WorldWideScience

Sample records for environmental hydrogen embrittlement

  1. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    hydrogen embrittlement. The effects of hydrogen gas on mechanical properties such as tensile strength, ductility, fracture, low and high cycle fatigue, crack growth rate, and creep rupture are analyzed with respect to the general trends established from the HEE index values. It is observed that the severity of HE effects is also influenced by environmental factors such as pressure, temperature, and hydrogen gas purity. The severity of HE effects is also influenced by material factors such as surface finish, heat treatment, and product forms, compositions, grain direction, and crystal orientations.

  2. Hydrogen environment embrittlement

    International Nuclear Information System (INIS)

    Donovan, J.A.

    1975-01-01

    Exposure of many metals to gaseous hydrogen causes losses in elongation, reduction of area, and fracture toughness, and causes increases in slow crack growth rate or fatigue life compared with values obtained in air or vacuum. Hydrogen pressure, temperature, and purity significantly influence deleterious effects. The strength and structural characteristics of the metal influence the degradation of its properties by hydrogen. Several theories have been proposed to explain the loss of properties in hydrogen, but none has gained wide acceptance. The embrittlement mechanism and the role of diffusion are, therefore, open questions and need more quantitative experimental data both to test the proposed theories and to allow the development of realistic preventive measures. (U.S.)

  3. Aqueous chloride stress corrosion cracking of titanium - A comparison with environmental hydrogen embrittlement

    Science.gov (United States)

    Nelson, H. G.

    1974-01-01

    The physical characteristics of stress corrosion cracking of titanium in an aqueous chloride environment are compared with those of embrittlement of titanium by a gaseous hydrogen environment in an effort to help contribute to the understanding of the possible role of hydrogen in the complex stress corrosion cracking process. Based on previous studies, the two forms of embrittlement are shown to be similar at low hydrogen pressures (100 N/sq m) but dissimilar at higher hydrogen pressures. In an effort to quantify this comparison, tests were conducted in an aqueous chloride solution using the same material and test techniques as had previously been employed in a gaseous hydrogen environment. The results of these tests strongly support models based on hydrogen as the embrittling species in an aqueous chloride environment.

  4. Precipitation hardening and hydrogen embrittlement of aluminum ...

    Indian Academy of Sciences (India)

    AA7020 Al–Mg–Zn, a medium strength aluminium alloy, is used in welded structures in military and aerospace applications. As it may be subjected to extremes of environmental exposures, including high pressure liquid hydrogen, it could suffer hydrogen embrittlement. Hydrogen susceptibility of alloy AA7020 was ...

  5. Aqueous chloride stress corrosion cracking of titanium: A comparison with environmental hydrogen embrittlement

    Science.gov (United States)

    Nelson, H. G.

    1973-01-01

    The physical characteristics of stress corrosion cracking of titanium in an aqueous chloride environment are compared with those of embrittlement of titanium by a gaseous hydrogen environment in an effort to help contribute to the understanding of the possible role of hydrogen in the complex stress corrosion cracking process. Based on previous studies, the two forms of embrittlement are shown to be similar at low hydrogen pressures (100 N/sqm) but dissimilar at higher hydrogen pressures. In an effort to quantify this comparison, tests were conducted in an aqueous chloride solution using the same material and test techniques as had previously been employed in a gaseous hydrogen environment. The results of these tests strongly support models based on hydrogen as the embrittling species in an aqueous chloride environment. Further, it is shown that if hydrogen is the causal species, the effective hydrogen fugacity at the surface of titanium exposed to an aqueous chloride environment is equivalent to a molecular hydrogen pressure of approximately 10 N/sqm.

  6. Hydrogen embrittlement in nickel-hydrogen cells

    Science.gov (United States)

    Gross, Sidney

    1989-01-01

    It was long known that many strong metals can become weakened and brittle as the result of the accumulation of hydrogen within the metal. When the metal is stretched, it does not show normal ductile properties, but fractures prematurely. This problem can occur as the result of a hydrogen evolution reaction such as corrosion or electroplating, or due to hydrogen in the environment at the metal surface. High strength alloys such as steels are especially susceptible to hydrogen embrittlement. Nickel-hydrogen cells commonly use Inconel 718 alloy for the pressure container, and this also is susceptible to hydrogen embrittlement. Metals differ in their susceptibility to embrittlement. Hydrogen embrittlement in nickel-hydrogen cells is analyzed and the reasons why it may or may not occur are discussed. Although Inconel 718 can display hydrogen embrittlement, experience has not identified any problem with nickel-hydrogen cells. No hydrogen embrittlement problem is expected with the 718 alloy pressure container used in nickel-hydrogen cells.

  7. Precipitation hardening and hydrogen embrittlement of aluminum ...

    Indian Academy of Sciences (India)

    that many high-strength aluminium alloys are prone to environment-assisted cracking, and hydrogen embrittlement could be a possible mechanism for the same. Now there is overwhelming evidence in the literature to the fact that hydrogen embrittlement is involved in the stress corrosion cracking of 7XXX series alloys in ...

  8. Hydrogen Embrittlement And Stacking-Fault Energies

    Science.gov (United States)

    Parr, R. A.; Johnson, M. H.; Davis, J. H.; Oh, T. K.

    1988-01-01

    Embrittlement in Ni/Cu alloys appears related to stacking-fault porbabilities. Report describes attempt to show a correlation between stacking-fault energy of different Ni/Cu alloys and susceptibility to hydrogen embrittlement. Correlation could lead to more fundamental understanding and method of predicting susceptibility of given Ni/Cu alloy form stacking-fault energies calculated from X-ray diffraction measurements.

  9. Laser peening for reducing hydrogen embrittlement

    Science.gov (United States)

    Hackel, Lloyd A.; Zaleski, Tania M.; Chen, Hao-Lin; Hill, Michael R.; Liu, Kevin K.

    2010-05-25

    A laser peening process for the densification of metal surfaces and sub-layers and for changing surface chemical activities provides retardation of the up-take and penetration of atoms and molecules, particularly Hydrogen, which improves the lifetime of such laser peened metals. Penetration of hydrogen into metals initiates an embrittlement that leaves the material susceptible to cracking.

  10. Environmental embrittlement of ordered intermetallics at ambient temperatures

    International Nuclear Information System (INIS)

    Takasugi, Takayuki

    1993-01-01

    It is demonstrated that the environmental embrittlement of ordered intermetallics, which is caused by hydrogen released from moisture in air or hydrogen gas in environment at ambient temperatures, takes place in various kinds of crystal structures, alloys and microstructures. First, the phenomenology of the environmental embrittlement, i.e. atmosphere, temperature and strain rate dependencies, as well as alloying, doping and microstructural effects, is presented in terms of mechanical properties, fractography and microstructural features. Next, possible mechanisms of embrittlement involving the kinetics (i.e. decomposition, migration and condensation of hydrogen) and the bond breaking are discussed. Finally, some evidence indicating suppression of the embrittlement through selection of deformation condition, alloying and microstructural modification is presented. 52 refs., 11 figs., 2 tabs

  11. Nanocrystalline Steels’ Resistance to Hydrogen Embrittlement

    Directory of Open Access Journals (Sweden)

    Skołek E.

    2015-04-01

    Full Text Available The aim of this study is to determine the susceptibility to hydrogen embrittlement in X37CrMoV5-1 steel with two different microstructures: a nanocrystalline carbide-free bainite and tempered martensite. The nanobainitic structure was obtained by austempering at the bainitic transformation zone. It was found, that after hydrogen charging, both kinds of microstructure exhibit increased yield strength and strong decrease in ductility. It has been however shown that the resistance to hydrogen embrittlement of X37CrMoV5-1 steel with nanobainitic structure is higher as compared to the tempered martensite. After hydrogen charging the ductility of austempered steel is slightly higher than in case of quenched and tempered (Q&T steel. This effect was interpreted as a result of phase composition formed after different heat treatments.

  12. On critical hydrogen concentration for hydrogen embrittlement of Fe3Al

    Indian Academy of Sciences (India)

    The critical hydrogen concentration for hydrogen embrittlement in iron aluminide, Fe3Al has been estimated (0.42 wppm). The estimated critical hydrogen content has been correlated to structural aspects of the decohesion mechanism of hydrogen embrittlement.

  13. Study on Temper Embrittlement and Hydrogen Embrittlement of a Hydrogenation Reactor by Small Punch Test

    Directory of Open Access Journals (Sweden)

    Kaishu Guan

    2017-06-01

    Full Text Available The study on temper embrittlement and hydrogen embrittlement of a test block from a 3Cr1Mo1/4V hydrogenation reactor after ten years of service was carried out by small punch test (SPT at different temperatures. The SPT fracture energy Esp (derived from integrating the load-displacement curve divided by the maximum load (Fm of SPT was used to fit the Esp/Fm versus-temperature curve to determine the energy transition temperature (Tsp which corresponded to the ductile-brittle transition temperature of the Charpy impact test. The results indicated that the ratio of Esp/Fm could better represent the energy of transition in SPT compared with Esp. The ductile-to-brittle transition temperature of the four different types of materials was measured using the hydrogen charging test by SPT. These four types of materials included the base metal and the weld metal in the as-received state, and the base metal and the weld metal in the de-embrittled state. The results showed that there was a degree of temper embrittlement in the base metal and the weld metal after ten years of service at 390 °C. The specimens became slightly more brittle but this was not obvious after hydrogen charging. Because the toughness of the material of the hydrogenation reactor was very good, the flat samples of SPT could not characterize the energy transition temperature within the liquid nitrogen temperature. Additionally, there was no synergetic effect of temper embrittlement and hydrogen embrittlement found in 3Cr1Mo1/4V steel.

  14. Study on Temper Embrittlement and Hydrogen Embrittlement of a Hydrogenation Reactor by Small Punch Test.

    Science.gov (United States)

    Guan, Kaishu; Szpunar, Jerzy A; Matocha, Karel; Wang, Duwei

    2017-06-19

    The study on temper embrittlement and hydrogen embrittlement of a test block from a 3Cr1Mo1/4V hydrogenation reactor after ten years of service was carried out by small punch test (SPT) at different temperatures. The SPT fracture energy E s p (derived from integrating the load-displacement curve) divided by the maximum load ( F m ) of SPT was used to fit the E sp / F m versus-temperature curve to determine the energy transition temperature ( T sp ) which corresponded to the ductile-brittle transition temperature of the Charpy impact test. The results indicated that the ratio of E sp / F m could better represent the energy of transition in SPT compared with E sp . The ductile-to-brittle transition temperature of the four different types of materials was measured using the hydrogen charging test by SPT. These four types of materials included the base metal and the weld metal in the as-received state, and the base metal and the weld metal in the de-embrittled state. The results showed that there was a degree of temper embrittlement in the base metal and the weld metal after ten years of service at 390 °C. The specimens became slightly more brittle but this was not obvious after hydrogen charging. Because the toughness of the material of the hydrogenation reactor was very good, the flat samples of SPT could not characterize the energy transition temperature within the liquid nitrogen temperature. Additionally, there was no synergetic effect of temper embrittlement and hydrogen embrittlement found in 3Cr1Mo1/4V steel.

  15. Evaluation of hydrogen embrittlement and temper embrittlement by key curve method in instrumented Charpy test

    Directory of Open Access Journals (Sweden)

    Makita A.

    2010-06-01

    Full Text Available Instrumented Charpy test was conducted on small sized specimen of 21/4Cr-1Mo steel. In the test the single specimen key curve method was applied to determine the value of fracture toughness for the initiation of crack extension with hydrogen free, KIC, and for hydrogen embrittlement cracking, KIH. Also the tearing modulus as a parameter for resistance to crack extension was determined. The role of these parameters was discussed at an upper shelf temperature and at a transition temperature. Then the key curve method combined with instrumented Charpy test was proven to be used to evaluate not only temper embrittlement but also hydrogen embrittlement.

  16. Hydrogen embrittlement due to hydrogen-inclusion interactions

    International Nuclear Information System (INIS)

    Yu, H.Y.; Li, J.C.M.

    1976-01-01

    Plastic flow around inclusions creates elastic misfit which attracts hydrogen towards the regions of positive dilatation. Upon decohesion of the inclusion-matrix interface, the excess hydrogen escapes into the void and can produce sufficient pressure to cause void growth by plastic deformation. This mechanism of hydrogen embrittlement can be used to understand the increase of ductility with temperature, the decrease of ductility with hydrogen content, and the increase of ductility with the ultimate strength of the matrix. An examination of the effect of the shape of spheroid inclusion reveals that rods are more susceptible to hydrogen embrittlement than disks. The size of the inclusion is unimportant while the volume fraction of inclusions plays the usual role

  17. Alloys having improved resistance to hydrogen embrittlement

    International Nuclear Information System (INIS)

    Kane, R.D.; Greer, J.B.; Jacobs, D.F.; Berkowitz, B.J.

    1983-01-01

    The invention involves a process of improving the hydrogen embrittlement resistance of a cold-worked high yield strength nickel/cobalt base alloy containing chromium, and molybdenum and/or tungsten and having individual elemental impurity concentrations as measured by Auger spectroscopy at the crystallographic boundaries of up to about 1 Atomic percent. These elemental impurities are capable of becoming active and mobile at a temperature less than the recrystallization temperature of the alloy. The process involves heat treating the alloy at a temperature above 1300 degrees F but below the temperature of recrystallization for a time of from 1/4 to 100 hours. This is sufficient to effect a reduction in the level of the elemental impurities at the crystallographic boundaries to the range of less than 0.5 Atomic percent without causing an appreciable decrease in yield strength

  18. Effect of heat treatments on the hydrogen embrittlement ...

    Indian Academy of Sciences (India)

    pipe steel in as received (controlled rolled), normalized, and quenched and tempered conditions. The resistance to hydrogen embrittlement was found in the order of controlled rolled > quenched and tempered > normalized. The fracture mode ...

  19. Hydrogen embrittlement of structural alloys. A technology survey

    Science.gov (United States)

    Carpenter, J. L., Jr.; Stuhrke, W. F.

    1976-01-01

    Technical abstracts for about 90 significant documents relating to hydrogen embrittlement of structural metals and alloys are reviewed. Particular note was taken of documents regarding hydrogen effects in rocket propulsion, aircraft propulsion and hydrogen energy systems, including storage and transfer systems.

  20. Effect of heat treatments on the hydrogen embrittlement ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Delayed failure tests were carried out on hydrogen charged API X-65 grade line-pipe steel in as received (controlled rolled), normalized, and quenched and tempered conditions. The resistance to hydrogen embrittlement was found in the order of controlled rolled > quenched and tempered > normalized. The frac-.

  1. Evaluation of hydrogen embrittlement and temper embrittlement by key curve method in instrumented Charpy test

    OpenAIRE

    Makita A.; Shindo Y.; Ohtsuka N.

    2010-01-01

    Instrumented Charpy test was conducted on small sized specimen of 21/4Cr-1Mo steel. In the test the single specimen key curve method was applied to determine the value of fracture toughness for the initiation of crack extension with hydrogen free, KIC, and for hydrogen embrittlement cracking, KIH. Also the tearing modulus as a parameter for resistance to crack extension was determined. The role of these parameters was discussed at an upper shelf temperature and at a transition temperat...

  2. Proposal of guideline for bonding to prevention of hydrogen embrittlement at Ta/Zr bond interface. Hydrogen embrittlement in SUS304ULC/Ta/Zr explosive bonded joint

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi; Fujimoto, Tetsuya; Nishimoto, Kazutoshi

    2010-01-01

    The occurrence condition of hydrogen embrittlement cracking at Ta/Zr bond interface was investigated with respect to the hydrogen content and applied stress in order to propose a guideline for the explosive bonding procedure to prevention of hydrogen embrittlement. Hydrogen charging test was conducted for SUS304ULC/Ta/Zr explosive bonded joints applied the different flexural strains. A hydrogen embrittlement crack occurred in the Zr substrate at Ta/Zr bond interface after hydrogen charging, and it was initiated at shorter charging times when the augmented strain was increased. The occurrence condition of hydrogen embrittlement cracking at Ta/Zr bond interface was shifted to lower stress and hydrogen content with an increase in the amount of explosive during bonding. It was suggested that hydrogen embrittlement in Ta/Zr explosive bonded joint could be inhibited by reducing the initial hydrogen content in Ta substrate less than approx. 5 ppm. (author)

  3. Fractography of hydrogen-embrittled iron-chromium-nickel alloys

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1980-01-01

    Tensile specimens of iron-chromium-nickel base alloys were broken in either a hydrogen environment or in air following thermal charging with hydrogen. Fracture surfaces were examined by scanning electron microscopy. Fracture morphology of hydrogen-embrittled specimens was characterized by: changed dimple size, twin-boundary parting, transgranular cleavage, and intergranular separation. The nature and extent of the fracture mode changes induced by hydrogen varied systematically with alloy composition and test temperature. Initial microstructure developed during deformation processing and heat treating had a secondary influence on fracture mode

  4. Mecanical Properties Degradation by Hydrogen Embrittlement

    International Nuclear Information System (INIS)

    Bertolino, G; Meyer, G; Perez Ipina J

    2001-01-01

    The presence of hydrogen-rich media during nuclear plant operation motivates the study of the zirconium alloys degradation of their mechanical properties influenced by hydrogen content and temperature.In this work we study samples with a microstructure of equiaxial grains resulted from hot-rolled, and with different homogeneous hydrogen content obtained by electrochemical charge and a thermal treatment.The influence of hydrogen content and temperature was analyzed from the results of fracture-mechanical tests on CT (compact test) probes using the J-criteria

  5. Embrittlement by hydrogen in zircaloy-4

    International Nuclear Information System (INIS)

    Almendariz M, M.C.

    1981-01-01

    The brittleness study of zircaloy-4 (nuclear quality) by hydrogen in the lattice was carried out with the purpose to watch the alterations at mechanic properties and fracture appearance for different thermal treatments. We used a statistical experimental method to watch both alterations. Fracture toughness property was evaluated in a semiquantitative way, and this property was calculated by integral J method but at a modified version, this modification lies in the area calculation under the curve of load versus head displacement plot; we used Instron machine to evaluate it. Three points bending proof was carried out in accordance with the device that specify A.S.T.M. standards. The samples were treated with hydrogen by means of catodic charged method and subsequently mechanic proof was realized. We used statistical analysis to get information of experimental results, and the watched general behaviour was a great disminution of the fracture toughness (in relation to not treated hydrogen sample), always that the hydrogen is present in the lattice, likewise we did watch that hydrogen does not influence at fracture appearance change, further there is a threshold hydrogen concentration at wich it starts to brittle and prior not influence it. We did conclude of results analysis that the fracture toughness is reduced by hydrogen and threshold concentration is subject to thermal treatment. Experimental results can be considered as semiquantitatives, but they gave us an explicit idea of hydrogen effect in zircaloy-4. (author)

  6. Diagnostic experimental results on the hydrogen embrittlement of austenitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Gavriljuk, V.G.; Shivanyuk, V.N.; Foct, J

    2003-03-14

    Three main available hypotheses of hydrogen embrittlement are analysed in relation to austenitic steels based on the studies of the hydrogen effect on the interatomic bonds, phase transformations and microplastic behaviour. It is shown that hydrogen increases the concentration of free electrons, i.e. enhances the metallic character of atomic interactions, although such a decrease in the interatomic bonding cannot be a reason for brittleness and rather assists an increased plasticity. The hypothesis of the critical role of the hydrogen-induced {epsilon} martensite was tested in the experiment with the hydrogen-charged Si-containing austenitic steel. Both the fraction of the {epsilon} martensite and resistance to hydrogen embrittlement were increased due to Si alloying, which is at variance with the pseudo-hydride hypothesis. The hydrogen-caused early start of the microplastic deformation and an increased mobility of dislocations, which are usually not observed in the common mechanical tests, are revealed by the measurements of the strain-dependent internal friction, which is consistent with the hypothesis of the hydrogen-enhanced localised plasticity. An influence of alloying elements on the enthalpy E{sub H} of hydrogen migration in austenitic steels is studied using the temperature-dependent internal friction and a correlation is found between the values of E{sub H} and hydrogen-caused decrease in plasticity. A mechanism for the transition from the hydrogen-caused microplasticity to the apparent macrobrittle fracture is proposed based on the similarity of the fracture of hydrogenated austenitic steels to that of high nitrogen steels.

  7. Hydrogen embrittlement of ASTM A 203 D nuclear structural steel

    International Nuclear Information System (INIS)

    Chakravartty, J.K.; Prasad, G.E.; Sinha, T.K.; Asundi, M.K.

    1986-01-01

    The influence of hydrogen on the mechanical properties of ASTM A 203 D nuclear structural steel has been studied by tension, bend and delayed-failure tests at room temperature. While the tension tests of hydrogen charged unnotched specimens reveal no change in ultimate strength and ductility, the effect of hydrogen is manifested in notched specimens (tensile and bend) as a decrease in ultimate strength (maximum load in bend test) and ductility; the effect increases with increasing hydrogen content. It is observed that for a given hydrogen concentration, the decrease in bend ductility is remarkably large compared to that in tensile ductility. Hydrogen charging does not cause any delayed-failure upto 200 h under an applied tensile stress, 0.85 times the notch tensile strength. However delayed failure occurs in hydrogen charged bend samples in less than 10 h under an applied bending load of about 0.80 times of the uncharged maximum load. Fractographs of hydrogen charged unnotched specimens show ductile dimple fracture, while those of notched tension and bend specimens under hydrogen-charged conditions show a mixture of ductile dimple and quasi-cleavage cracking. The proportion of quasi-cleavage cracking increases with increasing hydrogen content and this fracture mode is more predominant in bend specimens. The changes in tensile properties and fracture modes can reasonably be explained by existing theories of hydrogen embrittlement. An attempt is made to explain the significant difference in the embrittlement susceptibility of bend and tensile specimens in the light of difference in triaxiality and plastic zone size near the notch tip. (orig.)

  8. Hydrogen embrittlement in power plant steels

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    tered. For example cadmium plated carbon steel socket head cap screws generally used in valve assemblies failed as shown in figure 6 (Tanner 1993) during service due to the absorp- tion of hydrogen during plating process and the subsequent insufficient baking of cap screws. Similarly, self-drilling tapping screw made of ...

  9. Experiment of hydrogen embrittlement of tritium storage vessel material

    International Nuclear Information System (INIS)

    Jung, Hai Yong; Lee, Kun Jai; Chung, H.; Paek, S.

    2000-01-01

    The tritium storage is one of the most important problems for the safety of tritium removal facility. In current, many researches for tritium immobilization have been carried out. The research for tritium storage could be divided into two parts, one is for the metal getter of tritium and another is for the integrity of tritium storage vessel. Especially, the integrity of tritium storage vessel is up to the tritium embrittlement of vessel material, for tritium vessel is mostly made of metal material. In this work, the evaluation of the tritium embrittlement for the tritium storage vessel material is performed with the equipment that is made for high temperature and high vacuum. However, tritium is the radioactivity material, so hydrogen is used for this work. In this work, three metals were chosen for the vessel candidate material, carbon steel, austenitic stainless steel (SUS) 304 and 316L. The experiment was carried out for the several conditions of temperature and pressure. The property change of metal was investigated through the tensile test. Austenitic stainless steel has a high resistance for the hydrogen embrittlement from the result. But the obvious gap between SUS 304 and SUS 316L is not revealed, because the experiment condition may be not sufficient to show the difference between SUS 304 and SUS 316L

  10. Intrinsic ductility and environmental embrittlement of binary Ni3Al

    International Nuclear Information System (INIS)

    George, E.P.; Liu, C.T.; Pope, D.P.

    1993-01-01

    Polycrystalline, B-free Ni 3 Al (23.4 at.% Al), produced by cold working and recrystallizing a single crystal, exhibits room temperature tensile ductilities of 3-5% in air and 13-16% in oxygen. These ductilities are considerably higher than anything previously reported, and demonstrate that the 'intrinsic' ductility of Ni 3 Al is much higher than previously thought. They also show that the moisture present in ordinary ambient air can severely embrittle Ni 3 Al (ductility decreasing from a high of 16% in oxygen to a low of 3% in air). Fracture is predominantly intergranular in both air and oxygen. This indicates that, while moisture can further embrittle the GBs in Ni 3 Al, they persist as weak links even in the absence of environmental embrittlement. However, they are not 'intrinsically brittle' as once thought, since they can withstand relatively large plastic deformations prior to fracture. Because B essentially eliminates environmental embrittlement in Ni 3 Al - and environmental embrittlement is a major cause of poor ductility in B-free Ni 3 Al - it is concluded that a significant portion of the so-called B effect must be related to suppression of moisture-induced environmental embrittlement. However, since B-doped Ni 3 Al fractures transgranularly, whereas B-free Ni 3 Al fractures predominantly intergranularly, B must have the added effect that it strengthens the GBs. A comparison with the earlier work on Zr-doped Ni 3 Al shows that Zr improves the ductility of Ni 3 Al, both in air and (and even more dramatically) in oxygen. While the exact mechanism of this ductility improvement is not clear at present, Zr appears to have more of an effect on (enhancing) GB strength than on (suppressing) environmental embrittlement

  11. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Sofronis, Petros [University of Illinois at Urbana-Champaign; Robertson, Ian M [University of Wisconsin-Madison

    2013-08-01

    Fundamental studies of hydrogen embrittlement of materials using both experimental observations and numerical simulations of the hydrogen/deformation interactions have been conducted. Our approach integrates mechanical property testing at the macro-scale, microstructural analyses and TEM observations of the deformation processes at the micro- and nano-scale, first-principles calculations of interfacial cohesion at the atomic scale, and finite element simulation and modeling at the micro- and macro-level. Focused Ion Beam machining in conjunction with Transmission Electron Microscopy were used to identify the salient micro-mechanisms of failure in the presence of hydrogen. Our analysis of low strength ferritic steels led to the discovery that “quasi-cleavage” is a dislocation plasticity controlled failure mode in agreement with the hydrogen enhanced plasticity mechanism. The microstructure underneath the fracture surface of 304 and 316 stainless steels was found to be significantly more complex than would have been predicted by the traditional models of fatigue. The general refinement of the microstructure that occurred near the fracture surface in the presence of hydrogen was such that one may argue that hydrogen stabilizes microstructural configurations to an extent not achievable in its absence. Finite element studies of hydrogen and deformation field similitude for cracks in real-life pipelines and laboratory fracture specimens yielded that the Single Edge Notch Tension specimen can be used to reliably study hydrogen material compatibility for pipeline structures. In addition, simulation of onset of crack propagation in low strength ferritic systems by void growth indicated that hydrogen can reduce the fracture toughness of the material by as much as 30%. Both experimental observations and numerical studies of hydrogen transport on hydrogen accumulations ahead of a crack tip yielded that dislocation transport can markedly enhance hydrogen populations which

  12. Multiscale Modeling of Hydrogen Embrittlement for Multiphase Material

    KAUST Repository

    Al-Jabr, Khalid A.

    2014-05-01

    Hydrogen Embrittlement (HE) is a very common failure mechanism induced crack propagation in materials that are utilized in oil and gas industry structural components and equipment. Considering the prediction of HE behavior, which is suggested in this study, is one technique of monitoring HE of equipment in service. Therefore, multi-scale constitutive models that account for the failure in polycrystalline Body Centered Cubic (BCC) materials due to hydrogen embrittlement are developed. The polycrystalline material is modeled as two-phase materials consisting of a grain interior (GI) phase and a grain boundary (GB) phase. In the first part of this work, the hydrogen concentration in the GI (Cgi) and the GB (Cgb) as well as the hydrogen distribution in each phase, were calculated and modeled by using kinetic regime-A and C, respectively. In the second part of this work, this dissertation captures the adverse effects of hydrogen concentration, in each phase, in micro/meso and macro-scale models on the mechanical behavior of steel; e.g. tensile strength and critical porosity. The models predict the damage mechanisms and the reduction in the ultimate strength profile of a notched, round bar under tension for different hydrogen concentrations as observed in the experimental data available in the literature for steels. Moreover, the study outcomes are supported by the experimental data of the Fractography and HE indices investigation. In addition to the aforementioned continuum model, this work employs the Molecular Dynamics (MD) simulations to provide information regarding bond formulation and breaking. The MD analyses are conducted for both single grain and polycrystalline BCC iron with different amounts of hydrogen and different size of nano-voids. The simulations show that the hydrogen atoms could form the transmission in materials configuration from BCC to FCC (Face Centered Cubic) and HCP (Hexagonal Close Packed). They also suggest the preferred sites of hydrogen for

  13. Multiscale modelling of hydrogen embrittlement in zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Majevadia, Jassel; Wenman, Mark; Balint, Daniel; Sutton, Adrian [Imperial College London (United Kingdom); Nazarov, Roman [MPIE, Dusseldorf (Germany)

    2013-07-01

    Delayed Hydride Cracking (DHC) is a commonly occurring embrittlement phenomenon in zirconium alloy fuel cladding within Pressurized Water Reactors (PWRs). DHC is caused by the accumulation of hydrogen atoms taken up by the metal, and the formation of brittle hydrides in the vicinity of crack tips. The rate of crack growth is limited by the rate of hydrogen diffusion to the crack, which can be modelled by solving a stress driven diffusion equation that incorporates the elastic interaction between defects. This of interest in the present work. The elastic interaction is calculated by combining defect forces determined through Density Functional Theory (DFT) simulations, and an exact solution for the anisotropic elastic field of an edge dislocation in Zr. making it possible to determine the interaction energy without the need to simulate directly a hydrogen atom in the presence of a crack or dislocation, which is computationally prohibitive with DFT. The result of the elastic interaction energy calculations can be utilised to determine the segregation of hydrogen to a crack tip for varying crack tip geometries, and in the presence of other crystal defects. This is done by implementing a diffusion equation for hydrogen within a discrete dislocation dynamics simulation. In the present work a model has been developed to demonstrate the effect of a single dislocation on hydrogen diffusion to create a Cottrell atmosphere.

  14. Vanadium alloy membranes for high hydrogen permeability and suppressed hydrogen embrittlement

    International Nuclear Information System (INIS)

    Kim, Kwang Hee; Park, Hyeon Cheol; Lee, Jaeho; Cho, Eunseog; Lee, Sang Mock

    2013-01-01

    The structural properties and hydrogen permeation characteristics of ternary vanadium–iron–aluminum (V–Fe–Al) alloy were investigated. To achieve not only high hydrogen permeability but also strong resistance to hydrogen embrittlement, the alloy composition was modulated to show high hydrogen diffusivity but reduced hydrogen solubility. We demonstrated that matching the lattice constant to the value of pure V by co-alloying lattice-contracting and lattice-expanding elements was quite effective in maintaining high hydrogen diffusivity of pure V

  15. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content

    International Nuclear Information System (INIS)

    Doshida, Tomoki; Takai, Kenichi

    2014-01-01

    The effects of the hydrogen state, temperature, strain rate and hydrogen content on hydrogen embrittlement susceptibility and hydrogen-induced lattice defects were evaluated for cold-drawn pearlitic steel that absorbed hydrogen in two trapping states. Firstly, tensile tests were carried out under various conditions to evaluate hydrogen embrittlement susceptibility. The results showed that peak 2 hydrogen, desorbed at temperatures above 200 °C as determined by thermal desorption analysis (TDA), had no significant effect on hydrogen embrittlement susceptibility. In contrast, hydrogen embrittlement susceptibility increased in the presence of peak 1 hydrogen, desorbed from room temperature to 200 °C as determined by TDA, at temperatures higher than −30 °C, at lower strain rates and with higher hydrogen content. Next, the same effects on hydrogen-induced lattice defects were also evaluated by TDA using hydrogen as a probe. Peak 2 hydrogen showed no significant effect on either hydrogen-induced lattice defects or hydrogen embrittlement susceptibility. It was found that hydrogen-induced lattice defects formed under the conditions where hydrogen embrittlement susceptibility increased. This relationship indicates that hydrogen embrittlement susceptibility was higher under the conditions where the formation of hydrogen-induced lattice defects tended to be enhanced. Since hydrogen-induced lattice defects formed by the interaction between hydrogen and strain were annihilated by annealing at a temperature of 200 °C, they were presumably vacancies or vacancy clusters. One of the common atomic-level changes that occur in cold-drawn pearlitic steel showing higher hydrogen embrittlement susceptibility is the formation of vacancies and vacancy clusters

  16. Computational modelling of hydrogen embrittlement in welded structures

    Science.gov (United States)

    Barrera, O.; Cocks, A. C. F.

    2013-07-01

    This paper deals with the modelling of the combined hydrogen embrittlement phenomena: hydrogen-enhanced local plasticity (HELP) and hydrogen-induced decohesion (HID) in dissimilar welds through a cohesive zone modelling approach (CZM). Fractured samples of dissimilar weld interfaces in AISI8630/IN625 show that cracks propagate in a region called the "featureless" region located in the Nickel side of the weld. This region is characterized by the presence of a distribution of fine ? carbides. We model the effect of hydrogen on the material toughness as the result of a synergistic effect of HELP and HID mechanisms where (i) hydrogen enhanced dislocation mobility promotes the development of dislocation structures at the ? carbides which increases the stress on the particles; while the presence of hydrogen also results in (ii) a reduction in the (a) cohesive strength of the carbide/matrix interface and (b) in the local flow stress of the matrix. The decohesion mechanism at the carbide/matrix interface is modelled through a two-dimensional user-defined cohesive element implemented in a FORTRAN subroutine (UEL) in the commercial finite element code ABAQUS and the effect of the hydrogen on the plasticity properties of the matrix is coded in a UMAT routine. Preliminary analysis on a unit cell representing the matrix/carbide system under plane strain shows that HELP and HID are competitive mechanisms. When the combined mechanism HELP+HID occurs microcracks form at the matrix/carbide interface due to decohesion process followed by localization of plastic flow responsible for the link-up of the microcracks.

  17. Hydrogen embrittlement considerations in niobium-base alloys for application in the ITER divertor

    International Nuclear Information System (INIS)

    Peterson, D.T.; Hull, A.B.; Loomis, B.A.

    1991-01-01

    The ITER divertor will be subjected to hydrogen from aqueous corrosion by the coolant and by transfer from the plasma. Global hydrogen concentrations are one factor in assessing hydrogen embrittlement but local concentrations affected by source fluxes and thermotransport in thermal gradients are more important considerations. Global hydrogen concentrations is some corrosion- tested alloys will be presented and interpreted. The degradation of mechanical properties of Nb-base alloys due to hydrogen is a complex function of temperature, hydrogen concentration, stresses and alloy composition. The known tendencies for embrittlement and hydride formation in Nb alloys are reviewed

  18. Direct evaluation of grain boundary hydrogen embrittlement: A micro-mechanical approach

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yoshimasa, E-mail: yoshim-t@kansai-u.ac.jp [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680 (Japan); Kondo, Hikaru; Asano, Ryo [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680 (Japan); Arai, Shigeo; Higuchi, Kimitaka; Yamamoto, Yuta; Muto, Shunsuke; Tanaka, Nobuo [Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2016-04-20

    In order to directly investigate the grain boundary (GB) hydrogen embrittlement in polycrystalline materials, a novel micro-mechanical testing method was developed. By combining a site-specific sampling technique and a high-voltage environmental transmission electron microscope (HV ETEM), the fracture property of micro-cantilever specimens fabricated from the same GB in a nickel-aluminide (Ni{sub 3}Al) polycrystal was critically compared in environments with/without hydrogen (H{sub 2}) gas. For randomly oriented GBs, brittle fracture nucleation accompanied by plastic deformation was observed in a H{sub 2}-containing environment except for ones with small orientation difference. No GB fracture was observed for coherent Σ3 boundaries. It also appeared that the similitude of the hydrogen-enhanced decohesion (HEDE) mechanism was still valid even for the submicron-scale specimens.

  19. Hydrogen embrittlement, revisited by in situ electrochemical nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Barnoush, Afrooz

    2007-07-01

    The fine scale mechanical probing capability of NI-AFM was used to examine hydrogen interaction with plasticity. To realize this, an electrochemical three electrode setup was incorporated into the NI-AFM. The developed ECNI-AFM is capable of performing nanoindentation as well as imaging surfaces inside electrolytes. The developed ECNI-AFM setup was used to examine the effect of cathodically charged hydrogen on dislocation nucleation in pure metals and alloys. It was shown that hydrogen reduces the pop-in load in all of the tested materials except Cu. The reduced pop-in load can be interpreted as the HELP mechanism. Classical dislocation theory was used to model the homogeneous dislocation nucleation and it was shown that H reduces the activation energy for dislocation nucleation in H sensitive metals which are not undergoing a phase transformation. The activation energy for dislocation nucleation is related to the material specific parameters; shear modulus {mu}, dislocation core radius {rho} and in the case of partial dislocation nucleation, stacking fault energy {gamma}. These material properties can be influenced by H resulting in a reduced activation energy for dislocation nucleation. The universality of cohesion in bulk metals relates the reduction of the shear modulus to the reduction of the cohesion, meaning HEDE mechanism. The increase in the core radius of a dislocation due to H is a direct evidence of decrease in dislocation line energy and H segregation on the dislocation line. In the case of partial dislocations, the H can segregate on to the stacking fault ribbon and decrease {gamma}. This inhibits the cross slip process and enhances the slip planarity. Thus, HELP and HEDE are the two sides of a coin resulting in H embrittlement. However depending on the experimental approach utilized to probe the H effect, either HELP or HEDE can be observed. In this study, however, by utilizing a proper experimental approach, it was possible to resolve the

  20. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel

    OpenAIRE

    Li, Songjie; Akiyama, Eiji; Yuuji, Kimura; Tsuzaki, Kaneaki; Uno, Nobuyoshi; Zhang, Boping

    2010-01-01

    The hydrogen embrittlement property of a prototype 1700-MPa-class ultrahigh-strength steel (NIMS17) containing hydrogen traps was evaluated using a slow strain rate test (SSRT) after cathodic hydrogen precharging, cyclic corrosion test (CCT) and atmospheric exposure. The hydrogen content in a fractured specimen was measured after SSRT by thermal desorption spectroscopy (TDS). The relationship between fracture stress and hydrogen content for the hydrogen-precharged specimens showed that the fr...

  1. Hydrogen embrittlement of duplex steel tested using slow strain rate test

    Directory of Open Access Journals (Sweden)

    P. Vaňova

    2014-04-01

    Full Text Available This paper is dealing with hydrogen embrittlement of austenitic-ferritic 2205 duplex steel using the slow strain rate test (SSRT. The original material was subjected to heat treatment under 700 °C during 5 hours and following aircooling with the aim of provoking sigma phase precipitation and embrittlement of the material. The samples of both states were electrolytic saturation with hydrogen in 0,1N solution of sulfuric acid (H2SO4 with addition KSCN during 24 hours. The hydrogen embrittlement appeared on fracture surfaces of tested tensile bars as a quasi-cleavage damage on their perimeter. From the established depth of hydrogen charging the diffusion coefficient of hydrogen in duplex steel with ferritic-austenitic structure and with the structure containing the sigma phase as well were estimated.

  2. Hydrogen embrittlement of type 410 stainless steel in sodium chloride, sodium sulfate, and sodium hydroxide environments at 90 C

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rodriguez, J.G.; Salinas-Bravo, V.M. [Inst. de Investigaciones Electricas, Cuernavaca (Mexico). Dept. Fisico Quimica Aplicada; Martinez-Villafane, A. [Centro de Investigaciones en Materiales Avanzados Leon Tolstoi, Chihuahua (Mexico)

    1997-06-01

    Susceptibility of martensitic type 410 (UNS S41000) stainless steel (SS) to environmental cracking was evaluated at 90 C in concentrated sodium chloride, sodium sulfate and sodium hydroxide solutions, all of which are environments related to steam turbine conditions, using the slow strain rate testing (SSRT) technique. In NaCl, the effects of solution pH, concentration, and anodic and cathodic polarization were investigated. Tests were supplemented by detailed electron fractography and hydrogen permeation measurements. A clear correlation was found between the degree of embrittlement and the amount of hydrogen permeating the steel, suggesting a hydrogen-induced cracking mechanism.

  3. Low Hydrogen Embrittlement (LHE) Zn-Ni Plating Qualification and Implementation on Landing Gear Components

    Science.gov (United States)

    2012-08-01

    Testing BE AMERICA’S BEST STRENGTH AND HONOR Re-Embrittlement results: • Coupons tested by an ISO 9001 certified facility. Coupons...Ogden Air Logistics Center Low Hydrogen Embrittlement (LHE) Zn-Ni Plating Qualification and Implementation on Landing Gear Components Dave...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Ogden Air Logistics Center,Hill AFB,UT,84056 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING

  4. Embrittlement of nickel-, cobalt-, and iron-base superalloys by exposure to hydrogen

    Science.gov (United States)

    Gray, H. R.

    1975-01-01

    Five nickel-base alloys (Inconel 718, Udimet 700, Rene 41, Hastelloy X, and TD-NiCr), one cobalt-base alloy (L-605), and an iron-base alloy (A-286) were exposed in hydrogen at 0.1 MN/sq m (15 psi) at several temperatures in the range from 430 to 980 C for as long as 1000 hours. These alloys were embrittled to varying degrees by such exposures in hydrogen. Embrittlement was found to be: (1) sensitive to strain rate, (2) reversible, (3) caused by large concentrations of absorbed hydrogen, and (4) not associated with any detectable microstructural changes in the alloys. These observations are consistent with a mechanism of internal reversible hydrogen embrittlement.

  5. Influence of grain boundary phosphorus segregation on hydrogen embrittlement in steel

    International Nuclear Information System (INIS)

    Platonov, P.A.; Amaev, A.D.; Nikolaev, V.A.; Tursunov, I.E.; Krasikov, E.A.; Levit, V.I.; Nikitin, S.V.; Biryukov, A.Yu.; Gorskij, K.V.; Popov, V.V.

    1986-01-01

    Experimental investigation into the effect of grain-boundary impurity segregations on hydrogen embrittlement of pearlite steel was carried on. It is shown that thermal ageing during 10 3 and 10 4 h and subsequent hydridation result in complete loss of ductility. At that phosphorus and carbon impurity aggregations form casing synergism between thermal and hydrogen embrittlements. The similar interaction causing the formation of intergranular cracks with out applying external stress can result in fracture of idle steel. The determining effect on the fracture mechanism of hydrogen interaction with intergranular microstructural heterogeneities (in particular, impurity segregations) is noted

  6. Hydrogen embrittlement of high strength steel electroplated with zincâ  cobalt allo

    OpenAIRE

    Hillier, Elizabeth M. K.; Robinson, M. J.

    2004-01-01

    Slow strain rate tests were performed on quenched and tempered AISI 4340 steel to measure the extent of hydrogen embrittlement caused by electroplating with zincâ  cobalt alloys. The effects of bath composition and pH were studied and compared with results for electrodeposited cadmium and zincâ  10%nickel. It was found that zincâ  1%cobalt alloy coatings caused serious hydrogen embrittlement (EI 0.63); almost as severe as that of cadmium (EI 0.78). Baking cadmium plate...

  7. Influence of nitrogen alloying on hydrogen embrittlement in AISI 304-type stainless steels

    Science.gov (United States)

    Hannula, Simo-Pekka; Hänninen, Hannu; Tähtinen, Seppo

    1984-12-01

    Hydrogen embrittlement of AISI 304-type austenitic stainless steels has been studied with special emphasis on the effects of the nitrogen content of the steels. Hydrogen charging was found to degrade the mechanical properties of all the steels studied, as measured by a tensile test. The fracture surfaces of hydrogen charged specimens were brittle cleavage-like whereas the uncharged specimens showed ductile, dimpled fracture. In sensitized materials transgranular cleavage mode of fracture was replaced by an intergranular mode of fracture and the losses of mechanical properties were higher. Nitrogen alloying decreased the hydrogen-induced losses of mechanical properties by increasing the stability of austenite. In sensitized steels the stability of austenite and nitrogen content were found to have only a minor effect on hydrogen embrittlement, except when sensitization had caused α'-martensite transformation at the grain boundaries.

  8. Experimental study on the resistance to hydrogen embrittlement of NIFS-V4Cr4Ti alloy

    International Nuclear Information System (INIS)

    Chen Jiming; Xu Zengyu; Den Ying; Muroga, T.

    2002-01-01

    SWIP (Southwestern Institute of Physics) has joined an international collaboration on the hydrogen embrittlement resistance evaluation of the vanadium alloy. This paper presents some experiments on the tensile properties and Charpy impact properties of the NIFS-V4Cr4Ti alloy with high-level hydrogen concentration. The experiment results show different properties against hydrogen embrittlement in static tension and impact load. The critical hydrogen concentration required to embrittle the alloy was about 215 - 310 mg·kg -1 on static tension load, but less than 130 mg·kg -1 on impact loading

  9. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Song, R.G.; Dietzel, W.; Zhang, B.J.; Liu, W.J.; Tseng, M.K.; Atrens, A.

    2004-01-01

    The age hardening, stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of an Al-Zn-Mg-Cu 7175 alloy were investigated experimentally. There were two peak-aged states during ageing. For ageing at 413 K, the strength of the second peak-aged state was slightly higher than that of the first one, whereas the SCC susceptibility was lower, indicating that it is possible to heat treat 7175 to high strength and simultaneously to have high SCC resistance. The SCC susceptibility increased with increasing Mg segregation at the grain boundaries. Hydrogen embrittlement (HE) increased with increased hydrogen charging and decreased with increasing ageing time for the same hydrogen charging conditions. Computer simulations were carried out of (a) the Mg grain boundary segregation using the embedded atom method and (b) the effect of Mg and H segregation on the grain boundary strength using a quasi-chemical approach. The simulations showed that (a) Mg grain boundary segregation in Al-Zn-Mg-Cu alloys is spontaneous, (b) Mg segregation decreases the grain boundary strength, and (c) H embrittles the grain boundary more seriously than does Mg. Therefore, the SCC mechanism of Al-Zn-Mg-Cu alloys is attributed to the combination of HE and Mg segregation induced grain boundary embrittlement

  10. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel.

    Science.gov (United States)

    Li, Songjie; Akiyama, Eiji; Yuuji, Kimura; Tsuzaki, Kaneaki; Uno, Nobuyoshi; Zhang, Boping

    2010-04-01

    The hydrogen embrittlement property of a prototype 1700-MPa-class ultrahigh-strength steel (NIMS17) containing hydrogen traps was evaluated using a slow strain rate test (SSRT) after cathodic hydrogen precharging, cyclic corrosion test (CCT) and atmospheric exposure. The hydrogen content in a fractured specimen was measured after SSRT by thermal desorption spectroscopy (TDS). The relationship between fracture stress and hydrogen content for the hydrogen-precharged specimens showed that the fracture stress of NIMS17 steel was higher, at a given hydrogen content, than that of conventional AISI 4135 steels with tensile strengths of 1300 and 1500 MPa. This suggests better resistance of NIMS17 steel to hydrogen embrittlement. However, hydrogen uptake to NIMS17 steel under CCT and atmospheric exposure decreased the fracture stress. This is because of the stronger hydrogen uptake to the steel containing hydrogen traps than to the AISI 4135 steels. Although NIMS17 steel has a higher strength level than AISI 4135 steel with a tensile strength of 1500 MPa, the decrease in fracture stress is similar between these steels.

  11. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel

    Science.gov (United States)

    Li, Songjie; Akiyama, Eiji; Yuuji, Kimura; Tsuzaki, Kaneaki; Uno, Nobuyoshi; Zhang, Boping

    2010-04-01

    The hydrogen embrittlement property of a prototype 1700-MPa-class ultrahigh-strength steel (NIMS17) containing hydrogen traps was evaluated using a slow strain rate test (SSRT) after cathodic hydrogen precharging, cyclic corrosion test (CCT) and atmospheric exposure. The hydrogen content in a fractured specimen was measured after SSRT by thermal desorption spectroscopy (TDS). The relationship between fracture stress and hydrogen content for the hydrogen-precharged specimens showed that the fracture stress of NIMS17 steel was higher, at a given hydrogen content, than that of conventional AISI 4135 steels with tensile strengths of 1300 and 1500 MPa. This suggests better resistance of NIMS17 steel to hydrogen embrittlement. However, hydrogen uptake to NIMS17 steel under CCT and atmospheric exposure decreased the fracture stress. This is because of the stronger hydrogen uptake to the steel containing hydrogen traps than to the AISI 4135 steels. Although NIMS17 steel has a higher strength level than AISI 4135 steel with a tensile strength of 1500 MPa, the decrease in fracture stress is similar between these steels.

  12. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel

    Directory of Open Access Journals (Sweden)

    Songjie Li, Eiji Akiyama, Kimura Yuuji, Kaneaki Tsuzaki, Nobuyoshi Uno and Boping Zhang

    2010-01-01

    Full Text Available The hydrogen embrittlement property of a prototype 1700-MPa-class ultrahigh-strength steel (NIMS17 containing hydrogen traps was evaluated using a slow strain rate test (SSRT after cathodic hydrogen precharging, cyclic corrosion test (CCT and atmospheric exposure. The hydrogen content in a fractured specimen was measured after SSRT by thermal desorption spectroscopy (TDS. The relationship between fracture stress and hydrogen content for the hydrogen-precharged specimens showed that the fracture stress of NIMS17 steel was higher, at a given hydrogen content, than that of conventional AISI 4135 steels with tensile strengths of 1300 and 1500 MPa. This suggests better resistance of NIMS17 steel to hydrogen embrittlement. However, hydrogen uptake to NIMS17 steel under CCT and atmospheric exposure decreased the fracture stress. This is because of the stronger hydrogen uptake to the steel containing hydrogen traps than to the AISI 4135 steels. Although NIMS17 steel has a higher strength level than AISI 4135 steel with a tensile strength of 1500 MPa, the decrease in fracture stress is similar between these steels.

  13. Hydrogen embrittlement of thermomechanically treated 18Ni Maraging steel

    International Nuclear Information System (INIS)

    Munford, J.W.; Rack, H.J.; Kass, W.J.

    1977-01-01

    The influence of thermomechanical treatments on susceptibility to cracking in 100 percent relative humidity air and low pressure (93.3 KPa) gaseous hydrogen has been investigated for 18Ni (350 ksi) Maraging steel. Two thermomechanical treatments were studied, ausforming and marforming and compared with the standard solution treated and aged material. Although little difference exists for the strength and toughness values between these treatments, a two to five-fold increase in the stress intensity threshold for cracking was found for both the ausformed and marformed material. A dramatic difference in cracking kinetics was also apparent as shown by the failure times at comparable stress intensities. Fractographic analysis showed that the primary fracture mode was 100 percent intergranular for the solution treated and aged samples while the ausform and marform failures were predominately quasi-cleavage or intergranular depending on orientation. Finally, permeation and diffusion measurements were conducted on the above materials and these results are correlated with the environmental cracking behavior

  14. The risk of hydrogen embrittlement in high-strength prestressing steels under cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Isecke, B.; Mietz, J. (Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany))

    1993-01-01

    High strength prestressing steels in prestressed concrete structures are protected against corrosion due to passivation resulting from the high alkalinity of the concrete. If depassivation of the prestressing steel occurs due to the ingress of chlorides the corrosion risk can be minimized by application of cathodic protection with impressed current. The risk of hydrogen embrittlement of the prestressing steel is especially pronounced if overprotection is applied due to hydrogen evolution in the cathodic reaction. The present work considers this risk by hydrogen activity measurements under practical conditions and application of different levels of cathodic protection potentials. Information on threshold potentials in prestressed concrete structures is provided, too. (orig.).

  15. Using Small Punch tests in environment under static load for fracture toughness estimation in hydrogen embrittlement

    Science.gov (United States)

    Arroyo, B.; Álvarez, J. A.; Lacalle, R.; González, P.; Gutiérrez-Solana, F.

    2017-12-01

    In this paper, the response of three medium and high-strength steels to hydrogen embrittlement is analyzed by means of the quasi-non-destructive test known as the Small Punch Test (SPT). SPT tests on notched specimens under static load are carried out, applying Lacaclle’s methodology to estimate the fracture toughness for crack initiation, comparing the results to KIEAC fracture toughness obtained from C(T) precracked specimens tested in the same environment; SPT showed good correlation to standard tests. A novel expression was proposed to define the parameter KIEAC-SP as the suitable one to estimate the fracture toughness for crack initiation in hydrogen embrittlement conditions by Small Punch means, obtaining good accuracy in its estimations. Finally, Slow Rate Small Punch Tests (SRSPT) are proposed as a more efficient alternative, introducing an order of magnitude for the adequate rate to be employed.

  16. Bibliography of information on mechanics of structural failure (hydrogen embrittlement, protective coatings, composite materials, NDE)

    Science.gov (United States)

    Carpenter, J. L., Jr.

    1976-01-01

    This bibliography is comprised of approximately 1,600 reference citations related to four problem areas in the mechanics of failure in aerospace structures. The bibliography represents a search of the literature published in the period 1962-1976, the effort being largely limited to documents published in the United States. Listings are subdivided into the four problem areas: Hydrogen Embrittlement; Protective Coatings; Composite Materials; and Nondestructive Evaluation. An author index is included.

  17. Empirical Method to Estimate Hydrogen Embrittlement of Metals as a Function of Hydrogen Gas Pressure at Constant Temperature

    Science.gov (United States)

    Lee, Jonathan A.

    2010-01-01

    High pressure Hydrogen (H) gas has been known to have a deleterious effect on the mechanical properties of certain metals, particularly, the notched tensile strength, fracture toughness and ductility. The ratio of these properties in Hydrogen as compared to Helium or Air is called the Hydrogen Environment Embrittlement (HEE) Index, which is a useful method to classify the severity of H embrittlement and to aid in the material screening and selection for safety usage H gas environment. A comprehensive world-wide database compilation, in the past 50 years, has shown that the HEE index is mostly collected at two conveniently high H pressure points of 5 ksi and 10 ksi near room temperature. Since H embrittlement is directly related to pressure, the lack of HEE index at other pressure points has posed a technical problem for the designers to select appropriate materials at a specific H pressure for various applications in aerospace, alternate and renewable energy sectors for an emerging hydrogen economy. Based on the Power-Law mathematical relationship, an empirical method to accurately predict the HEE index, as a function of H pressure at constant temperature, is presented with a brief review on Sievert's law for gas-metal absorption.

  18. Effect of Strain-Induced Martensite on Tensile Properties and Hydrogen Embrittlement of 304 Stainless Steel

    Science.gov (United States)

    Kim, Young Suk; Bak, Sang Hwan; Kim, Sung Soo

    2016-01-01

    Room temperature tensile tests have been conducted at different strain rates ranging from 2 × 10-6 to 1 × 10-2/s on hydrogen-free and hydrogen-charged 304 stainless steel (SS). Using a ferritescope and neutron diffraction, the amount of strain-induced martensite (SIM) has been in situ measured at the center region of the gage section of the tensile specimens or ex situ measured on the fractured tensile specimens. The ductility, tensile stress, hardness, and the amount of SIM increase with decreasing strain rate in hydrogen-free 304 SS and decrease in hydrogen-charged one. Specifically, SIM that forms during tensile tests is beneficial in increasing the ductility, strain hardening, and tensile stress of 304 SS, irrespective of the presence of hydrogen. A correlation of the tensile properties of hydrogen-free and hydrogen-charged 304 SS and the amount of SIM shows that hydrogen suppresses the formation of SIM in hydrogen-charged 304 SS, leading to a ductility loss and localized brittle fracture. Consequently, we demonstrate that hydrogen embrittlement of 304 SS is related to hydrogen-suppressed formation of SIM, corresponding to the disordered phase, according to our proposition. Compelling evidence is provided by the observations of the increased lattice expansion of martensite with decreasing strain rate in hydrogen-free 304 SS and its lattice contraction in hydrogen-charged one.

  19. Preventing the embrittling by hydrogen when galvanizing high-grade steel

    Energy Technology Data Exchange (ETDEWEB)

    Paatsch, W.

    1987-09-01

    Galvanic precipitation of a double layer consisting of a dull nickel layer overlaid with a brilliant zinc layer on low-alloyed high-strength steel grades leads to the forming of zinc-nickel alloy layers during the subsequent heat treatment. According to traction tests carried out on high-strength steel grades, as well as to hydrogen permeability tests, this process prevents embrittling by hydrogen which might be caused by galvanic process sequences - and creates a diffusion block at the same time. The alloy layers have an excellent corrosion resistance and temperature stability.

  20. Numerical Simulation of Tensile Behavior of Corroded Aluminum Alloy 2024 T3 Considering the Hydrogen Embrittlement

    Directory of Open Access Journals (Sweden)

    Marina C. Vasco

    2018-01-01

    Full Text Available A multi-scale modeling approach for simulating the tensile behavior of the corroded aluminum alloy 2024 T3 was developed, accounting for both the geometrical features of corrosion damage and the effect of corrosion-induced hydrogen embrittlement (HE. The approach combines two Finite Element (FE models: a model of a three-dimensional Representative Unit Cell (RUC, representing an exfoliated area and its correspondent hydrogen embrittled zone (HEZ, and a model of the tensile specimen. The models lie at the micro- and macro-scales, respectively. The characteristics of the HEZ are determined from measurements of nanoindentation hardness, conducted on pre-corroded specimens. Using the model of the RUC, the local homogenized mechanical behavior of the corroded material is simulated. Then, the behavior of the exfoliated areas is assigned into different areas (elements of the tensile specimen and final analyses are performed to simulate the tensile behavior of the corroded material. The approach was applied to model specimens after 8, 16 and 24 h exposure periods of the Exfoliation Corrosion (EXCO test. For validation of the approach, tensile tests were used. The numerical results show that this approach is suitable for accurately simulating the tensile behavior of pre-corroded experimental specimens, accounting for both geometrical features of corrosion damage and corrosion-induced HE.

  1. Standard Test Method for Mechanical Hydrogen Embrittlement Evaluation of Plating/Coating Processes and Service Environments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method describes mechanical test methods and defines acceptance criteria for coating and plating processes that can cause hydrogen embrittlement in steels. Subsequent exposure to chemicals encountered in service environments, such as fluids, cleaning treatments or maintenance chemicals that come in contact with the plated/coated or bare surface of the steel, can also be evaluated. 1.2 This test method is not intended to measure the relative susceptibility of different steels. The relative susceptibility of different materials to hydrogen embrittlement may be determined in accordance with Test Method F1459 and Test Method F1624. 1.3 This test method specifies the use of air melted AISI E4340 steel per SAE AMS-S-5000 (formerly MIL-S-5000) heat treated to 260 – 280 ksi (pounds per square inch x 1000) as the baseline. This combination of alloy and heat treat level has been used for many years and a large database has been accumulated in the aerospace industry on its specific response to exposure...

  2. A cohesive zone model to simulate the hydrogen embrittlement effect on a high-strength steel

    Directory of Open Access Journals (Sweden)

    G. Gobbi

    2016-01-01

    Full Text Available The present work aims to model the fracture mechanical behavior of a high-strength low carbon steel, AISI 4130 operating in hydrogen contaminated environment. The study deals with the development of 2D finite element cohesive zone model (CZM reproducing a toughness test. Along the symmetry plane over the crack path of a C(T specimen a zero thickness layer of cohesive elements are implemented in order to simulate the crack propagation. The main feature of this kind of model is the definition of a traction-separation law (TSL that reproduces the constitutive response of the material inside to the cohesive elements. Starting from a TSL calibrated on hydrogen non-contaminated material, the embrittlement effect is simulated by reducing the cohesive energy according to the total hydrogen content including the lattice sites (NILS and the trapped amount. In this perspective, the proposed model consists of three steps of simulations. First step evaluates the hydrostatic pressure. It drives the initial hydrogen concentration assigned in the second step, a mass diffusion analysis, defining in this way the contribution of hydrogen moving across the interstitial lattice sites. The final stress analysis, allows getting the total hydrogen content, including the trapped amount, and evaluating the new crack initiation and propagation due to the hydrogen presence. The model is implemented in both plane strain and plane stress configurations; results are compared in the discussion. From the analyses, it resulted that hydrogen is located only into lattice sites and not in traps, and that the considered steel experiences a high hydrogen susceptibility. By the proposed procedure, the developed numerical model seems a reliable and quick tool able to estimate the mechanical behavior of steels in presence of hydrogen.

  3. Studies of Evaluation of Hydrogen Embrittlement Property of High-Strength Steels with Consideration of the Effect of Atmospheric Corrosion

    Science.gov (United States)

    Akiyama, Eiji; Wang, Maoqiu; Li, Songjie; Zhang, Zuogui; Kimura, Yuuji; Uno, Nobuyoshi; Tsuzaki, Kaneaki

    2013-03-01

    Hydrogen embrittlement of high-strength steels was investigated by using slow strain rate test (SSRT) of circumferentially notched round bar specimens after hydrogen precharging. On top of that, cyclic corrosion tests (CCT) and outdoor exposure tests were conducted prior to SSRT to take into account the effect of hydrogen uptake under atmospheric corrosion for the evaluation of the susceptibility of high-strength steels. Our studies of hydrogen embrittle properties of high-strength steels with 1100 to 1500 MPa of tensile strength and a prototype ultrahigh-strength steel with 1760 MPa containing hydrogen traps using those methods are reviewed in this article. A power law relationship between notch tensile strength of hydrogen-precharged specimens and diffusible hydrogen content has been found. It has also been found that the local stress and the local hydrogen concentration are controlling factors of fracture. The results obtained by using SSRT after CCT and outdoor exposure test were in good agreement with the hydrogen embrittlement fracture property obtained by means of long-term exposure tests of bolts made of the high-strength steels.

  4. Effect of Microstructure and Alloy Chemistry on Hydrogen Embrittlement of Precipitation-Hardened Ni-Based Alloys

    Science.gov (United States)

    Obasi, G. C.; Zhang, Z.; Sampath, D.; Morana, Roberto; Akid, R.; Preuss, M.

    2018-02-01

    The sensitivity to hydrogen embrittlement (HE) has been studied in respect of precipitation size distributions in two nickel-based superalloys: Alloy 718 (UNS N07718) and Alloy 945X (UNS N09946). Quantitative microstructure analysis was carried out by the combination of scanning and transmission electron microscopy and energy dispersive x-ray spectroscopy (EDS). While Alloy 718 is mainly strengthened by γ″, and therefore readily forms intergranular δ phase, Alloy 945X has been designed to avoid δ formation by reducing Nb levels providing high strength through a combination of γ' and γ″. Slow strain rate tensile tests were carried out for different microstructural conditions in air and after cathodic hydrogen (H) charging. HE sensitivity was determined based on loss of elongation due to the H uptake in comparison to elongation to failure in air. Results showed that both alloys exhibited an elevated sensitivity to HE. Fracture surfaces of the H precharged material showed quasi-cleavage and transgranular cracks in the H-affected region, while ductile failure was observed toward the center of the sample. The crack origins observed on the H precharged samples exhibited quasi-cleavage with slip traces at high magnification. The sensitivity is slightly reduced for Alloy 718, by coarsening γ″ and reducing the overall strength of the alloy. However, on further coarsening of γ″, which promotes continuous decoration of grain boundaries with δ phase, the embrittlement index rose again indicating a change of hydrogen embrittlement mechanism from hydrogen-enhanced local plasticity (HELP) to hydrogen-enhanced decohesion embrittlement (HEDE). In contrast, Alloy 945X displayed a strong correlation between strength, based on precipitation size and embrittlement index, due to the absence of any significant formation of δ phase for the investigated microstructures. For the given test parameters, Alloy 945X did not display any reduced sensitivity to HE compared with

  5. Effect of Microstructure and Alloy Chemistry on Hydrogen Embrittlement of Precipitation-Hardened Ni-Based Alloys

    Science.gov (United States)

    Obasi, G. C.; Zhang, Z.; Sampath, D.; Morana, Roberto; Akid, R.; Preuss, M.

    2018-04-01

    The sensitivity to hydrogen embrittlement (HE) has been studied in respect of precipitation size distributions in two nickel-based superalloys: Alloy 718 (UNS N07718) and Alloy 945X (UNS N09946). Quantitative microstructure analysis was carried out by the combination of scanning and transmission electron microscopy and energy dispersive x-ray spectroscopy (EDS). While Alloy 718 is mainly strengthened by γ″, and therefore readily forms intergranular δ phase, Alloy 945X has been designed to avoid δ formation by reducing Nb levels providing high strength through a combination of γ' and γ″. Slow strain rate tensile tests were carried out for different microstructural conditions in air and after cathodic hydrogen (H) charging. HE sensitivity was determined based on loss of elongation due to the H uptake in comparison to elongation to failure in air. Results showed that both alloys exhibited an elevated sensitivity to HE. Fracture surfaces of the H precharged material showed quasi-cleavage and transgranular cracks in the H-affected region, while ductile failure was observed toward the center of the sample. The crack origins observed on the H precharged samples exhibited quasi-cleavage with slip traces at high magnification. The sensitivity is slightly reduced for Alloy 718, by coarsening γ″ and reducing the overall strength of the alloy. However, on further coarsening of γ″, which promotes continuous decoration of grain boundaries with δ phase, the embrittlement index rose again indicating a change of hydrogen embrittlement mechanism from hydrogen-enhanced local plasticity (HELP) to hydrogen-enhanced decohesion embrittlement (HEDE). In contrast, Alloy 945X displayed a strong correlation between strength, based on precipitation size and embrittlement index, due to the absence of any significant formation of δ phase for the investigated microstructures. For the given test parameters, Alloy 945X did not display any reduced sensitivity to HE compared with

  6. Hydrogen embrittlement: the game changing factor in the applicability of nickel alloys in oilfield technology.

    Science.gov (United States)

    Sarmiento Klapper, Helmuth; Klöwer, Jutta; Gosheva, Olesya

    2017-07-28

    Precipitation hardenable (PH) nickel (Ni) alloys are often the most reliable engineering materials for demanding oilfield upstream and subsea applications especially in deep sour wells. Despite their superior corrosion resistance and mechanical properties over a broad range of temperatures, the applicability of PH Ni alloys has been questioned due to their susceptibility to hydrogen embrittlement (HE), as confirmed in documented failures of components in upstream applications. While extensive work has been done in recent years to develop testing methodologies for benchmarking PH Ni alloys in terms of their HE susceptibility, limited scientific research has been conducted to achieve improved foundational knowledge about the role of microstructural particularities in these alloys on their mechanical behaviour in environments promoting hydrogen uptake. Precipitates such as the γ ', γ '' and δ-phase are well known for defining the mechanical and chemical properties of these alloys. To elucidate the effect of precipitates in the microstructure of the oil-patch PH Ni alloy 718 on its HE susceptibility, slow strain rate tests under continuous hydrogen charging were conducted on material after several different age-hardening treatments. By correlating the obtained results with those from the microstructural and fractographic characterization, it was concluded that HE susceptibility of oil-patch alloy 718 is strongly influenced by the amount and size of precipitates such as the γ ' and γ '' as well as the δ-phase rather than by the strength level only. In addition, several HE mechanisms including hydrogen-enhanced decohesion and hydrogen-enhanced local plasticity were observed taking place on oil-patch alloy 718, depending upon the characteristics of these phases when present in the microstructure.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  7. Hydrogen embrittlement: the game changing factor in the applicability of nickel alloys in oilfield technology

    Science.gov (United States)

    Sarmiento Klapper, Helmuth; Klöwer, Jutta; Gosheva, Olesya

    2017-06-01

    Precipitation hardenable (PH) nickel (Ni) alloys are often the most reliable engineering materials for demanding oilfield upstream and subsea applications especially in deep sour wells. Despite their superior corrosion resistance and mechanical properties over a broad range of temperatures, the applicability of PH Ni alloys has been questioned due to their susceptibility to hydrogen embrittlement (HE), as confirmed in documented failures of components in upstream applications. While extensive work has been done in recent years to develop testing methodologies for benchmarking PH Ni alloys in terms of their HE susceptibility, limited scientific research has been conducted to achieve improved foundational knowledge about the role of microstructural particularities in these alloys on their mechanical behaviour in environments promoting hydrogen uptake. Precipitates such as the γ', γ'' and δ-phase are well known for defining the mechanical and chemical properties of these alloys. To elucidate the effect of precipitates in the microstructure of the oil-patch PH Ni alloy 718 on its HE susceptibility, slow strain rate tests under continuous hydrogen charging were conducted on material after several different age-hardening treatments. By correlating the obtained results with those from the microstructural and fractographic characterization, it was concluded that HE susceptibility of oil-patch alloy 718 is strongly influenced by the amount and size of precipitates such as the γ' and γ'' as well as the δ-phase rather than by the strength level only. In addition, several HE mechanisms including hydrogen-enhanced decohesion and hydrogen-enhanced local plasticity were observed taking place on oil-patch alloy 718, depending upon the characteristics of these phases when present in the microstructure. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  8. Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners.

    Science.gov (United States)

    Brahimi, S V; Yue, S; Sriraman, K R

    2017-07-28

    High-strength steel fasteners characterized by tensile strengths above 1100 MPa are often used in critical applications where a failure can have catastrophic consequences. Preventing hydrogen embrittlement (HE) failure is a fundamental concern implicating the entire fastener supply chain. Research is typically conducted under idealized conditions that cannot be translated into know-how prescribed in fastener industry standards and practices. Additionally, inconsistencies and even contradictions in fastener industry standards have led to much confusion and many preventable or misdiagnosed fastener failures. HE susceptibility is a function of the material condition, which is comprehensively described by the metallurgical and mechanical properties. Material strength has a first-order effect on HE susceptibility, which increases significantly above 1200 MPa and is characterized by a ductile--brittle transition. For a given concentration of hydrogen and at equal strength, the critical strength above which the ductile-brittle transition begins can vary due to second-order effects of chemistry, tempering temperature and sub-microstructure. Additionally, non-homogeneity of the metallurgical structure resulting from poorly controlled heat treatment, impurities and non-metallic inclusions can increase HE susceptibility of steel in ways that are measurable but unpredictable. Below 1200 MPa, non-conforming quality is often the root cause of real-life failures.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  9. Nanomechanical evaluation of the protectiveness of nitrided layers against hydrogen embrittlement

    International Nuclear Information System (INIS)

    Asgari, M.; Barnoush, A.; Johnsen, R.; Hoel, R.

    2012-01-01

    Highlights: ► Plasma nitride layer of 316 SS was studied by electrochemical nanoindentation. ► H effect on mechanical properties of the substrate and nitride layer was studied. ► H increases the hardness of 316 SS and has opposite effect on the nitride layer. ► The H induced softening is advantageous for controlling the H embrittlement. ► The H induced softening is dependent on the N concentration. - Abstract: In this work, the nitrided layer on austenitic AISI 316L stainless steels were examined by means of in situ electrochemical nanoindentation, and the effect of electrochemically charged hydrogen on the mechanical properties were investigated. By using this method, changes in the mechanical properties due to the absorption of atomic hydrogen at different nitride layer depths have been traced. One important finding is that hydrogen charging of the nitriding layer can soften the layer and reduce the layer hardness, and the reduction of the nitrogen concentration in the nitride layer reduces this softening effect.

  10. On physics of the hydrogen plasticization and embrittlement of metallic materials, relevance to the safety and standards' problems

    International Nuclear Information System (INIS)

    Yury S Nechaev; Georgy A Filippov; T Nejat Veziroglu

    2006-01-01

    In the present contribution, some related fundamental problems of revealing micro mechanisms of hydrogen plasticization, superplasticity, embrittlement, cracking, blistering and delayed fracture of some technologically important industrial metallic materials are formulated. The ways are considered of these problems' solution and optimizing the technological processes and materials, particularly in the hydrogen and gas-petroleum industries, some aircraft, aerospace and automobile systems. The results are related to the safety and standardization problems of metallic materials, and to the problem of their compatibility with hydrogen. (authors)

  11. Embrittlement of steels for hydrogen transport and storage under high pressure; Fragilisation des aciers destines au transport et au stockage de l'hydrogene sous haute pression

    Energy Technology Data Exchange (ETDEWEB)

    Jouinot, P.; Gantchenko, V.; Katundi, D. [Institut Superieur de Mecanique de Paris (ISMEP-Sumeca), 93 - Saint-Ouen (France)

    2007-07-01

    This work deals with gaseous hydrogen embrittlement of steels for pipelines having a relatively high mechanical resistance (elasticity limit: 550 MPa, Grade 80). The studied materials come from 5 tube steels batch already used for hydrocarbons transport. Plates have been obtained by continuous casting followed by a hot controlled rolling: the rolling temperature is adjusted for obtaining a strain hardening in order to increase the mechanical resistance of the steel. These materials have been tested under hydrogen pressure and the resistance to hydrogen has been measured for each of them. The results show that the hydrogen embrittlement decreases when the mechanical resistance of the plate (or its hardness) increases. The inclusion state of the different steels has been quantified by images analysis at different depths in the plates. These steels contain only globular oxides or aligned aluminates. The hydrogen embrittlement increases with the amount of the globular oxides (or with the length of the aligned aluminates). Micrographic and fractographic analyses show that even small globular inclusions ({phi}=1 {mu}m) concentrate enough hydrogen to induce a crack in the material or to lead to a crack propagation. In order to estimate the homogeneity of the ferrito-perlitic structure, the thickness of ferrite bands have been measured. The hydrogen embrittlement increases as the thickness of the ferrite bands, that is to say, as the heterogeneity of the structure. Micrographs have shown that the hydrogen cracking is initiated on perlite aggregates; the crack propagates then in ferrite and joins then others perlitic areas. This study shows that relatively resistant steels (Grade 80, elasticity limit: 550 MPa) can be used for manufacturing pipelines submitted to high hydrogen pressure. (O.M.)

  12. Blistering and hydride embrittlement

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1975-01-01

    The effects of hydrogen on the mechanical properties of metals have been categorized into several groups. Two of the groups, hydrogen blistering and hydride embrittlement, are reasonably well understood, and problems relating to their occurrence may be avoided if that understanding is used as a basis for selecting alloys for hydrogen service. Blistering and hydride embrittlement are described along with several techniques of materials selection and used to minimize their adverse effects. (U.S.)

  13. A Study on the Small Punch Test for Fracture Strength Evaluation of CANDU Pressure Tube Embrittled by Hydrogen

    International Nuclear Information System (INIS)

    Nho, Seung Hwan; Ong, Jang Woo; Yu, Hyo Sun; Chung, Se Hi

    1996-01-01

    The purpose of this study is to investigate the usefulness of small punch(SP) test using miniaturized specimens as a method for fracture strength evaluation of CANDU pressure tube embrittled by hydrogen. According to the test results, the fracture strength evaluation as a function of hydrogen concentration at -196 .deg. C was much better than that at room temperature, as the difference of SP fracture energy(Esp) with hydrogen concentration was more significant at -196 .deg. C than at room temperature for the hydrogen concentration up to 300ppm-H. It was also observed that the peak of average AE energy, the cumulative average AE energy and the cumulative average AE energy per equivalent fracture, strain increased with the increase of hydrogen concentration. From the results of load-displacement behaviors, Esp behaviors, macro- and micro-SEM fractographs and AE test it has been concluded that the SP test method using miniaturized specimen(10mmx10mmx0.5mm) will be a useful test method to evaluate the fracture strength for CANDU pressure tube embrittled by hydrogen

  14. Effect of post weld heat treatments on the resistance to the hydrogen embrittlement of soft martensitic stainless steel

    International Nuclear Information System (INIS)

    Hazarabedian, Alfredo; Ovejero Garcia, Jose; Bilmes, P.; Llorente, C.

    2003-01-01

    The effect of external hydrogen on the tensile properties of an all weld sample of a soft martensitic stainless steel was studied. The material was tested in the as weld condition and after tempered conditions modifying the austenite content, and changing the quantity, type and distribution of precipitates. Hydrogen was introduced by cathodic charge or by immersion in an acid brine saturated whit 1 atm hydrogen sulphide, during the mechanical test. The as weld condition showed a good resistance in the hydrogen sulphide, were the tempered samples were embrittled. Under cathodic charge, all samples were susceptible to hydrogen damage. The embritting mechanisms were the same in both environments. When the austenite content, was below 10% the crack path is on the primary austenite grain boundary. At higher austenite content, the crack is transgranular. (author)

  15. On critical hydrogen concentration for hydrogen embrittlement of Fe3Al

    Indian Academy of Sciences (India)

    Unknown

    It is important to note that the crack tip, however, is maintained sharp even at low levels of applied stress. Due to this atomically sharp crack being maintained, both during nucleation and growth, the enhancement of hydrogen solubility is maintained ahead of the crack tip (because of the large strain ahead of the crack tip).

  16. Gaseous hydrogen embrittlement of an API X80 ferrito-pearlitic steel; Fragilisation par l'hydrogene gazeux d'un acier ferrito-perlitique de grade API X80

    Energy Technology Data Exchange (ETDEWEB)

    Moro, I.

    2009-11-15

    This work deals with hydrogen embrittlement, at ambient temperature and under a high pressure gaseous way, of an API X80 high elasticity limit steel used for pipelines construction, and with the understanding of the associated physical mechanisms of the embrittlement. At first has been described a bibliographic study of the adsorption, absorption, diffusion, transport and trapping of hydrogen in the steels. Then has been carried out an experimental and numerical study concerning the implantation in the finite element code CASTEM3M of a hydrogen diffusion model coupled to mechanical fields. The hydrogen influence on the mechanical characteristics of the X80 steel, of a ferrito-pearlitic microstructure has been studied with tensile tests under 300 bar of hydrogen and at ambient temperature. The sensitivity of the X80 steel to hydrogen embrittlement has been analyzed by tensile tests at different deformation velocities and under different hydrogen pressures on axisymmetrical notched test specimens. These studies show that the effect of the hydrogen embrittlement vary effectively with the experimental conditions. Moreover, correlated with the results of the tests simulations, it has been shown too that in these experimental conditions and for that steel, the hydrogen embrittlement is induced by three different hydrogen populations: the hydrogen trapped at the ferrite/perlite interfaces, the hydrogen adsorbed on surface and the reticular hydrogen trapped in the material volume. At last, the tensile and rupture tests of specimens, during which atmosphere changes have been carried out, have shown a strong reversibility of the hydrogen embrittlement, associated with its initiation as soon as hydrogen is introduced in the atmosphere. At last, three hydrogen mechanisms, depending of the different hydrogen populations are presented and discussed. (O.M.)

  17. Hydrogen embrittlement of super austenitic stainless steel welded joints; Fragilizacao por hidrogenio em juntas soldadas de acos inoxidaveis superausteniticos

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, Ramon S. Cortes [Parana Univ., Curitiba, PR (Brazil). Centro Politecnico. Inst. de Tecnologia para o Desenvolvimento (LACTEC); Berthier, Thiana; Kuromoto, Neide K. [Parana Univ., Curitiba, PR (Brazil). Lab. de Materiais e Tratamento de Superficies. Lab. de Nanopropriedades Mecanicas

    2004-09-15

    The austenitic stainless steel embrittlement is usually present on sulphurous medium due to the hydrogen presence, resulting on cracks and corrosion on acid medium. Several researches carried out on the behaviour of hydrogenated stainless steel structures, had shown that the hydrogen induces superficial phase transformation during hydrogenation period and cracks formation after this period. These are due to the permeation of the hydrogen into the material, which is apprehended on preferential site, resulting on high pressure zones of molecular hydrogen. These zones may lead the crack formation, compromising the mechanical properties. There are few results on austenitic and super austenitic stainless steel, considering the transformations induced on welded unions. This work evaluates the cracks nucleation on welded unions of super austenitic stainless steel AISI 904L exposed to hydrogen rich environments and its relation to the reduction of material ductility. The samples were welded by the Mig/Mag process, followed by hydrogenation which were cathodic on sulfuric acid solution at room temperature. The results showed that the tested super austenitic stainless steel has a significant amount of cracks and no phase transformation has occurred after hydronization. (author)

  18. Effect of hydrogen on the behavior of metals II - Hydrogen embrittlement of titanium alloy TV13CA - effect of oxygen - comparison with non-alloyed titanium

    International Nuclear Information System (INIS)

    Arditty, Jean-Pierre

    1973-01-01

    The effect of oxygen on the hydrogen embrittlement of non-alloyed titanium and the metastable β titanium alloy, TV13 CA, was studied during dynamic mechanical tests, the concentrations considered varying from 1000 to 5000 ppm (oxygen) and from 0 to 5000 ppm (hydrogen) respectively. TV13 CA alloy has a very high solubility for hydrogen. The establishment of a temperature range and a rate of deformation region in which the embrittlement of the alloy is maximum leads to the conclusion that an embrittlement mechanism occurs involving the dragging and accumulation of hydrogen by dislocations. This is the case for all annealings effected in the medium temperature range, which, by favoring the re-establishment of the stable two-phase α + β state of the alloy, produce hardening. The same is true for oxygen which, in addition to hardening the alloy by the solid solution effect, tends to increase its instability and, in consequence, favors the decomposition of the β phase. Nevertheless oxygen concentrations of up to 1500 ppm contribute to increasing the mechanical resistance without catastrophically reducing the deformation capacity. In the case of non-alloyed titanium, the hardening effect also leads to an increase in E 0.2p c and R, and to a reduction in the deformation capacity. Nevertheless, hydrogen is only very slightly soluble at room temperature and a distribution of the hydride phase linked to the thermal history of the sample predominates. Thus a fine acicular structure obtained from the β phase by quenching, enables an alloy having a good mechanical resistance to be conserved even when large quantities of hydrogen are present; the deformation capacity remains small. On the other hand, when the hydride phase separates the metallic phase into large grains, a very small elongation leads to a breakdown in mechanical resistance. (author) [fr

  19. A study on the post-weld heat treatment effect to mechanical properties and hydrogen embrittlement for heating affected zone of a RE 36 steel

    International Nuclear Information System (INIS)

    Moon, Kyung Man; Lee, Myung Hoon; Kim, Ki Joon; Kim, Jin Gyeong; Kim, Seong Jong

    2003-01-01

    The cathodic protection method is being widely used marine structural steel, however a high tensile steel like RE 36 steel for marine structural steel is easy to get hydrogen embrittlement due to over protection during cathodic protection as well as preferential corrosion of HAZ(Heating Affected Zone) part. In this paper, corrosion resistance and mechanical properties such as elongation and hydrogen embrittlement were investigated with not only in terms of electrochemical view but also SSRT(Slow Strain Rate Test) method with applied constant cathodic potential, analysis of SEM fractography in case of both As-welded and PWHT(Post-Weld Heat Treatment) of 550 .deg. C. The best effect for corrosion resistance was apparently indicated at PWHT of 550 .deg. C and elongation was increased with PWHT of 550 .deg. C than that of As-welded condition. On the other hand. Elongation was decreased with applied potential shifting to low potential direction which may be caused by hydrogen embrittlement, however the susceptibility of hydrogen embrittlement was decreased with PWHT of 550 .deg. C than that of As-welded condition and Q.C(quasi cleavage) fracture mode was also observed significantly according to increasing of susceptibility of hydrogen embrittlement. Eventually it is suggested that an optimum cathodic protection potential range not causing hydrogen embrittlement is from -770 mV(SCE) to-850mV(SCE) in As-welded condition while is from-770 mV(SCE) to -875 mV(SCE) in PWHT of 550 .deg. C

  20. Influence of cold deformation and annealing on hydrogen embrittlement of cold hardening bainitic steel for high strength bolts

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Weijun, E-mail: wjhui@bjtu.edu.cn [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Yongjian; Zhao, Xiaoli; Shao, Chengwei [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang, Kaizhong; Sun, Wei; Yu, Tongren [Technical Center, Maanshan Iron & Steel Co., Ltd., Maanshan 243002, Anhui (China)

    2016-04-26

    The influence of cold drawing and annealing on hydrogen embrittlement (HE) of newly developed cold hardening bainitic steel was investigated by using slow strain rate testing (SSRT) and thermal desorption spectrometry (TDS), for ensuring safety performance of 10.9 class high strength bolts made of this kind of steel against HE under service environments. Hydrogen was introduced into the specimen by electrochemical charging. TDS analysis shows that the hydrogen-charged cold drawn specimen exhibits an additional low-temperature hydrogen desorption peak besides the original high-temperature desorption peak of the as-rolled specimen, causing remarkable increase of absorbed hydrogen content. It is found that cold drawing significantly enhances the susceptibility to HE, which is mainly attributed to remarkable increase of diffusible hydrogen absorption, the occurrence of strain-induced martensite as well as the increase of strength level. Annealing after cold deformation is an effective way to improve HE resistance and this improvement strongly depends on annealing temperature, i.e. HE susceptibility decreases slightly with increasing annealing temperature up to 200 °C and then decreases significantly with further increasing annealing temperature. This phenomenon is explained by the release of hydrogen, the recovery of cold worked microstructure and the decrease of strength with increasing annealing temperature.

  1. On the Stress Corrosion Cracking and Hydrogen Embrittlement Behavior of Austenitic Stainless Steels in Boiling Saturated Magnesium Chloride Solutions

    Directory of Open Access Journals (Sweden)

    Osama M. Alyousif

    2012-01-01

    Full Text Available The stress corrosion cracking (SCC and hydrogen embrittlement (HE behaviors for types 304, 310, and 316 austenitic stainless steels were investigated in boiling saturated magnesium chloride solutions using a constant load method under different conditions including test temperature, applied stress, and sensitization. Both of type 304 and type 316 stainless steels showed quite similar behavior characteristics, whereas type 310 stainless steel showed a different behavior. The time to failure (tf parameter was used among other parameters to characterize the materials behavior in the test solution and to develop a mathematical model for predicting the time to failure in the chloride solution. The combination of corrosion curve parameters and fracture surface micrographs gave some explanation for the cracking modes as well as an indication for the cracking mechanisms. On the basis of the results obtained, it was estimated that intergranular cracking was resulted from hydrogen embrittlement due to strain-induced formation of martensite along the grain boundaries, while transgranular cracking took place by propagating cracks nucleated at slip steps by dissolution.

  2. Computer simulation of hydrogen diffusion and hydride precipitation at Ta/Zr bond interface. Hydrogen embrittlement in SUS304ULC/Ta/Zr explosive bonded joint

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi; Fujimoto, Tetsuya; Nishimoto, Kazutoshi

    2010-01-01

    The concentration of hydrogen and precipitation of zirconium hydrides in Ta/Zr explosive bonded joint were analysed by computer simulation. Numerical model of hydride precipitation under hydrogen diffusion was simplified by the alternate model coupled the macroscopic hydrogen diffusion with the microscopic hydride precipitation. Effects of the initial hydrogen content in Ta, working degree of Zr and post-bond heat treatment on the hydrogen diffusion and hydride precipitation were investigated. Hydrogen was rapidly diffused from Ta substrate into Zr after explosive bonding and temporarily concentrated at Ta/Zr bond interface. Zirconium hydrides were precipitated and grew at Ta/Zr bond interface, and the precipitation zone of hydrides was enlarged with the lapse of time. The precipitation of zirconium hydrides was promoted when the initial hydrogen content in Ta and working degree of Zr were increased. The concentration of hydrogen and precipitation of hydrides at the bond interface were reduced and diminished by post-bond heat treatment at 373 K. It was deduced that hydrogen embrittlement in Ta/Zr explosive bonded joint was caused by the precipitation of zirconium hydrides and concentration of hydrogen at Ta/Zr bond interface during the diffusion of hydrogen containing in Ta substrate. (author)

  3. Crevice corrosion and hydrogen embrittlement of grades-2 and -12 titanium under Canadian nuclear waste vault conditions

    International Nuclear Information System (INIS)

    Ikeda, B.M.; Bailey, M.G.; Clarke, C.F.; Shoesmith, D.W.

    1990-01-01

    Results on the corrosion of titanium grades 2 and 12 under the saline conditions anticipated in Canadian nuclear waste vaults are presented. The experimental approach included short-term electrochemical experiments to determine corrosion mechanisms, the susceptibility of titanium to crevice corrosion under a variety of conditions, and the extent of hydrogen uptake under controlled conditions; medium-term corrosion tests lasting a few weeks to a few months; and long-term immersion tests to provide rates for uniform corrosion, crevice corrosion, and hydrogen pickup. Results indicated that propagation, not initiation, is important in establishing susceptibility to crevice corrosion. Increasing the iron content of Ti-2 to 0.13 weight percent prevents crevice corrosion by causing repassivation. Crevice corrosion initiates on Ti-12, but repassivation is rapid. The supply of oxidant is essential to maintain crevice propagation. Hydrogen embrittlement is unlikely unless oxide film breakdown occurs. Film breakdown occurs under crevice conditions, and hydrogen pickup is to be expected. Film breakdown could occur if the strain or creep rate is fast enough to compete with repassivation reactions, a highly unlikely situation

  4. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xu [State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Ke [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Li, Wei, E-mail: weilee@sjtu.edu.cn [State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Jin, Xuejun, E-mail: jin@sjtu.edu.cn [Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-03-21

    The effect of retained austenite (RA) stability and morphology on the hydrogen embrittlement (HE) susceptibility were investigated in a high strength steel subjected to three different heat treatments, i.e., the intercritical annealing quenching and partitioning (IAQP), quenching and partitioning (QP) and quenching and tempering (QT). IAQP treatment results in the coexistence of blocky and filmy morphologies and both QP and QT treatments lead to only filmy RA. No martensitic transformation occurs in QT steel during deformation, while the QP and IAQP undergo the transformation with the same extent. It is shown that the HE susceptibility increases in the following order: QT, QP and IAQP. Despite of the highest strength level and the highest hydrogen diffusion rate, the QT steel is relative immune to HE, suggesting that the metastable RA which transforms to martensite during deformation is detrimental to the HE resistance. The improved resistance to HE by QP treatment compared with IAQP steel is mainly attributed to the morphology effect of RA. Massive hydrogen-induced cracking (HIC) cracks are found to initiate in the blocky RA of IAQP steel, while only isolate voids are observed in QP steel. It is thus deduced that filmy RA is less susceptible to HE than the blocky RA.

  5. Influence of hydrogen embrittlement on caustic stress corrosion cracking of 2 1/4 Cr-1 Mo steels: comparative tests performed on specimens loaded in modes I and III

    International Nuclear Information System (INIS)

    Berge, P.; Vaillant, F.

    1982-01-01

    The comparison of stress corrosion susceptibilities in mode I (tensile stress) and mode III (shear stress) can reveal the possible involvement of an hydrogen embrittlement mechanism, particularly for 2 1/4 Cr-1 Mo steels in caustic solution [fr

  6. Control of Hydrogen Embrittlement in High Strength Steel Using Special Designed Welding Wire

    Science.gov (United States)

    2016-03-01

    Approved for public release: distribution unlimited. Click to edit Master title style • Background – Hydrogen Inducted Cracking (HIC) – HIC control...UNCLASIFIED:DISTRIBUTION A. Approved for public release: distribution unlimited. Click to edit Master title style • What is Hydrogen Induced Cracking? – Atomic... Hydrogen can diffuses into steel at high temperatures (liquid state), in amount that exceeds the solid – solubility at low temperature. – At low

  7. Standard Test Method for Electronic Measurement for Hydrogen Embrittlement From Cadmium-Electroplating Processes

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This test method covers an electronic hydrogen detection instrument procedure for measurement of plating permeability to hydrogen. This method measures a variable related to hydrogen absorbed by steel during plating and to the hydrogen permeability of the plate during post plate baking. A specific application of this method is controlling cadmium-plating processes in which the plate porosity relative to hydrogen is critical, such as cadmium on high-strength steel. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statement, see Section 8. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  8. Method of Evaluating Hydrogen Embrittlement Susceptibility of Tempered Martensitic Steel Showing Intergranular Fracture

    Science.gov (United States)

    Matsumoto, Yu; Takai, Kenichi

    2018-02-01

    A stress application method in delayed fracture susceptibility tests was investigated using 1450 MPa class tempered martensitic steel. Its fracture mode under hydrogen charging was mainly intergranular because of its relatively small Si content of 0.21 mass pct. The conditions for consistency in fracture strength between tensile tests and constant load tests (CLTs) were clarified: first, to conduct hydrogen precharging before stress application; and second, to choose a sufficiently low crosshead speed in tensile tests. When hydrogen precharging was not conducted before CLTs, the fracture strength was higher than the values in CLTs with hydrogen charging and in tensile tests. If the crosshead speed was too high, the fracture strength obtained was higher than the values in CLTs. The dependence of the fracture strength on crosshead speed was seen for both notched and smooth bar specimens. These results suggested that plastic deformation, i.e., dislocation motion, was related to intergranular fracture with a tear pattern as well as to quasi-cleavage fracture. In addition, cathodic electrolysis in an alkaline solution containing NaOH should be used as the hydrogen charging method to avoid the effects of corrosion.

  9. Hydrogen embrittlement and hydrogen induced stress corrosion cracking of high alloyed austenitic materials; Wasserstoffversproedung und wasserstoffinduzierte Spannungsrisskorrosion hochlegierter austenitischer Werkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Mummert, K.; Uhlemann, M.; Engelmann, H.J. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany)

    1998-11-01

    The susceptiblity of high alloyed austenitic steels and nickel base alloys to hydrogen-induced cracking is particularly determined by 1. the distribution of hydrogen in the material, and 2. the microstructural deformation behaviour, which last process is determined by the effects of hydrogen with respect to the formation of dislocations and the stacking fault energy. The hydrogen has an influence on the process of slip localization in slip bands, which in turn affects the microstructural deformation behaviour. Slip localization increases with growing Ni contents of the alloys and clearly reduces the ductility of the Ni-base alloy. Although there is a local hydrogen source involved in stress corrosion cracking, emanating from the corrosion process at the cathode, crack growth is observed only in those cases when the hydrogen concentration in a small zone ahead of the crack tip reaches a critical value with respect to the stress conditions. Probability of onset of this process gets lower with growing Ni content of the alloy, due to increasing diffusion velocity of the hydrogen in the austenitic lattice. This is why particularly austenitic steels with low Ni contents are susceptible to transcrystalline stress corrosion cracking. In this case, the microstructural deformation process at the crack tip is also influenced by analogous processes, as could be observed in hydrogen-loaded specimens. (orig./CB) [Deutsch] Die Empfindlichkeit von hochlegierten austentischen Staehlen und Nickelbasislegierungen gegen wasserstoffinduziertes Risswachstum wird im wesentlichen bestimmt durch 1. die Verteilung von Wasserstoff im Werkstoff und 2. das mikrostrukturelle Verformungsverhalten. Das mikrostrukturelle Deformationsverhalten ist wiederum durch den Einfluss von Wasserstoff auf die Versetzungsbildung und die Stapelfehlerenergie charakterisiert. Das mikrostrukturelle Verformungsverhalten wird durch wasserstoffbeeinflusste Gleitlokalisierung in Gleitbaendern bestimmt. Diese nimmt mit

  10. Hydrogen embrittlement in superaustenitic stainless steels welded unions in sulfuric acid; Fragilizacao por hidrogenio em juntas soldadas de acos inoxidaveis superausteniticos em acido sulfurico

    Energy Technology Data Exchange (ETDEWEB)

    Berthier, T. [Parana Univ., Curitiba, PR (Brazil). Lab. de Materiais e Tratamento de Superficies (LaMaTS)]. E-mail: thiana@demec.ufpr.br; Kuromoto, N.K. [Parana Univ., Curitiba, PR (Brazil). Lab. de Nanopropriedades Mecanicas; Paredes, R.S.C. [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)

    2003-07-01

    The embrittlement of the austenitic stainless steel by hydrogen has been known for more than four decades. Researches done into the behavior of the hydrogenated homogeneous structures, under cathodic charging at room temperature, have shown that the hydrogen induces phase transformations and nucleation of retarded superficial cracks during the outgassing which is followed by the end of the hydrogenation. The results obtained upon austenitic and superaustenitic stainless steels are few considering the changes produced in welded unions. The aim of this work is to evaluate mechanical properties of material and its relation to the nucleation of the cracks in the austenitic steels welds type AISI 904L submitted to hydrogenated solutions. The samples have been welded through the process MIG/MAG; the hydrogenation has been made catholically in a sulfuric acid solution of 1N, with variable time of 1 to 4 hours at the room temperature. An anode of platinum in and density of current 1000 A/m{sup 2} has been used. The outgassing has occurred at the room temperature. Many retarded superficial cracks with different morphologies have been observed. Regarding the hardness measure, major alterations in all the regions of the sample have not been noticed. (author)

  11. Standard Test Method for Measurement of Hydrogen Embrittlement Threshold in Steel by the Incremental Step Loading Technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method establishes a procedure to measure the susceptibility of steel to a time-delayed failure such as that caused by hydrogen. It does so by measuring the threshold for the onset of subcritical crack growth using standard fracture mechanics specimens, irregular-shaped specimens such as notched round bars, or actual product such as fasteners (2) (threaded or unthreaded) springs or components as identified in SAE J78, J81, and J1237. 1.2 This test method is used to evaluate quantitatively: 1.2.1 The relative susceptibility of steels of different composition or a steel with different heat treatments; 1.2.2 The effect of residual hydrogen in the steel as a result of processing, such as melting, thermal mechanical working, surface treatments, coatings, and electroplating; 1.2.3 The effect of hydrogen introduced into the steel caused by external environmental sources of hydrogen, such as fluids and cleaners maintenance chemicals, petrochemical products, and galvanic coupling in an aqueous enviro...

  12. Role of tempering temperature on the hydrogen diffusion in a 34CrMo4 martensitic steel and the related embrittlement

    International Nuclear Information System (INIS)

    Moli-Sanchez, L.

    2012-01-01

    The evaluation of the Hydrogen embrittlement (HE) of high strength steels remains a major issue for the development of hydrogen (H) applications for the energy. A better understanding of the phenomena involved in the HE (role of the environment, the H-microstructure and H-plasticity interactions) is crucial in the 'H economy'. The aim of this study is to characterize the H behaviour in tempered martensitic steels (34CrMo 4 ). A particular interest was put on the determination of the microstructural defects (dislocations, interfaces, precipitates...) that control the H absorption, diffusion, desorption and trapping and the related HE sensibility. The combined use of electrochemical permeation technique and H isotopic tracers (deuterium and tritium) (TDS, SIMS and β-counting) allowed the characterization of the H behaviour in the microstructures. The kinetics of H absorption/desorption, related with trapping phenomena on microstructural defects, give access to the density of trapping sites and the occupancy ratio associated to each defects population. The comparison of mechanical tests (pre-hydrogenated and in situ hydrogenated tests) evidenced the major role of diffusible H in the HE mechanisms thanks to the H-plasticity interactions that promote the H segregation at some microstructural defects. A detailed analysis of the results allows to suggest some recommendations concerning the type of microstructure (dislocations densities, precipitates coherency...) to be favoured during the elaboration processes or heat treatments of martensitic steels in order to increase their HE resistance. (author) [fr

  13. STRUCTURAL INTERACTIONS OF HYDROGEN WITH BULK AMORPHOUS MICROSTRUCTURES IN METALLIC SYSTEMS UNDERSTANDING THE ROLE OF PARTIAL CRYSTALLINITY ON PERMEATION AND EMBRITTLEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Kyle; Fox, Elise; Korinko, Paul; Adams, Thad

    2010-05-10

    The development of metallic glasses in bulk form has led to a resurgence of interest into the utilization of these materials for a variety of applications. A potentially exciting application for these bulk metallic glass (BMG) materials is their use as composite membranes to replace high cost Pd/Pd-alloy membranes for enhanced gas separation processes. One of the major drawbacks to the industrial use of Pd/Pd-alloy membranes is that during cycling above and below a critical temperature an irreversible change takes place in the palladium lattice structure which can result in significant damage to the membrane. Furthermore, the cost associated with Pd-based membranes is a potential detractor for their continued use and BMG alloys offer a potentially attractive alternative. Several BMG alloys have been shown to possess high permeation rates, comparable to those measured for pure Pd metal. In addition, high strength and toughness when either in-situ or ex-situ second phase dispersoids are present. Both of these properties, high permeation and high strength/toughness, potentially make these materials attractive for gas separation membranes that could resist hydrogen 'embrittlement'. However, a fundamental understanding of the relationship between partially crystalline 'structure'/devitrification and permeation/embrittlement in these BMG materials is required in order to determine the operating window for separation membranes and provide additional input to the material synthesis community for improved alloy design. This project aims to fill the knowledge gap regarding the impact of crystallization on the permeation properties of metallic glass materials. The objectives of this study are to (i) determine the crystallization behavior in different gas environments of Fe and Zr based commercially available bulk metallic glass and (ii) quantify the effects of partial crystallinity on the hydrogen permeation properties of these metallic glass membranes.

  14. Hydrogen embrittlement I. Analysis of hydrogen-enhanced localized plasticity: Effect of hydrogen on the velocity of screw dislocations in α -Fe

    Science.gov (United States)

    Katzarov, Ivaylo H.; Pashov, Dimitar L.; Paxton, Anthony T.

    2017-08-01

    We demonstrate a kinetic Monte Carlo simulation tool, based on published data using first-principles quantum mechanics, applied to answer the question: under which conditions of stress, temperature, and nominal hydrogen concentration does the presence of hydrogen in iron increase or decrease the screw dislocation velocity? Furthermore, we examine the conditions under which hydrogen-induced shear localization is likely to occur. Our simulations yield quantitative data on dislocation velocity and the ranges of hydrogen concentration within which a large gradient of velocity as a function of concentration is expected to be observed and thereby contribute to a self-perpetuating localization of plasticity—a phenomenon that has been linked to hydrogen-induced fracture and fatigue failure in ultrahigh strength steel. We predict the effect of hydrogen in generating debris made up of edge dipoles trailing in the wake of gliding screw dislocations and their role in pinning. We also simulate the competing effects of softening by enhanced kink-pair generation and hardening by solute pinning. Our simulations act as a bridge between first-principles quantum mechanics and discrete dislocation dynamics, and at the same time offer the prospect of a fully physics-based dislocation dynamics method.

  15. Evaluation of the resistance of API 5L-X80 girth welds to sulphide stress corrosion cracking and hydrogen embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Forero, Adriana [Pontificia Universidade Catolica (PUC-Rio), Rio de Janeiro, RJ (Brazil); Ponciano, Jose A. [Universidade Federal do Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao em Engenharia; Bott, Ivani de S. [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ (Brazil). Dept. de Ciencia dos Materiais e Metalurgia

    2009-07-01

    The susceptibility of pipeline steels to stress corrosion cracking (SCC) depends on a series of factors ranging from the manufacture of the steel, the pipe fabrication and the assembly of the pipeline to the type of substances to be transported. The welding procedures adopted during the production and construction of the pipelines (field welding), can modify the properties of the base metal in the heat affected zone (HAZ), potentially rendering this region susceptible to SCC. This study evaluates the resistance of girth welds, in API 5L X80 pipes, to hydrogen embrittlement and to stress corrosion cracking in the presence of sulphides. The evaluation was performed according to NACE TM0177/96, Method A, applying the criterion of fracture/no fracture, and Slow Strain Rate Tensile tests (SSRT) were undertaken using a sodium thiosulphate solution according to the ASTM G129-00 Standard. According NACE requirements, the base metal was approved. The weld metal exhibited susceptibility to SCC in the presence of sulphides, failing in a period of less than 720h. This was confirmed by SSR tensile tests, where a significant decrease in the ultimate tensile strength, the elongation and the time to fracture were observed. The mechanism of fracture was transgranular. (author)

  16. Effect of Microstructure and Trapping on the Hydrogen Embrittlement Susceptibility of a Ti-Bearing HSLA Steel.

    Science.gov (United States)

    1984-11-01

    in interstitial free steels is due to retardation of recrystallization by precipitatesY, in analogy with the effect of AIN particles in aluminum ...concentration of P in solution. Indeed the work of Kaneko et a/.s earlier demonstrated that Ti readily precipitated P as phosphides in -0 a-iron. Guttman’ has...Sn and P) are " poisons " for the recombination reaction of hydrogen. as shown by Berkowitz and McCright𔄁 . It may then be imagined that the boundaries

  17. Hydrogen-enhanced cracking revealed by in situ micro-cantilever bending test inside environmental scanning electron microscope

    Science.gov (United States)

    Deng, Yun; Hajilou, Tarlan; Barnoush, Afrooz

    2017-06-01

    To evaluate the hydrogen (H)-induced embrittlement in iron aluminium intermetallics, especially the one with stoichiometric composition of 50 at.% Al, a novel in situ micro-cantilever bending test was applied within an environmental scanning electron microscope (ESEM), which provides both a full process monitoring and a clean, in situ H-charging condition. Two sets of cantilevers were analysed in this work: one set of un-notched cantilevers, and the other set with focused ion beam-milled notch laying on two crystallographic planes: (010) and (110). The cantilevers were tested under two environmental conditions: vacuum (approximately 5 × 10-4 Pa) and ESEM (450 Pa water vapour). Crack initiation at stress-concentrated locations and propagation to cause catastrophic failure were observed when cantilevers were tested in the presence of H; while no cracking occurred when tested in vacuum. Both the bending strength for un-notched beams and the fracture toughness for notched beams were reduced under H exposure. The hydrogen embrittlement (HE) susceptibility was found to be orientation dependent: the (010) crystallographic plane was more fragile to HE than the (110) plane. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  18. Visualization of hydrogen in steels by secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Takai, Kenichi

    2000-01-01

    Secondary ion mass spectrometry (SIMS) enables us to visualize hydrogen trapping sites in steels. Information about the hydrogen trapping sites in high-strength steels by SIMS is very important to discuss environmental embrittlement mechanism for developing steels with a high resistance to the environmental embrittlement. Secondary ion image analysis by SIMS has made possible to visualize the hydrogen and deuterium trapping sites in the steels. Hydrogen in tempered martensite steels containing Ca tends to accumulate on inclusions, at grain boundaries, and in segregation bands. Visualization of hydrogen desorption process by secondary ion image analysis confirms that the bonding between the inclusions and the hydrogen is strong. Cold-drawn pearlite steels trap hydrogen along cold-drawing direction. Pearlite phase absorbs the hydrogen more than ferrite phase does. This article introduces the principle of SIMS, its feature, analysis method, and results of hydrogen visualization in steels. (author)

  19. Measurement component technology. Volume 1: Cryogenic pressure measurement technology, high pressure flange seals, hydrogen embrittlement of pressure transducer material, close coupled versus remote transducer installation and temperature compensation of pressure transducers

    Science.gov (United States)

    Hayakawa, K. K.; Udell, D. R.; Iwata, M. M.; Lytle, C. F.; Chrisco, R. M.; Greenough, C. S.; Walling, J. A.

    1972-01-01

    The results are presented of an investigation into the availability and performance capability of measurement components in the area of cryogenic temperature, pressure, flow and liquid detection components and high temperature strain gages. In addition, technical subjects allied to the components were researched and discussed. These selected areas of investigation were: (1) high pressure flange seals, (2) hydrogen embrittlement of pressure transducer diaphragms, (3) The effects of close-coupled versus remote transducer installation on pressure measurement, (4) temperature transducer configuration effects on measurements, and (5) techniques in temperature compensation of strain gage pressure transducers. The purpose of the program was to investigate the latest design and application techniques in measurement component technology and to document this information along with recommendations for upgrading measurement component designs for future S-2 derivative applications. Recommendations are provided for upgrading existing state-of-the-art in component design, where required, to satisfy performance requirements of S-2 derivative vehicles.

  20. Industrial implications of hydrogen

    International Nuclear Information System (INIS)

    Pressouyre, G.M.

    1982-01-01

    Two major industrial implications of hydrogen are examined: problems related to the effect of hydrogen on materials properties (hydrogen embrittlement), and problems related to the use and production of hydrogen as a future energy vector [fr

  1. Role of hydrogen in stress corrosion cracking

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1975-01-01

    Hydrogen embrittlement has been postulated as a cause of stress corrosion cracking in numerous alloy systems. Such an interrelationship is useful in design considerations because it permits the designer and working engineer to relate the literature from both fields to a potential environmental compatibility problem. The role of hydrogen in stress corrosion of high strength steels is described along with techniques for minimizing the susceptibility to hydrogen stress cracking. (U.S.)

  2. Reactor pressure vessel embrittlement

    International Nuclear Information System (INIS)

    1992-07-01

    Within the framework of the IAEA extrabudgetary programme on the Safety of WWER-440/230 NPPs, a list of safety issues requiring broad studies of generic interest have been agreed upon by an Advisory Group who met in Vienna in September 1990. The list was later revised in the light of the programme findings. The information on the status of the issues, and on the amount of work already completed and under way in the various countries, needs to be compiled. Moreover, an evaluation of what further work is required to resolve each one of the issues is also necessary. In view of this, the IAEA has started the preparation of a series of status reports on the various issues. This report on the generic safety issue ''Reactor Pressure Vessel Embrittlement'' presents a comprehensive survey of technical information available in the field and identifies those aspects which require further investigation. 39 refs, 21 figs, 4 tabs

  3. Global environmental impacts of the hydrogen economy

    International Nuclear Information System (INIS)

    Derwent, R.; Simmonds, P.; O'Doherty, S.; Manning, A.; Collins, W.; Stevenson, D.

    2006-01-01

    Hydrogen-based energy systems appear to be an attractive proposition in providing a future replacement for the current fossil-fuel based energy systems. Hydrogen is an important, though little studied, trace component of the atmosphere. It is present at the mixing ratio of about 510 ppb currently and has important man-made and natural sources. Because hydrogen reacts with tropospheric hydroxyl radicals, emissions of hydrogen to the atmosphere perturb the distributions of methane and ozone, the second and third most important greenhouse gases after carbon dioxide. Hydrogen is therefore an indirect greenhouse gas with a global warming potential GWP of 5.8 over a 100-year time horizon. A future hydrogen economy would therefore have greenhouse consequences and would not be free from climate perturbations. If a global hydrogen economy replaced the current fossil fuel-based energy system and exhibited a leakage rate of 1%, then it would produce a climate impact of 0.6% of the current fossil fuel based system. Careful attention must be given to reduce to a minimum the leakage of hydrogen from the synthesis, storage and use of hydrogen in a future global hydrogen economy if the full climate benefits are to be realised. (author)

  4. The environmental dependence of neutral hydrogen in the gimic simulations

    CSIR Research Space (South Africa)

    Cunnama, D

    2014-01-01

    Full Text Available We use the Galaxies-Intergalactic Medium Interaction Calculation (GIMIC) cosmological hydrodynamic simulation at z = 0 to study the distribution and environmental dependence of neutral hydrogen (Hi) gas in the outskirts of simulated galaxies...

  5. Safety and environmental problems of hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The investigation into the safety and the environment problems of liquid hydrogen as clean energy in the year 2,000 is described. The first part is introduction. The second part deals with the general propeties of hydrogen in the forms of gas, liquid and solid, the inflammability and explosiveness, the chemical reactivity, the corrosiveness and fragile destruction, and hydrogen-detecting and analyzing methods. The third part deals with the safety-preservation distance, the anti-explosion facilities, the safety measures for manufacturing, storing and transporting hydrogen, and measures to cope with accidents and related regulations. The fourth part deals with the effects of future mass production and usage on the environment. The radioactive waste treatment and the hot water discharge in the hydrogen production with nuclear energy must be more severely controlled than at present. The mercury system in the multistage thermal decomposition process must be completely closed system. The waste cells containing yttrium and ytterbium must be disposed so that they do not cause the secondary pollution. In the asbestos diaphragm for water electrolytic cells, attention must be paid to cancer. The oxygen produced from water electrolytic cells must be exhausted so that it does not contaminate the atmosphere. The design for removing water as a reaction product must be required so that moisture does not increase locally. Even if hydrogen is used as fuel NO sub(x) removal technique is necessary. (Iwakiri, K.)

  6. Embrittlement by liquid and solid metals

    International Nuclear Information System (INIS)

    Kamdar, M.H.

    1984-01-01

    This volume presents research on the phenomena of both liquid- and solid-metal induced embrittlement of metals and their occurrence in many important industries. In this book, review papers are presented on liquid-metal embrittlement, solid-metal embrittlement, and liquid- and solid-metal embrittlement of industrial metals and alloys. In addition, several papers presented cover parts of extensive investigations at the General Electric Company concerning liquid- and solid-metal embrittlement of zirconium nuclear fuel cladding tubes and possible means for preventing embrittlement of zirconium

  7. Effects of metallurgical variables on hydrgen embrittlement in types 316, 321, and 347 stainless steels

    International Nuclear Information System (INIS)

    Rozenak, P.; Eliezer, D.

    1984-01-01

    Hydrogen embrittlement of 316, 321 and 347 types austenitic stainless steels has been studied by charging thin tensile specimens with hydrogen through cathodic polarization. Throughout this study we have compared solution annealed samples having various prior austenitic grain-size with samples given the additional sensitization treatment. The results show that refined grains improves the resistance to hydrogen cracking regardless of the failure mode. The sensitized specimens were predominantly intergranular, while the annealed specimens show massive regions of microvoid coalescence producing ductile rupture. 347 type stainless steel is much more susceptible to hydrogen embrittlement than 321 type steel, and 316 type is the most resistant to hydrogen embrittlement. the practical implication of the experimental conclusions are discussed

  8. Influence of corrosive media on the mechanical resistance of the uranium-vanadium alloy containing 0.20% by weight. Hydrogen embrittlement

    International Nuclear Information System (INIS)

    Arnould-Laurent, Robert; Fidelle, J.-P.

    1976-10-01

    Tests were carried out on the alloy UV 0.2% in order to determine its limits of utilization. The alloy was shown to be sensitive to the following phenomena: intrinsic brittleness (FI) due to dissolved residual hydrogen from fabrication; cracking by stress corrosion (FCSC), possible in certain conditions owing to a passive but imperfect behavior of the metal surface (appearance of microcracks at the surface or corrosion pitting due to inadequate protection by the surface oxide layer); generalized stress accelerated corrosion (CGAC), of microscopic aspect similar to that observed for corrosion under H 2 gas. In practice these effects are obtained, singly or in combination, as follows: maintenance under dry argon - Fi; deformation tests to rupture in aqueous solutions (pH:2 to 14) or after exposure to a chlorinated solvent: FI + FCSC predominating. Below pH2 no stress corrosion; delayed fracture under damp air - at 80 deg and 100 deg C - FI + FCSC under high stresses, giving rise to short failure times (tr) - FI + CSC + CGAC with CGAC predominating under lower stresses, giving long failure times; at 20 and 60 deg C - FCSC + FI predominating. Under high stresses (leading to short failure times) the FCSC contribution increases with temperature [fr

  9. Embrittlement data base, version 1

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.A.

    1997-08-01

    The aging and degradation of light-water-reactor (LWR) pressure vessels is of particular concern because of their relevance to plant integrity and the magnitude of the expected irradiation embrittlement. The radiation embrittlement of reactor pressure vessel (RPV) materials depends on many different factors such as flux, fluence, fluence spectrum, irradiation temperature, and preirradiation material history and chemical compositions. These factors must be considered to reliably predict pressure vessel embrittlement and to ensure the safe operation of the reactor. Based on embrittlement predictions, decisions must be made concerning operating parameters and issues such as low-leakage-fuel management, possible life extension, and the need for annealing the pressure vessel. Large amounts of data from surveillance capsules and test reactor experiments, comprising many different materials and different irradiation conditions, are needed to develop generally applicable damage prediction models that can be used for industry standards and regulatory guides. Version 1 of the Embrittlement Data Base (EDB) is such a comprehensive collection of data resulting from merging version 2 of the Power Reactor Embrittlement Data Base (PR-EDB). Fracture toughness data were also integrated into Version 1 of the EDB. For power reactor data, the current EDB lists the 1,029 Charpy transition-temperature shift data points, which include 321 from plates, 125 from forgoings, 115 from correlation monitor materials, 246 from welds, and 222 from heat-affected-zone (HAZ) materials that were irradiated in 271 capsules from 101 commercial power reactors. For test reactor data, information is available for 1,308 different irradiated sets (352 from plates, 186 from forgoings, 303 from correlation monitor materials, 396 from welds and 71 from HAZs) and 268 different irradiated plus annealed data sets.

  10. Embrittlement data base, version 1

    International Nuclear Information System (INIS)

    Wang, J.A.

    1997-08-01

    The aging and degradation of light-water-reactor (LWR) pressure vessels is of particular concern because of their relevance to plant integrity and the magnitude of the expected irradiation embrittlement. The radiation embrittlement of reactor pressure vessel (RPV) materials depends on many different factors such as flux, fluence, fluence spectrum, irradiation temperature, and preirradiation material history and chemical compositions. These factors must be considered to reliably predict pressure vessel embrittlement and to ensure the safe operation of the reactor. Based on embrittlement predictions, decisions must be made concerning operating parameters and issues such as low-leakage-fuel management, possible life extension, and the need for annealing the pressure vessel. Large amounts of data from surveillance capsules and test reactor experiments, comprising many different materials and different irradiation conditions, are needed to develop generally applicable damage prediction models that can be used for industry standards and regulatory guides. Version 1 of the Embrittlement Data Base (EDB) is such a comprehensive collection of data resulting from merging version 2 of the Power Reactor Embrittlement Data Base (PR-EDB). Fracture toughness data were also integrated into Version 1 of the EDB. For power reactor data, the current EDB lists the 1,029 Charpy transition-temperature shift data points, which include 321 from plates, 125 from forgoings, 115 from correlation monitor materials, 246 from welds, and 222 from heat-affected-zone (HAZ) materials that were irradiated in 271 capsules from 101 commercial power reactors. For test reactor data, information is available for 1,308 different irradiated sets (352 from plates, 186 from forgoings, 303 from correlation monitor materials, 396 from welds and 71 from HAZs) and 268 different irradiated plus annealed data sets

  11. Cladding embrittlement during postulated loss-of-coolant accidents.

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.; Yan, Y.; Burtseva, T.; Daum, R.; Nuclear Engineering Division

    2008-07-31

    The effect of fuel burnup on the embrittlement of various cladding alloys was examined with laboratory tests conducted under conditions relevant to loss-of-coolant accidents (LOCAs). The cladding materials tested were Zircaloy-4, Zircaloy-2, ZIRLO, M5, and E110. Tests were performed with specimens sectioned from as-fabricated cladding, from prehydrided (surrogate for high-burnup) cladding, and from high-burnup fuel rods which had been irradiated in commercial reactors. The tests were designed to determine for each cladding material the ductile-to-brittle transition as a function of steam oxidation temperature, weight gain due to oxidation, hydrogen content, pre-transient cladding thickness, and pre-transient corrosion-layer thickness. For short, defueled cladding specimens oxidized at 1000-1200 C, ring compression tests were performed to determine post-quench ductility at {le} 135 C. The effect of breakaway oxidation on embrittlement was also examined for short specimens oxidized at 800-1000 C. Among other findings, embrittlement was found to be sensitive to fabrication processes--especially surface finish--but insensitive to alloy constituents for these dilute zirconium alloys used as cladding materials. It was also demonstrated that burnup effects on embrittlement are largely due to hydrogen that is absorbed in the cladding during normal operation. Some tests were also performed with longer, fueled-and-pressurized cladding segments subjected to LOCA-relevant heating and cooling rates. Recommendations are given for types of tests that would identify LOCA conditions under which embrittlement would occur.

  12. Power reactor embrittlement data base

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Wang, J.A.

    1989-01-01

    Regulatory and research evaluations of embrittlement prediction models and of vessel integrity under load can be greatly expedited by the use of a well-designed, computerized embrittlement data base. The Power Reactor Embrittlement Data Base (PR-EDB) is a comprehensive collection of data from surveillance reports and other published reports of commercial nuclear reactors. The uses of the data base require that as many different data as available are collected from as many sources as possible with complete references and that subsets of relevant data can be easily retrieved and processed. The objectives of this NRC-sponsored program are the following: to compile and to verify the quality of the PR-EDB; to provide user-friendly software to access and process the data; to explore or confirm embrittlement prediction models; and to interact with standards organizations to provide the technical bases for voluntary consensus standards that can be used in regulatory guides, standard review plans, and codes. 9 figs

  13. Hydrogen energy in changing environmental scenario: Indian context

    International Nuclear Information System (INIS)

    Leo Hudson, M. Sterlin; Dubey, P.K.; Pukazhselvan, D.; Pandey, Sunil Kumar; Singh, Rajesh Kumar; Raghubanshi, Himanshu; Shahi, Rohit R.; Srivastava, O.N.

    2009-01-01

    This paper deals with how the Hydrogen Energy may play a crucial role in taking care of the environmental scenario/climate change. The R and D efforts, at the Hydrogen Energy Center, Banaras Hindu University have been described and discussed to elucidate that hydrogen is the best option for taking care of the environmental/climate changes. All three important ingredients for hydrogen economy, i.e., production, storage and application of hydrogen have been dealt with. As regards hydrogen production, solar routes consisting of photoelectrochemical electrolysis of water have been described and discussed. Nanostructured TiO 2 films used as photoanodes have been synthesized through hydrolysis of Ti[OCH(CH 3 ) 2 ] 4 . Modular designs of TiO 2 photoelectrode-based PEC cells have been fabricated to get high hydrogen production rate (∝10.35 lh -1 m -2 ). However, hydrogen storage is a key issue in the success and realization of hydrogen technology and economy. Metal hydrides are the promising candidates due to their safety advantage with high volume efficient storage capacity for on-board applications. As regards storage, we have discussed the storage of hydrogen in intermetallics as well as lightweight complex hydride systems. For intermetallic systems, we have dealt with material tailoring of LaNi 5 through Fe substitution. The La(Ni l-x Fe x ) 5 (x = 0.16) has been found to yield a high storage capacity of ∝2.40 wt%. We have also discussed how CNT admixing helps to improve the hydrogen desorption rate of NaAlH 4 . CNT (8 mol%) admixed NaAlH 4 is found to be optimum for faster desorption (∝3.3 wt% H 2 within 2 h). From an applications point of view, we have focused on the use of hydrogen (stored in intermetallic La-Ni-Fe system) as fuel for Internal Combustion (IC) engine-based vehicular transport, particularly two and three-wheelers. It is shown that hydrogen used as a fuel is the most effective alternative fuel for circumventing climate change. (author)

  14. Precipitation hardening and hydrogen embrittlement of aluminum ...

    Indian Academy of Sciences (India)

    Al alloy with a fine fibrous structure and duplex aged to near peak hardness may tolerate a cold water quenching. An overaged material with a recrystallized structure may also tolerate water quenching (Kent 1970). Transformation sequence for ageing the 7020 alloys is given as follows (Berg et al 2001):. Solid solution (α) ...

  15. Power Reactor Embrittlement Data Base

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Wang, J.A.

    1990-01-01

    Regulatory and research evaluations of embrittlement predication models and of pressure vessel integrity can be greatly expedited by the use of a well-designed, computerized data base. The Power Reactor Embrittlement Data Base (PR-EDB) is such a comprehensive collection of data for US commercial nuclear reactors. The Nuclear Regulatory Commission (NRC) has provided financial support, and the Electric Power Research Institute (EPRI) has provided technical assistance in the quality assurance (QA) of the data to establish an industry-wide data base that will be maintained and updated on a long-term basis. Successful applications of the data base to several of NRC's evaluations have received favorable response and support for its continuation. The future direction of the data base has been designed to include the test reactor and other types of data of interest to the regulators and the researchers. 1 ref

  16. The effect of pearlite on the hydrogen-induced ductility loss in ductile cast irons

    Science.gov (United States)

    Matsuo, T.

    2017-05-01

    Hydrogen energy systems, such as a hydrogen fuel cell vehicle and a hydrogen station, are rapidly developing to solve global environmental problems and resource problems. The available structural materials used for hydrogen equipments have been limited to only a few relatively expensive metallic materials that are tolerant for hydrogen embrittlement. Therefore, for the realization of a hydrogen society, it is important to expand the range of materials available for hydrogen equipment and thereby to enable the use of inexpensive common materials. Therefore, ductile cast iron was, in this study, focused as a structural material that could contribute to cost reduction of hydrogen equipment, because it is a low-cost material having good mechanical property comparable to carbon steels in addition to good castability and machinability. The strength and ductility of common ductile cast irons with a ferritic-pearlitic matrix can be controlled by the volume fraction of pearlitic phase. In the case of carbon steels, the susceptibility to hydrogen embrittlement increases with increase in the pearlite fraction. Toward the development of ferritic-pearlitic ductile cast iron with reasonable strength for hydrogen equipment, it is necessary to figure out the effect of pearlite on the hydrogen embrittlement of this cast iron. In this study, the tensile tests were conducted using hydrogen-precharged specimens of three kinds of ferritic-pearlitic ductile cast irons, JIS-FCD400, JIS-FCD450 and JIS-FCD700. Based on the results, the role of pearlite in characterizing the hydrogen embrittlement of ductile cast iron was discussed.

  17. Catalytic Hydrogenation of Acetone to Isopropanol: An Environmentally Benign Approach

    Directory of Open Access Journals (Sweden)

    Ateeq Rahman

    2011-01-01

    Full Text Available The catalytic hydrogenation of acetone is an important area of catalytic process to produce fine chemicals. Hydrogenation of acetone has important applications for heat pumps, fuel cells or in fulfilling the sizeable demand for the production of 2-propanol. Catalytic vapour phase hydrogenation of acetone has gained attention over the decades with variety of homogeneous catalysts notably Iridium, Rh, Ru complexes and heterogeneous catalysts comprising of Raney Nickel, Raney Sponge, Ni/Al2O3, Ni/SiO2, or Co-Al2O3, Pd, Rh, Ru, Re, or Fe/Al2O3 supported on SiO2 or MgO and even CoMgAl, NiMg Al layered double hydroxide, Cu metal, CuO, Cu2O. Nano catalysts are developed for actone reduction Ni maleate, cobalt oxide prepared in organic solvents. Author present a review on acetone hydrogenation under different conditions with various homogeneous and heterogeneous catalysts studied so far in literature and new strategies to develop economic and environmentally benign approach. ©2010 BCREC UNDIP. All rights reserved(Received: 16th June 2010, Revised: 18th October 2010; Accepted: 25th October 2010[How to Cite:Ateeq Rahman. (2010. Catalytic Hydrogenation of Acetone to Isopropanol: An Environmentally Benign Approach. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 113-126. doi:10.9767/bcrec.5.2.798.113-126][DOI: http://dx.doi.org/10.9767/bcrec.5.2.798.113-126 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/798

  18. Specificity in liquid metal induced embrittlement

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1996-12-01

    Full Text Available One of the most intriguing features of liquid metal induced embrittlement (LMIE) is the observation that some liquid metal-solid metal couples are susceptible to embrittlement, while others appear to be immune. This is referred to as the specificity...

  19. The hydrogen economy urgently needs environmentally sustainable hydroelectricity

    International Nuclear Information System (INIS)

    Goodland, R.

    1995-01-01

    Only two sources of energy were said to have the capacity to bridge the transition to fully sustainable and renewable energy, namely natural gas and hydro. The argument was made that because of this advantage, both forms will have to be promoted fast, since the transition to sustainable energy is urgent. In so far as natural gas supplies are concerned, it was estimated that they will last for perhaps the next 50 years, whereas hydroelectric potential is practically unlimited. Developing nations could vastly accelerate their development, reduce poverty and approach sustainability by exporting hydro to industrial countries. Similarly, industrial nations switching from fossil fuels to hydrogen could move up the environmental ranking, and significantly help alleviating global pollution and climate risks. Environmental ranking of new energy sources, world reservoirs of hydroelectric power, environmental and social ranking of hydro sites, the environmental impacts of hydro projects, and the concept of environmental sustainability in hydro reservoirs, were summarized. Greater acceptance of the need for sustainable development by the hydro industry was urged, along with more care in selecting hydro development sites with sustainability as a prime objective. 23 refs., 6 figs

  20. Potential structural material problems in a hydrogen energy system

    Science.gov (United States)

    Gray, H. R.; Nelson, H. G.; Johnson, R. E.; Mcpherson, W. B.; Howard, F. S.; Swisher, J. H.

    1976-01-01

    Potential structural material problems that may be encountered in the three components of a hydrogen energy system - production, transmission/storage, and utilization - have been identified. Hydrogen embrittlement, corrosion, oxidation, and erosion may occur during the production of hydrogen. Hydrogen embrittlement is of major concern during both transmission and utilization of hydrogen. Specific materials research and development programs necessary to support a hydrogen energy system are described. An awareness of probable shortages of strategic materials has been maintained in these suggested programs.

  1. Environmental and economic aspects of hydrogen production and utilization in fuel cell vehicles

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    A smooth transition from gasoline-powered internal combustion engine vehicles to ecologically clean hydrogen fuel cell vehicles depends on the process used for hydrogen production. Three technologies for hydrogen production are considered here: traditional hydrogen production via natural gas reforming, and the use of two renewable technologies (wind and solar electricity generation) to produce hydrogen via water electrolysis. It is shown that a decrease of environmental impact (air pollution and greenhouse gas emissions) as a result of hydrogen implementation as a fuel is accompanied by a decline in the economic efficiency (as measured by capital investments effectiveness). A mathematical procedure is proposed to obtain numerical estimates of environmental and economic criteria interactions in the form of sustainability indexes. On the basis of the obtained sustainability indexes, it is concluded that hydrogen production from wind energy via electrolysis is more advantageous for mitigating greenhouse gas emissions and traditional natural gas reforming is more favorable for reducing air pollution.

  2. Irradiation embrittlement of pressure vessel steels

    International Nuclear Information System (INIS)

    Brumovsky, M.; Vacek, M.

    1975-01-01

    A Standard Research Programme on Irradiation Embrittlement of Pressure Vessel Steels was approved by the Coordinating Meeting on the 12th May 1972 at the Working Group on Engineering Aspects of Irradiation Embrittlement of Pressure Vessel Steels. This Working Group was set up by the International Atomic Energy Agency in Vienna. Seven countries with their research institutes agreed on doing irradiation experiments according to the approved programme on steel A533 B from the U.S. HSST Programme. The Czechoslovak contribution covering tensile and impact testing of non-irradiated steel and steel irradiated at 280degC to 1.3 x 10 23 n/m 2 (E above 1 MeV) is presented in this report. As an additional part the same set of experiments was carried out on two additional steels - A 542 and A 543, made in SKODA Works for comparison of their irradiation embrittlement and hardening with A533 B steel. (author)

  3. Effect of hydrogen on aluminium and aluminium alloys: A review

    DEFF Research Database (Denmark)

    Ambat, Rajan; Dwarakadasa, E.S.

    1996-01-01

    Susceptibility of aluminium and its alloys towards hydrogen embrittlement has been well established. Still a lot of confusion exists on the question of transport of hydrogen and its possible role in stress corrosion cracking. This paper reviews some of the fundamental properties of hydrogen...... in aluminium and its alloys and its effect on mechanical properties. The importance of hydrogen embrittlement over anodic dissolution to explain the stress corrosion cracking mechanism of these alloys is also examined in considerable detail. The various experimental findings concerning the link between...... hydrogen embrittlement and stress corrosion cracking are also discussed....

  4. Irradiation embrittlement of ferritic stainless steels

    International Nuclear Information System (INIS)

    Suganuma, K.; Kayano, H.

    1984-01-01

    The characteristics of the irradiation embrittlement of some ferritic stainless steels were examined by tensile tests. Steels selected in this investigation were classified into three groups: chi phase, precipitation hardened Fe-13Cr steels; tempered martensitic Fe-12Cr steels; and low alloy steels. The latter steels were chosen in order to compare the irradiation embrittlement characteristics with those of stainless steels. The stainless steels were superior to the low alloy steels with regard to the irradiation embrittlement (the changes in both ductile-brittle transition temperature (DBTT) and unstable plastic flow transition temperature (UPFTT)), irrespective of whether these stainless steels had chi phase precipitated structures or tempered martensitic structures. The suppression of the DBTT increase owing to irradiation results from low yield stress increase Δσsub(y) and high |[dσsub(y)(u)/dT]|, where u denotes unirradiated, in the stainless steels. The suppression of the UPFTT results from the high work hardening rate or the high work exponent and the low Lueders strain in the stainless steels. These characteristics of irradiation embrittlement in the ferritic stainless steels are thought to be caused by the defect structure, which is modified by Cr atoms. (author)

  5. Disorder-induced melting in nickel: implication to intergranular sulfur embrittlement

    International Nuclear Information System (INIS)

    Heuer, J.K.; Okamoto, P.R.; Lam, N.Q.; Stubbins, J.F.

    2002-01-01

    Why and how sulfur segregation leads to intergranular embrittlement of nickel has been investigated by a combination of Auger electron spectroscopy, slow-strain-rate tensile tests, ion-implantation, and Rutherford backscattering spectrometry studies. Grain-boundary sulfur concentrations in dilute Ni-S alloys were systematically varied by time-controlled annealing of specimens at 625 deg. C. The critical sulfur concentration for 50% intergranular fracture of 15.5±3.4 at.% S was found to be, within experimental error, equal to the critical implant concentration of 14.2±3.3 at.% S required to induce 50% amorphization of single-crystal nickel during S + implantation at liquid nitrogen temperature. This suggests that segregation-induced intergranular embrittlement, like implantation-induced amorphization, may be a disorder-induced melting process, albeit one occurring locally at grain boundaries. In addition, a kinetic model for segregation-induced embrittlement based on Poisson statistics is introduced, and the synergistic effects of hydrogen-sulfur co-segregation on embrittlement are discussed

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BIOQUELL, INC. CLARIS C HYDROGEN PEROXIDE GAS GENERATOR

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Clarus C Hydrogen Peroxide Gas Generator, a biological decontamination device manufactured by BIOQUELL, Inc. The unit was tested by evaluating its ability to decontaminate seven types...

  7. Environmental accounting of eco-innovations through environmental input-output analysis : The case of hydrogen and fuel cells buses

    NARCIS (Netherlands)

    Cantono, Simona; Heijungs, Reinout; Kleijn, Réne

    The introduction of environmentally friendly innovations in both transport and energy sectors are included in the list of priorities of the European Union political agenda. This paper investigates the environmental consequences of the introduction of hydrogen and fuel cells technology in the

  8. Interaction Of Hydrogen With Metal Alloys

    Science.gov (United States)

    Danford, M. D.; Montano, J. W.

    1993-01-01

    Report describes experiments on interaction of hydrogen with number of metal alloys. Discusses relationship between metallurgical and crystallographic aspects of structures of alloys and observed distributions of hydrogen on charging. Also discusses effect of formation of hydrides on resistances of alloys to hydrogen. Describes attempt to correlate structures and compositions of alloys with their abilities to resist embrittlement by hydrogen.

  9. Hydrogen solubility and permeability of Nb-W-Mo alloy membrane

    International Nuclear Information System (INIS)

    Awakura, Y.; Nambu, T.; Matsumoto, Y.; Yukawa, H.

    2011-01-01

    Research highlights: → The concept for alloy design of Nb-based hydrogen permeable membrane has been applied to Nb-W-Mo ternary alloy in order to improve further the resistance to hydrogen embrittlement and hydrogen permeability. → The alloying effects of Mo on the hydriding properties of Nb-W alloy have been elucidated. → The addition of Mo and/or W into niobium improves the resistance to hydrogen embrittlement by reducing the dissolved hydrogen concentration in the alloy. → Nb-W-Mo alloy possesses excellent hydrogen permeability together with strong resistance to hydrogen embrittlement. - Abstract: The alloying effects of molybdenum on the hydrogen solubility, the resistance to hydrogen embrittlement and the hydrogen permeability are investigated for Nb-W-Mo system. It is found that the hydrogen solubility decreases by the addition of molybdenum into Nb-W alloy. As a result, the resistance to hydrogen embrittlement improves by reducing the hydrogen concentration in the alloy. It is demonstrated that Nb-5 mol%W-5 mol%Mo alloy possesses excellent hydrogen permeability without showing any hydrogen embrittlement when used under appropriate hydrogen permeation conditions, i.e., temperature and hydrogen pressures.

  10. Hydrogen storage container

    Science.gov (United States)

    Wang, Jy-An John; Feng, Zhili; Zhang, Wei

    2017-02-07

    An apparatus and system is described for storing high-pressure fluids such as hydrogen. An inner tank and pre-stressed concrete pressure vessel share the structural and/or pressure load on the inner tank. The system and apparatus provide a high performance and low cost container while mitigating hydrogen embrittlement of the metal tank. System is useful for distributing hydrogen to a power grid or to a vehicle refueling station.

  11. High-temperature radiation embrittlement of materials

    International Nuclear Information System (INIS)

    Zelenskij, V.F.; Kiryukhin, N.M.; Ozhigov, L.S.; Parkhomenko, A.A.

    1983-01-01

    On the basis of the analysis of literature data and the results obtained by the authors, main features and regularities of the high-temperature radiation embrittlement of materials (HTRE) are described. In important part of charged particle accelerator investigations for imitation and study of HTRE is pointed out. The existing HTRE models are analyzed and a new model taking into account the evolution of defect structure of matrix and grain boundaries under irradiation is suggested

  12. Synergetic effects of irradiation and thermal embrittlement

    International Nuclear Information System (INIS)

    Gillemot, F.; Gillemot, L.; Uri, G.; Pirfo, S.; Oszwald, F.

    1997-01-01

    The thermal ageing is a slow diffusion process, especially at the temperature of reactor operation. The thermal ageing affects the forging surface and the middle zone differently. The WWER surveillance specimens are located at accelerated irradiation positions. Because of this fact the thermal ageing effect can be only measured on the specimens irradiated at least 4 years long. The paper discusses the factors affecting the real reactor wall embrittlement. (author)

  13. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 log (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.

  14. Current limitations of trend curve analysis for the prediction of reactor PV embrittlement

    International Nuclear Information System (INIS)

    Gold, R.; McElroy, W.N.

    1987-01-01

    To define the effects of neutron radiation damage on LWR pressure-temperature operating limits and to assess fracture toughness of power reactor PV, trend curves for the prediction of PV embrittlement have been developed. These trend curves are very general PV embrittlement curves that are used to evaluate current PV status as well as to predict the future state of the PV. In such trend curves, the two main measures of radiation damage are the adjusted reference nil-ductility temperature ART/sub NDT/(RT/sub NDT/initial + ΔRT/sub NDT/) and the decrease in upper-shelf energy level determined from Charpy V notch impact tests. Current measures of neutron exposure most commonly used in trend curve analyses are fluence > 1 MeV and displacements per atom (dpa) in iron. Since trend curves play such a crucial role in the assessment of PV embrittlement of operating commercial LWR power plants, a critical appraisal of trend curve analysis is essential. To this end, current limitations in trend curve analysis for the prediction of reactor PV embrittlement are examined. It is concluded that a number of systematic effects can arise because environmental differences exist between test reactors, surveillance capsule locations, and the actual irradiation conditions that accrue within the PV of an operating LWR commercial power plant. An irradiation test program is advanced to investigate these systematic effects and to produce the requisite data needed to correct for such systematic biases in trend curve analysis

  15. Environmental, social and economic measures for introducing hydrogen to city centres

    International Nuclear Information System (INIS)

    Hart, D.; Lucas, N.; Hutchinson, D.

    1997-01-01

    A conceptual design of a total system of hydrogen use in an urban area is being developed as part of the Japanese WE-NET Program. This paper describes the methodology used in developing the concept and provides details of some of the initial findings of the research project. Several energy scenarios involving hydrogen have been subjected to cost-benefit analysis, and assessed against a reference scenario. The reference scenario is based on expectations of energy demand in the year 2015, although some assumptions have been time-frozen. (These, however, are factors that do not affect the outcomes). One of the considerations in examining various scenarios was to propose transitional strategies for achieving hydrogen penetration in urban areas. Niche market areas appear to offer the greatest cost or emission advantage at present, therefore, the alternative energy supply scenarios have been designed to target particular niche areas for the use of hydrogen. These niches include decentralized power generation using fuel cells, fuel cell-equipped buses and the mixing of hydrogen with natural gas for both vehicular and power generating equipment use. Externality costing has been used to compare technology costs and environmental benefits. Results suggest that it may be valuable to mix hydrogen with natural gas and deliver it to all users of natural gas. Targeting pure hydrogen may not be cost-effective in the short term due to the high cost associated with developing a hydrogen infrastructure

  16. An integrated approach to the modelling of hydrogen assisted failure in 316L steel

    International Nuclear Information System (INIS)

    Toribio, J.; Justo, E.R.; Caballero, L.; Valiente, A.

    1998-01-01

    An integrated approach to the modelling of hydrogen assisted failure in 316L steel is presented. The approach includes experimental, fractographic, numerical and theoretical analysis of the phenomenon. The physical adequacy of the mechanical models of hydrogen embrittlement (notch extension model and notch cracking model) is discussed by comparing the virtual damage depth (theoretical) predicted by the models with the embrittled zone (microphysical) measured in the fractographic analysis by scanning electron microscopy. In addition, a numerical modelling of hydrogen diffusion is performed, concluding that bulk diffusion is not important in hydrogen embrittlement of 316L steel, so that hydrogen transport accelerated by the microdamage itself should be taken into account. (orig.)

  17. Site-Dependent Environmental Impacts of Industrial Hydrogen Production by Alkaline Water Electrolysis

    Directory of Open Access Journals (Sweden)

    Jan Christian Koj

    2017-06-01

    Full Text Available Industrial hydrogen production via alkaline water electrolysis (AEL is a mature hydrogen production method. One argument in favor of AEL when supplied with renewable energy is its environmental superiority against conventional fossil-based hydrogen production. However, today electricity from the national grid is widely utilized for industrial applications of AEL. Also, the ban on asbestos membranes led to a change in performance patterns, making a detailed assessment necessary. This study presents a comparative Life Cycle Assessment (LCA using the GaBi software (version 6.115, thinkstep, Leinfelden-Echterdingen, Germany, revealing inventory data and environmental impacts for industrial hydrogen production by latest AELs (6 MW, Zirfon membranes in three different countries (Austria, Germany and Spain with corresponding grid mixes. The results confirm the dependence of most environmental effects from the operation phase and specifically the site-dependent electricity mix. Construction of system components and the replacement of cell stacks make a minor contribution. At present, considering the three countries, AEL can be operated in the most environmentally friendly fashion in Austria. Concerning the construction of AEL plants the materials nickel and polytetrafluoroethylene in particular, used for cell manufacturing, revealed significant contributions to the environmental burden.

  18. Alkene hydrogenation activity of enoate reductases for an environmentally benign biosynthesis of adipic acid.

    Science.gov (United States)

    Joo, Jeong Chan; Khusnutdinova, Anna N; Flick, Robert; Kim, Taeho; Bornscheuer, Uwe T; Yakunin, Alexander F; Mahadevan, Radhakrishnan

    2017-02-01

    Adipic acid, a precursor for Nylon-6,6 polymer, is one of the most important commodity chemicals, which is currently produced from petroleum. The biosynthesis of adipic acid from glucose still remains challenging due to the absence of biocatalysts required for the hydrogenation of unsaturated six-carbon dicarboxylic acids to adipic acid. Here, we demonstrate the first enzymatic hydrogenation of 2-hexenedioic acid and muconic acid to adipic acid using enoate reductases (ERs). ERs can hydrogenate 2-hexenedioic acid and muconic acid producing adipic acid with a high conversion rate and yield in vivo and in vitro . Purified ERs exhibit a broad substrate spectrum including aromatic and aliphatic 2-enoates and a significant oxygen tolerance. The discovery of the hydrogenation activity of ERs contributes to an understanding of the catalytic mechanism of these poorly characterized enzymes and enables the environmentally benign biosynthesis of adipic acid and other chemicals from renewable resources.

  19. Precursor Events in Environmentally Assisted Cracking Behaviour of Light Metals

    Energy Technology Data Exchange (ETDEWEB)

    Raja, V. S. [Indian Institute of Technology Bombay, Mumbai (India)

    2016-08-15

    Light metal alloys of Mg, Ti, and Al undergo environmentally assisted cracking (EAC). Passive film breakdown and pitting are not only precursor events for stress corrosion, but can accelerate hydrogen evolution that is responsible for hydrogen embrittlement. This is clearly demonstrated in the case of Mg and Ti alloys. The so-called innocuous precipitates, which do not directly participate in either alloy strengthening or EAC can be effective precursors for initiating EAC. This aspect is highlighted using high strength aluminium alloys. Such behaviours lead to a paradigm shift in the design of alloys with resistance to EAC.

  20. Effects of hydrogen induced delay fracture on high-strength steel plate of automobile and the improvement

    Directory of Open Access Journals (Sweden)

    Fengzhu Liu

    2016-03-01

    Full Text Available Delay fracture is an environmental embrittlement occurring when materials, environment and stress interact with each other and also a form of hydrogen induced material deterioration. It is a leading factor inhibiting the further improvement of strength of steel and iron material. Hence this study analyzed the improved low-carbon Mn-B type ultra-high strength steel plate (1500 MPa which were processed by conventional heat treatment and heating forming technique and explored the effects of tempering temperature and heating forming technique on the performance of hydrogen induced delay fracture, which provides a reference for the actual application of such kind of steel plate.

  1. Practical illustration of the traditional vers. alternative LOCA embrittlement criteria

    International Nuclear Information System (INIS)

    Vrtilkova, V.; Novotny, L.; Hamouz, V.; Doucha, R.; Tinka, I.; Macek, J.; Lahovsky, F.

    2005-01-01

    Evaluation of LOCA time behaviour is usually based on traditional embrittlement criterion, represented by the equivalent cladding reacted (ECR) limit 17 % (18 %) at the peak cladding temperature below 1204 0 C (1200 0 C). From different existing correlations for evaluation the ECR, the correlations of Baker-Just, Cathcart and VNIINM (Bibilashvili) are discussed here. Results, obtained by these correlations, are illustrated for typical and atypical LOCA courses analysed for the WWER 440 plant. An approach to assess these correlations from the viewpoint of violation of the observed criterion is presented. This approach is based on determination of the temperature vers. time of exposition, when the criterion limit is reached. Reasons leading to necessity of alternative criterion proposal are summarised. This criterion for LOCA events evaluation, including corresponding correlation, is proposed on the basis of the long-term experimental research of cladding materials at UJP Praha. The computational results, obtained according to this alternative criterion, are illustrated for the same courses of LOCA events as for traditional criteria and traditional correlations. Proposed criterion is also confronted with the other discussed criteria in accordance with mentioned approach presented in this paper. The characteristic experimental results and key findings are summarised. They substantiate and support the proposed alternative criterion. An advantage of the criterion is its independence on ECR, on hydrogen and oxygen content and on oxidation history, and its applicability to current Zr-based alloy cladding materials as well. This applicability is kept while preserving the simplicity of the criterion using. (author)

  2. Hydrogen Embrittlement - Loading Rate Effects in Fracture Mechanics Testing

    NARCIS (Netherlands)

    Koers, R.W.J.; Krom, A.H.M.; Bakker, A.

    2001-01-01

    The fitness for purpose methodology is more and more used in the oil and gas industry to evaluate the significance of pre-existing flaws and material deficiencies with regard to the suitability of continued operation of equipment. In this methodology, traditional fracture mechanics is integrated

  3. Acceptance Criterion for Hydrogen Embrittlement Testing of Coated Fasteners

    Science.gov (United States)

    2009-09-01

    Threshold stress for HSC/UTS of fastener Test Method: (IHE) Processing – RSL™ Test in air Bare — manufacturing of steel Coated — application of coating...Program Test Specimens or Fasteners? A rapid, inexpensive method to evaluate a material and coating is to use an ASTM E1280, 0.4”W, Charpy - sized...F1940 vertical axis (%NFS => Hsr) Obtain similar data at lower hardness levels by conducting RSL threshold test on notched square bars of bare steel

  4. Effect of heat treatments on the hydrogen embrittlement ...

    Indian Academy of Sciences (India)

    pipe steel in as received (controlled rolled), normalized, and quenched and ... Department of Metallurgical Engineering, Banaras Hindu University, Varanasi 221 005, India; Small Industries Service Institute, Industrial Estate, Varanasi 221 006, ...

  5. Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M.

    1943-02-19

    A transcript is presented of a speech on the history of the development of hydrogenation of coal and tar. Apparently the talk had been accompanied by the showing of photographic slides, but none of the pictures were included with the report. In giving the history, Dr. Pier mentioned the dependence of much of the development of hydrogenation upon previous development in the related areas of ammonia and methanol syntheses, but he also pointed out several ways in which equipment appropriate for hydrogenation differed considerably from that used for ammonia and methanol. Dr. Pier discussed the difficulties encountered with residue processing, design of the reaction ovens, manufacture of ovens and preheaters, heating of reaction mixtures, development of steels, and development of compressor pumps. He described in some detail his own involvement in the development of the process. In addition, he discussed the development of methods of testing gasolines and other fuels. Also he listed some important byproducts of hydrogenation, such as phenols and polycyclic aromatics, and he discussed the formation of iso-octane fuel from the butanes arising from hydrogenation. In connection with several kinds of equipment used in hydrogenation (whose pictures were being shown), Dr. Pier gave some of the design and operating data.

  6. Investigation of helium-induced embrittlement

    International Nuclear Information System (INIS)

    Sabelova, V.; Slugen, V.; Krsjak, V.

    2014-01-01

    In this work, the hardness of Fe-9%(wt.) Cr binary alloy implanted by helium ions up to 1000 nm was investigated. The implantations were performed using linear accelerator at temperatures below 80 grad C. Isochronal annealing up to 700 grad C with the step of 100 grad C was applied on the helium implanted samples in order to investigate helium induced embrittlement of material. Obtained results were compared with theoretical calculations of dpa profiles. Due to the results, the nano-hardness technique results to be an appropriate approach to the hardness determination of thin layers of implanted alloys. Both, experimental and theoretical calculation techniques (SRIM) show significant correlation of measured results of induced defects. (authors)

  7. Modeling irradiation embrittlement in reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Odette, G.R.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 10, numerical modeling of irradiation embrittlement in reactor vessel steels are introduced. Physically-based models are developed and their role in advancing the state-of-the-art of predicting irradiation embrittlement of RPV steels is stressed

  8. Embrittlement of zircaloy cladding due to oxygen uptake (CBRTTL)

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1979-02-01

    A model for embrittlement of zircaloy due to oxygen uptake at high temperatures is described. The model defines limits for oxygen content and temperature which, if exceeded, give rise to zircaloy cladding which is sufficiently embrittled to cause failure either on quenching or normal handling following a transient. A significant feature of this model is that the onset of embrittlement is dependent on the cooling rate. A distinction is made between slow and fast cooling, with the boundary at 100 K/s. The material property correlations and computer subcodes described in MATPRO are developed for use in Light Water Reactor (LWR) codes

  9. Reactor pressure vessel embrittlement: Insights from neural network modelling

    Science.gov (United States)

    Mathew, J.; Parfitt, D.; Wilford, K.; Riddle, N.; Alamaniotis, M.; Chroneos, A.; Fitzpatrick, M. E.

    2018-04-01

    Irradiation embrittlement of steel pressure vessels is an important consideration for the operation of current and future light water nuclear reactors. In this study we employ an ensemble of artificial neural networks in order to provide predictions of the embrittlement using two literature datasets, one based on US surveillance data and the second from the IVAR experiment. We use these networks to examine trends with input variables and to assess various literature models including compositional effects and the role of flux and temperature. Overall, the networks agree with the existing literature models and we comment on their more general use in predicting irradiation embrittlement.

  10. Effects of hydrogen on the behavior of metals. III. Mechanicals behavior of the TD12ZrE titanium alloy in presence of hydrogen; influence of heat treatments and oxygen content

    International Nuclear Information System (INIS)

    Criqui, Bernard.

    1976-04-01

    The influence of heat treatments, hydrogen state and concentration are studied. Tensile tests on specimens STA at 510 deg C show opposite behavior according to the hydrogen loading mode, either cathodic (embrittlement increases with small hydrogen content) or during aging (embrittlement begins at about 4500ppm). As aging and hydrogen loading temperatures increase, hydrogen-induced β stabilization decreases. Previous cold-work or oxygen loading favor α phase nucleation. More severe biaxial disk pressure tests, conducted on the alloy aged and loaded at 510 deg C, reveal various embrittlement caused by dissolved hydrogen, one due to hydrogen dragging by dislocations at medium epsilon and beginning at 1500ppm, one at high epsilon due to the Kolachev effect. Disk pressure testing of hydrogen gas embrittlement shows the competitition between film rupture and repassivation phenomena together with the influence of heat treatments, surface conditions and trace impurities [fr

  11. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  12. Charles J. McMahon Interfacial Segregation and Embrittlement Symposium

    National Research Council Canada - National Science Library

    Vitek, Vaclav

    2003-01-01

    .... McMahon Interfacial Segregation and Embrittlement Symposium: Grain Boundary Segregation and Fracture in Steels was sponsored by ASM International, Materials Science Critical Technology Sector, Structural Materials Division, Materials Processing...

  13. Liquid-metal embrittlement of refractory metals by molten plutonium

    International Nuclear Information System (INIS)

    Lesuer, D.R.; Bergin, J.B.; McInturff, S.A.; Kuhn, B.A.

    1980-07-01

    Embrittlement by molten plutonium of the refractory metals and alloys W-25 wt % Re, tantalum, molybdenum, and Ta-10 wt % W was studied. At 900 0 C and a strain rate of 10 -4 s -1 , the materials tested may be ranked in order of decreasing susceptibility to liquid-plutonium embrittlement as follows: molybdenum, W-25 wt % Re, Ta-10 wt % W, and tantalum. These materials exhibited a wide range in susceptibility. Embrittlement was found to exhibit a high degree of temperature and strain-rate dependence, and we present arguments that strongly support a stress-assisted, intergranular, liquid-metal corrosion mechanism. We also believe microstructure plays a key role in the extent of embrittlement. In the case of W-25 wt % Re, we have determined that a dealloying corrosion takes place in which rhenium is selectively withdrawn from the alloy

  14. Re-examining reactor vessel embrittlement at Chooz A

    International Nuclear Information System (INIS)

    Guilleret, J.-C.

    1988-01-01

    The Chooz A PWR experienced an extended shutdown in 1987/88 following indications that the reactor vessel was embrittling more rapidly than expected. Discrepancies between the expected rate and estimates of the actual rate were not easily explained. The huge body of work done since then to establish safety margins and support restart of the plant should provide a model for the owners of other older PWRs grappling with the embrittlement issue. (author)

  15. A hydrogen energy carrier. Volume 2: Systems analysis

    Science.gov (United States)

    Savage, R. L. (Editor); Blank, L. (Editor); Cady, T. (Editor); Cox, K. (Editor); Murray, R. (Editor); Williams, R. D. (Editor)

    1973-01-01

    A systems analysis of hydrogen as an energy carrier in the United States indicated that it is feasible to use hydrogen in all energy use areas, except some types of transportation. These use areas are industrial, residential and commercial, and electric power generation. Saturation concept and conservation concept forecasts of future total energy demands were made. Projected costs of producing hydrogen from coal or from nuclear heat combined with thermochemical decomposition of water are in the range $1.00 to $1.50 per million Btu of hydrogen produced. Other methods are estimated to be more costly. The use of hydrogen as a fuel will require the development of large-scale transmission and storage systems. A pipeline system similar to the existing natural gas pipeline system appears practical, if design factors are included to avoid hydrogen environment embrittlement of pipeline metals. Conclusions from the examination of the safety, legal, environmental, economic, political and societal aspects of hydrogen fuel are that a hydrogen energy carrier system would be compatible with American values and the existing energy system.

  16. Updated embrittlement trend curve for reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Kirk, M.; Santos, C.; Eason, E.; Wright, J.; Odette, G.R.

    2003-01-01

    The reactor pressure vessels of commercial nuclear power plants are subject to embrittlement due to exposure to high energy neutrons from the core. Irradiation embrittlement of RPV belt-line materials is currently evaluated using US Regulatory Guide 1.99 Revision 2 (RG 1.99 Rev 2), which presents methods for estimating the Charpy transition temperature shift (ΔT30) at 30 ft-lb (41 J) and the drop in Charpy upper shelf energy (ΔUSE). A more recent embrittlement model, based on a broader database and more recent research results, is presented in NUREG/CR-6551. The objective of this paper is to describe the most recent update to the embrittlement model in NUREG/CR-6551, based upon additional data and increased understanding of embrittlement mechanisms. The updated ΔT30 and USE models include fluence, copper, nickel, phosphorous content, and product form; the ΔT30 model also includes coolant temperature, irradiation time (or flux), and a long-time term. The models were developed using multi-variable surface fitting techniques, understanding of the ΔT30 mechanisms, and engineering judgment. The updated ΔT30 model reduces scatter significantly relative to RG 1.99 Rev 2 on the currently available database for plates, forgings, and welds. This updated embrittlement trend curve will form the basis of revision 3 to Regulatory Guide 1.99. (author)

  17. Influence of superficial steel oxides on the penetration and the desorption of hydrogen

    International Nuclear Information System (INIS)

    Tison, P.; Fidelle, J.P.

    1981-10-01

    The permeability to hydrogen of natural surface oxides of steel has been studied. Oxides can form an effective barrier to the embrittlement of the substrate. Tests show that oxides formed at high temperature during forming and those formed in an oxidizing bath can reduce steel embrittlement [fr

  18. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  19. The role of hydrogen as a future solution to energetic and environmental problems for residential buildings

    Science.gov (United States)

    Badea, G.; Felseghi, R. A.; Aşchilean, I.; Rǎboacǎ, S. M.; Şoimoşan, T.

    2017-12-01

    The concept of sustainable development aims to meet the needs of the present without compromising the needs of future generations. In achieving the desideratum "low-carbon energy system", in the domain of energy production, the use of innovative low-carbon technologies providing maximum efficiency and minimum pollution is required. Such technology is the fuel cell; as these will be developed, it will become a reality to obtain the energy based on hydrogen. Thus, hydrogen produced by electrolysis of water using different forms of renewable resources becomes a secure and sustainable energy alternative. In this context, in the present paper, a comparative study of two different hybrid power generation systems for residential building placed in Cluj-Napoca was made. In these energy systems have been integrated renewable energies (photovoltaic panels and wind turbine), backup and storage system based on hydrogen (fuel cell, electrolyser and hydrogen storage tank), and, respectively, backup and storage system based on traditional technologies (diesel generator and battery). The software iHOGA was used to simulate the operating performance of the two hybrid systems. The aim of this study was to compare energy, environmental and economic performances of these two systems and to define possible future scenarios of competitiveness between traditional and new innovative technologies. After analyzing and comparing the results of simulations, it can be concluded that the fuel cells technology along with hydrogen, integrated in a hybrid system, may be the key to energy production systems with high energy efficiency, making possible an increased capitalization of renewable energy which have a low environmental impact.

  20. 76 FR 26331 - Dijji Corp., Hydro Environmental Resources, Inc. (n/k/a EXIM Internet Group, Inc.), Hydrogen...

    Science.gov (United States)

    2011-05-06

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Dijji Corp., Hydro Environmental Resources, Inc. (n/k/a EXIM Internet Group, Inc.), Hydrogen Power, Inc., and InsynQ, Inc.; Order of Suspension of... there is a lack of current and accurate information concerning the securities of Hydrogen Power, Inc...

  1. Hydrogen behaviour in 34CrMo4 martensitic steels; Comportement de l'hydrogene dans les aciers martensitiques 34CrMo4

    Energy Technology Data Exchange (ETDEWEB)

    Moli Sanchez, L.; Chene, J. [CEA Saclay, CNRS/CEA UMR 8587, LECA, 91 - Gif-sur-Yvette (France); Leunis, E. [OCAS NV - ArcelorMittal Global R and D, Gent (Belgium); Marchetti, L.; Martin, F.; Wery, M. [CEA Saclay, DEN, DPC, SCCME, LECA, 91 - Gif-sur-Yvette (France); Wery, M. [IUT Mesures Physiques d' Orsay -Universite Paris-11, 91 - Orsay (France)

    2010-03-15

    This study aims at a better understanding of the mechanisms of embrittlement, of the hydrogen-material interactions (diffusion, permeation, trapping) and of the hydrogen-plasticity interactions, and their consequences on hydrogen embrittlement in order to optimize steel microstructure. In the case of the 34CrMo4 martensitic steel, the study comprises a material elaboration and characterization, an investigation of hydrogen-microstructures interactions, an investigation of the influence of microstructure on material susceptibility to hydrogen embrittlement (by tensile tests on samples pre-hydrogenated or hydrogenated under mechanical solicitations), and the modelling of the role of microstructures in the damaging of martensitic steels by hydrogen. This paper reports the results obtained for the first three steps of this study

  2. Hydrogen on the road. Environmental impact of hydrogen in automobiles; Waterstof onderweg. Milieu-impact van waterstof in personenwagens

    Energy Technology Data Exchange (ETDEWEB)

    Lambrechts, T.

    2008-08-15

    The global warming and the emissions of greenhouse gases move the car industry towards alternative fuels. These should make it possible to fulfill our individual transport needs without a major impact on the environment. Hydrogen is one of the possible alternatives. This study tries to reveal what the effect on the environment would be if we use hydrogen as the fuel for our individualized road transport. There are many ways to produce, conserve, transport and use hydrogen. In the first part all these options will be discussed on the hand of a literature review. In the second part these will be used to create different configurations. By the creation of the different pathways we will combine these modes of production, conservation and transport with cars with internal combustion engines and with fuel cells. An extensive databank will be created. The data will be used to calculate the Ecoscore for the different pathways. There will be a calculation of existing pathways as well as fictitious ones. Ecoscore is a scale that represents the environmental impact of a certain vehicle. On the base of these calculations there can be concluded that cars with a fuel cell are ecological much more attractive than cars that use hydrogen in an internal combustion engine. This is in large part due to the lower efficiency of the engines and hence the higher fuel consumption. The extra emissions that are released by the burning process are not of great impact on the environment. After examination of the data it becomes clear that the electric vehicles with batteries still perform better than the fuel cell vehicles. This is due to the energy loss by the conversion from hydrogen to electricity. It is noteworthy though that with the calculation of the Ecoscore of the battery-cars there were no emissions included concerning the extraction and the transport of the fossil fuels used to generate the electricity. The fuel cell vehicles score very well in comparison to the cars that use

  3. Evaluation of the Potential Environmental Impacts from Large-Scale Use and Production of Hydrogen in Energy and Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wuebbles, D.J.; Dubey, M.K., Edmonds, J.; Layzell, D.; Olsen, S.; Rahn, T.; Rocket, A.; Wang, D.; Jia, W.

    2010-06-01

    The purpose of this project is to systematically identify and examine possible near and long-term ecological and environmental effects from the production of hydrogen from various energy sources based on the DOE hydrogen production strategy and the use of that hydrogen in transportation applications. This project uses state-of-the-art numerical modeling tools of the environment and energy system emissions in combination with relevant new and prior measurements and other analyses to assess the understanding of the potential ecological and environmental impacts from hydrogen market penetration. H2 technology options and market penetration scenarios will be evaluated using energy-technology-economics models as well as atmospheric trace gas projections based on the IPCC SRES scenarios including the decline in halocarbons due to the Montreal Protocol. Specifically we investigate the impact of hydrogen releases on the oxidative capacity of the atmosphere, the long-term stability of the ozone layer due to changes in hydrogen emissions, the impact of hydrogen emissions and resulting concentrations on climate, the impact on microbial ecosystems involved in hydrogen uptake, and criteria pollutants emitted from distributed and centralized hydrogen production pathways and their impacts on human health, air quality, ecosystems, and structures under different penetration scenarios

  4. Embrittling Components in Sintered Steels: Comparison of Phosphorus and Boron

    Science.gov (United States)

    Danninger, Herbert; Vassileva, Vassilka; Gierl-Mayer, Christian

    2017-12-01

    In ferrous powder metallurgy, both boron and phosphorus have been known to be sintering activators for a long time. However, the use has been widely different: while P is a standard additive to sintered iron and steels, boron has been frequently studied, but its use in practice is very limited. Both additives are also known to be potentially embrittling, though in a different way. In the present study the differences between the effects of both elements are shown: while P activates sintering up to a certain threshold, in part by stabilizing ferrite, in part by forming a transient liquid phase, boron is the classical additive enhancing persistent liquid phase, being virtually insoluble in the iron matrix. The consequence is that sintered steels can tolerate quite a proportion of phosphorus, depending on composition and sintering process; boron however is strongly embrittling in particular in combination with carbon, which requires establishing a precisely defined content that enhances sintering but is not yet embrittling. The fracture mode of embrittled materials is also different: while with Fe-P the classical intergranular fracture is observed, with boron a much more rugged fracture surface appears, indicating some failure through the eutectic interparticle network but mostly transgranular cleavage. If carbon is added, in both cases transgranular cleavage dominates even in the severely embrittled specimens, indicating that no more the grain boundaries and sintering necks are the weakest links in the systems.

  5. Different approaches to estimation of RPV material embrittlement

    International Nuclear Information System (INIS)

    Revka, V.; Chyrko, L.; Chaikovskiy, Yu.; Trygubenko, O.

    2012-01-01

    The surveillance test data for the nuclear power plant which is under operation in Ukraine have been used to estimate WWER-1000 RPV material embrittlement. The beltline materials (base and weld metal) were characterized using Charpy impact and fracture toughness test methods. The fracture toughness test data were analyzed according to the standard ASTM 1921-05. The pre-cracked Charpy specimens were tested to estimate a shift of reference temperature T0 due to neutron irradiation. The maximum shift of reference temperature T 0 is 84 deg C. A radiation embrittlement rate A F for the RPV material was estimated using fracture toughness test data. In addition the AF factor based on the Charpy curve shift (δT F ) has been evaluated. A comparison of the A F values estimated according to different approaches has shown there is a good agreement between the radiation shift of Charpy impact and fracture toughness curves. Therefore Charpy impact test data can be successfully applied to estimate the fracture toughness curve shift and therefore embrittlement rate. Furthermore it was revealed that radiation embrittlement rate for weld metal is higher than predicted by a design relationship. The enhanced embrittlement is most probably related to simultaneously high nickel and high manganese content in weld metal

  6. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  7. Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Zaleski, Tania M. [San Jose State Univ., CA (United States)

    2008-10-30

    Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.

  8. Reduction of nickel oxide particles by hydrogen studied in an environmental TEM

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2013-01-01

    In situ reduction of nickel oxide (NiO) particles is performed under 1.3 mbar of hydrogen gas (H2) in an environmental transmission electron microscope (ETEM). Images, diffraction patterns and electron energy-loss spectra (EELS) are acquired to monitor the structural and chemical evolution...... the volume shrinkage associated with the reduction. Densification is then observed when the sample is nearly fully reduced. The reaction kinetics is obtained using EELS by monitoring changes in the shapes of the Ni L2,3 white lines. The activation energy for NiO reduction is calculated from the EELS data...

  9. Entry and diffusion of electrolytic hydrogen in some surface treated steels

    International Nuclear Information System (INIS)

    Waheed, A.F.M.

    1986-01-01

    Hydrogen diffusion and permeation through metals specially ferrous material is a subject that has a large volume of researches. the most important reason is the technological importance associated with the degradation of ferrous materials resulting from hydrogen absorption. The embrittling effect of hydrogen in steels and the catastrophic nature of failures caused by hydrogen embrittlement has led also to the importance of understanding hydrogen entry and surface processes. the effect of surface treatment of some types of steels on hydrogen entry and diffusion at room temperature (25 degree C) was studied. the two types of steels used in this study are plain carbon steel and low alloy steel

  10. Grain boundary embrittlement and cohesion enhancement in copper

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Anthony; Lozovoi, Alexander [Atomistic Simulation Centre, Queen' s University Belfast, BT7 1NN (United Kingdom); Schweinfest, Rainer [Science+Computing ag, Hagellocher Weg 71-5, 720270 T ubingen (Germany); Finnis, Michael [Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2008-07-01

    There has been a long standing debate surrounding the mechanism of grain boundary embrittlement and cohesion enhancement in metals. Embrittlement can lead to catastrophic failure such as happened in the Hinkley Point disaster, or indeed in the case of the Titanic. This kind of embrittlement is caused by segregation of low solubility impurities to grain boundaries. While the accepted wisdom is that this is a phenomenon driven by electronic or chemical factors, using language such as charge transfer and electronegativity difference; we believe that in copper, at least, both cohesion enhancement and reduction are caused by a simple size effect. We have developed a theory that allows us to separate unambiguously, if not uniquely, chemical and structural factors. We have studied a large number of solutes in copper using first principles atomistic simulation to support this argument, and the results of these calculations are presented here.

  11. Potential Environmental Impacts of Hydrogen-based Transportation and Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Grieb, Thomas M; Mills, W B; Jacobson, Mark Z; Summers, Karen V; Crossan, A Brook

    2010-12-31

    Hydrogen (H2) offers advantages as an energy carrier: minimal discharge of pollutants, production from multiple sources, increased thermodynamic efficiencies compared to fossil fuels, and reduced dependence on foreign oil. However, potential impacts from the H2 generation processes, transport and distribution of H2, and releases of H2 into the atmosphere have been proposed. The goal of this project was to analyze the effects of emissions of hydrogen, the six criteria pollutants and greenhouse gases on climate, human health, materials and structures. This project was part of a larger effort by DOE to assess the life-cycle costs and benefits and environmental impacts to inform decisions regarding future hydrogen research. Technical Approach: A modeling approach was developed and used to evaluate the potential environmental effects associated with the conversion of the on-road vehicle fleet from fossil-fuel vehicles to hydrogen fuel cell vehicles. GATOR-GCMOM was the primary tool used to predict atmospheric concentrations of gases and aerosols for selected scenarios. This model accounts for all feedbacks among major atmospheric processes based on first principles. The future scenarios and the emission rates selected for this analysis of hydrogen environmental effects are based on the scenarios developed by IPCC. The scenarios selected for the model simulations are a 2000 and 2050 A1B base cases, and a 2050 A1B case with hydrogen fuel cell vehicles (HFCVs). The hydrogen fuel cell scenario assumed conversion of 90% of fossil-fuel on-road vehicles (FFOV) in developed countries and 45% of FFOVs vehicles in other countries to HFCVs, with the H2 produced by steam-reforming of natural gas (SHFCVs). Simulations were conducted to examine the effect of converting the world's FFOVs to HFCVs, where the H2 is produced by wind-powered electrolysis (WHFCVs). In all scenarios a 3% leakage of H2 consumed was assumed. Two new models were developed that provide the ability to

  12. Part of the hydrogen in the intergranular crack by stress corrosion in primary circuit for the 600 and 690 nickel base alloys; Role de l'hydrogene dans le mecanisme de fissuration intergranulaire par corrosion sous contrainte en milieu primaire des alliages base nickel 600 et 690

    Energy Technology Data Exchange (ETDEWEB)

    Odemer, G.; Coudurier, A.; Jambon, F.; Chene, J. [CEA Saclay, Dept. de Physico-Chimie (DPC/SCCME/LECA), 91 - Gif sur Yvette (France); Odemer, G.; Coudurier, A.; Chene, J. [Evry Univ., UMR 8587 CNRS / CEA, LAMBE, 91 (France)

    2007-07-01

    The aim of this study is, in a first part, to characterize the hydrogen embrittlement sensitivity of the 600 and 690 based alloys in order to better understand the hydrogen role in the stress corrosion mechanism which appears in theses alloys in the primary circuit of the PWR type reactors. The authors studies how the hydrogen embrittlement is resulting from an interaction between the hydrogen and the plastic deformation. (A.L.B.)

  13. Mercury embrittlement of Cu-Al alloys under cyclic loading

    Science.gov (United States)

    Regan, T. M.; Stoloff, N. S.

    1977-01-01

    The effect of mercury on the room temperature, high cycle fatigue properties of three alloys: Cu-5.5 pct Al, Cu-7.3 pct Al, and Cu-6.3 pct Al-2.5 pct Fe has been determined. Severe embrittlement under cyclic loading in mercury is associated with rapid crack propagation in the presence of the liquid metal. A pronounced grain size effect is noted under mercury, while fatigue properties in air are insensitive to grain size. The fatigue results are discussed in relation to theories of adsorption-induced liquid metal embrittlement.

  14. Role of hydrogen in stress corrosion cracking

    International Nuclear Information System (INIS)

    Mehta, M.L.

    1981-01-01

    Electrochemical basis for differentiation between hydrogen embrittlement and active path corrosion or anodic dissolution crack growth mechanisms is examined. The consequences of recently demonstrated acidification in crack tip region irrespective of electrochemical conditions at the bulk surface of the sample are that the hydrogen can evolve within the crack and may be involved in the cracking process. There are basically three aspects of hydrogen involvement in stress corrosion cracking. In dissolution models crack propagation is assumed to be caused by anodic dissolution on the crack tip sustained by cathodic reduction of hydrogen from electrolyte within the crack. In hydrogen induced structural transformation models it is postulated that hydrogen is absorbed locally at the crack tip producing structural changes which facilitate crack propagation. In hydrogen embrittlement models hydrogen is absorbed by stressed metal from proton reduction from the electrolyte within the crack and there is interaction between lattice and hydrogen resulting in embrittlement of material at crack tip facilitating crack propagation. In the present paper, the role of hydrogen in stress corrosion crack growth in high strength steels, austenitic stainless steels, titanium alloys and high strength aluminium alloys is discussed. (author)

  15. Embrittlement and anodic process in stress corrosion cracking: study of the influent micro-mechanical parameters

    International Nuclear Information System (INIS)

    Tinnes, J.Ph.

    2006-11-01

    We study the influence of local mechanical parameters on crack propagation in Stress Corrosion Cracking, at the scale of the microstructure. Two systems are compared: the CuAl 9 Ni 3 Fe 2 copper-aluminium alloy in synthetic sea water under cathodic polarization, where the crack propagation mechanism is related to strain-assisted anodic dissolution, and the 316L austenitic stainless steel in MgCl 2 solution, where embrittlement mechanisms related to hydrogen effects prevail. We use micro-notched tensile specimen that allow to study isolated short cracks. These experiments are modelled by means of finite elements calculations, and further characterized by Electron Back scattered Diffraction (EBSD) in the case of the 316L alloy. In terms of the local mechanical parameters that control propagation, fundamental differences are outlined between the two systems. They are discussed from the viewpoint of the available models of Stress Corrosion Cracking. (author)

  16. Analysis of grain boundaries in an embrittled ancient silver necklace

    Czech Academy of Sciences Publication Activity Database

    Vaníčková, J.; Děd, J.; Bartuška, Pavel; Drahokoupil, Jan; Čerňanský, Marian; Lejček, Pavel

    2008-01-01

    Roč. 40, 3-4 (2008), s. 454-457 ISSN 0142-2421 Institutional research plan: CEZ:AV0Z10100520 Keywords : silver embrittlement * archaeological artefacts * AES * SEM + EDX * XRD Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.272, year: 2008

  17. TR-EDB: Test Reactor Embrittlement Data Base, Version 1

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Wang, J.A.; Kam, F.B.K.

    1994-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is a collection of results from irradiation in materials test reactors. It complements the Power Reactor Embrittlement Data Base (PR-EDB), whose data are restricted to the results from the analysis of surveillance capsules in commercial power reactors. The rationale behind their restriction was the assumption that the results of test reactor experiments may not be applicable to power reactors and could, therefore, be challenged if such data were included. For this very reason the embrittlement predictions in the Reg. Guide 1.99, Rev. 2, were based exclusively on power reactor data. However, test reactor experiments are able to cover a much wider range of materials and irradiation conditions that are needed to explore more fully a variety of models for the prediction of irradiation embrittlement. These data are also needed for the study of effects of annealing for life extension of reactor pressure vessels that are difficult to obtain from surveillance capsule results

  18. Microstructure and embrittlement of VVER 440 reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Hennion, A.

    1999-03-01

    27 VVER 440 pressurised water reactors operate in former Soviet Union and in Eastern Europe. The pressure vessel, is made of Cr-Mo-V steel. It contains a circumferential arc weld in front of the nuclear core. This weld undergoes a high neutron flux and contains large amounts of copper and phosphorus, elements well known for their embrittlement potency under irradiation. The embrittlement kinetic of the steel is accelerated, reducing the lifetime of the reactor. In order to get informations on the microstructure and mechanical properties of these steels, base metals, HAZ, and weld metals have been characterized. The high amount of phosphorus in weld metals promotes the reverse temper embrittlement that occurs during post-weld heat treatment. The radiation damage structure has been identified by small angle neutron scattering, atomic probe, and transmission electron microscopy. Nanometer-sized clusters of solute atoms, rich in copper with almost the same characteristics as in western pressure vessels steels, and an evolution of the size distribution of vanadium carbides, which are present on dislocation structure, are observed. These defects disappear during post-irradiation tempering. As in western steels, the embrittlement is due to both hardening and reduction of interphase cohesion. The radiation damage specificity of VVER steels arises from their high amount of phosphorus and from their significant density of fine vanadium carbides. (author)

  19. Investigations of low-temperature neutron embrittlement of ferritic steels

    International Nuclear Information System (INIS)

    Farrell, K.; Mahmood, S.T.; Stoller, R.E.; Mansur, L.K.

    1992-01-01

    Investigations were made into reasons for accelerated embrittlement of surveillance specimens of ferritic steels irradiated at 50C at the High Flux Isotope Reactor (HFIR) pressure vessel. Major suspects for the precocious embrittlement were a highly thermalized neutron spectrum,a low displacement rate, and the impurities boron and copper. None of these were found guilty. A dosimetry measurement shows that the spectrum at a major surveillance site is not thermalized. A new model of matrix hardening due to point defect clusters indicates little effect of displacement rate at low irradiation temperature. Boron levels are measured at 1 wt ppM or less, inadequate for embrittlement. Copper at 0.3 wt % and nickel at 0.7 wt % are shown to promote radiation strengthening in iron binary alloys irradiated at 50 to 60C, but no dependence on copper and nickel was found in steels with 0.05 to 0.22% Cu and 0.07 to 3.3% Ni. It is argued that copper impurity is not responsible for the accelerated embrittlement of the HFIR surveillance specimens. The dosimetry experiment has revealed the possibility that the fast fluence for the surveillance specimens may be underestimated because the stainless steel monitors in the surveillance packages do not record an unexpected component of neutrons in the spectrum at energies just below their measurement thresholds of 2 to 3 MeV

  20. Radiation-induced embrittlement in light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Gold, R.; McElroy, W.N.

    1987-01-01

    In operating light water reactor (LWR) commercial power plants, neutron radiation induces embrittlement of the pressure vessel (PV) and its support structures. As a consequence, LWR-PV integrity is a primary safety consideration. LWR-PV integry is a significant economic consideration because the PV and its support structures are nonreplaceable power plant components and embrittlement of these components can therefore limit the effective operating lifetime of the plant. In addition to plant life considerations, LWR-PV embrittlement creates significant cycle-to-cycle impact through the restriction of normal heat-up and cool-down reactor operations. Recent LWR-PV benchmark experiments are analyzed. On this bases, it is established that an exponential representation accurately describes the spatial dependence of neutron exposure in LWR-PV. Implications produced by simple exponental behavior are explained and trend-curve models for the predictions of PV embrittelment are derived. These derivations provide for a clearer understanding and assessment of the assumptions underlying these trend-curve models. It is demonstrated that LWR-PV embrittlement possesses significant material dependence. (orig.)

  1. TR-EDB: Test Reactor Embrittlement Data Base, Version 1

    Energy Technology Data Exchange (ETDEWEB)

    Stallmann, F.W.; Wang, J.A.; Kam, F.B.K. [Oak Ridge National Lab., TN (United States)

    1994-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is a collection of results from irradiation in materials test reactors. It complements the Power Reactor Embrittlement Data Base (PR-EDB), whose data are restricted to the results from the analysis of surveillance capsules in commercial power reactors. The rationale behind their restriction was the assumption that the results of test reactor experiments may not be applicable to power reactors and could, therefore, be challenged if such data were included. For this very reason the embrittlement predictions in the Reg. Guide 1.99, Rev. 2, were based exclusively on power reactor data. However, test reactor experiments are able to cover a much wider range of materials and irradiation conditions that are needed to explore more fully a variety of models for the prediction of irradiation embrittlement. These data are also needed for the study of effects of annealing for life extension of reactor pressure vessels that are difficult to obtain from surveillance capsule results.

  2. The Test Reactor Embrittlement Data Base (TR-EDB)

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Kam, F.B.K.; Wang, J.A.

    1993-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is part of an ongoing program to collect test data from materials irradiations to aid in the research and evaluation of embrittlement prediction models that are used to assure the safety of pressure vessels in power reactors. This program is being funded by the US Nuclear Regulatory Commission (NRC) and has resulted in the publication of the Power Reactor Embrittlement Data Base (PR-EDB) whose second version is currently being released. The TR-EDB is a compatible collection of data from experiments in materials test reactors. These data contain information that is not obtainable from surveillance results, especially, about the effects of annealing after irradiation. Other information that is only available from test reactors is the influence of fluence rates and irradiation temperatures on radiation embrittlement. The first version of the TR-EDB will be released in fall of 1993 and contains published results from laboratories in many countries. Data collection will continue and further updates will be published

  3. Optimization of neutron tomography for rapid hydrogen concentration inspection of metal castings

    CERN Document Server

    Gibbons, M R; Shields, K

    1999-01-01

    Hydrogen embrittlement describes a group of phenomena leading to the degradation of metal alloy properties. The hydrogen concentration in the alloy can be used as an indicator for the onset of embrittlement. A neutron tomography system has been optimized to perform nondestructive detection of hydrogen concentration in titanium aircraft engine compressor blades. Preprocessing of backprojection images and postprocessing of tomographic reconstructions are used to achieve hydrogen concentration sensitivity below 200 ppm weight. This paper emphasizes the postprocessing techniques which allow automated reporting of hydrogen concentration.

  4. FUNDAMENTAL ENVIRONMENTAL REACTIVITY TESTING AND ANALYSIS OF THE HYDROGEN STORAGE MATERIAL 2LIBH4 MGH2

    Energy Technology Data Exchange (ETDEWEB)

    James, C.; Anton, D.; Cortes-Concepcion, J.; Brinkman, K.; Gray, J.

    2012-01-10

    While the storage of hydrogen for portable and stationary applications is regarded as critical in bringing PEM fuel cells to commercial acceptance, little is known of the environmental exposure risks posed in utilizing condensed phase chemical storage options as in complex hydrides. It is thus important to understand the effect of environmental exposure of metal hydrides in the case of accident scenarios. Simulated tests were performed following the United Nations standards to test for flammability and water reactivity in air for a destabilized lithium borohydride and magnesium hydride system in a 2 to 1 molar ratio respectively. It was determined that the mixture acted similarly to the parent, lithium borohydride, but at slower rate of reaction seen in magnesium hydride. To quantify environmental exposure kinetics, isothermal calorimetry was utilized to measure the enthalpy of reaction as a function of exposure time to dry and humid air, and liquid water. The reaction with liquid water was found to increase the heat flow significantly during exposure compared to exposure in dry or humid air environments. Calorimetric results showed the maximum normalized heat flow the fully charged material was 6 mW/mg under liquid phase hydrolysis; and 14 mW/mg for the fully discharged material also occurring under liquid phase hydrolysis conditions.

  5. Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Published data from various sources are used to perform economic and environmental comparisons of four types of vehicles: conventional, hybrid, electric and hydrogen fuel cell. The production and utilization stages of the vehicles are taken into consideration. The comparison is based on a mathematical procedure, which includes normalization of economic indicators (prices of vehicles and fuels during the vehicle life and driving range) and environmental indicators (greenhouse gas and air pollution emissions), and evaluation of an optimal relationship between the types of vehicles in the fleet. According to the comparison, hybrid and electric cars exhibit advantages over the other types. The economic efficiency and environmental impact of electric car use depends substantially on the source of the electricity. If the electricity comes from renewable energy sources, the electric car is advantageous compared to the hybrid. If electricity comes from fossil fuels, the electric car remains competitive only if the electricity is generated on board. It is shown that, if electricity is generated with an efficiency of about 50-60% by a gas turbine engine connected to a high-capacity battery and an electric motor, the electric car becomes advantageous. Implementation of fuel cells stacks and ion conductive membranes into gas turbine cycles permits electricity generation to increase to the above-mentioned level and air pollution emissions to decrease. It is concluded that the electric car with on-board electricity generation represents a significant and flexible advance in the development of efficient and ecologically benign vehicles.

  6. Long-term environmental and socio-economic impact of a hydrogen energy program in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Lutero Carmo de [Uberlandia Univ., Dept. of Mechanical Engineering, Uberlandia, MG (Brazil); Veziroglu, T. Nejat [Miami Univ., Clean Energy Research Inst., Coral Gables, FL (United States)

    2001-07-01

    In this study, a program of electrolytic hydrogen generation for Brazil through the assistance of photovoltaic cell panels is proposed. The generated hydrogen will serve as an energy carrier and will be used in every application where fossil fuels are being used today. Three scenarios have been considered: fast hydrogen introduction, slow hydrogen introduction, and no hydrogen introduction. The results show that hydrogen introduction (1) will increase the energy consumption, (2) will increase the gross national product per capita, (3) will reduce pollution, and (4) will increase the quality of life in Brazil. Fast hydrogen introduction brings the benefits by 20 years earlier. (Author)

  7. Fatigue crack growth behavior in niobium-hydrogen alloys

    International Nuclear Information System (INIS)

    Lin, M.C.C.; Salama, K.

    1997-01-01

    Near-threshold fatigue crack growth behavior has been investigated in niobium-hydrogen alloys. Compact tension specimens (CTS) with three hydrogen conditions are used: hydrogen-free, hydrogen in solid solution, and hydride alloy. The specimens are fatigued at a temperature of 296 K and load ratios of 0.05, 0.4, and 0.75. The results at load ratios of 0.05 and 0.4 show that the threshold stress intensity range (ΔK th ) decreases as hydrogen is added to niobium. It reaches a minimum at the critical hydrogen concentration (C cr ), where maximum embrittlement occurs. The critical hydrogen concentration is approximately equal to the solubility limit of hydrogen in niobium. As the hydrogen concentration exceeds C cr , ΔK th increases slowly as more hydrogen is added to the specimen. At load ratio 0.75, ΔK th decreases continuously as the hydrogen concentration is increased. The results provide evidence that two mechanisms are responsible for fatigue crack growth behavior in niobium-hydrogen alloys. First, embrittlement is retarded by hydride transformation--induced and plasticity-induced crack closures. Second, embrittlement is enhanced by the presence of hydrogen and hydride

  8. Effects of strain rate, stress condition and environment on iodine embrittlement of Ziracloy-2

    International Nuclear Information System (INIS)

    Une, K.

    1979-01-01

    Iodine stress corrosion cracking (SCC) susceptibility of Zircaloy became higher with decreasing strain rate. Critical strain rate, below which high SCC severity was observed, substantially depended on Zircaloy stress condition. This strain rate (7 x 10 -3 min -1 ) under plane strain condition was about 3.5 times as fast as that (2 x 10 -3 min -1 ) under uniaxial condition. The maximum iodine embrittlement in Zircaloy was found in stress ratio α (axial/tangential stress) range of 0.5 to 0.7. No embrittlement occurred at α = infinity because of its texture effect. The SCC fracture stresses were about 39 kg/mm 2 for unirradiated and stress-relieved material, and about 34 kg/mm 2 for recrystallized material, whose ratios to yield strength of each material were 0.8 and 1.2. Impurity gases of oxygen and moisture in the iodine had the effects of reducing Zircaloy SCC susceptibility. Stress-relieved material was more sensitive to environmental impurities than recrystallized material

  9. Reverse mechanical after effect during hydrogenation of zone refined iron

    Energy Technology Data Exchange (ETDEWEB)

    Spivak, L.V.; Skryabina, N.E.; Kurmaeva, L.D.; Smirnov, L.V. (Permskij Gosudarstvennyj Univ. (USSR); AN SSSR, Sverdlovsk. Inst. Fiziki Metallov)

    1984-12-01

    The relationship between the process of hydrogenation and the reverse mechanical after effect (RMA) microplastic deformation in the zone refined iron has been studied. Metallographic investigations and mechanical testing of the samples hydrogenated under torsional strain have been performed. It is shown that in the zone refined iron the formation of voids responsible for irreversible hydrogen embrittlement does not occur, but the hydrogen-initiated RMA strain is conserved, i. e. the RMA effects are independent of the presence of discontinuities.

  10. PR-EDB: Power Reactor Embrittlement Database - Version 3

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Subramani, Ranjit [ORNL

    2008-03-01

    The aging and degradation of light-water reactor pressure vessels is of particular concern because of their relevance to plant integrity and the magnitude of the expected irradiation embrittlement. The radiation embrittlement of reactor pressure vessel materials depends on many factors, such as neutron fluence, flux, and energy spectrum, irradiation temperature, and preirradiation material history and chemical compositions. These factors must be considered to reliably predict pressure vessel embrittlement and to ensure the safe operation of the reactor. Large amounts of data from surveillance capsules are needed to develop a generally applicable damage prediction model that can be used for industry standards and regulatory guides. Furthermore, the investigations of regulatory issues such as vessel integrity over plant life, vessel failure, and sufficiency of current codes, Standard Review Plans (SRPs), and Guides for license renewal can be greatly expedited by the use of a well-designed computerized database. The Power Reactor Embrittlement Database (PR-EDB) is such a comprehensive collection of data for U.S. designed commercial nuclear reactors. The current version of the PR-EDB lists the test results of 104 heat-affected-zone (HAZ) materials, 115 weld materials, and 141 base materials, including 103 plates, 35 forgings, and 3 correlation monitor materials that were irradiated in 321 capsules from 106 commercial power reactors. The data files are given in dBASE format and can be accessed with any personal computer using the Windows operating system. "User-friendly" utility programs have been written to investigate radiation embrittlement using this database. Utility programs allow the user to retrieve, select and manipulate specific data, display data to the screen or printer, and fit and plot Charpy impact data. The PR-EDB Version 3.0 upgrades Version 2.0. The package was developed based on the Microsoft .NET framework technology and uses Microsoft Access for

  11. Ionic liquid and solid HF equivalent amine-poly(hydrogen fluoride) complexes effecting efficient environmentally friendly isobutane-isobutylene alkylation.

    Science.gov (United States)

    Olah, George A; Mathew, Thomas; Goeppert, Alain; Török, Béla; Bucsi, Imre; Li, Xing-Ya; Wang, Qi; Marinez, Eric R; Batamack, Patrice; Aniszfeld, Robert; Prakash, G K Surya

    2005-04-27

    Isoparaffin-olefin alkylation was investigated using liquid as well as solid onium poly(hydrogen fluoride) catalysts. These new immobilized anhydrous HF catalysts contain varied amines and nitrogen-containing polymers as complexing agents. The liquid poly(hydrogen fluoride) complexes of amines are typical ionic liquids, which are convenient media and serve as HF equivalent catalysts with decreased volatility for isoparaffin-olefin alkylation. Polymeric solid amine:poly(hydrogen fluoride) complexes are excellent solid HF equivalents for similar alkylation acid catalysis. Isobutane-isobutylene or 2-butene alkylation gave excellent yields of high octane alkylates (up to RON = 94). Apart from their excellent catalytic performance, the new catalyst systems significantly reduce environmental hazards due to the low volatility of complexed HF. They represent a new, "green" class of catalyst systems for alkylation reactions, maintaining activity of HF while minimizing its environmental hazards.

  12. Hail hydrogen

    International Nuclear Information System (INIS)

    Hairston, D.

    1996-01-01

    After years of being scorned and maligned, hydrogen is finding favor in environmental and process applications. There is enormous demand for the industrial gas from petroleum refiners, who need in creasing amounts of hydrogen to remove sulfur and other contaminants from crude oil. In pulp and paper mills, hydrogen is turning up as hydrogen peroxide, displacing bleaching agents based on chlorine. Now, new technologies for making hydrogen have the industry abuzz. With better capabilities of being generated onsite at higher purity levels, recycled and reused, hydrogen is being prepped for a range of applications, from waste reduction to purification of Nylon 6 and hydrogenation of specialty chemicals. The paper discusses the strong market demand for hydrogen, easier routes being developed for hydrogen production, and the use of hydrogen in the future

  13. Influence of a cyclic load on the embrittlement kinetics of alloys by the example of the 475 C embrittlement of duplex steel and the dynamic embrittlement of a nickel base alloy

    International Nuclear Information System (INIS)

    Wackermann, Ken

    2015-01-01

    The objective of this study was to investigate the dependence of high temperature embrittlement mechanisms on high temperature fatigue and vice versa. As model embrittlement mechanisms the 475 C Embrittlement of ferritic austenitic duplex stainless steel (1.4462) and the Dynamic Embrittlement of nickel-based superalloys (IN718) were selected. The 475 C Embrittlement is a thermally activated decomposition of the ferritic phase which hardens the material. In contrast to this a cyclic plastic deformation weakens the steel by a deformation-induced dissolution of the decomposition. Fatigue tests with different frequencies, loading amplitudes at room temperature and at 475 C with Duplex Stainless Steel in different states of embrittlement show that the ongoing 475 C Embrittlement and the deformation-induced dissolution are competing mechanisms. It depends on the frequency, the loading amplitude and the temperature which mechanism is dominant. Applying the model of the yield stress distribution function to the hysteresis branches of the fatigue tests allows an analysis of the fatigue behaviour of each phase individually. This analysis shows that the global fatigue behaviour for the test conditions applied in this study is mainly controlled by the ferritic phase. According to the existing understanding of Dynamic Embrittlement it is an oxygen grain boundary diffusion arising by tensile stress at elevated temperatures with the result of a fast intercrystalline crack propagation. In reference tests under vacuum conditions without oxygen grain boundary diffusion, a slow transcrystalline fracture appears. To analyse the Dynamic Embrittlement, the crack propagation was tested at 650 C with different frequencies and superimposed hold times in the fatigue cycle at maximum stress. The results shows that the existing model of Dynamic Embrittlement needs to be adapted to the effects of cyclic plastic deformation. In hold times, the oxygen grain boundary diffusion in front of the

  14. Magnetic nondestructive technology for detection of tempered martensite embrittlement

    Science.gov (United States)

    Kashefi, Mehrdad; Rafsanjani, Ali; Kahrobaee, Saeed; Alaee, Moeen

    2012-11-01

    A nondestructive eddy current technique is used to evaluate tempered martensite embrittlement in 4340 AISI steels after quench and tempering in the range 240-550 °C. A relation between the responses of the magnetic induction (normalized impedance of the coil) and destructive Charpy impact test results has been established. The study shows that the eddy current method could be used to separate brittle parts due to the microstructure changes.

  15. Experimental investigation of processes responsible for dehydration weakening and embrittlement

    Science.gov (United States)

    Hirth, G.; Okazaki, K.; Proctor, B.

    2016-12-01

    We have conducted suites of experiments designed to test the efficacy of dehydration embrittlement for inducing intermediate depth earthquakes. Deformation experiments have been conducted in a Griggs apparatus at 1 to 2 GPa on both antigorite and lawsonite gouge. To scale experimental results to natural conditions, we conducted experiments where we use temperature ramps to induce dehydration while the samples deform at a constant strain rate. The weakening rate of the samples scales with the ratio of the temperature ramp rate over the strain rate. We also conducted experiments at these conditions where the pore fluid pressure is either drained or undrained. In this poster, we will describe the following observations: (1) Experiments on antigorite demonstrate that weakening is associated with an increase in pore-fluid pressure. However, weakening is always stable even when the weakening rate is the same as the apparatus stiffness. Strain rate stepping experiments on both antigorite, and dehydrating antigorite indicate velocity strengthening behavior and no AEs are resolvable during the dehydration reaction. (2) Experiments on lawsonite show unstable weakening (i.e. stick slip behavior) at all ratios of temperature ramp rate over strain rate. Experiments within the lawsonite stability field exhibit stick-slip behavior and AEs are detected both during deformation within the lawsonite stability field and during the dehydration reaction. These results indicate that dehydration embrittlement is suppressed when the reacting phase shows velocity strengthening frictional behavior. The results of the experiments on dehydration of antigorite also suggest that embrittlement of the reaction products is suppressed by enhancement of solution-precipitation processes. This observation provides a possible explanation for why dehydration of antigorite induces embrittlement at lower confining pressures (i.e. 200 MPa), where the dehydration temperature is lower and hence the

  16. High temperature service embrittlement of EUROFER´97 steel

    Czech Academy of Sciences Publication Activity Database

    Stratil, Luděk; Hadraba, Hynek; Dlouhý, Ivo

    2010-01-01

    Roč. 1, č. 2 (2010), s. 142-145 ISSN 1335-1532. [Fraktografia 2009. Stará Lesná, 08.11.2009-11.11.2009] R&D Projects: GA ČR GA106/08/1397; GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : Eurofer´97 * isothermal ageing * embrittlement * impact properties Subject RIV: JL - Materials Fatigue, Friction Mechanics

  17. Creep embrittlement of austenitic stainless steels with titanium addition

    International Nuclear Information System (INIS)

    Felsen, M.F.

    1983-04-01

    Some cold-worked austenitic stainless steels of the 316 type with titanium addition exhibit a low creep ductility and a notch sensitivity in the temperature range of 550 0 C to 750 0 C and for times to rupture from 10 to 10000 hours. It has been shown that this embrittlement increases highly with cold-work percentage, with solution annealing temperature, and depends on chemical composition because these factors can modify the difference of hardness between grains and grain boundaries

  18. Neutron irradiation embrittlement of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Steele, L.E.

    1975-01-01

    The reliability of nuclear power plants depends on the proper functioning of complex components over the whole life on the plant. Particular concern for reliability is directed to the primary pressure boundary. This report focuses on the portion of the primary system exposed to and significantly affected by neutron radiation. Experimental evidence from research programmes and from reactor surveillance programmes has indicated radiation embrittlement of a magnitude sufficient to raise doubts about reactor pressure vessel integrity. The crucial nature of the primary vessel function heightens the need to be alert to this problem, to which, fortunately, there are positive aspects: for example, steels have been developed which are relatively immune to radiation embrittlement. Further, awareness of such embrittlement has led to designs which can accomodate this factor. The nature of nuclear reactors, of the steels used in their construction, and of the procedures for interpreting embrittlement and minimizing the effects are reviewed with reference to the reactors that are expected to play a major role in electric power production from now to about the turn of the century. The report is intended as a manual or guidebook; the aim has been to make each chapter or major sub-division sufficiently comprehensive and self-contained for it to be understood and read independently of the rest of the book. At the same time, it is hoped that the whole is unified enough to make a complete reading useful and interesting to the several classes of reader that are involved with only specific aspects of the topic

  19. Energy, economic and environmental analysis on RET-hydrogen systems in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Beccali, M.; Brunone, S.; Cellura, M.; Franzitta, V. [Dipartimento di Ricerche Energetiche e Ambientali, Universita degli Studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2008-03-15

    The aim of this study was to analyze energy, economic and environmental performances of a set of scenarios dealing with the production and the use of hydrogen as energy carriers in residential applications in combination with renewable energy (RE). The authors also made an investigation into the required economic conditions necessary for making H{sub 2}-RE residential systems competitive with conventional ones, which are based on the use of grid electricity and natural gas. A case study was enacted in a small residential district in Palermo (Italy) made by five multi-storey buildings. Many energy systems have been considered according to several fuel-device combinations (electric grid, fuel cell, PV panels, wind turbines, boiler etc.). The software HOMER (hybrid optimization model for electric renewables), developed by NREL and Midwest Research Institute (USA), was used, in order to study the energy balance of the system and its components. Moreover, it was possible to simulate the hourly operation of each system and to calculate technical, economic and environmental performance parameters. The net present cost and the cost of energy are the two main parameters used to compare economic performances of the systems with both actual and expected costs in the medium term. A sensitivity analysis was carried out in order to appreciate the most important parameters influencing the economic performances of the systems and to define possible future scenarios of competitiveness between technologies. Emissions of CO{sub 2} (the most important greenhouse gas) and other pollutants have been considered for an environmental benefits analysis. (author)

  20. THE RELATION BETWEEN MID-PLANE PRESSURE AND MOLECULAR HYDROGEN IN GALAXIES: ENVIRONMENTAL DEPENDENCE

    International Nuclear Information System (INIS)

    Feldmann, Robert; Hernandez, Jose; Gnedin, Nickolay Y.

    2012-01-01

    Molecular hydrogen (H 2 ) is the primary component of the reservoirs of cold, dense gas that fuel star formation in our Galaxy. While the H 2 abundance is ultimately regulated by physical processes operating on small scales in the interstellar medium (ISM), observations have revealed a tight correlation between the ratio of molecular to atomic hydrogen in nearby spiral galaxies and the pressure in the mid-plane of their disks. This empirical relation has been used to predict H 2 abundances in galaxies with potentially very different ISM conditions, such as metal-deficient galaxies at high redshifts. Here, we test the validity of this approach by studying the dependence of the pressure-H 2 relation on environmental parameters of the ISM. To this end, we follow the formation and destruction of H 2 explicitly in a suite of hydrodynamical simulations of galaxies with different ISM parameters. We find that a pressure-H 2 relation arises naturally in our simulations for a variety of dust-to-gas ratios or strengths of the interstellar radiation field in the ISM. Fixing the dust-to-gas ratio and the UV radiation field to values measured in the solar neighborhood results in fair agreement with the relation observed in nearby galaxies with roughly solar metallicity. However, the parameters (slope and normalization) of the pressure-H 2 relation vary in a systematical way with ISM properties. A particularly strong trend is the decrease of the normalization of the relation with a lowering of the dust-to-gas ratio of the ISM. We show how this trend and other properties of the pressure-H 2 relation arise from the atomic-to-molecular phase transition in the ISM caused by a combination of H 2 formation, destruction, and shielding mechanisms.

  1. Comparison of embrittlement trend curves to high fluence surveillance results

    International Nuclear Information System (INIS)

    Bogaert, A.S.; Gerard, R.; Chaouadi, R.

    2011-01-01

    In the regulatory justification of the integrity of the reactor pressure vessels (RPV) for long term operation, use is made of predictive formulas (also called trend curves) to evaluate the RPV embrittlement (expressed in terms of RTNDT shifts) in function of fluence, chemical composition and in some cases temperature, neutron flux or product form. It has been shown recently that some of the existing or proposed trend curves tend to underpredict high dose embrittlement. Due to the scarcity of representative surveillance data at high dose, some test reactor results were used in these evaluations and raise the issue of representativeness of the accelerated test reactor irradiations (dose rate effects). In Belgium the surveillance capsules withdrawal schedule was modified in the nineties in order to obtain results corresponding to 60 years of operation or more with the initial surveillance program. Some of these results are already available and offer a good opportunity to test the validity of the predictive formulas at high dose. In addition, advanced surveillance methods are used in Belgium like the Master Curve, increased tensile tests, and microstructural investigations. These techniques made it possible to show the conservatism of the regulatory approach and to demonstrate increased margins, especially for the first generation units. In this paper the surveillance results are compared to different predictive formulas, as well as to an engineering hardening model developed at SCK.CEN. Generally accepted property-to-property correlations are critically revisited. Conclusions are made on the reliability and applicability of the embrittlement trend curves. (authors)

  2. Embrittlement recovery due to annealing of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Eason, E.D.; Wright, J.E.; Nelson, E.E.; Odette, G.R.; Mader, E.V.

    1995-01-01

    The irradiation embrittlement of nuclear reactor pressure vessels (RPV) can be reduced by thermal annealing at temperatures higher than the normal operating conditions. The objective of this work was to analyze the pertinent data and develop quantitative models for estimating the recovery in 30 ft-lb (41 J) Charpy transition temperature and Charpy upper shelf energy due to annealing. An analysis data base was developed, reviewed for completeness and accuracy, and documented as part of this work. Models were developed based on a combination of statistical techniques, including pattern recognition and transformation analysis, and the current understanding of the mechanisms governing embrittlement and recovery. The quality of models fitted in this project was evaluated by considering both the Charpy annealing data used for fitting and a surrogate hardness data base. This work demonstrates that microhardness recovery is i good surrogate for shift recovery and that there is a high level of consistency between he observed annealing trends and fundamental models of embrittlement and recovery processes

  3. Embrittlement recovery due to annealing of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Eason, E.D.; Wright, J.E.; Nelson, E.E.; Odette, G.R.; Mader, E.V.

    1998-01-01

    The irradiation embrittlement of nuclear reactor pressure vessels (RPV) can be reduced by thermal annealing at temperatures higher than the normal operating conditions. The objective of this work was to analyze the pertinent data and develop quantitative models for estimating the recovery in 41 J (30 ft-lb) Charpy transition temperature (TT) and Charpy upper shelf energy (USE) due to annealing. An analysis data base was developed, reviewed for completeness and accuracy, and documented as part of this work. Models were developed based on a combination of statistical techniques, including pattern recognition and transformation analysis, and the current understanding of the mechanisms governing embrittlement and recovery. The quality of models fitted in this project was evaluated by considering both the Charpy annealing data used for fitting and a surrogate hardness data base. This work demonstrates that microhardness recovery is a good surrogate for shift recovery and that there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes. (orig.)

  4. The corrosion rate and the hydrogen absorption behavior of titanium under anaerobic condition

    International Nuclear Information System (INIS)

    Suzuki, Hiroyuki; Taniguchi, Naoki

    2006-01-01

    Titanium is one of the candidate materials for overpacks as a high corrosion resistance metal. Hydrogen embrittlement is a main cause of the damage of long term integrity of titanium overpack. It is not well known about the corrosion resistance and hydrogen absorption behavior of titanium under anaerobic condition. In this study, the completely sealed ampoule test and the immersion test of titanium was carried out in aqueous solution and bentonite in order to obtain reliable data about the hydrogen generation rate and the ratio of hydrogen absorption in titanium. As the results of the tests with changing the environmental factors, obvious higher corrosion rates were observed at high carbonate (1 M) and high pH (pH 13) conditions due to the increase in the anodic reaction rate. In other condition, corrosion rate of titanium were estimated to be in the order of 10 -3 - 10 -2 μm/y. Almost all (<98%) of the hydrogen generated by corrosion was absorbed into titanium. Assuming that the time evolution of the hydrogen content in titanium follows linear law to make conservative assessment, the absorbed hydrogen content was estimated to be of 400-500 ppm in 1000 years. (author)

  5. The role of gamma rays and freely-migrating defects in reactor pressure vessel embrittlement

    International Nuclear Information System (INIS)

    Alexander, D.E.; Rehn, L.E.

    1996-09-01

    Gamma ray effects are often neglected when evaluating reactor pressure vessel (RPV) embrittlement. However, recent analyses indicate that in newer style light water reactors, gamma damage can be a substantial fraction of the total displacement damage experienced by the (RPV); ignoring this damage will lead to errors in embrittlement predictions. Furthermore, gamma rays may be more efficient than fast neutrons at producing freely-migrating defects and as such can impact certain embrittlement mechanisms more effectively than fast neutrons. Consideration of these gamma effects are therefore essential for a more complete understanding of radiation embrittlement

  6. Economics and synergies of electrolytic and thermochemical methods of environmentally benign hydrogen production

    International Nuclear Information System (INIS)

    Naterer, G.F.

    2010-01-01

    Most of the world's hydrogen (about 97%) is currently derived from fossil fuels. For reduction of greenhouse gases, improvement of urban air quality, and energy security, among other reasons, carbon-free sources of hydrogen production are crucial to hydrogen becoming a significant energy carrier. Nuclear hydrogen production is a promising carbon-free alternative for large-scale, low-cost production of hydrogen in the future. Two nuclear technologies, applied in tandem, have a promising potential to generate hydrogen economically without leading to greenhouse gas emissions: 1) electrolysis and 2) thermochemical decomposition of water. This paper will investigate their unique complementary roles and economics of producing hydrogen, from a Canadian perspective. Together they can serve a unique potential for both de-centralized hydrogen needs in periods of low-demand electricity, and centralized base-load production from a nuclear station. Hydrogen production has a significantly higher thermal efficiency, but electrolysis can take advantage of low electricity prices during off-peak hours. By effectively linking these systems, water-based production of hydrogen can become more competitive against the predominant existing technology, SMR (steam-methane reforming). (orig.)

  7. On the embrittlement of Zircaloy-4 under RIA-relevant conditions

    International Nuclear Information System (INIS)

    Daum, R.S.; Majumdar, S.; Billone, M.C.; Bates, D.W.; Koss, D.A.; Motta, A.T.

    2001-01-01

    The extended use of Zircaloy cladding in light water reactors degrades its mechanical properties by a combination of irradiation embrittlement, coolant-side oxidation, hydrogen pickup, and hydride formation. The hydrides are usually concentrated in the form of a dense layer or rim near the cooler outer surface of the cladding. Utilizing plane-strain ring-stretch tests to approximate the loading path in a reactivity-initiated accident (RIA) transient, we examined the influence of a hydride rim on the fracture behavior of unirradiated Zircaloy-4 cladding at room temperature and 300 C. Failure is sensitive to hydride-rim thickness such that cladding tubes with a hydride-rim thickness and gt;100(micro)m ((approx)700 wppm total hydrogen) exhibit brittle behavior, while those with a thickness and lt;90(micro)m ((approx)600 wppm) remain ductile. The mechanism of failure is identified as strain-induced crack initiation within the hydride rim and failure within the uncracked ligament due to either a shear instability or damage-induced fracture. We also report some preliminary results of the uniaxial tensile behavior of low-Sn Zircaloy-4 cladding tubes in a cold-worked, stress-relieved condition in the transverse (hoop) direction at strain rates of 0.001/s and 0.2/s and temperatures of 26-400 C

  8. Thermal design and technical economical and environmental analyses of a hydrogen fired multi-objective cogeneration system

    International Nuclear Information System (INIS)

    Durmaz, A; Yilmazoglu, M. Z.; Pasoglu, A.

    2007-01-01

    Approximately 85% of rapidly increasing world energy demand is supplied by fossil fuels. Extreme usage of fossil fuels causes serious global warming and environmental problems in form of air, soil and water pollutions. The period, in which fossil fuel reserves are decreasing, energy costs are increasing rapidly and new energy sources and technologies do not exist on the horizon, can be called as the expensive and critical energy period. Hydrogen becomes a matter of primary importance as a candidate energy source and carrier in the critical energy period and beyond to solve the energy and environmental problems radically. In this respect, the main obstacle for the use of hydrogen is the high cost of hydrogen production, which is expected to be decreased in the feature. The aim of this study is to examine how hydrogen energy will be able to be integrated with the existing energy substructure with technical and economical dimensions. In this sense, a multi objective hydrogen fired gas turbine cogeneration system is designed and optimized. Technical and economical analyses depending on the load conditions and different hydrogen production cost are carried out. It is possible that the co-generated heat is to be marketed for residence and industrial plants in the surrounding at or under market prices. The produced electricity however can only be sold to the public grid at a high unit support price which is only obtainable in case of the development of new energy technologies. This price should however be kept within the nowadays supportable energy price range. The main mechanism to be used during the design stage of the system to achieve this goal is to decrease the amortization and operational costs which lead to decrease investment and fuel costs and to increase the system load factor and co-generated heat revenues

  9. Effects of Internal and External Hydrogen on Inconel 718

    Science.gov (United States)

    Walter, R. J.; Frandsen, J. D.

    1999-01-01

    Internal hydrogen embrittlement (IHE) and hydrogen environment embrittlement (HEE) tensile and bend crack growth tests were performed on Inconel 718. For the IHE tests, the specimens were precharged to approximately 90 ppm hydrogen by exposure to 34.5 MPa H2 at 650 C. The HEE tests were performed in 34.5 MPa H2. Parameters evaluated were test temperature, strain rate for smooth and notch specimen geometries. The strain rate effect was very significant at ambient temperature for both IHE and HEE and decreased with increasing temperatures. For IHE, the strain rate effect was neglible at 260'C, and for HEE the strain rate effect was neglible at 400 C. At low temperatures, IHE was more severe than HEE, and at high temperatures HEE was more severe than IHE with a cross over temperature about 350 C. At 350 C, the equilibrium hydrogen concentration in Inconel 718 is about 50% lower than the hydrogen content of the precharged IHE specimens. Dislocation hydrogen sweeping of surface absorbed hydrogen was the likely transport mechanism for increasing the hydrogen concentration in the HEE tests sufficiently to produce the same degree of embrittlement as that of the more highly hydrogen charged IHE specimens. The main IHE fracture characteristic was formation of large, brittle flat facets, which decreased with increasing test temperature. The IHE fracture matrix surrounding the large facets ranged between brittle fine faceted to microvoid ductility depending upon strain rate, specimen geometry as well as temperature. The HEE fractures were characteristically fine featured, transgranular and brittle with a significant portion forming a "saw tooth" crystallographic pattern. Both IHE and HEE fractures were predominantly along the {1 1 1) slip and twin boundaries. With respect to embrittlement mechanism, it was postulated that dislocation hydrogen sweeping and hydrogen enhanced localized plasticity were active in HEE and IHE for concentrating hydrogen along (1 1 1) slip and twin

  10. Chemiluminescence determination of surfactant Triton X-100 in environmental water with luminol-hydrogen peroxide system

    Directory of Open Access Journals (Sweden)

    Qiu Chaokun

    2009-07-01

    Full Text Available Abstract Background The rapid, simple determination of surfactants in environmental samples is essential because of the extensive use and its potential as contaminants. We describe a simple, rapid chemiluminescence method for the direct determination of the non-ionic surfactant Triton X-100 (polyethylene glycol tert-octylphenyl ether in environmental water samples. The optimized experimental conditions were selected, and the mechanism of the Luminol-H2O2-Triton X-100 chemiluminesence system was also studied. Results The novel chemiluminescence method for the determination of non-ionic surfactant Triton X-100 was based on the phenomenon that Triton X-100 greatly enhanced the CL signal of the luminol-H2O2 system. The alkaline medium of luminol and the pH value obviously affected the results. Luminol concentration and hydrogen peroxide concentration also affected the results. The optimal conditions were: Na2CO3 being the medium, pH value 12.5, luminol concentration 1.0 × 10-4 mol L-1, H2O2 concentration 0.4 mol L-1. The possible mechanism was studied and proposed. Conclusion Under the optimal conditions, the standard curve was drawn up and quotas were evaluated. The linear range was 2 × 10-4 g·mL-1-4 × 10-2 g·mL-1 (w/v, and the detection limit was 3.97 × 10-5 g·mL-1 Triton X-100 (w/v. The relative standard deviation was less than 4.73% for 2 × 10-2 g·mL-1 (w/v Triton X-100 (n = 7. This method has been applied to the determination of Triton X-100 in environmental water samples. The desirable recovery ratio was between 96%–102% and the relative standard deviation was 2.5%–3.3%. The luminescence mechanism was also discussed in detail based on the fluorescence spectrum and the kinetic curve, and demonstrated that Triton X-100-luminol-H2O2 was a rapid reaction.

  11. Effect of some environmental parameters on fermentative hydrogen production by Enterobacter cloacae DM11.

    Science.gov (United States)

    Nath, Kaushik; Kumar, Anish; Das, Debabrata

    2006-06-01

    Fermentative hydrogen production was carried out by Enterobacter cloacae DM11, using glucose as the substrate. The effects of initial substrate concentration, initial medium pH, and temperature were investigated. Results showed that at an initial glucose concentration of 1.0% (m/v), the molar yield of hydrogen was 3.31 mol (mol glucose)(-1). However, at higher initial glucose concentration, both the rate and cumulative volume of hydrogen production decreased. The pH of 6.5 +/- 0.2 at a temperature of 37 degrees C was found most suitable with respect to maximum rate of production of hydrogen in batch fermentation. Activation enthalpies of fermentation and that of thermal deactivation of the present process were estimated following a modified Arrhenius equation. The values were 47.34 and 118.67 kJ mol(-1) K(-1), respectively. The effect of the addition of Fe(2+) on hydrogen production was also studied. It revealed that the presence of iron (Fe(2+)) in the media up to a concentration of 20 mg L(-1) had a marginal enhancing effect on total hydrogen production. A simple model developed from the modified Gompertz equation was applied to estimate the hydrogen production potential, production rate, and lag-phase time in a batch process, based on the cumulative hydrogen production curves, using the software program Curve Expert 1.3.

  12. Irradiation embrittlement monitoring of WWER-440/213 type RPV's

    International Nuclear Information System (INIS)

    Kupca, L.

    1997-01-01

    The brief results from the surveillance specimen program's application on the RPV's WWER-440/213 in Jaslovske Bohunice V-2 and Mochovce NPP's was finished the standard surveillance specimen program (SSSP). On the base of SSSP critical analysis was prepared so called 'Extended Surveillance Specimen Program' (ESSP). For the first two units of the Mochovce NPP is prepared completely new program of irradiation embrittlement monitoring called 'Modern Surveillance Specimen Program' (MSSP), This program will serve for Mochovce NPP during all planned service life. The first results of ESSP from the 3-rd and 4-th units in Jaslovske Bohunice V-2 NPP are presented too. (author)

  13. Modeling of irradiation embrittlement and annealing/recovery in pressure vessel steels

    International Nuclear Information System (INIS)

    Lott, R.G.; Freyer, P.D.

    1996-01-01

    The results of reactor pressure vessel (RPV) annealing studies are interpreted in light of the current understanding of radiation embrittlement phenomena in RPV steels. An extensive RPV irradiation embrittlement and annealing database has been compiled and the data reveal that the majority of annealing studies completed to date have employed test reactor irradiated weldments. Although test reactor and power reactor irradiations result in similar embrittlement trends, subtle differences between these two damage states can become important in the interpretation of annealing results. Microstructural studies of irradiated steels suggest that there are several different irradiation-induced microstructural features that contribute to embrittlement. The amount of annealing recovery and the post-anneal re-embrittlement behavior of a steel are determined by the annealing response of these microstructural defects. The active embrittlement mechanisms are determined largely by the irradiation temperature and the material composition. Interpretation and thorough understanding of annealing results require a model that considers the underlying physical mechanisms of embrittlement. This paper presents a framework for the construction of a physically based mechanistic model of irradiation embrittlement and annealing behavior

  14. High-pressure hydrogen materials compatibility of piezoelectric films

    Science.gov (United States)

    Alvine, K. J.; Shutthanandan, V.; Bennett, W. D.; Bonham, C. C.; Skorski, D.; Pitman, S. G.; Dahl, M. E.; Henager, C. H.

    2010-11-01

    Hydrogen is well known for materials compatibility issues, including blistering and embrittlement in metals, which are challenges for its use as the next-generation "green" fuel. Beyond metals, hydrogen also degrades piezoelectric materials used as actuators used in direct injection hydrogen internal combustion engines. We present the materials compatibility studies of piezoelectric films in high-pressure hydrogen environments. Absorption of high-pressure hydrogen and composition changes were studied with an elastic recoil detection analysis and Rutherford back-scattering spectrometry in lead zirconate titanate and barium titanate thin films. Hydrogen surface degradation in the form of blistering and Pb mixing was also observed.

  15. Simulation of He embrittlement at grain boundaries in bcc transition metals

    International Nuclear Information System (INIS)

    Suzudo, Tomoaki; Yamaguchi, Masatake

    2015-01-01

    To investigate what atomic properties largely determine vulnerability to He embrittlement at grain boundaries (GB) of bcc metals, we introduce a computational model composed of first principles density functional theory and a He segregation rate theory model. Predictive calculations of He embrittlement at the first wall of the future DEMO fusion concept reactor indicate that variation in the He embrittlement originated not only from He production rate related to neutron irradiation, but also from the He segregation energy at the GB that has a systematic trend in the periodic table. - Highlights: • We modeled He grain boundary (GB) segregation of bcc transition metals using first-principles-based rate theory. • We established the quantitative relation between He embrittlement and He segregation using GB cohesive energy. • He embrittlement was strongly dependent on He segregation energy at the GB that has a systematic trend in the periodic table.

  16. State of the art and environmental benefits using methane-hydrogen blends

    International Nuclear Information System (INIS)

    Faedo, D.

    2007-01-01

    Hythane is the patented mixture of 15% (by energy content) of hydrogen in CNG: in other proportions the blend is called HCNG. Hydrogen addition to CNG extends the lean burn limit of a natural gas engine, and has the potential to lower the nitrogen oxides emissions and to improve the engine thermal efficiency, with minor hardware changes necessary. This paper reports the benefits of hydrogen to CNG in S.I. engine, and a brief review of the results obtained in this field [it

  17. Hydrogen diffusion and distribution in alloy 600 and related effects on the plasticity

    International Nuclear Information System (INIS)

    Lecoester, F.; Brass, A.M.; Chene, J.; Noel, D.

    1997-01-01

    Hydrogen can play a part in several mechanisms proposed for explaining the stress corrosion cracking of nickel based alloy 600, used in steam generators of pressurized water nuclear reactors. This study presents data on diffusion and hydrogen trapping in alloy 600 as well as the embrittlement which results from it. Distribution data were obtained by deuterium analysis of samples cathodically charged with heavy water. Secondary ion mass spectrometry, liquid scintillation counting and tritium autoradiography have been used for analysis. Data on hydrogen embrittlement were obtained by imposed tensile tests on samples with or without cathodic charging. Different microstructures were studied. The results show that alloy 600 embrittlement greatly depend on the structure and increases with the degree of intergranular precipitation. An effect of hydrogen on the plasticity of the alloy was noted. (author)

  18. Influence of swelling on irradiated cw 316 Ti embrittlement

    International Nuclear Information System (INIS)

    Fissolo, A.; Cauvain, R.; Hugot, J.P.; Levy, V.

    1988-01-01

    For fast breeder reactors core materials, the main limitations are usually swelling and irradiation embrittlement. Tensile tests and Charpy tests performed on CW 316 Ti wrappers irradiated in PHENIX up to 100 dpa NRT have shown strong evidence of correlation between swelling and embrittlement. Tensile tests were performed at room temperature, at 200 0 C and at irradiation temperature on tensile specimens machined from wrappers; the tests were done on different heats leading to different swelling values. Charpy tests were performed also at room temperature, 200 0 C and irradiation temperature, on Charpy specimens machined from different wrappers. As swelling increases, first we observe a large decrease of the total energy absorbed by specimen rupture in Charpy tests and the absence of necking before failure in tensile tests; when swelling reaches about 6 %, the total energy in Charpy tests becomes very low and uniform elongation in tensile tests decreases; at higher swelling values failure in tensile tests may occur without any plastic deformation, the UTS itself decreasing sharply

  19. Toughness and Embrittlement of RPV Steels Using Ultrasonic Measurements

    International Nuclear Information System (INIS)

    Hiser, Allen L. Jr.

    2004-01-01

    This paper summarizes the findings from an effort addressing the use of ultrasonic attenuation as a suitable parameter for nondestructive determination of irradiation embrittlement in reactor pressure vessel (RPV) steels. The materials examined in this study include one heat of RPV steel that was heat treated to induce changes in its fracture toughness, several heats of RPV steel irradiated to assess neutron embrittlement changes in fracture toughness, and a matrix of RPV steels (in the unirradiated condition) with a range of as-fabricated fracture toughness levels. The following observations can be made. -) The results indicate that ultrasonic attenuation is generally able to identify differences in responses for samples with different toughness levels, although in some cases the differences in ultrasonic responses are small. -) Plate and weld materials provide different trends of attenuation changes with changes in material toughness. -) For the single forging studied in 2 irradiated conditions, the attenuation measurements provided mixed results. -) Differences in fracture toughness that arise from damage of a microstructure result in more different responses in ultrasonic attenuation than differences in fracture toughness that arise from as-fabricated differences in microstructure

  20. Vanadium alloys with improved resistance to helium embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Braski, D.N.

    1990-01-01

    A series of experimental vanadium alloys have been designed with small MC-type carbides in their microstructures to trap helium produced during neutron irradiation, thereby reducing helium embrittlement. The tensile properties and fabricability of the alloys were strongly influenced by the amounts of MC-forming-elements, especially carbon. Alloys with 0.05 and 0.10 wt % carbon exhibited slightly lower yield strengths at 420 to 600{degree}C than vanadium alloys such as V-5Cr-5Ti, Vanstar-7, V-3Ti-1Si, and V-15Cr-5Ti. However, this characteristic may actually be an asset from the standpoint of resistance to irradiation hardening. After implantation with 300 appm {sup 3}He, both the V-Ti-C and V-Ti-Zr-C alloys exhibited less ductility losses at 600{degree}C than the other vanadium alloys tested under comparable conditions. Examination of the experimental alloy microstructures by AEM showed that the small MC-type carbides did, in fact, trap helium and that they were responsible for the increased resistance to helium embrittlement of these alloys. 16 refs., 12 figs., 2 tabs.

  1. The modelling of irradiation embrittlement in submerged-arc welds

    International Nuclear Information System (INIS)

    Bolton, C.J.; Buswell, J.T.; Jones, R.B.; Moskovic, R.; Priest, R.H.

    1996-01-01

    Until very recently, the irradiation embrittlement behavior of submerged-arc welds has been interpreted in terms of two mechanisms, namely a matrix damage component and an additional component due to the irradiation-enhanced production of copper-rich precipitates. However, some of the weld specimens from a recent accelerated re-irradiation experiment have shown high Charpy shifts which exceeded the values expected from the measured shift in yield stress. Microstructural examination has revealed the occurrence of intergranular fracture (IGF) in these specimens, accompanied by grain boundary segregation of phosphorus. Theoretical models were developed to predict the parametric dependence of irradiation-enhanced phosphorus segregation on experimental variables. Using these parametric forms, along with the concept of a critical level of segregation for the onset of IGF instead of cleavage, a three mechanism trend curve has been developed. The form of this trend curve, taking into account IGF as well as matrix and copper embrittlement, is thus mechanistically based. The constants in the equation, however, are obtained by a statistical fit to the actual Charpy shift database

  2. Significance of rate of work hardening in tempered martensite embrittlement

    International Nuclear Information System (INIS)

    Pietikainen, J.

    1995-01-01

    The main explanations for tempered martensite embrittlement are based on the effects of impurities and cementite precipitation on the prior austenite grain boundaries. There are some studies where the rate of work hardening is proposed as a potential reason for the brittleness. One steel was studied by means of a specially developed precision torsional testing device. The test steel had a high Si and Ni content so ε carbide and Fe 3 C appear in quite different tempering temperature ranges. The M S temperature is low enough so that self tempering does not occur. With the testing device it was possible to obtain the true stress - true strain curves to very high deformations. The minimum toughness was always associated with the minimum of rate of work hardening. The change of deformed steel volume before the loss of mechanical stability is proposed as at least one reason for tempered martensite embrittlement. The reasons for the minimum of the rate of work hardening are considered. (orig.)

  3. Regulatory aspects of radiation embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Randall, P.N.

    1979-01-01

    One purpose of this conference, is to re-examine the conventional wisdom about neutron radiation embrittlement and the methods used to counteract embrittlement in reactor vessels. Perhaps, there have been sufficient advances in fracture mechanics, core physics, dosimetry, and physical metallurgy to permit a forward step in the quantitative treatment of the subject. Certainly this would be consistent with the position of the U.S. Nuclear Regulatory Commission (the NRC) in general. ''There has been a continued evolution toward increased specificity.'' This statement appeared in the response prepared by the staff to a request from the Commission to explain how the staff decides to apply a new requirement and to whom, i.e., to back-fit or forward-fit-only or whatever. Pressure for increased specificity, i.e., for fleshing out general design criteria, comes from ''technical surprises'' in the form of operating experiences or from research information, and from attempts to improve our confidence in the safety of plants, especially new plants. Our goal is to have anticipated and evaluated all possible modes of failure with sufficient quantitativeness that the probability of failure can be estimated with some accuracy. Failing this, regulators demand large margins of safety to cover our ignorance

  4. Why hydrogen

    International Nuclear Information System (INIS)

    2004-02-01

    The energy consumption increase and the associated environmental risks, led to develop new energy sources. The authors present the potentialities of the hydrogen in this context of energy supply safety. They detail the today market and the perspectives, the energy sources for the hydrogen production (fossils, nuclear and renewable), the hydrogen transport, storage, distribution and conversion, the application domains, the associated risks. (A.L.B.)

  5. Rupture mechanics of metallic alloys for hydrogen transport

    International Nuclear Information System (INIS)

    Moro, I.; Briottet, L.; Lemoine, P.; Andrieu, E.; Blanc, C.

    2007-01-01

    With the aim to establish a cheap hydrogen distribution system, the transport by pipelines is a solution particularly interesting. Among the high limit of elasticity steels, the X80 has been chosen for hydrogen transport. Its chemical composition and microstructure are given. Important microstructural changes have been revealed in the sheet thickness: the microstructure is thinner and richer in perlite in surface than in bulk. In parallel to this microstructural evolution, a microhardness gradient has been observed: the material microhardness is stronger in surface than in bulk of the sheet. The use of this material for hydrogen transport requires to study its resistance to hydrogen embrittlement. The main aim of this work is to develop an easy rupture mechanics test allowing to qualify the studied material in a gaseous hydrogen environment, to determine the sensitivity of the studied material to the hydrogen embrittlement and to better understand the mechanisms of the hydrogen embrittlement for ferritic materials. Two experimental tests have been used for: the first one is a traction machine coupled to an autoclave; the second one allows to carry out disk rupture tests. The toughness of the material in a gaseous hydrogen environment has thus been determined. The resistance of the material to hydrogen embrittlement has been characterized and by simulation, it has been possible to identify the areas with a strong concentration in hydrogen. The second aim of this work is to study the influence of the steel microstructure on the hydrogen position in the material and on the resistance of the material to the hydrogen embrittlement. The preferential trapping sites on the material not mechanically loaded have at first been identified, as well as the hydrogen position on the different phases and at the ferrite/cementite interface. The interaction between the mechanical loads, the position and the trapping of the hydrogen have been studied then. At last, has been

  6. Hydrogen Absorption in Weldments of Overlaid Claded Pressure Vessel

    Directory of Open Access Journals (Sweden)

    Ronnie Rusli

    2010-10-01

    Full Text Available Cracks was found in type 347 stainless steel internal attachment welds of a reactor for a high temperature, and highpressure hydrogen service. One of the possible causes of cracking is low cycle fatigue cracking induced by repetition ofthermal stress to embrittled weld metal. Type 347 weld metal loses its ductility by presence of sigma phase andhydrogen.

  7. Effect of piperidones on hydrogen permeation and corrosion ...

    Indian Academy of Sciences (India)

    mild steel surfaces from H2SO4 obeys Temkin's adsorption isotherm. Keywords. Corrosion inhibition; piperidones; hydrogen permeation; metal embrittlement; impedance measurements. 1. Introduction. The inhibiting influence of piperidine and cyclohexanone on the corrosion of copper in acidic solutions has already been ...

  8. Development of neutron irradiation embrittlement correlation of reactor pressure vessel materials of light water reactors

    International Nuclear Information System (INIS)

    Soneda, Naoki; Dohi, Kenji; Nomoto, Akiyoshi; Nishida, Kenji; Ishino, Shiori

    2007-01-01

    A large amount of surveillance data of the RPV embrittlement of the Japanese light water reactors have been compiled since the current Japanese embrittlement correlation has been issued in 1991. Understanding on the mechanisms of the embrittlement has also been greatly improved based on both experimental and theoretical studies. CRIEPI and the Japanese electric power utilities have started research project to develop a new embrittlement correlation method, where extensive study of the microstructural analyses of the surveillance specimens irradiated in the Japanese commercial reactors has been conducted. The new findings obtained from the experimental study are that the formation of solute-atom clusters with little or no copper is responsible for the embrittlement in low-copper materials, and that the flux effect exists especially in high-copper materials and this is supported by the difference in the microstructure of the high-copper materials irradiated at different fluxes. Based on these new findings, a new embrittlement correlation method is formulated using rate equations. The new methods has higher prediction capability than the current Japanese embrittlement correlation in terms of smaller standard deviation as well as smaller mean value of the prediction error. (author)

  9. Environmental mitigation for SCC initiation of BWR core internals by hydrogen injection during start-up

    International Nuclear Information System (INIS)

    Dozaki, K.; Abe, A.; Nagata, N.; Takiguchi, H.

    2004-01-01

    Hydrogen injection into the reactor water has been applied to many BWR power stations. Since hydrogen injected accelerates recombination of oxidant generated by water radiolysis, oxidant concentration, such as dissolved oxygen concentration in reactor water can be reduced. As the result of the reduction of oxidant concentration, Electrochemical Corrosion Potential (ECP) at the surface of structural material can be lowered. Lowered ECP moderates Stress Corrosion Cracking (SCC) sensitivity of structural materials, such as stainless steels. As usual, hydrogen injection system begins to work after the plant start-up is finished, when the condition of normal operation is established. Accordingly, Hydrogen Water Chemistry (HWC) does not cover all the period of plant operation. As far as SCC crack growth is considered, loss of HWC during plant start-up does not result in significant crack growth, because of duration of plant start-up is much shorter than that of plant normal operation, when HWC condition is being satisfied. However, the reactor water environment and load conditions during a plant start-up may contribute to the initiation of SCC. It is estimated that the core internals are subjected to the strain rate that may cause susceptibility to SCC initiation during start-up. Dissolved oxygen (DO) and hydrogen peroxide (H 2 O 2 ) has a peak, and ECP is in high levels during start-up. Therefore it is beneficial to perform hydrogen injection during start-up as well in order to suppress SCC initiation. We call it HWC During Start-up (HDS) here. (orig.)

  10. Hydrogen charging, hydrogen content analysis and metallographic examination of hydride in zirconium alloys

    International Nuclear Information System (INIS)

    Singh, R.N.; Kishore, R.; Mukherjee, S.; Roychowdhury, S.; Srivastava, D.; Sinha, T.K.; De, P.K.; Banerjee, S.; Gopalan, B.; Kameswaran, R.; Sheelvantra, Smita S.

    2003-12-01

    Gaseous and electrolytic hydrogen charging techniques for introducing controlled amount of hydrogen in zirconium alloy is described. Zr-1wt%Nb fuel tube, zircaloy-2 pressure tube and Zr-2.5Nb pressure tube samples were charged with up to 1000 ppm of hydrogen by weight using one of the aforementioned methods. These hydrogen charged Zr-alloy samples were analyzed for estimating the total hydrogen content using inert gas fusion technique. Influence of sample surface preparation on the estimated hydrogen content is also discussed. In zirconium alloys, hydrogen in excess of the terminal solid solubility precipitates out as brittle hydride phase, which acquire platelet shaped morphology due to its accommodation in the matrix and can make the host matrix brittle. The F N number, which represents susceptibility of Zr-alloy tubes to hydride embrittlement was measured from the metallographs. The volume fraction of the hydride phase, platelet size, distribution, interplatelet spacing and orientation were examined metallographically using samples sliced along the radial-axial and radial-circumferential plane of the tubes. It was observed that hydride platelet length increases with increase in hydrogen content. Considering the metallographs generated by Materials Science Division as standard, metallographs prepared by the IAEA round robin participants for different hydrogen concentration was compared. It is felt that hydride micrographs can be used to estimate not only that approximate hydrogen concentration of the sample but also its size, distribution and orientation which significantly affect the susceptibility to hydride embrittlement of these alloys. (author)

  11. Lessons Learned From Developing Reactor Pressure Vessel Steel Embrittlement Database

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL

    2010-08-01

    Materials behaviors caused by neutron irradiation under fission and/or fusion environments can be little understood without practical examination. Easily accessible material information system with large material database using effective computers is necessary for design of nuclear materials and analyses or simulations of the phenomena. The developed Embrittlement Data Base (EDB) at ORNL is this comprehensive collection of data. EDB database contains power reactor pressure vessel surveillance data, the material test reactor data, foreign reactor data (through bilateral agreements authorized by NRC), and the fracture toughness data. The lessons learned from building EDB program and the associated database management activity regarding Material Database Design Methodology, Architecture and the Embedded QA Protocol are described in this report. The development of IAEA International Database on Reactor Pressure Vessel Materials (IDRPVM) and the comparison of EDB database and IAEA IDRPVM database are provided in the report. The recommended database QA protocol and database infrastructure are also stated in the report.

  12. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Biner, Suleyman Bulent [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Spencer, Benjamin Whiting [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-07-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  13. Role of radiation embrittlement in reactor vessel integrity assessment

    International Nuclear Information System (INIS)

    Marston, T.U.; Chexal, V.K.; Wyckoff, M.

    1982-01-01

    Reactor vessel integrity calculations are complex. The effect of radiation embrittlement on vessel material properties is a very important aspect of any vessel integrity evaluation. The importance of realistic (based on surveillance capsule results) rather than conservative estimates of the material properties (based on regulatory curves) cannot be overestimated. It is also important to make realistic thermal hydraulic and system operations assumptions. In addition, use of actual flaw sizes from in-service inspections (versus hypothetical flaw size selection) will promote realism. Important research results exist that need to be incorporated into the regulatory process. The authors believe results from current research and development efforts will demonstrate that, with reasonable assumptions and best estimate calculations, the safety of even the older reactor vessels with high copper content welds can be assured over their design lifetimes without the need for major fixes. The utilities, through EPRI and the vendors, have dedicated a significant effort to solving the pressurized thermal shock problem

  14. Lessons Learned From Developing Reactor Pressure Vessel Steel Embrittlement Database

    International Nuclear Information System (INIS)

    Wang, Jy-An John

    2010-01-01

    Materials behaviors caused by neutron irradiation under fission and/or fusion environments can be little understood without practical examination. Easily accessible material information system with large material database using effective computers is necessary for design of nuclear materials and analyses or simulations of the phenomena. The developed Embrittlement Data Base (EDB) at ORNL is this comprehensive collection of data. EDB database contains power reactor pressure vessel surveillance data, the material test reactor data, foreign reactor data (through bilateral agreements authorized by NRC), and the fracture toughness data. The lessons learned from building EDB program and the associated database management activity regarding Material Database Design Methodology, Architecture and the Embedded QA Protocol are described in this report. The development of IAEA International Database on Reactor Pressure Vessel Materials (IDRPVM) and the comparison of EDB database and IAEA IDRPVM database are provided in the report. The recommended database QA protocol and database infrastructure are also stated in the report.

  15. Hydrogen terminal solubility in Zircaloy-4

    International Nuclear Information System (INIS)

    Vizcaino, Pablo; Banchik, Abrahan D.

    1999-01-01

    Terminal solubility temperature of hydrogen in zirconium and its alloys is an important parameter because hydrides precipitation embrittled these materials making them susceptible to the phenomenon known as retarded hydrogen cracking. This work continues the study presented in the 25 AATN Meeting. Within this framework, a study focused on determining these curves in recrystallized Zircaloy-4, using scanning differential calorimetric technique. Terminal solubility curves for Zircaloy-4 were constructed within a concentration range from 40 to 640 ppm in hydrogen weight and comparisons with results obtained by other authors were made. (author)

  16. Penetration of hydrogen-based energy system and its potential for causing global environmental change: Scoping risk analysis based on life cycle thinking

    International Nuclear Information System (INIS)

    Kikuchi, Ryunosuke

    2006-01-01

    A hydrogen-based economy seems superficially to be environmentally friendly, and many people have worked toward its realization. Today hydrogen is mainly produced by decarbonizing fossil fuels (e.g. natural gas), and in the future decarbonization of both fossil fuels and biomass will play a leading role in the production of hydrogen. The main purpose of this paper is to suggest the identification of potential environmental risks in terms of 'life cycle thinking' (which considers all aspects from production to utilization) with regard to the hydrogen-based economy to come. Hydrogen production by decarbonization results in CO 2 emissions. The final destination of the recovered CO 2 is uncertain. Furthermore, there is a possibility that hydrogen molecules will escape to the atmosphere, posing risks that could occasion global environmental changes such as depletion of stratospheric ozone, temperature change in the stratosphere and change of the hydrides cycle through global vaporization. Based on the results of simulation, requirements regarding the following items are proposed to minimize potential risks: hydrogen source, production and storage loss

  17. Environmental meticillin-resistant Staphylococcus aureus (MRSA) disinfection using dry-mist-generated hydrogen peroxide

    DEFF Research Database (Denmark)

    Bartels, M.D.; Kristoffersen, K.; Slotsbjerg, T.

    2008-01-01

    Meticillin-resistant Staphylococcus aureus (MRSA) is a major problem in hospitals worldwide. Hand hygiene is recognised as crucial in limiting the spread of MRSA but less is known about the role of MRSA reservoirs in the inanimate hospital environment. We evaluated the effect of hydrogen peroxide...

  18. High Fluency Low Flux Embrittlement Models of LWR Reactor Pressure Vessel Embrittlement and a Supporting Database from the UCSB ATR-2 Irradiation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G. Robert [Univ. of California, Santa Barbara, CA (United States)

    2017-01-24

    Reactor pressure vessel embrittlement may limit the lifetime of light water reactors (LWR). Embrittlement is primarily caused by formation of nano-scale precipitates, which cause hardening and a subsequent increase in the ductile-to-brittle transition temperature of the steel. While the effect of Cu has historically been the largest research focus of RPV embrittlement, there is increasing evidence that Mn, Ni and Si are likely to have a large effect at higher fluence, where Mn-Ni-Si precipitates can form, even in the absence of Cu. Therefore, extending RPV lifetimes will require a thorough understanding of both precipitation and embrittlement at higher fluences than have ever been observed in a power reactor. To address this issue, test reactors that irradiate materials at higher neutron fluxes than power reactors are used. These experiments at high neutron flux can reach extended life neutron fluences in only months or several years. The drawback of these test irradiations is that they add additional complexity to interpreting the data, as the irradiation flux also plays a role into both precipitate formation and irradiation hardening and embrittlement. This report focuses on developing a database of both microstructure and mechanical property data to better understand the effect of flux. In addition, a previously developed model that enables the comparison of data taken over a range of neutron flux is discussed.

  19. Effect of hydrogen on the mechanical properties of titanium and its alloys

    Science.gov (United States)

    Beck, F. H.

    1975-01-01

    Occluded hydrogen resulting from cathodic charging of commercially pure titanium and titanium alloys, Ti-8Al-1Mo-1V and Ti-6Al-4V, was shown to cause embrittlement of the alloys. Embrittlement was a function of the interstitial hydrogen content rather than the amount of precipitated titanium hydride. The effects of hydrogen concentration on the critical strain for plastic instability along pure shear directions was determined for alloys Ti-8Al-1Mo-1V and Ti-5Al-2.5Sn. Hydrogen, in concentrations below that necessary for spontaneous hydride precipitation, increased the strain necessary for instability formation or instability failure. The strain rate sensitivity also increased with increasing hydrogen concentration. The effect of hydrogen on slip and twinning was determined for titanium single crystals. The critical resolved shear stress for prism slip was increased and the critical resolved shear stress for twinning was decreased with increasing hydrogen concentration.

  20. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  1. A study on hazard types occurring in hydrogen facilities

    International Nuclear Information System (INIS)

    Cho, Nam Chul; Jae, Moo Sung; Eon, Yang Joon

    2004-01-01

    Hydrogen has ideal characteristics as an energy carrier. Hydrogen can be used as a clean fuel in a variety of energy end-use sectors including the conversion to electricity. After combustion, it produces only water. Therefore, the concept of hydrogen energy system has attracted much interest worldwide. But hydrogen has a defect that the explosion risk is high to an inflammable gas of a colorless, tasteless and odorless. Therefore, to use the hydrogen to the source of energy, hydrogen accident sequences and causes analysis must be needed. For this, hazard types occurring in hydrogen facilities have been considered through the case of domestic and foreign hydrogen accident in this study and hazard types to be considered are ignition, leaks, hydrogen dispersion, fire an explosion, storage vessel failure, vent and exhaust system, purging, condensation of air, hydrogen embrittlement, physiological hazard, and collisions during transportation

  2. The environmental aspect of using renewables for hydrogen production compared to a fossil based system : A specific case study for a remote application

    International Nuclear Information System (INIS)

    Spath, P.; Padro, C.G.; Glockner, R.; Ulleberg, O.

    2002-01-01

    Under the umbrella of the International Energy Agency Hydrogen Implementing Agreement Annex 13 : Design and optimization of Integrated Systems, a number of studies are currently being conducted, touching on modeling, economics, and environmental consequences of hydrogen fuels. The use of hydrogen as a fuel in buses on a remote island of the coast of Norway is the topic of one such study, which represents a joint effort between the United States and Norway. The study involved the examination of two comparative systems, namely (1) hydrogen via wind/electrolysis and (2) hydrogen produced from steam methane reforming (SMR). The two systems were described and a comparative analysis performed of the life cycle assessments results, such as resource requirement, air emissions, fossil energy consumption and others. 4 refs., 3 tabs., 4 figs

  3. Determination of diffusible and total hydrogen concentration in coated and uncoated steel

    Energy Technology Data Exchange (ETDEWEB)

    Mabho, Nonhlangabezo

    2010-09-23

    The new trend in the steel industry demands thin, flexible, high strength steels with low internal embrittlement. It is a well known fact that the atomic hydrogen which is picked up during production, fabrication and service embrittles the steel. This has led to an extensive research towards the improvement of the quality of metallic materials by focusing on total and diffusible hydrogen concentrations which are responsible for hydrogen embrittlement. Since the internal embrittlement cannot be foreseen, the concentrations of diffusible hydrogen work as indicators while the total hydrogen characterizes the absorbed quantities and quality of that particular product. To meet these requirements, the analytical chemistry methods which include the already existing carrier gas melt (fusion) extraction methods that use infrared and thermal conductivity for total hydrogen detection were applied. The newly constructed carrier gas thermal desorption mass spectroscopy was applied to monitor the diffusible concentration at specific temperatures and desorption rates of hydrogen which will contribute towards the quality of materials during service. The TDMS method also involved the characterization of the energy quantity (activation energy) required by hydrogen to be removed from traps of which irreversible traps are preferred because they enhance the stability of the product by inhibiting the mobility of hydrogen which is detrimental to the metallic structures. The instrumentation for TDMS is quite simple, compact, costs less and applicable to routine analysis. To determine total and diffusible hydrogen, the influence of the following processes: chemical and mechanical zinc coating removal, sample cleaning with organic solvents, conditions for hydrogen absorption by electrolytic hydrogen charging, conditions of hydrogen desorption by storing the sample at room temperature, solid CO{sub 2} and at temperatures of the drier was analysed. The contribution of steel alloys towards

  4. A review of formulas for predicting irradiation embrittlement of reactors vessel materials

    International Nuclear Information System (INIS)

    Petrequin, P.

    1995-01-01

    Formulas developed in different countries for predicting irradiation embrittlement of reactors vessel materials are presented. Results of predictions were compared with different data sets, from surveillance programmes or studies in test reactors, with different residual elements contents. Figs

  5. The low-temperature aging embrittlement in a 2205 duplex stainless steel

    International Nuclear Information System (INIS)

    Weng, K.L.; Chen, H.R.; Yang, J.R.

    2004-01-01

    The effect of isothermal treatment (at temperatures ranging between 400 and 500 deg. C) on the embrittlement of a 2205 duplex stainless steel (with 45 ferrite-55 austenite, vol.%) has been investigated. The impact toughness and hardness of the aged specimens were measured, while the corresponding fractography was studied. The results show that the steel is susceptible to severe embrittlement when exposed at 475 deg. C; this aging embrittlement is analogous with that of the ferritic stainless steels, which is ascribed to the degenerated ferrite phase. High-resolution transmission electron microscopy reveals that an isotropic spinodal decomposition occurred during aging at 475 deg. C in the steel studied; the original δ-ferrite decomposed into a nanometer-scaled modulated structure with a complex interconnected network, which contained an iron-rich BCC phase (α) and a chromium-enriched BCC phase (α'). It is suggested that the locking of dislocations in the modulated structure leads to the severe embrittlement

  6. Environmentally acceptable effect of hydrogen peroxide on cave 'lamp-flora', calcite speleothems and limestones

    International Nuclear Information System (INIS)

    Faimon, Jiri; Stelcl, Jindrich; Kubesova, Svatava; Zimak, Jiri

    2003-01-01

    Hydrogen peroxide plus limestone fragments allows removal of organisms without corrosion of limestone and speleothem. - Mosses, algae, and cyanobacteria (lamp-flora) colonize illuminated areas in show caves. This biota is commonly removed by a sodium hypochlorite solution. Because chlorine and other deleterious compounds are released into a cave environment during lamp-flora cleansing, hydrogen peroxide was tested as an alternative agent. In a multidisciplinary study conducted in the Katerinska Cave (Moravian Karst, Czech Republic), 12 algae- and cyanobacteria taxons and 19 moss taxons were detected. The threshold hydrogen peroxide concentration for the destruction of this lamp-flora was found to be 15 vol.%. Based on laboratory experiments in stirred batch reactors, the dissolution rates of limestones and calcite speleothems in water were determined as 3.77x10 -3 and 1.81x10 -3 mol m -2 h -1 , respectively. In the 15% peroxide solution, the limestone and speleothem dissolution rates were one order of magnitude higher, 2.00x10 -2 and 2.21x10 -2 mol m -2 h -1 , respectively. So, the peroxide solution was recognised to attack carbonates somewhat more aggressively than karst water. In order to prevent the potential corrosion of limestone and speleothems, the reaching of preliminary peroxide saturation with respect to calcite is recommended, for example, by adding of few limestone fragments into the solution at least 10 h prior to its application

  7. Current limitations of trend curve analysis for the prediction of reactor PV embrittlement

    International Nuclear Information System (INIS)

    Gold, R.; McElroy, W.N.

    1986-02-01

    In operating light water reactor (LWR) commercial power plants, neutron radiation induces embrittlement of the pressure vessel (PV) and its support structures. As a consequence, LWR-PV integrity is a primary safety consideration. LWR-PV integrity is a significant economic consideration since the PV and its support structures are nonreplaceable power plant components and embrittlement of these components can therefore limit the effective operating lifetime of the plant

  8. Radiation embrittlement of nuclear reactor pressure vessel steels: An international review (second volume)

    International Nuclear Information System (INIS)

    Steele, L.E.

    1986-01-01

    This book has sixteen (16) peer-reviewed papers divided into four (4) sections that reflect changes in the nuclear power industry occurring since 1981, including escalating capital requirements and a growing worldwide dependence on nuclear power for electricity production. The four (4) sections of this book are: Overview of National Programs; Surveillance and Other Radiation Embrittlement Studies; Pressure Vessel Integrity and Regulatory Considerations; and Mechanisms of Irradiation Embrittlement

  9. Global Assessment of Hydrogen Technologies – Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOE’s high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies – steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  10. A study on the irradiation embrittlement and recovery characteristics of light water reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Se Hwan; Hong, Jun Hwa; Lee, Bong Sang; Oh, Jong Myung; Song, Sook Hyang; Milan, Brumovsky [NRI Czech (Czech Republic)

    1999-03-01

    The neutron irradiation embrittlement phenomenon of light water RPV steels greatly affects the life span for safe operation of a reactor. Reliable evaluation and prediction of the embrittlement of RPV steels, especially of aged reactors, are of importance to the safe operation of a reactor. In addition, the thermal recovery of embrittled RPV has been recognized as an option for life extension. This study aimed to tracer/refine available technologies for embrittlement characterization and prediction, to prepare relevant materials for several domestic RPV steels of the embrittlement and recovery, and to find out possible remedy for steel property betterment. Small specimen test techniques, magnetic measurement techniques, and the Meechan and Brinkmann's recovery curve analysis method were examined/applied as the evaluation techniques. Results revealed a high irradiation sensitivity in YG 3 RPV steel. Further extended study may be urgently needed. Both the small specimen test technique for the direct determination of fracture toughness, and the magnetic measurement technique for embrittlement evaluation appeared to be continued for the technical improvement and data base preparation. Manufacturing process relevant to the heat treatment appeared to be improved in lowering the irradiation sensitivity of the steel. Further study is needed especially in applying the present techniques to the new structural materials under new irradiation environment of advanced reactors. (author)

  11. Hydrogen sorption and desorption properties of Pd-alloys and steels investigated by electrochemical methods and mass spectrometry

    NARCIS (Netherlands)

    Uluc, A.V.

    2015-01-01

    Although it has been more than a century since the first known hydrogen embrittlement case was reported, the fundamental question regarding its mechanism is still open to debate. Understanding the hydrogen-metal interactions is of great importance in tailoring microstructures that will have

  12. The hydrogen role on the stress corrosion of the alloy 600 in PWR; Le role de l'hydrogene sur la corrosion sous contrainte de l'alliage 600 en milieu REP

    Energy Technology Data Exchange (ETDEWEB)

    Laghoutaris, P.; Chene, J.; Guerre, C.; Raquet, O. [CEA Saclay, 91 - Gif sur Yvette (France); Molins, R. [Ecole Nationale Superieure des Mines de Paris, 75 - Paris (France); Vaillant, F. [Electricite de France (EDF), Les Renardieres, 92 - Clamart (France); Scott, P. [Areva La Defense, 92 (France)

    2007-07-01

    In the PWR type reactors, stress corrosion cracks appear in the alloy 600. To explain this phenomenon some corrosion cracking model, based on the hydrogen embrittlement, have been developed. Meanwhile it remains some uncertainties on the following points: the hydrogen source, the hydrogen concentration in the material, the fleetingness which controls the hydrogen solubility and the deformation at the crack end. The aim of this study is to bring new information on the alloy 600 stress corrosion mechanisms. (A.L.B.)

  13. Environmentally acceptable effect of hydrogen peroxide on cave "lamp-flora", calcite speleothems and limestones.

    Science.gov (United States)

    Faimon, Jirí; Stelcl, Jindrich; Kubesová, Svatava; Zimák, Jirí

    2003-01-01

    Mosses, algae, and cyanobacteria (lamp-flora) colonize illuminated areas in show caves. This biota is commonly removed by a sodium hypochlorite solution. Because chlorine and other deleterious compounds are released into a cave environment during lamp-flora cleansing, hydrogen peroxide was tested as an alternative agent. In a multidisciplinary study conducted in the Kateinská Cave (Moravian Karst, Czech Republic), 12 algae- and cyanobacteria taxons and 19 moss taxons were detected. The threshold hydrogen peroxide concentration for the destruction of this lamp-flora was found to be 15 vol.%. Based on laboratory experiments in stirred batch reactors, the dissolution rates of limestones and calcite speleothems in water were determined as 3.77 x 10-3 and 1.81 x 10-3 mol m-2 h-1, respectively. In the 15% peroxide solution, the limestone and speleothem dissolution rates were one order of magnitude higher, 2.00 x 10-2 and 2.21 x 10-2 mol m-2 h-1, respectively. So, the peroxide solution was recognised to attack carbonates somewhat more aggressively than karst water. In order to prevent the potential corrosion of limestone and speleothems, the reaching of preliminary peroxide saturation with respect to calcite is recommended, for example, by adding of few limestone fragments into the solution at least 10 h prior to its application.

  14. Hydrogen energy.

    Science.gov (United States)

    Edwards, P P; Kuznetsov, V L; David, W I F

    2007-04-15

    The problem of anthropogenically driven climate change and its inextricable link to our global society's present and future energy needs are arguably the greatest challenge facing our planet. Hydrogen is now widely regarded as one key element of a potential energy solution for the twenty-first century, capable of assisting in issues of environmental emissions, sustainability and energy security. Hydrogen has the potential to provide for energy in transportation, distributed heat and power generation and energy storage systems with little or no impact on the environment, both locally and globally. However, any transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological and socio-economic barriers. This brief report aims to outline the basis of the growing worldwide interest in hydrogen energy and examines some of the important issues relating to the future development of hydrogen as an energy vector.

  15. Embrittlement in CN3MN Grade Superaustenitic Stainless Steels

    Science.gov (United States)

    Başkan, Mertcan; Chumbley, Scott L.; Kalay, Yunus Eren

    2014-05-01

    Superaustenitic stainless steels (SSS) are widely used in extreme environments such as off-shore oil wells, chemical and food processing equipment, and seawater systems due to their excellent corrosion resistance and superior toughness. The design of the corresponding heat treatment process is crucial to create better mechanical properties. In this respect, the short-term annealing behavior of CN3MN grade SSS was investigated by a combined study of Charpy impact tests, hardness measurements, scanning and transmission electron microscopy. Specimens were heat treated at 1200 K (927 °C) for up to 16 minutes annealing time and their impact strengths and hardnesses were tested. The impact toughness was found to decrease to less than the half of the initial values while hardness stayed the same. Detailed fracture surface analyses revealed a ductile to brittle failure transition for relatively short annealing times. Brittle fracture occurred in both intergranular and transgranular modes. SEM and TEM indicated precipitation of nano-sized intermetallics, accounting for the intergranular embrittlement, along the grain boundaries with respect to annealing time. The transgranular fracture originated from linear defects seen to exist within the grains. Close observation of such defects revealed stacking-fault type imperfections, which lead to step-like cracking observed in microlength scales.

  16. Thermal Embrittlement of Reactor Pressure Vessel Steel due to Aging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Soo; Park, Duck Gun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Thermal SS sets are located above the nuclear core where a fast neutron flux is negligible and temperature is 320 .deg. C (as opposed to 290 .deg. C in locations of high-irradiated SS). These SS allow monitoring of continuous operation temperature exposure effect on mechanical characteristics of the steels. Although transgranular cleavage is the predominant mode of brittle fracture in RPV steels, solute (e.g. phosphorus) segregation to grain boundaries can result in another type of brittle fracture known as intergranular (grain boundary) fracture. Figures 1 a) and b) show examples of transgranular and intergranular (IG) fracture, respectively, as viewed in a scanning electron microscope. The investigators have interpreted the intergranular cracking occurs as a result of segregation of sulfur and/or phosphorus at grain boundary. The IG cracking is a kind of symptom of embrittlement. It is reported that the IG cracking occurs in inert (Ar) environment under slow strain rate test. 1. The lath grain size in SA508 RPV steel increases slightly due to thermal aging at 350, 420, and 420 .deg. C for 2,250H. 2. The decrease in toughness appeared 4-25% and the lattice contraction appeared to be +0.004% - -0.022% due to thermal aging at 350, 420, and 420 .deg. C for 2,250H. 3. The amount of decrease in Charpy impact energy due to thermal aging is correlated well with the magnitude of lattice contraction.

  17. Relationship between irradiation hardening and embrittlement of pressure vessel steels

    International Nuclear Information System (INIS)

    Odette, G.R.; Lombrozo, P.M.; Wullaert, R.A.

    1984-01-01

    Based on a large body of test and power reactor data, empirical relationships between irradiation strengthening and embrittlement are derived. It is shown that the Charpy V-notch (C /SUB v/ ) 41-J indexed transition temperature increases and the upper-shelf energy decreases systematically with increases in the yield stress. The transition temperature shifts are related to two mechanisms: increases in the maximum temperature of elastic-cleavage fracture, and decreases in the slope of the C, energy versus test temperature curve associated with reductions in the upper-shelf energy. The cleavage shift contribution, which is usually dominant, can be predicted from the initial temperature of fracture at general yield and the change in ambient temperature static yield stress. In developing this simplified cleavage fracture model, it is shown that: (a) yield stress changes are independent of temperature and strain rate; (b) the increase in yield stress with decreasing temperature is independent of the strain rate, irradiation, and metallurgical state; and (c) the microcleavage fracture stress is independent of irradiation and temperature. A semi-empirical procedure for estimating the shift contribution due to upper-shelf energy decreases and the total temperature shift at 41 J, based on the observation of an approximately constant temperature interval of the transition regime, is proposed, along with a method for forecasting the entire irradiated C, curve

  18. Liquid Metal Embrittlement: new understanding for an old problem

    Science.gov (United States)

    Srolovitz, David

    2008-03-01

    When liquid metals are brought into contact with other polycrystalline metals, deep liquid-filled grooves often form at the intersections of grain boundaries and the solid-liquid interface. In some systems, e.g., Al-Ga, Cu-Bi and Ni-Bi, the liquid film quickly penetrates deep into the solid along the grain boundaries and leads to brittle, intergranular fracture under the influence of modest stresses. This is a form of liquid metal embrittlement (LME). This phenomenon is ubiquitous in material processing and is particularly important in nuclear reactor scenarios in which liquid metals are used as coolants and as spallation targets. The penetration of a liquid phase along the grain boundary is a complex phenomenon, involving several different types of simultaneous processes. The tendency for and rate of LME are also sensitive to externally controllable factors such as temperature and applied stress. Because of the interplay between the underlying phenomena that occur in LME, it has been difficult to perform experiments that can be interpreted to understand which processes control LME and which are simply parasitic. We study LME by performing molecular dynamics simulations of an Al bicrystal in contact with liquid Ga and investigate how Ga penetrates along the grain boundaries during the early stages of the wetting process. We use the simulation results to propose a new mechanism for LME and compare it with general trends gleaned from a series of LME experimental studies.

  19. SCK-CEN Contribution to the IAEA Round Robin Exercise on WWER-440 RPV Weld Metal Irradiation Embrittlement, annealing and Re-Embrittlement. Second Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E.; Chaouadi, R.; Scibetta, M.; Lucon, E.; Weber, M

    1999-07-01

    The report gives the actual status of the contribution of the Belgian Nuclear Research Centre SCK-CEN to the IAEA Round Robin Exercise on WWER-440 RPV Weld Material Irradiation, Annealing and Re-Embrittlement. Results from the reference testing of unirradiated material as well as the results of the CHIVAS-7 experiment are discussed.

  20. Environmental meticillin-resistant Staphylococcus aureus (MRSA) disinfection using dry-mist-generated hydrogen peroxide

    DEFF Research Database (Denmark)

    Bartels, M.D.; Kristoffersen, K.; Slotsbjerg, T.

    2008-01-01

    Meticillin-resistant Staphylococcus aureus (MRSA) is a major problem in hospitals worldwide. Hand hygiene is recognised as crucial in limiting the spread of MRSA but less is known about the role of MRSA reservoirs in the inanimate hospital environment. We evaluated the effect of hydrogen peroxide...... vapour diffused by Sterinis((R)) against MRSA in two experimental hospital settings and in two field trials. Dipslides were used for MRSA detection and quantification before and after using the Sterinis disinfection process. In the first experimental hospital setting, four epidemic MRSA strains were...... placed at five locations and left for one week. All strains survived the week but not the disinfection process. In field trial one 14 upholstered chairs from a department with many MRSA positive patients were left for one month in a closed room prior to disinfection. MRSA was found on the upholstery...

  1. A novel CO2 sequestration system for environmentally producing hydrogen from fossil-fuels

    International Nuclear Information System (INIS)

    Eucker IV, W.

    2007-01-01

    Aqueous monoethanolamine (MEA) scrubbers are currently used to capture carbon dioxide (CO 2 ) from industrial flue gases in various fossil-fuel based energy production systems. MEA is a highly volatile, corrosive, physiologically toxic, and foul-smelling chemical that requires replacement after 1000 operational hours. Room temperature ionic liquids (RTILs), a novel class of materials with negligible vapor pressures and potentiality as benign solvents, may be the ideal replacement for MEA. Ab initio computational modeling was used to investigate the molecular interactions of ILs with CO 2 . The energetic and thermodynamic parameters of the RTILs as CO 2 solvents are on par with MEA. As viable competitors to the present CO 2 separation technology, RTILs may economize the fossil-fuel decarbonization process with the ultimate aim of realizing a green hydrogen economy

  2. Hydrogen damage in metals, particularly in steels

    International Nuclear Information System (INIS)

    Funes, A.J.

    1982-03-01

    Hydrogen damage examples of practical interest for the engineer are presented, showing the scope of the problem and its importance in relation to technological development, particularly of CANDU reactor and of heavy water production plants. The fundamental triangle of the hydrogen embrittlement is established as follows: presence of hydrogen in the crystalline network, structure susceptible of damage, and effort. The initial collection of examples is classified in function of the observed effects. For the consideration of the causes of said effects three models of hydrogen interaction with the crystalline network are described, indicating their scopes and limitations. Then the use of the models is explained, both in order to obtain practical information (evaluation tests, acceptance and rejection criteria) and for the validation and improvement of the models themselves (study methods). Solutions for attenuating the hydrogen embrittlement and a programme of studies and tests are proposed to be carried out by the National Atomic Energy Commission. Among the latter, the local development of a microimpression method to detect the evaluation of absorbed hydrogen, comparable with the autoradiography of high resolution, and a mechanical test yielding results on fragility comparable with those obtained through the test of standard disks, are described. (M.E.L.) [es

  3. Rupture mechanics of metallic alloys for hydrogen transport; Mecanique de la rupture des alliages metalliques pour le transport de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Moro, I.; Briottet, L.; Lemoine, P. [CEA Grenoble (DRT/LITEN/DTH/LEV), 38 (France); Andrieu, E.; Blanc, C. [Centre Interuniversitaire de Recherche et d' Ingenierie des Materiaux (ENSIACET/CIRIMAT), 31 - Toulouse (France)

    2007-07-01

    With the aim to establish a cheap hydrogen distribution system, the transport by pipelines is a solution particularly interesting. Among the high limit of elasticity steels, the X80 has been chosen for hydrogen transport. Its chemical composition and microstructure are given. Important microstructural changes have been revealed in the sheet thickness: the microstructure is thinner and richer in perlite in surface than in bulk. In parallel to this microstructural evolution, a microhardness gradient has been observed: the material microhardness is stronger in surface than in bulk of the sheet. The use of this material for hydrogen transport requires to study its resistance to hydrogen embrittlement. The main aim of this work is to develop an easy rupture mechanics test allowing to qualify the studied material in a gaseous hydrogen environment, to determine the sensitivity of the studied material to the hydrogen embrittlement and to better understand the mechanisms of the hydrogen embrittlement for ferritic materials. Two experimental tests have been used for: the first one is a traction machine coupled to an autoclave; the second one allows to carry out disk rupture tests. The toughness of the material in a gaseous hydrogen environment has thus been determined. The resistance of the material to hydrogen embrittlement has been characterized and by simulation, it has been possible to identify the areas with a strong concentration in hydrogen. The second aim of this work is to study the influence of the steel microstructure on the hydrogen position in the material and on the resistance of the material to the hydrogen embrittlement. The preferential trapping sites on the material not mechanically loaded have at first been identified, as well as the hydrogen position on the different phases and at the ferrite/cementite interface. The interaction between the mechanical loads, the position and the trapping of the hydrogen have been studied then. At last, has been

  4. Reactor pressure vessel embrittlement of NPP borssele: Design lifetime and lifetime extension

    International Nuclear Information System (INIS)

    Blom, F.J.

    2007-01-01

    Embrittlement of the reactor pressure vessel of the Borssele nuclear power plant has been investigated taking account of the design lifetime of 40 years and considering 20 years subsequent lifetime extension. The paper presents the current licensing status based on considerations of material test data and of US nuclear regulatory standards. Embrittlement status is also evaluated against German and French nuclear safety standards. Results from previous fracture toughness and Charpy tests are investigated by means of the Master curve toughness transition approach. Finally, state of the art insights are investigated by means of literature research. Regarding the embrittlement status of the reactor pressure vessel of Borssele nuclear power plant it is concluded that there is a profound basis for the current license up to the original end of the design life in 2013. The embrittlement temperature changes only slightly with respect to the acceptance criterion adopted postulating further operation up to 2033. Continued safe operation and further lifetime extension are therefore not restricted by reactor pressure vessel embrittlement

  5. Japan's New Sunshine Project. 1998 Annual summary of hydrogen energy R and D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Summarized herein are the reports on R and D efforts on hydrogen energy, as part of the FY 1998 New Sunshine Project. For production of hydrogen, characteristics related to transport number were investigated for steam electrolysis at high temperature, in which a sintered ceramic powder was used as the electrolyte and the cell was equipped with platinum electrodes. For utilization of hydrogen, energy conversion techniques were investigated using hydrogen occluding alloys for testing methods for alloy microstructures and hydrogenation characteristics, and preparation of and performance testing methods for the cathodes charged with the aid of hydrogen gas. For analysis/assessment for development of hydrogen-related techniques, the investigated items included water electrolysis with solid polymer electrolytes, hydrogen transport techniques using metal hydrides, hydrogen storing techniques using metal hydrides, hydrogen engines, and techniques for preventing hydrogen embrittlement. Analysis/assessment for development of hydrogen turbines was also investigated as one of the 12 R and D themes reported herein. (NEDO)

  6. The strengthening of embrittled books using gamma radiation

    International Nuclear Information System (INIS)

    Egan, A.; Mardian, J.; Foot, M.; King, E.; Millington, A.; Nevin, M.; Butler, C.; Barker, J.; Fletcher, D.

    1995-01-01

    The embrittlement of papers, manufactured through processes introduced in the mid-19th century, has caused many millions of books to become fragile, even to the point of being unusable. During the 1980s the British Library funded a research programme, carried out at the University of Surrey, to develop a technology which could be used to treat brittle books on a large scale, with the goal of greatly extending their useful life. The process developed, known as graft co-polymerization, involves three stages: i) application of a cocktail of monomers to the book's pages; ii) equilibration of these monomers throughout the text block; and iii) a low, slow dose of γ-radiation to effect polymerization. In collaboration with the British Library, Nordion International has designed a full-scale book-strengthening plant capable of processing between 200,000 and 500,000 and 500,000 books per year, with estimated prices to customers in the region of 1 8-10 per volume (US $12-16). In order to test the equipment and procedures that would be involved in such a plant, pilot-scale equipment has been designed and assembled on the premises of Isotron plc, where use is made of a conventional irradiator. This paper gives details of the graft co-polymerization process, and some results of the pilot-scale work, in terms of both efficacy and controllability. It also discusses the technical and economic feasibility of building and running a full-scale plant. (author)

  7. A study on the environmental aspects of hydrogen pathways in Korea

    International Nuclear Information System (INIS)

    Lee, Ji-Yong; Yu, Moo-Sang; Cha, Kyoung-Hoon; Lee, Soo-Yeon; Hur, Tak; Lim, Tae Won

    2009-01-01

    In this study, the environmental aspects of H 2 pathways are analyzed according to plausible H 2 production methods, production capacity, and distribution options in Korea, using life cycle assessment (LCA) methodology. The target H 2 pathways analyzed are H 2 via naphtha steam reforming (Naphtha SR), H 2 via natural gas steam reforming (NG SR), H 2 via liquefied petroleum gas steam reforming (LPG SR), H 2 via water electrolysis with wind power (WE[Wind]), and H 2 via water electrolysis with Korea electricity mix (WE[KEM]). The results are then compared with those of conventional fuels (gasoline, diesel, and LPG) to identify which H 2 pathway has less environmental impact than the conventional fuels. Global warming (GW) impact, fossil fuel consumption (FFC) and regulated air emissions are studied to examine the environmental aspects of each fuel pathway. Given that H 2 technologies and infrastructures have yet to be fully commercialized, the environmental aspects of each pathway are analyzed in both their present status and a future scenario in 2015. LCA results show that WE[Wind] is superior regarding global warming potential (GWP), FFC and regulated air emissions. When gasoline is replaced with H 2 from WE[Wind], 99.8% and 99.9% of GWP and FFC can be reduced, respectively. Among the H 2 pathways based on fossil fuels, Naphtha SR[C] has the lowest values of GWP since the CO 2 capture equipment is attached to it. On the other hand, Naphtha SR[S] which is the station-type H 2 pathway does not have the CO 2 capture equipment. Naphtha SR[C] can reduce CO 2 emissions by 23.60 tons compared to gasoline over the entire life cycle of a vehicle. At present, Naphtha SR[C] appears to be environmentally efficient as H 2 conversion and infrastructure technologies have already been commercialized and are suitably developed in Korea. In 2015, however, among the H 2 pathways based on fossil fuels LPG SR[S] is expected to be the best pathway in terms of FFC and regulated air

  8. Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mangolini, Filippo [Univ. of Texas, Austin, TX (United States); Krick, Brandon A. [Lehigh Univ., Bethlehem, PA (United States); Jacobs, Tevis D. B. [Univ. of Pittsburgh, PA (United States); Khanal, Subarna R. [Univ. of Pittsburgh, PA (United States); Streller, Frank [Univ. of Pennsylvania, Philadelphia, PA (United States); McClimon, J. Brandon [Univ. of Pennsylvania, Philadelphia, PA (United States); Hilbert, James [Univ. of Pennsylvania, Philadelphia, PA (United States); Prasad, Somuri V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scharf, Thomas W. [Univ. of North Texas, Denton, TX (United States); Ohlhausen, James A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lukes, Jennifer R. [Univ. of Pennsylvania, Philadelphia, PA (United States); Sawyer, W. Gregory [Univ. of Florida, Gainesville, FL (United States); Carpick, Robert W. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2018-04-01

    Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has been inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. In conclusion, these findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H.

  9. Irradiation embrittlement of reactor pressure vessel steels: Considerations for thermal annealing

    International Nuclear Information System (INIS)

    Burke, M.G.; Freyer, P.D.; Mager, T.R.

    1993-01-01

    In this paper, an overview of the irradiation embrittlement phenomenon is presented from a structure-properties viewpoint. Effects of irradiation conditions on embrittlement are first reviewed: irradiation temperature, fluence, flux, and steel or alloy composition. Then, the techniques for identifying/characterizing the irradiation-induced microstructural features are described: TEM/STEM (electron microscopy), small angle neutron scattering, atom probe field-ion microscopy, positron annihilation lifetime spectroscopy. Mechanisms of hardening and embrittlement generally consist of a ''precipitation-type'' and a ''damage-type'' component and the potential of annealing treatments for restoring the most of the original pressure vessel material toughness is examined; its conditions and mechanisms involved are discussed. Feasibility and economic evaluation of annealing costs is also carried out. 90 refs., 4 figs

  10. Metal induced embrittlement. Annual report, [March 1, 1987--February 29, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hoagland, R.G.

    1988-11-01

    This program is investigating the causes of embrittlement that occur in certain solid metals when exposed to liquid metals. The degree of embrittlement varies enormously among different solid/liquid pairs as witness, for example, the modest loss of load carrying, ability induced in carbon steels by Pb or the profound embrittlment of aluminum (particularly high strength) alloys by Hg and Ga. The structure of this study involves two types of activities: an experimental fracture mechanics study of the behavior of certain solid metals in liquid metals, and a theoretical study on an atomic scale of the crack tip deformation and extension behavior by means of atomistic simulation. This research, which began March 1, 1987, has completed its 20 month. A brief synopsis is given of performance in each of the areas of activity during the past year.

  11. Technical note: irradiation embrittlement of pressure vessel steels, analysis of the IAEA coordinated program results

    International Nuclear Information System (INIS)

    Hammad, F.H.; Ghoneim, M.M.; Abou-Zahra, A.

    1985-01-01

    The embrittlement of certain steels as the result of neutron irradiation has significance for evaluating the risks associated with pressurized thermal shock and other possible pressure vessel failure mechanisms, especially in the heat-affected zones of welds of older pressure vessels. A knowledge of the degree of embrittlement associated with a given integral fluence, usually expressed as an increase in the ductile-brittle transition temperature, is therefore needed to estimate the service life of pressure vessels subject to such embrittlement. This Technical Note describes a reanalysis of the results of the International Atomic Energy Agency coordinated program to measure this effect, which succeeded in explaining and reducing the very large degree of scatter in the results originally obtained in the measurements

  12. Microstructural design of PCA austenitic stainless steel for improved resistance to helium embrittlement under HFIR irradiation

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Braski, D.N.

    1983-01-01

    Several variants of Prime Candidate Alloy (PCA) with different preirradiation thermal-mechanical treatments were irradiated in HFIR and were evaluated for embrittlement resistance via disk-bend tensile testing. Comparison tests were made on two heats of 20%-cold-worked type 316 stainless steel. None of the alloys were brittle after irradiation at 300 to 400 0 C to approx. 44 dpa and helium levels of 3000 to approx.3600 at. ppm. However, all were quite brittle after similar exposure at 600 0 C. Embrittlement varied with alloy and pretreatment for irradiation to 44 dpa at 500 0 C and to 22 dpa at 600 0 C. Better relative embrittlement resistance among PCA variants was found in alloys which contained prior grain boundary MC carbide particles that remained stable under irradiation

  13. Evaluation of temper embrittlement of martensitic and ferritic-martensitic steels by acoustic emission

    International Nuclear Information System (INIS)

    Lu, Yusho; Takahashi, Hideaki; Shoji, Tetsuo

    1987-01-01

    Martensitic (HT-9) and ferritic-martensitic steels (9Cr-2Mo) are considered as fusion first wall materials. In this investigation in order to understand the sensitivity of temper embrittlement in these steels under actual service condition, fracture toughness testing was made by use of acoustic emission technique. The temper embrittlement was characterized in terms of fracture toughness. The fracture toughness of these steels under 500 deg C, 100 hrs, and 1000 hrs heat treatment was decreased and their changes in micro-fracture process have been observed. The fracture toughness changes by temper embrittlement was discussed by the characteristic of AE, AE spectrum analysis and fractographic investigation. The relation between micro-fracture processes and AE has been clarified. (author)

  14. Radiation embrittlement of WWER 440 pressure vessel steel and of some improved steels by western producers

    International Nuclear Information System (INIS)

    Koutsky, J.; Vacek, M.; Stoces, B.; Pav, T.; Otruba, J.; Novosad, P.; Brumovsky, M.

    1982-01-01

    The resistance was studied of Cr-Mo-V type steel 15Kh2MFA to radiation embrittlement at an irradiation temperature of around 288 degC. Studied was the steel used for the manufacture of the pressure vessel of the Paks nuclear reactor in Hungary. The obtained results of radiation embrittlement and hardening of steel 15Kh2MFA were compared with similar values of Mn-Ni-Mo type steels A 533-B and A 508 manufactured by leading western manufacturers within the international research programme coordinated by the IAEA. It was found that the resistance of steel 15Kh2MFA to radiation embrittlement is comparable with steels A 533-B and A 508 by western manufacturers. (author)

  15. Effects of hydrogen on carbon steels at the Multi-Function Waste Tank Facility

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1995-01-01

    Concern has been expressed that hydrogen produced by corrosion, radiolysis, and decomposition of the waste could cause embrittlement of the carbon steel waste tanks at Hanford. The concern centers on the supposition that the hydrogen evolved in many of the existing tanks might penetrate the steel wall of the tank and cause embrittlement that might lead to catastrophic failure. This document reviews literature on the effects of hydrogen on the carbon steel proposed for use in the Multi-Function Waste Tank Facility for the time periods before and during construction as well as for the operational life of the tanks. The document draws several conclusions about these effects. Molecular hydrogen is not a concern because it is not capable of entering the steel tank wall. Nascent hydrogen produced by corrosion reactions will not embrittle the steel because the mild steel used in tank construction is not hard enough to be susceptible to hydrogen stress cracking and the corrosion product hydrogen is not produced at a rate sufficient to cause either loss in tensile ductility or blistering. If the steel intended for use in the tanks is produced to current technology, fabricated in accordance with good construction practice, postweld heat treated, and operated within the operating limits defined, hydrogen will not adversely affect the carbon steel tanks during their 50-year design life. 26 refs

  16. Plasmas for environmental issues: from hydrogen production to 2D materials assembly

    Science.gov (United States)

    Tatarova, E.; Bundaleska, N.; Sarrette, J. Ph; Ferreira, C. M.

    2014-12-01

    It is well recognized at present that the unique, high energy density plasma environment provides suitable conditions to dissociate/atomize molecules in remediation systems, to convert waste and biomass into sustainable energy sources, to purify water, to assemble nanostructures, etc. The remarkable plasma potential is based on its ability to supply simultaneously high fluxes of charged particles, chemically active molecules, radicals (e.g. O, H, OH), heat, highly energetic photons (UV and extreme UV radiation), and strong electric fields in intrinsic sheath domains. Due to this complexity, low-temperature plasma science and engineering is a huge, highly interdisciplinary field that spans many research disciplines and applications across many areas of our daily life and industrial activities. For this reason, this review deals only with some selected aspects of low-temperature plasma applications for a clean and sustainable environment. It is not intended to be a comprehensive survey, but just to highlight some important works and achievements in specific areas. The selected issues demonstrate the diversity of plasma-based applications associated with clean and sustainable ambiance and also show the unity of the underlying science. Fundamental plasma phenomena/processes/features are the common fibers that pass across all these areas and unify all these applications. Browsing through different topics, we try to emphasize these phenomena/processes/features and their uniqueness in an attempt to build a general overview. The presented survey of recently published works demonstrates that plasma processes show a significant potential as a solution for waste/biomass-to-energy recovery problems. The reforming technologies based on non-thermal plasma treatment of hydrocarbons show promising prospects for the production of hydrogen as a future clean energy carrier. It is also shown that plasmas can provide numerous agents that influence biological activity. The simultaneous

  17. Evaluation of the Relative Hydrogen Embrittlement Susceptibility of ESR 4340 and Its Heat Treat Distortion Properties

    Science.gov (United States)

    1982-09-01

    Round Tensile Strength of Nine Conditions Tested A = = 4340 Air Melt, MIL-S-5000 H > 4340 ESR, HP 18-10...0437 .0012 .0230 .0218 13 .0003 .0250 .0247 .0001 .0400 .0399 .0001 .0301 .0300 14 .0001 .0305 .0304 .0003 .0410 .0407 .0011 . 0235 .0274 15 .0007

  18. Stress-Corrosion Cracking of Metallic Materials. Part III. Hydrogen Entry and Embrittlement in Steel

    Science.gov (United States)

    1975-04-01

    steels were by A. R. Troianc, as sm marized in the 1959 Campbell Memorial Le ,’turef2 "Similar delayed failure studies were conducted by Bastein et al...OMLr󈧘- eaZoR ý 5%HTCl 75 TACL T C Y 3’~~0K20% MTC ma 40%0&ILD 3W0 M MIEL 00% t4TC (OUENCNED AND 20% WALD rLh VPfRZCDJ /[Rj GjY EErrfOAr Pr 200o 400...moisture content up to a 73 cii . | - " - I- , I ’ ’ 1 I 00 0 H2 0o0 00 00 o Oe 2 • 𔃽 0 00 0 ASI 4340 STEEL o 0 ENS/ LE STRENGTH- 302,000psi 0 SPECIMEN I

  19. Reduction of helium embrittlement in stainless steel by finely dispersed TiC precipitates

    International Nuclear Information System (INIS)

    Kesternich, W.; Rothaut, J.

    1982-01-01

    The He embrittlement effects in two candidate stainless steels for first wall of fusion reactors were studied in creep tests at 700 0 C simulating the He production by He implantation. Creep rupture life before He implantation and reduction of rupture life due to He were superior by orders of magnitude in 1.4970 steel after pertinent pretreatment compared to 316 steel. The high strength and the low He embrittlement result from a fine dispersion of TiC precipitates in the grain interiors. From microstructural investigations a mechanism explaining the high sink efficiency of TiC for He atom accumulation is suggested. (orig.)

  20. Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening

    International Nuclear Information System (INIS)

    Lu Guanghong; Zhang Ying; Deng Shenghua; Wang Tianmin; Kohyama, Masanori; Yamamoto, Ryoichi; Liu Feng; Horikawa, Keitaro; Kanno, Motohiro

    2006-01-01

    Using a first-principles computational tensile test, we show that the ideal tensile strength of an Al grain boundary (GB) is reduced with both Na and Ca GB segregation. We demonstrate that the fracture occurs in the GB interface, dominated by the break of the interfacial bonds. Experimentally, we further show that the presence of Na or Ca impurity, which causes intergranular fracture, reduces the ultimate tensile strength when embrittlement occurs. These results suggest that the Na/Ca-induced intergranular embrittlement of an Al alloy originates mainly from the GB weakening due to the Na/Ca segregation

  1. Method and apparatus for using magneto-acoustic remanence to determine embrittlement

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Namkung, Min (Inventor); Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1992-01-01

    A method and apparatus for testing steel components for temperature embrittlement uses magneto-acoustic emission to nondestructively evaluate the component are presented. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an AC current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be unembrittled and a test component. Magnetic remanence is determined by applying a DC current to the electromagnets and then by turning the magnets off and observing the residual magnetic induction.

  2. Influence of structural parameters on the tendency of VVER-1000 reactor pressure vessel steel to temper embrittlement

    Science.gov (United States)

    Gurovich, B.; Kuleshova, E.; Zabusov, O.; Fedotova, S.; Frolov, A.; Saltykov, M.; Maltsev, D.

    2013-04-01

    In this paper the influence of structural parameters on the tendency of steels to reversible temper embrittlement was studied for assessment of performance properties of reactor pressure vessel steels with extended service life. It is shown that the growth of prior austenite grain size leads to an increase of the critical embrittlement temperature in the initial state. An embrittlement heat treatment at the temperature of maximum manifestation of temper embrittlement (480 °C) shifts critical embrittlement temperature to higher values due to the increase of the phosphorus concentration on grain boundaries. There is a correlation between phosphorus concentration on boundaries of primary austenite grains and the share of brittle intergranular fracture (that, in turn, depends on impact test temperature) in the fracture surfaces of the tested Charpy specimens.

  3. Measuring the distribution of equity in terms of energy, environmental, and economic costs in the fuel cycles of alternative fuel vehicles with hydrogen pathway scenarios

    Science.gov (United States)

    Meyer, Patrick E.

    Numerous analyses exist which examine the energy, environmental, and economic tradeoffs between conventional gasoline vehicles and hydrogen fuel cell vehicles powered by hydrogen produced from a variety of sources. These analyses are commonly referred to as "E3" analyses because of their inclusion of Energy, Environmental, and Economic indicators. Recent research as sought a means to incorporate social Equity into E3 analyses, thus producing an "E4" analysis. However, E4 analyses in the realm of energy policy are uncommon, and in the realm of alternative transportation fuels, E4 analyses are extremely rare. This dissertation discusses the creation of a novel E4 simulation tool usable to weigh energy, environmental, economic, and equity trade-offs between conventional gasoline vehicles and alternative fuel vehicles, with specific application to hydrogen fuel cell vehicles. The model, dubbed the F uel Life-cycle Analysis of Solar Hydrogen -- Energy, Environment, Economic & Equity model, or FLASH-E4, is a total fuel-cycle model that combines energy, environmental, and economic analysis methodologies with the addition of an equity analysis component. The model is capable of providing results regarding total fuel-cycle energy consumption, emissions production, energy and environmental cost, and level of social equity within a population in which low-income drivers use CGV technology and high-income drivers use a number of advanced hydrogen FCV technologies. Using theories of equity and social indicators conceptually embodied in the Lorenz Curve and Gini Index, the equity of the distribution of societal energy and environmental costs are measured for a population in which some drivers use CGVs and other drivers use FCVs. It is found, based on baseline input data representative of the United States (US), that the distribution of energy and environmental costs in a population in which some drivers use CGVs and other drivers use natural gas-based hydrogen FCVs can be

  4. Role of hydrogen in the intergranular cracking mechanism by stress corrosion in primary medium of nickel based alloys 600 and 690; Role de l'hydrogene dans le mecanisme de fissuration intergranulaire par corrosion sous contrainte en milieu primaire des alliages base nickel 600, 690

    Energy Technology Data Exchange (ETDEWEB)

    Odemer, G.; Coudurier, A.; Jambon, F.; Chene, J. [CEA Saclay, Dept. de Physico-Chimie (DEN/DANS/DPC/SCCME/LECA), 91 - Gif sur Yvette (France); Odemer, G.; Coudurier, A.; Chene, J. [Evry Univ., UMR 8587 CNRS / CEA, LAMBE, 91 (France)

    2007-07-01

    The aim of this work is to characterize the sensitivity to hydrogen embrittlement of alloys 600 and 690 in order to better understand the eventual role of hydrogen in the stress corrosion mechanism which affects these alloys when they are exposed in PWR primary medium. (O.M.)

  5. Agglomeration Versus Localization Of Hydrogen In BCC Fe Vacancies

    International Nuclear Information System (INIS)

    Simonetti, S.; Juan, A.; Brizuela, G.; Simonetti, S.

    2006-01-01

    Severe embrittlement can be produced in many metals by small amounts of hydrogen. The interactions of hydrogen with lattice imperfections are important and often dominant in determining the influence of this impurity on the properties of solids. The interaction between four-hydrogen atoms and a BCC Fe structure having a vacancy has been studied using a cluster model and a semiempirical method. For a study of sequential absorption, the hydrogen atoms were positioned in their energy minima configurations, near to the tetrahedral sites neighbouring the vacancy. VH 2 and VH 3 complexes are energetically the most stables in BCC Fe. The studies about the stability of the hydrogen agglomeration gave as a result that the accumulation is unfavourable in complex vacancy-hydrogen with more than three atoms of hydrogen. (authors)

  6. Damage process of high purity tungsten coatings by hydrogen beam heat loads

    International Nuclear Information System (INIS)

    Tamura, S.; Tokunaga, K.; Yoshida, N.; Taniguchi, M.; Ezato, K.; Sato, K.; Suzuki, S.; Akiba, M.; Tsunekawa, Y.; Okumiya, M.

    2005-01-01

    To investigate the synergistic effects of heat load and hydrogen irradiation, cyclic heat load tests with a hydrogen beam and a comparable electron beam were performed for high purity CVD-tungsten coatings. Surface modification was examined as a function of the peak temperature by changing the heat flux. Scanning Electron Microscopy analysis showed that the surface damage caused by the hydrogen beam was more severe than that by the electron beam. In the hydrogen beam case, cracking at the surface occurred at all peak temperatures examined from 300 deg. C to 1600 deg. C. These results indicate that the injected hydrogen induces embrittlement for the CVD-tungsten coating

  7. Evaluation of Environmentally Assisted Cracking of Armour Wires in Flexible Pipes, Power Cables and Umbilicals

    Science.gov (United States)

    Zhang, Zhiying

    Environmentally assisted cracking (EAC) of armour wires in flexible pipes, power cables and umbilicals is a major concern with the development of oil and gas fields and wind farms in harsh environments. Hydrogen induced cracking (HIC) or hydrogen embrittlement (HE) of steel armour wires used in deep-water and ultra-deep-water has been evaluated. Simulated tests have been carried out in simulated sea water, under conditions where the susceptibility is the highest, i.e. at room temperature, at the maximum negative cathodic potential and at the maximum stress level expected in service for 150 hours. Examinations of the tested specimens have not revealed cracking or blistering, and measurement of hydrogen content has confirmed hydrogen charging. In addition, sulphide stress cracking (SSC) and chloride stress cracking (CSC) of nickel-based alloy armour wires used in harsh down-hole environments has been evaluated. Simulated tests have been carried out in simulated solution containing high concentration of chloride, with high hydrogen sulphide partial pressure, at high stress level and at 120 °C for 720 hours. Examinations of the tested specimens have not revealed cracking or blistering. Subsequent tensile tests of the tested specimens at ambient pressure and temperature have revealed properties similar to the as-received specimens.

  8. Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and ``quasi-cleavage'' fracture of lath martensitic steels

    Science.gov (United States)

    Nagao, Akihide; Dadfarnia, Mohsen; Somerday, Brian P.; Sofronis, Petros; Ritchie, Robert O.

    2018-03-01

    Hydrogen embrittlement of lath martenistic steels is characterized by intergranular and "quasi-cleavage" transgranular fracture. Recent transmission electron microscopy (TEM) analyses (Nagao et al., 2012a, 2014a, 2014b, 2014c) of samples lifted from beneath fracture surfaces through focused ion beam machining (FIB) revealed a failure mechanism that can be termed hydrogen-enhanced-plasticity mediated decohesion. Fracture occurs by the synergistic action of the hydrogen-enhanced localized plasticity and decohesion. In particular, intergranular cracking takes place by dislocation pile-ups impinging on prior austenite grain boundaries and "quasi-cleavage" is the case when dislocation pile-ups impinge on block boundaries. These high-angle boundaries, which have already weakened by the presence of hydrogen, debond by the pile-up stresses. The micromechanical model of Novak et al. (2010) is used to quantitatively describe and predict the hydrogen-induced failure of these steels. The model predictions verify that introduction of nanosized (Ti,Mo)C precipitates in the steel microstructure enhances the resistance to hydrogen embrittlement. The results are used to discuss microstructural designs that are less susceptible to hydrogen-induced failure in systems with fixed hydrogen content (closed systems).

  9. The Effect of Hydrogen on the Mechanical Properties of Cast Irons and ADI with Various Carbon Equivalent and Graphite Morphology

    International Nuclear Information System (INIS)

    Cho, Yong Gi; Lee, Kyung Sub

    1989-01-01

    The effect of hydrogen on the mechanical properties of cast irons, flake, CV graphite cast iron ductile iron and ADI have been investigated. The effects of various carbon equivalent, graphite morphology and matrix have been analyzed to determine the predominant factor which influences on the hydrogen embrittlement. The effect of various carbon equivalent on the embrittlement was little in the similar graphite morphology. The embrittlement of ferrite matrix changed by heat treatment was less than that of pearlite matrix. In the case of ADI, the tendency of hydrogen embrittlement of lower bainite matrix was less remarkable than that of upper banite matrix. As the result of hydrogen charging, the tendency of interface decohesion between matrix-graphite was increased in flake G.C.I., and the trend from ductile fracture mode to brittle fracture mode was observed in CV G.C.I and ductile iron. Lower bainite in ADI showed the ductile fracture mode. Hydrogen solubility of lower bainite was higher than that of upper bainite

  10. An internal-friction study of reactor-pressure-vessel steel embrittlement

    International Nuclear Information System (INIS)

    Ouytsel, K. van; Fabry, A.; Batist, R. de; Schaller, R.

    1997-01-01

    Within an enhanced commercial surveillance strategy, the nuclear-research institute SCK.CEN in Mol, Belgium is investigating, by means of internal friction, the microstructural processes responsible for embrittlement of pressure-vessel steels. The experiments were carried out using a torsion pendulum at the Ecole Polytechnique Federale de Lausanne in Switzerland. Amplitude-independent internal-friction experiments teach us that neutron irradiation induces defects which interact with mobile dislocations. Thermal ageing of JRQ and Doel-IV steel does not cause major embrittlement effects. Amplitude-dependent internal-friction experiments allow us to determine a critical amplitude which corresponds to the yield stress of the material as obtained from static tensile tests. The results also correspond to a three-component model for the yield strength taking into account both hardening and non-hardening embrittlement. Investigations of Doel-I-II weld material in different conditions reveal that embrittlement due to irradiation or thermal ageing can be interpreted in terms of a fine interplay between long- and short-range phenomena. (author)

  11. Effect of solute interaction on interfacial and grain boundary embrittlement in binary alloys

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel

    2013-01-01

    Roč. 48, č. 6 (2013), 2574-2580 ISSN 0022-2461 R&D Projects: GA ČR GAP108/12/0144 Institutional research plan: CEZ:AV0Z10100520 Keywords : interfacial segregation * grain boundary embrittlement * binary interaction * modeling * thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.305, year: 2013

  12. Correlating radiation exposure with embrittlement: Comparative studies of electron- and neutron-irradiated pressure vessel alloys

    International Nuclear Information System (INIS)

    Alexander, D. E.; Rehn, L. E.; Odette, G. R.; Lucas, G. E.; Klingensmith, D.; Gragg, D.

    1999-01-01

    Comparative experiments using high energy (10 MeV) electrons and test reactor neutrons have been undertaken to understand the role that primary damage state has on hardening (embrittlement) induced by irradiation at 300 C. Electrons produce displacement damage primarily by low energy atomic recoils, while fast neutrons produce displacements from considerably higher energy recoils. Comparison of changes resulting from neutron irradiation, in which nascent point defect clusters can form in dense cascades, with electron irradiation, where cascade formation is minimized, can provide insight into the role that the in-cascade point defect clusters have on the mechanisms of embrittlement. Tensile property changes induced by 10 MeV electrons or test reactor neutron irradiations of unalloyed iron and an Fe-O.9 wt.% Cu-1.0 wt.% Mn alloy were examined in the damage range of 9.0 x 10 -5 dpa to 1.5 x 10 -2 dpa. The results show the ternary alloy experienced substantially greater embrittlement in both the electron and neutron irradiate samples relative to unalloyed iron. Despite their disparate nature of defect production similar embrittlement trends with increasing radiation damage were observed for electrons and neutrons in both the ternary and unalloyed iron

  13. Helium embrittlement model and program plan for weldability of ITER materials

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Kanne, W.R. Jr.; Tosten, M.H.; Rankin, D.T.; Cross, B.J.

    1997-02-01

    This report presents a refined model of how helium embrittles irradiated stainless steel during welding. The model was developed based on experimental observations drawn from experience at the Savannah River Site and from an extensive literature search. The model shows how helium content, stress, and temperature interact to produce embrittlement. The model takes into account defect structure, time, and gradients in stress, temperature and composition. The report also proposes an experimental program based on the refined helium embrittlement model. A parametric study of the effect of initial defect density on the resulting helium bubble distribution and weldability of tritium aged material is proposed to demonstrate the roll that defects play in embrittlement. This study should include samples charged using vastly different aging times to obtain equivalent helium contents. Additionally, studies to establish the minimal sample thickness and size are needed for extrapolation to real structural materials. The results of these studies should provide a technical basis for the use of tritium aged materials to predict the weldability of irradiated structures. Use of tritium charged and aged material would provide a cost effective approach to developing weld repair techniques for ITER components

  14. Influence of physical aging on impact embrittlement of uPVC pipes

    NARCIS (Netherlands)

    Visser, Roy; Bor, Teunis Cornelis; Wolters, Mannes; Warnet, Laurent; Govaert, L.E.

    2011-01-01

    Most failures of unplasticised poly(vinyl chloride) (uPVC) pipes used in the Dutch gas distribution network originate from third party damage. Brittle pipes should therefore be replaced to ensure safe operation of the network. In this study, the relation between physical aging and embrittlement of

  15. Oak Ridge National Laboratory Embrittlement Data Base (EDB) and Dosimetry Evaluation (DE) program

    International Nuclear Information System (INIS)

    Pace, J.V. III; Remec, I.; Wang, J.A.; White, J.E.

    1996-01-01

    The objective of this program is to develop, maintain, and upgrade computerized data bases, calculational procedures, and standards relating to reactor pressure vessel fluence spectra determinations and embrittlement assessments. As part of this program, the information from radiation embrittlement research on nuclear reactor pressure vessel steels and from power reactor surveillance reports is maintained in a data base published on a periodic basis. The Embrittlement Data Base (EDB) effort consists of verifying the quality of the EDB, providing user-friendly software to access and process the data, and exploring and assessing embrittlement prediction models. The Dosimetry Evaluation effort consists of maintaining and upgrading validated neutron and gamma radiation transport procedures, maintaining cross-section libraries with the latest evaluated nuclear data, and maintaining and updating validated dosimetry procedures and data bases. The information available from this program provides data for assisting the Office of Nuclear Reactor Regulation, with support from the Office of Nuclear Regulatory Research, to effectively monitor current procedures and data bases used by vendors, utilities, and service laboratories in the pressure vessel irradiation surveillance program

  16. Effect of microstructure on the susceptibility of a 533 steel to temper embrittlement

    Science.gov (United States)

    Raoul, S.; Marini, B.; Pineau, A.

    1998-11-01

    In ferritic steels, brittle fracture usually occurs at low temperature by cleavage. However the segregation of impurities (P, As, Sn etc...) along prior γ grain boundaries can change the brittle fracture mode from transgranular to intergranular. In quenched and tempered steels, this segregation is associated with what is called the temper-embrittlement phenomenon. The main objective of the present study is to investigate the influence of the as-quenched microstructure (lower bainite or martensite) on the susceptibility of a low alloy steel (A533 cl.1) to temper-embrittlement. Dilatometric tests were performed to determine the continous-cooling-transformation (CCT) diagram of the material and to measure the critical cooling rate ( Vc) for a martensitic quench. Then subsized Charpy V-notched specimens were given various cooling rates from the austenitization temperature to obtain a wide range of as-quenched microstructures, including martensite and bainite. These specimens were subsequently given a heat treatment to develop temper embrittlement and tested to measure the V-notch fracture toughness at -50°C. The fracture surfaces were examined by SEM. It is shown that martensitic microstructures are more susceptible to intergranular embrittlement than bainitic microstructures. These observed microstructural influences are briefly discussed.

  17. Effect of microstructure on the susceptibility of a 533 steel to temper embrittlement

    International Nuclear Information System (INIS)

    Raoul, S.; Marini, B.; Pineau, A.

    1998-01-01

    In ferritic steels, brittle fracture usually occurs at low temperature by cleavage. However the segregation of impurities (P, As, Sn etc..) along prior γ grain boundaries can change the brittle fracture mode from transgranular to intergranular. In quenched and tempered steels, this segregation is associated with what is called the temper-embrittlement phenomenon. The main objective of the present study is to investigate the influence of the as-quenched microstructure (lower bainite or martensite) on the susceptibility of a low alloy steel (A533 cl.1) to temper-embrittlement. Dilatometric tests were performed to determine the continous-cooling-transformation (CCT) diagram of the material and to measure the critical cooling rate (V c ) for a martensitic quench. Then subsized Charpy V-notched specimens were given various cooling rates from the austenitization temperature to obtain a wide range of as-quenched microstructures, including martensite and bainite. These specimens were subsequently given a heat treatment to develop temper embrittlement and tested to measure the V-notch fracture toughness at -50 C. The fracture surfaces were examined by SEM. It is shown that martensitic microstructures are more susceptible to intergranular embrittlement than bainitic microstructures. These observed microstructural influences are briefly discussed. (orig.)

  18. Embrittlement of the nuclear icebreaker Lenin reactor pressure vessel materials reconstruction

    International Nuclear Information System (INIS)

    Krasikov, E.A.; Nikolaenko, V.A.

    2008-01-01

    Paper deals with the results of the efforts to examine the radiation damage of the Lenin nuclear-powered ice-breaker decommissioned reactor pressure vessel on the basis of which one has determined the peculiar features of the metal radiation embrittlement. Under 10 10 -10 11 s -1 cm -2 low density neutron flux irradiation one notes the most intensive embrittlement of the metal. Then, as the noxious element content in the metal matrix grows smaller the embrittlement reduces up to the change of sign as to the normal curve plotted at the neutron flux density exceeding 10 13 s -1 cm -2 . One assumes that as a result of the low density neutron flux irradiation the reactor pressure vessel edge spaces at some operation stages may be damaged more severely in contrast to these near the reactor core. The neutron irradiation density is the factor affecting the reactor vessel material embrittlement, that is why, it is important to study the damage mechanism of the materials of the power reactor vessels under design characterized by the low radiation load. The mentioned is important, as well, to evaluate the efficiency of the efforts undertaken to mitigate the effect of the neutron radiation on the reactor vessel [ru

  19. Influence of a cyclic load on the embrittlement kinetics of alloys by the example of the 475 C embrittlement of duplex steel and the dynamic embrittlement of a nickel base alloy; Einfluss einer zyklischen Belastung auf die Versproedungskinetik von Legierungen am Beispiel der 475 C-Versproedung von Duplexstahl und der dynamischen Versproedung einer Nickelbasislegierung

    Energy Technology Data Exchange (ETDEWEB)

    Wackermann, Ken

    2015-07-07

    The objective of this study was to investigate the dependence of high temperature embrittlement mechanisms on high temperature fatigue and vice versa. As model embrittlement mechanisms the 475 C Embrittlement of ferritic austenitic duplex stainless steel (1.4462) and the Dynamic Embrittlement of nickel-based superalloys (IN718) were selected. The 475 C Embrittlement is a thermally activated decomposition of the ferritic phase which hardens the material. In contrast to this a cyclic plastic deformation weakens the steel by a deformation-induced dissolution of the decomposition. Fatigue tests with different frequencies, loading amplitudes at room temperature and at 475 C with Duplex Stainless Steel in different states of embrittlement show that the ongoing 475 C Embrittlement and the deformation-induced dissolution are competing mechanisms. It depends on the frequency, the loading amplitude and the temperature which mechanism is dominant. Applying the model of the yield stress distribution function to the hysteresis branches of the fatigue tests allows an analysis of the fatigue behaviour of each phase individually. This analysis shows that the global fatigue behaviour for the test conditions applied in this study is mainly controlled by the ferritic phase. According to the existing understanding of Dynamic Embrittlement it is an oxygen grain boundary diffusion arising by tensile stress at elevated temperatures with the result of a fast intercrystalline crack propagation. In reference tests under vacuum conditions without oxygen grain boundary diffusion, a slow transcrystalline fracture appears. To analyse the Dynamic Embrittlement, the crack propagation was tested at 650 C with different frequencies and superimposed hold times in the fatigue cycle at maximum stress. The results shows that the existing model of Dynamic Embrittlement needs to be adapted to the effects of cyclic plastic deformation. In hold times, the oxygen grain boundary diffusion in front of the

  20. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress

    International Nuclear Information System (INIS)

    Sablik, M.J.; Kwun, H.; Rollwitz, W.L.; Cadena, D.

    1992-01-01

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters

  1. Environmentally assisted cracking mechanisms in repository environments

    International Nuclear Information System (INIS)

    Mills, W.J.

    1987-02-01

    This paper assesses how environmentally assisted cracking (EAC) mechanisms in candidate container materials can be identified to enhance the accuracy of long-term projections of performance in the repository. In low and intermediate strength steels, the role of the two principal mechanisms, slip dissolution/film rupture (SD/FR) and hydrogen embrittlement (HE), is a very complex and controversial issue. No unanimity exists concerning the operative cracking mechanisms, and there is no unique or rigorous approach that would be persuasive in selecting an appropriate model. Both of the proposed mechanisms have common rate controlling processes such as surface adsorption rate, passivation rate, and oxidation rupture rate, which makes it difficult to identify the operative mechanism. Development of a quantitative model for predicting environmental effects for low-carbon steels in repository environments would provide a theoretical basis for assuring the long-term structural integrity of waste-package containment. To date, only one quantitative model has been developed. The agreement between predicted and observed behavior suggests that SD/FR processes control the environmental acceleration in crack growth rates for this class of materials. Deviations from predicted behavior due to HE effects should be uncovered experimentally. 59 refs., 4 figs., 4 tabs

  2. Why hydrogen; Pourquoi l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The energy consumption increase and the associated environmental risks, led to develop new energy sources. The authors present the potentialities of the hydrogen in this context of energy supply safety. They detail the today market and the perspectives, the energy sources for the hydrogen production (fossils, nuclear and renewable), the hydrogen transport, storage, distribution and conversion, the application domains, the associated risks. (A.L.B.)

  3. An internal friction peak caused by hydrogen in maraging steel

    International Nuclear Information System (INIS)

    Usui, Makoto; Asano, Shigeru

    1996-01-01

    Internal friction in hydrogen-charged iron and steel has so far been studied by a large number of investigators. For pure iron, a well-defined peak of internal friction has been observed under the cold-worked and hydrogen-charged conditions. This is called the hydrogen cold-work peak, or the Snoek-Koester relaxation, which originates from the hydrogen-dislocation interaction. In the present study, a high-strength maraging steel (Fe-18Ni-9Co-5Mo) was chosen as another high-alloy steel which is known to be very susceptible to hydrogen embrittlement. The purpose of this paper is to show a new internal friction peak caused by hydrogen in the maraging steel and to compare it with those found in stainless steels which have so far been studied as typical engineering high-alloy materials

  4. Transient hydrogen diffusion analyses coupled with crack-tip plasticity under cyclic loading

    International Nuclear Information System (INIS)

    Kotake, Hirokazu; Matsumoto, Ryosuke; Taketomi, Shinya; Miyazaki, Noriyuki

    2008-01-01

    The effect of hydrogen on the material strengths of metals is known as the hydrogen embrittlement, which affects the structural integrity of a hydrogen energy system. In the present paper, we developed a computer program for a transient hydrogen diffusion-elastoplastic coupling analysis by combining an in-house finite element program with a general purpose finite element computer program to analyze hydrogen diffusion. In this program, we use a hypothesis that the hydrogen absorbed in the metal affects the yield stress of the metal. In the present paper, we discuss the effects of the cyclic loading on the hydrogen concentration near the crack tip. An important finding we obtained here is the fact that the hydrogen concentration near the crack tip greatly depends on the loading frequency. This result indicates that the fatigue lives of the components in a hydrogen system depend not only on the number of loading cycles but also on the loading frequency

  5. Mechanical study of the sensitivity to the embrittlement of the T91 martensitic steel by liquid lead-bismuth

    International Nuclear Information System (INIS)

    Hamouche, Zehoua; Auger, Thierry; Guillot, Ivan; Zehoua Hamouche; Ivan Guillot

    2006-01-01

    The embrittlement effect of the liquid lead-bismuth eutectic on the T91 martensitic steel has been studied in carrying out tensile tests, with deformation velocities of 6.67*10 -5 to 6.67 mm.s -1 , on CCT (center cracked tension) tests specimens with and without PbBi. A fragile rupture, characterized by cracks looking like streams elongated on all the facies, indicates that the T91 is sensitive to the embrittlement by liquid metals, and more particularly embrittled by PbBi. This embrittlement effect is strengthened by low deformation velocities (∼10 -1 mm.s -1 ). In this transition range, there is a competition between the cupule cups growth and the cracking induces by the liquid metal. The hypothesis of dislocation emission, in crack tip, assisted by PbBi can be advanced to explain the observed facies. (O.M.)

  6. Liquid metal embrittlement of an austenitic 316L type and a ferritic martensitic T91 type steel by mercury

    Science.gov (United States)

    Medina-Almazán, L.; Auger, T.; Gorse, D.

    2008-06-01

    The susceptibility to liquid metal embrittlement (LME) of 316L and T91 steels by mercury has been studied at room temperature. A dedicated experimental device using center crack tension (CCT) specimens was built. We developed a specimen preparation procedure that must be rigorously applied in order to investigate the embrittling effect of Hg. The high strength ferritic-martensitic steel of type T91 is embrittled by Hg at room temperature over a large range of crosshead speeds, between 6.67 × 10 -7 and 6.67 × 10 -3 m s -1. More surprisingly, the austenitic steel of type 316L is also embrittled by Hg between 1.67 × 10 -8 and 2.5 × 10 -4 m s -1. The fracture of the T91 and 316L CCT specimens in contact with Hg occurs by shear band decohesion over the above-mentioned range of crosshead speeds.

  7. Hydrogen production by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Chaudhuri Surabhi

    2005-12-01

    Full Text Available Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical, Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  8. Temper embrittlement irradiation induced phosphorus segregation and implications for post-irradiation annealing of reactor pressure vessels

    International Nuclear Information System (INIS)

    McElroy, R.J.; English, C.A.; Foreman, A.J.; Gage, G.; Ray, P.H.N.; Vatter, I.A.; Hyde, J.M.

    1995-01-01

    The work described in this paper constituted a major theme within the UK contribution to the Phase 3 IAEA Reactor Pressure Vessel Embrittlement Coordinated Research Programme. The UK programme, in addition to covering the principal concerns of the IAEA in respect of toughness degradation by irradiation, reported elsewhere, also addressed additional UK concerns raised by the Marshall and Hirsh Reports, in particular the possible synergy between thermal ageing processes and irradiation embrittlement

  9. Environmental protection congress M-V. Use of regenerative energy sources and hydrogen technology 2010. Proceedings; Klimaschutzkongress M-V. Nutzung regenerativer Energiequellen und Wasserstofftechnik 2010. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Luschtinetz, Thomas; Lehmann, Jochen (eds.)

    2010-07-01

    Within the Environmental Protection Congress M-V from 4th to 6th November, 2010, in Stralsund (Federal Republic of Germany) the following lectures were held: (1) Conception for climate production in Stralsund (Matthias Ahlhaus); (2) Regenerative energies in the power land North Rhine Westfalia (Frank-Michael Baumann); (3) Heat storages - Supporting pillars of the comprehensive utilization of regenerative ideas (Juergen Buehl); (4) Logistics analysis of rice straw for power exploitations and potential green house gas mitigations - An example in Thailand (Mitra Kami Delivand); (5) The Heatpipe-Reformer registered - Development, start-up and testing (Andreas Dengel); (6) The ecological cost of the use of biomass of plants for energy production (Bohdan Deptula); (7) Hydrogen as fuel and energy storage: Strategy and implementation in NIP (Oliver Ehret); (8) The ORGA test: Development of a testing procedure for a practical evaluation of the fermenter biology and NaWaRo biogas plants (Nils Engler); (9) Large scale integration of offshore wind power through wind farm clusters (Alejandro J. Gesino); (10) NANOSITR - Healt, coldness and electricity from one biomass vessel (Bodo Gross); (11) OPTISTRAHL - A two-stage washer unit for biogas (Bodo Gross); (12) Innovation development for renewable energies (Bernward Janzing); (12) Strategic action options for energy supply utilities at renewable energies (Patrick Kemnitz); (13) Hydrogen - An option for a sustainable storage of wind power (Martin Kleimaier); (14) Small parabolic trough power plants - Actual technology and outlook (Joachim Krueger); (15) A photocatalytic generation of hydrogen: Efficient iron-based water reduction catalysts (Sebastian Losse); (16) Environmental assessment of municipal solid waste management in Sri Lanka and India in a life cycle perspective (Samanthi Nirmala M. Menikpura); (17) High temperature low sag conductors in power system with wind power farms (Olgierd Malyszka); (18) Wind-Hydrogen

  10. Influence of TiC precipitation in austenitic stainless steel on strength, ductility and helium embrittlement

    International Nuclear Information System (INIS)

    Kesternich, W.; Matta, M.K.; Rothaut, J.

    1984-01-01

    Creep experiments were performed on 1.4970 (German DIN standard) and 316 (AISI standard) type austenitic steels after various thermomechanical pretreatments and after α-implantation. The microstructure introduced by the pretreatments was characterized by transmission electron microscopy and the behaviour of strength and ductility is correlated to the dislocation and precipitate distributions. He embrittlement can be suppressed in these simulation experiments when dispersive TiC precipitate distributions are produced by the proper pretreatments or are allowed to form during creep testing. It is shown that adequate pretreatment results in a significantly superior behaviour of the 1.4970 steel as compared to the 316 type steel in all three investigated properties, i.e. strength, ductility and resistance to He embrittlement. (orig.)

  11. Investigation of Liquid Metal Embrittlement of Materials for use in Fusion Reactors

    Science.gov (United States)

    Kennedy, Daniel; Jaworski, Michael

    2014-10-01

    Liquid metals can provide a continually replenished material for the first wall and extraction blankets of fusion reactors. However, research has shown that solid metal surfaces will experience embrittlement when exposed to liquid metals under stress. Therefore, it is important to understand the changes in structural strength of the solid metal materials and test different surface treatments that can limit embrittlement. Research was conducted to design and build an apparatus for exposing solid metal samples to liquid metal under high stress and temperature. The apparatus design, results of tensile testing, and surface imaging of fractured samples will be presented. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  12. Rational design of Nb-based alloys for hydrogen separation: A first principles study

    Directory of Open Access Journals (Sweden)

    Byungki Ryu

    2013-02-01

    Full Text Available We have investigated the effect of alloying metal elements on hydrogen solubility and mechanical integrity of Nb-based alloys, Nb15M1 (where M = Ca–Zn, Ge, using first principles-based calculations. In general, the chemical interaction between the interstitial H and metal is weakened as the alloying element is changed from an early to a late transition metal, leading to lower H solubility and higher resistance to H embrittlement. This effect becomes more pronounced when a smaller alloying element is used due to stronger elastic interaction between interstitial H and metal atoms. These finding may provide scientific basis for rational design of Nb-based hydrogen separation membranes with tailored H solubility to effectively suppress H embrittlement while maintaining excellent hydrogen permeation rate.

  13. Determination of the gaseous hydrogen ductile-brittle transition in copper-nickel alloys

    Science.gov (United States)

    Parr, R. A.; Johnston, M. H.; Davis, J. H.; Oh, T. K.

    1985-01-01

    A series of copper-nickel alloys were fabricated, notched tensile specimens machined for each alloy, and the specimens tested in 34.5 MPa hydrogen and in air. A notched tensile ratio was determined for each alloy and the hydrogen environment embrittlement (HEE) determined for the alloys of 47.7 weight percent nickel to 73.5 weight percent nickel. Stacking fault probability and stacking fault energies were determined for each alloy using the x ray diffraction line shift and line profiles technique. Hydrogen environment embrittlement was determined to be influenced by stacking fault energies; however, the correlation is believed to be indirect and only partially responsible for the HEE behavior of these alloys.

  14. Flux effect on neutron irradiation embrittlement of reactor pressure vessel steels irradiated to high fluences

    International Nuclear Information System (INIS)

    Soneda, N.; Dohi, K.; Nishida, K.; Nomoto, A.; Iwasaki, M.; Tsuno, S.; Akiyama, T.; Watanabe, S.; Ohta, T.

    2011-01-01

    Neutron irradiation embrittlement of reactor pressure vessel (RPV) steels is of great concern for the long term operation of light water reactors. In particular, the embrittlement of the RPV steels of pressurized water reactors (PWRs) at very high fluences beyond 6*10 19 n/cm 2 , E > 1 MeV, needs to be understood in more depth because materials irradiated in material test reactors (MTRs) to such high fluences show larger shifts than predicted by current embrittlement correlation equations available worldwide. The primary difference between the irradiation conditions of MTRs and surveillance capsules is the neutron flux. The neutron flux of MTR is typically more than one order of magnitude higher than that of surveillance capsule, but it is not necessarily clear if this difference in neutron flux causes difference in mechanical properties of RPV. In this paper, we perform direct comparison, in terms of mechanical property and microstructure, between the materials irradiated in surveillance capsules and MTRs to clarify the effect of flux at very high fluences and fluxes. We irradiate the archive materials of some of the commercial reactors in Japan in the MTR, LVR-15, of NRI Rez, Czech Republic. Charpy impact test results of the MTR-irradiated materials are compared with the data from surveillance tests. The comparison of the results of microstructural analyses by means of atom probe tomography is also described to demonstrate the similarity / differences in surveillance and MTR-irradiated materials in terms of solute atom behavior. It appears that high Cu material irradiated in a MTR presents larger shifts than those of surveillance data, while low Cu materials present similar embrittlement. The microstructural changes caused by MTR irradiation and surveillance irradiation are clearly different

  15. Beryllium irradiation embrittlement test programme. Material and specimen specification, manufacture and qualification

    International Nuclear Information System (INIS)

    Harries, D.R.; Dalle Donne, M.

    1996-06-01

    The report presents the specification, manufacture and qualification of the beryllium specimens to be irradiated in the BR2 reactor in Mol to investigate the effect of the neutron irradiation on the embrittlement as a function of temperature and beryllium oxide content. This work was been performed in the framework of the Nuclear Fusion Project of the Forschungszentrum Karlsruhe and is supported by the European Union within the European Fusion Technology Program. (orig.)

  16. Effect of ternary solute interaction on interfacial segregation and grain boundary embrittlement

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel

    2013-01-01

    Roč. 48, č. 14 (2013), 4965-4972 ISSN 0022-2461 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GAP108/12/0144 Institutional research plan: CEZ:AV0Z10100520 Keywords : interfacial segregation * intergranular embrittlement * solute interaction * modeling * thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.305, year: 2013

  17. Radiation embrittlement of the neutron shield tank from the Shippingport reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Shack, W.J. (Argonne National Lab., IL (United States)); Rosinski, S.T. (Sandia National Labs., Albuquerque, NM (United States))

    1991-10-01

    The irradiation embrittlement of neutron shield tank (NST) material (A212 Grade B steel) from the Shippingport reactor has been characterized. Irradiation increases the Charpy transition temperature (CTT) by 23--28{degrees}C (41--50{degrees}F) and decreases the upper-shelf energy. The shift in CTT is not as severe as that observed in high-flux isotope reactor (HFIR) surveillance specimens. However, the actual value of the CTT is higher than that for the HFIR data. The increase in yield stress is 51 MPa (7.4 ksi), which is comparable to HFIR data. The NST material is weaker in the transverse orientation than in the longitudinal orientation. Some effects of position across the thickness of the wall are also observed; the CTT shift is slightly greater for specimens from the inner region of the wall. Annealing studies indicate complete recovery from embrittlement after 1 h at 400{degrees}C (752{degrees}F). Although the weld metal is significantly tougher than the base metal, the shifts in CTT are comparable. The shifts in CTT for the Shippingport NST are consistent with the test and Army reactor data for irradiations at <232{degrees}C (<450{degrees}F) and show very good agreement with the results for HFIR A212-B steel irradiated in the Oak Ridge Research Reactor (ORR). The effects of irradiation temperature, fluence rate, and neutron flux spectrum are discussed. The results indicate that fluence rate has no effect on radiation embrittlement at rates as low as 2 {times} 10{sup 8} n/cm{sup 2}{center dot}s and at the low operating temperatures of the Shippingport NST, i.e., 55{degrees}C (130{degrees}F). This suggests that the accelerated embrittlement of HFIR surveillance samples is most likely due to the relatively higher proportion of thermal neutrons in the HFIR spectrum compared to that for the test reactors. 28 refs., 25 figs.

  18. Embrittlement phenomenon of Ag core MP35N cable as lead conductor in medical device.

    Science.gov (United States)

    Wang, Ling; Li, Bernie; Zhang, Haitao

    2013-02-01

    Ag core MP35N (Ag/MP35N) wire has been used in lead electric conductor wires in the medical device industry for many years. Recently it was noticed that the combination of silver and MP35N restricts its wire drawing process. The annealing temperature in Ag/MP35N has to be lower than the melting temperature of pure Ag (960 °C), which cannot fully anneal MP35N. The lower annealing temperature results in a highly cold worked MP35N, which significantly reduces Ag/MP35N ductility. The embrittlement phenomenon of Ag/MP35N cable was observed in tension and bending deformation. The effect of the embrittlement on the wire flex fatigue life was evaluated using a newly developed flex fatigue testing method. The Ag/MP35N cable fatigue results was analyzed with a Coffin-Manson approach and compared to the MP35N cable fatigue results. The root causes of the Ag/Mp35N embrittlement phenomenon are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Embrittlement of MISSE 5 Polymers After 13 Months of Space Exposure

    Science.gov (United States)

    Guo, Aobo; Yi, Grace T.; Ashmead, Claire C.; Mitchell, Gianna G.; deGroh, Kim K.

    2012-01-01

    Understanding space environment induced degradation of spacecraft materials is essential when designing durable and stable spacecraft components. As a result of space radiation, debris impacts, atomic oxygen interaction, and thermal cycling, the outer surfaces of space materials degrade when exposed to low Earth orbit (LEO). The objective of this study was to measure the embrittlement of 37 thin film polymers after LEO space exposure. The polymers were flown aboard the International Space Station and exposed to the LEO space environment as part of the Materials International Space Station Experiment 5 (MISSE 5). The samples were flown in a nadir-facing position for 13 months and were exposed to thermal cycling along with low doses of atomic oxygen, direct solar radiation and omnidirectional charged particle radiation. The samples were analyzed for space-induced embrittlement using a bend-test procedure in which the strain necessary to induce surface cracking was determined. Bend-testing was conducted using successively smaller mandrels to apply a surface strain to samples placed on a semi-suspended pliable platform. A pristine sample was also tested for each flight sample. Eighteen of the 37 flight samples experienced some degree of surface cracking during bend-testing, while none of the pristine samples experienced any degree of cracking. The results indicate that 49 percent of the MISSE 5 thin film polymers became embrittled in the space environment even though they were exposed to low doses (approx.2.75 krad (Si) dose through 127 mm Kapton) of ionizing radiation.

  20. JAIPEC's R and D activity on neutron irradiation embrittlement of RPV materials

    International Nuclear Information System (INIS)

    Otsuka, T.

    1999-01-01

    Japan Power Engineering and Inspection Corporation (JAPEIC) is managing many national RD projects in the field related to inspection, welding and integrity evaluation according to the policy of the Ministry of International Trade and Industry (MITI) on the safety and reliability of operating nuclear power plants. The Plant Life Management Technology Project (PLIM), one of these RD projects, has newly started from 1996 to develop the evaluation methodologies for the neutron irradiation embrittlement in the upper shelf region of the reactor pressure vessel (RPV) and the thermal embrittlement of duplex stainless steel components, and to develop the technology for reconstitution of RPV surveillance test pieces. For the first item of these three, the development of evaluation method in the upper shelf region, the detailed scope of test program has been recently settled and the neutron irradiation of test specimens is scheduled to start this year using the Halden Boiling Water Reactor (HBWR) in Norway. This paper presents the RD scope for the development of evaluation method for the neutron irradiation embrittlement in the upper shelf region in the PLIM project of JAPEIC (author) (ml)

  1. Nondestructive characterization of embrittlement in reactor pressure vessel steels -- A feasibility study

    International Nuclear Information System (INIS)

    McHenry, H.I.; Alers, G.A.

    1998-01-01

    The Nuclear Regulatory Commission recently initiated a study by NIST to assess the feasibility of using physical-property measurements for evaluating radiation embrittlement in reactor pressure vessel (RPV) steels. Ultrasonic and magnetic measurements provide the most promising approaches for nondestructive characterization of RPV steels because elastic waves and magnetic fields can sense the microstructural changes that embrittle materials. The microstructural changes of particular interest are copper precipitation hardening, which is the likely cause of radiation embrittlement in RPV steels, and the loss of dislocation mobility that is an attribute of the ductile-to-brittle transition. Measurements were made on a 1% copper steel, ASTM grade A710, in the annealed, peak-aged and overaged conditions, and on an RPV steel, ASTM grade A533B. Nonlinear ultrasonic and micromagnetic techniques were the most promising measures of precipitation hardening. Ultrasonic velocity measurements and the magnetic properties associated with hysteresis-loop measurements were not particularly sensitive to either precipitation hardening or the ductile-to-brittle transition. Measurements of internal friction using trapped ultrasonic resonance modes detected energy losses due to the motion of pinned dislocations; however, the ultrasonic attenuation associated with these measurements was small compared to the attenuation caused by beam spreading that would occur in conventional ultrasonic testing of RPVs

  2. Estimation of RPV material embrittlement for Ukrainian NPP based on surveillance test data

    International Nuclear Information System (INIS)

    Revka, V.; Chyrko, L.; Chaikovsky, Yu.; Gulchuk, Yu.

    2012-01-01

    The WWER-1000 RPV material embrittlement has been evaluated using the surveillance test data for the nuclear power plant which is under operation in Ukraine. The RPV materials after the neutron (E > 0,5 MeV) irradiation up to fluence of 22,9.10 22 m -2 have been studied. Fracture toughness tests were performed using pre-cracked Charpy specimens for the beltline materials (base and weld metal). The maximum shift of T 0 reference temperature is equal to 44 o C. A radiation embrittlement rate, A F , for the RPV materials was estimated using the standard and reconstituted specimens. A comparison of the A F values has shown a good agreement between the specimen sets before and after reconstitution both for base and weld metal. Furthermore it has been revealed there is no nickel effect for the studied materials. In spite of the high nickel content the radiation embrittlement rate for weld metal is not higher than for base metal with low nickel content. Fracture toughness analysis has shown the Master curve shape describes well a temperature dependence of K Jc values. However a higher scatter of K Jc values is observed in comparison to 95 % tolerance bounds. (author)

  3. Fabrication of the Supplemental Surveillance Capsules to Construct the Data of High-dose Irradiation Embrittlement

    International Nuclear Information System (INIS)

    Cho, Young Ki; Maeng, Young Jae; Kim, Kyung Sik; Lim, Mi Joung; Yoo, Choon Sung; Kim, Byoung Chul

    2015-01-01

    In order to monitor the neutron irradiation embrittlement of the reactor vessel material, the surveillance program should be implemented during the reactor operation through the plant life. This surveillance program requires the surveillance capsules which contain the various test specimens, thermal monitors, and neutron dosimeters. For PWRs in Korea, total six surveillance capsules are installed before plant operation and are programmed to be withdrawn and tested periodically in accordance with the surveillance program. The surveillance capsules are typically installed in the downcomer region and are located closer to the reactor core than the vessel wall in order to get more accelerated embrittlement characteristics of the vessel material. The supplemental surveillance capsules were fabricated to obtain the data of high-dose irradiation embrittlement. All test specimens in the capsules were made with the archive material of Hanbit Units 3 and 4. The supplemental capsules were designed to have the same outside dimensions as the capsules of Hanbit Unit 1 and were installed in Hanbit Unit 1. The withdrawal schedule will be calculated

  4. Fracture toughness prediction for RPV Steels with various degree of embrittlement

    International Nuclear Information System (INIS)

    Margolin, B.; Gulenko, A.; Shvetsova, V.

    2003-01-01

    In the present report, predictions of the temperature dependence of cleavage fracture toughness are performed on the basis of the Master Curve approach and a probabilistic model named now the Prometey model. These predictions are performed for reactor pressure vessel steels in different states, the initial (as-produced), irradiated state with moderate degree of embrittlement and in the highly embrittled state. Calculations of the K IC (T) curves may be performed with both approaches on the basis of fracture toughness test results from pre-cracked Charpy specimens at some (one) temperature. The calculated curves are compared with test results. It is shown that the K IC (T) curves for the initial state calculated with the Master Curve approach and the probabilistic model show good agreement. At the same time, for highly embrittled RPV steel, the K IC (T) curve predicted with the Master Curve approach is not an adequate fit to the experimental data, whereas the agreement of the test results and the K IC (T) curve calculated with the probabilistic model is good. An analysis is performed for a possible variation of the K IC (T) curve shape and the scatter in K IC results. (author)

  5. Monitoring of hydrogen generated by corrosion reactions of steel

    Energy Technology Data Exchange (ETDEWEB)

    Abbassi, A.; Mihi, A.; Benbouta, R. [Corrosion Laboratory, Department of Mechanical Engineering, Faculty of Engineering Science, University of Batna, 05000 Batna (Algeria)

    2008-12-15

    A solid-state sensor has been constructed and used for the detection of hydrogen generated during corrosion of steel in pH2 solutions. In addition to that, weight loss, AC impedance measurements and selected slow strain rate tests were performed under the same conditions as the hydrogen measurements in order to ascertain the degree of embrittlement of steel. The use of such a device in cathodic protection by impressed current in artificial seawater was also investigated. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  6. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  7. Hydrogen in oxygen-free, phosphorus-doped copper - Charging techniques, hydrogen contents and modelling of hydrogen diffusion and depth profile

    Energy Technology Data Exchange (ETDEWEB)

    Martinsson, Aasa [Swerea KIMAB, Kista (Sweden); Sandstroem, Rolf [Swerea KIMAB, Kista (Sweden); Div. of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm (Sweden); Lilja, Christina [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2013-01-15

    In Sweden spent nuclear fuel is planned to be disposed of by encapsulating in cast iron inserts protected by a copper shell. The copper can be exposed to hydrogen released during corrosion processes in the inserts. If the hydrogen is taken up by the copper, it could lead to hydrogen embrittlement. Specimens from oxygen-free copper have been hydrogen charged using two different methods. The purpose was to investigate how hydrogen could be introduced into copper in a controlled way. The thermal charging method resulted in a reduction of the initial hydrogen content. After electrochemical charging of cylindrical specimens, the measured hydrogen content was 2.6 wt. ppm which should compared with 0.6 wt. ppm before charging. The retained hydrogen after two weeks was reduced by nearly 40%. Recently the paper 'Hydrogen depth profile in phosphorus-doped, oxygen-free copper after cathodic charging' (Martinsson and Sandstrom, 2012) has been published. The paper describes experimental results for bulk specimens as well as presenting a model. Almost all the hydrogen is found to be located less than 100 {mu}m from the surface. This model is used to interpret the experimental results on foils in the present report. Since the model is fully based on fundamental equations, it can be used to analyse what happens in new situations. In this report the effect of the charging intensity, the grain size, the critical nucleus size for hydrogen bubble formation as well as the charging time are analysed.

  8. An Analysis of Environmental Dimensions Affected in Adoption of Hydrogen Fuel Cell Vehicles: A Study in Shah ALAM Industrial AREA, Selangor

    Directory of Open Access Journals (Sweden)

    Siron Rusinah

    2016-01-01

    Full Text Available The aim of the study is to identify the perceptions of respondents on environmental dimensions hat affected in adoption of hydrogen fuel cell vehicles. The study was conducted at Shah Alam industrial areas of Selangor, Malaysia, with the number of respondents are 120 respondents with various job positions that related with engineering and automobiles industry. The findings of the research shows that the dimensions of HFCV Internal Environmental total score of the items statement is 3.40 with the percentage of agreement in implementation is 3.72 percent, HFCV Environmental Information Systems shows that the total score of the items statement is 3.63 with the percentage of agreement on use to great extend is 42.5 percent, HFCV Cooperation with Customers shows that the total score of the items statement is 3.81 with the percentage of agreement on implementation is 44.2 percent. The findings on HFCV Eco Design shows that the total score of items statement is 4.02 with the percentage of agreement on implementation is 42.3 percent, HFCV Environmental Organizational Culture shows that the total score of the items statement is 3.37 with the percentage of agreement is 34.2 percent, HFCV Environmental Leadership shows that the total score of the items statement is 3.34 with the percentage of agreement is 48.2 percent. HFCV Proactive Green Innovation shows that the total score of items statement is 4.10 ahead of automobile got the highest mean score of 4.32 with the percentage of agreement is 41 percent. HFCV Environmental performance shows that the total score of the items statement is 3.87 with the percentage of agreement is 39 percent and the last environmental dimensions was HFCV Environmental Risks shows that the total score of the item statement is 4.00 with the percentage of agreement is 40 percent

  9. Determination of hydrogen in metals and alloys

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Ramanjaneyulu, P.S.; Ramakumar, K.L.

    2008-01-01

    Hydrogen will be invariably present in all materials. Its presence in excess is harmful and sometimes calamitous. Hydrogen embrittlement can occur quite readily in most high strength materials, irrespective of their composition or structure. It is therefore essential to maintain low levels of hydrogen. To know the amount of hydrogen present in the materials, it is essential to determine it with high degree of precision and accuracy. It is required to give the uncertainty associated with the measurement to increase the confidence on measurements. Several methodologies are available for the determination of hydrogen. It its isotope, deuterium, also co-exists it becomes all the more difficult to determine these individually. Hot vacuum extraction cum quadrupole mass spectrometry (HVE-QMS) developed in our laboratory to determine hydrogen and deuterium is routinely employed for the determination of hydrogen and deuterium in metals and alloys. The present paper deals in detail about our experiences with HVE-QMS and estimation of uncertainty associated in this methodology. (author)

  10. Initial assessment of the mechanisms and significance of low-temperature embrittlement of cast stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Chopra, O.K.; Sather, A.

    1990-08-01

    This report summarizes work performed by Argonne National Laboratory on long-term embrittlement of cast duplex stainless steels in LWR systems. Metallurgical characterization and mechanical property data from Charpy-impact, tensile, and J-R curve tests are presented for several experimental and commercial heats, as well as for reactor-aged CF-3, CF-8, and CF-8M cast stainless steels. The effects of material variables on the embrittlement of cast stainless steels are evaluated. Chemical composition and ferrite morphology strongly affect the extent and kinetics of embrittlement. In general, the low-carbon CF-3 stainless steels are the most resistant and the molybdenum-containing high-carbon CF-8M stainless steels are most susceptible to embrittlement. The microstructural and mechanical-property data are analyzed to establish the mechanisms of embrittlement. The procedure and correlations for predicting the impact strength and fracture toughness of cast components during reactor service are described. The lower bound values of impact strength and fracture toughness for low-temperature-aged cast stainless steel are defined. 39 refs., 56 figs., 8 tabs

  11. Hydrogen energy system in California

    International Nuclear Information System (INIS)

    Zweig, R.M.

    1995-01-01

    Results of experiences on the use of hydrogen as a clean burning fuel in California and results of the South Coast Air Quality Management district tests using hydrogen as a clean burning environmentally safe fuel are given. The results of Solar Hydrogen Projects in California and recent medical data documentation of human lung damage of patients living in air polluted urban areas are summarized

  12. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    Science.gov (United States)

    Musket, R. G.

    1989-04-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation, and hydrogen embrittlement. In particular, the results of the reviewed studies are (a) uranium hydriding suppressed by implantation of oxygen and carbon, (b) hydrogen gettered in iron and nickel using implantation of titanium, (c) hydriding of titanium catalyzed by implanted palladium, (d) tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and (e) hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals.

  13. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    International Nuclear Information System (INIS)

    Musket, R.G.

    1989-01-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation and hydrogen embrittlement. In particular, the results of the reviewed studies are 1. uranium hydriding suppressed by implantation of oxygen and carbon, 2. hydrogen gettered in iron and nickel using implantation of titanium, 3. hydriding of titanium catalyzed by implanted palladium, 4. tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and 5. hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals. (orig.)

  14. Numerical simulation of hydrogen diffusion in the pressure vessel wall of a WWER-440 reactor

    Science.gov (United States)

    Toribio, J.; Vergara, D.; Lorenzo, M.

    2017-07-01

    Materials forming the wall of a nuclear reactor pressure vessel (NRPV) can undergo in-service failure due to the presence of hydrogen, which enhances the fracture process known as hydrogen embrittlement (HE). A common way of avoiding this damage phenomenon is using a cladding material at the vessel wall side exposed to the hydrogenating source. This layer acts as a barrier for hydrogen diffusion and, hence, it protects the base material. In this paper, a numerical model of hydrogen diffusion assisted by stress and strain is used to analyse the hydrogen distribution, and hence the HE, in the pressure vessel wall of a real widely spread WWER-440 reactor considering two thickness for the cladding layer. Results show how the hydrogen accumulation is delayed as the thickness of the cladding layer increases, thus delaying the HE phenomenon affecting the structural integrity of the reactor.

  15. A study of hydrogen cracking in metals by the acoustoelasticity method

    Science.gov (United States)

    Alekseeva, E. L.; Belyaev, A. K.; Pasmanik, L. A.; Polyanskiy, A. M.; Polyanskiy, V. A.; Tretiakov, D. A.; Yakovlev, Yu. A.

    2017-12-01

    The results of the study of acoustic anisotropy distribution in samples with preliminary hydrogenation during the standard HIC test are presented in the article. It is shown experimentally that there is a monotonic relationship between the hydrogenation time and the average acoustic anisotropy. This result allows us to apply the method of acoustoelasticity to the technical diagnostics of structures, parts and units of machines for hydrogen embrittlement and hydrogen cracking. In contrast, the results of direct measurements of the hydrogen concentration in samples depend on many factors, such as the holding time of the sample after extraction from the electrolyte. This uncertainty does not allow one to establish clear correlations between the measured concentrations of hydrogen and the presence of hydrogen-induced microcracks.

  16. Compatibility between vandium-base alloys and flowing lithium: Partitioning of hydrogen at elevated temperatures

    International Nuclear Information System (INIS)

    Hull, A.B.; Chopra, O.K.; Loomis, B.; Smith, D.

    1989-12-01

    A major concern in fusion reactor design is possible hydrogen-isotope-induced embrittlement of structural alloys in the neutron environment expected in these reactors. Hydrogen fractionation occurs between lithium and various refractory metals according to a temperature-dependent distribution coefficient, K H , that is defined as the ration of the hydrogen concentration in the metallic specimen to that in the liquid lithium. In the present work, K H was determined for pure vanadium and several binary and ternary alloys, and the commercial Vanstar 7. Hydrogen distribution studies were performed in an austenitic steel forced-circulation lithium loop. Equilibrium concentrations of hydrogen in vanadium-base alloys exposed to flowing lithium at temperatures of 350 to 550 degree C were measured by inert gas fusion techniques and residual gas analysis. Thermodynamic calculations are consistent with the effect of chromium and titanium in the alloys on the resultant hydrogen fractionation. Experimental and calculated results indicate that K H values are very low; i.e., the hydrogen concentrations in the lithium-equilibrated vanadium-base alloy specimens are about two orders of magnitude lower than those in the lithium. Because of this low distribution coefficient, embrittlement of vanadium alloys by hydrogen in lithium would not be expected. 15 refs., 5 figs., 4 tabs

  17. Accelerated aging embrittlement of cast duplex stainless steel: Activation energy for extrapolation

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.

    1989-05-01

    Cast duplex stainless steels, used extensively in LWR systems for primary pressure boundary components such as primary coolant pipes, valves, and pumps, are susceptible to thermal aging embrittlement at reactor operating or higher temperatures. Since a realistic aging embrittlement for end-of-life or life-extension conditions (i.e., 32--50 yr of aging at 280--320 degree C) cannot be produced, it is customary to simulate the metallurgical structure by accelerated aging at ∼400 degree C. Over the past several years, extensive data on accelerated aging have been reported from a number of laboratories. The most important information from these studies is the activation energy, namely, the temperature dependence of the aging kinetics between 280 and 400 degree C, which is used to extrapolate the aging characteristics to reactor operating conditions. The activation energies (in the range of 18--50 kcal/mole) are, in general, sensitive to material grade, chemical composition, and fabrication process, and a few empirical correlations, obtained as a function of bulk chemical composition, have been reported. In this paper, a mechanistic understanding of the activation energy is described on the basis of the results of microstructural characterization of various heats of CF-3, -8, and -8M grades that were used in aging studies at different laboratories. The primary mechanism of aging embrittlement at temperatures between 280 and 400 degree C is the spinodal decomposition of the ferrite phase, and M 23 C 6 carbide precipitation on the ferrite/austenite boundaries is the secondary mechanism for high-carbon CF-8 grade. 20 refs., 10 figs., 3 tabs

  18. Grain boundary sliding quantification by atomic force microscopy: contribution to high temperature embrittlement analyses

    International Nuclear Information System (INIS)

    Lenci, Matthieu

    2009-01-01

    We developed an original experimental method for measuring grain boundary sliding by atomic force microscopy. The analysed alloys were previously tested at high temperatures and low strain rates, for short time tests. We measured grain boundary sliding along his perpendicular component to the sample surface. The detection limit is of 10 nm. Thin and flat austenitic stainless steels and superalloys samples were tested at high temperature (360 C to 750 C), under ultra high vacuum atmosphere, with slow rate tensile tests and constant load tests. After short times tests, AFM characterization showed that grain boundary sliding could be activated at the loading, within amplitudes of several tens of nm. Furthermore, after short time tests, grain boundary sliding amplitudes are independent of the geometrical orientation of the boundary trace compared with loading direction. On the other hand crystallographic misorientation has a strong influence on boundaries propensity to slide. Intergranular segregation was also analyzed by AES for two alloys (304H austenitic stainless steel and X- 750 nickel-base alloy), previously submitted to high temperature slow strain rate tensile tests. AES analysis showed preferential segregation of S and P near 304H triple junctions. Whereas, AES analysis on X-750 alloy showed P segregation at the bottom of microvoids distributed on a micro-ductile grain facet and a strong segregation of S at the location of grain boundary precipitate. Our experimental methods allows the study of the correlation between two main phenomena contributing to high temperature embrittlement: grain boundary sliding and intergranular segregation embrittlement. Determining grain boundary sliding kinetics should confirm our method of step measure by AFM as a way to indicate high temperature embrittlement sensitivity of alloys in service conditions and also give information about the contribution of grain boundary sliding to stress corrosion cracking initiation and

  19. Environmental Degradation of Dissimilar Austenitic 316L and Duplex 2205 Stainless Steels Welded Joints

    Directory of Open Access Journals (Sweden)

    Topolska S.

    2017-12-01

    Full Text Available The paper describes structure and properties of dissimilar stainless steels welded joints between duplex 2205 and austenitic 316L steels. Investigations were focused on environmentally assisted cracking of welded joints. The susceptibility to stress corrosion cracking (SCC and hydrogen embrittlement was determined in slow strain rate tests (SSRT with the strain rate of 2.2 × 10−6 s−1. Chloride-inducted SCC was determined in the 35% boiling water solution of MgCl2 environment at 125°C. Hydrogen assisted SCC tests were performed in synthetic sea water under cathodic polarization condition. It was shown that place of the lowest resistance to chloride stress corrosion cracking is heat affected zone at duplex steel side of dissimilar joins. That phenomenon was connected with undesirable structure of HAZ comprising of large fractions of ferrite grains with acicular austenite phase. Hydrogen assisted SCC tests showed significant reduction in ductility of duplex 2205 steel while austenitic 316L steel remains almost immune to degradation processes. SSR tests of dissimilar welded joints revealed a fracture in the area of austenitic steel.

  20. Reactor pressure vessel embrittlement management through EPRI-Developed material property databases

    International Nuclear Information System (INIS)

    Rosinski, S.T.; Server, W.L.; Griesbach, T.J.

    1997-01-01

    Uncertainties and variability in U.S. reactor pressure vessel (RPV) material properties have caused the U.S. Nuclear Regulatory Commission (NRC) to request information from all nuclear utilities in order to assess the impact of these data scatter and uncertainties on compliance with existing regulatory criteria. Resolving the vessel material uncertainty issues requires compiling all available data into a single integrated database to develop a better understanding of irradiated material property behavior. EPRI has developed two comprehensive databases for utility implementation to compile and evaluate available material property and surveillance data. RPVDATA is a comprehensive reactor vessel materials database and data management program that combines data from many different sources into one common database. Searches of the data can be easily performed to identify plants with similar materials, sort through measured test results, compare the ''best-estimates'' for reported chemistries with licensing basis values, quantify variability in measured weld qualification and test data, identify relevant surveillance results for characterizing embrittlement trends, and resolve uncertainties in vessel material properties. PREP4 has been developed to assist utilities in evaluating existing unirradiated and irradiated data for plant surveillance materials; PREP4 evaluations can be used to assess the accuracy of new trend curve predictions. In addition, searches of the data can be easily performed to identify available Charpy shift and upper shelf data, review surveillance material chemistry and fabrication information, review general capsule irradiation information, and identify applicable source reference information. In support of utility evaluations to consider thermal annealing as a viable embrittlement management option, EPRI is also developing a database to evaluate material response to thermal annealing. Efforts are underway to develop an irradiation

  1. Development of a Charpy master curve-based embrittlement trend curve

    International Nuclear Information System (INIS)

    Erikson, M.

    2011-01-01

    Under the current U.S. surveillance programs, the Charpy V-notch energy (CVE), yield strength, and tensile strength are measured (all as a function of test temperature) at various times during the operational life of the reactor vessel. Conventionally, the CVE vs. temperature data are fit using a hyperbolic tangent (tanh) function to determine the temperature at which the mean CVE is equal to 30 ft-lbs (41J). This index temperature, which is designated T30 or T41J, is used to track irradiation damage. Recently an alternative strategy for fitting the CVE vs. temperature data was proposed in which a single CVE vs. temperature relationship appears to well represent the behavior of a very wide variety of ferritic steels for temperatures at and below fracture mode transition. It was demonstrated that when upper shelf data are excluded from a fit of Charpy V-notch energy (CVE) vs. temperature a single exponential function is found that well represents the transition temperature behavior of ferritic steels. The findings suggest that a reanalysis of already tested Charpy surveillance specimens can provide the basis for development of an embrittlement trend curve that is less influenced by the biases that arise from the tanh curve fitting method. Recently, a program was initiated with a goal of using the Charpy MC transition data fit to define a reference temperature, to use instead of the traditionally defined tanh-based T30/T41J reference temperature, in development of an embrittlement trend curve. The existing USLWR database was mined for datasets with sufficient data points within the transition temperature region for use in defining a TCVE reference temperature. These values were then used to define ΔTCVE data with irradiation. This data, along with chemistry, temperature, flux and fluence information, was used to develop the embrittlement trend curve presented herein. Predictions of embrittlement behavior made using this ETC were then compared to predictions made

  2. Microstructural and Fractographic Characterization of a Thermally Embrittled Nuclear Grade Steel: Part II - Quenching and Tempering

    Directory of Open Access Journals (Sweden)

    José R. Tarpani

    2002-09-01

    Full Text Available A nuclear reactor pressure vessel steel was submitted to different quenching and tempering heat treatments aimed at simulating neutron irradiation damage. The obtained microstructures were mechanically tested and submitted to metallographic and fractographic survey. The relevant microstructural and fractographic aspects were employed in the interpretation of the mechanical performance of the thermally embrittled microstructures. A well defined correlation was determined between the elastic-plastic fracture toughness parameter J-integral and the Charpy impact energy, which was achieved for some of the Q&T microstructures.

  3. Influence of physical aging on impact embrittlement of uPVC pipes

    OpenAIRE

    Visser, Roy; Bor, Teunis Cornelis; Wolters, Mannes; Warnet, Laurent; Govaert, L.E.

    2011-01-01

    Most failures of unplasticised poly(vinyl chloride) (uPVC) pipes used in the Dutch gas distribution network originate from third party damage. Brittle pipes should therefore be replaced to ensure safe operation of the network. In this study, the relation between physical aging and embrittlement of uPVC is investigated using instrumented falling weight impact tests. The ductile to brittle transition temperature was first measured for a water pipe grade uPVC at different stages of aging. As a h...

  4. Hydrogen Induced Cracking of Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    G. De

    2003-02-24

    One potential failure mechanism for titanium and its alloys under repository conditions is via the absorption of atomic hydrogen in the metal crystal lattice. The resulting decreased ductility and fracture toughness may lead to brittle mechanical fracture called hydrogen-induced cracking (HIC) or hydrogen embrittlement. For the current design of the engineered barrier without backfill, HIC may be a problem since the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this scientific analysis and modeling activity is to evaluate whether the drip shield will fail by HIC or not under repository conditions within 10,000 years of emplacement. This Analysis and Model Report (AMR) addresses features, events, and processes related to hydrogen induced cracking of the drip shield. REV 00 of this AMR served as a feed to ''Waste Package Degradation Process Model Report'' and was developed in accordance with the activity section ''Hydrogen Induced Cracking of Drip Shield'' of the development plan entitled ''Analysis and Model Reports to Support Waste Package PMR'' (CRWMS M&O 1999a). This AMR, prepared according to ''Technical Work Plan for: Waste Package Materials Data Analyses and Modeling'' (BSC 2002), is to feed the License Application.

  5. Multiscale Modeling of Grain Boundary Segregation and Embrittlement in Tungsten for Mechanistic Design of Alloys for Coal Fired Plants

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jian; Tomar, Vikas; Zhou, Naixie; Lee, Hongsuk

    2013-06-30

    Based on a recent discovery of premelting-like grain boundary segregation in refractory metals occurring at high temperatures and/or high alloying levels, this project investigated grain boundary segregation and embrittlement in tungsten (W) based alloys. Specifically, new interfacial thermodynamic models have been developed and quantified to predict high-temperature grain boundary segregation in the W-Ni binary alloy and W-Ni-Fe, W-Ni-Ti, W-Ni-Co, W-Ni-Cr, W-Ni-Zr and W-Ni-Nb ternary alloys. The thermodynamic modeling results have been experimentally validated for selected systems. Furthermore, multiscale modeling has been conducted at continuum, atomistic and quantum-mechanical levels to link grain boundary segregation with embrittlement. In summary, this 3-year project has successfully developed a theoretical framework in combination with a multiscale modeling strategy for predicting grain boundary segregation and embrittlement in W based alloys.

  6. Modification of the grain boundary microstructure of the austenitic PCA stainless steel to improve helium embrittlement resistance

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Braski, D.N.

    1986-01-01

    Grain boundary MC precipitation was produced by a modified thermal-mechanical pretreatment in 25% cold worked (CW) austenitic prime candidate alloy (PCA) stainless steel prior to HFIR irradiation. Postirradiation tensile results and fracture analysis showed that the modified material (B3) resisted helium embrittlement better than either solution annealed (SA) or 25% CW PCA irradiated at 500 to 600 0 C to approx.21 dpa and 1370 at. ppM He. PCA SA and 25% CW were not embrittled at 300 to 400 0 C. Grain boundary MC survives in PCA-B3 during HFIR irradiation at 500 0 C but dissolves at 600 0 C; it does not form in either SA or 25% CW PCA during similar irradiation. The grain boundary MC appears to play an important role in the helium embrittlement resistance of PCA-B3

  7. Development of small punch tests for ductile-brittle transition temperature measurement of temper embrittled Ni-Cr steels

    International Nuclear Information System (INIS)

    Baik, J.M.; Kameda, J.; Buck, O.

    1983-01-01

    Small punch tests were developed to determine the ductile-brittle transition temperature of nickel-chromium (Ni-Cr) steels having various degrees of temper embrittlement and various microstructures. It was found that the small punch test clearly shows the ductile-brittle transition behavior of the temper-embrittled steels. The measured values were compared with those obtained from Charpy impact and uniaxial tensile tests. The effects of punch tip shape, a notch, and the strain rate on the ductile-brittle transition behavior were examined. It was found that the combined use of a notch, high strain rates, and a small punch tip strongly affects the ductile-brittle transition behavior. Considerable variations in the data were observed when the small punch tests were performed on coarse-grained steels. Several factors controlling embrittlement measurements of steels are discussed in terms of brittle fracture mechanisms

  8. On the Step Cooling Treatment for the Assessment of Temper Embrittlement Susceptibility of Heavy Forgings in Superclean Steels

    Directory of Open Access Journals (Sweden)

    Roberto Roberti

    2016-10-01

    Full Text Available When subjected to extended exposure to intermediate service temperatures, Cr–Mo steels, Ni–Cr steels, and 5% Ni steels can become embrittled, with an associated decrease in fracture toughness and a shift in the ductile-to-brittle transition temperature to higher temperatures. Two methods for the investigation of temper embrittlement phenomena are isothermal aging or the use of a step cooling aging treatment, which is less time consuming and is considered to be the most severe test to evaluate steel’s susceptibility to this phenomenon. In the present work, the effectiveness of the step cooling treatment in the assessment of temper embrittlement in a superclean 26NiCrMoV14.5 steel for heavy section forgings has been studied. Some isothermal aging treatments in the critical temperature range have also been carried out. Results of a Charpy V impact test on not-aged and aged specimens, and observation of the fracture surfaces led to the following conclusions: the steel does not undergo temper embrittlement upon step cooling treatment or after aging at different temperatures and times in the critical temperature range; the most negative effect on the shift of the ductile-to-brittle transition curve—compared with not aged steel—has been observed after aging at 593 °C for 2 h (ΔT54J = 9 °C; further aging up to 8 h produced a ΔT54J of only 1 °C. Neither step cooling nor aging at various critical temperatures gave rise to an intergranular brittle fracture; the amount of embrittling impurity elements in a superclean steel does not seem to be enough to cause embrittlement and a pure intergranular decohesion.

  9. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  10. Comprehensive Understanding of Ductility Loss Mechanisms in Various Steels with External and Internal Hydrogen

    Science.gov (United States)

    Takakuwa, Osamu; Yamabe, Junichiro; Matsunaga, Hisao; Furuya, Yoshiyuki; Matsuoka, Saburo

    2017-11-01

    Hydrogen-induced ductility loss and related fracture morphologies are comprehensively discussed in consideration of the hydrogen distribution in a specimen with external and internal hydrogen by using 300-series austenitic stainless steels (Types 304, 316, 316L), high-strength austenitic stainless steels (HP160, XM-19), precipitation-hardened iron-based super alloy (A286), low-alloy Cr-Mo steel (JIS-SCM435), and low-carbon steel (JIS-SM490B). External hydrogen is realized by a non-charged specimen tested in high-pressure gaseous hydrogen, and internal hydrogen is realized by a hydrogen-charged specimen tested in air or inert gas. Fracture morphologies obtained by slow-strain-rate tensile tests (SSRT) of the materials with external or internal hydrogen could be comprehensively categorized into five types: hydrogen-induced successive crack growth, ordinary void formation, small-sized void formation related to the void sheet, large-sized void formation, and facet formation. The mechanisms of hydrogen embrittlement are broadly classified into hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP). In the HEDE model, hydrogen weakens interatomic bonds, whereas in the HELP model, hydrogen enhances localized slip deformations. Although various fracture morphologies are produced by external or internal hydrogen, these morphologies can be explained by the HELP model rather than by the HEDE model.

  11. Deformation, oxidation and embrittlement of PWB fuel cladding in a loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, P.D.; Hindle, E.D.; Mann, C.A.

    1986-09-01

    The scope of this report is limited to the oxidation, embrittlement and deformation of PWB fuel in a loss of coolant accident in which the emergency core coolant systems operate in accordance with the design, ie accidents within the design basis of the plant. A brief description is given of the thermal hydraulic events during large and small breaks of the primary circuit, followed by the correct functioning and remedial action of the emergency core cooling systems. The possible damage to the fuel cladding during these events is also described. The basic process of oxidation of zircaloy-4 fuel cladding by steam, and the reaction kinetics of the oxidation are reviewed in detail. Variables having a possible influence on the oxidation kinetics are also considered. The embrittlement of zircaloy-4 cladding by oxidation is also reviewed in detail. It is related to fracture during the thermal shock of rewetting or by the ambient impact forces as a result of post-accident fuel handling. Criteria based both on total oxidation and on the detailed distribution of oxygen through the oxidised cladding wall are considered. The published computer codes for the calculation of oxygen concentration are reviewed in terms of the model employed and the limitations apparent in these models when calculating oxygen distribution in cladding in the actual conditions of a loss of coolant accident. The factors controlling the deformation and rupture of cladding in a loss of coolant accident are reviewed in detail.

  12. Helium embrittlement of CTR materials simulated by ions implantation and hot isostatic pressing of metal powders

    International Nuclear Information System (INIS)

    Fleischer, L.R.; Spitznagel, J.A.; Choyke, W.J.

    1976-01-01

    Helium embrittlement is currently considered a limitation on the lifetimes of CTR structures exposed to high energy neutrons. The phenomenon has been observed in fast fission reactor irradiated materials and has been studied in helium ion bombarded foil samples. In this study, helium ions were implanted in stainless steel and refractory metal alloy powder particles. The 150 keV ion energies used require particle size distributions with mean particle diameters of about 3 μm to get a suitably homogeneous initial distribution of helium atoms. The helium implanted powders were consolidated by hot isostatic pressing; the helium remained in solid solution. Subsequent thermomechanical processing permitted the preparation of tensile specimens with controlled helium bubble distributions. In general, grain boundary migration concentrated helium bubbles on the boundaries, while conditions favoring stationary boundaries allowed intragranular bubble nucleation on dislocations. It remains to be seen whether the distributions available through these processes are representative of those that will be generated in situ by (n,α) reactions in CTR neutron spectra. Specimens for bulk properties measurements prepared in this way are most suitable for study of helium embrittlement as an isolated effect. Many of the constraints encountered in other sample preparation methods are mitigated

  13. Consequence evaluation of radiation embrittlement of Trojan reactor pressure vessel supports

    International Nuclear Information System (INIS)

    Lu, S.C.; Sommer, S.C.; Johnson, G.L.; Lambert, H.E.

    1990-10-01

    This report describes a consequence evaluation to address safety concerns raised by the radiation embrittlement of the reactor pressure vessel (RPV) supports for the Trojan nuclear power plant. The study comprises a structural evaluation and an effects evaluation and assumes that all four reactor vessel supports have completely lost the load carrying capability. By demonstrating that the ASME code requirements governing Level D service limits are satisfied, the structural evaluation concludes that the Trojan reactor coolant loop (RCL) piping is capable of transferring loads to the steam generator (SG) supports and the reactor coolant pump (RCP) supports. A subsequent design margins to accommodate additional loads transferred to them through the RCL piping. The effects evaluation, employing a systems analysis approach, investigates initiating events and the reliability of the engineered safeguard systems as the RPV is subject to movements caused by the RPV support failure. The evaluation identifies a number of areas of additional safety concerns, but further investigation of the above safety concerns, however, concludes that a hypothetical failure of the Trojan RPV supports due to radiation embrittlement will not result in consequences of significant safety concerns

  14. Low-temperature embrittlement and fracture of metals with different crystal lattices – Dislocation mechanisms

    Directory of Open Access Journals (Sweden)

    V.M. Chernov

    2016-12-01

    Full Text Available The state of a low-temperature embrittlement (cold brittleness and dislocation mechanisms for formation of the temperature of a ductile-brittle transition and brittle fracture of metals (mono- and polycrystals with various crystal lattices (BCC, FCC, HCP are considered. The conditions for their formation connected with a stress-deformed state and strength (low temperature yield strength as well as the fracture breaking stress and mobility of dislocations in the top of a crack of the fractured metal are determined. These conditions can be met for BCC and some HCP metals in the initial state (without irradiation and after a low-temperature damaging (neutron irradiation. These conditions are not met for FCC and many HCP metals. In the process of the damaging (neutron irradiation such conditions are not met also and the state of low-temperature embrittlement of metals is absent (suppressed due to arising various radiation dynamic processes, which increase the mobility of dislocations and worsen the strength characteristics.

  15. PR-EDB: Power Reactor Embrittlement Data Base, Version 2. Revision 2, Program description

    Energy Technology Data Exchange (ETDEWEB)

    Stallmann, F.W.; Wang, J.A.; Kam, F.B.K.; Taylor, B.J. [Oak Ridge National Lab., TN (United States)

    1994-01-01

    Investigations of regulatory issues such as vessel integrity over plant life, vessel failure, and sufficiency of current codes Standard Review Plans (SRP`s) and Guides for license renewal can be greatly expedited by the use of a well-designed computerized data base. Also, such a data base is essential for the validation of embrittlement prediction models by researchers. The Power Reactor Embrittlement Data Base (PR-EDB) is such a comprehensive collection of data for US commercial nuclear reactors. The current version of the PR-EDB contains the Charpy test data that were irradiated in 252 capsules of 96 reactors and consists of 207 data points for heat-affected-zone (HAZ) materials (98 different HAZ), 227 data points for weld materials (105 different welds), 524 data points for base materials (136 different base materials), including 297 plate data points (85 different plates), 119 forging data points (31) different forging), and 108 correlation monitor materials data points (3 different plates). The data files are given in dBASE format and can be accessed with any computer using the DOS operating system. ``User-friendly`` utility programs are used to retrieve and select specific data, manipulate data, display data to the screen or printer, and to fit and plot Charpy impact data. The results of several studies investigated are presented in Appendix D.

  16. The deformation, oxidation and embrittlement of PWB fuel cladding in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Parsons, P.D.; Hindle, E.D.; Mann, C.A.

    1986-09-01

    The scope of this report is limited to the oxidation, embrittlement and deformation of PWB fuel in a loss of coolant accident in which the emergency core coolant systems operate in accordance with the design, ie accidents within the design basis of the plant. A brief description is given of the thermal hydraulic events during large and small breaks of the primary circuit, followed by the correct functioning and remedial action of the emergency core cooling systems. The possible damage to the fuel cladding during these events is also described. The basic process of oxidation of zircaloy-4 fuel cladding by steam, and the reaction kinetics of the oxidation are reviewed in detail. Variables having a possible influence on the oxidation kinetics are also considered. The embrittlement of zircaloy-4 cladding by oxidation is also reviewed in detail. It is related to fracture during the thermal shock of rewetting or by the ambient impact forces as a result of post-accident fuel handling. Criteria based both on total oxidation and on the detailed distribution of oxygen through the oxidised cladding wall are considered. The published computer codes for the calculation of oxygen concentration are reviewed in terms of the model employed and the limitations apparent in these models when calculating oxygen distribution in cladding in the actual conditions of a loss of coolant accident. The factors controlling the deformation and rupture of cladding in a loss of coolant accident are reviewed in detail. (author)

  17. Evaluation of hydrogen trapping mechanisms during performance of different hydrogen fugacity in a lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, R., E-mail: barrav@post.bgu.ac.il [Department of Material Science and Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Eliezer, D. [Department of Material Science and Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Glam, B.; Eliezer, S.; Moreno, D. [Soreq Nuclear Research Center, Yavne, 81800 (Israel)

    2015-11-05

    Hydrogen trapping behavior in a lean duplex stainless steel (LDS) is studied by means of thermal desorption spectrometry (TDS). The susceptibility of a metal to hydrogen embrittlement is directly related to the trap characteristics: source or sink (reversible or irreversible, respectively). Since trapping affects the metal's diffusivity, it has a major influence on the hydrogen assisted cracking (HAC) phenomenon. It is known from previously published works that the susceptibility will depend on the competition between reversible and irreversible traps; meaning a direct relation to the hydrogen's initial state in the steel. In this research the trapping mechanism of LDS, exposed to different hydrogen charging environments, is analyzed by means of TDS. The TDS analysis was supported and confirmed by means of X-ray diffraction (XRD), hydrogen quantitative measurements and microstructural observations. It was found that gaseous charging (which produces lower hydrogen fugacity) creates ∼22% higher activation energy for hydrogen trapping compared with cathodic charging (which produces higher hydrogen fugacity). These results are due to the different effects on the hydrogen behavior in LDS which causes a major difference in the hydrogen contents and different hydrogen assisted phase transitions. The highest activation energy value in the cathodic charged sample was ascribed to the dominant phase transformation of γ → γ{sup ∗}, whereas in the gaseous charged sample it was ascribed to the dominant formation of intermetallic compound, sigma (σ). The relation between hydrogen distribution in LDS and hydrogen trapping mechanism is discussed in details. - Highlights: • The relation between hydrogen distribution and trapping in LDS is discussed. • Hydrogen's initial state in LDS causes different microstructural changes. • Gaseous charged LDS creates higher trapping energy compared to cathodic charged LDS. • The dominant phase transformation in

  18. Mechanistic dissimilarities between environmentally-influenced fatigue-crack propagation at near-threshold and higher growth rates in lower-strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, S.; Ritchie, R. O.

    1981-11-01

    The role of hydrogen gas in influencing fatigue crack propagation is examined for several classes of lower strength pressure vessel and piping steels. Based on measurements over a wide range of growth rates from 10/sup -8/ to 10/sup -2/ mm/cycle, crack propagation rates are found to be significantly higher in dehumidified gaseous hydrogen compared to moist air in two distinct regimes of crack growth, namely (i) at the intermediate range of growth typically above approx. 10/sup -5/ mm/cycle, and (ii) at the near-threshold region below approx. 10/sup -6/ mm/cycle approaching lattice dimensions per cycle. Both effects are seen at maximum stress intensities (K/sub max/) far below the sustained-load threshold stress intensity for hydrogen-assisted cracking (K/sub Iscc/). Characteristics of environmentally influenced fatigue crack growth in each regime are shown to be markedly different with regard to fractography and the effect of such variables as load ratio and frequency. It is concluded that the primary mechanisms responsible for the influence of the environment in each regime are distinctly different. Whereas corrosion fatigue behavior at intermediate growth rates can be attributed to hydrogen embrittlement processes, the primary role of moist environments at near-threshold levels is shown to involve a contribution from enhanced crack closure due to the formation of crack surface corrosion deposits at low load ratios.

  19. Atomic-scale analysis of liquid-gallium embrittlement of aluminum grain boundaries

    International Nuclear Information System (INIS)

    Rajagopalan, M.; Bhatia, M.A.; Tschopp, M.A.; Srolovitz, D.J.; Solanki, K.N.

    2014-01-01

    Material strengthening and embrittlement are controlled by intrinsic interactions between defects, such as grain boundaries (GBs), and impurity atoms that alter the observed deformation and failure mechanisms in metals. In this work, we explore the role of atomistic-scale energetics on liquid-metal embrittlement of aluminum (Al) due to gallium (Ga). Ab initio and molecular mechanics were employed to probe the formation/binding energies of vacancies and segregation energies of Ga for 〈1 0 0〉, 〈1 1 0〉 and 〈1 1 1〉 symmetric tilt grain boundaries (STGBs) in Al. We found that the GB local arrangements and resulting structural units have a significant influence on the magnitude of the vacancy binding energies. For example, the mean vacancy binding energies for 〈1 0 0〉, 〈1 1 0〉 and 〈1 1 1〉 STGBs in the 1st layer was found to be −0.63, −0.26 and −0.60 eV, respectively. However, some GBs exhibited vacancy binding energies closer to bulk values, indicating interfaces with zero sink strength, i.e. these GBs may not provide effective pathways for vacancy diffusion. The results from the present work showed that the GB structure and the associated free volume also play significant roles in Ga segregation and the subsequent embrittlement of Al. The Ga mean segregation energies for 〈1 0 0〉, 〈1 1 0〉 and 〈1 1 1〉 STGBs in the 1st layer were found to be −0.21, −0.09 and −0.21 eV, respectively, suggesting a stronger correlation between the GB structural unit, its free volume and the segregation behavior. Furthermore, as the GB free volume increased, the difference in segregation energies between the 1st layer and the 0th layer increased. Thus, the GB character and free volume provide an important key to understanding the degree of anisotropy in various systems. The overall characteristic Ga absorption length scale was found to be about ∼10, 8 and 12 layers for 〈1 0 0〉, 〈1 1 0〉 and 〈1 1 1〉 STGBs, respectively. In addition, a

  20. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  1. Development of membranes for hydrogen separation: Pd-coated V-10Pd

    Energy Technology Data Exchange (ETDEWEB)

    Paglieri, Stephen N [Los Alamos National Laboratory; Wermer, Joseph R [Los Alamos National Laboratory; Buxbaum, Robert E [REB RESEARCH AND CONSULTING; Ciocco, Michael V [NETL; Howard, Bret H [NETL; Morreale, Bryan D [NETL

    2009-01-01

    Numerous Group IVB and VB alloys were prepared and tested as potential membrane materials but most of these materials were brittle or exhibited cracking during hydrogen exposure. One of the more ductile alloys, V-10Pd (at. %), was fabricated into a thin (107-{micro}m thick) composite membrane coated with 100 nm of Pd on each side. The material was tested for hydrogen permeability, resistance to hydrogen embrittlement, and long term hydrogen flux stability. The hydrogen permeability, {phi}, of the V-10Pd membrane was 3.86 x 10{sup -8} mol H{sub 2} m{sup -1} s{sup -1} Pa{sup -0.5} (avg. of three different samples) at 400 C, which is slightly higher than the permeability of Pd-23Ag at that temperature. A 1400 h hydrogen flux test at 400 C demonstrated that the rate of metallic interdiffusion was slow between the V-10Pd foil and the 100-nm-thick Pd coating on the surface. However, at the end of testing the membrane cracked at 118 C because of hydrogen embrittlement.

  2. Alkene hydrogenation activity of enoate reductases for an environmentally benign biosynthesis of adipic acid† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc02842j Click here for additional data file.

    Science.gov (United States)

    Khusnutdinova, Anna N.; Flick, Robert; Kim, Taeho; Bornscheuer, Uwe T.

    2017-01-01

    Adipic acid, a precursor for Nylon-6,6 polymer, is one of the most important commodity chemicals, which is currently produced from petroleum. The biosynthesis of adipic acid from glucose still remains challenging due to the absence of biocatalysts required for the hydrogenation of unsaturated six-carbon dicarboxylic acids to adipic acid. Here, we demonstrate the first enzymatic hydrogenation of 2-hexenedioic acid and muconic acid to adipic acid using enoate reductases (ERs). ERs can hydrogenate 2-hexenedioic acid and muconic acid producing adipic acid with a high conversion rate and yield in vivo and in vitro. Purified ERs exhibit a broad substrate spectrum including aromatic and aliphatic 2-enoates and a significant oxygen tolerance. The discovery of the hydrogenation activity of ERs contributes to an understanding of the catalytic mechanism of these poorly characterized enzymes and enables the environmentally benign biosynthesis of adipic acid and other chemicals from renewable resources. PMID:28616142

  3. Hydrogenation apparatus

    Science.gov (United States)

    Friedman, Joseph [Encino, CA; Oberg, Carl L [Canoga Park, CA; Russell, Larry H [Agoura, CA

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  4. NATO International Symposium on the Electronic Structure and Properties of Hydrogen in Metals

    CERN Document Server

    Satterthwaite, C

    1983-01-01

    Hydrogen is the smallest impurity atom that can be implanted in a metallic host. Its small mass and strong interaction with the host electrons and nuclei are responsible for many anomalous and interesting solid state effects. In addition, hydrogen in metals gives rise to a number of technological problems such as hydrogen embrittlement, hydrogen storage, radiation hardening, first wall problems associated with nuclear fusion reactors, and degradation of the fuel cladding in fission reactors. Both the fundamental effects and applied problems have stimulated a great deal of inter­ est in the study of metal hydrogen systems in recent years. This is evident from a growing list of publications as well as several international conferences held in this field during the past decade. It is clear that a fundamental understanding of these problems re­ quires a firm knowledge of the basic interactions between hydrogen, host metal atoms, intrinsic lattice defects and electrons. This understanding is made particularly di...

  5. Embrittlement and anodic process in stress corrosion cracking: study of the influent micro-mechanical parameters; Fragilisation et processus anodiques en corrosion sous contrainte: etude des parametres micro-mecaniques influents

    Energy Technology Data Exchange (ETDEWEB)

    Tinnes, J.Ph

    2006-11-15

    We study the influence of local mechanical parameters on crack propagation in Stress Corrosion Cracking, at the scale of the microstructure. Two systems are compared: the CuAl{sub 9}Ni{sub 3}Fe{sub 2} copper-aluminium alloy in synthetic sea water under cathodic polarization, where the crack propagation mechanism is related to strain-assisted anodic dissolution, and the 316L austenitic stainless steel in MgCl{sub 2} solution, where embrittlement mechanisms related to hydrogen effects prevail. We use micro-notched tensile specimen that allow to study isolated short cracks. These experiments are modelled by means of finite elements calculations, and further characterized by Electron Back scattered Diffraction (EBSD) in the case of the 316L alloy. In terms of the local mechanical parameters that control propagation, fundamental differences are outlined between the two systems. They are discussed from the viewpoint of the available models of Stress Corrosion Cracking. (author)

  6. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Ambrosini, G.; Ciancia, A.; Pede, G.; Brighigna, M.

    1993-01-01

    Hydrogen fueled vehicles may just be the answer to the air pollution problem in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives. This paper examines the feasibility of hydrogen as an automotive fuel by analyzing the following aspects: the chemical-physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems; current production technologies and commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. With reference to recent trial results being obtained in the USA, an assessment is also made of the feasibility of the use of methane-hydrogen mixtures as automotive fuels. The paper concludes with a review of progress being made by ENEA (the Italian Agency for New Technology, Energy and the Environment) in the development of fuel storage and electronic fuel injection systems for hydrogen powered vehicles

  7. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Dini, D.; Ciancia, A.; Pede, G.; Sglavo, V.; ENEA, Rome

    1992-01-01

    An assessment of the technical/economic feasibility of the use of hydrogen as an automotive fuel is made based on analyses of the following: the chemical- physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems - with water vapour injection, cryogenic injection, and the low or high pressure injection of hydrogen directly into the combustion chamber; the current commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. The paper concludes that, considering current costs for hydrogen fuel production, distribution and use, at present, the employment of hydrogen fuelled vehicles is feasible only in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives

  8. Effect of environmental exposure to hydrogen sulfide on central nervous system and respiratory function: a systematic review of human studies.

    Science.gov (United States)

    Lim, Eunjung; Mbowe, Omar; Lee, Angela S W; Davis, James

    2016-01-01

    Assessment of the health effects of low-level exposure to hydrogen sulfide (H2S) on humans through experiments, industrial, and community studies has shown inconsistent results. To critically appraise available studies investigating the effect of H2S on the central nervous system (CNS) and on respiratory function. A search was conducted in 16 databases for articles published between January 1980 and July 2014. Two researchers independently evaluated potentially relevant papers based on a set of inclusion/exclusion criteria. Twenty-seven articles met the inclusion criteria: 6 experimental, 12 industry-based studies, and 10 community-based studies (one article included both experimental and industry-based studies). The results of the systematic review varied by study setting and quality. Several community-based studies reported associations between day-to-day variations in H2S levels and health outcomes among patients with chronic respiratory conditions. However, evidence from the largest and better-designed community-based studies did not support that chronic, ambient H2S exposure has health effects on the CNS or respiratory function. Results from industry-based studies varied, reflecting the diversity of settings and the broad range of H2S exposures. Most studies did not have individual measurements of H2S exposure. The results across studies were inconsistent, justifying the need for further research.

  9. Further application of the cleavage fracture stress model for estimating the T{sub 0} of highly embrittled ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasan, P.R.

    2016-02-15

    The semi-empirical cleavage fracture stress model (CFS), based on the microscopic cleavage fracture stress, s{sub f}, for estimating the ASTM E1921 reference temperature (T{sub 0}) of ferritic steels from instrumented impact testing of unprecracked Charpy V-notch specimens is further confirmed by test results for additional steels, including steels highly embrittled by thermal aging or irradiation. In addition to the ferrite-pearlite, bainitic or tempered martensitic steels (which was examined earlier), acicular or polygonal ferrite, precipitation-strengthened or additional simulated heat affected zone steels are also evaluated. The upper limit for the applicability of the present CFS model seems to be T{sub 41J} ∝160 to 170 C or T{sub 0} or T{sub Qcfs} (T{sub 0} estimate from the present CFS model) ∝100 to 120 C. This is not a clear-cut boundary, but indicative of an area of caution where generation and evaluation of further data are required. However, the present work demonstrates the applicability of the present CFS model even to substantially embrittled steels. The earlier doubts expressed about T{sub Qcfs} becoming unduly non-conservative for highly embrittled steels has not been fully substantiated and partly arises from the necessity of modifications in the T{sub 0} evaluation itself at high degrees of embrittlement suggested in the literature.

  10. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  11. Innovative direct energy conversion systems using electronic adiabatic processes of electron fluid in solid conductors: new plants of electrical power and hydrogen gas resources without environmental pollutions

    International Nuclear Information System (INIS)

    Kondoh, Y.; Kondo, M.; Shimoda, K.; Takahashi, T.

    2001-07-01

    It is shown that using a novel recycling process of the environmental thermal energy, innovative permanent auto-working direct energy converter systems (PA-DEC systems) from the environmental thermal to electrical and/or chemical potential (TE/CP) energies, abbreviated as PA-TE/CP-DEC systems, can be used for new auto-working electrical power plants and the plants of the compressible and conveyable hydrogen gas resources at various regions in the whole world, with contributions to the world peace and the economical development in the south part of the world. It is shown that the same physical mechanism by free electrons and electrical potential determined by temperature in conductors, which include semiconductors, leads to the Peltier effect and the Seebeck one. It is experimentally clarified that the long distance separation between two π type elements of the heat absorption (HAS) and the production one (HPS) of the Peltier effect circuit system or between the higher temperature side (HTS) and the lower one (LTS) of the Seebeck effect circuit one does not change in the whole for the both effects. By using present systems, we do not need to use petrified fuels such as coals, oils, and natural gases in order to decrease the greenhouse effect by the CO 2 surrounding the earth. Furthermore, we do not need plats of nuclear fissions that left radiating wastes, i.e., with no environmental pollutions. The PA-TE/CP-DEC systems can be applicable for several km scale systems to the micro ones, such as the plants of the electrical power, the compact transportable hydrogen gas resources, a large heat energy container, which can be settled at far place from thermal energy absorbing area, the refrigerators, the air conditioners, home electrical apparatuses, and further the computer elements. It is shown that the simplest PA-TE/CP-DEC system can be established by using only the Seebeck effect components and the resolving water ones. It is clarified that the externally applied

  12. Results from Project on Enhancement of Aging Management and Maintenance in Nuclear Power Plants - Irradiation Embrittlement of RPV Steels -

    International Nuclear Information System (INIS)

    Abe, Hiroaki; Onizawa, Kunio; Katsuyama, Jinya; Murakami, Kenta; Iwai, Takeo; Iwata, Tadao; Katano, Yoshio; Sekimura, Naoto; Nagai, Yasuyoshi; Toyama, Takeshi; Tamura, Satoshi

    2012-01-01

    As one of the NISA Project on Enhancement of Aging Management and Maintenance in Nuclear Power Plants, we have performed research on the irradiation embrittlement of reactor pressure vessel (RPV) steels, especially focusing on irradiation embrittlement on heat affected zone (HAZ) and on applications of ion beams to deduce fundamental insights irradiation-induced embrittlement. The results obtained from the project are summarized as follows. In order to obtain the technical basis to judge the necessity of surveillance specimens from HAZ, the neutron irradiation program was performed at JRR-3, JAEA. The samples were carefully designed based on the insights from finite element analysis, metallography, 3D atom probe and positron annihilation methods, and were fabricated so as to simulate both heat treatment history and microstructure for typical HAZ from as-fabricated RPV steels which also have variation of impurity levels. The fracture toughness of the unirradiated HAZ specimens was equivalent to or better than that of base metals. Irradiation embrittlement and hardening were roughly identical to those of base metals, while some of the fine-grained HAZ microstructure was susceptible to it. The probabilistic fracture mechanics analysis was applied to the structural integrity assessment taking into account the heterogeneous microstructure as well as susceptibility for irradiation embrittlement of each HAZ microstructure under the variation of welding parameter and PTS condition. It was shown that crack propagation at the fine-grained HAZ, but the discontinuous distribution of the microstructure retards the further propagation. For the precise correlation of irradiation embrittlement of RPV steels for the long term operations, accumulations of high-dose data are required. Ion beam irradiation is one of the solutions for the regime and for mechanism-based descriptions. Another interest of ours was to describe irradiation hardening and embrittlement in terms of

  13. The role of tin in the irradiation embrittlement of PWR pressure vessel steels

    International Nuclear Information System (INIS)

    Jones, R.B.; Buswell, J.T.

    1987-12-01

    An analysis has been performed of the influence of up to 0.020 w/o tin on the change in mechanical properties of PWR pressure vessel steels following MTR irradiation at 288 0 C to 2.5-5.0 x 10 19 n · cm -2 (E > 1.0 MeV). The properties examined were the impact transition temperature shifts (ΔT) and hardness changes (ΔHsub(v)). The increment in irradiation embrittlement due to tin (ΔT/ΔSn) increased from 800 0 C/1 w/o Sn to 2100 0 C/1 w/o Sn as the residual impurity levels in the steel rose from 0.02 w/o Cu, 0.008 w/o P to 0.09 w/o Cu, 0.018 w/o P respectively. Further increases in the residual copper content from 0.10 to 0.30 w/o, or increases to 0.028 w/o phosphorus, caused ΔT/ΔSn to fall eventually to zero. Hardness changes due to tin additions (ΔHsub(v)/ΔSn) were a maximum in the purest steels but fell progressively to low values as the residual copper and phosphorus levels were raised. Similar hardening and embrittlement effects due to additions of tin have been found in a 3.5%NiCr steel, irradiated to ∼ 10 19 n · cm -2 at 130 0 C; this steel failed with an intergranular-ductile fracture transition. Interpretations of the role of tin wholly in terms of a hardening process or a combined hardening and grain boundary embrittlement process were unsuccessful and some additional experiments have been suggested for clarification. The practical implications involve the current CEGB PWR vessel steel specification; the permitted level of tin (0.010 w/o) is estimated to produce an increment in ΔT = 10 0 C at the end-of-life dose for the vessel belt-line forging. This represents ∼ 20% of the maximum ΔT value anticipated. (author)

  14. The role of pressure vessel embrittlement in the long term operation of nuclear power plants

    International Nuclear Information System (INIS)

    Ballesteros, A.; Ahlstrand, R.; Bruynooghe, C.; Estorff, U. von; Debarberis, L.

    2012-01-01

    Highlights: ► Relevant open scientific issues for the long term operation of RPVs are discussed (flux effect, late blooming phases, etc.). ► Several European and American research programmes dealing with these open issues are reviewed. ► A method for consolidation and preservation of knowledge in this field is presented. - Abstract: The lack of new build of plants over the last twenty years has resulted in a switch within the industry from design, construction and development of new systems to the strengthening of safety systems and to the life extension, or long term operation (LTO), of existing reactors. The most relevant component of any nuclear power plan (NPP) is the reactor pressure vessel (RPV). This is because currently the RPV is still considered irreplaceable or prohibitively expensive to replace. This means, that if it degrades sufficiently, it could be the operational life limiting feature of the NPP. A RPV operational life of 60 years is being considered frequently by many utilities in their plant life management programmes. Areas of improvement facing long term operation are the reduction of uncertainties in the embrittlement parameters of irradiated vessels, and the development of embrittlement trend curves at high fluence levels, where surveillance data are scarce. Different techniques can be used to upgrade the surveillance programmes, as the use of miniature or reconstituted specimens and the application of best estimate assessment tools (e.g. Master Curve). Several relevant international research projects are on-going or have been proposed to clarify the material condition of long operated vessels. Knowledge management is a complementary tool, but not for it less important. The general context for LTO of RPVs is presented in this paper. Starting with a review of relevant embrittlement issues still open, followed by presenting the different techniques and tools that can be used to support LTO, and summarising the scopes of relevant European

  15. Hydrogen from Waste Tyres

    OpenAIRE

    Ibrahim F. Elbaba; Paul T. Williams

    2012-01-01

    Hydrogen is regarded to play an important role in future energy systems because it can be produced from abundant resources and its combustion only generates water. The disposal of waste tyres is a major problem in environmental management throughout the world. The use of waste materials as a source of hydrogen is particularly of interest in that it would also solve a waste treatment problem. There is much interest in the use of alternative feedstocks for the production of...

  16. Mechanical behavior of NiTi arc wires under pseudoelastic cycling and cathodically hydrogen charging

    Science.gov (United States)

    Sarraj, R.; Hassine, T.; Gamaoun, F.

    2018-01-01

    NiTi wires are mainly used to design orthodontic devices. However, they may be susceptible to a delayed fracture while they are submitted to cyclic loading with the presence of hydrogen in the oral cavity. Hydrogen may cause the embrittlement of the structure, leading to lower ductility and to a change in transformation behavior. The aim of the present study is to predict the NiTi behavior under cyclic loading with hydrogen charging. One the one hand, samples are submitted to superelastic cyclic loading, which results in investigating their performance degradations. On the other hand, after hydrogen charging, cyclic tensile aging tests are carried out on NiTi orthodontic wires at room temperature in the air. During cyclic loading, we notice that the critical stress for the martensite transformation evolves, the residual strain is accumulated in the structure and the hysteresis loop changes. Thus, via this work, we can assume that the embrittlement is due to the diffusion of hydrogen and the generation of dislocations after aging. The evolution of mechanical properties of specimens becomes more significant with hydrogen charging rather than without it.

  17. Atomistic calculations of hydrogen interactions with Ni3Al grain boundaries and Ni/Ni3Al interfaces

    International Nuclear Information System (INIS)

    Baskes, M.I.; Angelo, J.E.; Moody, N.R.

    1995-01-01

    Embedded Atom Method (EAM) potentials have been developed for the Ni/Al/H system. The potentials have been fit to numerous properties of this system. For example, these potentials represent the structural and elastic properties of bulk Ni, Al, Ni 3 Al, and NiAl quite well. In addition the potentials describe the solution and migration behavior of hydrogen in both nickel and aluminum. A number of calculations using these potentials have been performed. It is found that hydrogen strongly prefers sites in Ni 3 Al that are surrounded by 6 Ni atoms. Calculations of the trapping of hydrogen to a number of grain boundaries in Ni 3 Al have been performed as a function of hydrogen chemical potential at room temperature. The failure of these bicrystals under tensile stress has been examined and will be compared to the failure of pure Ni 3 Al boundaries. Boundaries containing a preponderance of nickel are severely weakened by hydrogen. In order to investigate the potential embrittlement of γ/γ' alloys, trapping of hydrogen to a spherical Ni 3 Al precipate in nickel as a function of chemical potential at room temperature has been calculated. It appears that the boundary is not a strong trap for hydrogen, hence embrittlement in these alloys is not primarily due to interactions of hydrogen with the γ/γ interface

  18. Mechanical spectroscopy of reactor-pressure-vessel steel embrittlement: a progress report

    International Nuclear Information System (INIS)

    Van Ouytsel, K.

    1998-08-01

    An enhanced surveillance strategy for testing the fracture toughness of reactor-pressure-vessel steel embrittlement is described. Microstructural investigation in support of damage modelling is an essential element in this enhanced strategy. Temperature-dependent experiments are very sensitive to differences in chemical composition and to effects of neutron irradiation as well as thermal ageing. Amplitude-dependent experiments can be related to tensile test results and correspond to a model for the yield stress. A full range of experiments were carried out on base and weld metal from the Doel-I-II power plants. The results have indicated that internal friction yields information which cannot always be detected by means of standard testing techniques. An inverted torsion pendulum for measuring internal friction has been constructed

  19. Lower Length Scale Model Development for Embrittlement of Reactor Presure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report summarizes the lower-length-scale effort during FY 2016 in developing mesoscale capabilities for microstructure evolution, plasticity and fracture in reactor pressure vessel steels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation induced defect accumulation and irradiation enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulation and solute precipitation are summarized. A crystal plasticity model to capture defect-dislocation interaction and a damage model for cleavage micro-crack propagation is also provided.

  20. Irradiation embrittlement monitoring programmes in the Slovak Republic Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kupca, L.

    2002-01-01

    The main results achieved from the irradiation embrittlement monitoring programmes application on the RPV's WWER-440 in the Slovak Republic are presented in the paper. Four types of surveillance programmes were (are) realized in Slovak NPP's: 1) In Jaslovske Bohunice V-2 NPP (Units 3 and 4), the original 'Standard Surveillance Specimen Program' (SSSP) was finished; 2) 'Extended Surveillance Specimen Program' (ESSP), which is in progress now, was prepared with aim to validate the SSSP results; 3) For the Mochovce NPP Unit 1 and 2 new surveillance program 'Modern Surveillance Specimen Program' (MSSPI was completely prepared; 4) For the Bohunice V-1 NPP, 'New Surveillance Specimen Program' which is coordinated by IAEA, was prepared and is under realization. Schedule of the SSP mentioned above and the planned activities in the future are presented in this paper too. (author)

  1. Effects of GBCD on cold work embrittlement of high strength interstitial free steels

    International Nuclear Information System (INIS)

    Cao, S.Q.; Zhang, J.X.; Wu, J.S.; Chen, J.G.

    2006-01-01

    The effects of grain boundary character distribution (GBCD) on cold work embrittlement (CWE) of P-added high strength interstitial-free (IF) steels have been evaluated using an electron backscatter diffraction (EBSD) technique. It has been found that cracks propagation along the high-energy continuous random boundaries resulted in the CWE, and that low-angle or low-Σ CSL boundaries can offer obstacles to the propagation of cracks. The results indicate that the CWE of high strength IF steels can be improved by an optimum GBCD which is described as a high frequency of low-angle or low-Σ CSL boundaries, and a more discontinuous random boundary network

  2. The flow effect in the irradiation embrittlement in pressure vessel steels of nuclear power plants

    International Nuclear Information System (INIS)

    Kempf, Rodolfo A.; Cativa Tolosa, Sebastian; Fortis, Ana M.

    2009-01-01

    This paper deals with the advances in the study of the mechanical behavior of the Reactor Pressure Vessel steels under accelerate irradiations. The objective is to study the effect of lead factors on the interpretation of the mechanisms that induced the embrittlement of the RPV, like those of the reactors Atucha II and CAREM. It is described a device designed to irradiate Charpy specimens with V notch of SA-508 type 3 steel at power reactor temperature, installed in the RA-1 reactor. It is presented also an automatic digital image processing technique for partitioning Charpy fracture surface into regions with a clear physical meaning and appropriate for the work in hot cells. The aim is to obtain the fracture behavior of irradiated specimens with different lead factors in the range of high fluencies and to know the dependence with the composition of the alloy and with the diffusion of other alloy elements. (author)

  3. Mechanical spectroscopy of reactor-pressure-vessel steel embrittlement: a progress report

    Energy Technology Data Exchange (ETDEWEB)

    Van Ouytsel, K

    1998-08-01

    An enhanced surveillance strategy for testing the fracture toughness of reactor-pressure-vessel steel embrittlement is described. Microstructural investigation in support of damage modelling is an essential element in this enhanced strategy. Temperature-dependent experiments are very sensitive to differences in chemical composition and to effects of neutron irradiation as well as thermal ageing. Amplitude-dependent experiments can be related to tensile test results and correspond to a model for the yield stress. A full range of experiments were carried out on base and weld metal from the Doel-I-II power plants. The results have indicated that internal friction yields information which cannot always be detected by means of standard testing techniques. An inverted torsion pendulum for measuring internal friction has been constructed.

  4. Irradiation embrittlement of reactor pressure vessel steel outside the astm specification A508 CL2

    Science.gov (United States)

    Pachur, D.; Krawczynski, S. J.; Derz, H.; Pott, G.

    1990-04-01

    Radiation embrittlement of reactor pressure vessel steels is of considerable significance for safety engineering. Steel manufacturers must therefore comply with specifications defined by national design codes. The extent to which a steel deviating from the specification is influenced by irradiation is being examined under the German Research Programme on the Integrity of Reactor Components. Charpy-V specimens were taken from a forged steel block longitudinally and vertically to the direction of main deformation and irradiated in the FRJ-1 research reactor at a temperature of 288 °C corresponding to the operating temperature of power reactors. The neutron fluences obtained ranged between 0.8 × 10 19 and 8 × 10 19n/ cm2. Instrumented pendulum impact tests have been evaluated and the load signals measured were analysed, fitting and calculating transition temperature curves and trend curves.

  5. Neutron embrittlement of the reactor vessel in Borssele as determined from Charpy specimens

    International Nuclear Information System (INIS)

    Oosterkamp, W.J.; Dufour, L.B.

    1983-01-01

    Two sets of Charpy specimens have been retrieved from the reactor in the nuclear power plant at Borssele after two and four cycles of operation, respectively. The neutron fluxes at the sample positions and at the vessel wall have been calculated with a point-kernel method and S 2 calculations. The calculated fluxes at the two specimen positions are in fair agreement with fluences measured by threshold detectors. The Reference Temperature of Nil Ductility has been determined from the Charpy tests by a tan-h fit procedure. An extrapolation to a 40-year vessel life has been made on the basis of a square-root dependence of the change in the reference temperature with effective full-power years. Under these assumptions the heat-affected zone material will reach 296 K. The other materials will remain below 280 K. The vessel life therefore is not limited by embrittlement. (orig.)

  6. Analysis of Published Hydrogen Vehicle Safety Research

    Science.gov (United States)

    2010-02-01

    Hydrogen-fueled vehicles (HFVs) offer the promise of providing safe, clean, and efficient transportation in a setting of rising fuel prices and tightening environmental regulations. However, the technologies needed to store or manufacture hydrogen on...

  7. Severe Embrittlement of Neutron Irradiated Austenitic Steels Arising from High Void Swelling

    International Nuclear Information System (INIS)

    Neustroev, V.S.; Garner, F.

    2007-01-01

    Full text of publication follows: Data are presented from BOR-60 irradiations showing that significant radiation-induced swelling causes severe embrittlement in austenitic stainless steels, reducing the service life of structural components. Similar loss of ductility is expected when swelling arises in fusion and light water reactor environments. Above 7-16% swelling there is complete loss of ductility, with the onset of ductility loss beginning at lower swelling in ring-pull tensile tests than for flat tensile specimens. For steels that develop extensive precipitation during irradiation, the critical swelling level is even lower. A model is presented to demonstrate the effect of voids acting alone to produce the embrittlement. Although voids are not very effective hardeners, they are very effective to generate stress concentrations between voids. The stress concentration ratio increases strongly when the void diameter exceeds ∼40% of the void-to-void separation distance. When the volume fraction of voids is rather high (about 16 % and higher), a geometric situation develops where it is possible to create an intense field of deformation glide planes residing at an angle of 45 deg. to the void-to-void axis. Significant localized flow then proceeds on these planes for specimen stress levels that are significantly lower than the yield stress. Voids also segregate nickel to their surfaces such that flow localization occurs in the low-nickel inter-void regions to produce strain-induced martensite, which is further accelerated by stress concentrations at the advancing crack tip, leading to catastrophic failure. (authors)

  8. Impact of radiation embrittlement on integrity of pressure vessel supports for two PWR plants

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Pennell, W.E.; Robinson, G.C.; Nanstad, R.K.

    1989-01-01

    Recent data from the HFIR vessel surveillance program indicate a substantial radiation embrittlement rate effect at low irradiation temperatures (/approximately/120/degree/F) for A212-B, A350-LF3, A105-II, and corresponding welds. PWR vessel supports are fabricated of similar materials and are subjected to the same low temperatures and fast neutron fluxes (10 8 to 10 9 neutrons/cm 2 /center dot/s, E > 1.0 MeV) as those in the HFIR vessel. Thus, the embrittlement rate of these structures may be greater than previously anticipated. A study sponsored by the NRC is under way at ORNL to determine the impact of the rate effect on PWR vessel-support life expectancy. The scope includes the interpretation and application of the HFIR data, a survey of all light-water-reactor vessel support designs, and a structural and fracture-mechanics analysis of the supports for two specific PWR plants of particular interest with regard to a potential for support failure as a result of propagation of flaws. Calculations performed thus far indicate best-estimate critical flaw sizes, corresponding to 32 EFPY, of /approximately/0.2 in. for one plant and /approximately/0.4 in. for the other. These flaw sizes are small enough to be of concern. However, it appears that low-cycle fatigue is not a viable mechanism for creation of flaws of this size, and thus, presumably, such flaws would have to exist at the time of fabrication. 59 refs., 128 figs., 49 tabs

  9. Hydrogen as a New Alloying Element in Metals

    International Nuclear Information System (INIS)

    Shapovalov, Vladimir

    1999-01-01

    Hydrogen was regarded as a harmful impurity in many alloys and particularly in steels where it gives rise to a specific type of embrittlement and forms various discontinuities like flakes and blowholes. For this reason, the researcher efforts were mainly focused on eliminating hydrogen's negative impacts and explaining its uncommonly high diffusivity in condensed phases. Meanwhile, positive characteristics of hydrogen as an alloying element remained unknown for quite a long time. Initial reports in this field did not appear before the early 1970s. Data on new phase diagrams are given for metal-hydrogen systems where the metal may or may not form hydrides. Various kinds of hydrogen impact on structure formation in solidification, melting and solid-solid transformations are covered. Special attention is given to the most popular alloys based on iron, aluminum, copper, nickel, magnesium and titanium. Detailed is what is called gas-eutectic reaction resulting in a special type of gas-solid structure named gasarite. Properties and applications of gasars - gasaritic porous materials - are dealt with. Various versions of solid-state alloying with hydrogen are discussed that change physical properties and fabrication characteristics of metals. Details are given on a unique phenomenon of anomalous spontaneous deformation due to combination of hydrogen environment and polymorphic transformation. All currently known versions of alloying with hydrogen are categorized for both hydride-forming and non-hydrid forming metals

  10. Modelling of discrete TDS-spectrum of hydrogen desorption

    International Nuclear Information System (INIS)

    Rodchenkova, Natalia I; Zaika, Yury V

    2015-01-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition. (paper)

  11. Hydrogen - From hydrogen to energy production

    International Nuclear Information System (INIS)

    Klotz, Gregory

    2005-01-01

    More than a century ago, Jules Verne wrote in 'The Mysterious Island' that water would one day be employed as fuel: 'Hydrogen and oxygen, which constitute it, used singly or together, will furnish an inexhaustible source of heat and light'. Today, the 'water motor' is not entirely the dream of a writer. Fiction is about to become fact thanks to hydrogen, which can be produced from water and when burned in air itself produces water. Hydrogen is now at the heart of international research. So why do we have such great expectations of hydrogen? 'Hydrogen as an energy system is now a major challenge, both scientifically and from an environmental and economic point of view'. Dominated as it is by fossil fuels (oil, gas and coal), our current energy system has left a dual threat hovering over our environment, exposing the planet to the exhaustion of its natural reserves and contributing to the greenhouse effect. If we want sustainable development for future generations, it is becoming necessary to diversify our methods of producing energy. Hydrogen is not, of course, a source of energy, because first it has to be produced. But it has the twofold advantage of being both inexhaustible and non-polluting. So in the future, it should have a very important role to play. (author)

  12. A study of hydrogen effects on fracture behavior of radioactive waste storage tanks. Final report, October 1992-September 1994

    International Nuclear Information System (INIS)

    Murty, K.L.; Elleman, T.S.

    1994-01-01

    The processing of high-level radioactive wastes now stored at Hanford and Savannah River Laboratories will continue over many years and it will be necessary for some of the liquids to remain in the tanks until well into the next century. Continued tank integrity is therefore an issue of prime importance and it will be necessary to understand any processes which could lead to tank failure. Hydrogen embrittlement resulting from absorption of radiolytic hydrogen could alter tank fracture behavior and be an issue in evaluating the effect of stresses on the tanks from rapid chemical oxidation-reduction reactions. The intense radiation fields in some of the tanks could be a factor in increasing the hydrogen permeation rates through protective oxide films on the alloy surface and be an additional factor in contributing to embrittlement. The project was initiated in October 1992 for a two year period to evaluate hydrogen uptake in low carbon steels that are representative of storage tanks. Steel specimens were exposed to high gamma radiation fields to generate radiolytic hydrogen and to potentially alter the protective surface films to increase hydrogen uptake. Direct measurements of hydrogen uptake were made using tritium as a tracer and fracture studies were undertaken to determine any alloy embrittlement. The rates of hydrogen uptake were noted to be extremely low in the experimental steels. Gamma radiation did not reveal any significant changes in the mechanical and fracture characteristics following exposures as long as a month. It is highly desirable to investigate further the tritium diffusion under stress in a cracked body where stress-assisted diffusion is expected to enhance these rates. More importantly, since welds are the weakest locations in the steel structures, the mechanical and fracture tests should be performed on welds exposed to tritium with and without stressed crack-fronts

  13. Hydrogen Absorption Induced Slow Crack Growth in Austenitic Stainless Steels for Petrochemical Pressure Vessel Industries

    Directory of Open Access Journals (Sweden)

    Ronnie Rusli

    2011-05-01

    Full Text Available Type 304Land type 309 austenitic stainless steels were tested either by exposed to gaseous hydrogen or undergoing polarized cathodic charging. Slow crack growth by straining was observed in type 304L, and the formation of α‘ martensite was indicated to be precursor for such cracking. Gross plastic deformation was observed at the tip of the notch, and a single crack grew slowly from this region in a direction approximately perpendicular to the tensile axis. Martensite formation is not a necessary condition for hydrogen embrittlement in the austenitic phase.

  14. Europe - the first hydrogen economy?

    International Nuclear Information System (INIS)

    Hart, D.

    1999-01-01

    An examination of the state of research relating to hydrogen production and utilization indicates that interest in hydrogen from major companies in Europe has increased by several orders of magnitude in recent years. Of the three major areas where a hydrogen economy could be expected to start, namely, Japan, the United States and Europe, the latter may have advantages in diversity of resources, attitudes towards environmental issues and specific fiscal and regulatory structures. Examples of ongoing research and development projects in Europe include Norway's hydrogen combustion turbine to run on hydrogen from decarbonised natural gas, a project in the Netherlands involving mixing hydrogen and methane in the natural gas grid and a variety of projects involving liquid hydrogen refuelling, hydrogen aircraft, hydrogen fuelling stations and fuel cell vehicle development. There are also ongoing projects in carbon sequestration and hydrogen production for power generation and vehicle use. The author's main contention is that the combination of natural surroundings, environmental problems and attitudes, and business and government frameworks strongly suggest that Europe may be the first to have a hydrogen-based economy. 8 refs

  15. Effect of Hot Mill Scale on Hydrogen Embrittlement of High Strength Steels for Pre-Stressed Concrete Structures

    Directory of Open Access Journals (Sweden)

    Marina Cabrini

    2018-03-01

    Full Text Available The presence of a conductive layers of hot-formed oxide on the surface of bars for pre or post-compressing structures can promote localized attacks as a function of pH. The aggressive local environment in the occluded cells inside localized attacks has as consequence the possibility of initiation of stress corrosion cracking. In this paper, the stress corrosion cracking behavior of high strength steels proposed for tendons was studied by means of Constant Load (CL tests and Slow Strain Rate (SSR tests. Critical ranges of pH for cracking were verified. The promoting role of localized attack was confirmed. Further, electrochemical tests were performed on bars in as received surface conditions, in order to evaluate pitting initiation. The adverse effect of mill scale was recognized.

  16. Stress corrosion cracking and hydrogen embrittlement behaviour of high strength duplex and austenitic stainless steels in simulated concrete pore solution

    OpenAIRE

    GRIMAULT, Benoît; GAILLET, Laurent; DRISSI-HABTI, Monssef; MANTEL, Marc; CHAUVEAU, Eric; CHAUSSADENT, Thierry

    2011-01-01

    Stainless steels are playing an increasingly role in civil engineering, especially in coastal and marine constructions, where the concentration of chloride ions is higher. Their use as concrete reinforcement rebar is an interesting example of that idea. However, although some studies about the use of stainless steels in prestressing are emerging, no realistic realization has been performed. This might be due to technical lock as the high mechanical strength needed for prestressing seems to be...

  17. Surface effects induced by cathodic hydrogenation in type AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Silva, T.C.V.

    1984-08-01

    Cathodic hydrogen charging of type AISI 304 stainless steel modified its austenitic structure, giving rise to the formation of two new martensitic phases and the appearance of cracks, in most cases delayed. As electrolyte a 1 N H 2 S O 4 solution containing As 2 O 3 was employed. The cathodic hydrogenation was carries out at room temperature. The transformed phases were identified with black and white and coloured metallographic techniques, as well as by X-ray diffraction. The effect of cathodic hydrogenation in samples uniaxially tensile tested with constant nominal strain rate was investigated. It was concluded that the number of cracks per unit surface area changes with hydrogenation conditions and that hydrogen should be present for the embrittlement to occur. (author)

  18. NATO Advanced Study Institute on Hydrogen in Disordered and Amorphous Solids

    CERN Document Server

    Bowman, Robert

    1986-01-01

    This is the second volume in the NATO ASI series dealing with the topic of hydrogen in solids. The first (V. B76, Metal Hydrides) appeared five years ago and focussed primarily on crystalline phases of hydrided metallic systems. In the intervening period, the amorphous solid state has become an area of intense research activity, encompassing both metallic and non-metallic, e.g. semiconducting, systems. At the same time the problem of storage of hydrogen, which motivated the first ASI, continues to be important. In the case of metallic systems, there were early indications that metallic glasses and disordered alloys may be more corrosion resistant, less susceptible to embrittlement by hydrogen and have a higher hydrogen mobility than ordered metals or intermetallics. All of these properties are desirable for hydrogen storage. Subsequent research has shown that thermodynamic instability is a severe problem in many amorphous metal hydrides. The present ASI has provided an appropriate forum to focus on these issu...

  19. Effect of hydrogen on the microstructure, mechanical properties and phase transformations in austenitic steels

    International Nuclear Information System (INIS)

    Li, Y.Y.; Xing, Z.S.

    1989-01-01

    Effect of high-pressure hydrogen charging on the microstructure, mechanical properties and phase transformations in austenitic steels has been investigated and discussed. The results show that the strength and impact toughness of the steels increase slightly and that the ductility decreases after hydrogen charging. The existence of δ-ferrite deteriorates the resistance to hydrogen embrittlement (HE) of the steels. The occurrence of carbide in the steel resulted from aging reduces the ductility of the steel and makes the steel sensitive to HE. The existence of sufficient hydrogen promotes the ε-martensitic transformation and suppresses the α'-martensitic transformation. The permeabilities and diffusivities of hydrogen in the steels have also been determined. (orig.)

  20. THE IMPACT OF PARTIAL CRYSTALLIZATION ON THE PERMEATION PROPERTIES BULK AMORPHOUS GLASS HYDROGEN SEPARATION MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K; Paul Korinko, P; Thad Adams, T; Elise Fox, E; Arthur Jurgensen, A

    2008-11-25

    It is recognized that hydrogen separation membranes are a key component of the emerging hydrogen economy. A potentially exciting material for membrane separations are bulk metallic glass materials due to their low cost, high elastic toughness and resistance to hydrogen 'embrittlement' as compared to crystalline Pd-based membrane systems. However, at elevated temperatures and extended operation times structural changes including partial crystallinity may appear in these amorphous metallic systems. A systematic evaluation of the impact of partial crystallinity/devitrification on the diffusion and solubility behavior in multi-component Metallic Glass materials would provide great insight into the potential of these materials for hydrogen applications. This study will report on the development of time and temperature crystallization mapping and their use for interpretation of 'in-situ' hydrogen permeation at elevated temperatures.

  1. Mechanism-Based Modeling of Hydrogen Environment Assisted Cracking (HEAC) in High Strength Alloys for Marine Applications: Prediction of Monel K-500 HEAC for Select Environmental and Mechanical Conditions

    Science.gov (United States)

    2012-10-15

    te « •• ■* -i a ; ɝ>9m Distance from canter (m) \\0 V-o» *4-fM 10 ■%) A 2 4 • • 10 Vɘ» Figure 4...Embrittlement Susceptibility of Monel Alloy K-500", Report DTNSRDC/SME-84-69, David Taylor Naval Ship Research and Development Center, Bethesda, MD

  2. Effect of cathodic hydrogenation on the mechanical properties of AISI 304 stainless steel nitrided by ion implantation, glow discharge and plasma immersion ion implantation

    Science.gov (United States)

    Foerster, C. E.; Souza, J. F. P.; Silva, C. A.; Ueda, M.; Kuromoto, N. K.; Serbena, F. C.; Silva, S. L. R.; Lepienski, C. M.

    2007-04-01

    Hydrogen embrittlement in austenitic stainless steels is restricted to the surface due to the low hydrogen diffusion in austenitic structures. The effect of three different nitriding processes: ion implantation (II), plasma immersion ion implantation (PI3) and glow discharge (GD), on the mechanical and structural properties of cathodically hydrogenated AISI 304 stainless steel were studied in the present work. Cathodic hydrogenation was made on untreated and nitrided samples. Surface microstructure after nitriding and hydrogenation was investigated by X-ray diffraction. Mechanical properties were measured by instrumented indentation. Surface crack formation and hardness decrease was observed in non-nitrided samples after cathodic hydrogenation. Hardness of nitrided samples decreases after hydrogen degassing but still has values higher than untreated samples. Comparative analysis of nitriding processes and working conditions indicated that glow discharge plasma nitriding process at 400 °C or 450 °C is the most adequate to avoid crack formation in steel surface after cathodic hydrogenation.

  3. Effect of Hydrogen Charging on the Stress Corrosion Behavior of 2205 Duplex Stainless Steel Under 3.5 wt.% NaCl Thin Electrolyte Layer

    Science.gov (United States)

    Zhao, Tianliang; Liu, Zhiyong; Hu, Shanshan; Du, Cuiwei; Li, Xiaogang

    2017-05-01

    The effect of hydrogen charging on the stress corrosion cracking (SCC) behavior of 2205 duplex stainless steel (DSS) under 3.5 wt.% NaCl thin electrolyte layer was investigated on precharged samples through hydrogen determination, electrochemical measurement, and slow strain rate tensile test. Results show that hydrogen charging weakens the passive film without inducing any obvious trace of localized anodic dissolution. Therefore, hydrogen charging increases the SCC susceptibility of 2205 DSS mainly through mechanism of hydrogen embrittlement rather than mechanism of localized anodic dissolution. 2205 DSS shows a more susceptibility to hydrogen under the TEL when hydrogen charging current density (HCCD) is between 20 and 50 mA cm-2. The increasing trend is remarkable when hydrogen charging current density increases from 20 to 50 mA cm-2 and fades after 50 mA cm-2.

  4. Hydrogen highway

    International Nuclear Information System (INIS)

    Anon

    2008-01-01

    The USA Administration would like to consider the US power generating industry as a basis ensuring both the full-scale production of hydrogen and the widespread use of the hydrogen related technological processes into the economy [ru

  5. Identical mechanism of isochronal and isothermal embrittlement in Ni(Bi) alloy: Thermo-induced non-equilibrium grain-boundary segregation of Bi

    International Nuclear Information System (INIS)

    Zheng, Lei; Chellali, Reda; Schlesiger, Ralf; Meng, Ye; Baither, Dietmar; Schmitz, Guido

    2015-01-01

    Highlights: • Both isochronal and isothermal plasticity of Ni(Bi) alloy show minima. • Existing interpretations for isochronal and isothermal embrittlement are inadequate. • Both embrittlement is caused by thermo-induced non-equilibrium grain-boundary segregation of Bi. - Abstract: Isochronal and isothermal plasticity after thermal pre-treatments are obtained by tensile tests to characterize the embrittling behaviors of Ni(Bi) alloy. Both isochronal and isothermal plasticity show evident minima. Fractography observed by scanning electron microscopy displays intergranular fracture for samples of low plasticity. The microstructure is found to be free of precipitates within grains and at grain boundaries by focused ion beam and transmission electron microscopy. Atom probe analysis indicates a strong tendency of Bi segregation to grain boundaries. By these results, the existing interpretations are discussed to be inadequate and both embrittlement are confirmed to be identical in mechanism, i.e. thermo-induced non-equilibrium grain-boundary segregation of Bi

  6. Effect of high-temperature water and hydrogen on the fracture behavior of a low-alloy reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Roychowdhury, S.; Seifert, H.-P.; Spätig, P.; Que, Z.

    2016-01-01

    Structural integrity of reactor pressure vessels (RPV) is critical for safety and lifetime. Possible degradation of fracture resistance of RPV steel due to exposure to coolant and hydrogen is a concern. In this study tensile and elastic-plastic fracture mechanics (EPFM) tests in air (hydrogen pre-charged) and EFPM tests in hydrogenated/oxygenated high-temperature water (HTW) was done, using a low-alloy RPV steel. 2–5 wppm hydrogen caused embrittlement in air tensile tests at room temperature (25 °C) and at 288 °C, effects being more significant at 25 °C and in simulated weld coarse grain heat affected zone material. Embrittlement at 288 °C is strain rate dependent and is due to localized plastic deformation. Hydrogen pre-charging/HTW exposure did not deteriorate the fracture resistance at 288 °C in base metal, for investigated loading rate range. Clear change in fracture morphology and deformation structures was observed, similar to that after air tests with hydrogen. - Highlights: • Hydrogen content, microstructure of LAS, and strain rate affects tensile properties at 288 °C. • Strength affects hydrogen embrittlement susceptibility to a greater extent than grain size. • Hydrogen in LAS leads to strain localization and restricts cross-slip at 288 °C. • Possible hydrogen pickup due to exposure to 288 °C water alters fracture surface appearance without affecting fracture toughness in bainitic base material. • Simulated weld heat affected zone microstructure shows unstable crack propagation in 288 °C water.

  7. Role of multiaxial stress state in the hydrogen-assisted rolling-contact fatigue in bearings for wind turbines

    Directory of Open Access Journals (Sweden)

    J. Toribio

    2015-07-01

    Full Text Available Offshore wind turbines often involve important engineering challenges such as the improvement of hydrogen embrittlement resistance of the turbine bearings. These elements frequently suffer the so-called phenomenon of hydrogen-assisted rolling-contact fatigue (HA-RCF as a consequence of the synergic action of the surrounding harsh environment (the lubricant supplying hydrogen to the material and the cyclic multiaxial stress state caused by in-service mechanical loading. Thus the complex phenomenon could be classified as hydrogen-assisted rolling-contact multiaxial fatigue (HA-RC-MF. This paper analyses, from the mechanical and the chemical points of view, the so-called ball-on-rod test, widely used to evaluate the hydrogen embrittlement susceptibility of turbine bearings. Both the stress-strain states and the steady-state hydrogen concentration distribution are studied, so that a better elucidation can be obtained of the potential fracture places where the hydrogen could be more harmful and, consequently, where the turbine bearings could fail during their life in service.

  8. Versatile Hydrogen

    Indian Academy of Sciences (India)

    H m . Some of these compounds have fascinating structures (1,2,3). However the most interesting interaction of hydrogen, is the hydrogen bond. When a hydrogen atom is bound to an electronegative element it acquires a slight positive charge. As a result, it is attracted to other atoms such as nitrogen or oxygen in the ...

  9. Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  10. Influence of the composition on the radiation embrittlement alloys; Einfluss der Zusammensetzung auf die Strahlenversproedungslegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Boehmert, J.; Kryukov, A.; Nikolaev, Yu.A.; Korolev, Yu.N.; Erak, D.Yu.; Gerashenko, S.S.

    1999-02-01

    The radiation embrittlement of the reactor pressure vessel is highly safety-relevant for VVER-type pressure vessels. The sensitivity against radiation embrittlement depends on the chemical composition of the pressure vessel steel. Using an irradiation experiment at surveillance positions in two Russian VVER 440-type reactors the effects of copper, phosphorus and nickel on the radiation embrittlement should be investigated. For that, eight mock-up alloys were selected. Their chemical composition varied between 0.015 and 0.42% Cu, 0.002 and 0.039% P, 0.01 and 1.98% Ni, 0.09 and 0.37% Si, and 0.35 and 0.49% Mn. Charpy-V impact tests and tensile tests were performed with specimens machined from these alloys. The specimens were tested in the as-received state, in the irradiated state (fluence: 1x10{sup 19} and 8x10{sup 19}/cm{sup 2} [E>0.5 MeV]) and in the post-irradiation annealed state. In the as-received state, the alloys have a ferritic microstructure. Apart from Cu, the alloyed elements are solved in the matrix. Irradiation produces strong hardening and embrittlement. The effect increases with the Cu and P content. Ni causes an additional embrittlement. It is independent on the Ni concentration within the range of 1.1 to 2% Ni and results in a shift of the ductile-brittle transition temperature of about 120 C after a fluence of 1x10{sup 19}/cm{sup 2} by a flux of 4x10{sup 11}/cm{sup 2} s. The shift does not depend on the Cu or P content. Furthermore, the upper shelf energy is especially reduced by the Mi-rich alloys. For very low content of Cu and P these relations are not valid. The irradiation effect can be eliminated by annealing at 475 C/100 h. For high content of Cu or P the recovery is incomplete, it remains a residue of 20 to 25% of the irradiation effect. Ni has no influence on the recovery. Comparing the results of this study with the ones of the surveillance programmes of the VVER 440-type reactors, the alloys with low Ni content show the same irradiation

  11. Surface atomic relaxation and magnetism on hydrogen-adsorbed Fe(110) surfaces from first principles

    Science.gov (United States)

    Chohan, Urslaan K.; Jimenez-Melero, Enrique; Koehler, Sven P. K.

    2016-11-01

    We have computed adsorption energies, vibrational frequencies, surface relaxation and buckling for hydrogen adsorbed on a body-centred-cubic Fe(110) surface as a function of the degree of H coverage. This adsorption system is important in a variety of technological processes such as the hydrogen embrittlement in ferritic steels, which motivated this work, and the Haber-Bosch process. We employed spin-polarised density functional theory to optimise geometries of a six-layer Fe slab, followed by frozen mode finite displacement phonon calculations to compute Fe-H vibrational frequencies. We have found that the quasi-threefold (3f) site is the most stable adsorption site, with adsorption energies of ∼3.0 eV/H for all coverages studied. The long-bridge (lb) site, which is close in energy to the 3f site, is actually a transition state leading to the stable 3f site. The calculated harmonic vibrational frequencies collectively span from 730 to 1220 cm-1, for a range of coverages. The increased first-to-second layer spacing in the presence of adsorbed hydrogen, and the pronounced buckling observed in the Fe surface layer, may facilitate the diffusion of hydrogen atoms into the bulk, and therefore impact the early stages of hydrogen embrittlement in steels.

  12. An investigation of the loss of ductility in hydrogen charged beta-Ti alloys

    Science.gov (United States)

    Robertson, Ian M.

    1995-01-01

    The high strength, low density, and good corrosion resistance of Ti-based alloys make them candidate materials for a number of applications in the aerospace industry. A major limitation in the use of these alloys in the advanced hypersonic flight vehicle program is their susceptibility to hydrogen embrittlement. This study focuses on the hydrogen sensitivity of TIMETAL 21S beta-Ti alloy. The material received was in the form of grip-ends of failed tensile test samples which had been exposed to different charging conditions (combinations of hydrogen pressure and temperature). The samples received, the charging conditions, and their fracture mode are discussed. It can be seen that the fracture behavior changes from ductile to brittle with increasing hydrogen content, but the transition in behavior occurs for a small increase in hydrogen concentration. The aim of this program was to assess the microstructural differences between the ductile and brittle alloys to ascertain the embrittlement mechanism. A range of tools which included x-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used.

  13. Analysis of Justification of Long Term Operation of Russian NPP with VVER in Aspect of Pressure Vessel Radiation Embrittlement

    International Nuclear Information System (INIS)

    Borodkin, P.G.; Borodkin, G.I.; Khrennikov, N.N.

    2012-01-01

    The reactor pressure vessel (RPV) is one of the most key components of equipment of Nuclear Power Plant (NPP) with VVER type reactors. The issue of the plant lifetime extension is actual especially in aspect of RPV embrittlement. An analysis of influence of RPV embrittlement on the evaluation of RPV lifetime and by means of that on an opportunity of operation extension beyond the design life within the framework of the expert analysis. The Regulatory Standards Base, existing in Russia and guiding a process of justification of RPV lifetime, is surveyed. The results of expert analysis performed in SEC NRS particularly towards the application of the first generation of VVER-440 reactors are presented. On the basis of such analyses, the priority issues, solution of which considerably increases a confidence of justification of VVER-440 and VVER-1000 RPV lifetime, are assigned. (author)

  14. 'In-beam' simulation of high temperature helium embrittlement of DIN 1.4970 austenitic stainless steel

    International Nuclear Information System (INIS)

    Schroeder, H.; Batfalsky, P.

    1982-01-01

    This work describes a facility for high temperature creep rupture tests during homogeneous helium implantation. This 'in-beam' creep testing facility is used to simulate helium embrittlement effects which will be very important for first wall materials of future fusion reactors operated at high temperatures. First results for DIN 1.4970 austenitic stainless steel clearly demonstrate differences between samples 'in-beam' tested at 1073 K and those creep tested at the same temperature after room temperature helium implantation. The specimens ruptured 'in-beam' have much shorter lifetimes and lower ductility than the specimens tested after room temperature implantation. There are also differences in the microstructures, concerning helium bubble sizes and densities in matrix and grain boundaries. These microstructural differences may be a key for the understanding of the more severe helium embrittlement effects 'in-beam' as compared to creep tests performed after room temperature implantation. (orig.)

  15. ACPD detection and evaluation of 475 °C embrittlement of aged 2507 super duplex stainless steels

    Science.gov (United States)

    Gutiérrez-Vargas, Gildardo; López, Víctor H.; Carreón, Héctor; Kim, Jin-Yeon; Ruiz, Alberto

    2017-02-01

    An investigation to evaluate embrittlement of thermally aged 2507 super duplex stainless steel (SDSS) by means of an accurate measurement of the electric conductivity using an alternating current potential drop (ACPD) probe is conducted. Samples were aged for different periods up to 300 h at 475 °C. Results obtained from the ACPD measurements show appreciable increases in electric conductivity of samples with prolonged exposure to this temperature. In addition, the hardness of the samples increases significantly for long holding times, resulting in an embrittlement of the SDSS. These results are also supported by other data from sample-based laboratory techniques, i.e. microhardness and microscopy results which provide more direct evidences of the sensitization. This paper, therefore, demonstrates the feasibility of using the ACPD probe in field applications.

  16. Liquid metal embrittlement of T91 and 316L steels by heavy liquid metals: A fracture mechanics assessment

    Science.gov (United States)

    Auger, T.; Hamouche, Z.; Medina-Almazàn, L.; Gorse, D.

    2008-06-01

    LME of the martensitic T91 and the austenitic 316L steels have been investigated in the CCT geometry in the plane-stress condition. Using such a geometry, premature cracking induced by a liquid metal (PbBi and Hg) can be studied using a fracture mechanics approach based on CTOD, J-Δ a and fracture assessment diagram. One is able to measure a reduction of the crack tip blunting and a reduction of the energy required for crack propagation induced by the liquid metal. In spite of some limitations, this qualitative evaluation shows that liquid metals do not induce strong embrittlement on steels in plane-stress condition. Rather, the effect of the liquid metal seems to promote a fracture mode by plastic collapse linked with strain localization. It indicates that the materials, in spite of a potential embrittlement, should still be acceptable in terms of safety criteria.

  17. Diffusion-controlled intergranular penetration and embrittlement of copper by liquid bismuth between 300 and 600 Celsius degrees

    International Nuclear Information System (INIS)

    Laporte, V.

    2005-02-01

    Hybrid reactors are a new concept for energy production and nuclear waste treatment. Among other requirements, structural materials have to withstand liquid metal embrittlement. This thesis aimed therefore to identify the controlling mechanism for the intergranular embrittlement of copper in contact with liquid bismuth. Scanning electron microscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy and Rutherford backscattering spectroscopy have been used to analyze fracture surfaces of both copper polycrystals and a copper bicrystal (symmetric tilt boundary 50 degrees ). These analyses reveal both parabolic intergranular penetration kinetics and a maximal intergranular bismuth concentration that is less than two monolayers equivalent. These two results allow us to identify grain boundary diffusion as the controlling mechanism for the intergranular penetration of copper by liquid bismuth between 300 and 600 Celsius degrees, showing the absence of perfect grain boundary wetting. (author)

  18. The hydrogen highway

    International Nuclear Information System (INIS)

    Grigg, A.

    2004-01-01

    'Full text:' The Hydrogen Highway in British Columbia, Canada, is a coordinated, large-scale demonstration and deployment program aimed at accelerating the commercialization of hydrogen and fuel cell technologies and products. It will be a showcase for fuel cell vehicles, refuelling stations and stationary power systems leading up to the 2010 Olympic and Paralympic Winter Games in Whistler, BC. The Hydrogen Highway is designed to help address many of the challenges to commercialization identified in the Canadian Fuel Cell Commercialization Roadmap. The project will create an early adopter network of hydrogen and fuel cell microenvironments where technology developers and users can learn about the technical, economic, environmental and social impacts of products. The Hydrogen Highway will give the public and potential purchasers an opportunity to feel, touch and see the new technology, as well as provide the industry with a venue in which to develop industry standards and supply chains of materials and components. While demonstration and deployment programs are a recognized and necessary component in the process to commercialize hydrogen and fuel cell technologies, there is no handbook describing how it should be done. This paper will describe the history, objectives, project details and some of the challenges associated with establishing Canada's Hydrogen Highway. (author)

  19. The hydrogen highway

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, A. [Fuel Cells Canada, Vancouver, British Columbia (Canada)

    2004-07-01

    'Full text:' The Hydrogen Highway in British Columbia, Canada, is a coordinated, large-scale demonstration and deployment program aimed at accelerating the commercialization of hydrogen and fuel cell technologies and products. It will be a showcase for fuel cell vehicles, refuelling stations and stationary power systems leading up to the 2010 Olympic and Paralympic Winter Games in Whistler, BC. The Hydrogen Highway is designed to help address many of the challenges to commercialization identified in the Canadian Fuel Cell Commercialization Roadmap. The project will create an early adopter network of hydrogen and fuel cell microenvironments where technology developers and users can learn about the technical, economic, environmental and social impacts of products. The Hydrogen Highway will give the public and potential purchasers an opportunity to feel, touch and see the new technology, as well as provide the industry with a venue in which to develop industry standards and supply chains of materials and components. While demonstration and deployment programs are a recognized and necessary component in the process to commercialize hydrogen and fuel cell technologies, there is no handbook describing how it should be done. This paper will describe the history, objectives, project details and some of the challenges associated with establishing Canada's Hydrogen Highway. (author)

  20. Aspects of the practical application of titanium alloys after low temperature nitriding glow discharge in hydrogen- free -gas media

    Energy Technology Data Exchange (ETDEWEB)

    Mashovets, N.S., E-mail: mashovets@rambler.ru [Khmelnickiy National University (Ukraine); Pastukh, I.M., E-mail: pastim@mail.ru [Khmelnickiy National University (Ukraine); Voloshko, S.M. [Khmelnickiy National University (Ukraine); National Technical University of Ukraine “Kyiv Polytechnic Institute” (Ukraine)

    2017-01-15

    Highlights: • Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. • Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). • The above material shows the promise of the technology of low-temperature hydrogen-nitriding by glow discharge. This greatly expands the range of practical applications of titanium alloys. - Abstract: X-ray diffraction analysis, X-ray photoelectron spectroscopy, and Electron Auger-spectroscopy investigation of phase transformation on the surface of the VT8 titanium alloy after a low temperature hydrogen-free nitriding in a glow discharge. Operational characteristics of titanium alloys defined physical-mechanical characteristics of the surface and their phase composition, which depend on the process parameters of nitriding. Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. The main advantage of this method lies in the absence of hydrogen embrittlement and complete environmental safety process. Application of the glow discharge can not only speed up the process by the order of the diffusion surface saturation with nitrogen, but also significantly alters the kinetics of the process and quality of the nitrided layer, in particular its physio-mechanical properties and phase composition. For research purposes, the standards from an α + β alloy Ti-Al6-Cr2-Mo2,5 (VT8) were used. Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Stratified analysis by AES was conducted by etching the surface of the samples’ argon ion beam with diameters of 1.5 mm with an energy of 3000 eV and a current density of 400 mA/cm{sup 2}. The above material shows the promise of the technology of low

  1. Aspects of the practical application of titanium alloys after low temperature nitriding glow discharge in hydrogen- free -gas media

    International Nuclear Information System (INIS)

    Mashovets, N.S.; Pastukh, I.M.; Voloshko, S.M.

    2017-01-01

    Highlights: • Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. • Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). • The above material shows the promise of the technology of low-temperature hydrogen-nitriding by glow discharge. This greatly expands the range of practical applications of titanium alloys. - Abstract: X-ray diffraction analysis, X-ray photoelectron spectroscopy, and Electron Auger-spectroscopy investigation of phase transformation on the surface of the VT8 titanium alloy after a low temperature hydrogen-free nitriding in a glow discharge. Operational characteristics of titanium alloys defined physical-mechanical characteristics of the surface and their phase composition, which depend on the process parameters of nitriding. Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. The main advantage of this method lies in the absence of hydrogen embrittlement and complete environmental safety process. Application of the glow discharge can not only speed up the process by the order of the diffusion surface saturation with nitrogen, but also significantly alters the kinetics of the process and quality of the nitrided layer, in particular its physio-mechanical properties and phase composition. For research purposes, the standards from an α + β alloy Ti-Al6-Cr2-Mo2,5 (VT8) were used. Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Stratified analysis by AES was conducted by etching the surface of the samples’ argon ion beam with diameters of 1.5 mm with an energy of 3000 eV and a current density of 400 mA/cm 2 . The above material shows the promise of the technology of low

  2. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  3. Irradiation Embrittlement Monitoring Programs of RPV's in the Slovak Republic NPP's

    International Nuclear Information System (INIS)

    Kupca, Ludovik

    2006-01-01

    Four types of surveillance programs were (are) realized in Slovak NPP's: 'Standard Surveillance Specimen Program' (SSSP) was finished in Jaslovske Bohunice V-2 Nuclear Power Plant (NPP) Units 3 and 4, 'Extended Surveillance Specimen Program' (ESSP), was prepared for Jaslovske Bohunice NPP V-2 with aim to validate the SSSP results, For the Mochovce NPP Unit 1 and 2 was prepared completely new surveillance program 'Modern Surveillance Specimen Program' (MSSP), based on the philosophy that the results of MSSP must be available during all NPP service life, For the Bohunice V-1 NPP was finished 'New Surveillance Specimen Program' (NSSP) coordinated by IAEA, which gave arguments for prolongation of service life these units for minimum 20 years, New Advanced Surveillance Specimen Program (ASSP) for Bohunice V-2 NPP (units 3 and 4) and Mochovce NPP (units 1, 2) is approved now. ASSP is dealing with the irradiation embrittlement of heat affected zone (HAZ) and RPV's austenitic cladding, which were not evaluated till this time in surveillance programs. SSSP started in 1979 and was finished in 1990. ESSP program started in 1995 and will be finished in 2007, was prepared with aim of: increasing of neutron fluence measurement accuracy, substantial improvement the irradiation temperature measurement, fixed orientation of samples to the centre of the reactor core, minimum differences of neutron dose for all the Charpy-V notch and COD specimens, the dose rate effect evaluation. In the year 1996 was started the new surveillance specimen program for the Mochovce RPV's unit-1 and 2, based on the fundamental postulate - to provide the irradiation embrittlement monitoring till the end of units operation. The 'New Surveillance Specimen Program' (NSSP) prepared in the year 1999 for the Bohunice V-1 NPP was finished in the year 2004. Main goal of this program was to evaluate the weld material properties degradation due to the irradiation and recovery efficiency by annealing too. The

  4. Dissolution of alpha-prime precipitates in thermally embrittled S2205-duplex steels during reversion-heat treatment

    Directory of Open Access Journals (Sweden)

    V. Shamanth

    2015-01-01

    Full Text Available Duplex stainless steels offer an attractive combination of strength, corrosion resistance and cost. In annealed condition duplex steels will be in thermodynamically metastable condition but when they are subjected to intermediate homologous temperature of ∼475 °C and below significant embrittlement occurs, which is one of the key material degradation properties that limits its upper service temperature in many applications. Hence the present study is aimed to study the effect of reversion heat treatment and its time on mechanical properties of the thermally embrittled steel. The results showed that 60 min reversion heat treated samples were able to recover the mechanical properties which were very close to annealed properties because when the embrittled samples were reversion heat treated at an elevated temperature of 550 °C which is above the (α + α′ miscibility gap, the ferritic phase was homogenized again. In other words, Fe-rich α and Cr-rich α′ prime precipitates which were formed during ageing become thermodynamically unstable and dissolve inside the ferritic phase.

  5. Hydrogen absorption and desorption in a duplex-annealed Ti-6Al-4V alloy during exposure to different hydrogen-containing environments

    International Nuclear Information System (INIS)

    Eliezer, D.; Tal-Gutelmacher, E.; Cross, C.E.; Boellinghaus, Th.

    2006-01-01

    Based on its excellent combination of a high strength/weight ratio and good corrosion behavior, Ti-6Al-4V alloy is ranked among the most important advanced materials for a variety of industrial applications. However, in many of these technological applications, this alloy is exposed to environments which can act as sources of hydrogen, and severe problems may arise based on its susceptibility to hydrogen embrittlement. Even small hydrogen concentrations might lead to failure. Consequently, a comprehensive knowledge of hydrogen's absorption/desorption behavior and interactions between hydrogen and different microstructural features is necessary to better understand the desorption and trapping mechanisms, the types of the trap sites, and the trapped hydrogen content, in order to determine the safe service conditions of this alloy in the industry. In this paper, different characteristics of hydrogen's absorption/desorption behavior and trapping in a duplex-annealed Ti-6Al-4V alloy are studied by means of thermal desorption spectroscopy (TDS). Spectra analysis is supported by data from a variety of other experimental techniques, such as LECO hydrogen determinator, XRD and microstructure investigations by means of optical and electron microscopy. Hydrogen evolution is found to be a very complex process, being affected by the way hydrogen was initially introduced to the alloy, the phase transformations that may occur during the thermal analysis and the presence of potential trapping sites

  6. Surface hardening of Ti-6Al-4V alloy by hydrogenation

    International Nuclear Information System (INIS)

    Wu, T.I.; Wu, J.K.

    1991-01-01

    Thermochemical processing is an advanced method to enhance the fabricability and mechanical properties of titanium alloys. In this process hydrogen is added to the titanium alloy as a temporary alloying element. Hydrogen addition lowers the β transus temperature of titanium alloy and stabilizes the β phase. The increased amount of β phase in hydrogen-modified titanium alloys reduces the grain growth rate during eutectoid β → α + hydride reaction. Hydrogen was added to the titanium alloy by holding it at a relatively high temperature in a hydrogen gaseous environment in previous studies. Pattinato reported that Ti-6Al-4V alloy can react with hydrogen gas at ambient temperature and cause a serious hydrogen embrittlement problem. The hydrogen must be removed to a low allowable concentration in a vacuum system after the hydrogenation process. The present study utilized an electrochemical technique to dissolve hydrogen into titanium alloy to replace the hydrogen environment in thermochemical processing. In this paper microstructures and hardnesses of this new processed Ti-6Al-4V alloy are reported

  7. Stress corrosion mechanisms of alloy-600 polycrystals and monocrystals in primary water: effect of hydrogen

    International Nuclear Information System (INIS)

    Foct, F.

    1999-01-01

    The aim of this study is to identify the mechanisms involved in Alloy 600 primary water stress corrosion cracking. Therefore, this work is mainly focussed on the two following points. The first one is to understand the influence of hydrogen on SCC of industrial Alloy 600 and the second one is to study the crack initiation and propagation on polycrystals and single crystals. A cathodic potential applied during slow strain rate tests does not affect crack initiation but increases the slow crack growth rate by a factor 2 to 5. Cathodic polarisation, cold work and 25 cm 3 STP/kg hydrogen content increase the slow CGR so that the K ISCC (and therefore fast CGR) is reached. The influence of hydrogenated primary water has been studied for the first time on Alloy 600 single crystals. Cracks cannot initiate on tensile specimens but they can propagate on pre-cracked specimens. Transgranular cracks present a precise crystallographic aspect which is similar to that of 316 alloy in MgCl 2 solutions. Moreover, the following results improve the description of the cracking conditions. Firstly, the higher the hydrogen partial pressure, the lower the Alloy 600 passivation current transients. Since this result is not correlated with the effect of hydrogen on SCC, cracking is not caused by a direct effect of dissolved hydrogen on dissolution. Secondly, hydrogen embrittlement of Alloy 600 disappears at temperatures above 200 deg.C. Thirdly, grain boundary sliding (GBS) does not directly act on SCC but shows the mechanical weakness of grain boundaries. Regarding the proposed models for Alloy 600 SCC, it is possible to draw the following conclusions. Internal oxidation or absorbed hydrogen effects are the most probable mechanisms for initiation. Dissolution, internal oxidation and global hydrogen embrittlement models cannot explain crack propagation. On the other hand, the Corrosion Enhanced Plasticity Model gives a good description of the SCC propagation. (author)

  8. Influence of hydrogen on formability and bendability of DP1180 steel for car body application

    Science.gov (United States)

    Gao, Q.; Han, F.; Wortberg, D.; Bleck, W.; Liewald, M.

    2016-11-01

    In order to reach future light weight targets, it is increasing necessary to use advanced high strength steels with tensile strength 980 MPa or higher in automotive body-inwhite structures. Due to the sensitivity to hydrogen embrittlement and the limited understanding of various aspects of hydrogen embrittlement on processing and function, the wide application of these steels is still limited. In the current work, the influence of hydrogen on the multiaxial forming behavior was investigated by determining the forming limit curve and bending limit curve of DP1180 steel. Hydrogen concentration in the material was modified by cathodic charging. Then Nakajima tests on hydrogen uncharged and pre-charged samples were carried out in order to adjust and study different strain states resulting in the forming limit curve. In the study of bending limit curve, the steel sheets were pre-strained by Marciniak test. Bending load on the uncharged and pre-charged samples was introduced by VDA238-100 bending tests. The experimental results indicated that the presence of hydrogen affected the formability and bendability of DP1180 steel. A clear difference in the influence of hydrogen at different strain states was observed. When formed in a biaxial strain state via the Nakajima test, the material showed the highest degradation in formability. Moreover, the samples with biaxial pre-loading showed more degradation in bendability comparing to those pre-strained in plane strain and uni-axial paths. Fractography by scanning electron microscope gave evidence of hydrogen-induced cleavage fracture on pre-charged Nakajima samples. Thus this investigation improves the understanding of influences of hydrogen on forming processes and provides important evidence for further studies on HE susceptibility of AHSS for the application on car body constructions.

  9. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  10. Consequences of the embrittlement of channels following neutron irradiation in a High Flux Reactor

    International Nuclear Information System (INIS)

    Bauer, E.

    1987-01-01

    Channel failure is an incident that the reactor design takes into account and whose consequences have been studied and accepted during the safety analysis of the facilities. The study of the failure modes (Chapter 3) has shown that the embrittlement of the material due to neutron irradiation does not constitute a fact that could fundamentally change the probability of failure compared to a new reactor. The mechanical properties of the irradiated material in elastic regime are not below the values of the new material. In this respect, the second part of the AG3 NET - HFR test program, whose results are available, does not raise concerns, given the very high mechanical properties of the irradiated material. Consequently, no preventive provisions have to be made, since the irradiated material is compatible with its use as structural material for the channels. The study of the failure modes also demonstrated that mechanical blows applied to irradiated material could lead to destruction because of the reduced plastic deformability. However, this risk only arises when the reactor is shut down during maintenance operations that require access to equipment placed inside the channels

  11. The role of phosphorus in the irradiation embrittlement of PWR pressure vessel steels

    International Nuclear Information System (INIS)

    Jones, R.B.; Buswell, J.T.

    1987-02-01

    An analysis has been performed of the influence of phosphorus on post-irradiation materials properties and microstructures determined on a variety of PWR steels and variants following exposure to MTR or reactor surveillance irradiations to doses not exceeding 7 x 10 19 n.cm -2 (E>1.0MeV) at 250-290 0 C. The irradiation-induced shifts in impact transition temperature, matrix hardening and the relative small angle neutron scattering response were found to rise most rapidly with increasing phosphorus when the copper content of the steel was 0.03 w/o. The sensitivity of the changes in mechanical properties to phosphorus content decreased as the copper content was increased. At copper levels typical of modern PWR steel manufacture (Cu 3 P) produced by the irradiation induced segregation of phosphorus to defect sinks and the depletion of phosphorus in solid solution as detected by high sensitivity electron microscopy and other analytical techniques. At higher levels of copper (approx. 0.3 w/o) the effect of phosphorus on properties was reduced by a factor of three due to the observed incorporation of phosphorus into the small copper precipitates formed during irradiation. Grain boundary embrittlement by phosphorus under irradiation is not thought to be important but further evidence concerning the post-irradiation fracture mode and the development of the deleterious influence of phosphorus with irradiation dose is required for a comprehensive understanding of its action. Some suggestions for future work are made. (author)

  12. Continuum Description of Atomistics for Nanomechanics of Grain Boundary Embrittlement in FCC Metals

    Science.gov (United States)

    Kim, K.-S.; Wang, C.-K.; Cha, M.-H.; Chew, H. B.

    2012-02-01

    A nonlinear field projection method has been developed to study nanometer scale mechanical properties of grain boundaries in nanocrystalline FCC metals [1]. The nonlinear field projection is based on the principle of virtual work, for virtual variations of atomic positions in equilibrium through nonlocal interatomic interactions such as EAM potential interaction, to get field-projected subatomic-resolution traction distributions on various grain boundaries. The analyses show that the field projected traction produces periodic concentrated compression sites on the grain boundary, which act as crack trapping or dislocation nucleation sites. The field projection was also used to assess the nanometer scale failure processes of Cu σ5 and σ9 grain boundaries doped with Pb. It was revealed that the most significant atomic rearrangement is dislocation emission which requires local GB slip, and some Pb locks the local GB slip and in turn, embrittles the GB. Reference: [1] C.-K. Wang, et al., 2011, MRS Proceedings, Vol. 1297, DOI: 10.1557/opl.2011.678.

  13. Studies of low temperature, low flux radiation embrittlement of nuclear reactor structural materials. Final report

    International Nuclear Information System (INIS)

    Odette, G.R.; Lucas, G.E.

    1998-01-01

    A large matrix of simple alloys and complex commercial type steels was irradiated over a range of fluxes at 60 C up to a fast fluence of about 3 x 10 22 n/m 2 . Combined with data in the literature, these results show a negligible effect of flux on irradiation hardening in the range of 2 x 10 13 to 5 x 10 18 n/m 2 -s. This observation lends indirect support to the proposal that the accelerated embrittlement in the High Flux Isotope Reactor surveillance steels was due to an anomalously high level of damage from gamma rays. A weak dependence of hardening on a number of elements, including copper, nickel, phosphorus, molybdenum and manganese, can be described by a simple empirical chemistry factor. Particular combinations of elements resulted in hardening differences of up to about 60% in the complex commercial type steels and up to about 100% in simple model alloys. Direct effects of microstructure appear to be minimal. Hardening varies with the square root of fluence above a threshold around 4 x 10 20 n/m 2 . The results suggest that low temperature hardening is dominated by local intracascade processes leading to the formation of small defect-solute clusters/complexes. The observed hardening corresponds to nominal maximum end-of-life transition temperature shifts in support structure steels of about 120 C

  14. Shear melting and high temperature embrittlement: theory and application to machining titanium.

    Science.gov (United States)

    Healy, Con; Koch, Sascha; Siemers, Carsten; Mukherji, Debashis; Ackland, Graeme J

    2015-04-24

    We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding are supplanted by amorphization in a highly localized nanoscale band, which allows for massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are lack of dislocation slip systems, low thermal conduction, and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting-point elements: specifically, we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.

  15. Irradiation embrittlement of a variety of RPV steel plates and weldments

    International Nuclear Information System (INIS)

    Davies, L.M.; Venables, J.H.; Williams, T.J.

    1980-01-01

    Study of irradiation embrittlement of a variety of RPV steel plates and welds showed that NDTT data produced on a variety of specimens irradiated at 523 K confirms that the sensitivity to neutron irradiation is primarily dependent on the copper content. The lower the copper content, then the lower the ΔNDTT due to irradiation. On the other hand, the highest ΔNDTT were observed on those specimens containing high copper and high nickel. For high copper and high nickel ΔNDTT data the Varsik and Byrne method appears satisfactory. At high nickel and low copper contents it would appear that the beneficial effect of nickel is not lost at approximately 523 K. The ΔNDTT were normalized to neutron doses of 8 and 10x10 18 n.cm 2 (E>1 MeV) and plotted against the log. of the Varsik and Byrne Chemistry Relation and the results showed good agreement with a straight line fit. Weld and plate data, and irradiation effect in different reactors could not be readily separated. This provides additional confidence in the Varsik and Byrne method which was developed on data generated at higher irradiation temperatures (563K)

  16. The effect of deformation twinning on irradiation embrittlement in iron single crystals

    International Nuclear Information System (INIS)

    Kayano, Hideo; Tokutomi, Shoichiro; Yajima, Seishi; Takaku, Hiroshi.

    1978-01-01

    Single crystals of iron with the [100] crystal orientation were irradiated in JMTR with fast neutrons to a fluence of 8 x 10 18 n/cm 2 (E > 1 MeV). All samples were deformed in tension at temperatures from liquid nitrogen temperature to 200 0 C at different strain rates using an Instron-type tensile testing machine. Scanning electron microscopy of the fractured surfaces revealed that deformation twinning is difficult to occur in irradiated samples, and also that twins formed in both irradiated and unirradiated samples inhibit fracture nucleation and growth. From the results of tensile deformation of the irradiated samples deformed in tension a different strain rates at 159 0 K, it is conceived that twinning suppression is greater in the irradiated than in the unirradiated samples, and that the nucleation and growth of twins are not necessarily related to those of cracks. It is suggested that the irradiation-induced defects impede plastic deformation of the crystals and deformation twinning is suppressed by irradiation, thus causing the irradiation embrittlement. (auth.)

  17. The role of point defect clusters in reactor pressure vessel embrittlement

    International Nuclear Information System (INIS)

    Stoller, R.E.

    1993-01-01

    Radiation-induced point defect clusters (PDC) are a plausible source of matrix hardening in reactor pressure vessel (RPV) steels in addition to copper-rich precipitates. These PDCs can be of either interstitial or vacancy type, and could exist in either 2 or 3-D shapes, e.g. small loops, voids, or stacking fault tetrahedra. Formation and evolution of PDCs are primarily determined by displacement damage rate and irradiation temperature. There is experimental evidence that size distributions of these clusters are also influenced by impurities such as copper. A theoretical model has been developed to investigate potential role of PDCs in RPV embrittlement. The model includes a detailed description of interstitial cluster population; vacancy clusters are treated in a more approximate fashion. The model has been used to examine a broad range of irradiation and material parameters. Results indicate that magnitude of hardening increment due to these clusters can be comparable to that attributed to copper precipitates. Both interstitial and vacancy type defects contribute to this hardening, with their relative importance determined by the specific irradiation conditions

  18. Probabilistic approaches applied to damage and embrittlement of structural materials in nuclear power plants

    International Nuclear Information System (INIS)

    Vincent, L.

    2012-01-01

    The present study deals with the long-term mechanical behaviour and damage of structural materials in nuclear power plants. An experimental way is first followed to study the thermal fatigue of austenitic stainless steels with a focus on the effects of mean stress and bi-axiality. Furthermore, the measurement of displacement fields by Digital Image Correlation techniques has been successfully used to detect early crack initiation during high cycle fatigue tests. A probabilistic model based on the shielding zones surrounding existing cracks is proposed to describe the development of crack networks. A more numeric way is then followed to study the embrittlement consequences of the irradiation hardening of the bainitic steel constitutive of nuclear pressure vessels. A crystalline plasticity law, developed in agreement with lower scale results (Dislocation Dynamics), is introduced in a Finite Element code in order to run simulations on aggregates and obtain the distributions of the maximum principal stress inside a Representative Volume Element. These distributions are then used to improve the classical Local Approach to Fracture which estimates the probability for a microstructural defect to be loaded up to a critical level. (author) [fr

  19. Evaluation of local stress and local hydrogen concentration at grain boundary using three-dimensional polycrystalline model

    International Nuclear Information System (INIS)

    Ebihara, Ken-ichi; Itakura, Mitsuhiro; Yamaguchi, Masatake; Kaburaki, Hideo; Suzudo, Tomoaki

    2010-01-01

    The decohesion model in which hydrogen segregating at grain boundaries reduces cohesive energy is considered to explain hydrogen embrittlement. Although there are several experimental and theoretical supports of this model, its total process is still unclear. In order to understand hydrogen embrittlement in terms of the decohesion model, therefore, it is necessary to evaluate stress and hydrogen concentration at grain boundaries under experimental conditions and to verify the grain boundary decohesion process. Under this consideration, we evaluated the stress and the hydrogen concentration at grain boundaries in the three-dimensional polycrystalline model which was generated by the random Voronoi tessellation. The crystallographic anisotropy was given to each grain. As the boundary conditions of the calculations, data extracted from the results calculated in the notched round-bar specimen model under the tensile test condition in which fracture of the steel specimen is observed was given to the polycrystalline model. As a result, it was found that the evaluated stress does not reach the fracture stress which was estimated under the condition of the evaluated hydrogen concentration by first principles calculations. Therefore, it was considered that the initiation of grain boundary fracture needs other factors except the stress concentration due to the crystallographic anisotropy. (author)

  20. Proceedings of a Canadian Hydrogen Association workshop : Building Canadian strength with hydrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Fairlie, M.; Laflamme, C. [Canadian Hydrogen Association, Ottawa, ON (Canada); Venter, R. [Canadian Hydrogen Association, Ottawa, ON (Canada)]|[Toronto Univ., ON (Canada); McMillan, R. [Natural Resources Canada, Ottawa, ON (Canada)] (comps.)

    2006-07-01

    The Canadian Hydrogen Association (CHA) promotes the development of a hydrogen infrastructure and the commercialization of new, efficient and economic methods that accelerate the adoption of hydrogen technologies that will eventually replace fossil-based energy systems to reduce greenhouse gas emissions. This workshop focused on defining the strategic direction of research and development that will define the future of hydrogen related energy developments across Canada. It provided a forum to strengthen the research, development and innovation linkages among government, industry and academia to build Canadian strength with hydrogen systems. The presentations described new technologies and the companies that are making small scale hydrogen and hydrogen powered vehicles. Other topics of discussion included storage issues, hydrogen safety, competition in the hydrogen market, hydrogen fuel cell opportunities, nuclear-based hydrogen production, and environmental impacts. The conference featured 54 presentations, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  1. Influence of hydrogen and temperature on the mechanical behaviour in an austenitic stainless steel

    International Nuclear Information System (INIS)

    Lamani, Emil; Jouinot, Patrice

    2003-01-01

    The mechanical behaviour of an austenitic stainless steel has been studied in this work, by means of two techniques: disk pressure embrittlement test (French standard NF E 29-723) and special biaxial tensile test. Specimens for both techniques are embedded disks, loaded by a continuously increasing gas pressure until rupture. Tests have been performed at various temperatures, between 18 o C and 655 o C, with loading speeds from 0.06 to 7 MPa/min. Their main results have been recorded as relationships between gas pressure and specimen deflection until its burst or cracking. Other observations (fracture, microstructure, etc.) are performed to assess the structural evolution with the temperature. The influence of hydrogen is evaluated by the comparison of the rupture parameters of specimens tested similarly under helium and hydrogen. The embrittlement index, E.I is determined as the ratio of the rupture pressures under helium and hydrogen taking into account also the effects of the loading speed and the gas purity. It has been noticed that the mechanical behaviour of the steel is strongly influenced by the apparition of a second phase in the austenitic structure: the deformation induced martensite, α, which presence is identified by microscopic observations and X-ray diffraction. At room temperature, the steel presents a relatively high sensitivity to the hydrogen embrittlement (2.20 ≤ E.I ≤ 2.40), while, with the temperature increasing, together with the reduction of the martensitic transformation, it was observed a rapid diminution of this sensitivity. Obtained results allow to define the performance of this steel for thin walls applications, as it is the case of expansions bellows in the chemical industry. (Original)

  2. Effect of the hydrogen concentration on the ductility of Zry-4

    International Nuclear Information System (INIS)

    Domizzi, G.; Ovejero Garcia, J.

    1996-01-01

    After many years in service, zirconium alloys employed in nuclear reactors may reach high contents of hydride particles, exceeding the hydrogen solid solubility at the service temperature. The brittle character of zirconium hydride promotes the alloy embrittlement. In order to predict the critical hydrogen concentration which causes a ductile-brittle transition in a Zry-4 foil, 0.02mm thick, tensile test specimens were hydride by gaseous charging. To obtain uniform hydride distribution the specimens were electroplated with a film of copper prior to gaseous charge. In absence of oxide film, the foils retained its ductility up to high hydrogen concentration (950 Og/g). The critical hydrogen concentration was attained at 2900-3100 Og/g. (author). 4 refs., 2 figs., 1 tab

  3. DETERMINATION OF HYDROGEN DESORBED THROUGH THERMAL CALORIMETRY IN A HIGH STRENGTH STEEL

    Directory of Open Access Journals (Sweden)

    Carolina A. Asmus

    2014-03-01

    Full Text Available The following study aims to quantify the release activation energy (Ea of hydrogen (H from lattice sites, reversible or irreversible, where the H can be trapped. Moreover, enthalpy changes associated with the main hydrogen (H trapping sites can be analyzed by means of differential scanning calorimetry (DSC. In this technique, the peak temperature measurement is determined at two different heating rates, 3ºC/min y 5ºC/min, from ambient temperature to 500°C. In order to simulate severe conditions of hydrogen income into resulfurized high strength steel, electrolytic permeation tests were performed on test tubes suitable for fatigue tests. Sometimes during charging, H promoters were aggregated to electrolytic solution. Subsequently, the test tubes were subjected to flow cycle fatigue tests. Finally, irreversible trap which anchor more strongly H atoms are MnS inclusions. Its role on hydrogen embrittlement during fatigue tests is conclusive.

  4. Review of thermodinamic and mechanical properties of hydrogen-transition metal systems

    International Nuclear Information System (INIS)

    Mathias, H.; Katz, Y.

    1978-04-01

    A large body of fundamental and empirical knowledge has been acquired during many years of research concerning the interactions between hydrogen and metals, the location of hydrogen in metal structures, its mobility in metals and its influence on mechanical properties of metals. Much progress has been made in the understanding of related phenomena, and various theories have been proposed, but considerable disagreement still exist about basic mechanisms involved. The growing interest in these subjects and their important role in science and technology are well documented by many reviews and symposia. A general survey of these topics with reference to experimental results and theories related to thermodynamic and mechanical properties of hydrogen-transition metal systems, such as H-Pd, H-Ti, H-Fe etc. is given in the present review. Special emphasis is given to hydrogen embrittlement of metals

  5. Hydrogen millennium

    International Nuclear Information System (INIS)

    Bose, T.K.; Benard, P.

    2000-05-01

    The 10th Canadian Hydrogen Conference was held at the Hilton Hotel in Quebec City from May 28 to May 31, 2000. The topics discussed included current drivers for the hydrogen economy, the international response to these drivers, new initiatives, sustainable as well as biological and hydrocarbon-derived production of hydrogen, defense applications of fuel cells, hydrogen storage on metal hydrides and carbon nanostructures, stationary power and remote application, micro-fuel cells and portable applications, marketing aspects, fuel cell modeling, materials, safety, fuel cell vehicles and residential applications. (author)

  6. Color Changing Hydrogen Sensors

    Science.gov (United States)

    Roberson, Luke B.; Williams, Martha; Captain, Janine E.; Mohajeri, Nahid; Raissi, Ali

    2015-01-01

    benefits over the traditional hydrogen sensors: The technology has excellent temperature stability (4K to 373 K), it can be used in cryogenic fluid applications, it is easy to apply and remove; it requires no power to operate; it has a quick response time; the leak points can be detected visually or electronically; it is nonhazardous, thus environmentally friendly; it can be reversible or irreversible; it does not require on-site monitoring; has a long shelf life; the detector is very durable; and the technology is inexpensive to manufacture.

  7. High Flux Metallic Membranes for Hydrogen Recovery and Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Buxbaum, Robert

    2010-06-30

    We made and tested over 250 new alloys for use as lower cost, higher flux hydrogen extraction membrane materials. Most of these were intermetallic, or contained significant intermetallic content, particularly based on B2 alloy compositions with at least one refractory component; B2 intermetallics resemble BCC alloys, in structure, but the atoms have relatively fixed positions, with one atom at the corners of the cube, the other at the centers. The target materals we were looking for would contain little or no expensive elements, no strongly toxic or radioactive elements, would have high flux to hydrogen, while being fabricable, brazable, and relatively immune to hydrogen embrittlement and corrosion in operation. The best combination of properties of the membrane materials we developed was, in my opinion, a Pd-coated membrane consisting of V -9 atomic % Pd. This material was relatively cheap, had 5 times the flux of Pd under the same pressure differential, was reasonably easy to fabricate and braze, and not bad in terms of embrittlement. Based on all these factors we project, about 1/3 the cost of Pd, on an area basis for a membrane designed to last 20 years, or 1/15 the cost on a flux basis. Alternatives to this membrane replaced significant fractions of the Pd with Ni and or Co. The cost for these membranes was lower, but so was the flux. We produced successful brazed products from the membrane materials, and made them into flat sheets. We tested, unsuccessfully, several means of fabricating thematerials into tubes, and eventually built a membrane reactor using a new, flat-plate design: a disc and doughnut arrangement, a design that seems well- suited to clean hydrogen production from coal. The membranes and reactor were tested successfully at Western Research. A larger equipment company (Chart Industries) produced similar results using a different flat-plate reactor design. Cost projections of the membrane are shown to be attractive.

  8. Creating load for new hydrogen production

    International Nuclear Information System (INIS)

    Smith, R.

    2006-01-01

    This presentation provides an update of the activities of the Hydrogen Village. The Hydrogen Village is a public-private partnership of approximately 40 companies with the goal of advancing awareness of the environmental, economic and social benefits of hydrogen and fuel cell technologies. The intent of the hydrogen village is to create a sustainable commercial market for these technologies within the Greater Toronto Area and to help to catalyze such markets in other areas

  9. Hydrogen Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

  10. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  11. Production, storage, transporation and utilization of hydrogen

    International Nuclear Information System (INIS)

    Akiba, E.

    1992-01-01

    Hydrogen is produced from water and it can be used for fuel. Water is formed again by combustion of hydrogen with oxygen in the air. Hydrogen is an ideal fuel because hydrogen itself and gases formed by the combustion of hydrogen are not greenhouse and ozone layer damaging gases. Therefore, hydrogen is the most environmental friendly fuel that we have ever had. Hydrogen gas does not naturally exist. Therefore, hydrogen must be produced from hydrogen containing compounds such as water and hydrocarbons by adding energy. At present, hydrogen is produced in large scale as a raw material for the synthesis of ammonia, methanol and other chemicals but not for fuel. In other words, hydrogen fuel has not been realized but will be actualized in the near future. In this paper hydrogen will be discussed as fuel which will be used for aircraft, space application, power generation, combustion, etc. Especially, production of hydrogen is a very important technology for achieving hydrogen energy systems. Storage, transportation and utilization of hydrogen fuel will also be discussed in this paper

  12. Kinetics and mechanism of thermal aging embrittlement of duplex stainless steels

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.

    1987-06-01

    Microstructural characteristics of long-term-aged cast duplex stainless steel specimens from eight laboratory heats and an actual component from a commercial boiling water reactor have been investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle neutron scattering (SANS), and atom probe field ion microscopy (APFIM) techniques. Three precipitate phases, i.e., Cr-rich α' and the Ni- and Si-rich G phase, and γ 2 austenite, have been identified in the ferrite matrix of the aged specimens. For CF-8 grade materials, M 23 C 6 carbides were identified on the austenite-ferrite boundaries as well as in the ferrite matrix for aging at ≥ 450 0 C. It has been shown that Si, C, and Mo contents are important factors that influence the kinetics of the G-phase precipitation. However, TEM and APFIM analyses indicate that the embrittlement for ≤400 0 C aging is primarily associated with Fe and Cr segregation in ferrite by spinodal decomposition. For extended aging, e.g., 6 to 8 years at 350 to 400 0 C, large platelike α' formed by nucleation and growth from the structure produced by the spinodal decomposition. The Cr content appears to play an important role either to promote the platelike α' (high Cr content) or to suppress the α' in favor of γ 2 precipitation (low Cr). Approximate TTT diagrams for the spinodal, α', G, γ 2 , and the in-ferrite M 23 C 6 have been constructed for 250 to 450 0 C aging. Microstructural modifications associated with a 550 0 C reannealing and a subsequent toughness restoration are also discussed. It is shown that the toughness restoration is associated primarily with the dissolution of the Cr-rich region in ferrite

  13. Special features of embrittlement of welded joints in shells of VVER-type reactors

    International Nuclear Information System (INIS)

    Kasatkin, O.G.

    1999-01-01

    At present, the atomic power engineering of Russia and Ukraine is based on water-water energy reactors of the VVER-440 and VVER-1000 type, with the electric power of 440 and 1000 MW, respectively. The majority of the VVER-440 reactors are installed in Russia, and VVER-1000 reactors operate in Ukraine. The reactors' shell (RS) is produced from cylindrical shells and a dished end welded together by circular joints under a flux. The RS of the VVER-440 reactor is produced from 15Kh3MFA steel, and the VVER-1000 reactors are produced from 15Kh2NMFA steel. The shell of the VVER-1000 reactor has an internal austenite coating. The condition of the RS metal is determined mainly by the critical brittleness temperature T b at which the impact toughness of specimens with a sharp notch reaches 60 J/cm 2 . The energy reactors, working in western countries, are characterised by a service life of 40 years and discussion is being carried out to extend this lifetime to 60 years. The design service life of the domestic reactors varies from 30 (RS VVER-440) to 40 (RS VVER-1000) years. According to investigations, the service life of the shells of these reactors is restricted by the properties of welded joints which are characterised by higher susceptibility to embrittlement than that of the parent metal, especially due to a higher content in the weld of phosphorus (RS VVER-440) or nickel (RS VVER-1000). Therefore, some experts believe that the actual service life of the RS is shorter than the design life. The accurate evaluation of the service life of welded joints in the RS is very important for the safety of service and also in the economic aspects, because the unjustified decrease of the permissible service life and premature shutdown of units of the nuclear power station result in huge losses

  14. Effects of W on hydrogen transport property of Nb45Ti27.5Ni27.5 alloy membranes

    Science.gov (United States)

    Yang, Yang; Liu, Dongrong; Zhu, Zhifei; Liu, Guohuai

    2017-12-01

    Alloying influences of tungsten (W) into Nb45Ti27.5Ni27.5 on the microstructure, hydrogen solubility, diffusivity, permeability and resistance to hydrogen embrittlement have been investigated. Four experimental temperatures (673, 623, 573 and 523 K) have been used. It is found that the addition of W (5 at.% and 10 at.%) reduces the hydrogen solubility. The constitution of phases is not changed with W addition, whereas volume fraction of primary bcc-niobium (Nb) phase is distinctly reduced for the content of 10 at.% W. The hydrogen permeability and diffusivity increase for Nb40W5Ti27.5Ni27.5 only at lower temperatures such as 573 K and 523 K. Addition of 10 at.% W causes an obvious reduction in the permeability and diffusivity. The Nb45Ti27.5Ni27.5 alloy membrane fractures at 125∘C, while Nb40W5Ti27.5Ni27.5 and Nb35W10Ti27.5Ni27.5 alloy membranes keep intact when temperature reaches to 100∘C. In comparison with Nb45Ti27.5Ni27.5, the present research confirms that Nb40W5Ti27.5Ni27.5 exhibits an enhancement in hydrogen permeability at relatively lower temperatures and an improvement in embrittlement resistance.

  15. Temper embrittlement, irradiation induced phosphorus segregation and implications for post-irradiation annealing of reactor pressure vessels

    International Nuclear Information System (INIS)

    McElroy, R.J.; English, C.A.; Foreman, A.J.; Gage, G.; Hyde, J.M.; Ray, P.H.N.; Vatter, I.A.

    1999-01-01

    Three steels designated JPB, JPC and JPG from the IAEA Phase 3 Programme containing two copper and phosphorus levels were pre- and post-irradiation Charpy and hardness tested in the as-received (AR), 1200 C/0.5h heat treated (HT) and heat treated and 450 C/2000h aged (HTA) conditions. The HT condition was designed to simulate coarse grained heat-affected zones (HAZ's) and showed a marked sensitivity to thermal ageing in all three alloys. Embrittlement after thermal ageing was greater in the higher phosphorus alloys JPB and JPG. Charpy shifts due to thermal ageing of between 118 and 209 C were observed and accompanied by pronounced intergranular fracture, due to phosphorus segregation. The irradiation embrittlement response was complex. The low copper alloys, JPC and JPB, in the HT and HTA condition exhibited significant irradiation induced Charpy shift but very low or even negative hardness changes indicating non-hardening embrittlement. The higher copper alloy, JPG, also exhibited irradiation hardening in line with its copper content. Fractographic and microchemical studies indicated irradiation induced phosphorus segregation and a transition from cleavage to intergranular failure at grain boundary phosphorus concentrations above a critical level. The enhanced grain boundary phosphorus level increased with dose in agreement with a kinetic segregation model developed at Harwell. The relevance of the thermal ageing studies to RPV Annealing for Plant-Life Extension was identified early in the program. It is of concern that annealing of RPV's has been performed, or is proposed, at temperatures in the range 425--475 C for periods of about 1 week (168h). Much attention has been given to the use of in-situ hardness measurements and machining miniature Charpy and tensile specimens from belt-line plate and weld materials. However, HAZ's, often containing higher phosphorus levels than the present materials, have largely been ignored. A post-irradiation annealing (PIA

  16. Mechanisms of radiation embrittlement of VVER-1000 RPV steel at irradiation temperatures of (50-400)°C

    Science.gov (United States)

    Kuleshova, E. A.; Gurovich, B. A.; Bukina, Z. V.; Frolov, A. S.; Maltsev, D. A.; Krikun, E. V.; Zhurko, D. A.; Zhuchkov, G. M.

    2017-07-01

    This work summarizes and analyzes our recent research results on the effect of irradiation temperature within the range of (50-400)°C on microstructure and properties of 15Kh2NMFAA class 1 steel (VVER-1000 reactor pressure vessel (RPV) base metal). The paper considers the influence of accelerated irradiation with different temperature up to different fluences on the carbide and irradiation-induced phases, radiation defects, yield strength changes and critical brittleness temperature shift (ΔTK) as well as on changes of the fraction of brittle intergranular fracture and segregation processes in the steel. Low temperature irradiation resulted solely in formation of radiation defects - dislocation loops of high number density, the latter increased with increase in irradiation temperature while their size decreased. In this regard high embrittlement rate observed at low temperature irradiation is only due to the hardening mechanism of radiation embrittlement. Accelerated irradiation at VVER-1000 RPV operating temperature (∼300 °C) caused formation of radiation-induced precipitates and dislocation loops, as well as some increase in phosphorus grain boundary segregation. The observed ΔTK shift being within the regulatory curve for VVER-1000 RPV base metal is due to both hardening and non-hardening mechanisms of radiation embrittlement. Irradiation at elevated temperature caused more intense phosphorus grain boundary segregation, but no formation of radiation-induced precipitates or dislocation loops in contrast to irradiation at 300 °C. Carbide transformations observed only after irradiation at 400 °C caused increase in yield strength and, along with a contribution of the non-hardening mechanism, resulted in the lowest ΔTK shift in the studied range of irradiation temperature and fluence.

  17. Proceedings of the 1992 DOE/NREL hydrogen program review

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Gao, Q.H.; Miller, E. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

    1992-07-01

    These proceedings contain 18 papers presented at the meeting. While the majority of the papers (11) had to do with specific hydrogen production methods, other papers were related to hydrogen storage systems, evaluations of and systems analysis for a hydrogen economy, and environmental transport of hydrogen from a pipeline leak.

  18. Hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Donath, E.

    1942-10-16

    This report mentioned that not very severe demands for purity were made on the hydrogen used in hydrogenation of coal or similar raw materials, because the catalysts were not very sensitive to poisoning. However, the hydrogenation plants tried to remove most impurities anyway by means of oil washes. The report included a table giving the amount of wash oil used up and the amount of hydrogen lost by dissolving into the wash oil used up and the amount of hydrogen lost by dissolving into the wash oil in order to remove 1% of various impurities from 1000 m/sup 3/ of the circulating gas. The amounts of wash oil used up were 1.1 m/sup 3/ for removing 1% nitrogen, 0.3 m/sup 3/ for 1% carbon monoxide, 0.03 m/sup 3/ for 1% methane. The amount of hydrogen lost was 28 m/sup 3/ for 1% nitrogen, 9 m/sup 3/ for 1% methane and ranged from 9 m/sup 3/ to 39 m/sup 3/ for 1% carbon monoxide and 1 m/sup 3/ to 41 m/sup 3/ for carbon dioxide depending on whether the removal was done in liquid phase or vapor phase and with or without reduction of the oxide to methane. Next the report listed and described the major processes used in German hydrogenation plants to produce hydrogen. Most of them produced water gas, which then had its carbon monoxide changed to carbon dioxide, and the carbon oxides washed out with water under pressure and copper hydroxide solution. The methods included the Winkler, Pintsch-Hillebrand, and Schmalfeldt-Wintershall processes, as well as roasting of coke in a rotating generator, splitting of gases formed during hydrogenation, and separation of cokery gas into its components by the Linde process.

  19. Interfacial segregation and grain boundary embrittlement: an overview and critical assessment of experimental data and calculated results

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Šob, Mojmír; Paidar, Václav

    2017-01-01

    Roč. 87, Jun (2017), s. 83-139 ISSN 0079-6425 R&D Projects: GA ČR GBP108/12/G043; GA ČR(CZ) GA16-24711S; GA MŠk(CZ) LQ1601 Institutional support: RVO:68378271 ; RVO:68081723 Keywords : solute segregation * interfacial embrittlement * grain boundary * free surface * computer modeling * measurements of local composition Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 31.140, year: 2016

  20. First-principles computational tensile test on a Na-segregated Al grain boundary with an Si additive and an intergranular embrittlement suppression mechanism

    International Nuclear Information System (INIS)

    Zhang Ying; Lu Guanghong; Hu Xuelan; Wang Tianmin; Kohyama, Masanori; Yamamoto, Ryoichi

    2007-01-01

    We have performed a first-principles computational tensile test (FPCTT) on an Na-segregated Al grain boundary (GB) with an Si additive. We show that the Si additive in the GB greatly increases both the tensile strength and the toughness of the Na-segregated Al GB. We demonstrate that the final GB fracture is dominated by the breaking of interfacial stronger Al-Si bonds according to the bond evolution with increasing strain. Based on the Na-induced Al intergranular embrittlement mechanism explored before and the present calculation results, we propose a GB-strengthening mechanism by adding a strengthening element such as Si for Al alloy to suppress the intergranular embrittlement by an Na impurity. Such an intergranular embrittlement suppression mechanism can explain the experimental observations

  1. Time-dependent temper embrittlement of reactor pressure vessel steel: Correlation between microstructural evolution and mechanical properties during tempering at 650 °C

    Science.gov (United States)

    Li, Chuanwei; Han, Lizhan; Yan, Guanghua; Liu, Qingdong; Luo, Xiaomeng; Gu, Jianfeng

    2016-11-01

    The microstructural evolution of reactor pressure vessel (RPV) steel and its effect on the mechanical properties during tempering at 650 °C were studied to reveal the time-dependent toughness and temper embrittlement. The results show that the toughening of the material should be attributed to the decomposition of the martensite/austenite constituents and uniform distribution of carbides. When the tempering duration was 5 h, the strength of the investigated steel decreased to strike a balance with the material impact toughness that reached a plateau. As the tempering duration was further increased, the material strength was slightly reduced but the material impact toughness deteriorated drastically. This time-dependent temper embrittlement is different from traditional temper embrittlement, and it can be partly attributed to the softening of the matrix and the broadening of the ferrite laths. Moreover, the dimensions and distribution of the grain carbides are the most important factors of the impact toughness.

  2. Hydrogen-induced high damping of bulk metallic glasses

    International Nuclear Information System (INIS)

    Hasegawa, M.

    2009-01-01

    There are two important topics concerned with the recent researches on the damping materials of hydrogenated metallic glasses (HMGs). One is the mechanism of the high hydrogen-induced internal friction of HMGs. The other is the materials processing of 'bulk' HMGs for engineering. This article describes the summary of our recent studies on these topics. The first one is closely related to the local structure of the metallic glasses. Therefore, our recent results on the intermediate-range local structure of the simple two Zr-based metallic glasses are described, which has been clarified by the Voronoi analysis using the experimental data of the neutron diffraction measurements. The hydrogen-induced internal friction of HMGs is also discussed on the basis of these recent results of the local structure of the metallic glasses. In terms of the second topic, the first successful preparation of heavily hydrogenated Zr-based bulk HMG rods without hydrogen-induced surface embrittlement is described. They are prepared by a powder-compact-melting and liquid-casting process using Zr-Al-Ni-Cu metallic glass and ZrH 2 powders as the starting materials. It has been found that they have high damping properties.

  3. Modeling of hydrogen induced cold cracking in a ferritic steel

    International Nuclear Information System (INIS)

    Chen, Qianqiang

    2015-01-01

    This thesis is aimed at studying the hydrogen induced cold cracking (HICC) in the heated affected zone (HAZ) of weldments and at proposing a criterion to predict this phenomenon. HICC is attributable to three factors: i) a susceptible microstructure; ii) hydrogen concentration; and iii) a critical stress. To this end, first tensile tests on smooth specimens charged with hydrogen were performed to investigate hydrogen embrittlement of martensite. According to these results, a ductile-brittle damage model is proposed in order to establish a HICC criterion. In order to validate this criterion, we performed the modified Tekken tests. The Tekken test was chosen because one can control the welding parameters in order to induce cold cracking. The modified Tekken tests have then been modeled using a fully coupled thermo-metallo-mechanical-diffusion model using the finite element method. This model allows to compute martensite's portion, residual stress level and hydrogen concentration in the HAZ. By applying the HICC criterion to these tests, cold cracking phenomenon has been correctly predicted. (author)

  4. Solubility of hydrogen in water in a broad temperature and pressure range

    International Nuclear Information System (INIS)

    Baranenko, V.I.; Kirov, V.S.

    1989-01-01

    In the coolant of water-water reactors, as a result of radiolytic decomposition of water and chemical additives (hydrazine and ammonia) and saturation of the make-up water of the first loop with free hydrogen in order to suppress radiolysis, 30-60 ml/kg of hydrogen is present in normal conditions. On being released from the water, it is free to accumulate in micropores of the metals, resulting in hydrogen embrittlement; gas accumulates in stagnant zones, with deterioration in heat transfer in the first loop and corresponding difficulty in the use of the reactor and the whole reactor loop. To determine the amount of free hydrogen and hydrogen dissolved in water in different elements of the first loop, it is necessary to know the limiting solubility of hydrogen in water at different temperatures and pressures, and also to have the corresponding theoretical dependences. The experimental data on the solubility of hydrogen in water are nonsystematic and do not cover the parameter ranges of modern nuclear power plants (P = 10-30 MPa, T = 260-370C). Therefore, the aim of the present work is to establish a well-founded method of calculating the limiting solubility of hydrogen in water and, on this basis, to compile tables of the limiting solubility of hydrogen in water at pressures 0.1-50 MPa and temperatures 0-370C

  5. Recommendations on X80 steel for the design of hydrogen gas transmission pipelines

    International Nuclear Information System (INIS)

    Briottet, L.; Batisse, R.; De Dinechin, G.; Langlois, P.; Thiers, L.

    2012-01-01

    By limiting the pipes thickness necessary to sustain high pressure, high-strength steels could prove economically relevant for transmitting large gas quantities in pipelines on long distance. Up to now, the existing hydrogen pipelines have used lower-strength steels to avoid any hydrogen embrittlement. The CATHY-GDF project, funded by the French National Agency for Research, explored the ability of an industrial X80 grade for the transmission of pressurized hydrogen gas in large diameter pipelines. This project has developed experimental facilities to test the material under hydrogen gas pressure. Indeed, tensile, toughness, crack propagation and disc rupture tests have been performed. From these results, the effect of hydrogen pressure on the size of some critical defects has been analyzed allowing proposing some recommendations on the design of X80 pipe for hydrogen transport. Cost of Hydrogen transport could be several times higher than natural gas one for a given energy amount. Moreover, building hydrogen pipeline using high grade steels could induce a 10 to 40% cost benefit instead of using low grade steels, despite their lower hydrogen susceptibility. (authors)

  6. Stress corrosion mechanisms of alloy-600 polycrystals and monocrystals in primary water: effect of hydrogen; Mecanismes de corrosion sous contrainte de l'alliage 600 polycristallin et monocristallin en milieu primaire: role de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Foct, F

    1999-01-08

    The aim of this study is to identify the mechanisms involved in Alloy 600 primary water stress corrosion cracking. Therefore, this work is mainly focussed on the two following points. The first one is to understand the influence of hydrogen on SCC of industrial Alloy 600 and the second one is to study the crack initiation and propagation on polycrystals and single crystals. A cathodic potential applied during slow strain rate tests does not affect crack initiation but increases the slow crack growth rate by a factor 2 to 5. Cathodic polarisation, cold work and 25 cm{sup 3} STP/kg hydrogen content increase the slow CGR so that the K{sub ISCC} (and therefore fast CGR) is reached. The influence of hydrogenated primary water has been studied for the first time on Alloy 600 single crystals. Cracks cannot initiate on tensile specimens but they can propagate on pre-cracked specimens. Transgranular cracks present a precise crystallographic aspect which is similar to that of 316 alloy in MgCl{sub 2} solutions. Moreover, the following results improve the description of the cracking conditions. Firstly, the higher the hydrogen partial pressure, the lower the Alloy 600 passivation current transients. Since this result is not correlated with the effect of hydrogen on SCC, cracking is not caused by a direct effect of dissolved hydrogen on dissolution. Secondly, hydrogen embrittlement of Alloy 600 disappears at temperatures above 200 deg.C. Thirdly, grain boundary sliding (GBS) does not directly act on SCC but shows the mechanical weakness of grain boundaries. Regarding the proposed models for Alloy 600 SCC, it is possible to draw the following conclusions. Internal oxidation or absorbed hydrogen effects are the most probable mechanisms for initiation. Dissolution, internal oxidation and global hydrogen embrittlement models cannot explain crack propagation. On the other hand, the Corrosion Enhanced Plasticity Model gives a good description of the SCC propagation. (author)

  7. Questioning hydrogen

    International Nuclear Information System (INIS)

    Hammerschlag, Roel; Mazza, Patrick

    2005-01-01

    As an energy carrier, hydrogen is to be compared to electricity, the only widespread and viable alternative. When hydrogen is used to transmit renewable electricity, only 51% can reach the end user due to losses in electrolysis, hydrogen compression, and the fuel cell. In contrast, conventional electric storage technologies allow between 75% and 85% of the original electricity to be delivered. Even when hydrogen is extracted from gasified coal (with carbon sequestration) or from water cracked in high-temperature nuclear reactors, more of the primary energy reaches the end user if a conventional electric process is used instead. Hydrogen performs no better in mobile applications, where electric vehicles that are far closer to commercialization exceed fuel cell vehicles in efficiency, cost and performance. New, carbon-neutral energy can prevent twice the quantity of GHG's by displacing fossil electricity than it can by powering fuel cell vehicles. The same is true for new, natural gas energy. New energy resources should be used to displace high-GHG electric generation, not to manufacture hydrogen

  8. Hydrogen energy systems technology study

    Science.gov (United States)

    Kelley, J. H.

    1975-01-01

    The paper discusses the objectives of a hydrogen energy systems technology study directed toward determining future demand for hydrogen based on current trends and anticipated new uses and identifying the critical research and technology advancements required to meet this need with allowance for raw material limitations, economics, and environmental effects. Attention is focused on historic production and use of hydrogen, scenarios used as a basis for projections, projections of energy sources and uses, supply options, and technology requirements and needs. The study found more than a billion dollar annual usage of hydrogen, dominated by chemical-industry needs, supplied mostly from natural gas and petroleum feedstocks. Evaluation of the progress in developing nuclear fusion and solar energy sources relative to hydrogen production will be necessary to direct the pace and character of research and technology work in the advanced water-splitting areas.

  9. Hydrogen as an energy medium

    Science.gov (United States)

    Cox, K. E.

    1976-01-01

    Coal, though abundant in certain geographical locations of the USA poses environmental problems associated with its mining and combustion. Also, nuclear fission energy appears to have problems regarding safety and radioactive waste disposal that are as yet unresolved. The paper discusses hydrogen use and market projection along with energy sources for hydrogen production. Particular attention is given to hydrogen production technology as related to electrolysis and thermochemical water decomposition. Economics of hydrogen will ultimately be determined by the price and availability of future energy carriers such as electricity and synthetic natural gas. Thermochemical methods of hydrogen production appear to offer promise largely in the efficiency of energy conversion and in capital costs over electrolytic methods.

  10. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    International Nuclear Information System (INIS)

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-01-01

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  11. Hydrogen-related challenges for the steelmaker: the search for proper testing

    Science.gov (United States)

    Thiessen, R. G.

    2017-06-01

    The modern steelmaker of advanced high-strength steels has always been challenged with the conflicting targets of increased strength while maintaining or improving ductility. These new steels help the transportation sector, including the automotive sector, to achieve the goals of increased passenger safety and reduced emissions. With increasing tensile strengths, certain steels exhibit an increased sensitivity towards hydrogen embrittlement (HE). The ability to characterize the material's sensitivity in an as-delivered condition has been developed and accepted (SEP1970), but the complexity of the stress states that can induce an embrittlement together with the wide range of applications for high-strength steels make the development of a standardized test for HE under in-service conditions extremely challenging. Some proposals for evaluating the material's sensitivity give an advantage to materials with a low starting ductility. Despite this, newly developed materials can have a higher original elongation with only a moderate reduction in elongation due to hydrogen. This work presents a characterization of new materials and their sensitivity towards HE. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  12. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD

    International Nuclear Information System (INIS)

    Laureys, A.; Depover, T.; Petrov, R.; Verbeken, K.

    2016-01-01

    The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses just after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of

  13. Calculation of axial hydrogen redistribution on the spent fuels during interim dry storage

    International Nuclear Information System (INIS)

    Sasahara, Akihiro; Matsumura, Tetsuo

    2006-01-01

    One of the phenomena that will affect fuel integrity during a spent fuel dry storage is a hydrogen axial migration in cladding. If there is a hydrogen pickup in cladding in reactor operation, hydrogen will move from hotter to colder cladding region in the axial direction under fuel temperature gradient during dry storage. Then hydrogen beyond solubility limit in colder region will be precipitated as hydride, and consequently hydride embrittlement may take place in the cladding. In this study, hydrogen redistribution experiments were carried out to obtain the data related to hydrogen axial migration by using actually twenty years dry (air) stored spent PWR-UO 2 fuel rods of which burn-ups were 31 and 58 MWd/kg HM. From the hydrogen redistribution experiments, the heat of transport of hydrogen of zircaloy-4 cladding from twenty years dry stored spent PWR-UO 2 fuel rods were from 10.1 to 18.6 kcal/mol and they were significantly larger than that of unirradiated zircaloy-4 cladding. This means that hydrogen in irradiated cladding can move easier than that in unirradiated cladding. In the hydrogen redistribution experiments, hydrogen diffusion coefficients and solubility limit were also obtained. There are few differences in the diffusion coefficients and solubility limits between the irradiated cladding and unirradiated cladding. The hydrogen redistribution in the cladding after dry storage for forty years was evaluated by one-dimensional diffusion calculation using the measured values. The maximum values as the heat of transports, diffusion coefficients and solubility limits of the irradiated cladding and various spent fuel temperature profiles reported were used in the calculation. The axial hydrogen migration was not significant after dry storage for forty years in helium atmosphere and the maximum values as the heat of transports, diffusion coefficients and solubility limits of the unirradiated cladding gave conservative evaluation for hydrogen redistribution

  14. Tests at constant extension velocity CERT for the evaluation of environmental assisted cracking

    International Nuclear Information System (INIS)

    Arganis J, C.R.

    1994-01-01

    The test at constant velocity extension (CERT) is firmly established as a technique for the study of environmentally cracking (stress corrosion and hydrogen embrittlement) and is widely used, mainly in mechanistic studies. In CERT test, an increasing charge is applied to a sample and the extension velocity is hold up constant to allow that corrosion interplay in the process. The type of crack and ductility measurements with the conditions for testing are compared with a cracked sample in an inert media. Required equipment: 1) A charge mechanism capable to control the elongation of test samples in a rank of 1 x 10 -5 to 1 x 10 -7 inch/inch sec and capable to hold up constant such elongation. 2) A suitable standard (Astm standard A-370). 3) A chamber or cell for the media in which the chemical composition of the solution, the gas composition, the pressure, temperature and electrochemical potential can be controlled in order to simulate with anticipation the service conditions. The cell must allow the mechanical access of the test sample to the charge train of the machine. (Author)

  15. Liquid Metal Embrittlement in Resistance Spot Welding and Hot Tensile Tests of Surface-refined TWIP Steels

    Science.gov (United States)

    Barthelmie, J.; Schram, A.; Wesling, V.

    2016-03-01

    Automotive industry strives to reduce vehicle weight and therefore fuel consumption and carbon dioxide emissions. Especially in the auto body, material light weight construction is practiced, but the occupant safety must be ensured. These requirements demand high-strength steels with good forming and crash characteristics. Such an approach is the use of high- manganese-content TWIP steels, which achieve strengths of around 1,000 MPa and fracture strains of more than 60%. Welding surface-refined TWIP steels reduces their elongation at break and produces cracks due to the contact with liquid metal and the subsequent liquid metal embrittlement (LME). The results of resistance spot welds of mixed joints of high-manganese- content steel in combination with micro-alloyed ferritic steel and hot tensile tests are presented. The influence of different welding parameters on the sensitivity to liquid metal embrittlement is investigated by means of spot welding. In a high temperature tensile testing machine, the influence of different parameters is determined regardless of the welding process. Defined strains just below or above the yield point, and at 25% of elongation at break, show the correlation between the applied strain and liquid metal crack initiation. Due to the possibility to carry out tensile tests on a wide range of temperatures, dependencies of different temperatures of the zinc coating to the steel can be identified. Furthermore, the attack time of the zinc on the base material is investigated by defined heating periods.

  16. Development of a non-destructive testing technique using ultrasonic wave for evaluation of irradiation embrittlement in nuclear materials

    Science.gov (United States)

    Ishii, T.; Ooka, N.; Hoshiya, T.; Kobayashi, H.; Saito, J.; Niimi, M.; Tsuji, H.

    2002-12-01

    To develop a non-destructive testing technique for evaluating embrittlement of irradiated materials, the correlation between ultrasonic characteristics and embrittlement was investigated from the results of the ultrasonic wave measurement and the Charpy impact test of irradiated specimens of commercial A533B-1 steel and welded material at the hot laboratory of the Japan Materials Testing Reactor (JMTR) in the Japan Atomic Energy Research Institute (JAERI). After irradiation at 523 or 563 K up to a fast neutron fluence of 1×10 24 N/m 2 ( E>1 MeV), velocities of both shear and longitudinal waves in the irradiated specimen were lower than those in the unirradiated one. The decrease in the velocities may be caused by the reductions of the shear and Young's moduli in the irradiated specimen. The attenuation coefficient of the longitudinal wave in the irradiated specimens increased compared with unirradiated ones. With increasing the shift amount of the Charpy transition temperature at 41 J absorbed energy, the velocity and attenuation coefficient of the ultrasonic waves decreased and increased, respectively.

  17. Modeling copper precipitation hardening and embrittlement in a dilute Fe-0.3at.%Cu alloy under neutron irradiation

    Science.gov (United States)

    Bai, Xian-Ming; Ke, Huibin; Zhang, Yongfeng; Spencer, Benjamin W.

    2017-11-01

    Neutron irradiation in light water reactors can induce precipitation of nanometer sized Cu clusters in reactor pressure vessel steels. The Cu precipitates impede dislocation gliding, leading to an increase in yield strength (hardening) and an upward shift of ductile-to-brittle transition temperature (embrittlement). In this work, cluster dynamics modeling is used to model the entire Cu precipitation process (nucleation, growth, and coarsening) in a Fe-0.3at.%Cu alloy under neutron irradiation at 300°C based on the homogenous nucleation mechanism. The evolution of the Cu cluster number density and mean radius predicted by the modeling agrees well with experimental data reported in literature for the same alloy under the same irradiation conditions. The predicted precipitation kinetics is used as input for a dispersed barrier hardening model to correlate the microstructural evolution with the radiation hardening and embrittlement in this alloy. The predicted radiation hardening agrees well with the mechanical test results in the literature. Limitations of the model and areas for future improvement are also discussed in this work.

  18. Energetics of Hydrogen Segregation to α-Fe Grain Boundaries for Modeling Stress Corrosion Cracking

    Science.gov (United States)

    Rajagopalan, M.; Adlakha, I.; Tschopp, M. A.; Solanki, K. N.

    2017-08-01

    The physics of embrittlement is dictated by the various interactions between the impurities/defects and the local structure in polycrystalline material systems. In this study, a physically motivated model that describes the degree of interaction of hydrogen (H) defects on the segregation behavior to α-Fe grain boundaries (GBs) is developed. Molecular statics simulations were performed to quantify the segregation behavior of 1-2 H atoms at various interstitial sites around the , , , and symmetric tilt GBs. The results provide insights into the concentration profile of hydrogen defects along different GBs. Furthermore, the model accurately links the intrinsic GB character by quantifying the segregation length scale for the individual GBs based on the segregation behavior of defects. Finally, the metrics provided in this work are essential to comprehensively understanding the effect of hydrogen on the macroscopic behavior of α-Fe.

  19. 76 FR 64022 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting

    Science.gov (United States)

    2011-10-17

    ... Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting AGENCY: Environmental Protection Agency (EPA). ACTION: Lifting of Administrative Stay for Hydrogen Sulfide. SUMMARY: EPA is announcing... (EPCRA) section 313 toxic chemical release reporting requirements for hydrogen sulfide (Chemical...

  20. Hydrogenation and high temperature oxidation of Zirconium claddings

    International Nuclear Information System (INIS)

    Novotny, T.; Perez-Feró, E.; Horváth, M.

    2015-01-01

    In the last few years a new series of experiments started for supporting the new LOCA criteria, considering the proposals of US NRC. The effects which can cause the embrittlement of VVER fuel claddings were reviewed and evaluated in the framework of the project. The purpose of the work was to determine how the fuel cladding’s hydrogen uptake under normal operating conditions, effect the behavior of the cladding under LOCA conditions. As a first step a gas system equipment with gas valves and pressure gauge was built, in which the zirconium alloy can absorb hydrogen under controlled conditions. In this apparatus E110 (produced by electrolytic method, currently used at Paks NPP) and E110G (produced by a new technology) alloys were hydrogenated to predetermined hydrogen contents. According the results of ring compression tests the E110G alloys lose their ductility above 3200 ppm hydrogen content. This limit can be applied to determine the ductile-brittle transition of the nuclear fuel claddings. After the hydrogenation, high temperature oxidation experiments were carried out on the E110G and E110 samples at 1000 °C and 1200 °C. 16 pieces of E110G and 8 samples of E110 with 300 ppm and 600 ppm hydrogen content were tested. The oxidation of the specimens was performed in steam, under isothermal conditions. Based on the ring compression tests load-displacement curves were recorded. The main objective of the compression tests was to determine the ductile-brittle transition. These results were compared to the results of our previous experiments where the samples did not contain hydrogen. The original claddings showed more ductile behavior than the samples with hydrogen content. The higher hydrogen content resulted in a more brittle mechanical behavior. However no significant difference was observed in the oxidation kinetics of the same cladding types with different hydrogen content. The experiments showed that the normal operating hydrogen uptake of the fuel claddings

  1. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  2. The long range migration of hydrogen through Zircaloy in response to tensile and compressive stress gradients

    International Nuclear Information System (INIS)

    Kammenzind, B.F.; Berquist, B.M.; Bajaj, R.; Kreyns, P.H.; Franklin, D.G.

    1998-01-01

    Zircaloy-4, which is used widely as a core structural material in pressurized water reactors (PWRs), picks up hydrogen during service. Hydrogen solubility in Zircaloy-4 is low and zirconium hydride phases precipitate after the Zircaloy-4 lattice becomes supersaturated with hydrogen. These hydrides embrittle the Zircaloy-4, degrading its mechanical performance as a structural material. Because hydrogen can move rapidly through the Zircaloy-4 lattice, the potential exists for large concentrations of hydride to accumulate in local regions of a Zircaloy component remote from its point of entry into the component. Much has been reported in the literature regarding the long range migration of hydrogen through Zircaloy under concentration gradients and temperature gradients. Relatively little has been reported, however, regarding the long range migration of hydrogen under stress gradients. This paper presents experimental results regarding the long range migration of hydrogen through Zircaloy in response to both tensile and compressive stress gradients. The importance of this driving force for hydrogen migration relative to concentration and thermal gradients is discussed

  3. Japan sunshine project 1987 annual summary of Hydrogen energy R and D

    Science.gov (United States)

    1988-04-01

    This paper presents the findings of the researches on hydrogen energy in sunshine project in FY87. A duration test of the electrolyte membrane of solid polymer fabricated by bonding Pt and Ir catalyst layers was made for seven months to produce hydrogen by the electrolysis of water. The result indicates that the electrolysis will be able to be made at high current density. The sensitivity to stress corrosion cracking of stainless steel for electrolysis of water was evaluated. Since a thin film of stabilized zirconia fabricated by sintering at a temperature of 1500 C or higher is dense and conductive, it is a promising solid electrolyte. Since an inert phase to hydrogen is developed in a high-density metallic alloy for hydrogen storage produced by sintering and partially melting Mg7Zn3-Ni, it must be improved. A heating module of hydrogenated material monolithically coated on copper tube was investigated. The application of metallic alloy for hydrogen storage to the hydrogen electrode is studied. A hydrogen-fueled prime mover system circulating an inert gas is being developed. Since the low alloy steel part is extremely embrittled by heating, the intergranular face of coarse crystal affected by the cycle of welding heat is a problem.

  4. Materials demands for hydrogen storage

    International Nuclear Information System (INIS)

    David, E.; Stanciu, V.; Armeanu, A.; Sandru, C.

    2006-01-01

    In a future sustainable energy system based on renewable energy, environmentally harmless energy carriers like hydrogen, will be of crucial importance. One of the major impediments for the transition to a hydrogen-based energy system is the lack of satisfactory hydrogen storage facility. In the last years the possibility to store the hydrogen in various materials was extensively studied. This paper is a preliminary study with the fucus on advanced nanostructured materials such as solids of large surface areas based on carbon structures, metals and different types of metal alloys, other intermetallic compounds, etc, as possibilities for hydrogen storage. The newest materials used for hydrogen storage are light metal alloys. We have so far focus in this review almost extensively on experimental studies. Also there are presented the most important characteristics of these materials such as mechanical strength, porosity and affinity to hydrogen, and also the recent developments in the search for innovative materials with high hydrogen - storage capacity as well as our own contribution to this field. (authors)

  5. Hydrogen usage

    Energy Technology Data Exchange (ETDEWEB)

    1942-10-22

    This short tabular report listed the number of m/sup 3/ of hydrogen required for a (metric) ton of product for various combinations of raw material and product in a hydrogenation procedure. In producing auto gasoline, bituminous coal required 2800 m/sup 3/, brown coal required 2400 m/sup 3/, high-temperature-carbonization tar required 2100 m/sup 3/, bituminous coal distillation tar required 1300 m/sup 3/, brown-coal low-temperature-carbonization tar required 850 m/sup 3/, petroleum residues required 900 m/sup 3/, and gas oil required 500 m/sup 3/. In producing diesel oil, brown coal required 1900 m/sup 3/, whereas petroleum residues required 500 m/sup 3/. In producing diesel oil, lubricants, and paraffin by the TTH (low-temperature-hydrogenation) process, brown-coal low-temperature-carbonization tar required 550 m/sup 3/. 1 table.

  6. Effect of niobium on the embrittlement of 2.25 Cr and 2.25 Cr-1Mo steels by phosphous

    International Nuclear Information System (INIS)

    Antunes, J.L.B.

    1985-01-01

    The influence of niobium on the temper embrittlement of 2.25Cr and 2.25 Cr-1Mo steels doped with phosphorus is evaluated. The transition temperatures of the samples tempered at 650 0 C and aged at different temperatures for niobium steels. (M.J.C.) [pt

  7. Microstructure and embrittlement of VVER 440 reactor pressure vessel steels; Microstructure et fragilisation des aciers de cuve des reacteurs nucleaires VVER 440

    Energy Technology Data Exchange (ETDEWEB)

    Hennion, A

    1999-03-15

    27 VVER 440 pressurised water reactors operate in former Soviet Union and in Eastern Europe. The pressure vessel, is made of Cr-Mo-V steel. It contains a circumferential arc weld in front of the nuclear core. This weld undergoes a high neutron flux and contains large amounts of copper and phosphorus, elements well known for their embrittlement potency under irradiation. The embrittlement kinetic of the steel is accelerated, reducing the lifetime of the reactor. In order to get informations on the microstructure and mechanical properties of these steels, base metals, HAZ, and weld metals have been characterized. The high amount of phosphorus in weld metals promotes the reverse temper embrittlement that occurs during post-weld heat treatment. The radiation damage structure has been identified by small angle neutron scattering, atomic probe, and transmission electron microscopy. Nanometer-sized clusters of solute atoms, rich in copper with almost the same characteristics as in western pressure vessels steels, and an evolution of the size distribution of vanadium carbides, which are present on dislocation structure, are observed. These defects disappear during post-irradiation tempering. As in western steels, the embrittlement is due to both hardening and reduction of interphase cohesion. The radiation damage specificity of VVER steels arises from their high amount of phosphorus and from their significant density of fine vanadium carbides. (author)

  8. TAREG 2.01/00 Project, ''Validation of neutron embrittlement for VVER 1000 and 440/213 RPVs, with emphasis on integrity assessment''

    International Nuclear Information System (INIS)

    Ahlstrand, R.; Margolin, B.; Kostylev, V.; Yurchenko, E.; Akbashev, I.; Piminov, V.; Nikolaev, Y.; Koshkin, V.; Kharshenko, V.; Chyrko, L.; Bukhanov, V.; Comsa, O.

    2012-01-01

    The irradiation embrittlement and integrity of the VVER reactors has been an important issue in many EC supported TACIS and PHARE projects since 1990. In the EC annual program 2000 two TACIS projects (TAREG 2.01/00 and 2.01/03) were approved on the issue in order to improve the neutron irradiation embrittlement databases, elaborate new trend curves for the embrittlement and to assess the integrity of the RPVs (Reactor Pressure Vessel) by analysing PTS transients (Pressurized Thermal Shock) for some selected Russian and Ukrainian VVER 1000 and 440/213 NPPs. In this paper the TAREG 2.01/00 project is briefly described with some details from the twin project 2.01/03, which served as a materials testing project, providing inputs for the 1st project. As a result of the project new trend curves for neutron irradiation embrittlement were elaborated, based on upgraded and more reliable surveillance results databases. The PTS study shows that the integrity of the selected VVER RPVs can be ensured to the end of RPV design life. (author)

  9. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    International Nuclear Information System (INIS)

    Rosen, Marc A.; Koohi-Fayegh, Seama

    2016-01-01

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  10. Versatile Hydrogen

    Indian Academy of Sciences (India)

    Hydrogen is probably the most intriguing ele- ment in the periodic table. Although it is only the seventh most abundant element on earth, it is the most abundant element in the uni- verse. It combines with almost all the ele- ments of the periodic table, except for a few transition elements, to form binary compounds of the type E.

  11. Metastable hydrogen

    International Nuclear Information System (INIS)

    Dose, V.

    1982-01-01

    This paper deals with the basic physical properties of the metastable 2 2 sub(1/2) state of atomic hydrogen. Applications relying on its special properties, including measurement of the Lamb shift, production of spin-polarized protons and the measurement of molecular electric moments, are discussed. (author)

  12. Assessment of thermal aging embrittlement in a cast stainless steel valve and its effect on the structural integrity

    International Nuclear Information System (INIS)

    Cicero, S.; Setien, J.; Gorrochategui, I.

    2009-01-01

    This paper analyzes the thermal aging embrittlement occurred in a cast stainless steel valve, which is part of the reactor water clean-up (RWCU) system of a Spanish boiling water reactor (BWR) nuclear power plant. The aim is to estimate the current and future state of the material and the corresponding structural integrity of the valve. Given that there is no data available for the experimental characterization of the material, the evolution of the mechanical properties (fracture toughness, yield stress, flow stress and Ramberg-Osgood parameters) has been estimated using the ANL procedure. With the obtained estimations, the critical crack size has been calculated using the European procedure FITNET FFS and the ASME Code. This analysis considers not only the evolution of the mechanical properties up to now but also its future evolution in case there is a life extension of the plant until year 2029

  13. Influence of Al grain boundaries segregations and La-doping on embrittlement of intermetallic NiAl

    Science.gov (United States)

    Kovalev, Anatoly I.; Wainstein, Dmitry L.; Rashkovskiy, Alexander Yu.

    2015-11-01

    The microscopic nature of intergranular fracture of NiAl was experimentally investigated by the set of electron spectroscopy techniques. The paper demonstrates that embrittlement of NiAl intermetallic compound is caused by ordering of atomic structure that leads to formation of structural aluminum segregations at grain boundaries (GB). Such segregations contain high number of brittle covalent interatomic bonds. The alloying by La increases the ductility of material avoiding Al GB enrichment and disordering GB atomic structure. The influence of La alloying on NiAl mechanical properties was investigated. GB chemical composition, atomic and electronic structure transformations after La doping were investigated by AES, XPS and EELFS techniques. To qualify the interatomic bonds metallicity the Fermi level (EF) position and electrons density (neff) in conduction band were determined in both undoped and doped NiAl. Basing on experimental results the physical model of GB brittleness formation was proposed.

  14. Evaluation on the Effect of Composition on Radiation Hardening and Embrittlement in Model FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Briggs, Samuel A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Edmondson, Philip [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hu, Xunxiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Littrell, Kenneth C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parish, Chad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    This report details the findings of post-radiation mechanical testing and microstructural characterization performed on a series of model and commercial FeCrAl alloys to assist with the development of a cladding technology with enhanced accident tolerance. The samples investigated include model alloys with simple ferritic grain structure and two commercial alloys with minor solute additions. These samples were irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to nominal doses of 7.0 dpa near or at Light Water Reactor (LWR) relevant temperatures (300-400 C). Characterization included a suite of techniques including small angle neutron scattering (SANS), atom probe tomography (APT), and transmission based electron microscopy techniques. Mechanical testing included tensile tests at room temperature on sub-sized tensile specimens. The goal of this work was to conduct detailed characterization and mechanical testing to begin establishing empirical and/or theoretical structure-property relationships for radiation-induced hardening and embrittlement in the FeCrAl alloy class. Development of such relationships will provide insight on the performance of FeCrAl alloys in an irradiation environment and will enable further development of the alloy class for applications within a LWR environment. A particular focus was made on establishing trends, including composition and radiation dose. The report highlights in detail the pertinent findings based on this work. This report shows that radiation hardening in the alloys is primarily composition dependent due to the phase separation in the high-Cr FeCrAl alloys. Other radiation induced/enhanced microstructural features were less dependent on composition and when observed at low number densities, were not a significant contributor to the observed mechanical responses. Pre-existing microstructure in the alloys was found to be important, with grain boundaries and pre-existing dislocation

  15. Assessment of predictive models for the failure of titanium and ferrous alloys due to hydrogen effects. Report for the period of June 16 to September 15, 1981

    International Nuclear Information System (INIS)

    Archbold, T.F.; Bower, R.B.; Polonis, D.H.

    1982-04-01

    The 1977 version of the Simpson-Puls-Dutton model appears to be the most amenable with respect to utilizing known or readily estimated quantities. The Pardee-Paton model requires extensive calculations involving estimated quantities. Recent observations by Koike and Suzuki on vanadium support the general assumption that crack growth in hydride forming metals is determined by the rate of hydride formation, and their hydrogen atmosphere-displacive transformation model is of potential interest in explaining hydrogen embrittlement in ferrous alloys as well as hydride formers. The discontinuous nature of cracking due to hydrogen embrittlement appears to depend very strongly on localized stress intensities, thereby pointing to the role of microstructure in influencing crack initiation, fracture mode and crack path. The initiation of hydrogen induced failures over relatively short periods of time can be characterized with fair reliability using measurements of the threshold stress intensity. The experimental conditions for determining K/sub Th/ and ΔK/sub Th/ are designed to ensure plane strain conditions in most cases. Plane strain test conditions may be viewed as a conservative basis for predicting delayed failure. The physical configuration of nuclear waste canisters may involve elastic/plastic conditions rather than a state of plane strain, especially with thin-walled vessels. Under these conditions, alternative predictive tests may be considered, including COD and R-curve methods. The double cantilever beam technique employed by Boyer and Spurr on titanium alloys offers advantages for examining hydrogen induced delayed failure over long periods of time. 88 references

  16. Conversion of a gasoline internal combustion engine to operate on hydrogen fuel

    International Nuclear Information System (INIS)

    Bates, M.; Dincer, I.

    2009-01-01

    This study deals with the conversion of a gasoline spark ignition internal combustion engine to operate on hydrogen fuel while producing similar power, economy and reliability as gasoline. The conversion engine will have the fuel system redesigned and ignition and fuel timing changed. Engine construction material is of great importance due to the low ignition energy of hydrogen, making aluminum a desirable material in the intake manifold and combustion chamber. The engine selected to convert is a 3400 SFI dual over head cam General Motors engine. Hydrogen reacts with metals causing hydrogen embrittlement which leads to failure due to cracking. There are standards published by American Society of Mechanical Engineers (ASME) to avoid such a problem. Tuning of the hydrogen engine proved to be challenging due to the basic tuning tools of a gasoline engine such as a wide band oxygen sensor that could not measure the 34:1 fuel air mixture needed for the hydrogen engine. Once the conversion was complete the engine was tested on a chassis dynamometer to compare the hydrogen horsepower and torque produced to that of a gasoline engine. Results showed that the engine is not operating correctly. The engine is not getting the proper amount of fuel needed for complete combustion when operated in a loaded state over 3000 rpm. The problem was found to be the use of the stock injector driver that could not deliver enough power for the proper operation of the larger CM4980 injectors. (author)

  17. Effect of the oxidation front penetration on in-clad hydrogen migration

    Science.gov (United States)

    Feria, F.; Herranz, L. E.

    2018-03-01

    In LWR fuel claddings the embrittlement due to hydrogen precipitates (i.e., hydrides) is a degrading mechanism that concerns in nuclear safety, particularly in dry storage. A relevant factor is the radial distribution of the hydrogen absorbed, especially the hydride rim formed. Thus, a reliable assessment of fuel performance should account for hydrogen migration. Based on the current state of modelling of hydrogen dynamics in the cladding, a 1D radial model has been derived and coupled with the FRAPCON code. The model includes the effect of the oxidation front progression on in-clad hydrogen migration, based on experimental observations found (i.e., dissolution/diffusion/re-precipitation of the hydrogen in the matrix ahead of the oxidation front). A remarkable quantitative impact of this new contribution has been shown by analyzing the hydrogen profile across the cladding of several high burnup fuel scenarios (>60 GW d/tU); other potential contributions like thermodiffusion and diffusion in the hydride phase hardly make any difference. Comparisons against PIE measurements allow concluding that the model accuracy notably increases when the effect of the oxidation front is accounted for in the hydride rim formation. In spite of the promising results, further validation would be needed.

  18. Underground hydrogen storage. Final report. [Salt caverns, excavated caverns, aquifers and depleted fields

    Energy Technology Data Exchange (ETDEWEB)

    Foh, S.; Novil, M.; Rockar, E.; Randolph, P.

    1979-12-01

    The technical and economic feasibility of storing hydrogen in underground storage reservoirs is evaluated. The past and present technology of storing gases, primarily natural gas is reviewed. Four types of reservoirs are examined: salt caverns, excavated caverns, aquifers, and depleted fields. A technical investigation of hydrogen properties reveals that only hydrogen embrittlement places a limit on the underground storage by hydrogen. This constraint will limit reservoir pressures to 1200 psi or less. A model was developed to determine economic feasibility. After making reasonable assumptions that a utility might make in determining whether to proceed with a new storage operation, the model was tested and verified on natural gas storage. A parameteric analysis was made on some of the input parameters of the model to determine the sensitivity of the cost of service to them. Once the model was verified it was used to compute the cost of service of storing hydrogen in the four reservoir types. The costs of service for hydrogen storage ranged from 26 to 150% of the cost of the gas stored. The study concludes that it is now both safe and economic to store hydrogen in underground reservoirs.

  19. Neutron-irradiation + helium hardening and embrittlement modeling of 9% Cr-steels in an engineering perspective (HELENA)

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, Rachid

    2008-07-01

    This report provides a physically-based engineering model to estimate the radiation hardening of 9%Cr-steels under both displacement damage (dpa) and helium. The model is essentially based on the dispersed barrier hardening theory and the dynamic re-solution of helium under displacement cascades. However, a number of assumptions and simplifications were considered to obtain a simple description of irradiation hardening and embrittlement primarily relying on the available experimental data. As a result, two components were basically identified, the dpa component that can be associated with black dots and small loops and the He-component accounting for helium bubbles. The dpa component is strongly dependent on the irradiation temperature and its dependence law was based on a first-order annealing kinetics. The damage accumulation law was also modified to take saturation into account. Finally, the global kinetics of the damage accumulation kept defined, its amplitude is fitted to one experimental condition. The model was rationalized on an experimental database that mainly consists of {proportional_to}9%Cr-steels irradiated in the technologically important temperature range of 50 to 600 C up do 50 dpa and with a He-content up to {proportional_to}5000 appm, including neutron and proton irradiation as well as implantation. The test temperature effect is taken into account through a normalization procedure based on the change of the Young's modulus and the anelastic deformation that occurs at high temperature. Finally, the hardening-to-embrittlement correlation is obtained using the load diagram approach. Despite the large experimental scatter, inherent to the variety of the materials and irradiation as well as testing conditions, the obtained results are very promising. Improvement of the model performance is still possible by including He-hardening saturation and high temperature softening but unfortunately, at this stage, a number of conflicting experimental data

  20. Saga of hydrogen civilization

    International Nuclear Information System (INIS)

    Veziroglu, T.N.

    2009-01-01

    'Full text': Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted quickly. Also, their combustion products are causing global problems such as the greenhouse effect, ozone layer depletion, acid rains and pollution, all of which are posing great danger for our environment and eventually for the life on our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the hydrogen energy system. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, and little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar-hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar-hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st century. (author)