducting environmental monitoring across the INL Site, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. Detailed monitoring procedures, program plans, or other governing documents used by contractors or agencies to implement requirements are referenced in this plan. This plan covers all planned monitoring and environmental surveillance. Non-routine activities such as special research studies and characterization of individual sites for environmental restoration are outside the scope of this plan.

  12. Institutional and environmental aspects of geothermal energy development

    Science.gov (United States)

    Citron, O. R.

    1977-01-01

    Until recently, the majority of work in geothermal energy development has been devoted to technical considerations of resource identification and extraction technologies. The increasing interest in exploiting the variety of geothermal resources has prompted an examination of the institutional barriers to their introduction for commercial use. A significant effort was undertaken by the Jet Propulsion Laboratory as a part of a national study to identify existing constraints to geothermal development and possible remedial actions. These aspects included legislative and legal parameters plus environmental, social, and economic considerations.

  13. Laboratory/industry partnerships for environmental remediation

    International Nuclear Information System (INIS)

    Beskid, N.J.; Zussman, S.K.

    1994-01-01

    There are two measures of ''successful'' technology transfer in DOE's environmental restoration and waste management program. The first is remediation of DOE sites, and the second is commercialization of an environmental remediation process or product. The ideal case merges these two in laboratory/industry partnerships for environmental remediation. The elements to be discussed in terms of their effectiveness in aiding technology transfer include: a decision-making champion; timely and sufficient funding; well organized technology transfer function; well defined DOE and commercial markets; and industry/commercial partnering. Several case studies are presented, including the successful commercialization of a process for vitrification of low-level radioactive waste, the commercial marketing of software for hazardous waste characterization, and the application of a monitoring technique that has won a prestigious technical award. Case studies will include: vitrification of low-level radioactive waste (GTS Duratek, Columbia, MD); borehole liner for emplacing instrumentation and sampling groundwater (Science and Engineering Associates, Inc., Santa Fe, NM); electronic cone penetrometer (Applied Research Associates, Inc., South Royalton, VT); and software for hazardous waste monitoring ConSolve, Inc. (Lexington, MA). The roles of the Department of Energy and Argonne National Laboratory in these successes will be characterized

  14. Environmental monitoring report: Sandia Laboratories, 1976

    International Nuclear Information System (INIS)

    Simmons, T.N.

    1977-04-01

    Water and vegetation are monitored to determine Sandia Laboratories impact on the surrounding environment. Nonradioactive pollutants released are reported. Radioactive effluents are also reported and their person-rem contribution to the Albuquerque population is calculated. The environmental monitoring for calendar year 1976 shows that concentrations of radioactive materials in the Albuquerque area are typical of natural background for the area. An exception is a single onsite location where slightly abnormal uranium concentrations are expected. An estimated 0.044 person-rem Albuquerque area (80 km radius) population dose commitment results from calculated Sandia Laboratories releases. Over the same area 57,000 person-rem is accumulated from natural background. There were no measurable offsite radioactive effluent releases in CY 1976

  15. Institutional Plan, FY 1993--1998, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-01-01

    This document presents the plans and goals of the Idaho National Engineering Laboratory for FY 1993--1998. Areas discussed in this document include: INEL strategic view; initiatives; scientific and technical programs; environmental, safety, and health management, technology transfer, science and math education, and community affairs; human resources; site and facilities; and resource projections

  16. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    Energy Technology Data Exchange (ETDEWEB)

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.; Olson, Karl R.; Grether, Donald F.; Clary, Mary M.; Smith, Brian M.; Stevens, David F.; Ross, Loren; Alper, Mark D.; Dairiki, Janis M.; Fong, Pauline L.; Bartholomew, James C.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.

  17. Sandia National Laboratories Institutional Plan FY1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defense imperatives.

  18. Oak Ridge National Laboratory Institutional Plan FY 1984-FY 1989

    International Nuclear Information System (INIS)

    1983-11-01

    In this plan, Oak Ridge National Laboratory (ORNL) continues to be committed to scientific and technological research that is based on technical excellence and innovation and that provides a foundation for and a stimulus to broader and more sustained economic growth. DOE is being asked to assist in establishing a new program for Laboratory cooperation with industry, beginning with an initial focus on materials science. The current Institutional Plan thus projects growth in the materials science area as well as in other basic physical science areas and suggests a new initiative designed to extend the various technology transfer activities and to make them more effective by using ORNL as the trial Laboratory for some of these different approaches. This Institutional Plan projects a stable future for ORNL, with only modest amounts of growth in selected areas of research for the FY 1984-FY 1989 planning cycle. Summaries of the overall picture of the proposed budget and personnel levels for the current planning cycle are included. Scientific programs, laboratory resource development, and private sector interactions are discussed

  19. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.

  20. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It also summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.

  1. Brookhaven National Laboratory site environmental report for calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A. [eds.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory.

  2. 1995 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Shyr, L.J.; Duncan, D.; Sanchez, R.

    1996-09-01

    This 1995 report contains data from routine radiological and non-radiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration and various waste management programs at Sandia National Laboratories in Albuquerque, New Mexico, are included

  3. 1995 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, L.J.; Duncan, D. [eds.; Sanchez, R.

    1996-09-01

    This 1995 report contains data from routine radiological and non-radiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration and various waste management programs at Sandia National Laboratories in Albuquerque, New Mexico, are included.

  4. Environmental Molecular Sciences Laboratory Annual Report: Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Nancy S.; Showalter, Mary Ann

    2007-03-23

    This report describes the activities and research performed at the Environmental Molecular Sciences Laboratory, a Department of Energy national scientific user facility at Pacific Northwest National Laboratory, during Fiscal Year 2006.

  5. Oak Ridge National Laboratory institutional plan, FY 1990--FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    The Oak Ridge National Laboratory is one of DOE's major multiprogram energy laboratories. ORNL's program missions are (1) to conduct applied research and engineering development in support of DOE's programs in fusion, fission, fossil, renewables (biomass), and other energy technologies, and in the more efficient conversion and use of energy (conservation) and (2) to perform basic scientific research in selected areas of the physical and life sciences. These missions are to be carried out in compliance with environmental, safety, and health regulations. Transfer of science and technology is an integral component of our missions. A complementary mission is to apply the Laboratory's resources to other nationally important tasks when such work is synergistic with the program missions. Some of the issues addressed include education, international competitiveness, hazardous waste research and development, and selected defense technologies. In addition to the R D missions, ORNL performs important service roles for DOE; these roles include designing, building, and operating user facilities for the benefit of university and industrial researchers and supplying radioactive and stable isotopes that are not available from private industry. Scientific and technical efforts in support of the Laboratory's missions cover a spectrum of activities. In fusion, the emphasis is on advanced studies of toroidal confinement, plasma heating, fueling systems, superconducting magnets, first-wall and blanket materials, and applied plasma physics. 69 figs., 49 tabs.

  6. Brookhaven National Laboratory site environmental report for calendar year 1994

    International Nuclear Information System (INIS)

    Naidu, J.R.; Royce, B.A.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory's operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory

  7. Sandia National Laboratories Institutional Plan: FY 1999-2004

    Energy Technology Data Exchange (ETDEWEB)

    Garber, D.P.

    1999-01-06

    This Institutional Plan is the most comprehensive yearly "snapshot" available of Sandia National Laboratories' major programs, facilities, human resources, and budget. The document also includes overviews of our missions, organization, capabilities, planning functions, milestones, and accomplishments. The document's purpose is to provide the above information to the US Department of Energy, key congressional committees, Sandia management, and other present and potential customers. Chapter 2 presents information about Sandia's mission and summarizes our recent revision of Sandia's Strategic Plan. Chapter 3 presents an overview of Sandia's strategic objectives, chapter 4 lists laboratory goals and milestones for FY 1999, and chapter 5 presents our accomplishments during FY 1998. Chapters 3 through 5 are organized around our eight strategic objectives. The four primary objectives cover nuclear weapons responsibilities, nonproliferation and materials control, energy and critical infrastructures, and emerging national security threats. The major programmatic initiatives are presented in chapter 7. However, the programmatic descriptions in chapter 6 and the Associated funding tables in chapter 9 continue to be presented by DOE Budget and Reporting Code, as in previous Sandia institutional plans. As an aid to the reader, the four primary strategic objectives in chapter 3 are cross-referenced to the program information in chapter 6.

  8. Laboratory Support Services for Environmental Testing

    National Research Council Canada - National Science Library

    1997-01-01

    ...) were effectively managing their contracts for environmental test services and whether DoD organizations were effectively performing quality assurance procedures on environmental test results received...

  9. Water and Environmental Research Institute of the Western Pacific

    Science.gov (United States)

    Water and Environmental Research Institute of the Western Pacific - University of Guam Skip to main entered the website of the Water and Environmental Research Institute of the Western Pacific (WERI) at the CNMI and the FSM. Research Programs Weather and Climate Surface Water & Watersheds Groundwater &

  10. Brookhaven National Laboratory site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, G.L.; Paquette, D.E.; Naidu, J.R.; Lee, R.J.; Briggs, S.L.K.

    1998-01-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1996. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and non-radiological emissions and effluents to the environment.

  11. Annual site environmental report of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schleimer, G.E.; Pauer, R.O.

    1991-05-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1990 are presented, and general trends are discussed. The report is organized under the following topics: Environmental Program Overview; Environmental Permits; Environmental Assessments; Environmental Activities; Penetrating Radiation; Airborne Radionuclides; Waterborne Radionuclides; Public Doses Resulting from LBL Operations; Trends -- LBL Environmental Impact; Waterborne Pollutants; Airborne Pollutants; Groundwater Protection; and Quality Assurance. 20 refs., 26 figs., 23 tabs

  12. Institutional Variables and Perceived Environmental Concerns in Higher Education.

    Science.gov (United States)

    Michael, Steve O.

    1995-01-01

    Discusses the effects of worsening financial constraints evident in all aspects of higher education institutions. Examines differences and similarities in institutional leaders' opinions regarding environmental concerns. All Alberta, Canada, higher education institutions are experiencing similar problems. There is no deliberate shift in government…

  13. Stakeholders and environmental management practices: an institutional framework

    Energy Technology Data Exchange (ETDEWEB)

    Delmas, Magali [California Univ., Santa Barbara, CA (United States); Toffel, Michael W. [California Univ., Berkeley, CA (United States)

    2004-07-01

    Despite burgeoning research on companies' environmental strategies and environmental management practices, it remains unclear why some firms adopt environmental management practices beyond regulatory compliance. This paper leverages institutional theory by proposing that stakeholders - including governments, regulators, customers, competitors, community and environmental interest groups, and industry associations - impose coercive and normative pressures on firms. However, the way in which managers perceive and act upon these pressures at the plant level depends upon plant- and parent-company-specific factors, including their track record of environmental performance, the competitive position of the parent company and the organizational structure of the plant. Beyond providing a framework of how institutional pressures influence plants' environmental management practices, various measures are proposed to quantify institutional pressures, key plant-level and parent-company-level characteristics and plant-level environmental management practices. (Author)

  14. The Legislative and Institutional Framework of Environmental

    African Journals Online (AJOL)

    Mofasony

    regime in Nigeria given the scenario that several times burst oil pipelines have stayed for days ... understand the meaning of the term environmental protection. ..... of methods, materials and equipment for oil spill detection and response;.

  15. Laboratory interface in support of Environmental Restoration Programs

    International Nuclear Information System (INIS)

    Pardue, G.J. Jr.

    1994-01-01

    A vital part of quality environmental data resides in the communication between the project and the analytical laboratory. It is essential that the project clearly identify its objectives to the laboratory and that the laboratory understands the scope and limitations of the analytical process. Successful completion of an environmental project must include an aggressive program between project managers and subcontracted Lyrical laboratories. All to often, individuals and organizations tend to deflect errors and failures observed in environmental toward open-quotes the other guyclose quotes. The engineering firm will blame the laboratory, the laboratory will blame the field operation, the field operation will blame the engineering, and everyone will blame the customer for not understanding the true variables in the environmental arena. It is the contention of the authors, that the majority of failures derive from a lack of communication and misunderstanding. Several initiatives can be taken to improve communication and understanding between the various pieces of the environmental data quality puzzle. This presentation attempts to outline mechanisms to improve communication between the environmental project and the analytical laboratory with the intent of continuous quality improvement. Concepts include: project specific laboratory statements of work which focus on project and program requirements; project specific analytical laboratory readiness reviews (project kick-off meetings); laboratory team workshops; project/program performance tracking and self assessment and promotion of team success

  16. Environmental Programs: National Renewable Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    2001-05-01

    Major NREL environmental programs and initiatives include: integrated energy and environmental strategies; implementation of air pollution programs and climate change programs; Green Power Network; environmental and economic impacts and benefits of energy efficiency and renewable energy (EERE) technologies; technology transfer between developed and developing countries; greenhouse gas emission reduction projects; climate change action plans with developing countries and development of life cycle assessments.

  17. Brookhaven National Laboratory site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Paquette, D.E.; Schroeder, G.L. [eds.] [and others

    1996-12-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1995. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment. Areas of known contamination are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement established by the Department of Energy, Environmental Protection Agency and the New York Department of Environmental Conservation. Except for identified areas of soil and groundwater contamination, the environmental monitoring data has continued to demonstrate that compliance was achieved with the applicable environmental laws and regulations governing emission and discharge of materials to the environment. Also, the data show that the environmental impacts at Brookhaven National Laboratory are minimal and pose no threat to the public nor to the environment. This report meets the requirements of Department of Energy Orders 5484.1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

  18. Performance evaluation of the food and environmental monitoring radio-analytical laboratory in Ghana

    International Nuclear Information System (INIS)

    Agyeman, Lilian Ataa

    2016-06-01

    Since the establishment of the Radiation Protection Institute’s Food and Environmental Laboratory in 1988, there has never been any thorough evaluation of the activities of the facility to provide assurance of the quality of analytical results produced by the laboratory. The objective of this study, therefore, was to assess the performance level of the Food and Environmental monitoring laboratory with respect to the requirements for a standard analytical laboratory (IAEA, 1989) and ISO 17025. The study focused on the performance of the Gamma Spectrometry laboratory of the Radiation Protection Institute, Ghana Atomic Energy Commission which has been involved in monitoring of radionuclides in food and environmental samples. In doing that, data from 1988 to 2015 was reviewed to ascertain whether the Laboratory has being performing as required in providing quality results on food and environmental samples measured. Besides this data (records kept), the evaluation also covered some Technical Quality Control measures, such as Energy and Efficiency Calibration, that need to be put in place for such laboratories. The laboratory meets almost all conditions and equipment requirements of IAEA (1989), however the laboratory falls short of the management requirements of ISO 17025. Based on the results it was recommended, among others, that management of the laboratory should ensure there are procedures for how calibration and testing is performed for different types of equipment and also the competence of all who operate specific equipment, perform tests, evaluate results and sign test reports ensured. (au)

  19. Environmental monitoring report, Sandia Laboratories 1975

    International Nuclear Information System (INIS)

    Holley, W.L.; Simmons, T.N.

    1976-04-01

    Water and vegetation are monitored to determine Sandia Laboratories impact on the surrounding environment. Nonradioactive pollutants released are reported. Radioactive effluents are also reported and their person-rem contribution to the population is calculated

  20. The University of California Institute of Environmental Stress Marathon Field Studies

    Science.gov (United States)

    Maron, Michael B.

    2014-01-01

    In 1973, the Institute of Environmental Stress of the University of California-Santa Barbara, under the direction of Steven M. Horvath, began a series of field and laboratory studies of marathon runners during competition. As one of Horvath's graduate students, many of these studies became part of my doctoral dissertation. The rationale for…

  1. 75 FR 78719 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2010-12-16

    ... for Laboratory Animal Pain Assessment. Date: January 10, 2011. Time: 9 a.m. to 10 a.m. Agenda: To... from Environmental Exposures; 93.142, NIEHS Hazardous Waste Worker Health and Safety Training; 93.143...; 93.114, Applied Toxicological Research and Testing, National Institutes of Health, HHS) Dated...

  2. Lawrence Livermore National Laboratory Environmental Report 2016

    Energy Technology Data Exchange (ETDEWEB)

    Rosene, Crystal [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-21

    The purposes of the Environmental Report 2016 are to record LLNL’s compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring. Specifically, the report discusses LLNL’s EMS; describes significant accomplishments in pollution prevention; presents the results of air, water, vegetation, and foodstuff monitoring; reports radiological doses from LLNL operations; summarizes LLNL’s activities involving special status wildlife, plants, and habitats; and describes the progress LLNL has made in remediating groundwater contamination. Environmental monitoring at LLNL, including analysis of samples and data, is conducted according to documented standard operating procedures. Duplicate samples are collected and analytical results are reviewed and compared to internal acceptance standards. This report is prepared for DOE by LLNL’s Environmental Functional Area (EFA). Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.” The report is distributed in electronic form and is available to the public at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning with 1994 are also on the website.

  3. Proposals for the mitigation of the environmental impact of clinical laboratories.

    Science.gov (United States)

    Lopez, Joseph B; Badrick, Tony

    2012-03-24

    Laboratories should be aware of the carbon footprint resulting from their activities and take steps to mitigate it as part of their societal responsibilities. Once committed to a mitigation programme, they should announce an environmental policy, secure the support of senior management, initiate documentation, institute a staff training programme, schedule environmental audits and appoint an environmental manager. Laboratories may aspire to be accredited to one of the standards for environmental management, such as the ISO 14000. As environmental and quality issues are linked, the improvement in the environmental management of an organisation will ultimately lead to improved quality system performance. Indeed, environmental management could conceivably come under overall quality management. Although there will be initial costs, good environmental practices can bring savings. Environmental improvement should be based on the 3R concept to reduce, reuse and recycle. Several policy initiatives may be introduced. These include a green purchasing policy for equipment, laboratory furniture and reagents as well as the management of packaging wastes. There are several ways to reduce energy, water usage and wastage. A reduction of test numbers and collection tubes should be attempted. Paper management involves all aspects of 3R. The recycling of solvents and general wastes should be practised where feasible. The construction new laboratories or renovations to existing ones are opportunities to make them more environmentally-friendly. The advocacy of policies to associates and the inclusion of environmentally-friendly conditions on contractors are integral parts of the programme.

  4. Legal and Institutional Foundations of Adaptive Environmental Governance

    Science.gov (United States)

    Legal and institutional structures fundamentally shape opportunities for adaptive governance of environmental resources at multiple ecological and societal scales. Properties of adaptive governance are widely studied. However, these studies have not resulted in consolidated frame...

  5. 1993 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Culp, T.A.; Cheng, C.F.; Cox, W.; Durand, N.; Irwin, M.; Jones, A.; Lauffer, F.; Lincoln, M.; McClellan, Y.; Molley, K.

    1994-11-01

    This 1993 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0016 millirem. The total population within a 50-mile (80 kilometer) radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.027 person-rem during 1993 from the laboratories operations, As in the previous year, the 1993 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1

  6. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Chartock, Mike (ed.); Hansen, Todd (ed.)

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  7. Site Environmental Report for 2007: Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Environmental Management Dept.

    2008-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2007 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2007. General site and environmental program information is also included.

  8. Site environmental report for 2011. Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2012-05-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractoroperated laboratory. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2011 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2011. General site and environmental program information is also included.

  9. Site environmental report for 2008 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2009-04-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2008 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2008. General site and environmental program information is also included.

  10. Site environmental report for 2004 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. (Sandia National Laboratories, Livermore, CA)

    2005-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2004 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2004. General site and environmental program information is also included.

  11. Site environmental report for 2003 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2004-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2003 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2003. General site and environmental program information is also included.

  12. Site environmental report for 2006 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2006 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2006. General site and environmental program information is also included.

  13. Site environmental report for 2005 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2006-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2005 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2005. General site and environmental program information is also included.

  14. Site Environmental Report for 2012 Sandia National Laboratories California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-05-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2012 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2012. General site and environmental program information is also included.

  15. Environmental Survey preliminary report, Solar Energy Research Institute, Golden, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the US Department of Energy's (DOE) Solar Energy Research Institute (SERI), conducted December 14 through 18, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by private contractors. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with SERI. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at SERI, and interviews with site personnel. 33 refs., 22 figs., 21 tabs.

  16. The Advanced Technology Environmental Education Center Summer Fellows Institute.

    Science.gov (United States)

    Depken, Diane E.; Zeman, Catherine L.; Lensch, Ellen Kabat; Brown, Edward J.

    2002-01-01

    Describes the background, activities, and outcomes of the Advanced Technology Environmental Education Center (ATEEC) and its Summer Fellows Institutes as a model for disciplinary and cross-disciplinary infusion of environmental science and technology content, curriculum, and methods into the classroom. Presents experiences, themes, and activities…

  17. Environmental Survey preliminary report, Argonne National Laboratory, Argonne, Illinois

    International Nuclear Information System (INIS)

    1988-11-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Argonne National Laboratory (ANL), conducted June 15 through 26, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ANL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S ampersand A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S ampersand A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the S ampersand A results will be incorporated into the Argonne National Laboratory Environmental Survey findings for inclusion in the Environmental Survey Summary Report. 75 refs., 24 figs., 60 tabs

  18. Environmental Survey preliminary report, Argonne National Laboratory, Argonne, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Argonne National Laboratory (ANL), conducted June 15 through 26, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ANL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the S A results will be incorporated into the Argonne National Laboratory Environmental Survey findings for inclusion in the Environmental Survey Summary Report. 75 refs., 24 figs., 60 tabs.

  19. Brookhaven National Laboratory, Upton, New York final environmental impact statement

    International Nuclear Information System (INIS)

    Liverman, J.L.

    1977-07-01

    Generally, data used for the statement were those which had been accumulated through the calendar year 1973. Since 1973, Environmental Monitoring Reports have been published for calendar years 1974 and 1975. A review of these more recent documents reveals that the data contained therein lead to no significant change in the conclusions drawn in this Environmental Impact Statement. Past Laboratory operations were considered only insofar as they contribute to continuing environmental impacts. Environmental effects were considered solely with respect to off-site consequences, the only exception being those cases where on-site effects have had or will have an impact on the long-term productivity of the Laboratory site

  20. Lawrence Berkeley National Laboratory 1995 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment.

  1. Lawrence Berkeley National Laboratory 1995 site environmental report

    International Nuclear Information System (INIS)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment

  2. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Culp, T.; Cox, W.; Hwang, H.; Irwin, M.; Jones, A.; Matz, B.; Molley, K.; Rhodes, W.; Stermer, D.; Wolff, T.

    1993-09-01

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories' operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment

  3. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1980

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1981-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data on air and water sampling and continuous radiation monitoring for 1980 are presented, and general trends are discussed

  4. Environmental Measurements Laboratory 2002 Unit Performance Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-10-01

    This EML Unit Performance Plan provides the key goals and performance measures for FY 2002 and continuing to FY 2003. The purpose of the Plan is to inform EML's stakeholders and customers of the Laboratory's products and services, and its accomplishments and future challenges. Also incorporated in the Unit Performance Plan is EML's Communication Plan for FY 2002.

  5. Environmental surveillance program of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Thomas, R.H.

    1976-04-01

    The major radiological environmental impact of the Lawrence Berkeley Laboratory is due to the operation of four particle accelerators. Potential sources of population exposure at the Laboratory are discussed. The major source of population exposure due to accelerator operation arises from the prompt radiation field which consists principally of neutrons and photons. Release of small quantities of radionuclides is also a potential source of population exposure but is usually an order of magnitude less significant. Accelerator produced radiation levels at the Laboratory boundary are comparable with the magnitudes of the fluctuations found in the natural background radiation. Environmental monitoring of accelerator-produced radiation and of radionuclides is carried on throughout the Laboratory, at the Laboratory perimeter, and in the regions surrounding the Laboratory. The techniques used are described. The models used to calculate population exposure are described and discussed

  6. 1994 Site Environmental Report Sandia National Laboratories Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Shyr, L.J.; Wiggins, T.; White, B.B.

    1995-09-01

    This 1994 report contains data from routine radiological and nonradiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum off-site dose impact from air emissions was calculated to be 1.5 x 10 -4 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.012 person-rem during 1994 from the laboratories' operations. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1

  7. Kinetics of Carbaryl Hydrolysis: An Undergraduate Environmental Chemistry Laboratory

    Science.gov (United States)

    Hawker, Darryl

    2015-01-01

    Kinetics is an important part of undergraduate environmental chemistry curricula and relevant laboratory exercises are helpful in assisting students to grasp concepts. Such exercises are also useful in general chemistry courses because students can see relevance to real-world issues. The laboratory exercise described here involves determination of…

  8. Environmental Survey preliminary report, Fermi National Accelerator Laboratory, Batavia, Illinois

    International Nuclear Information System (INIS)

    1988-10-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Fermi National Accelerator Laboratory (Fermilab), conducted September 14 through 25, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with Fermilab. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at Fermilab, and interviews with site personnel. 110 refs., 26 figs., 41 tabs

  9. Environmental Survey preliminary report, Fermi National Accelerator Laboratory, Batavia, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Fermi National Accelerator Laboratory (Fermilab), conducted September 14 through 25, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with Fermilab. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at Fermilab, and interviews with site personnel. 110 refs., 26 figs., 41 tabs.

  10. Overview of environmental research at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Harvey, R.S.

    1977-01-01

    Research in the environmental sciences by the Savannah River Laboratory (SRL) has the general objective of improving our understanding of transport through ecosystems and functional processes within ecosystems. With increased understanding, the basis for environmental assessments can be improved for releases from the Savannah River Plant or from the power industry of the southeastern United States

  11. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2013-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  12. Sandia National Laboratories, California Environmental Management System program manual

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2014-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  13. Routine environmental audit of Ames Laboratory, Ames, Iowa

    International Nuclear Information System (INIS)

    1994-09-01

    This document contains the findings identified during the routine environmental audit of Ames Laboratory, Ames, Iowa, conducted September 12--23, 1994. The audit included a review of all Ames Laboratory operations and facilities supporting DOE-sponsored activities. The audit's objective is to advise the Secretary of Energy, through the Assistant Secretary for Environment, Safety and Health, as to the adequacy of the environmental protection programs established at Ames Laboratory to ensure the protection of the environment, and compliance with Federal, state, and DOE requirements

  14. The hot cell laboratories for material investigations of the Institute for Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Viehrig, H W

    1998-10-01

    Special facilities for handling and testing of irradiated specimens are necessary, to perform the investigation of activated material. The Institute for Safety Research has two hot cell laboratories: - the preparation laboratory and - the materials testing laboratory. This report is intended to give an overview of the available facilities and developed techniques in the laboratories. (orig.)

  15. Institutional issues of environmental policy; Institutionelle Probleme der Umweltpolitik

    Energy Technology Data Exchange (ETDEWEB)

    Gawel, E. [ed.

    1996-12-31

    Institutions and institutional theory are important topics in contemporary economic theory. However, their application to issues of environmental economics still is in its infancy. The book summarizes the state of the art in research on institutional aspects of environmental economics, as seen from the angle of the economic and social sciences, and outlines a variety of perceivable approaches oriented towards integrating the institutional aspects in environmental economic theory. This process eventually leading to broader consideration of implementation problems, enforcement and organisational aspects, legal aspects or market factors and functions influencing environmental policy, theory and practice of environmental policy are expected to draw near to each other and thus create the long-hoped-for chance to commence a true interdisciplinary dialogue about the entire spectrum of environmental issues. (orig.) [Deutsch] Institutionen und Institutionentheorie nehmen in der aktuellen oekonomischen Diskussion einen breiten Raum ein. Ihre Einbeziehung auch in der umweltoekonomischen Diskussion steht freilich erst noch in den Anfaengen. Der Band beleuchtet aus wirtschafts- und sozialwissenschaftlicher Sicht den gegenwaertigen Forschungsstand und vermittelt einen Ueberblick ueber unterschiedliche Ansaetze einer fuer institutionelle Probleme offenen Umweltoekonomik. Die Beruecksichtigung von Implementationsproblemen, die Einbeziehung von Vollzugs- und Organisationsfragen, von Rechtsproblemen sowie der konkreten Funktionsbedingungen von Maerkten im Umweltschutz tragen nicht nur dazu bei, dass sich die Theorie und Praxis der Umweltpolitik deutlich naeherruecken, sie bieten auch die lange vermisste Chance eines echten interdisziplinaeren Dialogs ueber Umweltprobleme. (orig.)

  16. Deforestation and the environmental Kuznets curve. An institutional perspective

    Energy Technology Data Exchange (ETDEWEB)

    Culas, Richard J. [School of Agricultural and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678 (Australia)

    2007-03-01

    Institutions for secure property rights and better environmental policies for moving the system towards a sustainable growth path can reduce the height of an environmental Kuznets curve (EKC) relationship between income and deforestation. This study examines the impact of these specific institutional factors on the EKC relationship for deforestation across Latin American, African and Asian countries. The factors related to agricultural production, population, economy and governmental policies of each country are hypothesised to affect deforestation. Results of the Latin American countries show significant evidence of an EKC relationship for deforestation and also relevance of the institutional factors to reduce the rate of deforestation. Improvements in institutions for secure property rights and better environmental policies can thus significantly reduce the rate of deforestation without hindering the level of economic growth. Evidence also suggests that the effect of agricultural production on deforestation could be halted by strengthening institutional factors. There was found to be complementarity between the institutional factors and forest sector polices, and an additive effect between the institutional factors and forest products export promotion policies, which could also eventually reduce the rate of deforestation. (author)

  17. Brookhaven National Laboratory site environmental report for calendar year 1990

    Energy Technology Data Exchange (ETDEWEB)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1992-01-01

    Brookhaven National Laboratory (BNL) carries out basic and applied research in the following fields: high-energy nuclear and solid state physics; fundamental material and structure properties and the interactions of matter; nuclear medicine, biomedical and environmental sciences; and selected energy technologies. In conducting these research activities, it is Laboratory policy to protect the health and safety of employees and the public, and to minimize the impact of BNL operations on the environment. This document is the BNL environmental report for the calendar year 1990 for the safety and Environmental Protection division and corners topics on effluents, surveillance, regulations, assessments, and compliance.

  18. Environmental Measurements Laboratory fiscal year 1998: Accomplishments and technical activities

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, M.D.

    1999-01-01

    The Environmental Measurements Laboratory (EML) is government-owned, government-operated, and programmatically under the DOE Office of Environmental Management. The Laboratory is administered by the Chicago Operations Office. EML provides program management, technical assistance and data quality assurance for measurements of radiation and radioactivity relating to environmental restoration, global nuclear nonproliferation, and other priority issues for the Department of Energy, as well as for other government, national, and international organizations. This report presents the technical activities and accomplishments of EML for Fiscal Year 1998.

  19. Brookhaven National Laboratory site environmental report for calendar year 1990

    International Nuclear Information System (INIS)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1992-01-01

    Brookhaven National Laboratory (BNL) carries out basic and applied research in the following fields: high-energy nuclear and solid state physics; fundamental material and structure properties and the interactions of matter; nuclear medicine, biomedical and environmental sciences; and selected energy technologies. In conducting these research activities, it is Laboratory policy to protect the health and safety of employees and the public, and to minimize the impact of BNL operations on the environment. This document is the BNL environmental report for the calendar year 1990 for the safety and Environmental Protection division and corners topics on effluents, surveillance, regulations, assessments, and compliance

  20. Situation analysis of occupational and environmental health laboratory accreditation in Thailand.

    Science.gov (United States)

    Sithisarankul, Pornchai; Santiyanont, Rachana; Wongpinairat, Chongdee; Silva, Panadda; Rojanajirapa, Pinnapa; Wangwongwatana, Supat; Srinetr, Vithet; Sriratanaban, Jiruth; Chuntutanon, Swanya

    2002-06-01

    The objective of this study was to analyze the current situation of laboratory accreditation (LA) in Thailand, especially on occupational and environmental health. The study integrated both quantitative and qualitative approaches. The response rate of the quantitative questionnaires was 54.5% (226/415). The majority of the responders was environmental laboratories located outside hospital and did not have proficiency testing. The majority used ISO 9000, ISO/IEC 17025 or ISO/ EEC Guide 25, and hospital accreditation (HA) as their quality system. However, only 30 laboratories were currently accredited by one of these systems. Qualitative research revealed that international standard for laboratory accreditation for both testing laboratory and calibration laboratory was ISO/IEC Guide 25, which has been currently revised to be ISO/IEC 17025. The National Accreditation Council (NAC) has authorized 2 organizations as Accreditation Bodies (ABs) for LA: Thai Industrial Standards Institute, Ministry of Industry, and Bureau of Laboratory Quality Standards, Department of Medical Sciences, Ministry of Public Health. Regarding LA in HA, HA considered clinical laboratory as only 1 of 31 items for accreditation. Obtaining HA might satisfy the hospital director and his management team, and hence might actually be one of the obstacles for the hospital to further improve their laboratory quality system and apply for ISO/IEC 17025 which was more technically oriented. On the other hand, HA may be viewed as a good start or even a pre-requisite for laboratories in the hospitals to further improve their quality towards ISO/IEC 17025. Interviewing the director of NAC and some key men in some large laboratories revealed several major problems of Thailand's LA. Both Thai Industrial Standards Institute and Bureau of Laboratory Quality Standards did not yet obtain Mutual Recognition Agreement (MRA) with other international ABs. Several governmental bodies had their own standards and

  1. Pacific Northwest Laboratory Institutional Plan FY 1995-2000

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This report serves as a document to describe the role PNL is positioned to take in the Department of Energy`s plans for its national centers in the period 1995-2000. It highlights the strengths of the facilities and personnel present at the laboratory, touches on the accomplishments and projects they have contributed to, and the direction being taken to prepare for the demands to be placed on DOE facilities in the near and far term. It consists of sections titled: director`s statement; laboratory mission and core competencies; laboratory strategic plan; laboratory initiatives; core business areas; critical success factors.

  2. Open Economy, Institutional Quality, and Environmental Performance: A Macroeconomic Approach

    Directory of Open Access Journals (Sweden)

    Amaryllis Mavragani

    2016-06-01

    Full Text Available As the subject of how economic development affects the quality of the natural environment has gained great momentum, this paper focuses on examining the extent to which the openness of a market economy and the quality of the institution affect environmental performance. The majority of the current studies focus on the Environmental Kuznets Curve and the level of economic growth. This paper addresses this question by relating environmental (“Environmental Performance Index” to macroeconomic (Gross Domestic Product per capita, “Open Markets Index” and governance indicators (“Worldwide Governance Indicators”. The sample consists of 75 countries, including all G20 and EU members, comprising “more than 90% of global trade and investment”. Findings show that the Environmental Performance Index is positively correlated to each of the (institutional indicators, so as to confirm that the selected indices are consistent with previous studies, suggesting that environmental performance increases in line with economic development and that good governance increases a country’s levels of environmental protection. By applying factor analysis, an empirical model of the Environmental Performance Index is estimated, suggesting that there is a significant positive correlation between a country’s economic growth, the openness of an economy, high levels of effective governance, and its environmental performance.

  3. Sandia Laboratories technical capabilities. Auxiliary capabilities: environmental health information science

    International Nuclear Information System (INIS)

    1975-09-01

    Sandia Laboratories is an engineering laboratory in which research, development, testing, and evaluation capabilities are integrated by program management for the generation of advanced designs. In fulfilling its primary responsibility to ERDA, Sandia Laboratories has acquired extensive research and development capabilities. The purpose of this series of documents is to catalog the many technical capabilities of the Laboratories. After the listing of capabilities, supporting information is provided in the form of highlights, which show applications. This document deals with auxiliary capabilities, in particular, environmental health and information science. (11 figures, 1 table) (RWR)

  4. Environmental Survey preliminary report, Brookhaven National Laboratory, Upton, New York

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Brookhaven National Laboratory (BNL) conducted April 6 through 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with BNL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at BNL, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by Oak Ridge National Laboratory. When completed, the results will be incorporated into the BNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the BNL Survey. 80 refs., 24 figs., 48 tabs.

  5. Sandia National Laboratories, California: site environmental report for 1997

    International Nuclear Information System (INIS)

    Condouris, R.A.; Holland, R.C.

    1998-06-01

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California's Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. The Site Environmental Report describes the results of SNL/California's environmental protection activities during the calendar year. It also summarizes environmental monitoring data and highlights major environmental programs. Overall, it evaluates SNL/California's environmental management performance and documents the site's regulatory compliance status

  6. Environmental Survey preliminary report, Lawrence Livermore National Laboratory, Livermore, California

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the Department of Energy (DOE) Lawrence Livermore National Laboratory (LLNL), conducted December 1 through 19, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with LLNL. The Survey covers all environmental media all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at LLNL, and interviews with site personnel. A Sampling and Analysis Plan was developed to assist in further assessing certain of the environmental problems identified during performance of on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory. When completed, the results will be incorporated into the LLNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the LLNL Survey. 70 refs., 58 figs., 52 tabs.,

  7. Sandia National Laboratories/California site environmental report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Condouris, R.A. [ed.] [Sandia National Labs., Livermore, CA (United States); Holland, R.C. [Science Applications International Corp. (United States)

    1998-06-01

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California`s Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. The Site Environmental Report describes the results of SNL/California`s environmental protection activities during the calendar year. It also summarizes environmental monitoring data and highlights major environmental programs. Overall, it evaluates SNL/California`s environmental management performance and documents the site`s regulatory compliance status.

  8. Environmental Survey preliminary report, Brookhaven National Laboratory, Upton, New York

    International Nuclear Information System (INIS)

    1988-06-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Brookhaven National Laboratory (BNL) conducted April 6 through 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with BNL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at BNL, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by Oak Ridge National Laboratory. When completed, the results will be incorporated into the BNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the BNL Survey. 80 refs., 24 figs., 48 tabs

  9. Oak Ridge National Laboratory Institutional Plan, FY 1997--FY 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Three major initiatives are described, which are proposed to strengthen ORNL`s ability to support the missions of the Department: neutron science, functional genomics, and distributed computing at teraflop speeds. The laboratory missions, strategic plan, scientific and technical programs, enterprise activities, laboratory operations, and resource projections are also described.

  10. The Master level optics laboratory at the Institute of Optics

    Science.gov (United States)

    Adamson, Per

    2017-08-01

    The master level optics laboratory is a biannual, intensive laboratory course in the fields of geometrical, physical and modern optics. This course is intended for the master level student though Ph.D. advisors which often recommend it to their advisees. The students are required to complete five standard laboratory experiments and an independent project during a semester. The goals of the laboratory experiments are for the students to get hands-on experience setting up optical laboratory equipment, collecting and analyzing data, as well as to communicate key results. The experimental methods, analysis, and results of the standard experiments are submitted in a journal style report, while an oral presentation is given for the independent project.

  11. Software support for environmental measurement in quality at educational institutions

    Directory of Open Access Journals (Sweden)

    Alena Pauliková

    2016-03-01

    Full Text Available The analysed theme of this article is based on the training of environmental measurements for workplaces. This is very important for sustainable quality in technical educational institutions. Applied kinds of software, which are taught at technical educational institutions, have to offer the professional and methodical knowledge concerning conditions of working ambient for students of selected technical specialisations. This skill is performed in such a way that the graduates, after entering the practical professional life, will be able to participate in solutions for actual problems that are related to environmental protection by means of software support. Nowadays, during the training processit is also obligatory to introduce technical science. Taking into consideration the above-mentioned facts it is possible to say that information technology support for environmental study subjects is a relevant aspect, which should be integrated into the university educational process. There is an effective progress that further highlights the focus on the quality of university education not only for environmental engineers. Actual trends require an increasing number of software/hardware educated engineers who can participate in qualitative university preparation, i.e.IT environmentalists. The Department of Environmental Engineering at the Faculty of Mechanical Engineering, TechnicalUniversity in Košice, Slovakia is an institution specified and intended for quality objectivisation. This institution introduced into the study programmes (“Environmental Management” and “Technology of Environmental Protection” study subjects with the software support, which are oriented towards outdoor and indoor ambient and in this way the Department of Process and Environmental Engineering is integrated effectively and intensively into the area of measurement training with regard to the requirement of quality educational processes.

  12. Nepal - Country Environmental Analysis : Strengthening Institutions and Management Systems for Enhanced Environmental Governance

    OpenAIRE

    World Bank

    2007-01-01

    The main objective of the Country Environmental Analysis (CEA) in Nepal is to identify opportunities for enhancing the overall performance of select environmental management systems through improvements in the effectiveness of institutions, policies, and processes. CEA has been built upon the following three primary study components: (a) an examination of the environmental issues associate...

  13. Environmental Assessment for the vacuum process laboratory (VPL) relocation at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-04-01

    This Environmental Assessment (EA) evaluates the potential environmental impacts of relocating a vacuum process laboratory (VPL) from Building 321 to Building 2231 at Lawrence Livermore National Laboratory (LLNL). The VPL provides the latest technology in the field of vacuum deposition of coatings onto various substrates for several weapons-related and energy-related programs at LLNL. Operations within the VPL at LLNL will not be expanded nor reduced by the relocation. No significant environmental impacts are expected as a result of the relocation of the VPL

  14. 40 CFR 262.103 - What is the scope of the laboratory environmental management standard?

    Science.gov (United States)

    2010-07-01

    ... environmental management standard? 262.103 Section 262.103 Protection of Environment ENVIRONMENTAL PROTECTION... University Laboratories XL Project-Laboratory Environmental Management Standard § 262.103 What is the scope of the laboratory environmental management standard? The Laboratory Environmental Management Standard...

  15. Environmental analytical laboratory setup operation and QA/QC

    International Nuclear Information System (INIS)

    Hsu, J.P.; Boyd, J.A.; DeViney, S.

    1991-01-01

    Environmental analysis requires precise and timely measurements. The required precise measurement is ensured with quality control and timeliness through an efficient operation. The efficiency of the operation also ensures cost-competitiveness. Environmental analysis plays a very important role in the environmental protection program. Due to the possible litigation involvement, most environmental analyses follow stringent criteria, such as the U.S. EPA Contract Laboratory Program procedures with analytical results documented in an orderly manner. The documentation demonstrates that all quality control steps are followed and facilitates data evaluation to determine the quality and usefulness of the data. Furthermore, the tedious documents concerning sample checking, chain-of-custody, standard or surrogate preparation, daily refrigerator and oven temperature monitoring, analytical and extraction logbooks, standard operation procedures, etc., also are an important part of the laboratory documentation. Quality control for environmental analysis is becoming more stringent, required documentation is becoming more detailed and turnaround time is shorter. However, the business is becoming more cost-competitive and it appears that this trend will continue. In this paper, we discuss what should be done to deal this high quality, fast-paced and tedious environmental analysis process at a competitive cost. The success of environmental analysis is people. The knowledge and experience of the staff are the key to a successful environmental analysis program. In order to be successful in this new area, the ability to develop new methods is crucial. In addition, the laboratory information system, laboratory automation and quality assurance/quality control (QA/QC) are major factors for laboratory success. This paper concentrates on these areas

  16. FY 2005 Congressional Earmark: The Environmental Institute Fellowship Program

    Energy Technology Data Exchange (ETDEWEB)

    Sharon Tracey, Co-PI and Richard Taupier, Co-PI

    2007-02-06

    Congressional Earmark Funding was used to create a Postdoctoral Environmental Fellowship Program, interdisciplinary Environmental Working Groups, and special initiatives to create a dialogue around the environment at the University of Massachusetts Amherst to mobilize faculty to work together to respond to emerging environmental needs and to build institutional capacity to launch programmatic environmental activities across campus over time. Developing these networks of expertise will enable the University to more effectively and swiftly respond to emerging environmental needs and assume a leadership role in varied environmental fields. Over the course of the project 20 proposals were submitted to a variety of funding agencies involving faculty teams from 19 academic departments; 4 projects were awarded totaling $950,000; special events were organized including the Environmental Lecture Series which attracted more than 1,000 attendees over the course of the project; 75 University faculty became involved in one or more Working Groups (original three Working Groups plus Phase 2 Working Groups); an expertise database was developed with approximately 275 faculty involved in environmental research and education as part of a campus-wide network of environmental expertise; 12 University centers and partners participated; and the three Environmental Fellows produced 3 publications as well as a number of presentations and papers in progress.

  17. Site Environmental Report for 2010 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  18. Site environmental report for 2009 : Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2010-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2009 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2009. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2009. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2009. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  19. Legal and institutional incentives for local environmental management

    NARCIS (Netherlands)

    Hesseling, G.S.C.M.; Secher Marcussen, H.

    1996-01-01

    This chapter explores the possibilities and limits of law and institutions as instruments for generating changes in environmental behaviour. First, an overview of the different schools of thought on law and natural resources is presented. It appears that the overall trend with regard to land and

  20. Problematic of the Environmental Education in Educational Institutions

    Directory of Open Access Journals (Sweden)

    Liliana Hayde Gutierrez Sabogal

    2016-01-01

    Full Text Available The following article sketches the understanding of the actual situation of environmental education in Colombian educational institutions, taking in to account the aspects that seem to have an impact on this problematic and the possible interrelationships between them like the first stage of the doctoral research lead by Doctor Francisco González.

  1. Moral Responsibility for Environmental Problems : Individual or Institutional?

    NARCIS (Netherlands)

    Fahlquist, J.N.

    2008-01-01

    The actions performed by individuals, as consumers and citizens, have aggregate negative consequences for the environment. The question asked in this paper is to what extent it is reasonable to hold individuals and institutions responsible for environmental problems. A distinction is made between

  2. Ames Laboratory annual site environmental report, calendar year 1996

    International Nuclear Information System (INIS)

    1998-04-01

    This report summarizes the environmental status of Ames Laboratory for calendar year 1996. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring programs. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies twelve buildings owned by the Department of Energy (DOE). The Laboratory also leases space in ISU owned buildings. Laboratory activities involve less than ten percent of the total chemical use and approximately one percent of the radioisotope use on the ISU campus. In 1996, the Office of Assurance and Assessment merged with the Environment, Safety and Health Group forming the Environment, Safety, Health and Assurance (ESH and A) office. In 1996, the Laboratory accumulated and disposed of wastes under US Environmental Protection Agency (EPA) issued generator numbers. Ames Laboratory submitted a Proposed Site Treatment Plan to EPA in December 1995. This plan complied with the Federal Facilities Compliance Act (FFCA). It was approved by EPA in January 1996. The consent agreement/consent order was issued in February 1996. Pollution awareness, waste minimization and recycling programs, implemented in 1990 and updated in 1994, continued through 1996. Included in these efforts were a waste white paper and green computer paper recycling program. Ames Laboratory also continued to recycle salvageable metal and used oil, and it recovered freon for recycling. All of the chemical and nearly all of the radiological legacy wastes were properly disposed by the end of 1996. Additional radiological legacy waste will be properly disposed during 1997

  3. Environmental Safety and Health Analytical Laboratory, Pantex Plant, Amarillo, Texas. Final Environmental Assessment

    International Nuclear Information System (INIS)

    1995-06-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) of the construction and operation of an Environmental Safety and Health (ES ampersand H) Analytical Laboratory and subsequent demolition of the existing Analytical Chemistry Laboratory building at Pantex Plant near Amarillo, Texas. In accordance with the Council on Environmental Quality requirements contained in 40 CFR 1500--1508.9, the Environmental Assessment examined the environmental impacts of the Proposed Action and discussed potential alternatives. Based on the analysis of impacts in the EA, conducting the proposed action, construction of an analytical laboratory and demolition of the existing facility, would not significantly effect the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA) and the Council on Environmental Quality regulations in 40 CFR 1508.18 and 1508.27

  4. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs

  5. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E. (ed.)

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs.

  6. Sandia National Laboratories, California proposed CREATE facility environmental baseline survey.

    Energy Technology Data Exchange (ETDEWEB)

    Catechis, Christopher Spyros

    2013-10-01

    Sandia National Laboratories, Environmental Programs completed an environmental baseline survey (EBS) of 12.6 acres located at Sandia National Laboratories/California (SNL/CA) in support of the proposed Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) Facility. The survey area is comprised of several parcels of land within SNL/CA, County of Alameda, California. The survey area is located within T 3S, R 2E, Section 13. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

  7. National Environmental Policy Act (NEPA) Compliance Guide, Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1995-08-01

    This report contains a comprehensive National Environmental Policy Act (NEPA) Compliance Guide for the Sandia National Laboratories. It is based on the Council on Environmental Quality (CEQ) NEPA regulations in 40 CFR Parts 1500 through 1508; the US Department of Energy (DOE) N-EPA implementing procedures in 10 CFR Part 102 1; DOE Order 5440.1E; the DOE ``Secretarial Policy Statement on the National Environmental Policy Act`` of June 1994- Sandia NEPA compliance procedures-, and other CEQ and DOE guidance. The Guide includes step-by-step procedures for preparation of Environmental Checklists/Action Descriptions Memoranda (ECL/ADMs), Environmental Assessments (EAs), and Environmental Impact Statements (EISs). It also includes sections on ``Dealing With NEPA Documentation Problems`` and ``Special N-EPA Compliance Issues.``

  8. Environmental Quality Laboratory Research Report, 1985-1987

    OpenAIRE

    Brooks, Norman H.

    1988-01-01

    The Environmental Quality Laboratory at Caltech is a center for research on large-scale systems problems of natural resources and environmental quality. The principal areas of investigation at EQL are: 1. Air quality management. 2. Water resources and water quality management. 3. Control of hazardous substances in the environment. 4. Energy policy, including regulation, conservation and energy-environment tradeoffs. 5. Resources policy (other than energy); residuals m...

  9. On the Viability of Supporting Institutional Sharing of Remote Laboratory Facilities

    Science.gov (United States)

    Lowe, David; Dang, Bridgette; Daniel, Keith; Murray, Stephen; Lindsay, Euan

    2015-01-01

    Laboratories are generally regarded as critical to engineering education, and yet educational institutions face significant challenges in developing and maintaining high-quality laboratory facilities. Remote laboratories are increasingly being explored as a partial solution to this challenge, with research showing that--for the right learning…

  10. Ames Laboratory Site Environmental Report, Calendar year 1991

    International Nuclear Information System (INIS)

    Mathison, L.

    1991-01-01

    The summarized data and conclusions from the Ames Laboratory environmental monitoring program are presented in this Annual Site Environmental Report. This program is a working requirement of Department of Energy (DOE) Order 5484.1, ''Environmental Protection, Safety, and Health Protection Information Reporting Requirements'' and Order 5400.1, ''General Environmental Protection Program.'' Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies several buildings owned by the DOE. The Laboratory also leases space in ISU-owned buildings. Laboratory research activities involve less than ten percent of the total chemical use and one percent of the radioisotope use on the ISU campus. Ames Laboratory is responsible for a small chemical burial site, located on ISU property. The site was used for the disposal of chemical and metal slags from thorium and uranium production. Samples of water from existing test wells and upstream and downstream sites on the nearby Squaw Creek show no detectable migration of the contents of the burial site. A Site Assessment plan submitted to the State of Iowa Department of Natural Resources (DNR) was approved. A Remedial Investigation/Feasibility Study work plan has been completed for additional studies at the site. This has been reviewed and approved by the DOE Chicago Field Office and the DNR. A National Environmental Policy Act (NEPA) review of the site resulted in a categorical exclusion finding which has been approved by the DOE. Ames Laboratory has an area contaminated by diesel fuel at the location of a storage tank which was removed in 1970. Soil corings and groundwater have been analyzed for contamination and an assessment written. Pollution awareness and waste minimization programs and plans were implemented in 1990. Included in this effort was the implementation of a waste white paper and green computer paper recycling program

  11. Lawrence Berkeley Laboratory Institutional Plan FY 1995--2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This report presents the details of the mission and strategic plan for Lawrence Berkeley Laboratory during the fiscal years of 1995--2000. It presents summaries of current programs and potential changes; critical success factors such as human resources; management practices; budgetary allowances; and technical and administrative initiatives.

  12. Scientific data management in the environmental molecular sciences laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, P.R.; Keller, T.L.

    1995-09-01

    The Environmental Molecular Sciences Laboratory (EMSL) is currently under construction at Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy (DOE). This laboratory will be used for molecular and environmental sciences research to identify comprehensive solutions to DOE`s environmental problems. Major facilities within the EMSL include the Molecular Sciences Computing Facility (MSCF), a laser-surface dynamics laboratory, a high-field nuclear magnetic resonance (NMR) laboratory, and a mass spectrometry laboratory. The EMSL is scheduled to open early in 1997 and will house about 260 resident and visiting scientists. It is anticipated that at least six (6) terabytes of data will be archived in the first year of operation. An object-oriented database management system (OODBMS) and a mass storage system will be integrated to provide an intelligent, automated mechanism to manage data. The resulting system, called the DataBase Computer System (DBCS), will provide total scientific data management capabilities to EMSL users. A prototype mass storage system based on the National Storage Laboratory`s (NSL) UniTree has been procured and is in limited use. This system consists of two independent hierarchies of storage devices. One hierarchy of lower capacity, slower speed devices provides support for smaller files transferred over the Fiber Distributed Data Interface (FDDI) network. Also part of the system is a second hierarchy of higher capacity, higher speed devices that will be used to support high performance clients (e.g., a large scale parallel processor). The ObjectStore OODBMS will be used to manage metadata for archived datasets, maintain relationships between archived datasets, and -hold small, duplicate subsets of archived datasets (i.e., derivative data). The interim system is called DBCS, Phase 0 (DBCS-0). The production system for the EMSL, DBCS Phase 1 (DBCS-1), will be procured and installed in the summer of 1996.

  13. Brookhaven National Laboratory site environmental report for calendar year 1991

    International Nuclear Information System (INIS)

    Naidu, J.R.; Royce, B.A.; Miltenberger, R.P.

    1992-09-01

    This publication presents the results of BNL's environmental monitoring and compliance effort and provides an assessment of the impact of Brookhaven National Laboratory (BNL) operations on the environment. This document is the responsibility of the Environmental Protection Section of the Safety and Envirorunental Protection Division. Within this Section, the Environmental Monitoring Group (EMG) sample the environment, interpreted the results, performed the impact analysis of the emissions from BNL, and compiled the information presented here. In this effort, other groups of the Section: Compliance; Analytical; Ground Water; and Quality played a key role in addressing the regulatory aspects and the analysis and documentation of the data, respectively

  14. Radon and environmental radioactivity in the Canfranc Underground Laboratory

    International Nuclear Information System (INIS)

    Bandac, I.; Bettini, A.; Borjabad, S.; Nunez-Lagos, R.; Perez, C.; Rodriguez, S.; Sanchez, P.; Villar, J. A.

    2014-01-01

    The results of more than one year of measurements of Radon and environmental radioactivity in the Canfranc Underground Laboratory (LSC) are presented. Radon and atmospheric parameters have registered by an Alpha guard P30 equipment and the environmental radioactivity has been measured by means of UD-802A Panasonic thermoluminescent dosimeters (TLD) processed by an UD716 Panasonic unit. Series of results along with their possible correlations are presented. Both the Radon level and the ambient dose equivalent H (10) are much lower than the allowed ones so no radiological risk exists to persons working in the LSC. Also its excellent environmental radiological quality has been confirmed. (Author)

  15. Brookhaven National Laboratory site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A.; Miltenberger, R.P.

    1992-09-01

    This publication presents the results of BNL's environmental monitoring and compliance effort and provides an assessment of the impact of Brookhaven National Laboratory (BNL) operations on the environment. This document is the responsibility of the Environmental Protection Section of the Safety and Envirorunental Protection Division. Within this Section, the Environmental Monitoring Group (EMG) sample the environment, interpreted the results, performed the impact analysis of the emissions from BNL, and compiled the information presented here. In this effort, other groups of the Section: Compliance; Analytical; Ground Water; and Quality played a key role in addressing the regulatory aspects and the analysis and documentation of the data, respectively.

  16. Brookhaven National Laboratory site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A.; Miltenberger, R.P.

    1992-09-01

    This publication presents the results of BNL`s environmental monitoring and compliance effort and provides an assessment of the impact of Brookhaven National Laboratory (BNL) operations on the environment. This document is the responsibility of the Environmental Protection Section of the Safety and Envirorunental Protection Division. Within this Section, the Environmental Monitoring Group (EMG) sample the environment, interpreted the results, performed the impact analysis of the emissions from BNL, and compiled the information presented here. In this effort, other groups of the Section: Compliance; Analytical; Ground Water; and Quality played a key role in addressing the regulatory aspects and the analysis and documentation of the data, respectively.

  17. 1987 environmental monitoring report, Sandia National Laboratories, Livermore, California

    International Nuclear Information System (INIS)

    Devlin, T.K.

    1988-04-01

    Sandia National Labortories conduct various research activities related to Department of Energy interests which have the potential for release of hazardous materials or radionuclides to the environment. A strict environmental control program places maximum emphasis on limiting releases. The environmental monitoring program conducted by Lawrence Livermore National Laboratory and augmented by Sandia is designed to measure the performance of the environmental controls. The program includes analysis of air, water, soil, vegetation, sewer effluent, ground water, and foodstuffs for various toxic, hazardous, or radioactive materials. Based on these studies, the releases of materials of concern at Sandia during 1987 were well below applicable Department of Energy standards. 8 refs., 3 figs., 12 tabs

  18. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1986

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1987-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1986 are presented and general trends are discussed. Topics include radiation monitoring, wastewater discharge monitoring, dose distribution estimates, and ground water monitoring. 9 refs., 8 figs., 20 tabs

  19. Sequim Marine Research Laboratory routine environmental measurements during CY-1978

    International Nuclear Information System (INIS)

    Houston, J.R.; Blumer, P.J.

    1979-03-01

    Environmental data collected during 1978 in the vicinity of the Marine Research Laboratory show continued compliance with all applicable state and federal regulations and furthermore show no detectable change from conditions that existed in previous years. Samples collected for radiological analysis included soil, drinking water, bay water, clams, and seaweed. Radiation dose rates at 1 meter aboveground were also measured

  20. Environmental monitoring at the Lawrence Livermore Laboratory. 1979 annual report

    International Nuclear Information System (INIS)

    Silver, W.J.; Lindeken, C.L.; White, J.H.; Buddemeir, R.W.

    1980-01-01

    Information on monitoring activities is reported in two sections for EDB/ERA/INIS. The first section covers all information reported except Appendix D, which gives details of sampling and analytical procedures for environmental monitoring used at Lawrence Livermore Laboratory. A separate abstract was prepared for Appendix D

  1. The Interplay among Environmental Attitudes, Pro-Environmental Behavior, Social Identity, and Pro-Environmental Institutional Climate. A Longitudinal Study

    Science.gov (United States)

    Prati, Gabriele; Albanesi, Cinzia; Pietrantoni, Luca

    2017-01-01

    By using a panel design in a sample of 298 undergraduate/master students at an Italian public university, the present study aimed to test longitudinally the interplay among environmental attitudes, pro-environmental behavior, social identity, and pro-environmental institutional climate. The relationships were tested with cross-lagged analysis…

  2. BROOKHAVEN NATIONAL LABORATORY INSTITUTIONAL PLAN FY2003-2007.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-10

    This document presents the vision for Brookhaven National Laboratory (BNL) for the next five years, and a roadmap for implementing that vision. Brookhaven is a multidisciplinary science-based laboratory operated for the U.S. Department of Energy (DOE), supported primarily by programs sponsored by the DOE's Office of Science. As the third-largest funding agency for science in the U.S., one of the DOE's goals is ''to advance basic research and the instruments of science that are the foundations for DOE's applied missions, a base for U.S. technology innovation, and a source of remarkable insights into our physical and biological world, and the nature of matter and energy'' (DOE Office of Science Strategic Plan, 2000 http://www.osti.gov/portfolio/science.htm). BNL shapes its vision according to this plan.

  3. BROOKHAVEN NATIONAL LABORATORY SITE ENVIRONMENTAL REPORT FOR CALENDAR YEAR 1994.

    Energy Technology Data Exchange (ETDEWEB)

    NAIDU,J.R.; ROYCE,B.A.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory's operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory. Brookhaven National Laboratory's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment were evaluated. Among the permitted facilities, two instances of pH exceedances were observed at recharge basins, possibly related to rain-water run-off to these recharge basins. Also, the discharge from the Sewage Treatment Plant to the Peconic River exceeded. on ten occasions, one each for fecal coliform and 5-day Biochemical Oxygen Demand (avg.) and eight for ammonia nitrogen. The ammonia and Biochemical Oxygen Demand exceedances were attributed to the cold winter and the routine cultivation of the sand filter beds which resulted in the hydraulic overloading of the filter beds and the possible destruction of nitrifying bacteria. The on-set of warm weather and increased aeration of the filter beds via cultivation helped to alleviate this condition. The discharge of fecal coliform may also be linked to this occurrence, in that the increase in fecal coliform coincided with the increased cultivation of the sand filter beds. The environmental monitoring data has identified site-specific contamination of groundwater and soil. These areas are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement. Except for the above, the environmental monitoring data has continued to demonstrate that compliance was achieved with

  4. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    Energy Technology Data Exchange (ETDEWEB)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B. [and others

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

  5. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    International Nuclear Information System (INIS)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B.

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management

  6. 1990 Environmental Monitoring Report, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Hwang, S.; Yeager, G.; Wolff, T.; Parsons, A.; Dionne, D.; Massey, C.; Schwartz, B.; Fish, J.; Thompson, D.; Goodrich, M.

    1991-05-01

    This 1990 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 2.0 x 10 -3 mrem. The total 50-mile population received a collective dose of 0.82 person-rem during 1990 from SNL, Albuquerque, operations. As in the previous year, the 1990 SNL operations had no adverse impact on the general public or on the environment. This report is prepared for the US Department of Energy in compliance with DOE Order 5400.1. 97 refs., 30 figs., 137 tabs

  7. [Construction and operation status of management system of laboratories of schistosomiasis control institutions in Hubei Province].

    Science.gov (United States)

    Zhao-Hui, Zheng; Jun, Qin; Li, Chen; Hong, Zhu; Li, Tang; Zu-Wu, Tu; Ming-Xing, Zeng; Qian, Sun; Shun-Xiang, Cai

    2016-10-09

    To analyze the construction and operation status of management system of laboratories of schistosomiasis control institutions in Hubei Province, so as to provide the reference for the standardized detection and management of schistosomiasis laboratories. According to the laboratory standard of schistosomiasis at provincial, municipal and county levels, the management system construction and operation status of 60 schistosomiasis control institutions was assessed by the acceptance examination method from 2013 to 2015. The management system was already occupied over all the laboratories of schistosomiasis control institutions and was officially running. There were 588 non-conformities and the inconsistency rate was 19.60%. The non-conformity rate of the management system of laboratory quality control was 38.10% (224 cases) and the non-conformity rate of requirements of instrument and equipment was 23.81% (140 cases). The management system has played an important role in the standardized management of schistosomiasis laboratories.

  8. Environmental Audit: 'A tool used to evaluate and improve the institutional environmental performance'

    International Nuclear Information System (INIS)

    Goulart, Helga

    2009-01-01

    The Environmental Audits emerged in the late 70 's in order to verify compliance with industrial activities with environmental standards. The same was done internally by the organizations to avoid late fines and penalties imposed by enforcement authorities. At present, environmental audits are used not only to identify environmental problems that must be corrected, but which now forms part of a procedure for identifying opportunities for continual improvement of the activities of a particular organization. Environmental audits undertaken by Management in the CNEA Environmental Activities meet this proactive role detailed above, whose main objective is also to verify compliance with environmental regulatory framework applicable to each site, to identify environmental improvements that must be applied activities to achieve better performance from them. This paper aims to present the results in the recognition phase of the CNEA 's environmental situation through conducting preliminary environmental analysis and comparison with results at the current stage of implementation of the Institutional Environmental Management System through environmental audits, showing the procedures, issues and standards considered and the evolution of each site's environmental performance in implementing the proposed corrections. The central idea of Management Environmental Activities is to show the different sectors and areas of the institution that the environmental audit, applied in the context of environmental management is an essential tool that enables to encourage staff in environmental issues, making that they are directly participating in management activities and is the most concrete to demonstrate both internally and externally achievements in a certain period of time and activities to achieve the policy of continuous improvement in environmental performance of the CNEA. (author)

  9. Report on a Workshop on mobile laboratories for monitoring environmental radiation

    International Nuclear Information System (INIS)

    Andrasi, A,; Nemeth, I.; Zombori, P.; Urban, J.

    1992-01-01

    The international Workshop organized by the Health Physics Department of the Central Research Institute for Physics and by the Radiation Protection Department of the Paks Nuclear Power Plant was presented in this paper. The aims of the Workshop were the introduction of the mobile laboratories and the demonstration of the applied methods for monitoring environmental radiation in accidental situation. The intercomparison measurements showed that the results given by different participating laboratories (9 institutions from the middle and east European region) agreed well within an acceptable error margin. The demonstration, measurements and discussions were very useful for the participants and this could be a good basis for further developments and cooperations among the participating institutions. (author) 7 figs.; 2 tabs

  10. Fraunhofer Institute for Atmospheric Environmental Research. Annual report 1990

    International Nuclear Information System (INIS)

    1991-01-01

    This progress report submitted by Fraunhofer Institut fuer Atmosphaerische Umweltforschung, Garmisch-Partenkirchen, reviews the institute's scientific and technical atmospheric environmental research activities of 1990. Emphasis was on research into the atmospheric circulation of CH 4 and N 2 O, the determination of the distribution and of the time characteristics of trace substances of environmental relevance, and on studies of the effects of pollutants on the vegetation. Major efforts went into the development of instruments and the modeling of the atmosphere in support of the experimental work. The FhG activities advance the research into the chemical behavior of the atmosphere, the possible effects of man-made changes in the chemical composition of the atmosphere on the greenhouse effect, the regional pollutant loads, and the effects of ground-level UV-B radiation. The activities are part of international and national joint research projects, e.g. EUROTRAC, IGAC, and ICAT. (orig./KW) [de

  11. Environmental Survey preliminary report, Sandia National Laboratories, Livermore, California

    International Nuclear Information System (INIS)

    1988-01-01

    This report contains the preliminary findings based on the first phase of an Environmental Survey at the Department of Energy (DOE) Sandia National Laboratories Livermore (SNLL), located at Livermore, California. The Survey is being conducted by DOE's Office of Environment, Safety and Health. The SNLL Survey is a portion of the larger, comprehensive DOE Environmental Survey encompassing all major operating facilities of DOE. The DOE Environmental Survey is one of a series of initiatives announced on September 18, 1985, by Secretary of Energy, John S. Herrington, to strengthen the environmental, safety, and health programs and activities within DOE. The purpose of the Environmental Survey is to identify, via a ''no fault'' baseline Survey of all the Department's major operating facilities, environmental problems and areas of environmental risk. The identified problem areas will be prioritized on a Department-wide basis in order of importance in 1989. The findings in this report are subject to modification based on the results from the Sampling and Analysis Phase of the Survey. The findings are also subject to modification based on comments from the Albuquerque Operations Office concerning the technical accuracy of the findings. The modified preliminary findings and any other appropriate changes will be incorporated into an Interim Report. The Interim Report will serve as the site-specific source for environmental information generated by the Survey, and ultimately as the primary source of information for the DOE-wide prioritization of environmental problems in the Survey Summary Report. 43 refs., 21 figs., 24 tabs

  12. Mobile laboratory-based environmental radioactivity analysis capability of the US Environmental Protection Agency

    International Nuclear Information System (INIS)

    Dempsey, G.; Poppell, S.

    1999-01-01

    This poster presentation will highlight the capability of the US Environmental Protection Agency, Office of Radiation and Indoor Air to process and analyze environmental and emergency response samples in mobile radiological laboratories. Philosophy of use, construction, analytical equipment, and procedures will be discussed in the poster presentation. Accompanying the poster presentation, EPA will also have a static display of its mobile laboratories at the meeting site. (author)

  13. Environmental monitoring program of a nuclear research institute

    International Nuclear Information System (INIS)

    Peixoto, Claudia Marques; Jacomino, Vanusa Maria Feliciano; Dias, Fabiana F.

    2009-01-01

    The main activities of the CDTN Research Institute are concentrated in the areas of reactors, materials, process engineering, the environment, health, radioprotection, radioactive waste, and applied physics. Its Environmental Monitoring Program (EMP) began in 1985 with the objective of evaluating and controlling its installations' operating conditions as well as the impact on the neighboring environment caused by release of stable and radioactive elements. EMP's adequate planning and management resulted in obtaining an unique database that has generated information which have contributed to improving the credibility of nuclear and non-nuclear activities developed by the Center with the local community. Besides this, the data collection, study and continuous and systematic follow-up processes of environmental variables allowed the Center to be one of the Nation's pioneering research institutions in obtaining an Environmental Operating License from the Brazilian Environment and Natural Resources Institute (IBAMA). The objective of the present work is to present the experience acquired during the years, including a discussion about methodologies employed as well as the importance of using statistical evaluation tools in evaluating, interpreting, and controlling the quality of the results. Liquid effluent control and surface water monitoring results are also presented. (author)

  14. Legal and institutional foundations of adaptive environmental governance

    Directory of Open Access Journals (Sweden)

    Daniel A. DeCaro

    2017-03-01

    Full Text Available Legal and institutional structures fundamentally shape opportunities for adaptive governance of environmental resources at multiple ecological and societal scales. Properties of adaptive governance are widely studied. However, these studies have not resulted in consolidated frameworks for legal and institutional design, limiting our ability to promote adaptation and social-ecological resilience. We develop an overarching framework that describes the current and potential role of law in enabling adaptation. We apply this framework to different social-ecological settings, centers of activity, and scales, illustrating the multidimensional and polycentric nature of water governance. Adaptation typically emerges organically among multiple centers of agency and authority in society as a relatively self-organized or autonomous process marked by innovation, social learning, and political deliberation. This self-directed and emergent process is difficult to create in an exogenous, top-down fashion. However, traditional centers of authority may establish enabling conditions for adaptation using a suite of legal, economic, and democratic tools to legitimize and facilitate self-organization, coordination, and collaboration across scales. The principles outlined here provide preliminary legal and institutional foundations for adaptive environmental governance, which may inform institutional design and guide future scholarship.

  15. The Environmental Trilogy project: Balancing technical, institutional, and cultural perspectives to environmental management

    International Nuclear Information System (INIS)

    Kurstedt, Pamela S.; Jim, Russell; Wadsworth, Bonnie C.W.; Burke, William H.; Kurstedt, Harold A. Jr.

    1992-01-01

    'The significant problems we face cannot be solved at the same level of thinking we were at when we created them.' Albert Einstein. I've identified an initial set of three perspectives important to building an integrated, comprehensive approach to managing the environment - technical, institutional, and cultural. I've constructed an holistic model (called the Environmental Trilogy) for environmental management, encompassing at least these three perspectives and their interrelationships. In this paper, I outline the model and report the results of a working session facilitated at Virginia Tech in Blacksburg, Virginia, in October 1991, involving three representatives from each of the technical, institutional, and cultural perspectives. The institutional members of this group were people who understand institutional effects, rather than those who represent institutions. The working group discussed and analyzed the technical-institutional, technical-cultural, and institutional-cultural inter- relationships of the environmental trilogy. The goals of the working group were to put structure on the environmental trilogy model, to facilitate the definition of variables, and explore relationships between and among variables. The working group members are to continue studying issues and components, perspectives, connections, and cause-and-effect in the models and report back to interested parties. The outcome is projected to be a more holistic, integrated view of the environment. (author)

  16. Lawrence Berkeley Laboratory Institutional Plan FY 1987-1992

    Energy Technology Data Exchange (ETDEWEB)

    Various

    1986-12-01

    The Lawrence Berkeley Laboratory, operated by the University of California for the Department of Energy, provides national scientific leadership and supports technological innovation through its mission to: (1) Perform leading multidisciplinary research in general sciences and energy sciences; (2) Develop and operate unique national experimental facilities for use by qualified investigators; (3) Educate and train future generations of scientists and engineers; and (4) Foster productive relationships between LBL research programs and industry. The following areas of research excellence implement this mission and provide current focus for achieving DOE goals. GENERAL SCIENCES--(1) Accelerator and Fusion Research--accelerator design and operation, advanced accelerator technology development, accelerator and ion source research for heavy-ion fusion and magnetic fusion, and x-ray optics; (2) Nuclear Science--relativistic heavy-ion physics, medium- and low-energy nuclear physics, nuclear theory, nuclear astrophysics, nuclear chemistry, transuranium elements studies, nuclear data evaluation, and detector development; (3) Physics--experimental and theoretical particle physics, detector development, astrophysics, and applied mathematics. ENERGY SCIENCES--(1) Applied Science--building energy efficiency, solar for building systems, fossil energy conversion, energy storage, and atmospheric effects of combustion; (2) Biology and Medicine--molecular and cellular biology, diagnostic imaging, radiation biophysics, therapy and radiosurgery, mutagenesis and carcinogenesis, lipoproteins, cardiovascular disease, and hemopoiesis research; (3) Center for Advanced Materials--catalysts, electronic materials, ceramic and metal interfaces, polymer research, instrumentation, and metallic alloys; (4) Chemical Biodynamics--molecular biology of nucleic acids and proteins, genetics of photosynthesis, and photochemistry; (5) Earth Sciences--continental lithosphere properties, structures and

  17. ENVIRONMENTAL RISK ASSESSMENT OF SOME COPPER BASED FUNGICIDES ACCORDING TO THE REQUIREMENTS OF GOOD LABORATORY PRACTICE

    Directory of Open Access Journals (Sweden)

    Marga GRĂDILĂ

    2015-10-01

    Full Text Available The paper presents data demonstrating the functionality of biological systems reconstituted with aquatic organisms developed under Good Laboratory Practice testing facility within Research - Development Institute for Plant Protection Bucharest for environmental risk assessment of four fungicides based on copper, according to Good Laboratory Practice requirements. For risk assessment, according to GLP were made the following steps: Good Laboratory Practice test facility was established, we have ensured adequate space for growth, acclimatization and testing for each test species, it was installed a complex water production instalation needed to perform tests, it was achieved control system for checking environmental conditions and have developed specific operating procedures that have been accredited according to Good Laboratory Practice.The results showed that biological systems model of the Good Laboratory Practice test facility in Research - Development Institute for Plant Protection meet the requirements of Organisation for Economic Co-operation and Development Guidelines regarding GLP, and after testing copper-based fungicides in terms of acute toxicity Cyprinus carpio and to Daphnia magna revealed that three of them (copper oxychloride, copper hydroxide and copper sulphate showed ecological efficiency, ie low toxicity. Metallic copper based fungicides showed a higher toxicity, resulting in fish toxicity symptoms: sleep, sudden immersion, faded, weakness, swimming in spiral, lack of balance, breathing slow and cumbersome, spasms and mortality.

  18. Low Energy Accelerator Laboratory Technical Area 53, Los Alamos National Laboratory. Environmental assessment

    International Nuclear Information System (INIS)

    1995-04-01

    This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the Department of Energy (DOE) were to construct and operate a small research and development laboratory building at Technical Area (TA) 53 at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. DOE proposes to construct a small building to be called the Low Energy Accelerator Laboratory (LEAL), at a previously cleared, bladed, and leveled quarter-acre site next to other facilities housing linear accelerator research activities at TA-53. Operations proposed for LEAL would consist of bench-scale research, development, and testing of the initial section of linear particle accelerators. This initial section consists of various components that are collectively called an injector system. The anticipated life span of the proposed development program would be about 15 years

  19. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    2009-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia

  20. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    International Nuclear Information System (INIS)

    1988-07-01

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via ''no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is ''no fault'' and is not an ''audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs

  1. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is no fault'' and is not an audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs.

  2. Environmental survey at Lucas Heights Research Laboratories, 1989

    International Nuclear Information System (INIS)

    Hoffman, E.L.; Arthur, J.

    1990-09-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1989. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 9 refs., 17 tabs., 2 figs

  3. Environmental survey at Lucas Heights Research Laboratories, 1990

    International Nuclear Information System (INIS)

    Hoffmann, E.L.

    1991-10-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1990. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 11 refs., 16 tabs., 2 figs

  4. Environmental survey at Lucas Heights Research Laboratories, 1987

    International Nuclear Information System (INIS)

    Giles, M.S.; Foy, J.J.; Hoffmann, E.L.

    1989-12-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1987. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorized limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 9 refs., 18 tabs., 2 figs

  5. Environmental survey at Lucas Heights Research Laboratories, 1984

    International Nuclear Information System (INIS)

    Giles, M.S.; Dudaitis, A.

    1986-12-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1984. These results are satisfactory. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste discharges during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council

  6. Environmental survey at the Lucas Heights Research Laboratories. 1983

    International Nuclear Information System (INIS)

    Giles, M.S.; Dudaitis, A.

    1985-12-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1983. These results are satisfactory. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste discharges during this period is estimated to be less than 0.01 millisieverts, which is 1 per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council

  7. Environmental audit of the Savannah River Ecology Laboratory (SREL)

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report documents the results of the environmental audit conducted at the Savannah River Ecology Laboratory (SREL) at the Savannah River Site (SRS), principally in Aiken and Barnwell Counties, South Carolina. The audit was conducted by the US Department of Energy`s (DOE`s), Office of Environmental Audit (EH-24), beginning September 13, 1993, and ending September 23, 1993. The scope of the audit at SREL was comprehensive, addressing environmental activities in the technical areas of air; surface water/drinking water; groundwater/soil, sediment, and biota; waste management; toxic and chemical materials; inactive Waste sites; radiation; quality assurance; and environmental management. Specifically assessed was the compliance of SREL operations and activities with Federal, state, and local regulations; DOE Orders; and best management practices.

  8. 1991 Environmental monitoring report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Culp, T.; Cox, W.; Hwang, S.; Jones, A.; Longley, S.; Parsons, A.; Wolff, T.; Fish, J.; Ward, S.

    1992-11-01

    This 1991 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, envirorunental restoration (ER), and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 1.3 x 10 -3 mrem. The total population within a 50-mile radius of SNL, Albuquerque, received a collective dose of 0.53 person-rem during 1991 from SNL, Albuquerque, operations. As in the previous year, the 1991 operations at SNL, Albuquerque, had no discernible impact on the general public or on the environment

  9. Environmental audit of the Savannah River Ecology Laboratory (SREL)

    International Nuclear Information System (INIS)

    1993-09-01

    This report documents the results of the environmental audit conducted at the Savannah River Ecology Laboratory (SREL) at the Savannah River Site (SRS), principally in Aiken and Barnwell Counties, South Carolina. The audit was conducted by the US Department of Energy's (DOE's), Office of Environmental Audit (EH-24), beginning September 13, 1993, and ending September 23, 1993. The scope of the audit at SREL was comprehensive, addressing environmental activities in the technical areas of air; surface water/drinking water; groundwater/soil, sediment, and biota; waste management; toxic and chemical materials; inactive Waste sites; radiation; quality assurance; and environmental management. Specifically assessed was the compliance of SREL operations and activities with Federal, state, and local regulations; DOE Orders; and best management practices

  10. Lawrence Livermore National Laboratory environmental report for 1990

    International Nuclear Information System (INIS)

    Sims, J.M.; Surano, K.A.; Lamson, K.C.; Balke, B.K.; Steenhoven, J.C.; Schwoegler, D.R.

    1990-01-01

    This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore National Laboratory (LLNL) and presents summary information about environmental compliance for 1990. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent surface water, groundwater, vegetation, and foodstuff were made at both the Livermore site and at Site 300 nearly. LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment was evaluated. Aside from an August 13 observation of silver concentrations slightly above guidelines for discharges to the sanitary sewer, all the monitoring data demonstrated LLNL compliance with environmental laws and regulations governing emission and discharge of materials to the environment. In addition, the monitoring data demonstrated that the environmental impacts of LLNL are minimal and pose no threat to the public to or to the environment. 114 refs., 46 figs., 79 tabs

  11. Archive of Geosample Data and Information from the Woods Hole Oceanographic Institution (WHOI) Seafloor Samples Laboratory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Woods Hole Oceanographic Institution (WHOI) Seafloor Samples Laboratory is a partner in the Index to Marine and Lacustrine Geological Samples (IMLGS) database,...

  12. Quality control activities in the environmental radiology laboratory

    International Nuclear Information System (INIS)

    Llaurado, M.; Quesada, D.; Rauret, G.; Tent, J.; Zapata, D.

    2006-01-01

    During the last twenty years many analytical laboratories have implemented quality assurance systems. A quality system implementation requires documentation of all activities (technical and management), evaluation of these activities and its continual improvement. Implementation and adequate management of all the elements a quality system includes are not enough to guarantee quality of the analytical results generated at a time. That is the aim of a group of specific activities labelled as quality control activities. The Laboratori de Radiologia Ambiental (Environmental Radiology Laboratory; LRA) at the University of Barcelona was created in 1984 to carry out part of the quality control assays of the Environmental Radiology Monitoring Programs around some of the Spanish nuclear power plants, which are developed by the Servei Catala d'Activitats Energetiques (SCAR) and the Consejo de Seguridad Nuclear (CSN), organisations responsible for nuclear security and radiological protection. In these kind of laboratories, given the importance of the results they give, quality control activities become an essential aspect. In order to guarantee the quality of its analytical results, the LRA Direction decided to adopt the international standard UNE-EN ISO/IEC 17025 for its internal quality system and to accreditate some of the assays it carries out. In such as system, it is established, the laboratory shall monitor the validity of tests undertaken and data shall be recorded in such a way that trends are detectable. The present work shows the activities carried out in this way by the LRA, which are: Equipment control activities which in the special case of radiochemical techniques include measurement of backgrounds and blanks as well as periodical control of efficiency and resolution. Activities to assure the specifications settled by method validation, which are testing of reference materials and periodical analysis of control samples. Evaluation of the laboratory work quality

  13. Brookhaven National Laboratory site environmental report for calendar year 1993

    International Nuclear Information System (INIS)

    Naidu, J.R.; Royce, B.A.

    1994-05-01

    This report documents the results of the Environmental Monitoring Program at BNL and presents summary information about environmental compliance for 1993. To evaluate the effect of BNL operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, ground water and vegetation were made at the BNL site and at sites adjacent to the Laboratory. Brookhaven National Laboratory's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment were evaluated. Among the permitted facilities, two instances, of pH exceedances were observed at recharge basins, possible related to rain-water run-off to these recharge basins. Also, the discharge from the Sewage Treatment Plant (STP) to the Peconic River exceeded on five occasions, three for residual chlorine and one each for iron and ammonia nitrogen. The chlorine exceedances were related to a malfunctioning hypochlorite dosing pump and ceased when the pump was repaired. While the iron and ammonia-nitrogen could be the result of disturbances to the sand filter beds during maintenance. The environmental monitoring data has identified site-specific contamination of ground water and soil. These areas are subject to Remedial Investigation/Feasibility Studies (RI/FS) under the Inter Agency Agreement (IAG). Except for the above, the environmental monitoring data has continued to demonstrate that compliance was achieved with applicable environmental laws and regulations governing emission and discharge of materials to the environment, and that the environmental impacts at BNL are minimal and pose no threat to the public or to the environment. This report meets the requirements of DOE Orders 5484. 1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs

  14. Lawrence Berkeley National Laboratory 1997 Site Environmental Report Vol. I

    International Nuclear Information System (INIS)

    Thorson, Patrick

    1998-01-01

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of U.S. Department of Energy Order 231.1. The Site Environmental Report for 1997 is intended to summarize Berkeley Lab's compliance with environmental standards and requirements, characterize environmental management efforts through surveillance and monitoring activities, and highlight significant programs and efforts for calendar year 1997. This report is structured into three basic areas that cover a general overview of the Laboratory, the status of environmental programs, and the results of the surveillance and monitoring activities, including air quality, surface water, groundwater, sanitary sewer, soil and sediment, vegetation and foodstuffs, radiation dose assessment, and quality assurance. The report is separated into two volumes. Volume I contains the body of the report, a list of references, a list of acronyms and abbreviations, a glossary, Appendix A (NESHAPS annual report), and Appendix B (distribution list for volume I). Volume II contains Appendix C, the individual data results from monitoring programs. Each chapter in volume I begins with an outline of the sections that follow

  15. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  16. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories

  17. Environmental survey at Lucas Heights Research Laboratories, 1993

    International Nuclear Information System (INIS)

    Hoffmann, E.L.; Looz, T.

    1995-04-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1993. No activity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne discharges during this period is estimated to be less than 0.01 mSv, which is one per cent of the dose limit for long term exposure that is recommended by the National Health and Medical Research Council. A list of previous environmental survey reports is attached. 22 refs., 21 tabs., 4 figs

  18. 1996 Site environmental report Sandia National Laboratories Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Fink, C.H. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Duncan, D. [ed.] [GRAM, Inc., Albuquerque, NM (United States); Sanchez, R. [Jobs Plus, Albuquerque, NM (United States)

    1997-08-01

    Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the U.S. Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs, and to conduct fundamental research and development (R&D) to advance technology in energy research, computer science, waste management, electronics, materials science, and transportation safety for hazardous and nuclear components. In support of this mission, the Environmental Safety and Health (ES&H) Center at SNL/NM conducts extensive environmental monitoring, surveillance, and compliance activities to assist SNL`s line organizations in meeting all applicable environmental regulations applicable to the site including those regulating radiological and nonradiological effluents and emissions. Also herein are included, the status of environmental programs that direct and manage activities such as terrestrial surveillance; ambient air and meteorological monitoring; hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental restoration (ER); oil and chemical spill prevention; and National Environmental Policy Act (NEPA) documentation. This report has been prepared in compliance with DOE order 5400.1, General Environmental Protection.

  19. 1996 Site environmental report Sandia National Laboratories Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Fink, C.H.; Duncan, D.; Sanchez, R.

    1997-08-01

    Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the U.S. Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs, and to conduct fundamental research and development (R ampersand D) to advance technology in energy research, computer science, waste management, electronics, materials science, and transportation safety for hazardous and nuclear components. In support of this mission, the Environmental Safety and Health (ES ampersand H) Center at SNL/NM conducts extensive environmental monitoring, surveillance, and compliance activities to assist SNL's line organizations in meeting all applicable environmental regulations applicable to the site including those regulating radiological and nonradiological effluents and emissions. Also herein are included, the status of environmental programs that direct and manage activities such as terrestrial surveillance; ambient air and meteorological monitoring; hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental restoration (ER); oil and chemical spill prevention; and National Environmental Policy Act (NEPA) documentation. This report has been prepared in compliance with DOE order 5400.1, General Environmental Protection

  20. Environmental Monitoring Of Microbiological Laboratory: Expose Plate Method

    International Nuclear Information System (INIS)

    Yahaya Talib; Othman Mahmud; Noraisyah Mohd Yusof; Asmah Mohibat; Muhamad Syazwan Zulkifli

    2013-01-01

    Monitoring of microorganism is important and conducted regularly on environment of microbiological laboratory at Medical Technology Division. Its objective is to ensure the quality of working environment is maintained according to microbial contamination, consequently to assure the quality of microbiological tests. This paper presents report of environmental monitoring since year 2007. The test involved was bacterial colony counts after the growth media was exposed to air at identified location. (author)

  1. Quality management in environmental programs: Los Alamos National Laboratory's approach

    International Nuclear Information System (INIS)

    Maassen, L.; Day, J.L.

    1998-03-01

    Since its inception in 1943, Los Alamos National Laboratory's (LANL's) primary mission has been nuclear weapons research and development, which involved the use of hazardous and radioactive materials, some of which were disposed of onsite. LANL has established an extensive Environmental Restoration Project (Project) to investigate and remediate those hazardous and radioactive waste disposal sites. This paper describes LANL's identification and resolution of critical issues associated with the integration and management of quality in the Project

  2. On-site laboratory support of Oak Ridge National Laboratory environmental restoration field activities

    International Nuclear Information System (INIS)

    Burn, J.L.E.

    1995-07-01

    A remedial investigation/feasibility study has been undertaken at Oak Ridge National Laboratory (ORNL). Bechtel National, Inc. and partners CH2M Hill, Ogden Environmental and Energy Services, and PEER Consultants are contracted to Lockheed Martin Energy Systems, performing this work for ORNL's Environmental Restoration (ER) Program. An on-site Close Support Laboratory (CSL) established at the ER Field Operations Facility has evolved into a laboratory where quality analytical screening results can be provided rapidly (e.g., within 24 hours of sampling). CSL capabilities include three basic areas: radiochemistry, chromatography, and wet chemistry. Radiochemical analyses include gamma spectroscopy, tritium and carbon-14 screens using liquid scintillation analysis, and gross alpha and beta counting. Cerenkov counting and crown-ether-based separation are the two rapid methods used for radiostrontium determination in water samples. By extending count times where appropriate, method detection limits can match those achieved by off-site contract laboratories. Volatile organic compounds are detected by means of gas chromatography using either headspace or purge and trap sample introduction (based on EPA 601/602). Ionic content of water samples is determined using ion chromatography and alkalinity measurement. Ion chromatography is used to quantify both anions (based on EPA 300) and cations. Wet chemistry procedures performed at the CSL include alkalinity, pH (water and soil), soil resistivity, and dissolved/suspended solids. Besides environmental samples, the CSL routinely screens health and safety and waste management samples. The cost savings of the CSL are both direct and indirect

  3. Oak Ridge National Laboratory institutional plan FY 1985-FY 1990

    International Nuclear Information System (INIS)

    1984-11-01

    The primary mission of ORNL is to carry out applied research and engineering in fusion, fission, and other energy technologies, and scientific research in basic physical and life sciences. ORNL designs and provides research facilities. An important part of ORNL's mission is the manufacture and sale of radioactive and stable isotopes that are not available from the private sector. To fulfull its mission, ORNL focuses its scientific and technical efforts on: (1) magnetic fusion, with emphasis on applied plasma physics, experimental and design studies of confinement configurations, development of plasma heating and fueling systems, development of prototype superconducting confinement magnets, and testing of candidate first-wall and blanket materials; (2) nuclear fission, focused on development of nuclear fuel reprocessing, materials testing and development for high-temperature gas-cooled and advanced converter reactors, and technologies for managing nuclear waste; (3) biological and environemental research, with emphasis on interaction of energy-related physical and chemical agents with living organisms; (4) conservation and renewable energy, with emphasis on generic research for high-temperature materials, power systems, biomass production, energy storage, and technology development for buildings and industry; (5) fossil energy, focused on development of materials for fossil fuel applications and on health and environmental effects of coal conversion systems; and (6) basic research in physical sciences, with emphasis in materials research on radiation effects, neutron scattering, and photovoltaic conversion; in chemical science on aqueous solutions; and in nuclear physics on heavy-ion reactions

  4. CNR LARA project, Italy: Airborne laboratory for environmental research

    Science.gov (United States)

    Bianchi, R.; Cavalli, R. M.; Fiumi, L.; Marino, C. M.; Pignatti, S.

    1995-01-01

    The increasing interest for the environmental problems and the study of the impact on the environment due to antropic activity produced an enhancement of remote sensing applications. The Italian National Research Council (CNR) established a new laboratory for airborne hyperspectral imaging, the LARA Project (Laboratorio Aero per Ricerche Ambientali - Airborne Laboratory for Environmental Research), equipping its airborne laboratory, a CASA-212, mainly with the Daedalus AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) instrument. MIVIS's channels, spectral bandwidths, and locations are chosen to meet the needs of scientific research for advanced applications of remote sensing data. MIVIS can make significant contributions to solving problems in many diverse areas such as geologic exploration, land use studies, mineralogy, agricultural crop studies, energy loss analysis, pollution assessment, volcanology, forest fire management and others. The broad spectral range and the many discrete narrow channels of MIVIS provide a fine quantization of spectral information that permits accurate definition of absorption features from a variety of materials, allowing the extraction of chemical and physical information of our environment. The availability of such a hyperspectral imager, that will operate mainly in the Mediterranean area, at the present represents a unique opportunity for those who are involved in environmental studies and land-management to collect systematically large-scale and high spectral-spatial resolution data of this part of the world. Nevertheless, MIVIS deployments will touch other parts of the world, where a major interest from the international scientific community is present.

  5. Raising environmental awareness through applied biochemistry laboratory experiments.

    Science.gov (United States)

    Salman Ashraf, S

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment is described that guides students to learn about the applicability of peroxidase enzymes to degrade organic dyes (as model pollutants) in simulated waste water. In addition to showing how enzymes can potentially be used for waste water remediation, various factors than can affect enzyme-based reactions such as pH, temperature, concentration of substrates/enzymes, and denaturants can also be tested. This "applied biotechnology" experiment was successfully implemented in an undergraduate biochemistry laboratory course to enhance students' learning of environmental issues as well important biochemistry concepts. Student survey confirmed that this laboratory experiment was successful in achieving the objectives of raising environmental awareness in students and illustrating the usefulness of chemistry in solving real-life problems. This experiment can be easily adopted in an introductory biochemistry laboratory course and taught as an inquiry-guided exercise. © 2013 by The International Union of Biochemistry and Molecular Biology.

  6. Draft environmental assessment of Argonne National Laboratory, East

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-01

    This environmental assessment of the operation of the Argonne National Laboratory is related to continuation of research and development work being conducted at the Laboratory site at Argonne, Illinois. The Laboratory has been monitoring various environmental parameters both offsite and onsite since 1949. Meteorological data have been collected to support development of models for atmospheric dispersion of radioactive and other pollutants. Gaseous and liquid effluents, both radioactive and non-radioactive, have been measured by portable monitors and by continuous monitors at fixed sites. Monitoring of constituents of the terrestrial ecosystem provides a basis for identifying changes should they occur in this regime. The Laboratory has established a position of leadership in monitoring methodologies and their application. Offsite impacts of nonradiological accidents are primarily those associated with the release of chlorine and with sodium fires. Both result in releases that cause no health damage offsite. Radioactive materials released to the environment result in a cumulative dose to persons residing within 50 miles of the site of about 47 man-rem per year, compared to an annual total of about 950,000 man-rem delivered to the same population from natural background radiation. 100 refs., 17 figs., 33 tabs.

  7. Environmental monitoring systems: a new type of mobile laboratory

    International Nuclear Information System (INIS)

    Bruecher, L.; Langmueller, G.; Tuerschmann, G.

    1999-01-01

    Nuclear facilities are obligated to monitor the environmental radiation in their vicinity, which is often fulfilled by monitoring cars, combined with fixed monitoring stations. The MOLAR Mobile Laboratory for Environmental Radiation Monitoring as described here is being used under normal and accident conditions as a spot check monitoring system or to perform continuous measurements along a driving track. The mobile laboratories are continuously connected with the control centre's CRCS Central Radiological Computer System, where the RIS Radiological Information System provides corresponding evaluation functions. The mobile labs contain measuring and controlling units like γ-dose rate monitors, γ-spectrometer with a HpGe High Purity Germanium detector, a lead shielded measuring cell and MCA Multi-Channel Analyser, portable β-contamination monitor, α/β/γ multipurpose quick measuring unit, aerosol and iodine sampling units. The collected samples are safely stored for the transport to the environmental laboratory for being analysed later. The geographical location of the moving car is continuously determined by the satellite based GPS Global Positioning System and transferred in the on-board rack mounted computer system for being stored and locally displayed. Real-time data transmission via radio and mobile phone is continuously performed to supply the RIS Radiological Information System in the control centre via radio and mobile phone. The latter also serves for voice communication. Currently three MOLAR systems can be operated parallel and independent from the control centre. The system is ready to be extended to more mobile labs. This combination of mobile monitoring, sample analysis and radiological assessment of environmental data in combination with process occurrences has turned out to be a powerful instrument for emergency preparedness and environmental supervising. (orig.) [de

  8. Used energy-related laboratory equipment grant program for institutions of higher learning. Eligible equipment catalog

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This is a listing of energy related equipment available through the Energy-Related Laboratory Equipment Grant Program which grants used equipment to institutions of higher education for energy-related research. Information included is an overview of the program, how to apply for a grant of equipment, eligibility requirements, types of equipment available, and the costs for the institution.

  9. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.R.

    1993-12-31

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards.

  10. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    International Nuclear Information System (INIS)

    Martin, P.R.

    1993-01-01

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards

  11. Environmental Survey preliminary report, Sandia National Laboratories, Livermore, California

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    This report contains the preliminary findings based on the first phase of an Environmental Survey at the Department of Energy (DOE) Sandia National Laboratories Livermore (SNLL), located at Livermore, California. The Survey is being conducted by DOE's Office of Environment, Safety and Health. The SNLL Survey is a portion of the larger, comprehensive DOE Environmental Survey encompassing all major operating facilities of DOE. The DOE Environmental Survey is one of a series of initiatives announced on September 18, 1985, by Secretary of Energy, John S. Herrington, to strengthen the environmental, safety, and health programs and activities within DOE. The purpose of the Environmental Survey is to identify, via a no fault'' baseline Survey of all the Department's major operating facilities, environmental problems and areas of environmental risk. The identified problem areas will be prioritized on a Department-wide basis in order of importance in 1989. The findings in this report are subject to modification based on the results from the Sampling and Analysis Phase of the Survey. The findings are also subject to modification based on comments from the Albuquerque Operations Office concerning the technical accuracy of the findings. The modified preliminary findings and any other appropriate changes will be incorporated into an Interim Report. The Interim Report will serve as the site-specific source for environmental information generated by the Survey, and ultimately as the primary source of information for the DOE-wide prioritization of environmental problems in the Survey Summary Report. 43 refs., 21 figs., 24 tabs.

  12. Environmental monitoring at Argonne National Laboratory. Annual report for 1983

    International Nuclear Information System (INIS)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1984-03-01

    The results of the environmental monitoring program at Argonne National Laboratory for 1983 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in air, surface water, ground water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The potential radiation dose to off-site population groups is also estimated. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. 19 references, 8 figures, 49 tables

  13. Environmental monitoring at Argonne National Laboratory. Annual report for 1982

    International Nuclear Information System (INIS)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1983-03-01

    The results of the environmental monitoring program at Argonne Ntaional Laboratory for 1982 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in air, surface water, ground water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and masurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. The potential radiation dose to off-site population groups is also estimated

  14. Environmental monitoring at Argonne National Laboratory. Annual report for 1980

    International Nuclear Information System (INIS)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1981-03-01

    The results of the environmental monitoring program at Argonne National Laboratory for 1980 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, soil, grass, bottom sediment, and foodstuffs; for a variety of chemical constituents in air, surface water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. The potential radiation dose to off-site population groups is also estimated

  15. Environmental monitoring at Argonne National Laboratory. Annual report for 1978

    International Nuclear Information System (INIS)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1979-03-01

    The results of the environmental monitoring program at Argonne National Laboratory for 1978 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, Argonne effluent water, soil, grass, bottom sediment, and foodstuffs; for a variety of chemical constituents in air, surface water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements wee made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. The potential radiation dose to off-site population groups is also estimated

  16. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-12-01

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the three KAPL Sites [Knolls Site, Niskayuna, New York; Kesselring Site, West Milton, New York; S1C Site, Windsor, Connecticut] during calendar year 1999 resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations.

  17. Environmental monitoring at Argonne National Laboratory. Annual report, 1981

    International Nuclear Information System (INIS)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1982-03-01

    The results of the environmental monitoring program at Argonne National Laboratory for 1981 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in air, surface water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. The potential radiation dose to off-site population groups is also estimated

  18. Environmental monitoring at Argonne National Laboratory. Annual report for 1976

    International Nuclear Information System (INIS)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1977-03-01

    The results of the environmental monitoring program at Argonne National Laboratory for 1976 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, Argonne effluent water, soil, grass, bottom sediment, and foodstuffs; for a variety of chemical constituents in surface and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with accepted environmental quality standards. The potential radiation dose to off-site population groups is also estimated

  19. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the three KAPL Sites [Knolls Site, Niskayuna, New York; Kesselring Site, West Milton, New York; S1C Site, Windsor, Connecticut] during calendar year 1999 resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations

  20. Site Environmental Report for 2016 Sandia National Laboratories California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-06-01

    Sandia National Laboratories, California (SNL/CA) is a Department of Energy (DOE) facility. The management and operations of the facility are under a contract with the DOE’s National Nuclear Security Administration (NNSA). On May 1, 2017, the name of the management and operating contractor changed from Sandia Corporation to National Technology and Engineering Solutions of Sandia, LLC (NTESS). The DOE, NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2016 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2012). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2016, unless noted otherwise. General site and environmental program information is also included.

  1. Proposed environmental remediation at Argonne National Laboratory, Argonne, Illinois

    International Nuclear Information System (INIS)

    1997-05-01

    The Department of Energy (DOE) has prepared an Environmental Assessment evaluating proposed environmental remediation activity at Argonne National Laboratory-East (ANL-E), Argonne, Illinois. The environmental remediation work would (1) reduce, eliminate, or prevent the release of contaminants from a number of Resource Conservation and Recovery Act (RCRA) Solid Waste Management Units (SWMUs) and two radiologically contaminated sites located in areas contiguous with SWMUs, and (2) decrease the potential for exposure of the public, ANL-E employees, and wildlife to such contaminants. The actions proposed for SWMUs are required to comply with the RCRA corrective action process and corrective action requirements of the Illinois Environmental Protection Agency; the actions proposed are also required to reduce the potential for continued contaminant release. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required

  2. Routine environmental reaudit of the Argonne National Laboratory - West

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This report documents the results of the Routine Environmental Reaudit of the Argonne National Laboratory - West (ANL-W), Idaho Falls, Idaho. During this audit, the activities conducted by the audit team included reviews of internal documents and reports from previous audits and assessments; interviews with U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), State of Idaho Department of Health and Welfare (IDHW), and DOE contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted from October 11 to October 22, 1993, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health (EH). DOE 5482.113, {open_quotes}Environment, Safety, and Health Appraisal Program,{close_quotes} established the mission of EH-24 to provide comprehensive, independent oversight of Department-wide environmental programs on behalf of the Secretary of Energy. The ultimate goal of EH-24 is enhancement of environmental protection and minimization of risk to public health and the environment. EH-24 accomplishes its mission by conducting systematic and periodic evaluations of the Department`s environmental programs within line organizations, and by utilizing supplemental activities that serve to strengthen self-assessment and oversight functions within program, field, and contractor organizations.

  3. Routine environmental reaudit of the Argonne National Laboratory - West

    International Nuclear Information System (INIS)

    1996-01-01

    This report documents the results of the Routine Environmental Reaudit of the Argonne National Laboratory - West (ANL-W), Idaho Falls, Idaho. During this audit, the activities conducted by the audit team included reviews of internal documents and reports from previous audits and assessments; interviews with U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), State of Idaho Department of Health and Welfare (IDHW), and DOE contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted from October 11 to October 22, 1993, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health (EH). DOE 5482.113, open-quotes Environment, Safety, and Health Appraisal Program,close quotes established the mission of EH-24 to provide comprehensive, independent oversight of Department-wide environmental programs on behalf of the Secretary of Energy. The ultimate goal of EH-24 is enhancement of environmental protection and minimization of risk to public health and the environment. EH-24 accomplishes its mission by conducting systematic and periodic evaluations of the Department's environmental programs within line organizations, and by utilizing supplemental activities that serve to strengthen self-assessment and oversight functions within program, field, and contractor organizations

  4. Argonne National Laboratory Site Environmental report for calendar year 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N. W.; Davis, T. M.; Moos, L. P.

    2010-08-04

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2009. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, Argonne, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy (DOE) dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's (EPA) CAP-88 Version 3 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  5. Argonne National Laboratory Site Environmental Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Davis, T. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Gomez, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Moos, L. P. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-09-02

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2013. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with environmental management, sustainability efforts, environmental corrective actions, and habitat restoration. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, Argonne, and other) and are compared with applicable standards intended to protect human health and the environment. A U.S. Department of Energy (DOE) dose calculation methodology, based on International Commission on Radiological Protection (ICRP) recommendations and the U.S. Environmental Protection Agency’s (EPA) CAP-88 Version 3 computer code, was used in preparing this report.

  6. Argonne National Laboratory site environmental report for calendar year 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N. W.; Davis, T. M.; Moos, L. P.; ESH/QA Oversight

    2008-09-09

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2007. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's CAP-88 Version 3 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  7. Argonne National Laboratory site environmental report for calendar year 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N. W.; Kolzow, R. G.

    2005-09-02

    This report discusses the accomplishments of the environmental protection program at Argonne National Laboratory (ANL) for calendar year 2004. The status of ANL environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of ANL operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the ANL site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and ANL effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, ANL, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's CAP-88 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  8. Argonne National Laboratory site environmental report for calendar year 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N. W.; ESH/QA Oversight

    2007-09-13

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2006. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's CAP-88 Version 3 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  9. Environmental Audit at Santa Barbara Operations, Special Technologies Laboratory, Remote Sensing Laboratory, North Las Vegas Facilities

    International Nuclear Information System (INIS)

    1991-03-01

    This report documents the results of the Environmental Audit of selected facilities under the jurisdiction of the DOE Nevada Operations Office (NV) that are operated by EG and G Energy Measurements, Incorporated (EG and G/EM). The facilities included in this Audit are those of Santa Barbara Operation (SBO) at Goleta, California; the Special Technologies Laboratory (STL) at Santa Barbara, California; and Las Vegas Area Operations (LVAO) including the Remote Sensing Laboratory (RSL) at Nellis Air Force Base in Nevada, and the North Las Vegas Facilities (NLVF) at North Las Vegas, Nevada. The Environmental Audit was conducted by the US Department of Energy's (DOE) Office of Environmental Audit, commencing on January 28, 1991 and ending on February 15, 1991. The scope of the Audit was comprehensive, addressing environmental activities in the technical areas of air, surface water/drinking water, groundwater, waste management, toxic and chemical materials, quality assurance, radiation, inactive waste sites, and environmental management. Also assessed was compliance with applicable Federal, state, and local regulations and requirements; internal operating requirements; DOE Orders; and best management practices. 8 tabs

  10. The central gamma spectrometry laboratory of the GSF Institute of Radiation Protection

    International Nuclear Information System (INIS)

    Ruckerbauer, F.; Dietl, F.; Winkler, R.

    1997-01-01

    Since the middle of 1995 the WG Radioecology is operating the central gamma spectrometry laboratory of the GSF-Institute of Radiation Protection. The main scope of the laboratory is the gamma spectrometric analysis of samples within the research program of the institute and within joint programs with other institutes of the GSF research center. In the present report set-up and technical data of the measuring equipment, the central operating and data evaluation system and measures for quality assurance are described. At that time 18 semiconductor detectors are available for gamma spectrometric sample analysis which is standardized with respect to operation, evaluation algorithms, nuclide data, data safety and documentation. (orig.) [de

  11. Annual report of the Institute for Environmental Sciences, 1998

    International Nuclear Information System (INIS)

    1999-01-01

    A survey research was continually made on the effects of radioactive substances on the environment in the fiscal year, 1998 as well as in the previous year. The research was conducted with the following themes; survey in natural and social environments, study on the distribution of environmental radioactivities, study on the transfer of radioactive substances into the environment, experimental study on the development of closed experiment system for ecological study and experimental study on the biological effects of radioactivity. In addition, several seminars and meetings were held in the institute aiming to spread and enlighten the scientific informations and techniques on the environmental influence of radioactivities. This survey research was entrusted by Atomic Prefecture and the National Government. (J.P.N.)

  12. Annual report of the Institute for Environmental Sciences, 1996

    International Nuclear Information System (INIS)

    1997-01-01

    A survey research was continually made on the effects of radioactive substances on the environment in the fiscal year, 1996 as well as in the previous year. The research was conducted with the following themes; survey in natural and social environments, study on the distribution of environmental radioactivities, study on the transfer of radioactive substances into the environment, experimental study on the development of closed experiment system for ecological study and experimental study on the biological effects of radioactivity. In addition, several seminars and meetings were held in the institute aiming to spread and enlighten the scientific informations and techniques on the environmental influence of radioactivities. This survey research was entrusted by Aomori Prefecture and the National Government. (M.N.)

  13. The use of institutional controls at Department of Energy Oak Ridge Field Office environmental restoration sites

    International Nuclear Information System (INIS)

    White, R.K.; Swindle, D.W.; Redfearn, A.; King, A.D.

    1992-01-01

    This report summarizes some of the major issues related to the use of institutional controls at hazardous waste sites under the auspices of the Department of Energy Field Office, Oak Ridge/Environmental Restoration (DOE-OR/ER) Division. In particular, the report addresses the impacts that assumptions regarding institutional controls have on the results and interpretation of the risk assessment, both in the Remedial Investigation (RI) and the Feasibility Study (FS). Environmental restoration activities at DOE-OR/ER sites are primarily driven by CERCLA. Therefore, the report focuses on the approaches and assumptions relating to institutional controls under CERCLA. Also the report briefly outlines approaches adopted under other authorities such as RCRA and radiation regulatory authorities (such as NRC regulations/guidance, DOE orders, and EPA standards) in order to contrast these approaches to those adopted under CERCLA. In order to demonstrate the implications of the use of institutional controls at DOE facilities, this report summarizes the approaches and results of the recent baseline risk assessment for Solid Waste Storage Area 6 at Oak Ridge National Laboratory. The report concludes with possible options on the use of institutional controls at DOE-OR/ER sites

  14. VKTA Rossendorf: Laboratory for Environmental and Radionuclide Analysis

    International Nuclear Information System (INIS)

    Koehler, M.; Knappik, R.; Fiola, K.

    2015-01-01

    The VKTA (Nuclear Engineering and Analytics Inc.) is charged by the Free State of Saxony with the decommissioning and waste management of the nuclear installations at the research site Dresden-Rossendorf. This task includes the safe management and disposal of fissile material and radioactive wastes. The acquired expertise and our solution-oriented way of working are the basis for a varied range of services especially the environmental and radionuclide analyzes. The Laboratory for Environmental and Radionuclide Analysis is accredited according to DIN EN ISO/IEC 17025 and provides a sound range of analytical and metrological services including their coordination and management. The personnel and the rooms, measuring and technical equipment are particularly designed for our special field, the measuring of radioactivity. We are focussed on measuring artificial and natural radionuclides in a wide range of activity and in different sample matrices (e.g., urine, faeces, metals, soil, concrete, food, liquids). With the flexible accreditation of the radionuclide analytics the Laboratory is able to react shortly to changing requirements in decommissioning, environmental monitoring and radiation protection. Essential chemical and radiochemical methods are e.g.: · Alpha particle spectrometry, · Liquid scintillation counting, · gamma ray spectrometry, including Ultra-Low-Level, · High-resolution ICP-MS, · Chromatographic methods such as ion chromatography, gas chromatography, HPLC, · Electrochemical measuring methods such as potentiometry, voltammetry. The Laboratory offers analytical services to the research site Dresden-Rossendorf and national and international customers adapting its analytical procedures to the special needs of customers. The presentation demonstrates on the basis of examples the work of Laboratory within the scope of decommissioning of nuclear facilities, especially at a research site, from radiological preliminary investigation to declaration of

  15. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 2: Environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This 1993 Annual Report from Pacific Northwest Laboratory (PNL) to the US DOE describes research in environment and health conducted during fiscal year (FY) 1993. The report is divided into four parts, each in a separate volume. This part, Volume 2, covers Environmental Sciences. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. There are sections on Subsurface Science, Terrestrial Science, Technology Transfer, Interactions with Educational Institutions, and Laboratory Directed Research and Development.

  16. International environmental governance: Lessons learned from Human Rights Institutional Reform

    Energy Technology Data Exchange (ETDEWEB)

    Fauchald, Ole Kristian

    2011-07-01

    This report focuses on the possibility of establishing a High Commissioner for the Environment and transforming the UNEP Governing Council into a Council for the Environment. For this purpose, it considers the parallels between human rights regimes and environmental regimes. It provides a short-list of functions to be covered by a reformed environmental governance regime, and discusses how the reform can be coordinated with UNEP, as well as with the current and future institutional framework for sustainable development. The report also discusses how the reform can be related to fifteen core multilateral environmental agreements. Finally, the report considers how the reform can be carried out through a discussion of five separate options: a decision by the UN General Assembly, by the ECOSOC, or by the UNEP Governing Council, as well as through agreements between conferences of parties of environmental agreements, or directly between states. A main purpose of the report, which has been commissioned by the Norwegian Ministry for the Environment, is to provide input to the preparations for the Rio+20 Conference in 2012.(auth)

  17. Environmental Sciences Laboratory dedication, February 26-27, 1979

    International Nuclear Information System (INIS)

    Auerbach, S.I.; Millemann, N.T.

    1980-09-01

    The dedication of the new Environmental Sciences Laboratory coincided with the 25th year of the establishment of the science of ecology at Oak Ridge National Laboratory. That quarter century witnessed the evolution of ecology from an obscure, backwater discipline of biology to a broadly used, everyday household word. The transition reflected broad and basic changes in our social and cultural view of the world. This was brought about as a result of the awareness developed in our society of the importance of the environment, coupled with efforts of ecologists and other environmental scientists who identified, clarified, and formulated the issues and challenges of environmental protection for both the lay public and the scientific community. In many respects, the activities in ecology at ORNL were a microcosm of the broader social scene; the particular problems of the environment associated with atomic energy needed to be defined in scientific terms and articulated in both the specific and general sense for a larger audience which was unfamiliar with the field and somewhat alien to its concepts and philosophy. The success of this effort is reflected in the existence of the new Environmental Sciences Laboratory. This dedication volume brings together the thoughts and reflections of many of these scientists whose efforts contributed in a unique and individualistic fashion not only to ORNL but also to the national identification of ecology and its importance to the achievement of our national goals. Their remarks and presentations are not only a pleasant and personally gratifying recapitulation of the past and of ORNL's contributions to ecology but also portend some of the challenges to ecology in the future

  18. Environmental Sciences Laboratory dedication, February 26-27, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, S.I.; Millemann, N.T. (eds.)

    1980-09-01

    The dedication of the new Environmental Sciences Laboratory coincided with the 25th year of the establishment of the science of ecology at Oak Ridge National Laboratory. That quarter century witnessed the evolution of ecology from an obscure, backwater discipline of biology to a broadly used, everyday household word. The transition reflected broad and basic changes in our social and cultural view of the world. This was brought about as a result of the awareness developed in our society of the importance of the environment, coupled with efforts of ecologists and other environmental scientists who identified, clarified, and formulated the issues and challenges of environmental protection for both the lay public and the scientific community. In many respects, the activities in ecology at ORNL were a microcosm of the broader social scene; the particular problems of the environment associated with atomic energy needed to be defined in scientific terms and articulated in both the specific and general sense for a larger audience which was unfamiliar with the field and somewhat alien to its concepts and philosophy. The success of this effort is reflected in the existence of the new Environmental Sciences Laboratory. This dedication volume brings together the thoughts and reflections of many of these scientists whose efforts contributed in a unique and individualistic fashion not only to ORNL but also to the national identification of ecology and its importance to the achievement of our national goals. Their remarks and presentations are not only a pleasant and personally gratifying recapitulation of the past and of ORNL's contributions to ecology but also portend some of the challenges to ecology in the future.

  19. Participation of the radiation hygiene laboratories to the WHO/UNEP global environmental radiation network

    International Nuclear Information System (INIS)

    Milu, C.; Gheorghe, R.

    2003-01-01

    In December 1987, a WHO-UNEP meeting held at SCPRI (Service Central de protection canter Les Rayonnements Ionisantes - Le Vesinet, France) set up the basis of the international network GERMON (Global Environmental Radiation Monitoring Network) as an extension of existing network 'Global Environment Monitoring Systems' (GEMS). The accident from Chernobyl certainly was the important nuclear event influencing this decision. The aim of the GERMON network is to initiate programmes for the routine monitoring of the environmental radioactivity and to ensure a quick interchange of credible data in case of major accidental radioactive releases, as well as the development of intervention devices in the member states running such programmes. The responsibility of the Co-ordinating Collaborating Centre (CCC) has been given to the French Service Central de Protection Centre les Rayonnements Ionisants (SCPRI). In 1994, this Service became the Office de Protection Centre les Rayonnements Ionisants (OPRI). The Ministry of Health has a national network consisting of 23 radiation hygiene laboratories; 19 of these are included in the framework of county divisions of public health , and the other 4 are compartments of the regional institutes of public health. WHO designated the Institute of Public Health from Bucharest as National Contact Centre, in charge with communicating the results obtained by the national laboratories on the indicators of environmental radioactivity, according to the established methodologies. The main indicators considered are: ambient gamma dose, radioactivity of the air, of the precipitation, and of the milk. Following the measurement and transmission protocols of the CCC, the Radiation Hygiene Laboratory from the Institute of Public Health has established a methodology to be followed by the laboratories of the national network. (authors)

  20. Environmental Sciences Division Toxicology Laboratory standard operating procedures

    International Nuclear Information System (INIS)

    Kszos, L.A.; Stewart, A.J.; Wicker, L.F.; Logsdon, G.M.

    1989-09-01

    This document was developed to provide the personnel working in the Environmental Sciences Division's Toxicology Laboratory with documented methods for conducting toxicity tests. The document consists of two parts. The first part includes the standard operating procedures (SOPs) that are used by the laboratory in conducting toxicity tests. The second part includes reference procedures from the US Environmental Protection Agency document entitled Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, upon which the Toxicology Laboratory's SOPs are based. Five of the SOPs include procedures for preparing Ceriodaphnia survival and reproduction test. These SOPs include procedures for preparing Ceriodaphnia food (SOP-3), maintaining Ceriodaphnia cultures (SOP-4), conducting the toxicity test (SOP-13), analyzing the test data (SOP-13), and conducting a Ceriodaphnia reference test (SOP-15). Five additional SOPs relate specifically to the fathead minnow (Pimephales promelas) larval survival and growth test: methods for preparing fathead minnow larvae food (SOP-5), maintaining fathead minnow cultures (SOP-6), conducting the toxicity test (SOP-9), analyzing the test data (SOP-12), and conducting a fathead minnow reference test (DOP-14). The six remaining SOPs describe methods that are used with either or both tests: preparation of control/dilution water (SOP-1), washing of glassware (SOP-2), collection and handling of samples (SOP-7), preparation of samples (SOP-8), performance of chemical analyses (SOP-11), and data logging and care of technical notebooks (SOP-16)

  1. Ames Laboratory Site Environmental Report, Calendar year 1992

    International Nuclear Information System (INIS)

    1992-01-01

    The summarized data and conclusions from the Ames Laboratory environmental monitoring program are presented in this Annual Site Environmental Report. Pollution awareness and waste minimization programs and plans implemented in 1990 are continuing to date. Ames Laboratory (AL) is responsible for a small chemical burial site, located on ISU property. The site was used for the disposal of chemical and metal slags from thorium and uranium production. Samples of water from existing test wells, and upstream and downstream sites on the nearby Squaw Creek, have not detected migration of the buried materials off site. Surface, hand auger and deep boring soil samples have been collected from the site. The analytical results are pending, Six new monitoring wells have been installed and sampled. Analytical results are pending. Ames Laboratory is responsible for an area contaminated by diesel fuel that leaked from an underground storage tank (UST) in 1970. The tank was removed that year. Soil borings and groundwater have been analyzed for contamination and a preliminary assessment written. Nine small inactive waste sites have been identified for characterization. The NEPA review for this work resulted in a CX determination. The work plans were approved by AL and CH. A subcontractor has surveyed and sampled the sites. Analytical results are pending

  2. 1992 Environmental Summer Science Camp Program evaluation. The International Environmental Institute of Westinghouse Hanford Company

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report describes the 1992 Westinghouse Hanford Company/US Department of Energy Environmental Summer Science Camp. The objective of the ``camp`` was to motivate sixth and seventh graders to pursue studies in math, science, and the environment. This objective was accomplished through hands-on fun activities while studying the present and future challenges facing our environment. The camp was funded through Technical Task Plan, 424203, from the US Department of Energy-Headquarters, Office of Environmental Restoration and Waste Management, Technology Development,to Westinghouse Hanford Company`s International Environmental Institute, Education and Internship Performance Group.

  3. Establishment of a clean chemistry laboratory at JAERI. Clean laboratory for environmental analysis and research (CLEAR)

    Energy Technology Data Exchange (ETDEWEB)

    Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    2003-02-01

    The JAERI has established a facility with a cleanroom: the Clean Laboratory for Environmental Analysis and Research (CLEAR). This report is an overview of the design, construction and performance evaluation of the CLEAR in the initial stage of the laboratory operation in June 2001. The CLEAR is a facility to be used for analyses of ultra trace amounts of nuclear materials in environmental samples for the safeguards, for the CTBT verification and for researches on environmental sciences. One of the special features of the CLEAR is that it meets double requirements of a cleanroom and for handling of nuclear materials. As another feature of the CLEAR, much attention was paid to the construction materials of the cleanroom for trace analysis of metal elements using considerable amounts of corrosive acids. The air conditioning and purification system, specially designed experimental equipment to provide clean work surfaces, utilities and safety systems are also demonstrated. The potential contamination from the completed cleanroom atmosphere during the analytical procedure was evaluated. It can be concluded that the CLEAR has provided a suitable condition for reliable analysis of ultra trace amounts of nuclear materials and other heavy elements in environmental samples. (author)

  4. Community Relations Plan for Lawrence Berkeley Laboratory. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The Lawrence Berkeley Laboratory (LBL) has applied to the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), for renewal of its Hazardous Waste Handling Facility Permit. A permit is required under Resource Conservation and Recovery Act (RCRA) regulations. The permit will allow LBL to continue using its current hazardous waste handling facility, upgrade the existing facility, and construct a replacement facility. The new facility is scheduled for completion in 1995. The existing facility will be closed under RCRA guidelines by 1996. As part of the permitting process, LBL is required to investigate areas of soil and groundwater contamination at its main site in the Berkeley Hills. The investigations are being conducted by LBL`s Environmental Restoration Program and are overseen by a number of regulatory agencies. The regulatory agencies working with LBL include the California Environmental Protection Agency`s Department of Toxic Substances Control, the California Regional Water Quality Control Board, the Bay Area Air Quality Management District, the East Bay Municipal Utilities District, and the Berkeley Department of Environmental Health. RCRA requires that the public be informed of LBL`s investigations and site cleanup, and that opportunities be available for the public to participate in making decisions about how LBL will address contamination issues. LBL has prepared this Community Relations Plan (CRP) to describe activities that LBL will use to keep the community informed of environmental restoration progress and to provide for an open dialogue with the public on issues of importance. The CRP documents the community`s current concerns about LBL`s Environmental Restoration Program. Interviews conducted between February and April 1993 with elected officials, agency staff, environmental organizations, businesses, site neighbors, and LBL employees form the basis for the information contained in this document.

  5. Sequim Marine Research Laboratory routine environmental measurements during CY-1977

    International Nuclear Information System (INIS)

    Fix, J.J.; Blumer, P.J.

    1978-06-01

    Beginning in 1976, a routine environmental program was established at the Marine Research Laboratory (MRL) at Sequim, Washington. The program is intended to demonstrate the negligible impact of current MRL operations on the surrounding environs and to provide baseline data through which any cumulative impact could be detected. The sampling frequency is greater during the first 2 years of the program to provide sufficient initial information to allow reliable estimates of observed radionuclide concentrations and to construct a long-term sampling program. The program is designed, primarily, to determine levels of radioactivity present in selected biota in Sequim Bay. The biota were selected because of their presence near the laboratory and their capacity to concentrate trace elements. Other samples were obtained to determine the radionuclides in Sequim Bay and laboratory drinking water, as well as the ambient radiation exposure levels and surface deposition of fallout radionuclides for the laboratory area. Appendix A provides a summary of the analytical methods used. The present document includes data obtained during CY 1977 in addition to CY-1976 data published previously

  6. Establishment of a clean laboratory for ultra trace analysis of nuclear materials in safeguards environmental samples

    International Nuclear Information System (INIS)

    Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo

    2003-01-01

    The Japan Atomic Energy Research Institute has established a cleanroom facility with cleanliness of ISO Class 5: the Clean Laboratory for Environmental Analysis and Research (CLEAR). It was designed to be used for the analysis of nuclear materials in environmental samples mainly for the safeguards, in addition to the Comprehensive Nuclear-Test-Ban Treaty verification and research on environmental sciences. The CLEAR facility was designed to meet conflicting requirements of a cleanroom and for handling of nuclear materials according to Japanese regulations, i.e., to avoid contamination from outside and to contain nuclear materials inside the facility. This facility has been intended to be used for wet chemical treatment, instrumental analysis and particle handling. A fume-hood to provide a clean work surface for handling of nuclear materials was specially designed. Much attention was paid to the selection of construction materials for use to corrosive acids. The performance of the cleanroom and analytical background in the laboratory are discussed. This facility has satisfactory specification required for joining the International Atomic Energy Agency Network of Analytical Laboratories. It can be concluded that the CLEAR facility enables analysis of ultra trace amounts of nuclear materials at sub-pictogram level in environmental samples. (author)

  7. Common ground: An environmental ethic for Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, F.L.

    1991-01-01

    Three predominant philosophies have characterized American business ethical thinking over the past several decades. The first phase is the ethics of self-interest'' which argues that maximizing self-interest coincidentally maximizes the common good. The second phase is legality ethics.'' Proponents argue that what is important is knowing the rules and following them scrupulously. The third phase might be called stake-holder ethics.'' A central tenant is that everyone affected by a decision has a moral hold on the decision maker. This paper will discuss one recent initiative of the Los Alamos National Laboratory to move beyond rules and regulations toward an environmental ethic that integrates the values of stakeholder ethics'' into the Laboratory's historical culture and value systems. These Common Ground Principles are described. 11 refs.

  8. 1996 LMITCO environmental monitoring program report for the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report describes the calendar year 1996 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory (INEEL). Results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs are included in this report. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1996 data with program-specific regulatory guidelines and past data to evaluate trends.

  9. 1996 LMITCO environmental monitoring program report for the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    1997-09-01

    This report describes the calendar year 1996 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory (INEEL). Results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs are included in this report. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1996 data with program-specific regulatory guidelines and past data to evaluate trends

  10. Ames Laboratory site environmental report, Calendar year 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Ames Laboratory conducts fundamental research in the physical, chemical, materials, and mathematical sciences and engineering which underlie energy generating, conversion, transmission and storage technologies, environmental improvement, and other technical areas essential to national needs. These efforts will be maintained so as to contribute to the achievement of the vision of DOE and, more specifically, to increase the general levels of knowledge and technical capabilities, to prepare engineering and physical sciences students for the future, both academia and industry, and to develop new technologies and practical applications from our basic scientific programs that will contribute to a strengthening of the US economy. The Laboratory approaches all its operations with the safety and health of all workers as a constant objective and with genuine concern for the environment. The Laboratory relies upon its strengths in materials synthesis and processing, materials reliability, chemical analysis, chemical sciences, photosynthesis, materials sciences, metallurgy, high-temperature superconductivity, and applied mathematical sciences to conduct the long term basic and intermediate range applied research needed to solve the complex problems encountered in energy production, and utilization as well as environmental restoration and waste management. Ames Laboratory will continue to maintain a very significant and highly beneficial pre-college math and science education program which currently serves both teachers and students at the middle school and high school levels. Our technology transfer program is aided by joint efforts with ISU's technology development and commercialization enterprise and will sustain concerted efforts to implement Cooperative Research and Development Agreements, industrially sponsored Work for Others projects. and scientific personnel exchanges with our various customers

  11. Environmental Research Laboratories annual report for 1979 and 1980

    International Nuclear Information System (INIS)

    1981-03-01

    The Atmospheric Turbulence and Diffusion Laboratory (ATDL) research program is organized around the following subject areas: transport and diffusion over complex terrain, atmospheric turbulence and plume diffusion, and forest meteorology and climatological studies. Current research efforts involve experimental and numerical modeling studies of flow over rugged terrain, studies of transport of airborne material in and above a forest canopy, basic studies of atmospheric diffusion parameters for applications to environmental impact evaluation, plume rise studies, and scientific collaboration with personnel in DOE-funded installations, universities, and government agencies on meteorological studies in our area of expertise. Abstracts of fifty-two papers that have been published or are awaiting publication are included

  12. Laboratory of environmental radiological surveillance; Laboratorio de vigilancia radiologica ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Mendez G, A.; Marcial M, F.; Giber F, J.; Montiel R, E.; Leon del V, E.; Rivas C, I.; Leon G, M.V.; Lagunas G, E.; Aragon S, R.; Juarez N, A.; Alfaro L, M.M

    1991-12-15

    The department of radiological protection of the ININ requests the collaboration of the Engineering Unit for the elaboration of the work project of the laboratory of environmental radiological surveillance. The emission of radioactive substances to the atmosphere like consequence of the normal operation of the Nuclear Center, constitutes an exhibition source from the man to the radiations that it should be appropriately watched over and controlled to be able to determine the population's potential exhibition that it lives in the area of influence of the installation. (Author)

  13. Laboratory of environmental radiological surveillance; Laboratorio de vigilancia radiologica ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Mendez G, A; Marcial M, F; Giber F, J; Montiel R, E; Leon del V, E; Rivas C, I; Leon G, M V; Lagunas G, E; Aragon S, R; Juarez N, A; Alfaro L, M M

    1991-12-15

    The department of radiological protection of the ININ requests the collaboration of the Engineering Unit for the elaboration of the work project of the laboratory of environmental radiological surveillance. The emission of radioactive substances to the atmosphere like consequence of the normal operation of the Nuclear Center, constitutes an exhibition source from the man to the radiations that it should be appropriately watched over and controlled to be able to determine the population's potential exhibition that it lives in the area of influence of the installation. (Author)

  14. Environmental and effluent monitoring at Lucas Heights Research Laboratories, 1994

    International Nuclear Information System (INIS)

    Hoffmann, E.L.; Camilleri, A.; Loosz, T.; Farrar, Y.

    1995-12-01

    Results are presented of environmental and effluent monitoring conducted in the vicinity of the Lucas Heights Research Laboratories (LHRL) during 1994. All low level liquid and gaseous effluent discharges complied with existing discharge authorisations and relevant environmental regulations. Potential effective doses to the general public from controlled airborne discharges during this period, were estimated to be less than 0.015 mSv/year for receptor locations on the 1.6 km buffer zone boundary around HIFAR. This value represents 1.5 % of the 1 mSv/year dose limit for long term exposure that is recommended by the National Health and Medical Research Council, and 5 % of the site dose constraint of 0.3 mSv/year adopted by ANSTO. 27 refs., 22 tabs., 6 figs

  15. Environmental and effluent monitoring at Lucas Heights Research Laboratories, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, E L; Camilleri, A; Loosz, T; Farrar, Y

    1995-12-01

    Results are presented of environmental and effluent monitoring conducted in the vicinity of the Lucas Heights Research Laboratories (LHRL) during 1994. All low level liquid and gaseous effluent discharges complied with existing discharge authorisations and relevant environmental regulations. Potential effective doses to the general public from controlled airborne discharges during this period, were estimated to be less than 0.015 mSv/year for receptor locations on the 1.6 km buffer zone boundary around HIFAR. This value represents 1.5 % of the 1 mSv/year dose limit for long term exposure that is recommended by the National Health and Medical Research Council, and 5 % of the site dose constraint of 0.3 mSv/year adopted by ANSTO. 27 refs., 22 tabs., 6 figs.

  16. Environmental monitoring at Argonne National Laboratory. Annual report for 1979

    International Nuclear Information System (INIS)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1980-03-01

    The results of the environmental monitoring program at Argonne National Laboratory for 1979 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, Argonne effluent water, soil, grass, bottom sediment, and foodstuffs; for a variety of chemical constituents in air, surface water, and Argonne effluent water; and of the environemetal penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measuremenets were made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances and are compared with applicable environmental quality standards. The potential radiation dose to off-site population groups is also estimated

  17. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 2001

    International Nuclear Information System (INIS)

    2002-01-01

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the Knolls and Kesselring Sites and Site closure activities at the S1C Site (also known as the KAPL Windsor Site) continue to have no adverse effect on human health and the quality of the environment. The effluent and environmental monitoring programs conducted by KAPL at the Knolls and Kesselring Sites are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as environmental monitoring of air, water, sediment, and fish. Radiation measurements are also made around the perimeter of the Knolls and Kesselring Sites and at off-site background locations. The environmental monitoring program for the S1C Site continues to be reduced in scope from previous years due to the completion of Site dismantlement activities during 1999 and a return to green field conditions during 2000

  18. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-31

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the Knolls and Kesselring Sites and Site closure activities at the S1C Site (also known as the KAPL Windsor Site) continue to have no adverse effect on human health and the quality of the environment. The effluent and environmental monitoring programs conducted by KAPL at the Knolls and Kesselring Sites are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as environmental monitoring of air, water, sediment, and fish. Radiation measurements are also made around the perimeter of the Knolls and Kesselring Sites and at off-site background locations. The environmental monitoring program for the S1C Site continues to be reduced in scope from previous years due to the completion of Site dismantlement activities during 1999 and a return to green field conditions during 2000.

  19. Lawrence Livermore National Laboratory environmental report for 1990

    Energy Technology Data Exchange (ETDEWEB)

    Sims, J.M.; Surano, K.A.; Lamson, K.C.; Balke, B.K.; Steenhoven, J.C.; Schwoegler, D.R. (eds.)

    1990-01-01

    This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore National Laboratory (LLNL) and presents summary information about environmental compliance for 1990. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent surface water, groundwater, vegetation, and foodstuff were made at both the Livermore site and at Site 300 nearly. LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment was evaluated. Aside from an August 13 observation of silver concentrations slightly above guidelines for discharges to the sanitary sewer, all the monitoring data demonstrated LLNL compliance with environmental laws and regulations governing emission and discharge of materials to the environment. In addition, the monitoring data demonstrated that the environmental impacts of LLNL are minimal and pose no threat to the public to or to the environment. 114 refs., 46 figs., 79 tabs.

  20. The Coordinating Laboratories for monitoring of environmental radioactivity. History, activities, perspectives

    International Nuclear Information System (INIS)

    Wiechen, A.; Bayer, A.

    2000-10-01

    The article reviews the development of the monitoring of environmental radioactivity in the former Federal Republic of Germany and from 1990 onwards in re-unified Germany. This monitoring originated in the need to investigate the radioactive fallout from the testing of atomic bombs in the atmosphere in the 1950's and 1960's. Monitoring was intensified and became increasingly regulated by law as a response to the large scale use of atomic power and in accordance with the Euratom Treaty of 1957. The necessity of evaluating the radiological effects in old mining regions in some of the new Laender was recognised in 1990. Since then legislation and official monitoring have been extended to include this source of radiation exposure. Also described is the way in which those institutions now termed Coordinating Laboratories were involved in all of the developments mentioned above. They tested and developed sampling, analysis and measurement techniques, carried out research projects on the various contamination pathways, reported regularly on environmental radioactivity and radiation exposure, organised and evaluated interlaboratory comparisons, assisted in the setting up of the Federal Integrated Measurement and Information System (IMIS), and advised the appropriate Federal and Laender Ministries. Some of the Coordinating Laboratories also manage Federal Monitoring Networks. The Precautionary Radiation Protection Act stipulates these tasks and names the institutions appointed as Coordinating Laboratories. (orig.) [de

  1. ECE laboratory in the Vinca Institute - its basic characteristics and fundamentals of electrochemical etching on polycarbonate

    International Nuclear Information System (INIS)

    Zunic, Z.S.; Ujic, P.; Celikovic, I.; Fujimoto, K.

    2003-01-01

    This paper deals with the introductory aspects of the Electrochemical Etching Laboratory installed at the VINCA Institute in the year 2003. The main purpose of the laboratory is its field application for radon and thoron large-scale survey using passive radon/thoron UFO type detectors. Since the etching techniques together with the laboratory equipment were transferred from the National Institute of Radiological Sciences, Chiba, Japan, it was necessary for both etching conditions to be confirmed and to be checked up, i. e., bulk etching speeds of chemical etching and electrochemical etching in the VINCA Electrochemical Etching Laboratory itself. Beside this initial step, other concerns were taken into consideration in this preliminary experimental phase such as the following: the measurable energy range of the polycarbonate film, background etch pit density of the film and its standard deviation and reproducibility of the response to alpha particles for different sets of etchings. (author)

  2. Artificial climate experiment facility in Institute for Environmental Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Shunichi [Department of Radioecology, Institute for Environmental Sciences, Rokkasho, Aomori (Japan)

    1999-03-01

    The Institute for Environmental Sciences is now constructing the artificial climate experiment facility (ACEF) to research the effect of climate on movement of elements in the various environments. The ACEF will have one large, and five small artificial climate experiment chambers. The large chamber is designed to simulate climate conditions in all Japan. It will equip systems to simulate sunshine, rainfall (including acid rain), snowfall and fog (including acid fog). `Yamase` condition will also be reproduced in it. Yamase is a Japanese term describing the characteristic weather condition occurring mainly on the Pacific Ocean side at the northern Japan. While the small chamber will not have rainfall, snowfall and fog systems, radioisotopes will be used in the two small chambers which will be set up in a radioisotope facility. We describe here the outline of the ACEF and the preliminary research programs being undertaken using both kinds of chambers. (author)

  3. Artificial climate experiment facility in Institute for Environmental Sciences

    International Nuclear Information System (INIS)

    Hisamatsu, Shunichi

    1999-01-01

    The Institute for Environmental Sciences is now constructing the artificial climate experiment facility (ACEF) to research the effect of climate on movement of elements in the various environments. The ACEF will have one large, and five small artificial climate experiment chambers. The large chamber is designed to simulate climate conditions in all Japan. It will equip systems to simulate sunshine, rainfall (including acid rain), snowfall and fog (including acid fog). 'Yamase' condition will also be reproduced in it. Yamase is a Japanese term describing the characteristic weather condition occurring mainly on the Pacific Ocean side at the northern Japan. While the small chamber will not have rainfall, snowfall and fog systems, radioisotopes will be used in the two small chambers which will be set up in a radioisotope facility. We describe here the outline of the ACEF and the preliminary research programs being undertaken using both kinds of chambers. (author)

  4. Transfer and concentration factors in laboratory and environmental conditions

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Amaral, E.C.S.

    1993-01-01

    Environmental transfer factors, as well as concentration and accumulation factors, have been increasingly used in environmental dosimetric models. These models are often the basis for decision-making processes concerning radiological protection. However, the uncertainties associated with measured and default values of transfer and concentration factors are usually not taken into account in the decision making processes. In addition, laboratory-based values for these factors do not necessarily agree with site-specific and species-specific transfer and concentration factors. Soil-to-plant transfer factors and water-to-aquatic-organisms concentration factors are not only time and concentration-dependent, but also species-and site-specific environment-dependent. These uncertainties and dependencies may make the decision-making process, based on models, quite a difficult exercise. The current work examines, as an example, the time-dependent variations in the accumulation of 226 Ra in zooplankton in a laboratory experiment as compared with the concentration factor measured in a natural environment. In addition, the work reviews differences in 228 Ra and 226 Ra concentration factors for several plant families measured in a highly radioactive environment. (author). 9 refs, 3 figs, 3 tabs

  5. Data Processing and Programming Applied to an Environmental Radioactivity Laboratory

    International Nuclear Information System (INIS)

    Trinidad, J. A.; Gasco, C.; Palacios, M. A.

    2009-01-01

    This report is the original research work presented for the attainment of the author master degree and its main objective has been the resolution -by means of friendly programming- of some of the observed problems in the environmental radioactivity laboratory belonging to the Department of Radiological Surveillance and Environmental Radioactivity from CIEMAT. The software has been developed in Visual Basic for applications in Excel files and it solves by macro orders three of the detected problems: a) calculation of characteristic limits for the measurements of the beta total and beta rest activity concentrations according to standards MARLAP, ISO and UNE and the comparison of the three results b) Pb-210 and Po-210 decontamination factor determination in the ultra-low level Am-241 analysis in air samples by alpha spectrometry and c) comparison of two analytical techniques for measuring Pb-210 in air ( direct-by gamma spectrometry- and indirect -by radiochemical separation and alpha spectrometry). The organization processes of the different excel files implied in the subroutines, calculations and required formulae are explained graphically for its comprehension. The advantage of using this kind of programmes is based on their versatility and the ease for obtaining data that lately are required by tables that can be modified as time goes by and the laboratory gets more data with the special applications for describing a method (Pb-210 decontamination factors for americium analysis in air) or comparing temporal series of Pb-210 data analysed by different methods (Pb-210 in air). (Author)

  6. The Los Alamos National Laboratory Environmental Restoration Program

    International Nuclear Information System (INIS)

    Krueger, J.W.

    1990-01-01

    The LANL Environmental Restoration (ER) Program Office, established in October 1989, is faced with the challenge of assessing and cleaning up nearly 1,8000 potentially hazardous waste sites according to an aggressive corrective action schedule that the Environmental Protection Agency (EPA) mandated on May 23, 1990, in a Resource, Conservation, and Recovery Act (RCRA) Part B Permit. To maximize program efficiency, the ER Program Office will implement a unique management approach designed to maximize the use of laboratory technical expertise. The Installation Work Plan, which provides a blueprint for the program, has been submitted to EPA for review and approval. A work plan for characterization of Technical Area 21, an early plutonium processing facility, is also nearing completion. The feasibility of an expedited cleanup of the Laboratory's worst hazardous waste release has been modelled using a computer code originally developed by LANL to assist the nuclear weapons testing program. A sophisticated Geographic Information System has been implemented to assist in data management and presentation, and the design of a Mixed Waste Disposal Facility is underway. 6 refs., 2 figs

  7. Annual report 2004. Laboratory of Energy Engineering and Environmental Protection

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, L.; Zevenhoven, R. (eds.)

    2005-07-01

    This fifth annual report in this series, covering year 2004, gives an overview of the research, education and other activities of the Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technology. From the research point of view, the laboratory continues in the Nordic Energy Research Program (2003-2006) in the field of CO{sub 2} capture and storage, and in the EU project 'ToMeRed' on toxic trace elements emissions control. The laboratory is also the operating agent for the IEA project 'Energy systems integration between society and industry'. The bulk of the research can be classified into three groups, in short: energy systems; spraying and combustion and combustion and waste treatment. This research takes mainly place in national and international consortia, but sometimes also in a direct cooperation with one industry partner. Some of the work involves the use and development of models and sub- models for the simulation and optimisation of energy systems and processes. Commercial softwares like Aspen Plus and Prosim are important tools for our work as well. Besides this, single particle modelling can be applied to fuel droplets, fuel particles or particles found in metallurgical industry. We make CFD calculations with commercial codes are made as well, while working on the improvement of (sub-) models for multiphase fluid dynamics.

  8. 1995 annual epidemiologic surveillance report for Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    1995-01-01

    The US Department of Energy's (DOE) conduct of epidemiologic surveillance provides an early warning system for health problems among workers. This program monitors illnesses and health conditions that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, and disabilities and deaths among current workers. This report summarizes epidemiologic surveillance data collected from the Idaho National Engineering and Environmental Laboratory (INEEL) from January 1, 1995 through December 31, 1995. The data were collected by a coordinator at INEEL and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, where quality control procedures and data analyses were carried out

  9. 1995 annual epidemiologic surveillance report for Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The US Department of Energy's (DOE) conduct of epidemiologic surveillance provides an early warning system for health problems among workers. This program monitors illnesses and health conditions that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, and disabilities and deaths among current workers. This report summarizes epidemiologic surveillance data collected from the Idaho National Engineering and Environmental Laboratory (INEEL) from January 1, 1995 through December 31, 1995. The data were collected by a coordinator at INEEL and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, where quality control procedures and data analyses were carried out.

  10. Overview of Gas Research Institute environmental research programs

    International Nuclear Information System (INIS)

    Evans, J.M.

    1991-01-01

    The Gas Research Institute (GRI) is a private not-for-profit membership organization of natural gas pipelines, distribution companies and natural gas producers. GRI's purpose is to plan, to manage and to develop financing for a gas-related research and development (R and D) program on behalf of its members and their customers. GRI does not do any research itself. GRI's R and D program is designed to provide advanced technologies for natural gas supply, transport, storage, distribution and end-use applications in all markets. In addition, basic research is conducted for GRI in these areas to build a foundation for future technology breakthroughs. Work in the Environment and Safety Research Department includes sections interested in: supply related research, air quality research, end use equipment safety research, gas operations safety research, and gas operations environmental research. The Natural Gas Supply Program has research ongoing in such areas as: restoration of pipeline right-of-ways; cleaning up town gas manufacturing sites; the development of methanogenic bacteria for soil and groundwater cleanup; development of biological fluidized carbon units for rapid destruction of carbonaceous compounds; research on liquid redox sulfur recovery for sulfur removal from natural gas; research on produced water and production wastes generated by the natural gas industry; environmental effects of coalbed methane production; and subsurface effects of natural gas operations. The western coalbed methane and ground water programs are described

  11. 1997 LMITCO Environmental Monitoring Program Report for the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, B.; Street, L.; Wilhelmsen, R.

    1998-09-01

    This report describes the calendar year 1997 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs and compares 1997 data with program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standard, and to ensure protection of human health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends indicating a loss of control or unplanned releases from facility operations. With the exception of one nitrogen sample in the disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond, compliance with permits and applicable regulations was achieved. Data collected by the Environmental Monitoring Program demonstrate that public health and the environment were protected.

  12. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 2000

    International Nuclear Information System (INIS)

    2001-01-01

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the Knolls Site, Niskayuna, New York and the Kesselring Site, West Milton, New York and site closure activities at the S1C Site, Windsor, Connecticut, continued to have no adverse effect on human health and the quality of the environment during calendar year 2000. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations. Monitoring programs at the S1C Site were reduced in scope during calendar year 2000 due to completion of site dismantlement activities during 1999

  13. Environmental Measurements Laboratory annual report, calendar year 1980

    International Nuclear Information System (INIS)

    Volchok, H.L.

    1981-05-01

    The 1980 Annual Report is presented as a series of abstracts, organized by broad programmatic headings under the five technical Laboratory Divisions and one Branch. In addition, a short section appears at the end of the report describing the organization, staff, outside activities and our publications and presentations for the year. Research performaed by the Environmental Studies Division is reported under the following categories: high altitude sampling program, deposition and surface air, and the biosphere. Measurement methods research and air quality field studies are reported by the Aerosol Studies Division. The Radiation Physics Division reported research on radiation transport theory, radiation dosimetry, environmental radioactivity, and the assessment of non-nuclear energy technologies. Research in the Analytical Chemistry Division is reported on quality assurance, analytical support of research projects, analytical development for research projects, and programmatic research. The Instrumentation Division reported research on the development of instrumentation in various categories. The Applied Mathematics Branch reported results of programs for aerosol studies, analytical chemistry, environmental studies, and radiation physics

  14. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy's (DOE's) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID's technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID

  15. 1986 annual site environmental report for Argonne National Laboratory

    International Nuclear Information System (INIS)

    Golchert, N.W.; Duffy, T.L.

    1987-03-01

    The results of the environmental monitoring program at Argonne National Laboratory (ANL) for 1986 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, ground water, soil, grass, bottom sediment, and milk; of the environmental penetrating radiation dose; and for a variety of chemical constituents in surface water, ground water, and Argonne effluent water. Sample collections and measurements were made on the site, at the site boundary, and off the Argonne site for comparison purposes. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. A US Department of Energy (DOE) dose calculation methodology based on recent International Commission on Radiological Protection (ICRP) recommendations is required and used in this report. The radiation dose to off-site population groups is estimated. The average concentrations and total amounts of radioactive and chemical pollutants released by Argonne to the environment were all below appropriate standards. 21 refs., 7 figs., 52 tabs

  16. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 2000

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-12-01

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the Knolls Site, Niskayuna, New York and the Kesselring Site, West Milton, New York and site closure activities at the S1C Site, Windsor, Connecticut, continued to have no adverse effect on human health and the quality of the environment during calendar year 2000. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations. Monitoring programs at the S1C Site were reduced in scope during calendar year 2000 due to completion of site dismantlement activities during 1999.

  17. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  18. The Environmental Compliance Office at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Cooper, S.C.

    1990-01-01

    The Idaho Operations Office of the U.S. Department of Energy (DOE-ID) has established an Environmental Compliance Office (ECO) at the Idaho National Engineering Laboratory (INEL). This office has been formed to ensure that INEL operations and activities are in compliance with all applicable environmental state and federal regulations. The ECO is headed by a DOE-ID manager and consists of several teams, each of which is led by a DOE-ID employee with members from DOE-ID, from INEL government contractors, and from DOE-ID consultants. The teams are (a) the negotiated compliance team, (b) the compliance implementation team (CIT), (c) the permits team, (d) the interagency agreement (IAG) team, (e) the consent order and compliance agreement (COCA) oversight team, and (f) the National Environmental Policy Act (NEPA) team. The last two teams were short term and have already completed their respective assignments. The functions of the teams and the results obtained by each are discussed

  19. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 1996

    International Nuclear Information System (INIS)

    1996-01-01

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) sites are summarized and assessed in this report. The principal function at KAPL sites (Knolls, Kesselring, and Windsor) is research and development in the design and operation of Naval nuclear propulsion plants. The Kesselring Site is also used for the training of personnel in the operation of these plants. The Naval nuclear propulsion plant at the Windsor Site is currently being dismantled. Operations at the three KAPL sites resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each site and at off-site background locations

  20. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) sites are summarized and assessed in this report. The principal function at KAPL sites (Knolls, Kesselring, and Windsor) is research and development in the design and operation of Naval nuclear propulsion plants. The Kesselring Site is also used for the training of personnel in the operation of these plants. The Naval nuclear propulsion plant at the Windsor Site is currently being dismantled. Operations at the three KAPL sites resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each site and at off-site background locations.

  1. Sandia National Laboratories/New Mexico 1994 site environmental report. Summary pamphlet

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents details of the environmental activities that occurred during 1994 at Sandia National Laboratories. Topics include: Background about Sandia; radiation facts; sources of radiation; environmental monitoring; discussion of radiation detectors; radioactive waste management; environmental restoration; and quality assurance

  2. Sandia National Laboratories/New Mexico 1994 site environmental report. Summary pamphlet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents details of the environmental activities that occurred during 1994 at Sandia National Laboratories. Topics include: Background about Sandia; radiation facts; sources of radiation; environmental monitoring; discussion of radiation detectors; radioactive waste management; environmental restoration; and quality assurance.

  3. 40 Anniversary of Institute of International Studies: From a Problem Laboratory to The Institute of International Studies

    Directory of Open Access Journals (Sweden)

    Alexander Leonidovich Chechevishnikov

    2016-01-01

    Full Text Available Applied foreign policy analysis is the hallmark of MGIMO-University. 2016 marks 40 anniversary of introduction of this element to the identity of our university in a form of Problem Research Laboratory. MGIMO development as a leading think tank took place in cooperation with the Ministry of Foreign Affairs and in close cooperation with other key institutions that shape foreign policy and are responsible for ensuring the national interests of Russia in the world. Today MGIMO's priority is the development of political policy expertise and analytical development-oriented scientific and practical support of the activities of state bodies. Such studies are the main but not the only focus of the Institute of International Studies.

  4. 40th Anniversary of Institute of International Studies: From a Problem Laboratory to The Institute of International Studies

    Directory of Open Access Journals (Sweden)

    Alexander Leonidovich Chechevishnikov

    2016-01-01

    Full Text Available Applied foreign policy analysis is the hallmark of MGIMO-University. 2016 marks 40th anniversary of introduction of this element to the identity of our university in a form of Problem Research Laboratory. MGIMO development as a leading think tank took place in cooperation with the Ministry of Foreign Affairs and in close cooperation with other key institutions that shape foreign policy and are responsible for ensuring the national interests of Russia in the world. Today MGIMO's priority is the development of political policy expertise and analytical development-oriented scientific and practical support of the activities of state bodies. Such studies are the main but not the only focus of the Institute of International Studies.

  5. Environmental Measurements Laboratory. Environmental report, September 1, 1981-March 1, 1982

    International Nuclear Information System (INIS)

    Hardy, E.P. Jr.; Toonkel, L.E.

    1982-01-01

    This report presents current information from the EML environmental programs, the Radiological and Environmental Research Division at Argonne National Laboratory and the Los Alamos National Laboratory. Two reports on radionuclide data quality assurance are presented in the initial section: one dealing with fallout and biological samples and the other with filtered air samples. These are followed by a report on stratospheric tritium injection by the October 1980 Chinese test. The second section presents recent data from EML progams strontium-90 fallout, radionuclides and trace metals in surface air, radioactivity and trace gases sampled in the stratosphere by aircraft and balloons, strontium-90 in San Francisco and New York diet, milk, and tap water, and cesium-137 in tap water. The third section presents data from Argonne National Laboratory on cesium-137 in Chicago food and from Los Alamos National Laboratory on tritium in the stratosphere. A bibliography of recent publications related to environmental studies is presented. Each section has been abstracted and indexed individually for ERA/EDB

  6. Nanotechnology Laboratory Continues Partnership with FDA and National Institute of Standards and Technology | Poster

    Science.gov (United States)

    The NCI-funded Nanotechnology Characterization Laboratory (NCL)—a leader in evaluating promising nanomedicines to fight cancer—recently renewed its collaboration with the U.S. Food and Drug Administration (FDA) and the National Institute of Standards and Technology (NIST) to continue its groundbreaking work on characterizing nanomedicines and moving them toward the clinic. In

  7. Activities report of the National Space Research Institute Plasma Laboratory for the period 1988/1989

    International Nuclear Information System (INIS)

    Ludwig, Gerson Otto.

    1990-11-01

    This report describes the activities performed in the period 1988/1989 by the National Space Research Institute (INPE/SCT) Plasma Laboratory (LAP). The report presents the main results in the following research lines: plasma physics, plasma technology, and controlled thermonuclear fusion. (author). 49 figs., 3 tabs

  8. 1998 Environmental Monitoring Program Report for the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    L. V. Street

    1999-09-01

    This report describes the calendar year 1998 compliance monitoring and environmental surveillance activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Drinking Water, Effluent, Storm Water, Groundwater Monitoring, and Environmental Surveillance Programs. This report compares the 1998 results to program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the monitoring and surveillance activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of public health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends, which would indicate a loss of control or unplanned releases from facility operations. The INEEL complied with permits and applicable regulations, with the exception of nitrogen samples in a disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond. Data collected by the Environmental Monitoring Program demonstrate that the public health and environment were protected.

  9. Effluent and environmental monitoring of Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Pilgrim, T.; De Waele, C.; Gallagher, C. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Atomic Energy of Canada Limited's (AECL's) Environmental Protection Program has been gathering environmental monitoring data at its Chalk River Laboratories (CRL) for over 60 years. The comprehensive effluent and environmental monitoring program at CRL consists of more than 600 sampling locations, including the Ottawa River, with approximately 60,000 analyses performed on air and liquid effluent parameters each year. Monitoring for a variety of radiological and non-radiological parameters is regularly conducted on various media, including ambient air, foodstuff (e.g. milk, fish, garden produce, large game, and farm animals), groundwater, Ottawa River water and other surface water on and off-site. The purpose of the monitoring program is to verify that past and current radiological and non-radiological emissions derived from AECL operations and activities, such as process water effluent into the Ottawa River, are below regulatory limits and demonstrate that CRL operations do not negatively affect the quality of water on or leaving the site. In fact, ongoing program reports demonstrate that radiological emissions are well below regulatory limits and have been declining for the past five years, and that non-radiological contaminants do not negatively affect the quality of water on and off the site. Two updated Canadian Standards Association (CSA) standards for Effluent and Environmental monitoring have come into effect and have resulted in some changes to the AECL Program. This presentation will discuss effluent and surface water monitoring results, the observed trends, the changes triggered by the CSA standards, and a path forward for the future. (author)

  10. US/Russian laboratory-to-laboratory MPC ampersand A Program at the VNIITF Institute, Chelyabinsk-70 May 1996

    International Nuclear Information System (INIS)

    Tsygankov, G.; Churikov, Y.; Teryokhin, V.

    1996-01-01

    The AR Russian Institute of Technical Physics (VNIITF), also called Chelyabinsk-70, is one of two Russian federal nuclear centers established to design, test and support nuclear weapons throughout their life cycle. The site contains research facilities which use nuclear materials, two experimental plants which manufacture prototype samples for nuclear weapons, and a site for various ground tests. Chelyabinsk-70 also has cooperative relationships with the major nuclear materials production facilities in the Urals region of Russia. Chelyabinsk-70 has been participating in the US/Russian Laboratory-to-laboratory cooperative program for approximately one year. Six US Department of Energy Laboratories are carrying out a program of cooperation with VNIITF to improve the capabilities and facilities for nuclear materials protection, control, and accounting (MPC ampersand A) at VNIITF. A Safeguards Effectiveness Evaluation Workshop was conducted at VNIITF in July, 1995. Enhanced safeguards systems are being implemented, initially at a reactor test area that contains three pulse reactors. Significant improvements to physical security and access control systems are under way. C-70 is developing an extensive computerized system that integrates the physical security alarm station with elements of the nuclear material control system. The existing systems will be augmented with Russian and US technologies. This paper will describe the on-going activities and describe the cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories and VNIITF

  11. Idaho National Engineering and Environmental Laboratory site environmental report for calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R.B.; Brooks, R.W.; Roush, D.; Martin, D.B. [Environmental Science and Research Foundation, Idaho Falls, ID (United States); Lantz, B.S. [Dept. of Energy, Idaho Falls, ID (United States). Idaho Operations Office

    1998-08-01

    To verify that exposures resulting from operations at Department of Energy (DOE) nuclear facilities remain very small, each site at which nuclear activities are conducted operates an environmental surveillance program to monitor the air, water and any other pathway whereby radionuclides from operations might conceivably reach workers and members of the public. Environmental surveillance and monitoring results are reported annually to the DOE-Headquarters. This report presents a compilation of data collected in 1997 for the routine environmental surveillance programs conducted on and around the Idaho National Engineering and Environmental Laboratory (INEEL). The results of the various monitoring programs for 1997 indicated that radioactivity from the INEEL operations could generally not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEEL. Although some radioactive materials were discharged during INEEL operations, concentrations in the offsite environment and doses to the surrounding population were far less than state of Idaho and federal health protection guidelines.

  12. Idaho National Engineering and Environmental Laboratory site environmental report for calendar year 1997

    International Nuclear Information System (INIS)

    Evans, R.B.; Brooks, R.W.; Roush, D.; Martin, D.B.; Lantz, B.S.

    1998-08-01

    To verify that exposures resulting from operations at Department of Energy (DOE) nuclear facilities remain very small, each site at which nuclear activities are conducted operates an environmental surveillance program to monitor the air, water and any other pathway whereby radionuclides from operations might conceivably reach workers and members of the public. Environmental surveillance and monitoring results are reported annually to the DOE-Headquarters. This report presents a compilation of data collected in 1997 for the routine environmental surveillance programs conducted on and around the Idaho National Engineering and Environmental Laboratory (INEEL). The results of the various monitoring programs for 1997 indicated that radioactivity from the INEEL operations could generally not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEEL. Although some radioactive materials were discharged during INEEL operations, concentrations in the offsite environment and doses to the surrounding population were far less than state of Idaho and federal health protection guidelines

  13. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1983-04-01

    In order to establish whether LBL research activities produces any impact on the population surrounding the Laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1982, as in the previous several years, doses attributable to LBL radiological operations were a small fraction of the relevant radiation protection guidelines (RPG). The maximum perimeter dose equivalent was less than or equal to 24.0 mrem (the 1982 dose equivalent measured at the Building 88 monitoring station B-13A, about 5% of the RPG). The total population dose equivalent attributable to LBL operations during 1982 was less than or equal to 16 man-rem, about 0.002% of the RPG of 170 mrem/person to a suitable sample of the population

  14. Environmental gamma background measurements in China Jinping Underground Laboratory

    International Nuclear Information System (INIS)

    Zhi Zeng; Jian Su; Hao Ma; Hengguan Yi; Jianping Cheng; Qian Yue; Junli Li; Hui Zhang

    2014-01-01

    To determine the environmental gamma background levels which affects rare events experiments, we measured in situ gamma spectrum at four locations in the China Jinping Underground Laboratory. The integral background count rates (40-2,700 keV) varied from 3.76 to 74.1 cps. The average count rate of the measurements inside the CJPL was 73.4 cps. The spectrometer was calibrated with a 152 Eu point source and Monte Carlo simulation to obtain the activity conversion factors for the rock and the air, respectively. The rocks that surrounded the CJPL was characterized by very low activity concentrations of 238 U (3.69-4.21 Bq kg -1 ), 232 Th (0.52-0.64 Bq kg -1 ) and 40 K (4.28 Bq kg -1 ). (author)

  15. International intercomparison of environmental dosimeters under field and laboratory conditions

    International Nuclear Information System (INIS)

    Gesell, T.F.; de Planque Burke, G.; Becker, K.

    1975-04-01

    Based on the results of a pilot study at ORNL in 1973, a more comprehensive international intercomparison of integrating dosimeters for the assessment of external penetrating environmental radiation fields was carried out. Forty-one laboratories from eleven countries participated in this study. A total of 56 sets of six detectors each were mailed to and from Houston, Texas, where they were exposed for three months (July to September 1974) as follows: two in an unprotected space out-of-doors 1 m above ground; two in an air-conditioned shielded area with a known, low exposure rate; and two with the second group, but with an additional exposure to 30 mR. Evaluation of the dosimeters provides information on the calibration precision, the accuracy of field measurement, and transit exposure. Results are discussed. (U.S.)

  16. Quality assurance program for determining the radioactivity in environmental samples at the Institute of Nuclear Energy Research in Taiwan

    International Nuclear Information System (INIS)

    Gone, J.K.; Wang, T.W.

    2000-01-01

    Interest in determining radioactivity in environmental samples has increased considerably in recent years after the Chernobyl accident in 1986. Environmental monitoring programs have been set up in different countries to measure the trace amount of radionuclides in the environment, and quality of the analytical results on these samples is important because the regulation and safety concerns. A good quality assurance program is essential to provide accurate information for the regulatory body and environmentalists to set proper reactions to protect the environment, and a good analytical result is also important for scientists to determine the transfer of radionuclides between environmental matrices. The Institute of Nuclear Energy Research (lNER) in Taiwan has been working on radionuclide analysis in environmental samples for years, and it's environmental media radioanalytical laboratory (EMRAL) has recently upgraded its quality assurance program for the international standard ISO/lEC guide 25 requirements. The general requirements of lSO/lEC guide 25 has been adapted by the Chinese National Laboratory Accreditation (CNLA) of Taiwan, and CNLA is also a member of International Laboratory Accreditation Cooperation (ILAC) and Asia Pacific Laboratory Accreditation Cooperation (APLAC). This paper summarizes the quality assurance program of lNER's EMRAL. It covers both management and technical sections. These sections have ensured the quality of INER's EMRAL, and they can be applied to different laboratories in the future. (author)

  17. Quality assurance program for determining the radioactivity in environmental samples at the Institute of Nuclear Energy Research in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Gone, J.K. [TRR-II Project Team, Institute of Nuclear Energy Research, Taoyuan, Taiwan (China); Wang, T.W. [Division of Health Physics, Institute of Nuclear Energy Research, Taoyuan, Taiwan (China)

    2000-05-01

    Interest in determining radioactivity in environmental samples has increased considerably in recent years after the Chernobyl accident in 1986. Environmental monitoring programs have been set up in different countries to measure the trace amount of radionuclides in the environment, and quality of the analytical results on these samples is important because the regulation and safety concerns. A good quality assurance program is essential to provide accurate information for the regulatory body and environmentalists to set proper reactions to protect the environment, and a good analytical result is also important for scientists to determine the transfer of radionuclides between environmental matrices. The Institute of Nuclear Energy Research (lNER) in Taiwan has been working on radionuclide analysis in environmental samples for years, and it's environmental media radioanalytical laboratory (EMRAL) has recently upgraded its quality assurance program for the international standard ISO/lEC guide 25 requirements. The general requirements of lSO/lEC guide 25 has been adapted by the Chinese National Laboratory Accreditation (CNLA) of Taiwan, and CNLA is also a member of International Laboratory Accreditation Cooperation (ILAC) and Asia Pacific Laboratory Accreditation Cooperation (APLAC). This paper summarizes the quality assurance program of lNER's EMRAL. It covers both management and technical sections. These sections have ensured the quality of INER's EMRAL, and they can be applied to different laboratories in the future. (author)

  18. [Building and implementation of management system in laboratories of the National Institute of Hygiene].

    Science.gov (United States)

    Rozbicka, Beata; Brulińska-Ostrowska, Elzbieta

    2008-01-01

    The rules of good laboratory practice have always been observed in the laboratories of National Institute of Hygiene (NIH) and the reliability of the results has been carefully cared after when performing tests for clients. In 2003 the laboratories performing analyses related to food safety were designated as the national reference laboratories. This, added to the necessity of compliance with work standards and requirements of EU legislation and to the need of confirmation of competence by an independent organisation, led to a decision to seek accreditation of Polish Centre of Accreditation (PCA). The following stages of building and implementation of management system were presented: training, modifications of Institute's organisational structure, elaboration of management system's documentation, renovation and refurbishment of laboratory facilities, implementation of measuring and test equipment's supervision, internal audits and management review. The importance of earlier experiences and achievements with regard to validation of analytical methods and guarding of the quality of the results through organisation and participation in proficiency tests was highlighted. Current status of accreditation of testing procedures used in NIH laboratories that perform analyses in the field of chemistry, microbiology, radiobiology and medical diagnostic tests was presented.

  19. 78 FR 32259 - National Institute of Environmental Health Sciences; Amended Notice of Meeting

    Science.gov (United States)

    2013-05-29

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Institute of Environmental Health Sciences Special Emphasis Panel, July 15, 2013, 8:00 a...

  20. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Irving, John S

    2003-04-01

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  1. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment - April 2003

    Energy Technology Data Exchange (ETDEWEB)

    Irving, J.S.

    2003-04-30

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  2. Health, Safety and Environmental Risk Assessment in Laboratory Sites

    Directory of Open Access Journals (Sweden)

    2012-05-01

    Full Text Available Introduction: ”Exposing to danger” or in other words, “risk” is a process which is led to an uncertain result in every field. Project risks are uncertain contingent events or situations that if they occur will have positive or negative effects on project’s objectives. Todays, research and educational process and more complicated and the professional risk management become much more difficult, as a result. .Material and Method: In this research, the health and safety issues have been studied and analyzed using ISO 14121 and the environmental issues by EMEA to determine the risk level separately for research laboratories and to prioritize corrective measure in each field (school. .Result: The finding in this study showed that from all the main risks within the rage of 38-86 percent have been decreased. Moreover average of the risk level for the health, safety and environment cases showed a significant decrease (Pvalue<0.0001 by implement controlling and protective countermeasures compariy to the priority state without any measures. . Conclusion: The risk assessment with hazards control strategy based on ISO 14121 is a compatible method in laboratory site as universities and other reasearch sites.

  3. Environmental monitoring at the Lawrence Livermore Laboratory. 1979 Annual report

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    In 1979, the annual average airborne gross beta activity in Livermore Valley air samples was 2.6 x 10 -14 μCi/ml, or less than half the average observed in 1978. There were no atmospheric nuclear shots in 1979; therefore, fission products seen in the January air filters are probably a result of residual activity from the December 14, 1978 nuclear test in China. Airborne 238 U concentrations at Site 300 were higher than those at Livermore because of the depleted uranium used in high-explosive tests at the Site. However, these concentrations were well below the standards set by DOE. The average annual beryllium concentrations were less than 1% of the appropriate standard at both the Laboratory perimeter and Site 300. Water samples collected in the Livermore Valley and at Site 300 exhibit gross beta and tritium activities within the ranges previously observed in these areas. Tritium analyses were made on well-water-samples collected near the Livermore Water Reclamation Plant (LWRP). As was found during the 1977 and 1978 surveys, the highest tritium values were detected in wells west of the plant near Arroyo Las Positas; however all concentrations were well below the standards set by DOE. As a means of evaluating the possible impact of Laboratory effluents on locally grown foodstuff, the tritium content of Livermore Valley wines was compared with values from other California and European wines. The tritium levels in Livermore Valley wines were found to be within the range in both European wines and surface waters throughout the world and somewhat higher than those in California wines. Assessments of the calculated radiation dose to an individual from the environmental concentrations listed demonstrates that the dose contribution from Laboratory operations in 1979 was small compared with the dose received locally from natural sources

  4. 77 FR 22793 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-04-17

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory.... Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919....D., Scientific Review Administrator, Nat. Institute of Environmental Health Sciences, Office of...

  5. 76 FR 7225 - National Institute of Environmental Health Sciences; Notice of Meetings

    Science.gov (United States)

    2011-02-09

    ... Environmental Health Sciences; Notice of Meetings Pursuant to section 10(a) of the Federal Advisory Committee..., National Institute of Environmental Health Sciences, 615 Davis Dr., KEY615/3112, Research Triangle Park, NC..., National Institute of Environmental Health Sciences, 615 Davis Dr., KEY615/3112, Research Triangle Park, NC...

  6. 78 FR 32672 - National Institute of Environmental Health Sciences (NIEHS); Notice of Meeting

    Science.gov (United States)

    2013-05-31

    ... Environmental Health Sciences (NIEHS); Notice of Meeting Pursuant to the NIH Reform Act of 2006 (42 U.S.C. 281 (d)(4)), notice is hereby given that the National Institute of Environmental Health Sciences (NIEHS... Popovich, National Institute of Environmental Health Sciences, Division of Extramural Research and Training...

  7. 76 FR 58521 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2011-09-21

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... and Training, Nat. Institute of Environmental Health Science, P. O. Box 12233, MD EC-30/Room 3170 B... Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P. O. Box 12233, MD EC-30...

  8. 77 FR 16844 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-03-22

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory.... Institute Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919) 541-1307, [email protected] . Name of Committee: National Institute of Environmental Health Sciences...

  9. 77 FR 37423 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-06-21

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory..., [email protected] . Name of Committee: National Institute of Environmental Health Sciences Special... Research and Training, Nat. Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room 3170 B...

  10. 76 FR 11500 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2011-03-02

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Administrator, Nat. Institute of Environmental Health Sciences, Office of Program Operations, Scientific Review... . Name of Committee: National Institute of Environmental Health Sciences Special Emphasis Panel; Novel...

  11. Environmental survey at Lucas Heights Research Laboratories, 1992

    International Nuclear Information System (INIS)

    Hoffman, E.L.; Loosz, T.

    1994-07-01

    This report summarises the results from the environmental survey during 1992 and assesses the effects of radioactive discharges on both local population and the environment. None of the samples taken from possible human food chains in the vicinity of the Lucas Heights Research Laboratories contained radioactivity which could be attributed to the operation of the site. The data presented din this report clearly shows that the environmental impact of operations at LHRL has been very low. The effective dose to residents living in the immediate neighbourhood of the reactor are very difficult to measure directly but calculated dose estimates are far lower than those due to natural background radiation and medical exposures. Discharges of airborne radioactive gases were within authorised limits when averaged over the year. The dose to the most sensitive members of the public from iodine-131 releases, was -2 mSv/year and the calculated dose from released noble gases to the most exposed individuals was less than 0.01 mSv/year. These figures represent less than one per cent of the limits recommended by the National Health and Medical Research Council of Australia. The monthly average liquid effluent discharge to the Water Board Sewer during 1992 was less than 30 per cent of the permitted level for all periods except May which rose to 62 per cent. For tritium, the concentration was less than 2 per cent of the specified limit. 23 refs., 19 tabs., 5 tabs

  12. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1977

    International Nuclear Information System (INIS)

    Stephens, L.D.

    1978-03-01

    The data obtained from the Environmental Monitoring Program of the Lawrence Berkeley Laboratory for the Calendar year 1977 are described and general trends are discussed. The general trend of decreasing radiation levels at our site boundary due to accelerator operation during past years has leveled off during 1977 and in some areas shows a slight but not statistically significant increase as predicted in last year's summary. There were changes in both ion beams as well as current which have resulted in shifts in maxima at the monitoring stations. The gamma levels are once again reported as zero. There is only one period of detectable gamma radiation due to accelerator operation. The annual dose equivalent are reported from the environmental monitoring stations since they have been established. Radiation levels at the Olympus Gate Station have shown a steady decline since 1959 when estimates were first made. The Olympus Gate Station is in direct view of the Bevatron and most directly influenced by that accelerator. Over the past several years the atmospheric sampling program has, with the exception of occasional known releases, yielded data which are within the range of normal background. The surface water program always yields results within the range of normal background. As no substantial changes in the quantities of radionuclides used are anticipated, no changes are expected in these observations

  13. Retrospect over past 25 years at Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Aoki, Shigebumi

    1983-01-01

    Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, was established on April 1, 1956, with the aims of the investigation on the peaceful use of nuclear energy and of the education of scientists and engineers in this field. This report reviews the history of the Laboratory during 25 years and traces the process of growth concerning research divisions, buildings, large-scale experimental facilities and the education in the graduate course for nuclear engineering. In addition, considering what the Laboratory has to be and what the future plan will be, it is mentioned that the research interest should be extended to the field of nuclear fusion reactor, especially the blanket engineering, as a long-term future project of the Research Laboratory. (author)

  14. Environmental applications of PIXE at the Institute of Physics, UNAM

    International Nuclear Information System (INIS)

    Solis, C.; Mireles, A.; Andrade, E.; Zolezzi R, H.

    2007-01-01

    The particle induced X-ray emission technique (PIXE), developed by Johansson and colleagues in Lund, Sweden, in the 70's has been used since then in a high number of studies requiring detection and quantification of trace elements at high sensitivity (better than I mg/kg). PIXE is grouped among the nuclear analytical techniques because the samples are bombarded with particles (protons generally) accelerated in an accelerator. When protons interact with matter an X-Ray spectrum is produced by the deexcitation of atoms in the sample. From this spectrum the elements contained in the sample as well as their concentrations can be determined. In this work we describe the PIXE technique and several applications in the environmental field developed at the Institute of Physics of the National Autonomous University of Mexico (IFUNAM). These practical applications include field studies for analyses of suspended particles in air using tree leaves, irrigation water quality based on heavy metal analyses, and analyses of trace elements in plants cultivated in waste water irrigated soil. (Author)

  15. Quality assurance for radon exposure chambers at the National Air and Radiation Environmental Laboratory, Montgomery, Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Semler, M.O.; Sensintaffar, E.L. [National Air and Radiation Environmental Laboratory, Montgomery, AL (United States)

    1993-12-31

    The Office of Radiation and Indoor Air, U.S. Environmental Protection Agency (EPA), operates six radon exposure chambers in its two laboratories, the National Air and Radiation Environmental Laboratory (NAREL) in Montgomery, Alabama, and the Las Vegas Facility, Las Vegas, Nevada. These radon exposure chambers are used to calibrate and test portable radon measuring instruments, test commercial suppliers of radon measurement services through the Radon Measurement Proficiency Program, and expose passive measurement devices to known radon concentrations as part of a quality assurance plan for federal and state studies measuring indoor radon concentrations. Both laboratories participate in national and international intercomparisons for the measurement of radon and are presently working with the National Institute of Standards and Technology (NIST) to receive a certificate of traceability for radon measurements. NAREL has developed an estimate of the total error in its calibration of each chamber`s continuous monitors as part of an internal quality assurance program. This paper discusses the continuous monitors and their calibration for the three chambers located in Montgomery, Alabama, as well as the results of the authors intercomparisons and total error analysis.

  16. U.S./Russian Laboratory-to-Laboratory MPC ampersand A Program at the VNIITF Institute, Chelyabinsk-70

    International Nuclear Information System (INIS)

    Teryohin, V.; Tzygankov, G.; Blasy, J.

    1995-07-01

    The All Russian Institute of Technical Physics (VNIITF) is one of the major sites in the nuclear weapons complex in Russia. The site contains a number of research facilities which use nuclear material as well as facilities active in disassembly and disposition of nuclear weapons. Chelyabinsk-70 (C-70) also has ties to the major nuclear materials production facilities in the Urals region of Russia. Under the U.S./Russian Laboratory -to- Laboratory cooperative program, enhanced safeguards systems are being implemented, initially at a reactor test area that contains two pulse reactors and a nuclear material storage facility. C-70 is developing an extensive computerized system that integrates the physical security alarm station with elements of the nuclear material control system. Under the Lab-to-Lab program, the existing systems will bi augmented with Russian and US technologies. The integrated MPC ampersand A system for the test facilities will be demonstrated to US and Russian audiences when completed and follow-on work at additional C-70 facilities will be identified. This paper will describe the on-going activities and describe the cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories in support of VNIITF

  17. U.S./Russian laboratory-to-laboratory MPC and A program at the VNIITF Institute, Chelyabinsk-70

    International Nuclear Information System (INIS)

    Teryohin, V.; Tzygankov, G.; Blasy, J.

    1996-01-01

    The All Russian Institute of Technical Physics (VNIITF) is one of the major sites in the nuclear weapons complex in Russia. The site contains a number of research facilities which use nuclear material as well as facilities active in disassembly and disposition of nuclear weapons. Chelyabinsk-70 (C-70) also has ties to the major nuclear materials production facilities in the Urals region of Russia. Under the US/Russian Laboratory-to-Laboratory cooperative program, enhanced safeguards systems are being implemented, initially at a reactor test area that contains two pulse reactors and a nuclear material storage facility. C-70 is developing an extensive computerized system that integrates the physical security alarm station with elements of the nuclear material control system. Under the Lab-to-Lab program, the existing systems will be augmented with Russian and US technologies. The integrated MPC and A system for the test facilities will be demonstrated to US and Russian audiences when completed and follow-on work at additional C-70 facilities will be identified. This paper will describe the on-going activities and describe the cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories in support of VNIITF

  18. The history of the Laboratory of Pathology of the Cluj-Napoca Oncological Institute.

    Science.gov (United States)

    Simu, G; Buiga, R

    2006-01-01

    The Laboratory of Pathology of the actual "Professor Ion Chiricută" Oncological Institute of Cluj-Napoca, former "Iuliu Maniu" Institute for Cancer Study and Prophylaxis, had the privilege that in its framework carry on an important part of their activity professors Titu Vasiliu and Rubin Popa, who are forming, beside Victor Babeş, the golden trinity of the Romanian pathology. The Cancer Institute of Cluj, one of the first in the World, was founded in 1929, especially by the clear-sightedness and the efforts of Professor Iuliu Moldovan, the master of the modern Romanian school of hygiene. The clinic division was assisted by a Laboratory of Pathology, whose chief was appointed the young pathologist of high competence, Rubin Popa, associate Professor of this department of the Cluj School of Medicine. In 1942' he became director of the Institute, function accomplished until his premature disappearance in 1958. Titu Vasiliu worked in the Oncological Institute from 1949, a year after his forced retreat from the chair of pathology, up to 1958. Fortunately, his premature disappearance did not interrupt the activity of the laboratory, because the management of the Oncological Institute was committed to Ion Chiricută, an experimented and modern surgeon of Bucharest. From 1960, the Laboratory of Pathology has been led by Professor Augustin Mureşan, an experimented, rigorous and prudent pathologist, who has imprinted these indispensable qualities to his disciples learning under his leadership. The activity of the laboratory has been very favorably influenced by the presence of Professor Gheorghe Badenski from the Department of Microbiology. The collaboration with Professor Eugen Pora from Babeş-Bolyai Department of Animal Physiology and his disciples, Virgil Toma, Draga Nestor, Sena Roşculet, Carmen Stugren and Georgette Buga has carried on the performance of interesting works concerning the thymus involution in tumor-bearing hosts and its signification for the

  19. Drivers of Environmental Institutional Dynamics in Decentralized African Countries

    Science.gov (United States)

    Hassenforder, Emeline; Barreteau, Olivier; Daniell, Katherine Anne; Pittock, Jamie; Ferrand, Nils

    2015-12-01

    This paper builds on the assumption that an effective approach to support the sustainability of natural resource management initiatives is institutional "bricolage." We argue that participatory planning processes can foster institutional bricolage by encouraging stakeholders to make their own arrangements based on the hybridization of old and new institutions. This papers aims at identifying how participatory process facilitators can encourage institutional bricolage. Specifically the paper investigates the specific contextual and procedural drivers of institutional dynamics in two case studies: the Rwenzori region in Uganda and the Fogera woreda in Ethiopia. In both cases, participatory planning processes were implemented. This research has three innovative aspects. First, it establishes a clear distinction between six terms which are useful for identifying, describing, and analyzing institutional dynamics: formal and informal; institutions and organizations; and emergence and change. Secondly, it compares the contrasting institutional dynamics in the two case studies. Thirdly, process-tracing is used to identify contextual and procedural drivers to institutional dynamics. We assume that procedural drivers can be used as "levers" by facilitators to trigger institutional bricolage. We found that facilitators need to pay particular attention to the institutional context in which the participatory planning process takes place, and especially at existing institutional gaps or failures. We identified three clusters of procedural levers: the selection and engagement of participants; the legitimacy, knowledge, and ideas of facilitators; and the design of the process, including the scale at which it is developed, the participatory tools used and the management of the diversity of frames.

  20. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1999

    International Nuclear Information System (INIS)

    Finley, Virginia

    2001-01-01

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey

  1. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Virginia Finley

    2001-04-20

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary

  2. 78 FR 59944 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-09-30

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919... [[Page 59945

  3. National intercomparison programme for radionuclide analysis in environmental samples: Aramar radioecological laboratory performance

    Energy Technology Data Exchange (ETDEWEB)

    Arine, Bruno Burini Robles, E-mail: bruno.arine@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP/ARAMAR), Ipero, SP (Brazil). Lab. Radioecologico; Moraes, Marco Antonio P.V., E-mail: marco.proenca@ctmsp.mar.mil.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The radioecological laboratory is concerned with the measurements of background radiation (mainly uranium and thorium natural series) and present effluents in the Aramar Experimental Centre, as well as in its surroundings. The laboratory is directly subordinated to the Navy Technological Centre in Sao Paulo (CTMSP - Sao Paulo - Brazil), a military research organization whose goal is to develop nuclear and energy systems for the Brazilian naval ship propulsion. The measurements were performed in addition to the Environmental Monitoring Programme carried out in the same region. For this endeavour, the laboratory has attended to the National Intercomparison Programme conducted by the Institute for Radioprotection and Dosimetry (IRD) by analyzing several kinds of solid and liquid samples containing specific radionuclides through gamma spectrometry, liquid scintillation, alpha-beta total counting and fluorimetry techniques, since December 1995. In the last 15 years, our results were compared to another 19 laboratories and rated as 'very good' and 'acceptable' in at least 90% of the results. (author)

  4. The Australian Institute of Nuclear Science and Engineering - a model for university-national laboratory collaboration

    International Nuclear Information System (INIS)

    Gammon, R.B.

    1994-01-01

    This paper describes the aims and activities of the Australian Institute of Nuclear Science and Engineering (AINSE), from its foundation in 1958 through to 1993. The philosophy, structure and funding of the Institute are briefly reviewed, followed by an account of the development of national research facilities at the Lucas Heights Research Laboratories, with particular emphasis on nuclear techniques of analyses using neutron scattering instruments and particle accelerators. AINSE's program of Grants, fellowships and studentships are explained with many examples given of projects having significance in the context of Australia's national goals. Conference and training programs are also included. The achievements during these years demonstrate that AINSE has been an efficient and cost-effective model for collaboration between universities and a major national laboratory. In recent years, industry, government organisations and the tertiary education system have undergone major re-structuring and rationalization. A new operational structure for AINSE has evolved in response to these changes and is described

  5. The Idaho National Engineering and Environmental Laboratory Source Water Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sehlke, G.

    2003-03-17

    The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 square miles and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL's drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey's Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency's Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a this vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL's Source Water Assessment. Of the INEEL's 12 public water systems, three systems rated as low susceptibility (EBR-1, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead

  6. Environmental Remediation Sciences Program at the Stanford Synchrotron Radiation Laboratory

    International Nuclear Information System (INIS)

    Bargar, John R.

    2006-01-01

    Synchrotron radiation (SR)-based techniques provide unique capabilities to address scientific issues underpinning environmental remediation science and have emerged as major research tools in this field. The high intensity of SR sources and x-ray photon-in/photon-out detection allow noninvasive in-situ analysis of dilute, hydrated, and chemically/structurally complex natural samples. SR x-rays can be focused to beams of micron and sub-micron dimension, which allows the study of microstructures, chemical microgradients, and microenvironments such as in biofilms, pore spaces, and around plant roots, that may control the transformation of contaminants in the environment. The utilization of SR techniques in environmental remediation sciences is often frustrated, however, by an ''activation energy barrier'', which is associated with the need to become familiar with an array of data acquisition and analysis techniques, a new technical vocabulary, beam lines, experimental instrumentation, and user facility administrative procedures. Many investigators find it challenging to become sufficiently expert in all of these areas or to maintain their training as techniques evolve. Another challenge is the dearth of facilities for hard x-ray micro-spectroscopy, particularly in the 15 to 23 KeV range, which includes x-ray absorption edges of the priority DOE contaminants Sr, U, Np, Pu, and Tc. Prior to the current program, there were only two (heavily oversubscribed) microprobe facilities in the U.S. that could fully address this energy range (one at each of APS and NSLS); none existed in the Western U.S., in spite of the relatively large number of DOE laboratories in this region

  7. Idaho National Laboratory Comprehensive Land Use and Environmental Stewardship Report

    Energy Technology Data Exchange (ETDEWEB)

    No name listed on publication

    2011-08-01

    Land and facility use planning and decisions at the Idaho National Laboratory (INL) Site are guided by a comprehensive site planning process in accordance with Department of Energy Policy 430.1, 'Land and Facility Use Policy,' that integrates mission, economic, ecologic, social, and cultural factors. The INL Ten-Year Site Plan, prepared in accordance with Department of Energy Order 430.1B, 'Real Property Asset Management,' outlines the vision and strategy to transform INL to deliver world-leading capabilities that will enable the Department of Energy to accomplish its mission. Land use planning is the overarching function within real property asset management that integrates the other functions of acquisition, recapitalization, maintenance, disposition, real property utilization, and long-term stewardship into a coordinated effort to ensure current and future mission needs are met. All land and facility use projects planned at the INL Site are considered through a formal planning process that supports the Ten-Year Site Plan. This Comprehensive Land Use and Environmental Stewardship Report describes that process. The land use planning process identifies the current condition of existing land and facility assets and the scope of constraints across INL and in the surrounding region. Current land use conditions are included in the Comprehensive Land Use and Environmental Stewardship Report and facility assets and scope of constraints are discussed in the Ten-Year Site Plan. This report also presents the past, present, and future uses of land at the INL Site that are considered during the planning process, as well as outlining the future of the INL Site for the 10, 30, and 100-year timeframes.

  8. 78 FR 8156 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-02-05

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Environmental Health Sciences Special Emphasis Panel; Studies of Environmental Agents to Induce Immunotoxicity... Research and Training, Nat. Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research...

  9. 76 FR 13650 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2011-03-14

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Training, Nat. Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30/Room 3171, Research... Environmental Health Sciences Special Emphasis Panel; Review of Educational Grants with an Environmental Health...

  10. 75 FR 34147 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-06-16

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Review Branch, Division of Extramural Research and Training, Nat. Institute Environmental Health Sciences... Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental Health Hazards...

  11. 75 FR 45133 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-08-02

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory.... Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room 3170 B, Research Triangle Park, NC... Manpower Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental...

  12. 77 FR 4572 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-01-30

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental Health Hazards... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Environmental...

  13. 78 FR 51734 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-08-21

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory..., Nat. Institute of Environmental Health Sciences, Office of Program Operations, Scientific Review... Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental Health Hazards...

  14. 75 FR 32797 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-06-09

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Branch, Division of Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P... Manpower Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental...

  15. 78 FR 27410 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-05-10

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory..., Nat. Institute of Environmental Health Sciences, Office of Program Operations, Scientific Review... the Environmental Health Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114...

  16. A phased approach to cooperative environmental management R ampersand D projects with Russian institutes

    International Nuclear Information System (INIS)

    Matalucci, R.V.; Albert, T.E.

    1994-01-01

    An important aspect of technology exchange between the US and the Former Society Union (FSU) countries is the identification and implementation of cooperative projects that are mutually beneficial. The US Department of Energy (DOE) and its national laboratories have established a four-phase approach to identify and further develop Russian technologies that could contribute to solving DOE environmental management problems. Following an initial screening and identification of potential technologies, the country-to-country interaction is formally initiated in the first phase through a small-scale pilot project study. This phase consists of an evaluation of the specific technology for DOE applications, and provides an opportunity for both US and Russian scientists and engineers to validate the use of the technology for a specific DOE requirement. The successful completion of this phase establishes the basis for continuing the technology development into the second phase, which includes laboratory testing in Russia. In the third phase, the technology is laboratory tested in the US, most likely at those DOE national laboratories having the capability and greatest interest in the particular technology area. The fourth and final phase consist of a commercialization process that establishes a partnership with a US business to finalize development of the technology and to prepare for implementation within the DOE complex. An example of this phased approach is a current high-level waste separation cooperative project between the Khlopin Radium Institute and the DOE through Sandia National Laboratories (SNL) and Science Applications International Corporation (SAIC). This effort has not only enhanced separations technology for the DOE, but has also provided an example of a working process for future cooperative projects

  17. 75 FR 65365 - National Institute of Environmental Health Sciences;

    Science.gov (United States)

    2010-10-22

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... clearly unwarranted invasion of personal privacy. Name of Committee: Environmental Health Sciences Review... evaluate grant applications. Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell...

  18. About the Associate Director for Health of EPA's National Health and Environmental Effects Research Laboratory (NHEERL)

    Science.gov (United States)

    Dr. Ronald Hines serves as Associate Director for Health for the National Health and Environmental Effects Research Laboratory (NHEERL) within the U.S. Environmental Protection Agency's Office of Research and Development (ORD).

  19. About the Director of EPA's National Health and Environmental Effects Research Laboratory (NHEERL)

    Science.gov (United States)

    Dr. Wayne Cascio serves as Acting Director for the National Health and Environmental Effects Research Laboratory (NHEERL) within the U.S. Environmental Protection Agency's Office of Research and Development (ORD).

  20. Environmental assessment of the Environmental Restoration Project at Sandia National Laboratories/New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Sandia National Laboratories/New Mexico (SNL/NM) is managed and operated for the U.S. Department of Energy (DOE) by Sandia Corporation, a subsidiary of the Lockheed Martin Company. SNL/NM is located on land controlled by DOE within the boundaries of Kirtland Air Force Base (KAFB) in Albuquerque, New Mexico. The major responsibilities of SNL/NM are the support of national security and energy projects. This report provides an environmental assessment of proposed remedial action activities at the solid waste management units at SNL/NM. A risk assessment of health hazards is also discussed.

  1. 40 CFR 262.105 - What must be included in the laboratory environmental management plan?

    Science.gov (United States)

    2010-07-01

    ... compliance, waste minimization, risk reduction and continual improvement of the environmental management... its compliance with the Environmental Management Plan and applicable federal and state hazardous waste... laboratory environmental management plan? 262.105 Section 262.105 Protection of Environment ENVIRONMENTAL...

  2. Development of Laboratory Model Ecosystems as Early Warning Elements of Environmental Pollution

    Science.gov (United States)

    1974-12-01

    AD-AOll 851 DEVELOPMENT OF LABORATORY MODEL ECOSYSTEMS AS EARLY WARNING ELEMENTS OF ENVIRONMENTAL POLLUTION Robert L. Metcalf... ENVIRONMENTAL POLLUTION Robert L. Metcalf, Ph. D. University of Illinois Urbana-Champaign, Illinois INTRODUCTION Problems of environmental pollution with...house dust is unsafe to breathe (Ewing and Pearson, 1974). Most of the source of our concern about environmental pollution by trace substances relates

  3. Brookhaven National Laboratory environmental monitoring plan for Calendar Year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Paquette, D.; Lee, R. [and others

    1996-10-01

    As required by DOE Order 5400.1, each U.S. Department of Energy (DOE) site, facility, or activity that uses, generates, releases, or manages significant quantities of hazardous materials shall provide a written Environmental Monitoring Plan (EMP) covering effluent monitoring and environmental surveillance. DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, provides specific guidance regarding environmental monitoring activities.

  4. Brookhaven National Laboratory environmental monitoring plan for Calendar Year 1996

    International Nuclear Information System (INIS)

    Naidu, J.R.; Paquette, D.; Lee, R.

    1996-01-01

    As required by DOE Order 5400.1, each U.S. Department of Energy (DOE) site, facility, or activity that uses, generates, releases, or manages significant quantities of hazardous materials shall provide a written Environmental Monitoring Plan (EMP) covering effluent monitoring and environmental surveillance. DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, provides specific guidance regarding environmental monitoring activities

  5. 78 FR 47715 - National Institute of Environmental Health Sciences; Amended Notice of Meeting

    Science.gov (United States)

    2013-08-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the Environmental Health Sciences Review Committee, July 24, 2013, 08:00 a.m. to July 26, 2013, 02:00...

  6. 76 FR 62422 - National Institute of Environmental Health Sciences; Cancellation of Meeting

    Science.gov (United States)

    2011-10-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Cancellation of Meeting Notice is hereby given of the cancellation of the Interagency Breast Cancer and Environmental Research Coordinating Committee, October 12, 2011, 1 p.m. to 3 p.m...

  7. Overview of environmental radiological monitoring program of Institute of Radiation Protection And Dosimetry - IRD

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Sarah Barreto Oliveira de Christo; Peres, Sueli da Silva, E-mail: suelip@ird.gov.br, E-mail: sarah.barreto1@gmail.com [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radioproteção

    2017-07-01

    As a branch of the Brazilian Nuclear Energy Commission (CNEN), the Institute of Radiation Protection and Dosimetry (IRD) performs extensive activities in the fields of radiation protection, metrology, and dosimetry, as well as specific education, onto a wide operational scope that includes the technical support to national regulatory authorities in the licensing process for nationwide nuclear and radioactive facilities. IRD has several laboratories where are performed radiometric and radiochemical analyses and others radioactivity evaluation procedures in different types of samples obtained in the inspection activities, production of radioactivity metrological standards and reference material by National Laboratory of Metrology of Ionizing Radiation (LMNRI), besides others research activities. In this laboratories can be used sealed or unsealed radioactive sources and radiation-producing devices and are classified with radioactive installations in accordance to national regulations. This way, radioactive liquid effluents can be eventually produced and released into the environment in the course of such activities and an effluent monitoring program to control and reduce the releases to environment is carried out. Additionally, IRD maintains the Radioactive Waste Management Program and Environmental Radiological Monitoring Program (ERMP) in accordance to national regulations requirements. The primary focus of ERMP comprises the validation of the dose prognostics for the public members due to effluents discharge and the provision of consistent projections of the radiation levels at the monitoring sites. In this study, a long term ERMP data survey is discussed, spanning the last thirteen years of activities. On the basis of such discussions and prognostics, it could be observed that the radiological environmental radiological impact due to operation of IRD installations is negligible. (author)

  8. Overview of environmental radiological monitoring program of Institute of Radiation Protection And Dosimetry - IRD

    International Nuclear Information System (INIS)

    Gomes, Sarah Barreto Oliveira de Christo; Peres, Sueli da Silva

    2017-01-01

    As a branch of the Brazilian Nuclear Energy Commission (CNEN), the Institute of Radiation Protection and Dosimetry (IRD) performs extensive activities in the fields of radiation protection, metrology, and dosimetry, as well as specific education, onto a wide operational scope that includes the technical support to national regulatory authorities in the licensing process for nationwide nuclear and radioactive facilities. IRD has several laboratories where are performed radiometric and radiochemical analyses and others radioactivity evaluation procedures in different types of samples obtained in the inspection activities, production of radioactivity metrological standards and reference material by National Laboratory of Metrology of Ionizing Radiation (LMNRI), besides others research activities. In this laboratories can be used sealed or unsealed radioactive sources and radiation-producing devices and are classified with radioactive installations in accordance to national regulations. This way, radioactive liquid effluents can be eventually produced and released into the environment in the course of such activities and an effluent monitoring program to control and reduce the releases to environment is carried out. Additionally, IRD maintains the Radioactive Waste Management Program and Environmental Radiological Monitoring Program (ERMP) in accordance to national regulations requirements. The primary focus of ERMP comprises the validation of the dose prognostics for the public members due to effluents discharge and the provision of consistent projections of the radiation levels at the monitoring sites. In this study, a long term ERMP data survey is discussed, spanning the last thirteen years of activities. On the basis of such discussions and prognostics, it could be observed that the radiological environmental radiological impact due to operation of IRD installations is negligible. (author)

  9. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Virginia L. Finley

    2004-04-07

    The purpose of this report is to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of the Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2001 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2001. PPPL has engaged in fusion energy research since 1951. The vision of the Laboratory is to create innovations to make fusion power a practical reality--a clean, alternative energy source. The Year 2001 marked the third year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. In 2001, PPPL's radiological environmental monitoring program measured tritium in the air at on- and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations; also included in PPPL's radiological environmental monitoring program, are water monitoring--precipitation, ground-, surface-, and waste-waters. PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the D-site stack; the data are presented in this report. Groundwater monitoring

  10. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Virginia L. Finley

    2002-04-22

    The results of the 2000 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2000. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality -- an alternative energy source. The year 2000 marked the second year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion power plants. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. In 2000, PPPL's radiological environmental monitoring program measured tritium in the air at on-site and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations with limits set by the Environmental Protection Agency (EPA). Also included in PPPL's radiological environmental monitoring program, are precipitation, surface

  11. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2000

    International Nuclear Information System (INIS)

    Virginia L. Finley

    2002-04-01

    The results of the 2000 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2000. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality -- an alternative energy source. The year 2000 marked the second year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion power plants. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. In 2000, PPPL's radiological environmental monitoring program measured tritium in the air at on-site and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations with limits set by the Environmental Protection Agency (EPA). Also included in PPPL's radiological environmental monitoring program, are precipitation, surface, ground, a nd

  12. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2001

    International Nuclear Information System (INIS)

    Finley, Virginia L.

    2004-01-01

    The purpose of this report is to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of the Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2001 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2001. PPPL has engaged in fusion energy research since 1951. The vision of the Laboratory is to create innovations to make fusion power a practical reality--a clean, alternative energy source. The Year 2001 marked the third year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. In 2001, PPPL's radiological environmental monitoring program measured tritium in the air at on- and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations; also included in PPPL's radiological environmental monitoring program, are water monitoring--precipitation, ground-, surface-, and waste-waters. PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the D-site stack; the data are presented in this report. Groundwater monitoring continue d under a

  13. Environmental survey at Lucas Heights Research Laboratories, 1991

    International Nuclear Information System (INIS)

    Hoffmann, E.L.; Looz, T.

    1994-05-01

    In common with many other nuclear facilities, ANSTO undertakes an extensive program of meteorological measurements. The prime reason for such a program is to allow estimates to be made of the downwind concentration of any airborne pollutants, particularly radionuclides, released from the site through routine operations or under accident conditions. The data collection from this program provide the necessary input to the atmospheric dispersion model called ADDCOR (ANSTO 1989) which can be used to compute the effective dose to an individual due to the routine airborne or accidental release of radionuclides from the LHRL. None of the samples taken from possible human food chains in the vicinity of the Lucas Heights Research Laboratories contained radioactivity which could be attributed to the operation of the site. Discharges of airborne radioactive gases were within authorised limits when averaged over the year. The dose to the most sensitive members of the public from iodine-131 release, was -3 mSv/year and the calculated dose from released noble gases to the most exposed individuals was less than 0.01 mSv/year. These figures represent less than one per cent of the most restrictive limits recommended by the National Health and Medical Research Council of Australia. The annual average liquid effluent discharge to the Water Board Sewer during 1991 was less than 29 per cent of the permitted level. For tritium, the concentration was less than 2 per cent of the specified limit. The data presented in this report clearly shows that the environmental impact of operations at LHRL has been very low. The effective dose to residents living in the immediate neighbourhood of the reactor are very difficult to measure directly but calculated dose estimates are far lower than those due to natural background radiation and medical exposures. 24 refs., 19 tabs., 4 figs

  14. Guidelines for an environmental code of ethics for research institutions

    International Nuclear Information System (INIS)

    Gardusi, Claudia; Aquino, Afonso Rodrigues de

    2009-01-01

    The purpose of this work is to reflect about actions that may contribute to the creation of mechanisms to protect the environment in the development of research projects at research institutions, specifically the Nuclear and Energy Research Institute - IPEN. A brief review of part of the ethical values applied to the process of scientific development during the old, medieval and modern periods is presented, showing the split of the nature ethical principles. It is also reported an overview of the creation of codes of ethics applied to research institutions. Moreover, criteria are presented to settle guidelines to protect the environment during the development of research projects. (author)

  15. Health and Safety Laboratory environmental quarterly, September 1, 1976--December 1, 1976. [Monitoring of environment for radioactivity and chemical pollution

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, E.P. Jr.

    1977-01-01

    This report presents current data from the HASL environmental programs, The Swedish Defense Research Establishment, The Woods Hole Oceanographic Institution, Argonne National Laboratory and The New Zealand National Radiation Laboratory. The initial section consists of interpretive reports and notes on ground level air radioactivity in Sweden from nuclear explosions, plutonium in air near the Rocky Flats Plant, nitrous oxide concentrations in the stratosphere, lake sediment sampling, plutonium and americium in marine and fresh water biological systems, radium in cat litter, and quality control analyses. Subsequent sections include tabulations of radionuclide and stable lead concentrations in surface air; strontium-90 in deposition, milk, diet, and tapwater; cesium-137 in Chicago foods in October 1976 and environmental radioactivity measurements in New Zealand in 1975. A bibliography of recent publications related to environmental studies is also presented.

  16. Results Assessment of Intercomparison Exercise CSN/CIEMAT-2013 among Spanish National Laboratories of Environmental Radioactivity (Air)

    International Nuclear Information System (INIS)

    Trinidad, J. A.; Gascó, C.; Llauradó, M.

    2015-01-01

    This report describes the results assessment of the intercomparsion exercise among environmental radioactivity laboratories, organised by Spanish Regulatory Institution (CSN) and prepared and evaluated by UB and CIEMAT respectively. The exercise has been carried out following the international standards ISO-43 and ISO/IUPAC that provide a useful guide to perform proficiency tests and inter-laboratories comparisons. The selected matrix for this year (2013) was filters, which was enriched with artificial radionuclides (137Cs, 60Co and 57Co) and contained natural radionuclides (234U, 238U, U-natural 230Th, 226Ra, 210Pb, 234Th, 214Bi and 214Pb) at environmental level of activity concentration. Three commonly used filters (47 mm diameter, 44x44 cm2 and 20x25 cm2) were prepared. Two 47 mm diameter filter were prepared to separate 226Ra and 210Pb analysis. The z-score test was applied to determine how much the laboratories differ from the reference value. The reference value for this exercise was the median of the results from the different laboratories and their standard deviations to achieve a more complete and objective study of the laboratories performance. The participant laboratories have demonstrated a satisfactory quality level for measuring the natural and artificial radionuclides content in this matrix. The study has showed a homogeneous behaviour of the laboratories

  17. Results Assessment of Intercomparison Exercise CSN/CIEMAT-2012 among Spanish National Laboratories of Environmental Radioactivity (Soil)

    International Nuclear Information System (INIS)

    Trinidad, J. A.; Gascó, C.; Llauradó, M.

    2015-01-01

    This report describes the results assessment of the intercomparsion exercise among environmental radioactivity laboratories, organised by Spanish Regulatory Institution (CSN) and prepared and evaluated by UB and CIEMAT respectively. The exercise has been carried out following the international standards ISO-43 and ISO/IUPAC that provide a useful guide to perform proficiency tests and inter-laboratories comparisons. The selected matrix for this year (2012) was soil, that was enriched with artificial radionuclides (137Cs, 60Co, 55Fe, 63Ni, 90Sr, 241Am, 239+240Pu and 238Pu) and contained natural radionuclides (234U, 238U, U-natural 230Th, 226Ra, 210Pb, 228Ra, 228Ac, 234Th, 214Bi, 214Pb, 212Pb, 208Tl and 40K) at environmental level of activity concentration. Two soil matrixes were prepared in order to separate 55Fe and 63Ni analysis. The z-score test was applied to determine how much the laboratories differ from the reference value. The reference value for this exercise was the median of the results from the different laboratories and their standard deviations to achieve a more complete and objective study of the laboratories performance. The participant laboratories have demonstrated a satisfactory quality level for measuring the natural and artificial radionuclides content in this matrix. The study has showed a homogeneous behaviour of the laboratories.

  18. Results Assessment of Intercomparison Exercise CSN/CIEMAT-2011 among Spanish National Laboratories of Environmental Radioactivity (Water)

    International Nuclear Information System (INIS)

    Gascó, C.; Trinidad, J. A.; Llauradó, M.

    2015-01-01

    This report describes the results assessment of the intercomparsion exercise among environmental radioactivity laboratories, organised by Spanish Regulatory Institution (CSN) and prepared and evaluated by UAB and CIEMAT respectively. The exercise has been carried out following the international standards ISO-43 and ISO/IUPAC that provide a useful guide to perform proficiency tests and inter-laboratories comparisons. The selected matrix for this year (2011) was deionized water, simulating drinking water, that was enriched with artificial radionuclides (Cs-137, Co-60, Fe-55, Ni-63, Sr-90, Am-241 and Pu-238) and contained natural radionuclides (U-234, U-238, U-natural, Pb-210, Po-210, Th-230, Ra-226 and K-40) at environmental level of activity concentration. A second matrix of deionized water was prepared with I-129 and C-14. The z-score test was applied to determine how much the laboratories differ from the reference value. The reference value for this exercise was the median of the results from the different laboratories and their standard deviations to achieve a more complete and objective study of the laboratories performance. The participant laboratories have demonstrated a satisfactory quality level for measuring the natural and artificial radionuclides content in this matrix. The study has showed a homogeneous behaviour of the laboratories.

  19. Institutional training programs for research personnel conducted by laboratory-animal veterinarians.

    Science.gov (United States)

    Dyson, Melissa C; Rush, Howard G

    2012-01-01

    Research institutions are required by federal law and national standards to ensure that individuals involved in animal research are appropriately trained in techniques and procedures used on animals. Meeting these requirements necessitates the support of institutional authorities; policies for the documentation and enforcement of training; resources to support and provide training programs; and high-quality, effective educational material. Because of their expertise, laboratory-animal veterinarians play an essential role in the design, implementation, and provision of educational programs for faculty, staff, and students in biomedical research. At large research institutions, provision of a training program for animal care and use personnel can be challenging because of the animal-research enterprise's size and scope. At the University of Michigan (UM), approximately 3,500 individuals have direct contact with animals used in research. We describe a comprehensive educational program for animal care and use personnel designed and provided by laboratory-animal veterinarians at UM and discuss the challenges associated with its implementation.

  20. Assessment of the use of two commercially available environmental enrichments by laboratory mice by preference testing.

    NARCIS (Netherlands)

    Loo, P.L. van; Blom, H.J.; Meijer, M.K.; Baumans, V.

    2005-01-01

    In the field of biomedical research, the demand for standardization of environmental enrichment for laboratory animals is growing. For laboratory mice, a wide variety of environmental enrichment items are commercially available. Most of these comply with the demands for standardization, hygiene and

  1. Standardisation of environmental enrichment for laboratory mice and rats: Utilisation, practicality and variation in experimental results

    NARCIS (Netherlands)

    Baumans, V.; Loo, P.L.P. van; Pham, T.M.

    2010-01-01

    Rats and mice are the most commonly used species as laboratory animal models of diseases in biomedical research. Environmental factors such as cage size, number of cage mates and cage structure such as environmental enrichment can affect the physiology and behavioural development of laboratory

  2. Environmental Resource Management Issues in Agronomy: A Lecture/Laboratory Course

    Science.gov (United States)

    Munn, D. A.

    2004-01-01

    Environmental Sciences Technology T272 is a course with a laboratory addressing problems in soil and water quality and organic wastes utilization to serve students from associate degree programs in laboratory science and environmental resources management at a 2-year technical college. Goals are to build basic lab skills and understand the role…

  3. Identification and analysis of the environmental management documentation related to the activities of environmental and chemical analysis laboratories; Identificacao e analise da documentacao pertinente a gestao ambiental relacionada as atividades de laboratorios de analises quimicas e ambientais

    Energy Technology Data Exchange (ETDEWEB)

    Otomo, Juliana Ikebe; Brandalise, Michele; Romano, Renato Lahos; Marques, Roberto; Szarota, Rosa Maria; Raduan, Rosane Napolitano; Salvetti, Tereza Cristina; Egute, Nayara dos Santos; Almeida, Josimar Ribeiro de; Aquino, Afonso Rodrigues de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: araquino@ipen.br

    2009-08-15

    In the last years, many documents were elaborated by several countries and entities, concerning the environmental question. The implantation of and Environmental Management System requires specific documentation so that a company or laboratory can adjust themselves to the environmental quality. For laboratories of chemical, environmental analyses and also nuclear materials, the needs of attendance to the requirements of the following municipal, state and federal institutions were identified: Corpo de Bombeiros, CNEN - Comissao Nacional de Energia Nuclear, IBAMA - Instituto Brasileiro do Meio Ambiente e dos Recursos Renovaveis, ANVISA - Agencia Nacional de Vigilancia Sanitaria, PMSP - Prefeitura Municipal de Sao Paulo e a CETESB - Companhia Ambiental do Estado de Sao Paulo. (author)

  4. Sandia National Laboratories California Environmental Monitoring Program Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C.

    2007-03-01

    The annual program report provides detailed information about all aspects of the SNL/CA Environmental Monitoring Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2006 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/CA.

  5. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    The US Department of Energy (DOE) and the Regents of the University of California (UC) propose the continued operation, including near-term proposed projects, of the Lawrence Livermore National Laboratory (LLNL). In addition, DOE proposes the continued operation, including near-term proposed projects, of Sandia National Laboratories, Livermore (SNL, Livermore). Continued operation plus proposed projects at the two Laboratories is needed so that the research and development missions established by Congress and the President can continue to be supported. As provided and encouraged by the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA), DOE and UC have prepared this document as a joint Environmental Impact Statement (EIS) and Environmental Impact Report (EIR) to analyze the impacts of the proposed action. In addition, this document discusses a no action alternative for continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative focused on specific adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative. This document also examines the alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. The environmental documentation process provides information to the public, government agencies, and decision makers about the environmental impacts of implementing the proposed and alternative actions. In addition, this environmental documentation identifies alternatives and possible ways to reduce or prevent environmental impacts. A list of the issues raised through the EIS/EIR scoping process is presented

  6. Inclusion of the Environmental Practices in Audits Performed at the Federal Institution of Education

    Directory of Open Access Journals (Sweden)

    Lilian Campagnin Luiz

    2014-08-01

    Full Text Available This article investigates whether an environmental audit has been conducted at a Federal Institution of Education. The specific objectives are to: i verify the environmental controls held at the institution, ii investigate the environmental audits within the institution; and, iii prepare a list containing the main environmental factors that could be monitored by the institution. The research has a descriptive purpose; the procedures we used are bibliographic, document review, and case study. The research instrument is documentary research or primary sources to approach the problem in the qualitative way. The study sample is a federal institution of professional and technological education, and temporal analysis includes the years 2011, 2012 and 2013. Based upon the annual plan for internal audit activities, and on the annual report of the internal audit activities, we found that the institution has not conducted any environmental audits in the investigated period. The result was that, in relation to internal control, there is the obligation for the adoption of a Plan of Sustainable Logistics (PSL and its publicity on the institutional web page. We found the absence of the PSL at the institution, making it impossible to assert that the institution conducts internal environmental controls. We observed only a self-assessment in the institutional management report, in which one of its topics included information on sustainable procurement, awareness campaigns, and waste separation. Within the absence of the environmental controls and audits, we prepared a list containing the main factors that can be seen on environmental audits in the public educational institutions.

  7. Environmental Measurements Laboratory. Environmental report, September 1, 1980-March 1, 1981

    International Nuclear Information System (INIS)

    Hardy, E.P. Jr.

    1981-01-01

    This report presents current information from the EML environmental programs, the Air Monitoring Section of the Bhabha Atomic Research Centre in India, the NASA Lewis Research Center and the Radiological and Environmental Research Division at Argonne National Laboratory. The initial section consists of interpretive reports and notes dealing with global movement of radioactive debris from nuclear tests, vertical distribution of short-lived radionuclides in the lower stratosphere at the end of 1980, stratospheric radionuclide and trace gas inventories, plutonium isotopes in stratospheric filtered air, sulfur dioxide measurements in New York City, estimates of lead, manganese, aluminum and iron in atmospheric deposition at American Samoa, chemical composition of deposition at seven US locations, intercomparison of trace element analyses of commercially available reference materials, evaluation of analytical methods for polycyclic aromatic hydrocarbons in sediment, and quality control assessments of radionuclide analyses of surface air filters, biological and deposition samples and of chemical analyses of precipitation. Subsequent sections include tabulations of Sr-90 fallout, chemical constituents of wet and dry deposition, radionuclides and trace metals in surface air, radioactivity and trace gases sampled in the stratosphere by aircraft and balloons, Sr-90 in San Francisco and New York diet, milk and tap water, and Cs-137 in Chicago foods. A bibliography of recent publications related to environmental studies is also presented

  8. In summary: Idaho National Engineering and Environmental Laboratory site environmental report for calendar year 1997

    International Nuclear Information System (INIS)

    Mitchell, R.G.; Roush, D.E. Jr.; Evans, R.B.

    1998-10-01

    Every human is exposed to natural radiation. This exposure comes from many sources, including cosmic radiation from outer space, naturally-occurring radon, and radioactivity from substances in the body. In addition to natural sources of radiation, humans can also be exposed to human-generated sources of radiation. Some examples of these sources include nuclear medicine, X-rays, nuclear weapons testing, and accidents at nuclear power plants. The Idaho National Engineering and Environmental Laboratory (INEEL) is a US Department of Energy (DOE) research facility that deals, in part, with studying nuclear reactors and the storage and cleanup of radioactive materials. Careful handling and rigorous procedures do not completely eliminate the risk of releasing radioactivity. So, there is a possibility for a member of the public near the INEEL to be exposed to radioactivity from the INEEL. Extensive monitoring of the environment takes place one and around the INEEL. These programs search for radionuclides and other contaminants. The results of these programs are presented each year in a site environmental report. This document summarizes the INEEL site environmental report for 1997

  9. Quality management system and accreditation of the in vivo monitoring laboratory at Karslruhe Institute of Technology.

    Science.gov (United States)

    Breustedt, B; Mohr, U; Biegard, N; Cordes, G

    2011-03-01

    The in vivo monitoring laboratory (IVM) at Karlsruhe Institute of Technology (KIT), with one whole body counter and three partial-body counters, is an approved lab for individual monitoring according to German regulation. These approved labs are required to prove their competencies by accreditation to ISO/IEC 17025:2005. In 2007 a quality management system (QMS), which was successfully audited and granted accreditation, was set up at the IVM. The system is based on the ISO 9001 certified QMS of the central safety department of the Research Centre Karlsruhe the IVM belonged to at that time. The system itself was set up to be flexible and could be adapted to the recent organisational changes (e.g. founding of KIT and an institute for radiation research) with only minor effort.

  10. 78 FR 18359 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2013-03-26

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Training, Nat. Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park... Environmental Health Sciences Special Emphasis Panel; Research Careers in Emerging Technologies. Date: April 30...

  11. 77 FR 60445 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-10-03

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Research and Training, National Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room... Environmental Health Sciences Special Emphasis Panel; Support for Conferences and Scientific Meetings. Date...

  12. 78 FR 25754 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-05-02

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... of Extramural Research and Training, Nat. Institute of Environmental Health Science, P.O. Box 12233... Health Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114, Applied...

  13. 76 FR 52672 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2011-08-23

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory.... of Environmental Health Sciences, Keystone Building, 530 Davis Drive, Research Triangle Park, NC..., Division of Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P.O. Box...

  14. 76 FR 50235 - National Institute of Environmental Health Sciences; Notice of Meetings

    Science.gov (United States)

    2011-08-12

    ... Environmental Health Sciences; Notice of Meetings Pursuant to section 10(a) of the Federal Advisory Committee... (DERT), Nat. Inst. of Environmental Health Sciences, National Institutes of Health, 615 Davis Dr... of Extramural Research and Training (DERT), Nat. Inst. of Environmental Health Sciences, National...

  15. 78 FR 39739 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-07-02

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... clearly unwarranted invasion of personal privacy. Name of Committee: Environmental Health Sciences Review... Research and Training, National Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30...

  16. 76 FR 62080 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2011-10-06

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... clearly unwarranted invasion of personal privacy. Name of Committee: Environmental Health Sciences Review... Extramural Research and Training, Nat'l Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30...

  17. 78 FR 14312 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2013-03-05

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Health Sciences Special Emphasis Panel; Understanding Environmental Control of Epigenetic/Mechanisms... Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30...

  18. 77 FR 33472 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-06-06

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Health Sciences Special Emphasis Panel International Collaborations in Environmental Health. Date: June....D., Scientific Review Administrator, Nat. Institute of Environmental Health Sciences, Office of...

  19. 76 FR 71046 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-11-16

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(a) of the Federal Advisory Committee Act... Environmental Health Sciences, National Institutes of Health, 615 Davis Dr., KEY615/3112, Research Triangle Park... and Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences; 93.113...

  20. 76 FR 7572 - National Institute of Environmental Health Sciences; Notice of Meetings

    Science.gov (United States)

    2011-02-10

    ... Environmental Health Sciences; Notice of Meetings Pursuant to section 10(a) of the Federal Advisory Committee..., Director, Division of Extramural Research and Training, National Institute of Environmental Health Sciences... of Environmental Health Sciences, 615 Davis Dr., KEY615/3112, Research Triangle Park, NC 27709, (919...

  1. 75 FR 61765 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2010-10-06

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Environmental Health Sciences Special Emphasis Panel, Superfund Research and Training Program. Date: October 26...-Tilotta, PhD, Scientific Review Officer, Nat. Institute of Environmental Health Sciences, Office of...

  2. 76 FR 77239 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-12-12

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(a) of the Federal Advisory Committee Act.../boards/ibcercc/ . Place: National Institute of Environmental Health Sciences, Building 101, Rodbell... and Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences; 93.113...

  3. 77 FR 66853 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-11-07

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Health Sciences Special Emphasis Panel Career Grants in the Environmental Health Sciences. Date: November...., Scientific Review Administrator, Nat. Institute of Environmental Health Sciences, Office of Program...

  4. 77 FR 30019 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2012-05-21

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... of Extramural Research and Training, Nat. Institute of Environmental Health Science, P.O. Box 12233... Health Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114, Applied...

  5. 78 FR 14562 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-03-06

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Health Sciences Special Emphasis Panel; Studies on Environmental Health Concerns from Superstorm Sandy... Administrator, National Institute of Environmental Health Sciences, Office of Program Operations, Scientific...

  6. 76 FR 80954 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-12-27

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(a) of the Federal Advisory Committee Act.../boards/ibcercc/ . Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium... Environmental Health Sciences, National Institutes of Health, 615 Davis Dr., KEY615/3112, Research Triangle Park...

  7. 77 FR 61613 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-10-10

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Environmental Health Sciences, P. O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919) 541-1307, [email protected] . Name of Committee: National Institute of Environmental Health Sciences Special Emphasis...

  8. 77 FR 61771 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2012-10-11

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... clearly unwarranted invasion of personal privacy. Name of Committee: Environmental Health Sciences Review... applications. Place: National Institute of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111...

  9. 75 FR 68367 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-11-05

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Research and Training, Nat. Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room 3170 B... Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114, Applied Toxicological...

  10. 75 FR 41506 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-07-16

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114, Applied Toxicological... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Environmental...

  11. 76 FR 26311 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2011-05-06

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory.... Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30/Room 3171, Research Triangle Park, NC... and Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences; 93.113...

  12. 75 FR 10293 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-03-05

    ... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory.... Institute Environmental Health Sciences, P. O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919... Health Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114, Applied...

  13. Publications and geothermal sample library facilities of the Earth Science Laboratory, University of Utah Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Phillip M.; Ruth, Kathryn A.; Langton, David R.; Bullett, Michael J.

    1990-03-30

    The Earth Science Laboratory of the University of Utah Research Institute has been involved in research in geothermal exploration and development for the past eleven years. Our work has resulted in the publication of nearly 500 reports, which are listed in this document. Over the years, we have collected drill chip and core samples from more than 180 drill holes in geothermal areas, and most of these samples are available to others for research, exploration and similar purposes. We hope that scientists and engineers involved in industrial geothermal development will find our technology transfer and service efforts helpful.

  14. Environmental assessment for construction and operation of a Human Genome Laboratory at Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    Lawrence Berkeley Laboratory (LBL) proposes to construct and operate a new laboratory for consolidation of current and future activities of the Human Genome Center (HGC). This document addresses the potential direct, indirect, and cumulative environmental and human-health effects from the proposed facility construction and operation. This document was prepared in accordance the National Environmental Policy Act of 1969 (United States Codes 42 USC 4321-4347) (NEPA) and the US Department of Energy`s (DOE) Final Rule for NEPA Implementing Procedures [Code of Federal Regulations 10CFR 1021].

  15. US/Russian laboratory-to-laboratory program in materials protection, control and accounting at the RRC Kurchatov Institute

    International Nuclear Information System (INIS)

    Sukhoruchkin, V.; Roumiansev, A.; Shmelev, V.

    1996-01-01

    Six US DOE Laboratories are carrying out a program of cooperation with the Russian Research Center Kurchatov Institute (RRC KI) to improve the capabilities and facilities in nuclear material protection, control, and accounting (MPC ampersand A). In 1995, the primary emphasis of this program was the implementation of improved physical protection at a demonstration building at RRC KI, and the upgrading of the computerized MC ampersand A system, diagnostic instrumentation, and physical inventory procedures at a critical assembly within this building. Work continues in 1996 at the demonstration building but now also has begun at the two Kurchatov buildings which constitute the Central Storage Facility (CSF). At this facility, there will be upgrades in the physical inventory taking procedures, a test and evaluation of gamma-ray isotopic measurements, evaluations of nuclear material portal monitors and neutron-based measurement equipment as well as development of an improved computerized materials accounting system, implementation of bar code printing and reading equipment, development of tamper indicating device program, and substantial improvements in physical protection. Also, vulnerability assessments begun in 1995 are being extended to additional high priority facilities at Kurchatov

  16. Development of low-level environmental sampling capabilities for uranium at Brazilian and Argentine laboratories by ABACC

    International Nuclear Information System (INIS)

    Guidicini, Olga Mafra; Hembree Junior, Doyle M.; Carter, Joel A.; Hayes, Susan; Whitaker, Michael; Olsen, Khris

    2003-01-01

    The Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) with assistance from the U.S. Department of Energy (DOE) began a program to evaluate environmental sampling capabilities at laboratories in Argentina and Brazil in June 1998. The program included staff training conducted in South America and the United States. Several laboratory evaluation exercises were also conducted using standard swipe samples prepared by the International Atomic Energy Agency (IAEA) and a National Institute of Standards and Technology Standard Reference Material 1547, Peach Leaves. The results of these exercises demonstrated that several laboratories were capable of accurately determining the total uranium and uranium isotopic distribution in the peach leaves. To build on these successes, another exercise using standard swipe samples prepared by the IAEA was conducted. A total of 8 sets of 15 swipe samples were prepared and distributed to the six ABACC support laboratories and to two of DOE's Network of Analytical Laboratories (NWAL) that support IAEA's environmental sampling program Throughout this project, the ABACC laboratories have shown steady progress in contamination control and improvements to the accuracy and precision of their measurements. The results of the latest exercises demonstrate that ABACC now has support laboratories in both Argentina and Brazil that have the capability to measure both the amount and isotopic composition of uranium at levels expected in typical environmental samples (i.e., sub-microgram quantities). This presentation will discuss the final results for the exercise with uranium swipe samples and discuss future activities to develop measurement capabilities for total and isotopic plutonium in environmental samples. (author)

  17. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains the Final EIS/EIR, which in part relies on the detailed information in the appendices, and comprehensively discusses the proposed action, the alternatives, and the existing conditions and impacts of the proposed action and the alternatives

  18. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains copies of the written comments and transcripts of individual statements at the public hearing and the responses to them

  19. Final Environmental Impact Statement/Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains the Final EIS/EIR technical appendices which provide technical support for the analyses in Volume 1 and also provide additional information and references

  20. Saint Joseph's University Institute for Environmental Stewardship

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Micahel P. [Saint Joseph' s Univ., Philadelphia, PA (United States); Springer, Clint J. [Saint Joseph' s Univ., Philadelphia, PA (United States)

    2014-06-03

    terms of percent ground coverage and plant spread and reproduction). Interestingly, plant growth in all four of the test plots was reduced relative to the lower areas of the roof (the lower area was ca. 2 inches lower than the test plots, due to the space needed for sensors under the plots. The lower roof area uses an aggregate drain layer comparable to that in the third test plot), even when accounting for the north to south differences. The reasons for these differences are not clear and studies are underway to examine the impact of wind scour, drainage rates, temperature, and other factors. This information will be of value to planners of extensive vegetative roof systems in the Philadelphia (and broader) region, since plant growth and roof system overall performance is influenced by local climate, making broad generalizations of performance difficult. Task C: Education and community outreach efforts by the IES involving conferences at SJU, presentations by faculty and students off campus, and educational signage. The Institute for Environmental Stewardship hosted three storm water management workshops on the SJU campus in Philadelphia, in collaboration with the Lower Merion Conservancy, a not-for-profit organization located in Montgomery County, PA. These workshops were free and open to the public. The three workshops (held each year in March) drew more than 200 participants total. The presenters included local and state government agencies, not for profit organizations involved in storm water and open space preservation, designers, engineers, planners and others. Feedback was uniformly positive and we plan to continue the workshops for the foreseeable future. Educational signage has been installed at four locations on campus to explain campus infrastructure related to storm water (rain gardens, vegetative roof and green facades), as well as detailed signage installed on the Science Center roof for the vegetative roof system. More than 100 people (from in and

  1. Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1997

    Energy Technology Data Exchange (ETDEWEB)

    R. B. Evans; D. Roush; R. W. Brooks; D. B. Martin

    1998-08-01

    The results of the various monitoring programs for 1997 indicated that radioactivity from the Idaho National Engineering and Environmental Laboratory (INEEL) operations could generally not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEEL. Although some radioactive materials were discharged during INEEL operations, concentrations in the offsite environment and doses to the surrounding population were far less than state of Idaho and federal health protection guidelines. The maximum potential population dose from submersion, ingestion, inhalation, and deposition to the approximately 121,500 people residing within an 80-km (50-mi) radius from the geographical center of the INEEL was estimated to be 0.2 person-rem (2 x 10-3 person-Sv) using the MDIFF air dispersion model. This population dose is less than 0.0005% of the estimated 43,700 person-rem (437 person-Sv) population dose from background radioactivity.

  2. USING OF ROBOTS-MANIPULATORS IN LABORATORY WORKS IN HIGHER EDUCATION INSTITUTES

    Directory of Open Access Journals (Sweden)

    Viktor Yehorov

    2017-05-01

    Full Text Available Studying of technical disciplines in higher education institution as a rule consists of 2 parts – theories and practice. Practice, is a type of educational process which allows to realize theoretical knowledge to the applied sphere. In particular it allows to provide an object visually, creating its image and visually adequate perception. This work is devoted to development of laboratory base of technical college with use of robots manipulators on occupations. Its relevance is shown. The overview of modern stands is provided in different higher education institutions, the analysis of their benefits and shortcomings is this. The task of creation of the robot manipulator for sorting of objects of color is set. The robot model including an automatic management system it is developed. The sensor of color, the regulator and the executive mechanism allowing to move objects to the corresponding reservoirs is its part. Possibilities of further development of a question, in particular, creations of physical model for use are given in laboratory works.

  3. USING OF ROBOTS-MANIPULATORS IN LABORATORY WORKS IN HIGHER EDUCATION INSTITUTES

    Directory of Open Access Journals (Sweden)

    V. Yehorov

    2017-06-01

    Full Text Available Studying of technical disciplines in higher education institution as a rule consists of 2 parts – theories and practice. Practice, is a type of educational process which allows to realize theoretical knowledge to the applied sphere. In particular it allows to provide an object visually, creating its image and visually adequate perception. This work is devoted to development of laboratory base of technical college with use of robots manipulators on occupations. Its relevance is shown. The overview of modern stands is provided in different higher education institutions, the analysis of their benefits and shortcomings is this. The task of creation of the robot manipulator for sorting of objects of color is set. The robot model including an automatic management system it is developed. The sensor of color, the regulator and the executive mechanism allowing to move objects to the corresponding reservoirs is its part. Possibilities of further development of a question, in particular, creations of physical model for use are given in laboratory works.

  4. Market-based instruments for environmental management: politics and institutions

    DEFF Research Database (Denmark)

    The contributors examine the role of political processes in designing, introducing and implementing green taxes and charges and analyse the extent to which political concerns complicate the approach favoured by environmental economists. The authors then focus on the implementation of market...

  5. Argonne National Laboratory-East site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N.W.; Kolzow, R.G. [Environmental Management Operation, Argonne National Lab., IL (United States)

    1996-09-01

    This report presents the environmental report for the Argonne National Laboratory-East for the year of 1995. Topics discussed include: general description of the site including climatology, geology, seismicity, hydrology, vegetation, endangered species, population, water and land use, and archaeology; compliance summary; environmental program information; environmental nonradiological program information; ground water protection; and radiological monitoring program.

  6. The procedures manual of the Environmental Measurements Laboratory. Volume 2, 28. edition

    Energy Technology Data Exchange (ETDEWEB)

    Chieco, N.A. [ed.

    1997-02-01

    This report contains environmental sampling and analytical chemistry procedures that are performed by the Environmental Measurements Laboratory. The purpose of environmental sampling and analysis is to obtain data that describe a particular site at a specific point in time from which an evaluation can be made as a basis for possible action.

  7. 78 FR 299 - Environmental Laboratory Advisory Board Meeting Dates and Agenda

    Science.gov (United States)

    2013-01-03

    ... p.m. Eastern Time (ET) and two face-to-face meetings each calendar year. FOR FURTHER INFORMATION... and Agenda AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of teleconference and face-to-face meetings. SUMMARY: The Environmental Protection Agency's Environmental Laboratory Advisory Board...

  8. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1981

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1982-06-01

    Results for 1981 of the LBL Environmental Monitoring Program are given. Data include monitoring results for accelerator-produced radiation, airborne and waterborne radionuclides, and nonradioactive pollutants. Population doses resulting from LBL operations are given in terms of accelerator-produced and airborne radioactivities. Trends in the environmental impacts of LBL operations are discussed in terms of accelerator-produced, airborne, and waterborne radionuclides

  9. Assessing the Social and Environmental Costs of Institution Nitrogen Footprints.

    Science.gov (United States)

    Compton, Jana E; Leach, Allison M; Castner, Elizabeth A; Galloway, James N

    2017-04-01

    This article estimates the damage costs associated with the institutional nitrogen (N) footprint and explores how this information could be used to create more sustainable institutions. Potential damages associated with the release of nitrogen oxides (NOx), ammonia (NH 3 ), and nitrous oxide (N 2 O) to air and release of nitrogen to water were estimated using existing values and a cost per unit of nitrogen approach. These damage cost values were then applied to two universities. Annual potential damage costs to human health, agriculture, and natural ecosystems associated with the N footprint of institutions were $11.0 million (2014) at the University of Virginia (UVA) and $3.04 million at the University of New Hampshire (UNH). Costs associated with the release of nitrogen oxides to human health, in particular the use of coal-derived energy, were the largest component of damage at UVA. At UNH the energy N footprint is much lower because of a landfill cogeneration source, and thus the majority of damages were associated with food production. Annual damages associated with release of nitrogen from food production were very similar at the two universities ($1.80 million vs. $1.66 million at UVA and UNH, respectively). These damages also have implications for the extent and scale at which the damages are felt. For example, impacts to human health from energy and transportation are generally larger near the power plants and roads, while impacts from food production can be distant from the campus. Making this information available to institutions and communities can improve their understanding of the damages associated with the different nitrogen forms and sources, and inform decisions about nitrogen reduction strategies.

  10. Brookhaven National Laboratory site environmental report for calendar year 1989

    International Nuclear Information System (INIS)

    Miltenberger, R.P.; Royce, B.A.; Chalasani, S.S.; Morganelli, D.; Naidu, J.R.

    1990-12-01

    The environmental monitoring program is conducted by the Environmental Protection Section of the Safety and Environmental Protection (S ampersand EP) Division to determine whether operation of BNL facilities have met the applicable environmental standards and effluent control requirements. This program includes monitoring for both radiological and nonradiological parameters. This report summarizes the data for the external radiation levels; radioactivity in air, rain, potable water, surface water, ground water, soil, vegetation, and aquatic biota; water quality, metals, organics and petroleum products in ground water, surface water and potable water. Analytical results are reviewed by the S ampersand EP staff and when required by permit conditions are transmitted to the appropriate regulatory agencies. The data were evaluated using the appropriate environmental regulatory criteria. Detailed data for the calendar year 1989 are presented. 27 figs

  11. Cyclotron laboratory in the Institute of Nuclear Studies of the Hungarian Academy of Sciences

    International Nuclear Information System (INIS)

    Gal'chuk, A.V.; Korolev, L.E.; Stepanov, A.V.

    1985-01-01

    The status of the development of cyclotron laboratory in the Institute for Nuclear Research of the Hungarian Academy of Sciences is discussed. The MGTS-20Eh isochronous cyclotron is to be mounted in the laboratory. Obtaining of accelerated proton beams is planned (energy of 5-18 MeV, internal beam current - 200 μA, external beam current - 50 μA), deuterons (3-10 MeV, 300 μA, 50 μA), H 3 +2 ions (7-27 MeV, 50 μA, 25 μA) and He 4 +2 (6-20 MeV, 50 μA, 25 μA). Fundamental researches in the field of atomic and nuclear physics applied investigations in the field of analysis of high purity materials, radiobiological investigations in the field of medicine and agriculture are to be performed in the laboratory. The cyclotron is to be used for production and application of short-lived radioisotopes and radiation testing machine parts

  12. LABORATORY OF CLINICAL IMMUNOLOGY N.V. SKLIFOSOVSKY RESEARCH INSTITUTE FOR EMERGENCY MEDICINE (HISTORY AND PRESENT

    Directory of Open Access Journals (Sweden)

    M. A. Godkov

    2013-01-01

    Full Text Available ABSTRACT. Assessment of the immune status of patients with urgent types of pathology in the Institute for Emergency Medicine is performed according to three main objects of research: humoral , phagocytic and lymphocytic components of immune system . This complex allows to fully and adequately evaluate the condition of the immune system of patients at different stages of traumatic disease and after transplantation of organs and tissues , to forecast the probability of septic complications developing, adjust the therapy . During 45 years of work of immunological service formed the algorithm of the adequate immunological screening was formed, number of innovative methods of diagnosis was developed, the ideology of post-test counseling of patients by immunologists was created, mathematical methods of storage, modeling and processing of research results was introduced. Laboratory staff identified a number of medical and social factors in the spread of blood-borne viral infections (HIV, hepatitis B and C. New organizational and economic methods of management team were introduced in the laboratory. The basis of the work is equal integration of scientific and clinical staff of the laboratory

  13. Dedicated Laboratory Setup for CO2 TEA Laser Propulsion Experiments at Rensselaer Polytechnic Institute

    International Nuclear Information System (INIS)

    Salvador, Israel I.; Kenoyer, David; Myrabo, Leik N.; Notaro, Samuel

    2010-01-01

    Laser propulsion research progress has traditionally been hindered by the scarcity of photon sources with desirable characteristics, as well as integrated specialized flow facilities in a dedicated laboratory environment. For TEA CO 2 lasers, the minimal requirements are time-average powers of >100 W), and pulse energies of >10 J pulses with short duration (e.g., 0.1 to 1 μs); furthermore, for the advanced pulsejet engines of interest here, the laser system must simulate pulse repetition frequencies of 1-10 kilohertz or more, at least for two (carefully sequenced) pulses. A well-equipped laser propulsion laboratory should have an arsenal of sensor and diagnostics tools (such as load cells, thrust stands, moment balances, pressure and heat transfer gages), Tesla-level electromagnet and permanent magnets, flow simulation facilities, and high-speed visualization systems, in addition to other related equipment, such as optics and gas supply systems. In this paper we introduce a cutting-edge Laser Propulsion Laboratory created at Rensselaer Polytechnic Institute, one of the very few in the world to be uniquely set up for beamed energy propulsion (BEP) experiments. The present BEP research program is described, along with the envisioned research strategy that will exploit current and expanded facilities in the near future.

  14. Empirical insights and considerations for the OBT inter-laboratory comparison of environmental samples

    International Nuclear Information System (INIS)

    Kim, Sang-Bog; Roche, Jennifer

    2013-01-01

    Organically bound tritium (OBT) is an important tritium species that can be measured in most environmental samples, but has only recently been recognized as a species of tritium in these samples. Currently, OBT is not routinely measured by environmental monitoring laboratories around the world. There are no certified reference materials (CRMs) for environmental samples. Thus, quality assurance (QA), or verification of the accuracy of the OBT measurement, is not possible. Alternatively, quality control (QC), or verification of the precision of the OBT measurement, can be achieved. In the past, there have been differences in OBT analysis results between environmental laboratories. A possible reason for the discrepancies may be differences in analytical methods. Therefore, inter-laboratory OBT comparisons among the environmental laboratories are important and would provide a good opportunity for adopting a reference OBT analytical procedure. Due to the analytical issues, only limited information is available on OBT measurement. Previously conducted OBT inter-laboratory practices are reviewed and the findings are described. Based on our experiences, a few considerations were suggested for the international OBT inter-laboratory comparison exercise to be completed in the near future. -- Highlights: ► Inter-laboratory OBT comparisons would provide a good opportunity for developing reference OBT analytical procedures. ► The measurement of environmental OBT concentrations has a higher associated uncertainty. ► Certified reference materials for OBT in environmental samples are required

  15. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research. Part 2, Environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    Grove, L.K. [ed.; Wildung, R.E.

    1993-03-01

    The 1992 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment and health conducted during fiscal year 1992. This report consists of four volumes oriented to particular segments of the PNL program, describing research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. The parts of the 1992 Annual Report are: Biomedical Sciences; Environmental Sciences; Atmospheric Sciences; and Physical Sciences. This Report is Part 2: Environmental Sciences. Included in this report are developments in Subsurface Science, Terrestrial Science, Laboratory-Directed Research and Development, Interactions with Educational Institutions, Technology Transfer, Publications, and Presentations. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. The Technology Transfer section of this report describes a number of examples in which fundamental research is laying the groundwork for the technology needed to resolve important environmental problems. The Interactions with Educational Institutions section of the report illustrates the results of a long-term, proactive program to make PNL facilities available for university and preuniversity education and to involve educational institutions in research programs. The areas under investigation include the effect of geochemical and physical phenomena on the diversity and function of microorganisms in deep subsurface environments, ways to address subsurface heterogeneity, and ways to determine the key biochemical and physiological pathways (and DNA markers) that control nutrient, water, and energy dynamics in arid ecosystems and the response of these systems to disturbance and climatic change.

  16. Evaluation of negative environmental impacts of electricity generation: Neoclassical and institutional approaches

    International Nuclear Information System (INIS)

    Kim, Sang-Hoon

    2007-01-01

    Neoclassical and institutional economics have developed different theories and methodologies for evaluating environmental and social impacts of electricity generation. The neoclassical approach valuates external costs, and the institutional approach uses social cost valuation and MCDM methods. This paper focuses on three dimensions: theoretical and methodological backgrounds; critical review of specific studies: methodologies, results, and limitations; and discussing their results and implications for environmental policy and further research. The two approaches lead to a common conclusion that fossil fuels and nuclear power show the highest environmental impact. Despite the common conclusion, the conclusion has limited implications for environmental policy because of the weakness of their methodologies

  17. Construction and operation of an improved radiation calibration facility at Brookhaven National Laboratory. Environmental assessment

    International Nuclear Information System (INIS)

    1994-10-01

    Calibration of instruments used to detect and measure ionizing radiation has been conducted over the last 20 years at Brookhaven National Laboratory's (BNL) Radiation Calibration Facility, Building 348. Growth of research facilities, projects in progress, and more stringent Department of Energy (DOE) orders which involve exposure to nuclear radiation have placed substantial burdens on the existing radiation calibration facility. The facility currently does not meet the requirements of DOE Order 5480.4 or American National Standards Institute (ANSI) N323-1978, which establish calibration methods for portable radiation protection instruments used in the detection and measurement of levels of ionizing radiation fields or levels of radioactive surface contaminations. Failure to comply with this standard could mean instrumentation is not being calibrated to necessary levels of sensitivity. The Laboratory has also recently obtained a new neutron source and gamma beam irradiator which can not be made operational at existing facilities because of geometry and shielding inadequacies. These sources are needed to perform routine periodic calibrations of radiation detecting instruments used by scientific and technical personnel and to meet BNL's substantial increase in demand for radiation monitoring capabilities. To place these new sources into operation, it is proposed to construct an addition to the existing radiation calibration facility that would house all calibration sources and bring BNL calibration activities into compliance with DOE and ANSI standards. The purpose of this assessment is to identify potential significant environmental impacts associated with the construction and operation of an improved radiation calibration facility at BNL

  18. Compendium of the Environmental Measurements Laboratory's research projects related to the Chernobyl nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Volchok, H L; Chieco, N [comps.

    1986-10-01

    Following the accident at the Chernobyl nuclear reactor power station in the USSR on April 26, 1986, the Environmental Measurements Laboratory (EML) initiated a number of research projects as follows: (1) selected sites in both the Deposition and Surface Air networks were alerted and their sampling protocols adjusted to accommodate the anticipated arrival times and activity concentrations of the Chernobyl debris; (2) a number of cooperative programs involving field work, sampling, analysis and data interpretation were set up with institutions and scientists in other countries; (3) EML's Regional Baseline Station at Chester, NJ, as well as the roof of the Laboratory in New York City, provided bases for sampling and measurements to study the radionuclide concentrations, radiation levels, physical characteristics and potential biological implications of the Chernobyl fallout on the northeastern United States; and (4) the resulting fallout from the Chernobyl accident provided an 'experiment of opportunity' in that it enabled us to study fresh fission product deposition using collection systems resurrected from the 1950's and 1960's for comparison with current state-of-the-art methodology. The 13 reports of this volume have been entered separately into the data base.

  19. Ambient environmental radiation monitoring at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Lindeken, C.L.; White, J.H.; Toy, A.J.; Sundbeck, C.W.

    1975-01-01

    Thermoluminescence dosimetry is the principal means of measuring ambient γ radiation at the Lawrence Livermore Laboratory. These dosimeters are used at 12 perimeter locations and 41 locations in the off-site vicinity of the Laboratory, and are exchanged quarterly. Control dosimeters are stored in a 75-mm-thick lead shield located out-of-doors to duplicate temperature cycling of field dosimeters. Effect of dosimeter response to radiation in the shield is determined each quarter. Calibration irradiations are made midway through the exposure cycle to compensate for signal fading. Terrestrial exposure rates calculated from the activities of naturally occurring uranium, thorium, and potassium in Livermore Valley soils vary from 3 to 7 μR/hr. Local inferred exposure rates from cosmic radiation are approximately 4 μR/hr. TLD measurements are in good agreement with these data. Off-site and site perimeter data are compared, and differences related to Laboratory operations are discussed

  20. Analytical laboratory quality assurance guidance in support of EM environmental sampling and analysis activities

    International Nuclear Information System (INIS)

    1994-05-01

    This document introduces QA guidance pertaining to design and implementation of laboratory procedures and processes for collecting DOE Environmental Restoration and Waste Management (EM) ESAA (environmental sampling and analysis activities) data. It addresses several goals: identifying key laboratory issues and program elements to EM HQ and field office managers; providing non-prescriptive guidance; and introducing environmental data collection program elements for EM-263 assessment documents and programs. The guidance describes the implementation of laboratory QA elements within a functional QA program (development of the QA program and data quality objectives are not covered here)

  1. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1978

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1979-04-01

    Environmental monitoring data are reported for accelerator produced radiation; radionuclide measurements and release data from atmospheric and water sampling; population dose equivalent resulting from LBL operations; and non-radioactive pollutants

  2. Quality control for radionuclide determinations in the Saxon state laboratories for environmental radioactivity by intercomparison and comparative measurements

    International Nuclear Information System (INIS)

    Knobus, B.

    2001-01-01

    Quality control for radionuclide analysis is necessary and essential for the quality assurance of the measuring results executing the measuring programmes of surveillance of the radioactivity in the environment and from installations. Acts, ordinances and guidelines require the participation in intercomparisons for authorized institutions detecting the demanded quality of measurements (e.g. trueness, reproducibility) for Federal Authorities. These are mainly those intercomparisons which are prepared, practised and evaluated by the federal laboratories. Comparative measurements are generally organized and executed by the state laboratory itself with a few participants for special measuring tasks. In this paper are described and discussed extend and special results of those intercomparisons and comparative measurements of the Saxon state laboratories for environmental radioactivity from 1992 until 2000. If necessary, there are following improvements for quality assurance. (orig.) [de

  3. Annual report of the Institute for Environmental Sciences, 2001

    International Nuclear Information System (INIS)

    2002-01-01

    A survey research was continually made on the effects of radioactive substances on the environment in the fiscal year 2001 as well as in the previous year. The research was conducted with the following themes; survey in natural and social environments, study on the distribution of environmental radioactivities, study on the transfer of radioactive substances into the environment, experimental study on the development of closed experiment system for ecological study and experimental study on the biological effects of radioactivity. This survey research was entrusted by Aomori Prefecture and the National Government. (J.P.N.)

  4. Annual report of the Institute for Environmental Sciences, 1999

    International Nuclear Information System (INIS)

    2000-01-01

    A survey research was continually made on the effects of radioactive substances on the environment in the fiscal year 1999 as well as in the previous year. The research was conducted with the following themes; survey in natural and social environments, study on the distribution of environmental radioactivities, study on the transfer of radioactive substances into the environment, experimental study on the development of closed experiment system for ecological study and experimental study on the biological effects of radioactivity. This survey research was entrusted by Aomori Prefecture and the National Government. (J.P.N.)

  5. Annual report of the Institute for Environmental Sciences, 2000

    International Nuclear Information System (INIS)

    2001-01-01

    A survey research was continually made on the effects of radioactive substances on the environment in the fiscal year 2000 as well as in the previous year. The research was conducted with the following themes; survey in natural and social environments, study on the distribution of environmental radioactivities, study on the transfer of radioactive substances into the environment, experimental study on the development of closed experiment system for ecological study and experimental study on the biological effects of radioactivity. This survey research was entrusted by Aomori Prefecture and the National Government. (J.P.N.)

  6. Amchitka Island Environmental Analysis at Idaho National Laboratory

    International Nuclear Information System (INIS)

    Gracy Elias; W. F. Bauer; J.G. Eisenmenger; C.C. Jensen; B.K. Schuetz; T. C. Sorensen; B.M. White; A. L. Freeman; M. E. McIlwain

    2005-01-01

    The Idaho National Laboratory (INL) provided support to Consortium for Risk Evaluation with Stakeholder Participation (CRESP) in their activities which is supported by the Department of Energy (DOE) to assess the impact of past nuclear testing at Amchitka Island on the ecosystem of the island and surrounding ocean. INL participated in this project in three phases, Phase 1, Phase 2 and Phase 3

  7. Raising Environmental Awareness through Applied Biochemistry Laboratory Experiments

    Science.gov (United States)

    Salman Ashraf, S.

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment…

  8. Environmental enrichment for laboratory mice: preferences and consequences

    NARCIS (Netherlands)

    Weerd, Heleen Ariane van de

    1996-01-01

    Current laboratory housing systems have mainly been developed on the basis of ergonomic and economic factors. These systems provide adequate, basic physiological requirements of animals, but only marginally fulfil other needs, such as the performance of natural behaviour or social interactions.

  9. 78 FR 56902 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2013-09-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of the following meeting. The meeting will be closed to the public in accordance...

  10. 78 FR 64221 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Science.gov (United States)

    2013-10-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of the following meetings. The meetings will be closed to the public in accordance...

  11. 76 FR 13197 - National Institute of Environmental Health Sciences Strategic Planning

    Science.gov (United States)

    2011-03-10

    ... parties. The goal of this strategic planning process is to define an overarching Vision Statement... this planning process, visit the NIEHS Strategic Planning Web site at Request for Visionary Ideas The... Environmental Health Sciences Strategic Planning AGENCY: National Institutes of Health (NIH), National Institute...

  12. 75 FR 46950 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-08-04

    ... Health Sciences Special Emphasis Panel, Gulf Oil Spill Health Effects. Date: August 17, 2010. Time: 1 p.m...--Health Risks from Environmental Exposures; 93.142, NIEHS Hazardous Waste Worker Health and Safety... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of...

  13. Internationalization and environmental disclosure: the role of home and host institutions

    NARCIS (Netherlands)

    Kolk, A.; Fortanier, F.

    2013-01-01

    Purpose - The domestic institutional context has emerged as a key determinant of firms' environmental disclosure, but studies have hardly addressed the extent to which exposure to foreign institutional contexts plays a role in the occurrence and contents of non-financial disclosure, which are

  14. National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM)

    International Nuclear Information System (INIS)

    Wolff, T.A.

    1998-08-01

    This report on National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM) chronicles past and current compliance activities and includes a recommended strategy that can be implemented for continued improvement. This report provides a list of important references. Attachment 1 contains the table of contents for SAND95-1648, National Environmental Policy Act (NEPA) Compliance Guide Sandia National Laboratories (Hansen, 1995). Attachment 2 contains a list of published environmental assessments (EAs) and environmental impact statements (EISs) prepared by SNL/NM. Attachment 3 contains abstracts of NEPA compliance papers authored by SNL/NM and its contractors

  15. National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM)

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, T.A. [Sandia National Labs., Albuquerque, NM (United States). Community Involvement and Issues Management Dept.; Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1998-08-01

    This report on National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM) chronicles past and current compliance activities and includes a recommended strategy that can be implemented for continued improvement. This report provides a list of important references. Attachment 1 contains the table of contents for SAND95-1648, National Environmental Policy Act (NEPA) Compliance Guide Sandia National Laboratories (Hansen, 1995). Attachment 2 contains a list of published environmental assessments (EAs) and environmental impact statements (EISs) prepared by SNL/NM. Attachment 3 contains abstracts of NEPA compliance papers authored by SNL/NM and its contractors.

  16. Long term indoor radon measurements in the pelletron laboratory at the UNAM physics institute

    International Nuclear Information System (INIS)

    Espinosa, G.; Golzarri, J. I.; Lopez, K.; Rickards, J.

    2011-01-01

    The results of six months of continuous measurement of the indoor radon concentration levels in the building where the Physics Institute 3 MV Pelletron particle accelerator is located are presented. This study has three major objectives: a) to know the actual values of the levels of indoor radon in this installation, where personnel spend many hours and sometimes days; b) assess the radiological risk from radon inhalation for personnel working permanently in the laboratory, as well as incidental users; and c) establish, if necessary, time limits for continuous permanence on the location for indoor radon exposure. Passive nuclear track detectors and dynamic systems were employed, covering six months (August, 2009 to January, 2010). For the calculation of internal dose the Radon Individual Dose Calculator was used. The results indicate that the indoor radon levels are below the US EPA recommended levels (400 Bq/m 3 ) in workplaces. The measurements help to establish levels for workplaces in Mexico. (Author)

  17. Institute of Geophysics and Planetary Physics at Lawrence Livermore National Laboratory: 1986 annual report

    International Nuclear Information System (INIS)

    Max, C.E.

    1987-01-01

    The purpose of the Institute of Geophysics and Planetary Physics (IGPP) at LLNL is to enrich the opportunities of University of California campus researchers by making available to them some of the Laboratory's unique facilities and expertise, and to broaden the scientific horizon of LLNL researchers by encouraging collaborative or interdisciplinary work with other UC scientists. The IGPP continues to emphasize three fields of research - geoscience, astrophysics, and high-pressure physics - each administered by a corresponding IGPP Research Center. Each Research Center coordinates the mini-grant work in its field, and also works with the appropriate LLNL programs and departments, which frequently can provide supplementary funding and facilities for IGPP projects. 62 refs., 18 figs., 2 tabs

  18. Knolls Atomic Power Laboratory Environmental Monitoring Report. Calendar Year 2003

    International Nuclear Information System (INIS)

    2003-01-01

    The effluent and environmental monitoring programs conducted by KAPL at the Knolls and Kesselring Sites are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as environmental monitoring of air, water, sediment, and fish. Radiation measurements are also made around the perimeter of the Knolls and Kesselring Sites and at off-site background locations

  19. Knolls Atomic Power Laboratory Environmental Monitoring Report, Calendar Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-12-31

    The effluent and environmental monitoring programs conducted by KAPL at the Knolls and Kesselring Sites are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as environmental monitoring of air, water, sediment, and fish. Radiation measurements are also made around the perimeter of the Knolls and Kesselring Sites and at off-site background locations.

  20. Environmental monitoring at the Lawrence Livermore National Laboratory: 1980 annual report

    International Nuclear Information System (INIS)

    Toy, A.J.; Lindeken, C.L.; Griggs, K.S.; Buddemeier, R.W.

    1981-01-01

    The results of environmental monitoring for 1980 at the Livermore National Laboratory are presented. Radioactivity in air, soil, sewage, water, vegetation and food, and milk was measured. Noise pollution, beryllium, heavy metals, and pesticides were monitored

  1. About Region 3's Laboratory and Field Services at EPA's Environmental Science Center

    Science.gov (United States)

    Mission & contact information for EPA Region 3's Laboratory and Field Services located at EPA's Environmental Science Center: the Office of Analytical Services and Quality Assurance & Field Inspection Program

  2. Archive of Geosample Data and Information from the NOAA Pacific Marine Environmental Laboratory (PMEL).

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Department of Commerce, National Oceanic and Atmospheric Administration (NOAA) Pacific Marine Environmental Laboratory (PMEL) contributed information...

  3. Analysis of results from intercomparison among Spanish laboratories involved of photon energy ''137 Cs for environmental dosimetry laboratories

    International Nuclear Information System (INIS)

    Gonzalez, A.M.; Brosed, A.; Salas, R.

    2003-01-01

    Any environmental thermoluminescent dosemeter (TLD) system must be periodically calibrated at a calibration laboratory. In this frame, the Consejo de Seguridad Nuclear (CSN) has performed an intercomparison among Spanish laboratories involved in environmental monitoring, by means of TLD, in order to verify the traceability of the whole dosimeter and reader to the national standard for the protection quantities of interest for a given photon energy (''137Cs). To achieve this goal the CSN asked the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT) to carry out the reference irradiations in the energy above mentioned at the lonising Radiations Metrology Unit headquarters. Nine laboratories have participated. All the dosemeters were irradiated with the same air kerma rate. The radiological quantity used was the ambient dose equivalent, H (10), and the values of this quantity assigned to each laboratory were between 210 and 360 μSv. All the dosemeters of the participating laboratories met the two analysis criteria used. All of them demonstrated a satisfactory fulfilment of the requirements established by so called trumpet curves and of the requirements established by the ANSI 1311. (Author) 7 refs

  4. Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    T. R. Saffle; R. G. Mitchell; R. B. Evans; D. B. Martin

    2000-07-01

    The results of the various monitoring programs for 1998 indicated that radioactivity from the DOE's Idaho National Engineering and Environmental Laboratory (INEEL) operations could generally not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEEL. Although some radioactive materials were discharged during INEEL operations, concentrations in the offsite environment and doses to the surrounding population were far less than state of Idaho and federal health protection guidelines. Gross alpha and gross beta measurements, used as a screening technique for air filters, were investigated by making statistical comparisons between onsite or boundary location concentrations and the distant community group concentrations. Gross alpha activities were generally higher at distant locations than at boundary and onsite locations. Air samples were also analyzed for specific radionuclides. Some human-made radionuclides were detected at offsite locations, but most were near the minimum detectable concentration and their presence was attributable to natural sources, worldwide fallout, and statistical variations in the analytical results rather than to INEEL operations. Low concentrations of 137Cs were found in muscle tissue and liver of some game animals and sheep. These levels were mostly consistent with background concentrations measured in animals sampled onsite and offsite in recent years. Ionizing radiation measured simultaneously at the INEEL boundary and distant locations using environmental dosimeters were similar and showed only background levels. The maximum potential population dose from submersion, ingestion, inhalation, and deposition to the approximately 121,500 people residing within an 80-km (50-mi) radius from the geographical center of the INEEL was estimated to be 0.08 person-rem (8 x 10-4 person-Sv) using the MDIFF air dispersion model. This population dose is less than 0.0002 percent of the estimated 43,7 00

  5. Environmental Reporting for Global Higher Education Institutions using the World Wide Web.

    Science.gov (United States)

    Walton, J.; Alabaster, T.; Richardson, S.; Harrison, R.

    1997-01-01

    Proposes the value of voluntary environmental reporting by higher education institutions as an aid to implementing environmental policies. Suggests that the World Wide Web can provide a fast, up-to-date, flexible, participatory, multidimensional medium for information exchange and management. Contains 29 references. (PVD)

  6. Environmental Management Systems for Educational Institutions: A Case Study of Teri University, New Delhi

    Science.gov (United States)

    Jain, Suresh; Pant, Pallavi

    2010-01-01

    Purpose: The purpose of this paper is to put forth a model for implementation of an environmental management system (EMS) in institutes of higher education in India. Design/methodology/approach: The authors carried out initial environmental review (IER) and strengths, weaknesses, opportunities and threats (SWOT) analysis to identify the major…

  7. Analysis and Implementation of an Electronic Laboratory Notebook in a Biomedical Research Institute.

    Science.gov (United States)

    Guerrero, Santiago; Dujardin, Gwendal; Cabrera-Andrade, Alejandro; Paz-Y-Miño, César; Indacochea, Alberto; Inglés-Ferrándiz, Marta; Nadimpalli, Hima Priyanka; Collu, Nicola; Dublanche, Yann; De Mingo, Ismael; Camargo, David

    2016-01-01

    Electronic laboratory notebooks (ELNs) will probably replace paper laboratory notebooks (PLNs) in academic research due to their advantages in data recording, sharing and security. Despite several reports describing technical characteristics of ELNs and their advantages over PLNs, no study has directly tested ELN performance among researchers. In addition, the usage of tablet-based devices or wearable technology as ELN complements has never been explored in the field. To implement an ELN in our biomedical research institute, here we first present a technical comparison of six ELNs using 42 parameters. Based on this, we chose two ELNs, which were tested by 28 scientists for a 3-month period and by 80 students via hands-on practical exercises. Second, we provide two survey-based studies aimed to compare these two ELNs (PerkinElmer Elements and Microsoft OneNote) and to analyze the use of tablet-based devices. We finally explore the advantages of using wearable technology as ELNs tools. Among the ELNs tested, we found that OneNote presents almost all parameters evaluated (39/42) and both surveyed groups preferred OneNote as an ELN solution. In addition, 80% of the surveyed scientists reported that tablet-based devices improved the use of ELNs in different respects. We also describe the advantages of using OneNote application for Apple Watch as an ELN wearable complement. This work defines essential features of ELNs that could be used to improve ELN implementation and software development.

  8. Analysis and Implementation of an Electronic Laboratory Notebook in a Biomedical Research Institute.

    Directory of Open Access Journals (Sweden)

    Santiago Guerrero

    Full Text Available Electronic laboratory notebooks (ELNs will probably replace paper laboratory notebooks (PLNs in academic research due to their advantages in data recording, sharing and security. Despite several reports describing technical characteristics of ELNs and their advantages over PLNs, no study has directly tested ELN performance among researchers. In addition, the usage of tablet-based devices or wearable technology as ELN complements has never been explored in the field. To implement an ELN in our biomedical research institute, here we first present a technical comparison of six ELNs using 42 parameters. Based on this, we chose two ELNs, which were tested by 28 scientists for a 3-month period and by 80 students via hands-on practical exercises. Second, we provide two survey-based studies aimed to compare these two ELNs (PerkinElmer Elements and Microsoft OneNote and to analyze the use of tablet-based devices. We finally explore the advantages of using wearable technology as ELNs tools. Among the ELNs tested, we found that OneNote presents almost all parameters evaluated (39/42 and both surveyed groups preferred OneNote as an ELN solution. In addition, 80% of the surveyed scientists reported that tablet-based devices improved the use of ELNs in different respects. We also describe the advantages of using OneNote application for Apple Watch as an ELN wearable complement. This work defines essential features of ELNs that could be used to improve ELN implementation and software development.

  9. Biodegradation of Perchlorate in Laboratory Reactors Under Different Environmental Conditions

    Science.gov (United States)

    2010-07-01

    21 Figure 8. Initial and final mass of perchlorate, chloride, and chlorate ...is the soluble anion associated with the solid salts of ammonium, potassium , and sodium perchlorate. Large-scale production of ammonium perchlorate...ions. Most perchlorate-respiring microorganisms are capable of functioning under varying environmental conditions and use oxygen, nitrate, and chlorate

  10. 77 FR 15104 - Environmental Laboratory Advisory Board Membership

    Science.gov (United States)

    2012-03-14

    ... EPA Administrator, Science Advisor, and Forum on Environmental Measurements about cross-cutting issues... person or organization may nominate qualified persons to be considered for appointment to this advisory committee. Individuals may self-nominate. Nominees should possess the following qualifications: Demonstrated...

  11. Environmental radioactivity at the Venezuelan Institute for Scientific Research (IVIC)

    International Nuclear Information System (INIS)

    LaBrecque, J.J.; Rosales, P.A.

    1997-01-01

    The concentration of 137 Cs, potassium, thorium and uranium for 6 monitoring sites and 32 other sites at the Venezuelan Institute for Scientific Research (IVIC) were presented, as well as, the estimated air dose and exposure rates for each site. The concentration of 137 Cs was found to be much higher at many sites at IVIC in respect to the average value of 137 Cs in Venezuela. But, this was determined to be due to a natural cause, the cloud forest which surrounds the higher elevations. The values of potassium, thorium and uranium were compared to values from other parts of northem Venezuela and were found to agree for sites at similar elevations. They were also shown to be about two to three times higher than global estimates. Thus, the air dose and exposure rates were correspondingly two to three times higher too, but the annual dose from the primordial radionuclides in the soil was estimated to be less than 0.1 mSv, which is considered negligible for health risks. (author)

  12. Accreditation of medical laboratories in Croatia--experiences of the Institute of Clinical Chemistry, University Hospital "Merkur", Zagreb.

    Science.gov (United States)

    Flegar-Mestrić, Zlata; Nazor, Aida; Perkov, Sonja; Surina, Branka; Kardum-Paro, Mirjana Mariana; Siftar, Zoran; Sikirica, Mirjana; Sokolić, Ivica; Ozvald, Ivan; Vidas, Zeljko

    2010-03-01

    Since 2003 when the international norm for implementation of quality management in medical laboratories (EN ISO 15189, Medical laboratories--Particular requirements for quality and competence) was established and accepted, accreditation has become practical, generally accepted method of quality management and confirmation of technical competence of medical laboratories in the whole world. This norm has been translated into Croatian and accepted by the Croatian Institute for Norms as Croatian norm. Accreditation is carried out on voluntary basis by the Croatian Accreditation Agency that has up to now accredited two clinical medical biochemical laboratories in the Republic of Croatia. Advantages of accredited laboratory lie in its documented management system, constant improvement and training, reliability of test results, establishing users' trust in laboratory services, test results comparability and interlaboratory (international) test results acceptance by adopting the concept of metrological traceability in laboratory medicine.

  13. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report 1994--1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The HBCU/MI ET Consortium was established in January 1990, through a Memorandum of Understanding (MOU) among its member institutions. This group of research oriented Historically Black Colleges and Universities and Minority Institutions (HBCU/MIs) agreed to work together to initiate or revise education programs, develop research partnerships with public and private sector organizations, and promote technology development to address the nation`s critical environmental contamination problems. The Consortium`s Research, Education and Technology Transfer (RETT) Plan became the working agenda. The Consortium is a resource for collaboration among the member institutions and with federal an state agencies, national and federal laboratories, industries, (including small businesses), majority universities, and two and four-year technical colleges. As a group of 17 institutions geographically located in the southern US, the Consortium is well positioned to reach a diverse group of women and minority populations of African Americans, Hispanics and American Indians. This Report provides a status update on activities and achievements in environmental curriculum development, outreach at the K--12 level, undergraduate and graduate education, research and development, and technology transfer.

  14. Secondary standard dosimetry laboratory at the Ruder Boskovic Institute, Zagreb, Croatia

    International Nuclear Information System (INIS)

    Vekic, B.; Ban, R.; Saveta, M.

    2006-01-01

    The Secondary Standard Dosimetry Laboratory at the Ruder Boskovic Institute, Zagreb, Croatia, was installed during the several last years. The installation of this Laboratory was strongly supported by the International Atomic Energy Agency (IAEA) through the Technical Cooperation Project (C.R.O. 1/004/; Establishing Calibration Services). Inside the country this Technical Cooperation Project was supported by the State Office for Standardization and Metrology, State Office for Radiation Protection and the Ministry of Health of the Republic of Croatia. The Secondary Standard Dosimetry Laboratory at the Ruder Boskovic Institute, Zagreb, Croatia was installed in two calibration rooms. The both of these calibration rooms are 9.6 meters long and 6 meters wide. In the both of these calibration rooms the proper air conditioning was installed. The walls of the both calibration rooms are thick enough (1 meter of concrete) and the entrance doors are protected by Pb to protect any radiation hazard in control rooms, in neighbouring rooms and in environment. In the first calibration room, placed in the basement, two sealed sources share the same calibration bench (produced by Hopewell Designs, Inc., USA) between them which is 6 meters long. On one side is Co -60 source of the 30 TBq activity (December 2004) for the calibration of radiotherapy ionizing chambers and the other equipment in the field of high dose rate range. On the other side is irradiation unit consists of 2 sealed sources for radiation protection purposes: (1) Cs-137 source, activity of 740 MBq (February 2004) and (2) Co- 60 source, activity of 185 MBq (February 2004). For this second source three attenuators are provided that give a nominal attenuation of *10, *100 and *1000. In the second calibration room placed just above the first one the X -ray unit (gift from P.T.B., Germany, I.S.O.V.O.L.T. 420, 40 -300 kV, 1-20 mA) is placed. In front of this are: (1.) Aperture Wheel Assembly designed to modify the beam

  15. 78 FR 47007 - National Environmental Policy Act; Santa Susana Field Laboratory

    Science.gov (United States)

    2013-08-02

    ... project Web site address listed below. http://www.nasa.gov/agency/nepa/news/SSFL.html . ADDRESSES...; Santa Susana Field Laboratory AGENCY: National Aeronautics and Space Administration (NASA). ACTION... Environmental Cleanup Activities for the NASA-administered portion of the Santa Susana Field Laboratory (SSFL...

  16. Results of the Interlaboratory Exercise CSN/CIEMAT-02 Among Environmental Radioactivity Laboratories (Sea Fish)

    International Nuclear Information System (INIS)

    Romero Gonzalez, M.L.

    2003-01-01

    The document describes the outcome of the CSN/CIEMAT-02 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonized Protocol for the proficiency testing of analytical laboratories. The test sample was a reference materials provided by the IAEA-MEL (IAE Marine Environmental Laboratory, Monaco), a sea fish containing environmental levels of U-238, U-234, K-40, Pb-210, Ra-226, Sr-90, Cs-137, Co-60, Pu-(239+240), Am-241 and Tc-99. The results of the exercise were computed for 32 participating laboratories, and their analytical performance was assessed using the z-score approach. A raised percentage of satisfactory laboratory performance has been obtained for all the analysis, being the best performance in gamma measurements. The laboratories have made an effort to calculate the combined uncertainty of the radiochemical determinations. Most of the laboratories have demonstrated its competence in performing the study analysis and also the adequate measuring capability of their detection equipment even in conditions close to detection limits. The study has shown the capacity of participant laboratories to perform radioactive determinations in environmental sea fish samples with satisfactory quality levels. (Author) 6 refs

  17. Exploring the link between institutional pressures and environmental management systems effectiveness: An empirical study.

    Science.gov (United States)

    Daddi, Tiberio; Testa, Francesco; Frey, Marco; Iraldo, Fabio

    2016-12-01

    Institutional theory has been widely debated by scholars. A part of literature examines how institutional pressures act on company choices regarding proactive environmental strategies. However, the institutional perspective has still not completely clarified the influence of these pressures on the effectiveness of environmental management systems (EMSs) in achieving goals in terms of eco-innovation, competitiveness and corporate reputation. This paper analyses the role played by coercive, mimetic and normative forces in stimulating innovative and competitive responses by firms with an environmental certification. Using the results of a survey on 242 European EMAS-registered organisations, the paper highlights the more positive influence of mimetic and normative pressures than coercive ones. The paper contributes to the literature debate on EMSs analysed through the lens of institutional theory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Ensuring comparability of data generated by multiple analytical laboratories for environmental decision making at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Sutton, C.; Campbell, B.A.; Danahy, R.J.; Dugan, T.A.; Tomlinson, F.K.

    1994-01-01

    The Fernald Environmental Management Project is a US Department of Energy (DOE)-owned facility located 17 miles northwest of Cincinnati, Ohio. From 1952 until 1989, the Fernald site provided high-purity uranium metal products to support US defense programs. In 1989 the mission of Fernald changed from one of uranium production to one of environmental restoration. At Fernald, multiple functional programs require analytical data. Inorganic and organic data for these programs are currently generated by seven laboratories, while radiochemical data are being obtained from six laboratories. Quality Assurance (QA) and Quality Control (QC) programs have been established to help ensure comparability of data generated by multiple laboratories at different times. The quality assurance program for organic and inorganic measurements specifies which analytical methodologies and sample preparation procedures are to be used based on analyte class, sample matrix, and data quality requirements. In contrast, performance specifications have been established for radiochemical analyses. A blind performance evaluation program for all laboratories, both on-site and subcontracted commercial laboratories, provides continuous feedback on data quality. The necessity for subcontractor laboratories to participate in the performance evaluation program is a contractual requirement. Similarly, subcontract laboratories are contractually required to generate data which meet radiochemical performance specifications. The Fernald on-site laboratory must also fulfill these requirements

  19. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.J.; Morris, S.C. III; Baum, J.W. [and others

    1998-01-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique. This document contains the Appendices for the report.

  20. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.J.; Morris, S. III; Baum, J.W. [and others

    1998-03-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

  1. Foreign direct investment, institutional development, and environmental externalities: evidence from China.

    Science.gov (United States)

    Wang, Danny T; Chen, Wendy Y

    2014-03-15

    The question of how foreign direct investment (FDI) affects a host country's natural environment has generated much debate but little consensus. Building on an institution-based theory, this article examines how the institutional development of a host setting affects the degree of FDI-related environmental externalities in China (specifically, industrial sulfur dioxide emissions). With a panel data set of 287 Chinese cities, over the period 2002-2009, this study reveals that FDI in general induces negative environmental externalities. Investments from OECD countries increase sulfur dioxide emissions, whereas FDI from Hong Kong, Macau, and Taiwan shows no significant effect. Institutional development reduces the impacts of FDI across the board. By focusing on the moderating role of institutions, this study sheds new light on the long-debated relationships among FDI, institutions, and the environments of the host countries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Earth Institute at Columbia University ADVANCE Program: Addressing Needs for Women in Earth and Environmental Sciences

    Science.gov (United States)

    Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.

    2004-12-01

    The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended

  3. Environmental impact assessment in higher education institutions in East Africa: the case of Rwanda.

    Science.gov (United States)

    Kabera, Telesphore

    2017-03-01

    Due to the pressure on limited resources produced by a growing population and due to a decade of war, Rwanda is facing a major problem in environmental protection. Because of such problems, it seems only reasonable that environment-related courses should play an important role in the curricula of institutions of higher learning. The main aim of this research is to present a comprehensive picture of Environmental Impact Assessment (EIA) integration in graduate and undergraduate programs in Rwandese higher education institutions and to make recommendations for its improvement. During this study, two surveys were conducted: the first survey targeted Environmental Impact Assessment lecturers and the second survey was for Environmental Impact Assessment practitioners (including EIA certified experts and competent authorities). The study found that Environmental Impact Assessment is not well established in these institutions and it is not taught in some programs; civil engineering, for example, has no Environmental Impact Assessment courses. Recommendations to improve EIA education are proposed, such as requiring that a common core course in Environmental Impact Assessment be made available in Rwandese higher learning institutions.

  4. Environmental monitoring at the Lawrence Livermore Laboratory 1976 annual report

    International Nuclear Information System (INIS)

    Silver, W.J.; Lindeken, C.L.; Wong, K.M.; Willes, E.H.; White, J.H.

    1977-01-01

    The average airborne gross beta activity from air filters collected during the first three quarters of 1976 was 2.2 x 10 -14 μCi/ml, about half of the average level observed during 1975. However, the atmospheric nuclear tests by the Peoples Republic of China on September 26 and November 17 elevated the fourth quarter values sufficiently to raise the annual average gross beta concentration to 7.6 x 10 -14 μCi/ml, higher than the 1975 average. Airborne 238 U concentrations at Site 300 were higher than those at Livermore perimeters because of the use of depleted uranium (a byproduct of 235 U enrichment) at the site. These uranium concentrations were well below the standards set by ERDA. Both Laboratory perimeter and Site 300 annual average airborne beryllium concentrations were less than 0.002% of the appropriate standard. Soil samples collected in the off-site vicinity of the Laboratory and at Site 300 were analyzed for plutonium. There were negligible changes from the levels previously reported. Water samples collected within the Livermore Valley and Site 300 exhibited gross beta and tritium activities within the ranges previously observed in these areas. Samples of vegetation, milk, and tissues from jackrabbits on the site were also assayed for radioactivity. Measurements were made of Be in air samples and heavy metals in liquid wastes

  5. Results Assessment of Intercomparison Exercise CSN/CIEMAT-2010 among Spanish National Laboratories of Environmental Radioactivity (Diet Ashes)

    International Nuclear Information System (INIS)

    Gasco, C.; Trinidad, J. A.; Llaurado, M.; Suarez, J. A.

    2012-01-01

    This report describes the results assessment of the intercomparison exercise among environmental radioactivity laboratories, organised by Spanish Regulatory Institution (CSN) and prepared and evaluated by UAB and CIEMAT respectively. The exercise has been carried out following the international standards ISO-43 and ISO/IUPAC that provide a useful guide to perform proficiency tests and inter-laboratories comparisons. The selected matrix for this year (2010) was a diet ash obtained from the ashing of a whole fresh diet (breakfast, lunch and dinner), that was enriched with artificial radionuclides (Cs-137, Co-60,Fe-55,Ni-63,Sr-90,Am-241,Pu-238,Pu-239,240 y C-14) and contained natural radionuclides (U-234, U-238, U-natural Th-230, Th-234, Ra-226, Ra-228, Pb-210, Pb-212, Pb-214, Bi-214, Ac-228, Tl-208, K-40) at environmental level of activity concentration. The z-score test was applied to determine how much the laboratories differ from the reference value. The reference value for this exercise was the median of the results from the different laboratories and their standard deviations to achieve a more complete and objective study of the laboratories performance. The participant laboratories have demonstrated a satisfactory quality level for measuring the natural and artificial radionuclides content in this matrix. The reference values obtained through the medians show a negative bias for Pb-210 and Th-234 when comparing to the given values of external qualified laboratories from ENEA and IRSN and positive one for K-40. (Author)

  6. 76 FR 80940 - Environmental Laboratory Advisory Board Meeting Dates and Agenda

    Science.gov (United States)

    2011-12-27

    ... and Agenda AGENCY: U.S. Environmental Protection Agency. ACTION: Notice of teleconference and face-to-face meetings. SUMMARY: The EPA Environmental Laboratory Advisory Board, as previously announced, holds teleconference meetings on the third Wednesday of each month at 1 p.m. Eastern Time, and two face-to-face...

  7. 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Teresa R. Meachum

    2004-02-01

    The 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe the conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operations of the facilities during the 2003 permit year are discussed.

  8. Annual report of Laboratory of Institute of Radiological Sciences of the fiscal year 1979

    International Nuclear Information System (INIS)

    1980-10-01

    This annual report covers the period from April 1, 1979, to March 31, 1980, and the information on the research carried out by the staffs of the institute during this period is given. The total budget for the fiscal year 1979 was more than 3,368 million yen including personnel costs. Besides basic research, three long term projects have been carried on. The research on the medical application of a cyclotron that had been started in April, 1976, was completed at the end of March, 1979, and on the basis of the result of this project, the new research on the medical application of a particle accelerator was started in April, 1979, which will continue for five years. Other two projects, i.e. the risk assessment on the delayed effect of radiation and the research on the exposure to environmental radiation caused by nuclear facilities and others have progressed satisfactorily. In the report, the summaries of 16 papers on physical studies, 6 papers on chemistry, 10 papers on biochemistry and biophysics, 5 papers on cytology and morphology, 21 papers on physiology, 9 papers on genetics, 15 papers on medical studies and 15 papers on environmental studies are collected. (Kako, I.)

  9. Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico, Calendar year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Agogino, Karen [National Nuclear Security Administration (NNSA), Washington, DC (United States); Sanchez, Rebecca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2008-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor-operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2007. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).

  10. Calendar Year 2009 Annual Site Environmental Report for Sandia National Laboratories, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bailey-White, Brenda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bonaguidi, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Mendy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrd, Caroline [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cabble, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Castillo, Dave [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coplen, Amy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Curran, Kelsey [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Deola, Regina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Duran, Leroy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eckstein, Joanna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fitzgerald, Tanja [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); French, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerard, Morgan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzales, Linda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gorman, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jackson, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jarry, Jeff [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Adrian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lauffer, Franz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mauser, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayeux, Lucie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McCord, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oborny, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Perini, Robin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Puissant, Pamela [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reiser, Anita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roma, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Salinas, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Skelly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ullrich, Rebecca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wagner, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wrons, Ralph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2010-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation (LMC), manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Site O ffice (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2009. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1A, Environmental Protection Program (DOE 2008a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).

  11. Environmental monitoring for EG and G Idaho facilities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Tkachyk, J.W.; Wright, K.C.; Wilhelmsen, R.N.

    1990-08-01

    This report describes the 1989 environmental-monitoring activities of the Environmental Monitoring Unit of EG ampersand G Idaho, Inc., at EG ampersand G-operated facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Additional monitoring activities performed by Environmental Monitoring are also discussed, including drinking-water monitoring and nonradiological liquid-effluent monitoring, as well as data management. The primary purposes of monitoring are to evaluate environmental conditions and to provide and interpret data, in compliance with applicable regulations, to ensure protection of human health and the environment. This report compares 1989 environmental-monitoring data with derived concentration guides and with data from previous years. This report also presents results of sampling performed by the Radiological and Environmental Sciences Laboratory and by the United States Geological Survey. 17 refs., 49 figs., 11 tabs

  12. 1985 annual site environmental report for Argonne National Laboratory

    International Nuclear Information System (INIS)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1986-03-01

    This is one in a series of annual reports prepared to provide DOE, environmental agencies, and the public with information on the level of radioactive and chemical pollutants in the environment and on the amounts of such substances, if any, added to the environment as a result of Argonne operations. Included in this report are the results of measurements obtained in 1985 for a number of radionuclides in air, surface water, ground water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in surface and subsurface water; and for the external penetrating radiation dose

  13. Environmental Performance Report 2014. NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Rukavina, Frank [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Myers, Lissa [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elmore, Adrienne [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ruckman, Kathryn [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gray, Lori [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margason, Laura [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jorgensen, Lisa [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Robert [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sweeney, Robin [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-08-01

    The purpose of this report is to ensure that the U.S. Department of Energy (DOE) and the public receive timely, accurate information about events that have affected or could adversely affect the health, safety, and security of the public or workers, the environment, or the operations of DOE facilities. This report meets the DOE requirements of the Annual Site Environmental Report and has been prepared in accordance with the DOE Order 231.1B Chg 1, Environment, Safety and Health Reporting.

  14. Physician satisfaction with clinical laboratory services: a College of American Pathologists Q-probes study of 138 institutions.

    Science.gov (United States)

    Jones, Bruce A; Bekeris, Leonas G; Nakhleh, Raouf E; Walsh, Molly K; Valenstein, Paul N

    2009-01-01

    Monitoring customer satisfaction is a valuable component of a laboratory quality improvement program. To survey the level of physician satisfaction with hospital clinical laboratory services. Participating institutions provided demographic and practice information and survey results of physician satisfaction with defined aspects of clinical laboratory services, rated on a scale of 1 (poor) to 5 (excellent). One hundred thirty-eight institutions participated in this study and submitted a total of 4329 physician surveys. The overall satisfaction score for all institutions ranged from 2.9 to 5.0. The median overall score for all participants was 4.1 (10th percentile, 3.6; 90th percentile, 4.5). Physicians were most satisfied with the quality/reliability of results and staff courtesy, with median values of excellent or good ratings of 89.9%. Of the 5 service categories that received the lowest percentage values of excellent/good ratings (combined scores of 4 and 5), 4 were related to turnaround time for inpatient stat, outpatient stat, routine, and esoteric tests. Surveys from half of the participating laboratories reported that 96% to 100% of physicians would recommend the laboratory to other physicians. The category most frequently selected as the most important category of laboratory services was quality/reliability of results (31.7%). There continues to be a high level of physician satisfaction and loyalty with clinical laboratory services. Test turnaround times are persistent categories of dissatisfaction and present opportunities for improvement.

  15. Risk-based priority scoring for Brookhaven National Laboratory environmental restoration programs

    International Nuclear Information System (INIS)

    Morris, S.C.; Meinhold, A.F.

    1995-05-01

    This report describes the process of estimating the risk associated with environmental restoration programs under the Brookhaven National Laboratory Office of Environmental Restoration. The process was part of an effort across all Department of Energy facilities to provide a consistent framework to communicate risk information about the facilities to senior managers in the DOE Office of Environmental Management to foster understanding of risk activities across programs. the risk evaluation was a qualitative exercise. Categories considered included: Public health and safety; site personnel safety and health; compliance; mission impact; cost-effective risk management; environmental protection; inherent worker risk; environmental effects of clean-up; and social, cultural, political, and economic impacts

  16. Environmental restoration at the Lawrence Livermore National Laboratory Livermore Site

    International Nuclear Information System (INIS)

    Ziagos, J.P.; Bainer, R.W.; Dresen, M.D.; Hoffman, J.D.

    1992-04-01

    Ground water beneath Lawrence Livermore National Laboratory (LLNL) near Livermore California, contains 19 compounds in concentrations exceeding regulatory standards. These include volatile organic compounds (VOCs), dissolved fuel hydrocarbons, free product gasoline, cadmium, chromium, lead, and tritium. VOCs are the most widespread hazardous materials in the ground water, covering an area of about 1.4 square miles. The other compounds occur sporadically around the site. The LLNL site was added to the National Priorities (Superfund) List in 1987. This paper describes the technology developed at LLNL to remediate soil and ground water contamination. Included in this paper are methods in which site characterization has been aided by using a drilling technique developed at LLNL to evaluate the vertical distribution of VOCs in multiple water-bearing zones in single borehole. The paper also describes the development and implementation of a comprehensive three-step program to investigate and evaluate potential sources of hazardous materials in soil and ground water

  17. Empirical insights and considerations for the OBT inter-laboratory comparison of environmental samples.

    Science.gov (United States)

    Kim, Sang-Bog; Roche, Jennifer

    2013-08-01

    Organically bound tritium (OBT) is an important tritium species that can be measured in most environmental samples, but has only recently been recognized as a species of tritium in these samples. Currently, OBT is not routinely measured by environmental monitoring laboratories around the world. There are no certified reference materials (CRMs) for environmental samples. Thus, quality assurance (QA), or verification of the accuracy of the OBT measurement, is not possible. Alternatively, quality control (QC), or verification of the precision of the OBT measurement, can be achieved. In the past, there have been differences in OBT analysis results between environmental laboratories. A possible reason for the discrepancies may be differences in analytical methods. Therefore, inter-laboratory OBT comparisons among the environmental laboratories are important and would provide a good opportunity for adopting a reference OBT analytical procedure. Due to the analytical issues, only limited information is available on OBT measurement. Previously conducted OBT inter-laboratory practices are reviewed and the findings are described. Based on our experiences, a few considerations were suggested for the international OBT inter-laboratory comparison exercise to be completed in the near future. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Overview of the biomedical and environmental programs at the Oak Ridge National Laboratory. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Pfuderer, H.A.; Moody, J.B. (comps.)

    1981-07-01

    Separate abstracts were prepared for each of the 6 chapters presented by the six divisions involved in the Biomedical and Environmental Sciences Program at Oak Ridge National Laboratory. The introduction is not covered by an abstract and deals with the environmental, health and safety considerations of energy technology decisions, the major initiatives now being taken by these 6 divisions, and recent major accomplishments in the biomedical and environmental science program. (KRM)

  19. Environmental resource document for the Idaho National Engineering Laboratory. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  20. Environmental resource document for the Idaho National Engineering Laboratory. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.