WorldWideScience

Sample records for environmental fate

  1. Investigating the Toxicity and Environmental Fate of Graphene Nanomaterials

    Science.gov (United States)

    The Hersam Laboratory at Northwestern University works with the Center for Environmental Implications of Nanotechnology and the United States Environmental Protection Agency to study the toxicity and environmental fate of emergent nanomaterials, specifically carbon-based nanomate...

  2. Environmental fate of tungsten from military use

    International Nuclear Information System (INIS)

    Clausen, Jay L.; Korte, Nic

    2009-01-01

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth-at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (< 1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use

  3. Environmental fate of tungsten from military use

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Jay L. [Research and Development Center, Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, New Hampshire, 03755 (United States)], E-mail: Jay.L.Clausen@erdc.usace.army.mil; Korte, Nic [1946 Clover Ct., Grand Junction, Colorado, 81506 (United States)

    2009-04-01

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth-at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (< 1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use.

  4. Environmental fate and behaviour of nanomaterials

    DEFF Research Database (Denmark)

    Hartmann, Nanna Isabella Bloch; Skjolding, Lars Michael; Hansen, Steffen Foss

    In the current report, the existing knowledge on the fate of nanomaterials in the environment is reviewed and the major knowledge gaps are identified.......In the current report, the existing knowledge on the fate of nanomaterials in the environment is reviewed and the major knowledge gaps are identified....

  5. 40 CFR 158.1300 - Environmental fate data requirements table.

    Science.gov (United States)

    2010-07-01

    ... transformation products. 7. Environmental chemistry methods used to generate data associated with this study must... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Environmental fate data requirements table. 158.1300 Section 158.1300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  6. Environmental fate of pesticides applied on coffee crops in ...

    African Journals Online (AJOL)

    The aim of this paper was evaluate the environmental fate of pesticides applied in coffee crops in southeast of Brazil, using the level I fugacity model. Chemical and physical characteristics of the pesticides were considered in different environmental compartments and applied fugacity equations. The preliminary evaluation ...

  7. The environmental release and fate of antibiotics.

    Science.gov (United States)

    Manzetti, Sergio; Ghisi, Rossella

    2014-02-15

    Antibiotics have been used as medical remedies for over 50 years and have recently emerged as new pollutants in the environment. This review encompasses the fate of several antibiotics in the environment, including sulfonamides, nitrofurans, terfenadines, cephalosporins and cyclosporins. It investigates the cycle of transfer from humans and animals including their metabolic transformation. The results show that antibiotic metabolites are of considerable persistence and are localized to ground-water and drinking water supplies. Furthermore, the results also show that several phases of the cycle of antibiotics in the environment are not well understood, such as how low concentrations of antibiotic metabolites in the diet affect humans and animals. This review also shows that improved wastewater decontamination processes are remediating factors for these emerging pollutants. The results obtained here may help legislators and authorities in understanding the fate and transformation of antibiotics in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Environmental fate of rice paddy pesticides in a model ecosystem.

    Science.gov (United States)

    Tomizawa, C; Kazano, H

    1979-01-01

    The distribution and metabolic fate of several rice paddy pesticides were evaluated in a modified model ecosystem. Among the three BHC isomers, beta-isomer was the most stable and bioconcentrated in all of the organisms. Alpha- and gamma-isomers were moderately persistent and degraded to some extent during the 33 day period. Disulfoton was relatively persistent due to the transformation to its oxidation products. Pyridaphenthion was fairly biodegradable. N-Phenyl maleic hydrazide derived from the hydrolysis of pyridaphenthion was not detected in the organisms though it was found in the aquarium water after 33 days. Cartap and edifenphos were considerably biodegradable, and the ratio of the conversion to water soluble metabolites was very high. There was a distinct difference in the persistence of Kitazin P and edifenphos in the aquarium water. It appeared that the hydrolysis rate of the pesticides affected their fate in the organisms. PCP appeared to be moderately biodegradable. CNP was considerably stable and stored in the organisms though the concentration in the aquarium water was relatively low. The persistence and distribution of the pesticides in the model ecosystem were dependent on their chemical structures. In spite of the limitation derived from short experimental period, the model ecosystem may be applicable for predicting the environmental fate of pesticides.

  9. Fate and transport of fragrance materials in principal environmental sinks.

    Science.gov (United States)

    Zhang, Xiaolei; Brar, Satinder Kaur; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y

    2013-10-01

    Fragrance materials are widely present in the environment, such as air, water, and soil. Concerns have been raised due to the increasing utilization and suspected impact on human health. The bioaccumulating property is considered as one of the causes of the toxicity to human beings. The removal of fragrance materials from environmental sinks has not been paid enough attention due to the lack of regulation and research on their toxicity. This paper provides systematic information on how fragrance materials are transferred to the environment, how do they affect human lives, and what is their fate in water, wastewater, wastewater sludge, and soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Regulatory relevant and reliable methods and data for determining the environmental fate of manufactured nanomaterials

    DEFF Research Database (Denmark)

    Baun, Anders; Sayre, Phil; Steinhäuser, Klaus Günter

    2017-01-01

    The widespread use of manufactured nanomaterials (MN) increases the need for describing and predicting their environmental fate and behaviour. A number of recent reviews have addressed the scientific challenges in disclosing the governing processes for the environmental fate and behaviour of MNs,...... data. Gaps do however exist in test methods for environmental fate, such as methods to estimate heteroagglomeration and the tendency for MNs to transform in the environment.......The widespread use of manufactured nanomaterials (MN) increases the need for describing and predicting their environmental fate and behaviour. A number of recent reviews have addressed the scientific challenges in disclosing the governing processes for the environmental fate and behaviour of MNs......, however there has been less focus on the regulatory adequacy of the data available for MN. The aim of this paper is therefore to review data, testing protocols and guidance papers which describe the environmental fate and behaviour of MN with a focus on their regulatory reliability and relevance. Given...

  11. Fate of triazoles in softwood upon environmental exposure.

    Science.gov (United States)

    Kukowski, Klara; Martinská, Veronika; Sedgeman, Carl A; Kuplic, Paige; Kozliak, Evguenii I; Fisher, Stephen; Kubátová, Alena

    2017-10-01

    Determining the fate of preservatives in commercial wood products is essential to minimize their losses and improve protective impregnation techniques. The fate of triazole fungicides in ponderosa pine wood was investigated in both outdoor and controlled-environment experiments using a representative triazole, tebuconazole (TAZ), which was accompanied by propiconazole (PAZ) in selected experiments. The study was designed to mimic industrial settings used in window frame manufacturing. To investigate the TAZ fate in detail, loosely and strongly bound fractions were differentiated using a multi-step extraction. The loosely bound TAZ fraction extracted through two sonications accounted for 85± 5% of the total TAZ, while the strongly bound TAZ was extracted only with an exhaustive Soxhlet extraction and corresponded to the remaining 15± 5%. A significant fraction (∼80%) of the original TAZ remained in the wood despite a six-month exposure to harsh environmental conditions, maintaining wood preservation and assuring minimal environmental impact. Depletion of loosely bound TAZ was observed from cross-sectional surfaces when exposed to rain, high humidity and sunlight. Water leaching was deemed to be the major route leading to triazole losses from wood. Leaching rate was found to be slightly higher for TAZ than for PAZ. The contribution of bio-, photo- and thermal degradation of triazoles was negligible as both PAZ and TAZ sorbed in wood remained intact. Triazole evaporation was also found to be minor at the moderate temperature (20-25 °C) recorded throughout the outdoor study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Environmental fate of TCDD and Agent Orange and bioavailability to troops in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Karch, N.J.; Watkins, D.K.; Ginevan, M.E. [Exponent, Inc., Washington, DC (United States); Young, A.L. [Oklahoma Univ., Norman, OK (United States)

    2004-09-15

    This paper reviews the environmental fate of Agent Orange and the contaminant, 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD), and discusses how this affects the bioavailability of TCDD for ground troops in Vietnam.

  13. OPERA models for predicting physicochemical properties and environmental fate endpoints.

    Science.gov (United States)

    Mansouri, Kamel; Grulke, Chris M; Judson, Richard S; Williams, Antony J

    2018-03-08

    The collection of chemical structure information and associated experimental data for quantitative structure-activity/property relationship (QSAR/QSPR) modeling is facilitated by an increasing number of public databases containing large amounts of useful data. However, the performance of QSAR models highly depends on the quality of the data and modeling methodology used. This study aims to develop robust QSAR/QSPR models for chemical properties of environmental interest that can be used for regulatory purposes. This study primarily uses data from the publicly available PHYSPROP database consisting of a set of 13 common physicochemical and environmental fate properties. These datasets have undergone extensive curation using an automated workflow to select only high-quality data, and the chemical structures were standardized prior to calculation of the molecular descriptors. The modeling procedure was developed based on the five Organization for Economic Cooperation and Development (OECD) principles for QSAR models. A weighted k-nearest neighbor approach was adopted using a minimum number of required descriptors calculated using PaDEL, an open-source software. The genetic algorithms selected only the most pertinent and mechanistically interpretable descriptors (2-15, with an average of 11 descriptors). The sizes of the modeled datasets varied from 150 chemicals for biodegradability half-life to 14,050 chemicals for logP, with an average of 3222 chemicals across all endpoints. The optimal models were built on randomly selected training sets (75%) and validated using fivefold cross-validation (CV) and test sets (25%). The CV Q 2 of the models varied from 0.72 to 0.95, with an average of 0.86 and an R 2 test value from 0.71 to 0.96, with an average of 0.82. Modeling and performance details are described in QSAR model reporting format and were validated by the European Commission's Joint Research Center to be OECD compliant. All models are freely available as an open

  14. Predicting the environmental fate properties of petroleum hydrocarbon mixtures

    International Nuclear Information System (INIS)

    Pisigan, R.A. Jr.; Tucker, W.A.

    1995-01-01

    The environmental fate and transport of petroleum products for risk assessment can be evaluated based on the physico-chemical properties of an indicator chemical or a surrogate compound, or the whole mixture. A study was conducted to develop a simple representation of the hydrocarbon mixture as if it contained only few constituents, each of which represents a large number of compounds. The products considered are gasoline, diesel fuel, and jet fuel (JP4). Each petroleum hydrocarbon was characterized as a mixture of six constituents: short chain alkanes, long chain alkanes, short chain cycloalkanes and alkenes, long chain cycloalkanes and alkenes, BTEX, and other aromatics. The carbon number used as a cut-off between short and long chain alkanes, alkenes, and cycloalkanes varies with the type of product. Each mixture has different average molecular weight, water solubility, vapor pressure, organic carbon partition coefficient, and air diffusivity. The properties of each constituent of gasoline were derived from the weighted average of all compounds belonging to each constituent group. For diesel fuel and JP4, the properties of each constituent were generated from the properties of the component most representative of the group. Any property that is missing or not available from common literature sources was derived from regression equations developed from the data base for gasoline. These regression equations express the property as function of the number of carbon atoms. The R 2 values of the regression equations range from 0.82--0.92. Some case studies involving petroleum product contamination in which the estimated properties were applied are presented

  15. Environmental Behavior and Fate of Explosives in Groundwater from the Milan Army Ammunition Plant in Aquatic and Wetland Plants. Fate of TNT and RDX

    National Research Council Canada - National Science Library

    Best, Elly

    1998-01-01

    The present study was performed to elucidate the environmental behavior and fate of TNT and RDX in aquatic and wetland plants collected from a field-scale wetland demonstration deployed at Milan Army...

  16. 40 CFR 158.2150 - Microbial pesticides nontarget organisms and environmental fate data requirements table.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Microbial pesticides nontarget... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Microbial Pesticides § 158.2150 Microbial pesticides nontarget organisms and environmental fate data...

  17. Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles.

    Science.gov (United States)

    Sani-Kast, Nicole; Scheringer, Martin; Slomberg, Danielle; Labille, Jérôme; Praetorius, Antonia; Ollivier, Patrick; Hungerbühler, Konrad

    2015-12-01

    Engineered nanoparticle (ENP) fate models developed to date - aimed at predicting ENP concentration in the aqueous environment - have limited applicability because they employ constant environmental conditions along the modeled system or a highly specific environmental representation; both approaches do not show the effects of spatial and/or temporal variability. To address this conceptual gap, we developed a novel modeling strategy that: 1) incorporates spatial variability in environmental conditions in an existing ENP fate model; and 2) analyzes the effect of a wide range of randomly sampled environmental conditions (representing variations in water chemistry). This approach was employed to investigate the transport of nano-TiO2 in the Lower Rhône River (France) under numerous sets of environmental conditions. The predicted spatial concentration profiles of nano-TiO2 were then grouped according to their similarity by using cluster analysis. The analysis resulted in a small number of clusters representing groups of spatial concentration profiles. All clusters show nano-TiO2 accumulation in the sediment layer, supporting results from previous studies. Analysis of the characteristic features of each cluster demonstrated a strong association between the water conditions in regions close to the ENP emission source and the cluster membership of the corresponding spatial concentration profiles. In particular, water compositions favoring heteroaggregation between the ENPs and suspended particulate matter resulted in clusters of low variability. These conditions are, therefore, reliable predictors of the eventual fate of the modeled ENPs. The conclusions from this study are also valid for ENP fate in other large river systems. Our results, therefore, shift the focus of future modeling and experimental research of ENP environmental fate to the water characteristic in regions near the expected ENP emission sources. Under conditions favoring heteroaggregation in these

  18. Environmental Application, Fate, Effects, and Concerns of Ionic Liquids: A Review.

    Science.gov (United States)

    Amde, Meseret; Liu, Jing-Fu; Pang, Long

    2015-11-03

    Ionic liquids (ILs) comprise mostly of organic salts with negligible vapor pressure and low flammability that are proposed as replacements for volatile solvents. ILs have been promoted as "green" solvents and widely investigated for their various applications. Although the utility of these chemicals is unquestionable, their toxic effects have attracted great attention. In order to manage their potential hazards and design environmentally benign ILs, understanding their environmental behavior, fate and effects is important. In this review, environmentally relevant issues of ILs, including their environmental application, environmental behavior and toxicity are addressed. In addition, also presented are the influence of ILs on the environmental fate and toxicity of other coexisting contaminants, important routes for designing nontoxic ILs and the techniques that might be adopted for the removal of ILs.

  19. Environmental fate of natural radioactive contaminants in fertilizers and phosphogypsum

    International Nuclear Information System (INIS)

    Batalha, Marcia Salamoni; Genuchten, Martinus Theodorus van

    2010-01-01

    Agricultural soils often require the use of fertilizers and soil conditioners for optimal production. Phosphate fertilizers produced from igneous phosphate rock often contain small amounts of natural radionuclides (notably uranium and thorium), while the byproduct phosphogypsum (dihydrated calcium sulfate) is typically enriched in radium and lead. It is important to understand the long-term fate of these radionuclides when routinely applied via fertilizers ( 238 U and 234 U) and phosphogypsum as an amendment ( 226 Ra and 210 Pb) to agricultural lands. This study addresses the results of modeling their transport in a typical Cerrado soil profile. The HYDRUS-1D code was used to compare possible soil and groundwater pollution scenarios following the long term use of fertilizers and phosphogypsum in agricultural operations. Results using the equilibrium transport approach suggest that radionuclide concentrations originating from the use of phosphate fertilizers and phosphogypsum are relatively modest and will not pose a major risk to polluting underlying groundwater resources. (author)

  20. Environmental fate of natural radioactive contaminants in fertilizers and phosphogypsum

    Energy Technology Data Exchange (ETDEWEB)

    Batalha, Marcia Salamoni; Genuchten, Martinus Theodorus van, E-mail: msbatalha@oi.com.b, E-mail: rvangenuchten@yahoo.co [Federal University of Rio de Janeiro (LTTC/COPPE/UFRJ), RJ (Brazil). Dept. of Mechanical Engineering. Lab. de Transmissao e Tecnologia do Calor; Bezerra, Camila Rosa, E-mail: camila.rosabz@gmail.co [Federal University of Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Dept. of Civil Engineering; Pontedeiro, Elizabeth May, E-mail: bettymay@cnen.gov.b [Brazilian Nuclear Energy Commission (CNEN), Rio de Janeiro, RJ (Brazil)

    2010-07-01

    Agricultural soils often require the use of fertilizers and soil conditioners for optimal production. Phosphate fertilizers produced from igneous phosphate rock often contain small amounts of natural radionuclides (notably uranium and thorium), while the byproduct phosphogypsum (dihydrated calcium sulfate) is typically enriched in radium and lead. It is important to understand the long-term fate of these radionuclides when routinely applied via fertilizers ({sup 238}U and {sup 234}U) and phosphogypsum as an amendment ({sup 226}Ra and {sup 210}Pb) to agricultural lands. This study addresses the results of modeling their transport in a typical Cerrado soil profile. The HYDRUS-1D code was used to compare possible soil and groundwater pollution scenarios following the long term use of fertilizers and phosphogypsum in agricultural operations. Results using the equilibrium transport approach suggest that radionuclide concentrations originating from the use of phosphate fertilizers and phosphogypsum are relatively modest and will not pose a major risk to polluting underlying groundwater resources. (author)

  1. Environmental Fate and Analysis of Ptaquiloside from the Bracken Fern

    DEFF Research Database (Denmark)

    Clauson-Kaas, Frederik

    The naturally occurring phytotoxin ptaquiloside (PTA) has long been known to be both acute toxic and carcinogenic. Contents of more than 1% ptaquiloside on dry weight has been detected in bracken (Pteridium spp.), a fern distributed across the globe in often dense populations. This work focused...... on the fate of PTA in the soil-water system, from where it may leach to drinking water sources. PTA was detected in concentrations up to 2.2 µg/L in natural waters receiving drainage from bracken populations, and was found in both surface and groundwater. It was shown that ptaquiloside leached off bracken...... fronds (the leaves of ferns) in concentrations up to 169 µ/L during rainfall events. Rainfall further determined the concentration in a stream that drained a bracken-covered catchment, suggesting that this is a potent driver of ptaquiloside exposure in the environment. In both pure and natural waters, p...

  2. Illustrating sensitivity in environmental fate models using partitioning maps - application to selected contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, T.; Wania, F. [Univ. of Toronto at Scarborough - DPES, Toronto (Canada)

    2004-09-15

    Generic environmental multimedia fate models are important tools in the assessment of the impact of organic pollutants. Because of limited possibilities to evaluate generic models by comparison with measured data and the increasing regulatory use of such models, uncertainties of model input and output are of considerable concern. This led to a demand for sensitivity and uncertainty analyses for the outputs of environmental fate models. Usually, variations of model predictions of the environmental fate of organic contaminants are analyzed for only one or at most a few selected chemicals, even though parameter sensitivity and contribution to uncertainty are widely different for different chemicals. We recently presented a graphical method that allows for the comprehensive investigation of model sensitivity and uncertainty for all neutral organic chemicals simultaneously. This is achieved by defining a two-dimensional hypothetical ''chemical space'' as a function of the equilibrium partition coefficients between air, water, and octanol (K{sub OW}, K{sub AW}, K{sub OA}), and plotting sensitivity and/or uncertainty of a specific model result to each input parameter as function of this chemical space. Here we show how such sensitivity maps can be used to quickly identify the variables with the highest influence on the environmental fate of selected, chlorobenzenes, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), hexachlorocyclohexanes (HCHs) and brominated flame retardents (BFRs).

  3. Surface Immobilization of Engineered Nanomaterials for in Situ Study of their Environmental Transformations and Fate

    Science.gov (United States)

    The transformation and environmental fate of engineered nanomaterials (ENMs) is the focus of intense research due to concerns about their potential impacts in the environment as a result of their uniquely engineered properties. Many approaches are being applied to investigate th...

  4. Challenges in assessing the environmental fate and exposure of nano silver

    International Nuclear Information System (INIS)

    Whiteley, Cherrie M; Jones, Kevin C; Sweetman, Andy J; Dalla Valle, Matteo

    2011-01-01

    There are significant challenges in assessing the fate and exposure of nano particles (NPs) owing to the lack of information on their use and potential pathways and sinks in the environment. This paper discusses these issues using nanosilver as a case study. The approach taken is to assess the production of nanosilver, the range of products that utilise its properties, potential environmental release pathways and subsequent fate. Estimates of UK nanosilver released into the environment have been made and sewage sludge identified as an important receiving compartment. This work aims to highlight the on-going challenges faced when assessing NPs in the environment. Using nanosilver as an example, difficulties in assessing production, use and release are discussed. The study also recommends a potential approach to assess the fate and behaviour assessment of nanosilver in the environment.

  5. Sources and fate of environmental radioactivity at the earth's surface

    International Nuclear Information System (INIS)

    El-Daoushy, F.

    2010-01-01

    Sources and fate of environmental radioactivity at the earth surface This is to link environmental radioactivity to RP in Africa? To describe the benefits of Africa from this field in terms of RP, safety and security policies. To create a mission and a vision to fulfil the needs of ONE PEOPLE, ONE GOAL, ONE FAITH. Sources, processes and fate of environmental radioactivity Previous experience helps setting up an African agenda.(1) Factors influencing cosmogenic radionuclides(2) Factors influencing artificial radionuclides: (a) nuclear weapon-tests (b) nuclear accidents (c) Energy, mining and industrial waste (3) Factors influencing the global Rn-222 and its daughters. (4) Dynamics of cycles of natural radioactivity, e.g. Pb-210. (5) Environmental radiotracers act as DIAGNOSTIC TOOLS to assess air and water quality and impacts of the atmospheric and hydrospheric compartments on ecosystems.6) Definition of base-lines for rehabilitation and protection. Climate influences sources/behaviour/fate of environmental radioactivity. Impacts on life forms in Africa would be severe. Assessing environmental radioactivity resolves these issue

  6. Monitoring fate and behaviour of Nanoceria under relevant environmental conditions

    CSIR Research Space (South Africa)

    Tancu, Y

    2014-11-01

    Full Text Available ). The results revealed significant tendency of nCeO¬2 to undergo aggregation, agglomeration and certain degree of deagglomeration processes under different environmental conditions. Moreover, the findings suggested that both electrostatic and steric interactions...

  7. Study of the photodegradation of a fragrance ingredient for aquatic environmental fate assessment.

    Science.gov (United States)

    Lin, Jianming; Emberger, Matthew

    2017-04-01

    Photodegradation is an important abiotic degradation process to be taken into account for more accurate assessment of the fate of chemicals in the aquatic environment, especially those that are not readily biodegradable. Although the significant role of indirect photodegradation in the environmental fate of chemicals has been revealed in recent research, because of the many confounding factors affecting its kinetics, no straightforward approaches can be used to investigate this degradation process for environmental fate assessment. The indirect photodegradation of a fragrance ingredient named Pamplewood was studied in this work for its fate assessment. Indirect photodegradation rates under various indoor and outdoor conditions were measured by using an LC-MS method. Although the half-lives varied from 4 to 13 days, they collectively indicated that Pamplewood is intrinsically photolabile and can undergo rapid photodegradation. Results from quencher experiments revealed that ⋅OH was the main reactive intermediate responsible for indirect photodegradation, with a half-life of about 18 days in sunlit surface water, based on the experimentally determined second-order rate constant (8.48 ± 0.19 × 10 9  M -1  s -1 ). Photodegradation products of Pamplewood were also studied by GC-MS, LC-MS and total organic carbon content analyses. The results indicated that intermediates of Pamplewood photodegradation continued to photodegrade into smaller and more polar species. Complete mineralization of Pamplewood was observed when it was reacted with hydroxyl radicals in an aqueous solution. This novel approach can be applied for a more realistic environmental fate assessment of other non-readily biodegradable, hydrolysis-resistant, and non-sunlight-absorbing fragrance ingredients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Evaluating the Environmental Fate of Short-Chain Chlorinated Paraffins (SCCPs) in the Nordic Environment Using a Dynamic Multimedia Model

    OpenAIRE

    Krogseth, Ingjerd Sunde; Breivik, Knut; Arnot, Jon A; Wania, Frank; Borgen, Anders; Schlabach, Martin

    2013-01-01

    Short chain chlorinated paraffins (SCCPs) raise concerns due to their potential for persistence, bioaccumulation, long-range transport and adverse effects. An understanding of their environmental fate remains limited, partly due to the complexity of the mixture. The purpose of this study was to evaluate whether a mechanistic, integrated, dynamic environmental fate and bioaccumulation multimedia model (CoZMoMAN) can reconcile what is known about environmental emissions and human exposure of SC...

  9. Aquatic Environmental Contamination: The fate of Asejire Lake in ...

    African Journals Online (AJOL)

    titi_aladesanmi

    In Nigeria major cities face serious water pollution crises, in which lack of environmental control of ... stocks are at the upper end of the food chains and are vital food supplies to local ... massive fish kills and loss of aquatic life and habitats in.

  10. Aqueous chemistry of chlorine: chemistry, analysis, and environmental fate of reactive oxidant species

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R.L.; Carpenter, J.H.

    1982-01-01

    This report reviews (1) the chemistry of chlorine relative to its reactions in fresh, estuarine, and marine waters and the formation of reactive oxidant species; (2) the current status of chemical analysis of reactive chlorine species and chlorine-produced oxidant species relative to analysis of low concentrations (microgram-per-liter range) and determination of accuracy and precision of methods; and (3) the environmental fate of chlorine and chlorine-produced oxidant species.

  11. Environmental Fate and Effects of Organotin Biocides: A Molecular and Microbiological Assessment.

    Science.gov (United States)

    1986-12-12

    and effects of the toxic tributyltin species, an active agent in new ship antifouling coatings. -44-4eiped- vltratrace’butyltin measurement’ ehdl c d...environments. However, the environmental occurrence, fate and effects of the highly toxic tributyltin species leached from the paints was virtually unexplored...biodegradation of tributyltin species; and 4) provided novel molecular topological correlations between molecular geometry and toxicity of organotin

  12. Environmental fate and effects of nicotine released during cigarette production.

    Science.gov (United States)

    Seckar, Joel A; Stavanja, Mari S; Harp, Paul R; Yi, Yongsheng; Garner, Charles D; Doi, Jon

    2008-07-01

    A variety of test methods were used to study the gradation, bioaccumulation, and toxicity of nicotine. Studies included determination of the octanol-water partition coefficient, conversion to CO2 in soil and activated sludge, and evaluation of the effects on microbiological and algal inhibition as well as plant germination and root elongation. The partitioning of nicotine between octanol and water indicated that nicotine will not bioaccumulate regardless of the pH of the medium. The aqueous and soil-based biodegradation studies indicated that nicotine is readily biodegradable in both types of media. The microbiological inhibition and aquatic and terrestrial toxicity tests indicated that nicotine has low toxicity. The U.S. Environmental Protection Agency Persistence, Bioaccumulation, and Toxicity Profiler model, based on the structure of nicotine and the predictive rates of hydroxyl radical and ozone reactions, estimated an atmospheric half-life of less than 5.0 h. Using this value in the Canadian Environmental Modeling Center level III model, the half-life of nicotine was estimated as 3.0 d in water and 0.5 d in soil. This model also estimated nicotine discharge into the environment; nicotine would be expected to be found predominantly in water (93%), followed by soil (4%), air (3%), and sediment (0.4%). Using the estimated nicotine concentrations in water, soil, and sediment and the proper median effective concentrations derived from the algal growth, biomass inhibition, and buttercrunch lettuce (Lactuca sativa) seed germination and root elongation studies, hazard quotients of between 10(-7) and 10(-8) were calculated, providing further support for the conclusion that the potential for nicotine toxicity to aquatic and terrestrial species in the environment is extremely low.

  13. Controls on the Environmental Fate of Compounds Controlled by Coupled Hydrologic and Reactive Processes

    Science.gov (United States)

    Hixson, J.; Ward, A. S.; McConville, M.; Remucal, C.

    2017-12-01

    Current understanding of how compounds interact with hydrologic processes or reactive processes have been well established. However, the environmental fate for compounds that interact with hydrologic AND reactive processes is not well known, yet critical in evaluating environmental risk. Evaluations of risk are often simplified to homogenize processes in space and time and to assess processes independently of one another. However, we know spatial heterogeneity and time-variable reactivities complicate predictions of environmental transport and fate, and is further complicated by the interaction of these processes, limiting our ability to accurately predict risk. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.

  14. [Environmental behavior of graphene and its effect on the transport and fate of pollutants in environment].

    Science.gov (United States)

    Ren, Wen-Jie; Teng, Ying

    2014-09-01

    Graphene is one of the most popular research topics in carbon nanomaterials. Because of its special physical and chemical properties, graphene will have wide applications. As the production and application amount is increasing, graphene will be inevitably released to the environment, resulting in risks of ecological environment and human health. It is of very vital significance for evaluating environmental risks of graphene scientifically and objectively to understand its environmental behavior and fate and explore its effect on the environmental behaviors of pollutants. This paper reviewed the environmental behavior of graphene, such as colloid properties and its stability in the aqueous environment and its transport through porous media. Additionally, the paper reviewed the effect of graphene on the transport and fate of pollutants. The interactions between graphene and heavy metals or organic compounds were especially discussed. Important topics should be explored including sorption mechanisms, interactions between graphene and soil components, influence of graphene on the transport and bioavailability of pollutants in environment, as well as approaches to quantifying graphene. The review might identify potential new ideas for further research in applications of graphene.

  15. Environmental fate and exposure models: advances and challenges in 21st century chemical risk assessment.

    Science.gov (United States)

    Di Guardo, Antonio; Gouin, Todd; MacLeod, Matthew; Scheringer, Martin

    2018-01-24

    Environmental fate and exposure models are a powerful means to integrate information on chemicals, their partitioning and degradation behaviour, the environmental scenario and the emissions in order to compile a picture of chemical distribution and fluxes in the multimedia environment. A 1995 pioneering book, resulting from a series of workshops among model developers and users, reported the main advantages and identified needs for research in the field of multimedia fate models. Considerable efforts were devoted to their improvement in the past 25 years and many aspects were refined; notably the inclusion of nanomaterials among the modelled substances, the development of models at different spatial and temporal scales, the estimation of chemical properties and emission data, the incorporation of additional environmental media and processes, the integration of sensitivity and uncertainty analysis in the simulations. However, some challenging issues remain and require research efforts and attention: the need of methods to estimate partition coefficients for polar and ionizable chemical in the environment, a better description of bioavailability in different environments as well as the requirement of injecting more ecological realism in exposure predictions to account for the diversity of ecosystem structures and functions in risk assessment. Finally, to transfer new scientific developments into the realm of regulatory risk assessment, we propose the formation of expert groups that compare, discuss and recommend model modifications and updates and help develop practical tools for risk assessment.

  16. Assessment of the Environmental Fate of the Herbicides Flufenacet and Metazachlor with the SWAT Model.

    Science.gov (United States)

    Fohrer, Nicola; Dietrich, Antje; Kolychalow, Olga; Ulrich, Uta

    2014-01-01

    This study aims to assess the environmental fate of the commonly used herbicides flufenacet and metazachlor in the Northern German Lowlands with the ecohydrological Soil and Water Assessment Tool (SWAT model) and to test the sensitivity of pesticide-related input parameters on the modeled transport dynamics. The river discharge of the Kielstau watershed was calibrated (Nash-Sutcliffe efficiency [NSE], 0.83; = 0.84) and validated (NSE, 0.76; = 0.77) for a daily time step. The environmental fate of metazachlor (NSE, 0.68; = 0.62) and flufenacet (NSE, 0.13; = 0.51) was simulated adequately. In comparison to metazachlor, the simulated flufenacet concentration and loads show a lower model efficiency due to the weaker simulation of the stream flow. The in-stream herbicide loads were less than 0.01% of the applied amount in the observed time period and thus not in conflict with European Environmental Legislation. The sensitivity analysis showed that, besides the accurate simulation of stream flow, the parameterization of the temporal and spatial distribution of the herbicide application throughout the watershed is the key factor for appropriate modeling results, whereas the physicochemical properties of the pesticides play a minor role in the modeling process. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. A review of the environmental corrosion, fate and bioavailability of munitions grade depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Handley-Sidhu, Stephanie, E-mail: s.handley-sidhu@bham.ac.uk [Water Sciences Research Group, School of Geography, Earth, Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Keith-Roach, Miranda J. [Biogeochemistry and Environmental Analytical Chemistry Research Group, and School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Lloyd, Jonathan R.; Vaughan, David J. [Williamson Research Centre for Molecular Environmental Science, and School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL (United Kingdom)

    2010-11-01

    Depleted uranium (DU) is a by-product of nuclear fuel enrichment and is used in antitank penetrators due to its high density, self-sharpening, and pyrophoric properties. Military activities have left a legacy of DU waste in terrestrial and marine environments, and there have been only limited attempts to clean up affected environments. Ten years ago, very little information was available on the dispersion of DU as penetrators hit their targets or the fate of DU penetrators left behind in environmental systems. However, the marked increase in research since then has improved our knowledge of the environmental impact of firing DU and the factors that control the corrosion of DU and its subsequent migration through the environment. In this paper, the literature is reviewed and consolidated to provide a detailed overview of the current understanding of the environmental behaviour of DU and to highlight areas that need further consideration.

  18. Human population intake fractions and environmental fate factors of toxic pollutants in life cycle impact assessment

    NARCIS (Netherlands)

    Huijbregts, M.A.J.; Struijs, Jaap; Goedkoop, Mark; Heijungs, Reinout; Jan Hendriks, A.; Van De Meent, Dik

    2005-01-01

    The present paper outlines an update of the fate and exposure part of the fate, exposure and effects model USES-LCA. The new fate and exposure module of USES-LCA was applied to calculate human population intake fractions and fate factors of the freshwater, marine and terrestrial environment for 3393

  19. Environmental fate and transport of chemical signatures from buried landmines -- Screening model formulation and initial simulations

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, J.M.; Webb, S.W.

    1997-06-01

    The fate and transport of chemical signature molecules that emanate from buried landmines is strongly influenced by physical chemical properties and by environmental conditions of the specific chemical compounds. Published data have been evaluated as the input parameters that are used in the simulation of the fate and transport processes. A one-dimensional model developed for screening agricultural pesticides was modified and used to simulate the appearance of a surface flux above a buried landmine, estimate the subsurface total concentration, and show the phase specific concentrations at the ground surface. The physical chemical properties of TNT cause a majority of the mass released to the soil system to be bound to the solid phase soil particles. The majority of the transport occurs in the liquid phase with diffusion and evaporation driven advection of soil water as the primary mechanisms for the flux to the ground surface. The simulations provided herein should only be used for initial conceptual designs of chemical pre-concentration subsystems or complete detection systems. The physical processes modeled required necessary simplifying assumptions to allow for analytical solutions. Emerging numerical simulation tools will soon be available that should provide more realistic estimates that can be used to predict the success of landmine chemical detection surveys based on knowledge of the chemical and soil properties, and environmental conditions where the mines are buried. Additional measurements of the chemical properties in soils are also needed before a fully predictive approach can be confidently applied.

  20. A review of ecological effects and environmental fate of illicit drugs in aquatic ecosystems.

    Science.gov (United States)

    Rosi-Marshall, E J; Snow, D; Bartelt-Hunt, S L; Paspalof, A; Tank, J L

    2015-01-23

    Although illicit drugs are detected in surface waters throughout the world, their environmental fate and ecological effects are not well understood. Many illicit drugs and their breakdown products have been detected in surface waters and temporal and spatial variability in use translates into "hot spots and hot moments" of occurrence. Illicit drug occurrence in regions of production and use and areas with insufficient wastewater treatment are not well studied and should be targeted for further study. Evidence suggests that illicit drugs may not be persistent, as their half-lives are relatively short, but may exhibit "pseudo-persistence" wherein continual use results in persistent occurrence. We reviewed the literature on the ecological effects of these compounds on aquatic organisms and although research is limited, a wide array of aquatic organisms, including bacteria, algae, invertebrates, and fishes, have receptors that make them potentially sensitive to these compounds. In summary, illicit drugs occur in surface waters and aquatic organisms may be affected by these compounds; research is needed that focuses on concentrations of illicit drugs in areas of production and high use, environmental fate of these compounds, and effects of these compounds on aquatic ecosystems at the concentrations that typically occur in the environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. An evaluation of the environmental fate and behavior of munitions materiel (Tetryl and polar metabolites of TNT) in soil and plant systems. Environmental fate and behavior of tetryl

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, R.J.; Harvey, S.D.; Cataldo, D.A.

    1993-09-01

    The objective of the present studies was to elucidate the environmental behavior and fate of 2,4,6trintrophenylmethylnitramine (tetryl) in the soil/plant system in three different types of soils incubated for 60 days. No tetryl was detectable after 11 days; most of the radiolabel was associated with non-extractable soil components and four transformation products appeared rapidly, of which two were identified as N-methyl-2,4,6-trintroaniline and N-methyl-aminodinitroaniline isomer. Short-term hydroponic studies indicated no significant difference in uptake rates for the three plant species employed. Kinetic studies indicated that plants have a high affinity and capacity for absorbing tetryl. Partitioning patterns indicated that the root is the major accumulation site for tetryl. Chemical fractionation and analyses of tissues showed rapid metabolism of tetryl in tissues of all species, which proceeded toward more polar metabolic products. Plant maturity studies indicated significant differences in the total relative uptake of tetryl by all three plant species based on soil type.

  2. Effects of pH upon the environmental fate of [14C]fenitrothion in an aquatic microcosm

    International Nuclear Information System (INIS)

    Fisher, S.W.

    1985-01-01

    The environmental fate of [ 14 C]fenitrothion was evaluated in aquatic microcosms held at pH 8.3 or 6.7. No general effect attributable to pH was observed; however, several significant interactions were identified. Of these, the findings that statistically higher amounts of radioactivity were present in water held at pH 6.7 and that significantly less metabolism of the parent compound occurred in the organisms at pH 8.3 were preeminent. These differences seen in metabolism and environmental fate between pH values are relatively minor and do not compromise the safety of the compound

  3. Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water.

    Science.gov (United States)

    Ma, Yini; Huang, Anna; Cao, Siqi; Sun, Feifei; Wang, Lianhong; Guo, Hongyan; Ji, Rong

    2016-12-01

    Contamination of fine plastic particles (FPs), including micrometer to millimeter plastics (MPs) and nanometer plastics (NPs), in the environment has caught great concerns. FPs are strong adsorbents for hydrophobic toxic pollutants and may affect their fate and toxicity in the environment; however, such information is still rare. We studied joint toxicity of FPs with phenanthrene to Daphnia magna and effects of FPs on the environmental fate and bioaccumulation of 14 C-phenanthrene in fresh water. Within the five sizes particles we tested (from 50 nm to 10 μm), 50-nm NPs showed significant toxicity and physical damage to D. magna. The joint toxicity of 50-nm NPs and phenanthrene to D. magna showed an additive effect. During a 14-days incubation, the presence of NPs significantly enhanced bioaccumulation of phenanthrene-derived residues in daphnid body and inhibited the dissipation and transformation of phenanthrene in the medium, while 10-μm MPs did not show significant effects on the bioaccumulation, dissipation, and transformation of phenanthrene. The differences may be attributed to higher adsorption of phenanthrene on 50-nm NPs than 10-μm MPs. Our findings underlined the high potential ecological risks of FPs, and suggested that NPs should be given more concerns, in terms of their interaction with hydrophobic pollutants in the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The fate of cyanide in leach wastes at gold mines: An environmental perspective

    International Nuclear Information System (INIS)

    Johnson, Craig A.

    2015-01-01

    Highlights: • This paper reviews the fate of cyanide in mineral processing wastes at gold mines. • Ore leaching produces numerous cyanide-containing species besides the gold complex. • Many cyanide species are eliminated or sequestered naturally over time. • Sequestered cyanide can be remobilized if conditions change. • Toxicity of released solutions can be reduced by photolytic reactions or offgassing. - Abstract: This paper reviews the basic chemistry of cyanide, methods by which cyanide can be analyzed, and aspects of cyanide behavior that are most relevant to environmental considerations at mineral processing operations associated with gold mines. The emphasis is on research results reported since 1999 and on data gathered for a series of U.S. Geological Survey studies that began in the late 1990s. Cyanide is added to process solutions as the CN − anion, but ore leaching produces numerous other cyanide-containing and cyanide-related species in addition to the desired cyanocomplex of gold. These can include hydrogen cyanide (HCN); cyanometallic complexes of iron, copper, zinc, nickel, and many other metals; cyanate (CNO − ); and thiocyanate (SCN − ). The fate of these species in solid wastes and residual process solutions that remain once gold recovery activities are terminated and in any water that moves beyond the ore processing facility dictates the degree to which cyanide poses a risk to aquatic organisms and aquatic-dependent organisms in the local environment. Cyanide-containing and cyanide-related species are subject to attenuation mechanisms that lead to dispersal to the atmosphere, chemical transformation to other carbon and nitrogen species, or sequestration as cyanometallic precipitates or adsorbed species on mineral surfaces. Dispersal to the atmosphere and chemical transformation amount to permanent elimination of cyanide, whereas sequestration amounts to storage of cyanide in locations from which it can potentially be remobilized by

  5. Environmental fate of hexabromocyclododecane from a new Canadian electronic recycling facility.

    Science.gov (United States)

    Tomko, Geoffrey; McDonald, Karen M

    2013-01-15

    An electronics recycling facility began operation at the municipal landfill site for the City of Edmonton, Canada in March 2008 with the goal of processing 30,000 tonnes of electronic wastes per year. Of the many by-products from the process, brominated fire retardants such as hexabromocyclododecane (HBCD) can evolve off of e-wastes and be released into the environmental media. HBCD has been identified by many countries and international bodies as a chemical of concern because of its ability to bioaccumulate in the ecosystem. An evaluation of the potential emission of HBCD indicates that up to 500 kg per year may be released from a landfill and recycling facility such as that operating in Edmonton. A multimedia fugacity model was used to evaluate the dispersion and fate of atmospherically emitted HBCD traveling into surrounding agricultural land and forested parkland. The model indicates that the three isomers of HBCD partitioned into environmental media similarly. Much of the HBCD is lost through atmospheric advection, but it is also found in soil and sediment. Modeled air concentrations are similar to those measured at locations with a history of e-waste recycling. Since HBCD has been shown to bioaccumulate, the HBCD released from this source has the long-term potential to affect agricultural food crops and the park ecosystem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Model ecosystem determination of the metabolic and environmental fate of tetrachloro-DDT

    International Nuclear Information System (INIS)

    Cole, R.B.; Metcalf, R.L.

    1987-01-01

    A potential hazardous waste site investigation was conducted by the Environmental Protection Agency to determine whether ground water, surface water, or area soils and sediments were contaminated as a result of waster water discharges or improper solid waste disposal practices of a pesticide manufacturer. One of the compounds discharged into the environment was 1,1,1,2-tetrachloro-2,2-bis(p-chlorophenyl)ethane, commonly referred to as tetrachloro-DDT. Unlike a great many of the DDT analogs, tetrachloro-DDT has come under only limited scrutiny, mainly because it was dismissed as having poor insecticidal properties relative to DDT and other analogs. Its metabolism in ingesting organisms, and degradative pathways in the environment have consequently been left uncertain. This model ecosystem study was undertaken to examine the unanswered questions concerning the metabolic and environmental fate of tetrachloro-DDT. The relevance of this study pertains to disposal practices of pesticide manufacturers who use tetrachloro-DDT as a product precursor

  7. A Review of Environmental Occurrence, Fate, Exposure, and Toxicity of Benzothiazoles.

    Science.gov (United States)

    Liao, Chunyang; Kim, Un-Jung; Kannan, Kurunthachalam

    2018-05-01

    Benzothiazole and its derivatives (BTs) are high production volume chemicals that have been used for several decades in a large number of industrial and consumer products, including vulcanization accelerators, corrosion inhibitors, fungicides, herbicides, algicides, and ultraviolet (UV) light stabilizers. Several benzothiazole derivatives are used commercially, and widespread use of these chemicals has led to ubiquitous occurrence in diverse environmental compartments. BTs have been reported to be dermal sensitizers, respiratory tract irritants, endocrine disruptors, carcinogens, and genotoxicants. This article reviews occurrence and fate of a select group of BTs in the environment, as well as human exposure and toxicity. BTs have frequently been found in various environmental matrices at concentrations ranging from sub-ng/L (surface water) to several tens of μg/g (indoor dust). The use of BTs in a number of consumer products, especially in rubber products, has resulted in widespread human exposure. BTs undergo chemical, biological, and photolytic degradation in the environment, creating several transformation products. Of these, 2-thiocyanomethylthio-benzothiazole (2-SCNMeS-BTH) has been shown to be the most toxic. Epidemiological studies have shown excess risks of cancers, including bladder cancer, lung cancer, and leukemia, among rubber factory workers, particularly those exposed to 2-mercapto-benzothiazole (2-SH-BTH). Human exposure to BTs continues to be a concern.

  8. Environmental properties of long chain alcohols. Part 1: Physicochemical, environmental fate and acute aquatic toxicity properties

    DEFF Research Database (Denmark)

    Fisk, Peter; Sanderson, Hans; Wildey, Ross

    2009-01-01

    )SARs). This allows predictions of data relating to human and environmental safety profiles and patterns. These alcohols have been shown to be rapidly degradable under standard conditions up to C18. Furthermore, evidence suggests that longer chain lengths are also rapidly biodegradable. While log Kow values suggest...

  9. The environmental fate of polybrominated diphenyl ethers in the Great Lakes Basin

    Science.gov (United States)

    Gouin, Todd William

    Semi-volatile organic compounds, such as the polybrominated diphenyl ethers (PBDEs) have the potential to undergo long-range atmospheric transport (LRAT) to remote locations, which can increase the exposure of sensitive ecosystems to potentially harmful substances. Regulatory instruments, such as the Stockholm Convention on persistent organic pollutants (POPs), have been implemented to limit and/or prevent this exposure. Through the acquisition of scientific data, knowledge can be gained about the environmental fate and human exposure of chemical substances, and the risks associated with using those substances assessed. PBDEs are a class of flame retardants that are used in a wide range of commercial products. In response to growing concern over the detection of PBDEs in remote regions, a number of regulatory bodies have implemented measures to restrict the use of PBDEs. Using a suite of environmental fate models it is shown that PBDEs will most likely partition to organic carbon in soil and sediment, and that their persistence in the environment will be strongly influenced by their reactivity in those compartments. The transport potential of the PBDEs is investigated using the transport and persistence level III model TaPL3, using model environments with and without vegetation. It is suggested that the LRAT potential of the PBDEs is likely to be greater for the more volatile lower brominated congeners than for the higher brominated congeners, and that the LRAT may be sensitive to seasonal changes in the environment, such as temperature, vegetation and changes in precipitation. Furthermore, model results suggest that the PBDEs may be subject to a "spring pulse" effect, whereby concentrations are elevated in air during the early spring. Field studies support the theory of a "spring pulse" effect, where concentrations were observed to be five times greater during the period between snowmelt and bud burst than the average concentration before and after, but conclude

  10. Climate-based archetypes for the environmental fate assessment of chemicals.

    Science.gov (United States)

    Ciuffo, Biagio; Sala, Serenella

    2013-11-15

    Emissions of chemicals have been on the rise for years, and their impacts are greatly influenced by spatial differentiation. Chemicals are usually emitted locally but their impact can be felt both locally and globally, due to their chemical properties and persistence. The variability of environmental parameters in the emission compartment may affect the chemicals' fate and the exposure at different orders of magnitude. The assessment of the environmental fate of chemicals and the inherent spatial differentiation requires the use of multimedia models at various levels of complexity (from a simple box model to complex computational and high-spatial-resolution models). The objective of these models is to support ecological and human health risk assessment, by reducing the uncertainty of chemical impact assessments. The parameterisation of spatially resolved multimedia models is usually based on scenarios of evaluative environments, or on geographical resolutions related to administrative boundaries (e.g. countries/continents) or landscape areas (e.g. watersheds, eco-regions). The choice of the most appropriate scale and scenario is important from a management perspective, as a balance should be reached between a simplified approach and computationally intensive multimedia models. In this paper, which aims to go beyond the more traditional approach based on scale/resolution (cell, country, and basin), we propose and assess climate-based archetypes for the impact assessment of chemicals released in air. We define the archetypes based on the main drivers of spatial variability, which we systematically identify by adopting global sensitivity analysis techniques. A case study that uses the high resolution multimedia model MAPPE (Multimedia Assessment of Pollutant Pathways in the Environment) is presented. Results of the analysis showed that suitable archetypes should be both climate- and chemical-specific, as different chemicals (or groups of them) have different traits

  11. Environmental properties of long chain alcohols. Part 1: Physicochemical, environmental fate and acute aquatic toxicity properties

    DEFF Research Database (Denmark)

    Fisk, Peter; Sanderson, Hans; Wildey, Ross

    2009-01-01

    )SARs). This allows predictions of data relating to human and environmental safety profiles and patterns. These alcohols have been shown to be rapidly degradable under standard conditions up to C18. Furthermore, evidence suggests that longer chain lengths are also rapidly biodegradable. While log Kow values suggest......This paper summarises the physicochemical, biodegradation and acute aquatic ecotoxicity properties of long chain aliphatic alcohols. Properties of pure compounds are shown to follow somewhat predictable trends, which are amenable to estimation by quantitative structure-activity relationships ((Q...

  12. An Evaluation of the Environmental Fate and Behavior of Munitions Material (TNT, RDX) in Soil and Plant Systems. Environmental Fate and Behavior of RDX

    Science.gov (United States)

    1990-08-01

    2.2 2.2 SOIL CHARACTERIZATION AND SAMPLING ............................................. 2.7 2.3 PLANT CULTIVATION ...cycle. 2.3 Plant Cultivation and Samoling The chemical fate of RDX in plants was evaluated using bush beans K (Phaseolus vulgaris), wheat (Triticum...particularly in light of the high tissue concentrations observed, may be important from the standpoint of food-chain transfer and ecotoxicology

  13. Fate and Transport of Mercury in Environmental Media and Human Exposure

    Science.gov (United States)

    Kim, Moon-Kyung

    2012-01-01

    Mercury is emitted to the atmosphere from various natural and anthropogenic sources, and degrades with difficulty in the environment. Mercury exists as various species, mainly elemental (Hg0) and divalent (Hg2+) mercury depending on its oxidation states in air and water. Mercury emitted to the atmosphere can be deposited into aqueous environments by wet and dry depositions, and some can be re-emitted into the atmosphere. The deposited mercury species, mainly Hg2+, can react with various organic compounds in water and sediment by biotic reactions mediated by sulfur-reducing bacteria, and abiotic reactions mediated by sunlight photolysis, resulting in conversion into organic mercury such as methylmercury (MeHg). MeHg can be bioaccumulated through the food web in the ecosystem, finally exposing humans who consume fish. For a better understanding of how humans are exposed to mercury in the environment, this review paper summarizes the mechanisms of emission, fate and transport, speciation chemistry, bioaccumulation, levels of contamination in environmental media, and finally exposure assessment of humans. PMID:23230463

  14. Environmental effect and fate of selected phenols in aquatic ecosystems using microcosm approaches

    International Nuclear Information System (INIS)

    Portier, R.J.; Chen, H.M.; Meyers, S.P.

    1983-01-01

    Microbiological studies, together with physicochemical analyses of selected industrial source phenols of environmental significance, were conducted in continuous flow and carbon metabolism microcosms to determine the behavior of these priority pollutants in soil and sediment-water systems typical of coastal wetlands. Phenols used included 4- nitrophenol, 2,4,6-trichlorophenol, 2-chlorophenol, and phenol. The organophosphate, 14 C-UL-Methyl Parathion, was used as a benchmark toxicant control while 14 C-Ring-Phenol was employed for all phenolic compound additions. Microbial diversity, ATP, and specific enzyme systems (i.e., phosphatase, dehydrogenase) were continuously monitored along with 14 CO 2 expiration and 14 C assimilation by the cellular component. Residual analysis of all microcosm tests employed procedures using combined gas chromatography/high-performance liquid chromatography. Statistical analyses were conducted of variations of testing criteria, along with a ranking profile of relative biotransformation and biodegradation potential. Data presented confirm the validity of microcosm approaches and related correlation analysis in toxic substance fate investigations. 17 references, 6 figures, 1 table

  15. Fate and potential environmental effects of methylenediphenyl diisocyanate and toluene diisocyanate released into the atmosphere.

    Science.gov (United States)

    Tury, Bernard; Pemberton, Denis; Bailey, Robert E

    2003-01-01

    Information from a variety of sources has been collected and summarized to facilitate an overview of the atmospheric fate and potential environmental effects of emissions of methylenediphenyl diisocyanate (MDI) or toluene diisocyanate (TDI) to the atmosphere. Atmospheric emissions of both MDI and TDI are low, both in terms of concentration and mass, because of their low volatility and the need for careful control over all aspects of their lifecycle from manufacture through disposal. Typical emission losses for TDI are 25 g/t of TDI used in slabstock foam production. MDI emission losses are lower, often less than 1 g/t of MDI used. Dispersion modeling predicts that concentrations at the fenceline or beyond are very low for typical releases. Laboratory studies show that TDI (and by analogy MDI) does not react with water in the gas phase at a significant rate. The primary degradation reaction of these aromatic diisocyanates in the atmosphere is expected to be oxidation by OH radicals with an estimated half-life of one day. Laboratory studies also show that this reaction is not expected to result in increased ground-level ozone accumulation.

  16. The fate of cyanide in leach wastes at gold mines: an environmental perspective

    Science.gov (United States)

    Johnson, Craig A.

    2015-01-01

    This paper reviews the basic chemistry of cyanide, methods by which cyanide can be analyzed, and aspects of cyanide behavior that are most relevant to environmental considerations at mineral processing operations associated with gold mines. The emphasis is on research results reported since 1999 and on data gathered for a series of U.S. Geological Survey studies that began in the late 1990s. Cyanide is added to process solutions as the CN− anion, but ore leaching produces numerous other cyanide-containing and cyanide-related species in addition to the desired cyanocomplex of gold. These can include hydrogen cyanide (HCN); cyanometallic complexes of iron, copper, zinc, nickel, and many other metals; cyanate (CNO−); and thiocyanate (SCN−). The fate of these species in solid wastes and residual process solutions that remain once gold recovery activities are terminated and in any water that moves beyond the ore processing facility dictates the degree to which cyanide poses a risk to aquatic organisms and aquatic-dependent organisms in the local environment.

  17. Environmental transport and fate of endocrine disruptors from non-potable reuse of municipal wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, B; Beller, H; Bartel, C M; Kane, S; Campbell, C; Grayson, A; Liu, N; Burastero, S

    2005-11-16

    This project was designed to investigate the important but virtually unstudied topic of the subsurface transport and fate of Endocrine Disrupting Compounds (EDCs) when treated wastewater is used for landscape irrigation (non-potable water reuse). Although potable water reuse was outside the scope of this project, the investigation clearly has relevance to such water recycling practices. The target compounds, which are discussed in the following section and include EDCs such as 4-nonylphenol (NP) and 17{beta}-estradiol, were studied not only because of their potential estrogenic effects on receptors but also because they can be useful as tracers of wastewater residue in groundwater. Since the compounds were expected to occur at very low (part per trillion) concentrations in groundwater, highly selective and sensitive analytical techniques had to be developed for their analysis. This project assessed the distributions of these compounds in wastewater effluents and groundwater, and examined their fate in laboratory soil columns simulating the infiltration of treated wastewater into an aquifer (e.g., as could occur during irrigation of a golf course or park with nonpotable treated water). Bioassays were used to determine the estrogenic activity present in effluents and groundwater, and the results were correlated with those from chemical analysis. In vitro assays for estrogenic activity were employed to provide an integrated measure of estrogenic potency of environmental samples without requiring knowledge or measurement of all bioactive compounds in the samples. For this project, the Las Positas Golf Course (LPGC) in the City of Livermore provided an ideal setting. Since 1978, irrigation of this area with treated wastewater has dominated the overall water budget. For a variety of reasons, a group of 10 monitoring wells were installed to evaluate wastewater impacts on the local groundwater. Additionally, these wells were regularly monitored for tritium ({sup 3}H

  18. Environmental fate and transport of nitroglycerin from propellant residues at firing positions in the unsaturated zone

    Energy Technology Data Exchange (ETDEWEB)

    Bellavance-Godin, A. [Institut National de la Recherche Scientifique, Quebec, PQ (Canada). Eau, Terre et Environnement; Martel, R. [Institut National de la Recherche Scientifique, Varennes, PQ (Canada). Eau, Terre et Environnement, Earth Sciences

    2008-07-01

    In response to environmental concerns, the Canadian Forces Base (CFB) have initiated studies to better evaluate the impact of various military activities. This paper presented the results of a study in which the fate of propellant residues on large soil columns was investigated. The sites selected for the study were the antitank ranges at Garrison Valcartier, Quebec and those at the CFB Petawawa, Ontario. The shoulder rockets fired on those ranges were propelled by solid propellants based on a nitrocellulose matrix in which nitroglycerine and ammonium perchlorate were dispersed as oxidizer and energetic materials. Propellant residues accumulated in the surface soils because the combustion processes in the rockets was incomplete. This study evaluated the contaminants transport through the unsaturated zone. Sampling was conducted in 2 steps. The first involved collecting uncontaminated soil samples representative of the geological formations of the 2 sites. The second step involved collecting soils containing high levels of propellant residues behind antitank firing positions, which was later spread across the surface of the uncontaminated soil columns and which were representative of the contaminated zone. The soils were watered in the laboratory following the precipitation patterns of the respective regions and interstitial water output of the columns was also sampled. The compounds of interest were nitroglycerine and its degradation metabolites, dinitroglycerine, mononitroglycerine and nitrates as well as perchlorate and bromides. Results presented high concentrations of nitrites, nitrates and perchlorates. Both the NG and its degradation products were monitored using a newly developed analytical method that provides for a better understanding of NG degradation pathways in anaerobic conditions. 12 refs., 3 tabs., 12 figs.

  19. Source apportionment and environmental fate of lead chromates in atmospheric dust in arid environments.

    Science.gov (United States)

    Meza-Figueroa, Diana; González-Grijalva, Belem; Romero, Francisco; Ruiz, Joaquin; Pedroza-Montero, Martín; Rivero, Carlos Ibañez-Del; Acosta-Elías, Mónica; Ochoa-Landin, Lucas; Navarro-Espinoza, Sofía

    2018-03-07

    The environmental fate of lead derived from traffic paint has been poorly studied in developing countries, mainly in arid zones. For this purpose, a developing city located in the Sonoran desert (Hermosillo, Mexico), was chosen to conduct a study. In this paper the lead chromate (crocoite) sources in atmospheric dust were addressed using a combination of Raman microspectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and Pb isotope measurements. A high concentration of Pb and Cr as micro- and nanostructured pigments of crocoite is reported in yellow traffic paint (n=80), road dust (n=146), settled dust in roofs (n=21), and atmospheric dust (n=20) from a developing city located in the Sonoran Desert. 10 samples of peri-urban soils were collected for local geochemical background. The paint photodegradation and erosion of the asphaltic cover are enhanced by the climate, and the presence of the mineral crocoite (PbCrO 4 ) in road dust with an aerodynamic diameter ranging from 100nm to 2μm suggests its integration into the atmosphere by wind resuspension processes. A positive PbCr correlation (R 2 =0.977) was found for all studied samples, suggesting a common source. The Pb-isotope data show signatures in atmospheric dust as a product of the mixing of two end members: i) local soils and ii) crocoite crystals as pigments in paint. The presence of lead chromates in atmospheric dust has not been previously documented in Latin America, and it represents an unknown health risk to the exposed population because the identified size of crystals can reach the deepest part of lungs. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Assessment of the environmental fate of cycloxaprid in flooded and anaerobic soils by radioisotopic tracing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xuanqi; Xu, Xiaoyong; Li, Chao [Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China, University of Science and Technology, Shanghai 200237 (China); Zhang, Hanxue; Fu, Qiuguo [Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China); Shao, Xusheng [Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China, University of Science and Technology, Shanghai 200237 (China); Ye, Qingfu, E-mail: qfye@zju.edu.cn [Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China); Li, Zhong, E-mail: lizhong@ecust.edu.cn [Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China, University of Science and Technology, Shanghai 200237 (China)

    2016-02-01

    Cycloxaprid (CYC) is a novel broad-spectrum neonicotinoid insecticide that has been developed for agricultural pest control. The fate of the {sup 14}C-labeled racemic and enantio-pure CYC isomers in flooded and anaerobic soil was investigated using radioisotope tracing techniques. After 100 d of incubation, only a minor portion (< 1%) of the applied CYC isomers is mineralized by each of the four tested soil types. The fraction of initially applied radioactive CYC dissipated into the bound or non-extractable residues (BR) increases with increase in the length of the incubation period, reaching up to 53.0–81.6%. The dissipation of the CYC through mineralization or formation of BR is strongly influenced by soil properties, such as humic content, pH value, and retained microbial activity. Amongst the soils studied, the fluvio-marine yellow loamy soil displayed the highest tendency to mineralize CYC while the coastal saline soil exhibited the strongest tendency to form BR. The observation that the water phase retained the large portion(> 60%) of the radioactivity attributed to the total extractable residue suggested that under the experimental condition, the initially applied {sup 14}C-labeled CYC residues were readily available for leaching or offsite transport. Additionally, no enantiomer-specific behaviors are observed. The results from this study provide a framework for assessing the environmental impact resulting from the use of this pesticide. - Highlights: • Only a minor portion (<1%) of the applied CYC was mineralized. • The bound residue increased over time, reaching up to 53.0-81.6%. • CYC residues were readily available for leaching. • No enantiomer-specific behaviors were observed.

  1. Evaluating the environmental fate of short-chain chlorinated paraffins (SCCPs) in the Nordic environment using a dynamic multimedia model.

    Science.gov (United States)

    Krogseth, Ingjerd S; Breivik, Knut; Arnot, Jon A; Wania, Frank; Borgen, Anders R; Schlabach, Martin

    2013-12-01

    Short chain chlorinated paraffins (SCCPs) raise concerns due to their potential for persistence, bioaccumulation, long-range transport and adverse effects. An understanding of their environmental fate remains limited, partly due to the complexity of the mixture. The purpose of this study was to evaluate whether a mechanistic, integrated, dynamic environmental fate and bioaccumulation multimedia model (CoZMoMAN) can reconcile what is known about environmental emissions and human exposure of SCCPs in the Nordic environment. Realistic SCCP emission scenarios, resolved by formula group, were estimated and used to predict the composition and concentrations of SCCPs in the environment and the human food chain. Emissions at the upper end of the estimated range resulted in predicted total concentrations that were often within a factor of 6 of observations. Similar model performance for a complex group of organic contaminants as for the well-known polychlorinated biphenyls strengthens the confidence in the CoZMoMAN model and implies a relatively good mechanistic understanding of the environmental fate of SCCPs. However, the degree of chlorination predicted for SCCPs in sediments, fish, and humans was higher than observed and poorly established environmental half-lives and biotransformation rate constants contributed to the uncertainties in the predicted composition and ∑SCCP concentrations. Improving prediction of the SCCP composition will also require better constrained estimates of the composition of SCCP emissions. There is, however, also large uncertainty and lack of coherence in the existing observations, and better model-measurement agreement will require improved analytical methods and more strategic sampling. More measurements of SCCP levels and compositions in samples from background regions are particularly important.

  2. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Guangguo, Ying [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia)], E-mail: guang-guo.ying@gig.ac.cn; Xiangyang, Yu [CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia); Food Safety Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Kookana, Rai S [CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia)

    2007-12-15

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil.

  3. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    International Nuclear Information System (INIS)

    Ying Guangguo; Yu Xiangyang; Kookana, Rai S.

    2007-01-01

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil

  4. Exposure levels, environmental fate modelling and human health risk assessment of lindane in Ghana

    International Nuclear Information System (INIS)

    Adu-Kumi, S.

    2011-01-01

    -HCH which is a known environmental estrogen, was predominant contaminant measured (geometric mean concentrations 4.18 ng g -1 lipid wt. and 4.35 ng g -1 lipid wt. for pooled and individual samples respectively). The levels of Lindane, α-HCH and β-HCH in edible fish (catfish and tilapia) sourced from Lake Bosumtwi and the Weija Lake, were concurrently investigated using HRGC/HRMS. Concentrations of HCHs were found to be generally low (mainly limits of detection) probably reflecting the historical use of Lindane and technical HCH mixtures. Catfish sourced from Lake Volta (purchased from the Madina market) however contained appreciable amounts of Lindane (average concentration of 0.72 ng g -1 lipid wt). Measured values are lower than the maximum acceptable limit for human consumption established by the FAO/WHO (FAO/WHO, 1986). Hence there is no potential health risk from HCHs (Lindane, α-HCH and β-HCH) in fish for the general population of Ghana. Level III and level IV fugacity models were successfully applied to investigate the environmental fate of Lindane in the compartments of air, water, sediment, soil and biota (fish). Model estimates showed that air, water, soil and fish constitute important exposure pathways of Lindane for the general population of Ghana. The estimated total amount of Lindane accumulated in all media at steady-state was 136 tonnes, the soil compartment accounting for ore than 97% of the total accumulation. Time trends in concentration and fluxes simulated in for the period 1959-2020 predicted that less than 1% of the 2002 concentration levels of Lindane in air, water and soil, respectively, will be left in 2020. Finally, health risks associated with the exposure of the general population of Ghana to Lindane via the pathways of air, water, soil, food (or diet) were characterized using the combined field measurements and results of the multi-media environmental fate modelling. Diet (mainly vegetables), soil and to a lesser extent water constituted

  5. Interaction of Physical and Chemical Processes Controlling the Environmental Fate and Transport of Lampricides Through Stream-Hyporheic Systems

    Science.gov (United States)

    Hixson, J.; Ward, A. S.; Schmadel, N.; McConville, M.; Remucal, C.

    2016-12-01

    The transport and fate of contaminants of emerging concern through the environment is complicated by the heterogeneity of natural systems and the unique reaction pathways of individual compounds. Our current evaluation of risk is often simplified to controls assumed to be homogeneous in space and time. However, we know spatial heterogeneity and time-variable reaction rates complicate predictions of environmental transport and fate, and therefore risk. These complications are the result of the interactions between the physical and chemical systems and the time-variable equilibrium that exists between the two. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.

  6. Parameters for the Evaluation of the Fate, Transport, and Environmental Impacts of Chemical Agents in Marine Environments

    Science.gov (United States)

    2007-07-01

    Anal. Bering/Chukchi, accessed 3 January 2007, http://www.osdpd.noaa.gov/PSB/EPS/SST/data/beringst.c.gif. RE-2 15 Brewer , P. G.; Glover, D. M...Highly Purified Mustard Gas and its Action on Yeast , ” J. Am. Chem. Soc., 1947, 69(7), 1808-1809. 135 Redemann, C. E.; Chaikin, S. W.; Fearing, R. B...171 MacNaughton, M. G.; Brewer , J. H., Environmental Chemistry and Fate of Chemical Warfare Agents, Southwest Research Institute, San Antonio TX, 1994

  7. Enantioselective stable isotope analysis (ESIA) — A new concept to evaluate the environmental fate of chiral organic contaminants

    International Nuclear Information System (INIS)

    Badea, Silviu-Laurentiu; Danet, Andrei-Florin

    2015-01-01

    Since 2011, the enantiospecific stable carbon isotope analysis (ESIA) has emerged as an innovative technique to assess the environmental fate of chiral emerging compounds by combining in one experimental technique both compound specific isotope analysis (CSIA) and enantioselective analysis. To date, the ESIA was applied for four classes of compounds: α-hexachlorocyclohexane (α-HCH), polar herbicides (phenoxy acids), synthetic polycyclic musk galaxolide (HHCB), and phenoxyalkanoic methyl herbicides. From an analytical point of view there are factors that are hindering the application of ESIA methods for the field samples: (i.e. amounts of target analyte, matrix effects, GC resolution) and overcoming these factors is challenging. While ESIA was shown as a mature technique for the first three abovementioned class of compounds, no isotope analysis of individual enantiomers could be performed for phenoxyalkanoic methyl herbicides. With respect to field studies, one study showed that ESIA might be a promising tool to distinguish between biotic and abiotic transformation pathways of chiral organic contaminants and even to differentiate between their aerobic and anaerobic biotransformation pathways. The development of ESIA methods for new chiral emerging contaminants in combination with development of multi-element isotope analysis will contribute to a better characterization of transformation pathways of chiral organic contaminants. - Highlights: • ESIA is an innovative technique to assess the environmental fate of chiral pollutants • Overcoming the analytical limitations of ESIA is challenging • Development of ESIA methods for new chiral emerging contaminants is needed

  8. Enantioselective stable isotope analysis (ESIA) — A new concept to evaluate the environmental fate of chiral organic contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Badea, Silviu-Laurentiu, E-mail: badeasilviu@gmail.com [Department of Chemistry, Umeå University, SE-901 87 Umeå (Sweden); Danet, Andrei-Florin [Department of Analytical Chemistry, University of Bucharest, Faculty of Chemistry, 90-92 Panduri Str., Bucharest 050657 (Romania)

    2015-05-01

    Since 2011, the enantiospecific stable carbon isotope analysis (ESIA) has emerged as an innovative technique to assess the environmental fate of chiral emerging compounds by combining in one experimental technique both compound specific isotope analysis (CSIA) and enantioselective analysis. To date, the ESIA was applied for four classes of compounds: α-hexachlorocyclohexane (α-HCH), polar herbicides (phenoxy acids), synthetic polycyclic musk galaxolide (HHCB), and phenoxyalkanoic methyl herbicides. From an analytical point of view there are factors that are hindering the application of ESIA methods for the field samples: (i.e. amounts of target analyte, matrix effects, GC resolution) and overcoming these factors is challenging. While ESIA was shown as a mature technique for the first three abovementioned class of compounds, no isotope analysis of individual enantiomers could be performed for phenoxyalkanoic methyl herbicides. With respect to field studies, one study showed that ESIA might be a promising tool to distinguish between biotic and abiotic transformation pathways of chiral organic contaminants and even to differentiate between their aerobic and anaerobic biotransformation pathways. The development of ESIA methods for new chiral emerging contaminants in combination with development of multi-element isotope analysis will contribute to a better characterization of transformation pathways of chiral organic contaminants. - Highlights: • ESIA is an innovative technique to assess the environmental fate of chiral pollutants • Overcoming the analytical limitations of ESIA is challenging • Development of ESIA methods for new chiral emerging contaminants is needed.

  9. Linking the environmental loads to the fate of PPCPs in Beijing: Considering both the treated and untreated wastewater sources

    International Nuclear Information System (INIS)

    Wang, Bin; Dai, Guohua; Deng, Shubo; Huang, Jun; Wang, Yujue; Yu, Gang

    2015-01-01

    The environmental loads of pharmaceutical and personal care products (PPCPs) in Beijing were estimated from direct discharge of untreated wastewater and WWTP treated effluent. The annual environmental loads of 15 PPCP components ranged from 16.3 kg (propranolol) to 9.85 tons (caffeine). A fugacity model was developed to successfully estimate the PPCP pollution based on the estimated environmental load. The modeled results approximated the observed PPCP concentrations in Beijing. The untreated wastewater contributed significantly to PPCP pollution in Beijing, ranging from 46% (propranolol) to 99% (caffeine). The total environmental burden of target PPCPs ranged from 0.90 kg (propranolol) to 536 kg (caffeine). Water is the most important media for the fate of PPCPs. Monte Carlo-based concentration distributions of PPCPs are consistent with the observed results. The most important way to reduce the PPCP pollution is to both improve wastewater collection rate and adopt deep treatment technologies. - Highlights: • Annual environmental loads of PPCPs ranged from 16.3 kg to 9.85 tons in Beijing. • The environmental loads can be linked to PPCP pollution by fugacity model. • Untreated wastewater significantly contributed to PPCP pollution in Beijing. • The environmental burden of 15 PPCPs in Beijing ranged from 0.90 kg to 536 kg. • Uncertainty simulation successfully generated PPCP concentration distribution. - The environmental loads from both the treated and untreated wastewater sources contribute to PPCPs pollution in the surface water in Beijing, China

  10. Environmental fate of fungicides and other current-use pesticides in a central California estuary

    Science.gov (United States)

    Smalling, Kelly L.; Kuivila, Kathryn; Orlando, James L.; Phillips, Bryn M.; Anderson, Brian S.; Siegler, Katie; Hunt, John W.; Hamilton, Mary

    2013-01-01

    The current study documents the fate of current-use pesticides in an agriculturally-dominated central California coastal estuary by focusing on the occurrence in water, sediment and tissue of resident aquatic organisms. Three fungicides (azoxystrobin, boscalid, and pyraclostrobin), one herbicide (propyzamide) and two organophosphate insecticides (chlorpyrifos and diazinon) were detected frequently. Dissolved pesticide concentrations in the estuary corresponded to the timing of application while bed sediment pesticide concentrations correlated with the distance from potential sources. Fungicides and insecticides were detected frequently in fish and invertebrates collected near the mouth of the estuary and the contaminant profiles differed from the sediment and water collected. This is the first study to document the occurrence of many current-use pesticides, including fungicides, in tissue. Limited information is available on the uptake, accumulation and effects of current-use pesticides on non-target organisms. Additional data are needed to understand the impacts of pesticides, especially in small agriculturally-dominated estuaries.

  11. Predictions by the multimedia environmental fate model SimpleBox compared to field data: Intermedia concentration ratios of two phthalate esters

    NARCIS (Netherlands)

    Struijs J; Peijnenburg WJGM; ECO

    2003-01-01

    The multimedia environmental fate model SimpleBox is applied to compute steady-state concentration ratios with the aim to harmonize environmetal quality objectives of air, water, sediment and soil. In 1995 the Dutch Health Council recommended validation of the model. Several activities were

  12. Environmental Fate of the Herbicide Fluazifop-P-butyl and Its Degradation Products in Two Loamy Agricultural Soils: A Combined Laboratory and Field Study

    DEFF Research Database (Denmark)

    Badawi, Nora; Rosenbom, Anette E.; Olsen, Preben

    2015-01-01

    The herbicide fluazifop-P-butyl (FPB) is used against grasses in agricultural crops such as potato, oilseed rape and sugar beet. Limited information is available in Scientific literature on its environmental fate, therefore extensive monitoring at two agricultural test fields was combined...

  13. Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting

    Science.gov (United States)

    Garbarino, J.R.; Bednar, A.J.; Rutherford, D.W.; Beyer, R.S.; Wershaw, R. L.

    2003-01-01

    Roxarsone, 3-nitro-4-hydroxyphenylarsonic acid, is an organoarsenic compound that is used extensively in the feed of broiler poultryto control coccidial intestinal parasites, improve feed efficiency, and promote rapid growth. Nearly all the roxarsone in the feed is excreted unchanged in the manure. Poultry litter composed of the manure and bedding material has a high nutrient content and is used routinely as a fertilizer on cropland and pasture. Investigations were conducted to determine the fate of poultrylitter roxarsone in the environment. Experiments indicated that roxarsone was stable in fresh dried litter; the primary arsenic species extracted with water from dried litter was roxarsone. However, when water was added to litter at about 50 wt % and the mixture was allowed to compost at 40oC, the speciation of arsenic shifted from roxarsone to primarily arsenate in about 30 days. Increasing the amount of water increased the rate of degradation. Experiments also suggested that the degradation process most likely was biotic in nature. The rate of degradation was directly proportional to the incubation temperature; heat sterilization eliminated the degradation. Biotic degradation also was supported by results from enterobacteriaceae growth media that were inoculated with litter slurry to enhance the biotic processes and to reduce the concomitant abiotic effects from the complex litter solution. Samples collected from a variety of litter windrows in Arkansas, Oklahoma, and Maryland also showed that roxarsone originally present had been converted to arsenate.

  14. Phytoaccumulation of antimicrobials from biosolids: impacts on environmental fate and relevance to human exposure.

    Science.gov (United States)

    Aryal, Niroj; Reinhold, Dawn M

    2011-11-01

    Triclocarban and triclosan, two antimicrobials widely used in consumer products, can adversely affect ecosystems and potentially impact human health. The application of biosolids to agricultural fields introduces triclocarban and triclosan to soil and water resources. This research examined the phytoaccumulation of antimicrobials, effects of plant growth on migration of antimicrobials to water resources, and relevance of phytoaccumulation in human exposure to antimicrobials. Pumpkin, zucchini, and switch grass were grown in soil columns to which biosolids were applied. Leachate from soil columns was assessed every other week for triclocarban and triclosan. At the end of the trial, concentrations of triclocarban and triclosan were determined for soil, roots, stems, and leaves. Results indicated that plants can reduce leaching of antimicrobials to water resources. Pumpkin and zucchini growth significantly reduced soil concentrations of triclosan to less than 0.001 mg/kg, while zucchini significantly reduced soil concentrations of triclocarban to 0.04 mg/kg. Pumpkin, zucchini, and switch grass accumulated triclocarban and triclosan in mg per kg (dry) concentrations. Potential human exposure to triclocarban from consumption of pumpkin or zucchini was substantially less than exposure from product use, but was greater than exposure from drinking water consumption. Consequently, research indicated that pumpkin and zucchini may beneficially impact the fate of antimicrobials in agricultural fields, while presenting minimal acute risk to human health. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. From consumption to harvest: Environmental fate prediction of excreted ionizable trace organic chemicals

    DEFF Research Database (Denmark)

    Polesel, Fabio; Plósz, Benedek G.; Trapp, Stefan

    2015-01-01

    Excreted trace organic chemicals, e.g., pharmaceuticals and biocides, typically undergo incomplete elimination in municipal wastewater treatment plants (WWTPs) and are released to surface water via treated effluents and to agricultural soils through sludge amendment and/or irrigation with freshwa......Excreted trace organic chemicals, e.g., pharmaceuticals and biocides, typically undergo incomplete elimination in municipal wastewater treatment plants (WWTPs) and are released to surface water via treated effluents and to agricultural soils through sludge amendment and/or irrigation...... with freshwater or reclaimed wastewater. Recent research has shown the tendency for these substances to accumulate in food crops. In this study, we developed and applied a simulation tool to predict the fate of three ionizable trace chemicals (triclosan-TCS, furosemide-FUR, ciprofloxacin-CIP) from human...... and a recently developed dynamic soil-plant uptake model. The simulation tool was tested using country-specific (e.g., consumption/emission rates, precipitation and temperature) input data. A Monte Carlo-based approach was adopted to account for the uncertainty associated to physico-chemical and biokinetic model...

  16. Transformation of triphenyltin by Eubacteria: Fate and effects in environmental system

    Digital Repository Service at National Institute of Oceanography (India)

    Jadhav, S.

    and organisms. Knowledge about the environmental concentrations of any chemical compound is required to understand its effects on the system. Presence of such compounds in the environment is a serious threat and danger for human health and aquatic organisms...

  17. Evaluating the environmental fate of pharmaceuticals using a level III model based on poly-parameter linear free energy relationships

    International Nuclear Information System (INIS)

    Zukowska, Barbara; Breivik, Knut; Wania, Frank

    2006-01-01

    We recently proposed how to expand the applicability of multimedia models towards polar organic chemicals by expressing environmental phase partitioning with the help of poly-parameter linear free energy relationships (PP-LFERs). Here we elaborate on this approach by applying it to three pharmaceutical substances. A PP-LFER-based version of a Level III fugacity model calculates overall persistence, concentrations and intermedia fluxes of polar and non-polar organic chemicals between air, water, soil and sediments at steady-state. Illustrative modeling results for the pharmaceuticals within a defined coastal region are presented and discussed. The model results are highly sensitive to the degradation rate in water and the equilibrium partitioning between organic carbon and water, suggesting that an accurate description of this particular partitioning equilibrium is essential in order to obtain reliable predictions of environmental fate. The PP-LFER based modeling approach furthermore illustrates that the greatest mobility in aqueous phases may be experienced by pharmaceuticals that combines a small molecular size with strong H-acceptor properties

  18. Evaluating the environmental fate of pharmaceuticals using a level III model based on poly-parameter linear free energy relationships

    Energy Technology Data Exchange (ETDEWEB)

    Zukowska, Barbara [Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology, 11/12 G. Narutowicza St., 80-952 Gdansk (Poland); Breivik, Knut [NILU- Norwegian Institute for Air Research, P.O. Box 100, NO-2027 Kjeller (Norway)]. E-mail: knut.breivik@nilu.no; Wania, Frank [Department of Physical and Environmental Sciences, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, Ontario, M1C 1A4 (Canada)

    2006-04-15

    We recently proposed how to expand the applicability of multimedia models towards polar organic chemicals by expressing environmental phase partitioning with the help of poly-parameter linear free energy relationships (PP-LFERs). Here we elaborate on this approach by applying it to three pharmaceutical substances. A PP-LFER-based version of a Level III fugacity model calculates overall persistence, concentrations and intermedia fluxes of polar and non-polar organic chemicals between air, water, soil and sediments at steady-state. Illustrative modeling results for the pharmaceuticals within a defined coastal region are presented and discussed. The model results are highly sensitive to the degradation rate in water and the equilibrium partitioning between organic carbon and water, suggesting that an accurate description of this particular partitioning equilibrium is essential in order to obtain reliable predictions of environmental fate. The PP-LFER based modeling approach furthermore illustrates that the greatest mobility in aqueous phases may be experienced by pharmaceuticals that combines a small molecular size with strong H-acceptor properties.

  19. The environmental fate of polybrominated diphenyl ethers in the centre of Stockholm - Assessment using a multimedia fugacity model

    Energy Technology Data Exchange (ETDEWEB)

    Palm, Anna

    2001-01-01

    A local-scale assessment of the environmental fate of three congeners of polybrominated diphenyl ethers (PBDEs) has been performed for the centre of Stockholm. The partitioning properties and main transport processes of these congeners in Stockholm are identified using a site-specific multimedia fugacity model, called CeStoc, that was developed and parameterized for the area of interest. CeStoc was based on level III and IV fugacity models. Five compartments were included: air, water, soil, sediment and an organic film covering the impervious surfaces in the city. The model was satisfactory calibrated with the PAH fluoranthene, before it was run for the compounds of interest. Validation with environmental levels of PBDEs was made where possible, showing reasonable agreement with model results. According to the CeStoc results, the majority of the PBDEs emitted are transported out of the region through air advection, implying that Stockholm may act as a source for chemical release to other regions. The largest sink for PBDEs in Stockholm is soil, closely followed by sediment, the two compartments together accounting for about 98 % of the total amount remaining in the system. The degree of bromination does not seem to have a large impact on the environmental distribution in this area, but further research on e.g. physical-chemical properties is necessary before this can be finally concluded. Predicted concentrations of individual PBDE congeners in sediment and water lie in the same range as measured levels of individual PCB-congeners, indicating that PBDEs could have an environmental impact of about the same size as the PCBs.

  20. Environmental fate of depleted uranium at three sites contaminated during the balkan conflict

    International Nuclear Information System (INIS)

    Radenkovic, M.; Joksic, J.; Todorovic, D.; Kovacevic, M.

    2006-01-01

    A study on depleted uranium fate in the sites contaminated during the 1999 war conflict in Serbia was conducted in phases until the clean up activities were completed. The ammunition remains found at the locations in the surface soil were collected in the first phase during the radiation survey of the affected areas. The most of depleted uranium penetrators left buried deep into the ground exposed to the weathering and corrosion processes. The contamination level in the air, water, soil and bio -indicators was controlled all the time by routine gamma and alpha spectrometry measurements. Depleted uranium migration was studied through the soil profile surrounding the penetrator during the 2001 at the Bratoselce location showing the contamination level fall to the 1% of its value at approximately 15 cm distance to the source. The samples taken from the soil layers at different distances in the profile are subjected to a modified Tessiers five-step sequential extraction procedure. The uranium and heavy metals contents were determined in the obtained fractions. Results have specified carbonates and iron hydrous-oxides as the most probable substrates for uranium physical/chemical associations formed in the soil for the time elapsed. A very strong dependence of substrate onto contamination level was found. The correlation of uranium and other heavy metals was obtained. The 234 U/ 238 U and 235 U/ 238 U ratios are determined in extracts by alpha spectrometry after appropriate radiochemical separation procedure and thin alpha sources electroplating. The analysis has shown the share of depleted in total uranium content in exchangeable, carbonate, hydrous or crystalline iron/manganese, organic and residue phases indicating the bioavailability of depleted uranium present in the soil. The results are discussed related to detailed geochemical analysis of the particular soil type common for this region. Depleted uranium content in soil samples taken at the locations after the

  1. US Geological Survey research on the environmental fate of uranium mining and milling wastes

    International Nuclear Information System (INIS)

    Landa, E.R.; Gray, J.R.

    1995-01-01

    Studies by the US Geological Survey (USGS) of uranium mill tailings (UMT) have focused on characterizing the forms in which radionuclides are retained and identifying factors influencing the release of radionuclides to air and water. Selective extraction studies and studies of radionuclide sorption by and reaching from components of UMT showed alkaline earth sulfate and hydrous ferric oxides to be important hosts of radium-226 ( 226 Ra) in UMT. Extrapolating from studies of barite dissolution in anerobic lake sediments, the leaching of 226 Ra from UMT by sulfate-reducing bacteria was investigated; a marked increase in 226 Ra release to aqueous solution as compared to sterile controls was demonstrated. A similar action of iron(III)-reducing bacteria was later shown. Ion exchangers such as clay minerals can also promote the dissolution of host-phase minerals and thereby influence the fate of radionuclides such as 226 Ra. Radon release studies examined particle size and ore composition as variables. Aggregation of UMT particles was shown to mask the higher emanating fraction of finer particles. Studies of various ores and ore components showed that UMT cannot be assumed to have the same radon-release characteristics as their precursor ores, nor can 226 Ra retained by various substrates be assumed to emanate the same fraction of radon. Over the last decade, USGS research directed at offsite mobility of radionuclides form uranium mining and milling processes has focused on six areas: the Midnite Mine in Washington; Ralston Creek and Reservoir, Colorado; sites near Canon City, Colorado; the Monument Valley District of Arizona and Utah; the Cameron District of Arizona; and the Puerco River basin of Arizona and New Mexico. 48 refs., 6 figs., 4 tabs

  2. 40 CFR 158.2174 - Experimental use permit microbial pesticides nontarget organisms and environmental fate data...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Experimental use permit microbial... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS... controls the target insect pest by a mechanism of infectivity; i.e., may create an epizootic condition in...

  3. Development and application of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    Science.gov (United States)

    Hong, E.; Park, Y.; Muirhead, R.; Jeong, J.; Pachepsky, Y. A.

    2017-12-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. Based on calibration and testing results, the APEX with the microbe module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water under various agricultural

  4. Environmental fate and behaviour of the biocontrol agent Bacillus amyloliquefaciens CPA-8 after preharvest application to stone fruit.

    Science.gov (United States)

    Vilanova, Laura; Teixidó, Neus; Usall, Josep; Balsells-Llauradó, Marta; Gotor-Vila, Amparo; Torres, Rosario

    2018-02-01

    Bacillus amyloliquefaciens strain CPA-8 has been described as an effective biocontrol agent to control brown rot in stone fruit for both preharvest and postharvest applications. However, no information about the environmental fate and behaviour of this strain under field conditions is available. The dispersion of the CPA-8 application was evaluated using water-sensitive papers, and complete coverage was observed on the leaves of treated trees, while treatment. On non-treated trees, CPA-8 was detected on leaves until 180 days after treatment, and on weeds, the CPA-8 population was dependent on the distance from the treated trees. A high persistence of CPA-8 was detected on inert materials, such as clothes and gloves worn by handlers and plastic harvesting boxes. More than 99% of the samples with a CPA-8 phenotype were confirmed as CPA-8 using polymerase chain reaction (PCR). This work demonstrated a good distribution, persistence and adaptation of the CPA-8 strain to field and postharvest conditions. Monitoring of dispersion and persistence is an excellent tool to determine the time of application and provides valuable information for registering issues. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment

    Science.gov (United States)

    Duran, Robert; Cravo-Laureau, Cristiana

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread in marine ecosystems and originate from natural sources and anthropogenic activities. PAHs enter the marine environment in two main ways, corresponding to chronic pollution or acute pollution by oil spills. The global PAH fluxes in marine environments are controlled by the microbial degradation and the biological pump, which plays a role in particle settling and in sequestration through bioaccumulation. Due to their low water solubility and hydrophobic nature, PAHs tightly adhere to sediments leading to accumulation in coastal and deep sediments. Microbial assemblages play an important role in determining the fate of PAHs in water and sediments, supporting the functioning of biogeochemical cycles and the microbial loop. This review summarises the knowledge recently acquired in terms of both chronic and acute PAH pollution. The importance of the microbial ecology in PAH-polluted marine ecosystems is highlighted as well as the importance of gaining further in-depth knowledge of the environmental services provided by microorganisms. PMID:28201512

  6. Sorption of lipophilic organic compunds to wood and implications for their environmental fate

    DEFF Research Database (Denmark)

    Trapp, Stefan; Miglioranza, S.B.; Mosbæk, Hans

    2001-01-01

    The sorption from water to wood (KWood) of 10 organic chemicals (logKOW, 1.48-6.20) was experimentally determined for oak (Quercus robur) and basket willow (Salix viminalis). Linear regression yielded log KWood ) -0.27 (( 0.25) + 0.632 (( 0.063)log KOW for oak (r ) 0.90, n ) 27) and log KWood ) -...... time. If metabolism inside the stem occurs, wood can serve as a “safe sink” for environmental chemicals. This might be of use in phytoremediation....

  7. Fate, behaviour and toxicity of engineered nanomaterials in the environmental systems

    CSIR Research Space (South Africa)

    Musee, N

    2012-04-01

    Full Text Available ? Environmental risks of ENMs to biological organisms in the environment MUST satisfy two conditions: Hazard & Exposure ? Hazard (toxic effect): due to nano/bio interface ?interactions of ENMs with: Biomolecules, cell membranes, the cellular interior...., Langmuir, 2011, Effect of surface coating A: Unmodified AgNPs B: Modified SDS AgNPs Steric effects due to EDL, increased zeta potential and enhanced AgNPs stability DLS size measurements B: Modified Tween 80 AgNPs A: Unmodified AgNPs A: 0 ?L...

  8. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters.

    Science.gov (United States)

    Vione, D; Calza, P; Galli, F; Fabbri, D; Santoro, V; Medana, C

    2015-12-15

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with OH radicals would be negligible and that with (3)CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO2, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO2 yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Environmental fate and quantitative analysis of oilsands naphthenic acids : a review

    Energy Technology Data Exchange (ETDEWEB)

    McMartin, D. [Regina Univ., SK (Canada). Faculty of Engineering; Peru, K.M.; Headley, J. [Environment Canada, Saskatoon, SK (Canada). National Water Research Inst.

    2006-07-01

    Naphthenic acids (NA) are toxic to aquatic species and mammals. Significant concentrations of NA are found in oil sands tailings ponds. This presentation reviewed some of the analytical tools used by industry and environmentalists to remediate NA. Environmental persistence results were presented, as well as detailed information regarding the origin of NA in tailings ponds. Chemistry and toxicological considerations were examined, and current analytical methods for aquatic sampling were reviewed. Issues concerning photodegradation and phytoremediation were discussed. Details of the environmental effects of NA exposure were presented. Studies investigating the microbial populations required to degrade NA in water were discussed, as well as recent research investigating the phytoremediation of wetlands exposed to NA. It was noted that research is currently being conducted to optimize algae culture for use in phytoremediation methods. However, many of the components of NA are resistant to the biodegradation, photodegradation and phytoremediation methods currently used. It was concluded that further research is needed to complete mass balance studies in riverine systems and to evaluate the cellular level toxicity of NA in plants. refs., tabs., figs.

  10. Environmental fate model for ultra-low-volume insecticide applications used for adult mosquito management

    Science.gov (United States)

    Schleier, Jerome J.; Peterson, Robert K.D.; Irvine, Kathryn M.; Marshall, Lucy M.; Weaver, David K.; Preftakes, Collin J.

    2012-01-01

    One of the more effective ways of managing high densities of adult mosquitoes that vector human and animal pathogens is ultra-low-volume (ULV) aerosol applications of insecticides. The U.S. Environmental Protection Agency uses models that are not validated for ULV insecticide applications and exposure assumptions to perform their human and ecological risk assessments. Currently, there is no validated model that can accurately predict deposition of insecticides applied using ULV technology for adult mosquito management. In addition, little is known about the deposition and drift of small droplets like those used under conditions encountered during ULV applications. The objective of this study was to perform field studies to measure environmental concentrations of insecticides and to develop a validated model to predict the deposition of ULV insecticides. The final regression model was selected by minimizing the Bayesian Information Criterion and its prediction performance was evaluated using k-fold cross validation. Density of the formulation and the density and CMD interaction coefficients were the largest in the model. The results showed that as density of the formulation decreases, deposition increases. The interaction of density and CMD showed that higher density formulations and larger droplets resulted in greater deposition. These results are supported by the aerosol physics literature. A k-fold cross validation demonstrated that the mean square error of the selected regression model is not biased, and the mean square error and mean square prediction error indicated good predictive ability.

  11. Photodegradation of antibiotics under simulated solar radiation: implications for their environmental fate.

    Science.gov (United States)

    Batchu, Sudha Rani; Panditi, Venkata R; O'Shea, Kevin E; Gardinali, Piero R

    2014-02-01

    Roxithromycin, erythromycin, ciprofloxacin and sulfamethoxazole are frequently detected antibiotics in environmental waters. Direct and indirect photolysis of these problematic antibiotics were investigated in pure and natural waters (fresh and salt water) under irradiation of different light sources. Fundamental photolysis parameters such as molar absorption coefficient, quantum yield and first order rate constants are reported and discussed. The antibiotics are degraded fastest under ultraviolet 254 nm, followed by 350 nm and simulated solar radiation. The composition of the matrix (pH, dissolved organic content, chloride ion concentration) played a significant role in the observed photodegradation. Under simulated solar radiation, ciprofloxacin and sulfamethoxazole degrade relatively quickly with half-lives of 0.5 and 1.5h, respectively. However, roxithromycin and erythromycin, macrolides are persistent (half-life: 2.4-10 days) under solar simulation. The transformation products (15) of the targeted antibiotics produced under irradiation experiments were identified using high resolution mass spectrometry and degradation pathways were proposed. © 2013.

  12. Development of Cortical GABAergic Neurons: Interplay of progenitor diversity and environmental factors on fate specification

    Directory of Open Access Journals (Sweden)

    Juliana Alves Brandão

    2015-04-01

    Full Text Available Cortical GABAergic interneurons constitute an extremely diverse population of cells organized in a well-defined topology of precisely interconnected cells. They play a crucial role regulating inhibitory-excitatory balance in brain circuits, gating sensory perception and regulating spike timing to brain oscillations during distinct behaviors. Dysfunctions in the establishment of proper inhibitory circuits have been associated to several brain disorders such as autism, epilepsy and schizophrenia. In the rodent adult cortex, inhibitory neurons are generated during the second gestational week from distinct progenitor lineages located in restricted domains of the ventral telencephalon. However, only recently, studies have revealed some of the mechanisms generating the heterogeneity of neuronal subtypes and their modes of integration in brain networks. Here we will discuss some the events involved in the production of cortical GABAergic neuron diversity with focus on the interaction between intrinsically driven genetic programs and environmental signals during development.

  13. Environmentally Persistent Free Radical (EPFRs) - Ambient Air Particulates, Soils and Fate of Some Pollutants

    Science.gov (United States)

    Lomnicki, S. M.

    2017-12-01

    Environmentally Persistent Free Radicals (EPFRs) are relatively recently discovered species that are present on ambient air particulates. Their origin is typically associated with the combustion borne PM, where in the cool zone of the combustion process aromatic precursors react with the metal centers of particulates forming surface-organic complex with radical characteristics. EPFRs have been found to be sufficiently resistant to be emitted from the combustion sources and persist in the ambient air on particulates. Their inhalation has been associated with severe health effects, and potentially are one of the major agents contributing the epidemiological risks of PM exposure. Interestingly, EPFRs can be formed not only at the elevated temperatures but also in ambient conditions, where the contact of precursor molecules with transition metal (but not only) domains can result in adsorbate complexes. In fact, EPFRs have been detected in the contaminated soils, or during the oil spill incidents. It is very likely, that the interaction of some molecules released to the air can result in the formation of EPFRs on the ambient air particulates in atmospheric conditions. These species can be a natural degradation by-products that lead to the formation of oxygenated organics in ambient atmosphere.

  14. Occurrence, control and fate of contaminants of emerging concern in environmental compartments in Brazil.

    Science.gov (United States)

    Starling, Maria Clara V M; Amorim, Camila C; Leão, Mônica Maria D

    2018-04-22

    This is the first review to present data obtained in Brazil over the years regarding contaminants of emerging concern (CEC) and to contrast it with contamination in other countries. Data gathered indicated that caffeine, paracetamol, atenolol, ibuprofen, cephalexin and bisphenol A occur in the μg L -1 range in streams near urban areas. While endocrine disruptors are frequently detected in surface waters, highest concentrations account for 17α-ethynylestradiol and 17β-estradiol. Organochlorine pesticides are the most frequently found and persistent in sediments in agricultural regions. Moreover, in tropical agricultural fields, pesticide volatilization and its implications to ecosystem protection must be better investigated. The reality represented here for Brazil may be transposed to other developing countries due to similarities related to primitive basic sanitation infrastructure and economic and social contexts, which contribute to continuous environmental contamination by CEC. Municipal wastewater treatment facilities in Brazil, treat up to the secondary stage and lead to limited CEC removal. This is also true for other nations in Latin America, such as Argentina, Colombia and Mexico. Therefore, it is an urgent priority to improve sanitation infrastructure and, then, the implementation of tertiary treatment shall be imposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Development and evaluation of the bacterial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model.

    Science.gov (United States)

    Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Jeong, Jaehak; Pachepsky, Yakov A

    2018-02-15

    The Agricultural Policy/Environmental eXtender (APEX) is a watershed-scale water quality model that includes detailed representation of agricultural management. The objective of this work was to develop a process-based model for simulating the fate and transport of manure-borne bacteria on land and in streams with the APEX model. The bacteria model utilizes manure erosion rates to estimate the amount of edge-of-field bacteria export. Bacteria survival in manure is simulated as a two-stage process separately for each manure application event. In-stream microbial fate and transport processes include bacteria release from streambeds due to sediment resuspension during high flow events, active release from the streambed sediment during low flow periods, bacteria settling with sediment, and survival. Default parameter values were selected from published databases and evaluated based on field observations. The APEX model with the newly developed microbial fate and transport module was applied to simulate fate and transport of the fecal indicator bacterium Escherichia coli in the Toenepi watershed, New Zealand that was monitored for seven years. The stream network of the watershed ran through grazing lands with daily bovine waste deposition. Results show that the APEX with the bacteria module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water as affected by various agricultural practices, evaluating monitoring protocols, and supporting the selection of management practices based on regulations that rely on fecal indicator bacteria concentrations. Published by Elsevier B.V.

  16. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters

    International Nuclear Information System (INIS)

    Vione, D.; Calza, P.; Galli, F.; Fabbri, D.; Santoro, V.; Medana, C.

    2015-01-01

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with ·OH radicals would be negligible and that with "3CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO_2, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO_2 yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. - Highlights: • Study of the photolytic and photocatalytic transformation

  17. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Vione, D. [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Calza, P., E-mail: paola.calza@unito.it [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Galli, F.; Fabbri, D. [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Santoro, V.; Medana, C. [Department of Molecular Biotechnology and Health Sciences, University of Torino, via P. Giuria 5, 10125 Torino (Italy)

    2015-12-15

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with ·OH radicals would be negligible and that with {sup 3}CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO{sub 2}, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO{sub 2} yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. - Highlights: • Study of the photolytic and photocatalytic

  18. Development and evaluation of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    Science.gov (United States)

    Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Pachepsky, Yakov

    2017-04-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. The total number of removed bacteria was set to the concentrations of bacteria in soil-manure mixing layer and eroded manure amount. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. The stream network of the watershed ran through grazing lands with the daily bovine waste deposition. Based on calibration and testing results, the APEX with the microbe module

  19. The OECD expert meeting on ecotoxicology and environmental fate — Towards the development of improved OECD guidelines for the testing of nanomaterials

    International Nuclear Information System (INIS)

    Kühnel, Dana; Nickel, Carmen

    2014-01-01

    On behalf of the OECD Working Party on Manufactured Nanomaterials (WPMN) an expert meeting on ecotoxicology and environmental fate of nanomaterials (NMs) took place in January 2013 in Berlin. At this meeting experts from science, industry and regulatory bodies discussed the applicability of OECD test guidelines (TGs) for chemicals to nanomaterials. The objective was to discuss the current state of the relevant science and provide recommendations to the OECD WPMN on (1) the need for updating current OECD TGs and the need for developing new ones specific to nanomaterials; and (2) guidance needed for the appropriate and valid testing of environmental fate and ecotoxicity endpoints for NMs. Experts at the workshop agreed that the majority of the OECD TG for chemicals were generally applicable for the testing of NM, with the exception of TG 105 (water solubility) and 106 (adsorption-desorption). Additionally, the workshop also highlighted considerations when conducting OECD chemical TG on nanomaterials (e.g., sample preparation, dispersion, analysis, dosimetry and characterisation). These considerations will lead to the future development of proposals for new TG and guidance documents (GDs) to ensure that OECD TG give meaningful, repeatable, and accurate results when used for nanomaterials. This report provides a short overview of topics discussed during the meeting and the main outcomes. A more detailed report of the workshop will become available through the OECD, however, due to the urgency of having OECD TG relevant for nanomaterials, this brief report is being shared with the scientific community through this communication. - Highlights: • OECD test guidelines (TGs) were developed for the testing of conventional chemicals. • Need for discussion on applicability of current TGs to nanomaterials • An expert meeting addressing this issue was held. • The focus was on TGs covering ecotoxicology and environmental fate. • Recommendations for updating current OECD

  20. Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Laura-Jayne A.; Valsami-Jones, Eugenia [School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lead, Jamie R., E-mail: Jlead@mailbox.sc.edu [School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia 29208 (United States); Baalousha, Mohammed, E-mail: Mbaalous@mailbox.sc.edu [Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia 29208 (United States)

    2016-10-15

    The role of surface coating (polyvinylpyrrolidone (PVP) and citrate) and water chemistry on the fate and behavior of AgNPs in aquatic microcosms is reported in this study. The migration and transformation of the AgNPs was examined in low (ultrapure water-UPW) and high ionic strength (moderately hard water – MHW) preparations, and in the presence of modeled natural organic matter (NOM) of Suwannee River Fulvic Acid (SRFA). The migration and fate of the AgNPs in the microcosms was validated using a sedimentation-diffusion model and the aggregation behavior was monitored by UV–visible spectrometry (UV–vis). Dissolved and particulate Ag concentrations (% Ag) were analyzed by ultrafiltration methods. Imaging of the AgNPs was captured using transmission electron microscopy (TEM). Results indicate that PVP-coated AgNPs (PVP-AgNPs) remained stable for 28 days with similarly distributed concentrations of the PVP-AgNPs throughout the columns in each of the water conditions after approximately 96 h (4 days). The sedimentation-diffusion model confirmed PVP-AgNP stability in each condition, by showing diffusion dominated transport by using the original unaltered AgNP sizes to fit the parameters. In comparison, citrate AgNPs were largely unstable in the more complex water preparations (MHW). In MHW, aggregation dominated behavior followed by sedimentation/dissolution controlled transport was observed. The addition of SRFA to MHW resulted in small stabilizing effects, to the citrate coated AgNPs, producing smaller sized AgNPs (TEM) and mixed sedimentation and diffusion migration compared the studies absent of SRFA. The results suggest that surface coating and solution chemistry has a major impact on AgNP stability, furthermore the corresponding modeling will support the experimental understanding of the overall fate of AgNPs in the environment. - Highlights: • Aquatic microcosms were used to study the transport and behavior of AgNPs • Experiments were conducted in low

  1. Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment

    International Nuclear Information System (INIS)

    Ellis, Laura-Jayne A.; Valsami-Jones, Eugenia; Lead, Jamie R.; Baalousha, Mohammed

    2016-01-01

    The role of surface coating (polyvinylpyrrolidone (PVP) and citrate) and water chemistry on the fate and behavior of AgNPs in aquatic microcosms is reported in this study. The migration and transformation of the AgNPs was examined in low (ultrapure water-UPW) and high ionic strength (moderately hard water – MHW) preparations, and in the presence of modeled natural organic matter (NOM) of Suwannee River Fulvic Acid (SRFA). The migration and fate of the AgNPs in the microcosms was validated using a sedimentation-diffusion model and the aggregation behavior was monitored by UV–visible spectrometry (UV–vis). Dissolved and particulate Ag concentrations (% Ag) were analyzed by ultrafiltration methods. Imaging of the AgNPs was captured using transmission electron microscopy (TEM). Results indicate that PVP-coated AgNPs (PVP-AgNPs) remained stable for 28 days with similarly distributed concentrations of the PVP-AgNPs throughout the columns in each of the water conditions after approximately 96 h (4 days). The sedimentation-diffusion model confirmed PVP-AgNP stability in each condition, by showing diffusion dominated transport by using the original unaltered AgNP sizes to fit the parameters. In comparison, citrate AgNPs were largely unstable in the more complex water preparations (MHW). In MHW, aggregation dominated behavior followed by sedimentation/dissolution controlled transport was observed. The addition of SRFA to MHW resulted in small stabilizing effects, to the citrate coated AgNPs, producing smaller sized AgNPs (TEM) and mixed sedimentation and diffusion migration compared the studies absent of SRFA. The results suggest that surface coating and solution chemistry has a major impact on AgNP stability, furthermore the corresponding modeling will support the experimental understanding of the overall fate of AgNPs in the environment. - Highlights: • Aquatic microcosms were used to study the transport and behavior of AgNPs • Experiments were conducted in low

  2. The OECD expert meeting on ecotoxicology and environmental fate--towards the development of improved OECD guidelines for the testing of nanomaterials.

    Science.gov (United States)

    Kühnel, Dana; Nickel, Carmen

    2014-02-15

    On behalf of the OECD Working Party on Manufactured Nanomaterials (WPMN) an expert meeting on ecotoxicology and environmental fate of nanomaterials (NMs) took place in January 2013 in Berlin. At this meeting experts from science, industry and regulatory bodies discussed the applicability of OECD test guidelines (TGs) for chemicals to nanomaterials. The objective was to discuss the current state of the relevant science and provide recommendations to the OECD WPMN on (1) the need for updating current OECD TGs and the need for developing new ones specific to nanomaterials; and (2) guidance needed for the appropriate and valid testing of environmental fate and ecotoxicity endpoints for NMs. Experts at the workshop agreed that the majority of the OECD TG for chemicals were generally applicable for the testing of NM, with the exception of TG 105 (water solubility) and 106 (adsorption-desorption). Additionally, the workshop also highlighted considerations when conducting OECD chemical TG on nanomaterials (e.g., sample preparation, dispersion, analysis, dosimetry and characterisation). These considerations will lead to the future development of proposals for new TG and guidance documents (GDs) to ensure that OECD TG give meaningful, repeatable, and accurate results when used for nanomaterials. This report provides a short overview of topics discussed during the meeting and the main outcomes. A more detailed report of the workshop will become available through the OECD, however, due to the urgency of having OECD TG relevant for nanomaterials, this brief report is being shared with the scientific community through this communication. Copyright © 2013. Published by Elsevier B.V.

  3. Environmental Fate and Transport of Poly- and Perfluoroalkyl Substances at Aqueous Film-Forming Foam Impacted Sites

    Science.gov (United States)

    Higgins, C.

    2017-12-01

    Poly and perfluoroalkyl substances (PFASs) are constituents in aqueous film-forming foam (AFFF) used to extinguish fuel fires. Substantially elevated PFAS groundwater concentrations have been observed at firefighter protection training areas, where co-contaminants such as chlorinated solvents and fuel hydrocarbons are also commonly present. Research into the fate and transport potential of PFASs at AFFF-impacted sites will be presented, with a particular focus on how co-contaminants and co-contaminant remediation technologies may alter the composition and transport behavior of PFASs at these sites. A detailed analysis of data collected from a U.S. Air Force site (Ellsworth Air Force Base, South Dakota) indicates that that conversion of polyfluoroalkyl chemicals to perfluoroalkyl acids (PFAAs) in situ due to natural and enhanced remediation of petroleum hydrocarbons. In addition, bench-scale studies examining the effects of various chemical oxidants, typically employed via in situ chemical oxidation (ISCO), indicates that oxidation-based remediation technologies have the potential to alter the release and composition of PFASs in AFFF-impacted source zones. Future challenges in addressing PFAS contamination will be discussed, particularly with respect to closing the mass balance on PFAAs and their precursors at AFFF-impacted sites.

  4. The influence of global climate change on the environmental fate of persistent organic pollutants: A review with emphasis on the Northern Hemisphere and the Arctic as a receptor

    Science.gov (United States)

    Ma, Jianmin; Hung, Hayley; Macdonald, Robie W.

    2016-11-01

    Following worldwide bans and restrictions on the use of many persistent organic pollutants (POPs) from the late 1970s, their regional and global distributions have become governed increasingly by phase partitioning between environmental reservoirs, such as air, water, soil, vegetation and ice, where POPs accumulated during the original applications. Presently, further transport occurs within the atmospheric and aquatic reservoirs. Increasing temperatures provide thermodynamic forcing to drive these chemicals out of reservoirs, like soil, vegetation, water and ice, and into the atmosphere where they can be transported rapidly by winds and then recycled among environmental media to reach locations where lower temperatures prevail (e.g., polar regions and high elevations). Global climate change, widely considered as global warming, is also manifested by changes in hydrological systems and in the cryosphere; with the latter now exhibiting widespread loss of ice cover on the Arctic Ocean and thawing of permafrost. All of these changes alter the cycling and fate of POPs. There is abundant evidence from observations and modeling showing that climate variation has an effect on POPs levels in biotic and abiotic environments. This article reviews recent progress in research on the effects of climate change on POPs with the intention of promoting awareness of the importance of interactions between climate and POPs in the geophysical and ecological systems.

  5. Pesticide Environmental Fate Research for the 21st Century: Building Bridges Between Laboratory and Field Studies at Varying Scales

    Science.gov (United States)

    Accurate determination of predicted environmental concentrations (PECs) is a continuing and often elusive goal of pesticide risk assessment. PECs are typically derived using simulation models that depend on laboratory generated data for key input parameters (t1/2, Koc, etc.). Model flexibility in ...

  6. Fate of linear alkylbenzenes and benzothiazoles of anthropogenic origin and their potential as environmental molecular markers in the Pearl River Delta, South China

    International Nuclear Information System (INIS)

    Ni Honggang; Shen Rulang; Zeng Hui; Zeng, Eddy Y.

    2009-01-01

    The mass emissions of linear alkylbenzenes (LABs), benzothiazole (BT), and 2-[4-morpholinyl]benzothiazole (24MoBT) from anthropogenic activities within one year were estimated according to the population and the number of automobiles in the Pearl River Delta (PRD), South China. Based on the estimation, the distribution of these compounds among various environmental media was simulated with a mass balance box model established in the present study. The results showed that 79% of LABs generated in the PRD was stored in sediment while only 1.3% of LABs was presumably transported to the adjacent South China Sea (SCS). On the contrary, 47% of BT and 77% of 24MoBT generated in the region were carried with riverine runoff to the coastal ocean. The results from the present study suggest that hydrophobic compounds tend to stay in the watershed of the PRD, whereas hydrophilic ones mainly outflow to the coastal ocean. - A simple mass balance box model examines the fate of linear alkylbenzenes and benzothiazoles in the Pearl River Delta, South China.

  7. Organochlorine pesticides and polychlorinated biphenyls in riverine runoff of the Pearl River Delta, China: Assessment of mass loading, input source and environmental fate

    International Nuclear Information System (INIS)

    Guan Yufeng; Wang Jizhong; Ni Honggang; Zeng, Eddy Y.

    2009-01-01

    A large-scale sampling program was conducted to simultaneously collect water samples at the eight major riverine runoff outlets of the Pearl River Delta (PRD), South China to assess the importance of riverine runoff in transporting anthropogenic pollutants from terrestrial sources to the coastal ocean. The concentrations of Σ 21 OCPs (sum of 21 OCP components) and Σ 20 PCBs (sum of 20 PCB congeners) were 2.57-41.2 and 0.12-1.47 ng/L, respectively. Compositional distributions of DDTs suggested the possibility of new input sources in the study area, but contributions from dicofol seemed considerably low. The annual inputs of Σ 21 OCPs and Σ 20 PCBs were 3090 and 215 kg, with those of total HCHs and DDTs being 1110 and 1020 kg, respectively. A mass balance consideration indicated that riverine runoff is the major mode carrying OCPs from the PRD to the coastal ocean, and the majority of OCPs is further dissipated to open seas. - Mass loadings, input sources and environmental fate of organochlorine pesticides and polychlorinated biphenyls in riverine runoff of the Pearl River Delta, China are assessed

  8. Degradation of Fluorotelomer-Based Polymers Contributes to the Global Occurrence of Fluorotelomer Alcohol and Perfluoroalkyl Carboxylates: A Combined Dynamic Substance Flow and Environmental Fate Modeling Analysis.

    Science.gov (United States)

    Li, Li; Liu, Jianguo; Hu, Jianxin; Wania, Frank

    2017-04-18

    Using coupled dynamic substance flow and environmental fate models, CiP-CAFE and BETR-Global, we investigated whether the degradation of side-chain fluorotelomer-based polymers (FTPs), mostly in waste stocks (i.e., landfills and dumps), serves as a long-term source of fluorotelomer alcohols (FTOHs) and perfluoroalkyl carboxylates (PFCAs) to the global environment. The modeling results indicate that, in the wake of the worldwide transition from long-chain to short-chain products, in-use stocks of C8 FTPs will peak and decline afterward, while the in-use stocks of C6 FTPs, and the waste stocks of both FTPs will generally grow. FTP degradation in waste stocks is making an increasing contribution to FTOH generation, the bulk of which readily migrates from waste stocks and degrades into PFCAs in the environment; the remaining part of the generated FTOHs degrade in waste stocks, which makes those stocks reservoirs that slowly release PFCAs into the environment over the long run because of the low leaching rate and extreme persistence of PFCAs. Short-chain FTPs have higher relative release rates of PFCAs from waste stocks than long-chain ones. Estimates of in-use and waste stocks of FTPs were more sensitive to the selected lifespan of finished products, while those of the emissions of FTOHs and PFCAs were more sensitive to the degradation half-life of FTPs in waste stocks. Our preliminary calculations highlight the need for environmentally sound management of obsolete FTP-containing products into the foreseeable future.

  9. The environmental behavior and chemical fate of energetic compounds (TNT, RDX, tetryl) in soil and plant systems

    International Nuclear Information System (INIS)

    Cataldo, D.A.; Harvey, S.D.; Fellows, R.J.

    1993-06-01

    Munitions materials can accumulate or cycle in terrestrial environs at production and manufacturing facilities and thus pose potential heath and environmental concerns. To address questions related to food chain accumulation, the environmental behavior of energetic compounds (2,4,6-trinitrotoluene,TNT; hexahydro-1,3,5-trinitro-1,3,5-triazine, RDX; 2,4,6-trinitrophenylmethylnitramine, tetryl) was evaluated. Emphasis was placed on determining the potential for soil/plant transfer of munitions residues, translocation and distribution within the plant, the extent to which compounds were metabolized following accumulation, and the chemical nature and form of accumulated residues. Both TNT and tetryl undergo extensive chemical transformation in soil, forming aminodinitrotoluene isomers and N-methyl-2,4,6-trinitroaniline residues, respectively, along with a series of unknowns. After 60 days, only 30% of the amended TNT and 8% of the amended tetryl remained unchanged in the soil. In contrast, 78% of the soil-amended RDX remained unchanged after 60 days. After 60 days, plants grown in soils containing 10 ppm residues contained from 5 μg TNT/g to 600 μg RDX/G fresh wt. tissue. TNT and tetryl residues were primarily accumulated in roots (75%), while RDX was concentrated in leaves and seed. The principal transport form for TNT (root to shoot) was an acid labile conjugate of aminodinitrotoluene; RDX was transported unchanged. On accumulation in roots and leaves, highly polar and non-extractable TNT metabolites dominated, with the aminodinitrotoluene isomers accounting for less than 20% of the residues present. Only a few percent were present as the parent TNT. RDX was partitioned similarly to TNT, with 8 to 30% of the RDX appearing as polar metabolites, 20--50% as parent RDX, and the balance as non-extractable residues. Tetryl was metabolized to N-methyl-2,4,6-trinitroaniline and a variety of polar metabolites

  10. Polybrominated diphenyl ethers fate in China: a review with an emphasis on environmental contamination levels, human exposure and regulation.

    Science.gov (United States)

    Chen, Yuan; Li, Jinhui; Liu, Lili; Zhao, Nana

    2012-12-30

    Because of their highly effective flame-retardant capability, polybrominated diphenyl ethers (PBDEs) have been extensively used as flame retardants in consumer goods. However, compelling evidence shows that many congeners of PBDEs have been accumulating in the environment, in biota and in human populations worldwide. In China, although octabrominated diphenyl ether (octaBDE) has never been produced or used, pentabrominated diphenyl ether (pentaBDE) and decabrominated diphenyl ether (decaBDE) have been produced and used in large quantities. In the face of increasing evidence about PBDE pollution and the adoption of international conventions, there is a growing push for China to develop more stringent methods of managing PBDE waste. This paper summarizes the information about PBDE production and application, describes the flame-retarding mechanism, and then reviews the toxicity and levels of PBDEs in China's environmental media and human tissues. Based on international regulations on PBDEs, the paper finally puts forward some suggestions for Chinese policy making and for self-regulation within the flame retardant industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling.

    Science.gov (United States)

    Hahladakis, John N; Velis, Costas A; Weber, Roland; Iacovidou, Eleni; Purnell, Phil

    2018-02-15

    Over the last 60 years plastics production has increased manifold, owing to their inexpensive, multipurpose, durable and lightweight nature. These characteristics have raised the demand for plastic materials that will continue to grow over the coming years. However, with increased plastic materials production, comes increased plastic material wastage creating a number of challenges, as well as opportunities to the waste management industry. The present overview highlights the waste management and pollution challenges, emphasising on the various chemical substances (known as "additives") contained in all plastic products for enhancing polymer properties and prolonging their life. Despite how useful these additives are in the functionality of polymer products, their potential to contaminate soil, air, water and food is widely documented in literature and described herein. These additives can potentially migrate and undesirably lead to human exposure via e.g. food contact materials, such as packaging. They can, also, be released from plastics during the various recycling and recovery processes and from the products produced from recyclates. Thus, sound recycling has to be performed in such a way as to ensure that emission of substances of high concern and contamination of recycled products is avoided, ensuring environmental and human health protection, at all times. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  12. Toxicological Impacts of Pharmaceuticals and Personal Care Products on Water Quality: Environmental Fate, Transformation and Health Effects

    Science.gov (United States)

    Rubasinghege, G. R. S.; Rijal, H.; Gurung, R.; Maldonado-Torres, S.; Rogelj, S.; Piyasena, M.

    2016-12-01

    The growing medical and personal needs of the human population have escalated release of pharmaceuticals and personal care products (PPCPs) to the nature. The current work investigated abiotic degradation pathways of selected PPCPs in the presence of major mineral components of soil and the acute health effects of degraded PPCPs. Degradation of selected PPCPs (ibuprofen and clofibric acid) was carried out using custom-built glass reactors in batch studies. The secondary products of PPCPs were analyzed and identified using modified HPLC and LC-MS methods. Results from these studies showed that the extent of degradation depends on the type of the clay or mineral oxide, and solar radiation. In the absence of solar radiation (night time chemistry), the dominant reaction mechanism was observed to be the adsorption of PPCPs on to clay particles where surface functional groups and particle size play a key role. In contrast, under solar radiation, PPCPs break down to several fractions in the presence of clay particles. The decay rates were at least 3-fold higher for irradiated samples compared to that of dark conditions. Acute toxicity of selected PPCPs and their degradation products were tested on three microorganisms: gram-positive soil bacteria, Bacillus megaterium; gram-negative marine bacteria, Pseudoaltermonas atlantica; and algae from the Chlorella genus. Growth inhibition was measured using optical density measurements, MTT viability assay, and flow cytometer. The results suggest that the concentrations of primary compounds, Ibuprofen and Clofibric Acid, found in the environment that ranges from μg/L to ng/L are not sufficient to inhibit growth of either three microorganisms. However, selected organisms showed significant differences in sensitivity to degraded products. Results from current work advance our knowledge and understanding in the fields of environmental toxicology, chemistry in aqueous phases, and geochemistry.

  13. Assessing the environmental fate of selected polybrominated diphenyl ethers in the region surrounding the Zhuoshui River of Taiwan based on an Equilibrium Constant fugacity model

    Science.gov (United States)

    O'Driscoll, Kieran; Doherty, Rory; Robinson, Jill; Chiang, Wen-Son; Kao Kao, Ruey-Chy

    2015-04-01

    Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants that have been in use since the 1970s. They are included in the list of hazardous substances known as persistent organic pollutants (POPs) because they are extremely hazardous to the environment and human health. PBDEs have been extensively used in industry and manufacturing in Taiwan, thus its citizens are at high risk of exposure to these chemicals. An assessment of the environmental fate of these compounds in the Zhuoshui river and Changhua County regions of western Taiwan, and also including the adjacent area of the Taiwan Strait, was conducted for three high risk congeners, BDE-47, -99 and -209, to obtain information regarding the partitioning, advection, transfer and long range transport potential of the PBDEs in order to identify the level of risk posed by the pollutants in this region. The results indicate that large amounts of PBDEs presently reside in all model compartments - air, soil, water, and sediment - with particularly high levels found in air and especially in sediment. The high levels found in sediment, particularly for BDE-209, are significant, since there is the threat of these pollutants entering the food chain, either directly through benthic feeding, or through resuspension and subsequent feeding in the pelagic region of the water column which is a distinct possibility in the strong currents found within the Taiwan Strait. Another important result is that a substantial portion of emissions leave the model domain directly through advection, particularly for BDE-47 (58%) and BDE-209 (75%), thus posing a risk to adjacent communities. Model results were generally in reasonable agreement with available measured concentrations. In air, model concentrations are in reasonably good agreement with available measured values. For both BDE-47 and -99, model concentrations are a factor of 2-3 higher and BDE-209 within the range of measured values. In soil, model results are somewhat

  14. Modeling the Environmental Fate of Graphene Oxide and Its Phototransformation Products in Brier Creek Watershed Using the Water Quality Analysis Simulation Program 8 (WASP8)

    Science.gov (United States)

    Han, Y.; Bouchard, D.; Chang, X.; Hsieh, H. S.; Knightes, C. D.; Spear, J.; Zepp, R. G.

    2017-12-01

    The production of graphene-family nanoparticles (GFNs) appreciably increased in recent years. Among GFNs, graphene oxide (GO) is one of the most highly studied members due to its inexpensive synthesis cost compared to graphene, its stability in aqueous media and its broad application. However, GO also has been found to be the most toxic among GFNs. Lab studies showed that GO undergoes phototransformation in surface waters, resulting in products that include reduced GO (rGO) and polycyclic aromatic hydrocarbons (PAHs). Due to technical and analytical limitations, it is still difficult to conduct in-situ measurement of GO and rGO concentrations released in the environment, and it is of utmost importance to establish a model that can predict their environmental exposure concentrations in the environment. In this study, we develop a fate and transport model to predict time-dependent environmental exposure concentrations of GO for the Brier Creek Watershed in the GA coastal plain. We investigate the influence of sunlight radiation on the distribution of GO and its phototransformation products in the watershed over a 20-year period using the most updated Water Quality Analysis Simulation Program (WASP8). Flow rate, sediment transport data and sunlight radiation data are input into WASP8, and WASP8 is used to internally calculate a GO phototransformation rate and productions of rGO and PAHs. Heteroaggregation coefficients of GO and rGO with suspended solids were measured in an EPA laboratory, and then input into WASP8. GO and rGO concentrations in the watershed are calculated by WASP8. Mass fraction results show that GO is the predominant species among GO derived species, which account for 99% of the mass throughout the whole watershed of interest, while rGO species, including free rGO and rGO heteroaggregated to suspended solids, only account for 1%. We also found that almost all free GO and rGO are present in water column due to their extremely low settling velocity. r

  15. Modeling Engineered Nanomaterials (ENMs) Fate and Transport in Aquatic Ecosystems

    Science.gov (United States)

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants...

  16. Scandinavian belief in fate

    Directory of Open Access Journals (Sweden)

    Åke Ström

    1967-02-01

    Full Text Available In point of principle, Christianity does not give room for any belief in fate. Astrology, horoscopes, divination, etc., are strictly rejected. Belief in fate never disappeared in Christian countries, nor did it in Scandinavia in Christian times. Especially in folklore we can find it at any period: People believed in an implacable fate. All folklore is filled up with this belief in destiny. Nobody can escape his fate. The future lies in the hands of fate, and the time to come takes its form according to inscrutable laws. The pre-Christian period in Scandinavia, dominated by pagan Norse religion, and the secularized epoch of the 20th century, however, show more distinctive and more widespread beliefs in fate than does the Christian period. The present paper makes a comparison between these forms of belief.

  17. Environmental fate and ecotoxicological risk of the antibiotic sulfamethoxazole across the Katari catchment (Bolivian Altiplano) : application of the GREAT-ER model

    OpenAIRE

    Archundia, D.; Boithias, Laurie; Duwig, Céline; Morel, M. C.; Aviles, G. F.; Martins, J. M. F.

    2018-01-01

    Antibiotics are emergent contaminants that can induce adverse effects in terrestrial and aquatic organisms. The surface water compartment is of particular concern as it receives direct waste water discharge. Modeling is highlighted as an essential tool to understand the fate and behavior of these compounds and to assess their eco-toxicological risk. This study aims at testing the ability of the GREAT-ER model in simulating sulfamethoxazole (SMX) concentrations in the surface waters of the ari...

  18. "Fate: The short film"

    OpenAIRE

    Maya Quintana, Jennifer

    2014-01-01

    "Fate: The Short Film" is a four minute short film which reflects the idea that nobody can escape from the fate. It has a good picture and sound quality with an understandable message for all public and with the collaboration of actors, filmmaker, stylist, script advisor and media technician.

  19. Experimental methodology for assessing the environmental fate of organic chemicals in polymer matrices using column leaching studies and OECD 308 water/sediment systems: Application to tire and road wear particles

    International Nuclear Information System (INIS)

    Unice, Kenneth M.; Bare, Jennifer L.; Kreider, Marisa L.; Panko, Julie M.

    2015-01-01

    Automobile tires require functional rubber additives including curing agents and antioxidants, which are potentially environmentally available from tire and road wear particles (TRWP) deposited in soil and sediment. A novel methodology was employed to evaluate the environmental fate of three commonly-used tire chemicals (N-cyclohexylbenzothiazole-2-sulfenamide (CBS), N-(1,3-dimethylbutyl)-N′-phenyl-1,4-phenylenediamine (6-PPD) and 1,3-diphenylguanidine (DPG)), using a road simulator, an artificial weathering chamber, column leaching tests, and OECD 308 sediment/water incubator studies. Environmental release factors were quantified for curing (f C ), tire wear (f W ), terrestrial weathering (f S ), leaching from TRWP (f L ), and environmental availability from TRWP (f A ) by liquid chromatography–tandem mass spectroscopy (LC/MS/MS) analyses. Cumulative fractions representing total environmental availability (F T ) and release to water (F R ) were calculated for the tire chemicals and 13 transformation products. F T for CBS, DPG and 6-PPD inclusive of transformation products for an accelerated terrestrial aging time in soil of 0.1 years was 0.08, 0.1, and 0.06, respectively (equivalent to 6 to 10% of formulated mass). In contrast, a wider range of 5.5 × 10 −4 (6-PPD) to 0.06 (CBS) was observed for F R at an accelerated age of 0.1 years, reflecting the importance of hydrophobicity and solubility for determining the release to the water phase. Significant differences (p < 0.05) in the weathering factor, f S , were observed when chemicals were categorized by boiling point or hydrolysis rate constant. A significant difference in the leaching factor, f L , and environmental availability factor, f A, was also observed when chemicals were categorized by log K ow . Our methodology should be useful for lifecycle analysis of other functional polymer chemicals. - Highlights: • Studied two vulcanization accelerators and an antioxidant additive used in tire tread

  20. Experimental methodology for assessing the environmental fate of organic chemicals in polymer matrices using column leaching studies and OECD 308 water/sediment systems: Application to tire and road wear particles

    Energy Technology Data Exchange (ETDEWEB)

    Unice, Kenneth M., E-mail: ken.unice@cardno.com; Bare, Jennifer L.; Kreider, Marisa L.; Panko, Julie M.

    2015-11-15

    Automobile tires require functional rubber additives including curing agents and antioxidants, which are potentially environmentally available from tire and road wear particles (TRWP) deposited in soil and sediment. A novel methodology was employed to evaluate the environmental fate of three commonly-used tire chemicals (N-cyclohexylbenzothiazole-2-sulfenamide (CBS), N-(1,3-dimethylbutyl)-N′-phenyl-1,4-phenylenediamine (6-PPD) and 1,3-diphenylguanidine (DPG)), using a road simulator, an artificial weathering chamber, column leaching tests, and OECD 308 sediment/water incubator studies. Environmental release factors were quantified for curing (f{sub C}), tire wear (f{sub W}), terrestrial weathering (f{sub S}), leaching from TRWP (f{sub L}), and environmental availability from TRWP (f{sub A}) by liquid chromatography–tandem mass spectroscopy (LC/MS/MS) analyses. Cumulative fractions representing total environmental availability (F{sub T}) and release to water (F{sub R}) were calculated for the tire chemicals and 13 transformation products. F{sub T} for CBS, DPG and 6-PPD inclusive of transformation products for an accelerated terrestrial aging time in soil of 0.1 years was 0.08, 0.1, and 0.06, respectively (equivalent to 6 to 10% of formulated mass). In contrast, a wider range of 5.5 × 10{sup −4} (6-PPD) to 0.06 (CBS) was observed for F{sub R} at an accelerated age of 0.1 years, reflecting the importance of hydrophobicity and solubility for determining the release to the water phase. Significant differences (p < 0.05) in the weathering factor, f{sub S}, were observed when chemicals were categorized by boiling point or hydrolysis rate constant. A significant difference in the leaching factor, f{sub L}, and environmental availability factor, f{sub A,} was also observed when chemicals were categorized by log K{sub ow}. Our methodology should be useful for lifecycle analysis of other functional polymer chemicals. - Highlights: • Studied two vulcanization

  1. Fate of pollutants

    International Nuclear Information System (INIS)

    Chapta, S.C.; Boyer, J.M.

    1990-01-01

    A literature review is presented of the fate of pollutants in sediment and water systems. Topics of discussion include the following: modeling, observations, and general studies; chlorinated xenobiotic chemicals; nonchlorinated xenobiotic chemicals; pesticides; heavy metals; and radionuclides

  2. Environmental fate of Ra in cation-exchange regeneration brine waste disposed to septic tanks, New Jersey Coastal Plain, USA: migration to the water table.

    Science.gov (United States)

    Szabo, Zoltan; Jacobsen, Eric; Kraemer, Thomas F; Parsa, Bahman

    2010-01-01

    Fate of radium (Ra) in liquid regeneration brine wastes from water softeners disposed to septic tanks in the New Jersey Coastal Plain was studied. Before treatment, combined Ra ((226)Ra plus (228)Ra) concentrations (maximum, 1.54 Bq L(-1)) exceeded the 0.185 Bq L(-1) Maximum Contaminant Level in 4 of 10 studied domestic-well waters (median pH, 4.90). At the water table downgradient from leachfields, combined Ra concentrations were low (commonly 5.3, indicating sequestration; when pH was septic-tank effluents (maximum, 0.243 Bq L(-1))), indicating Ra mobilization from leachfield sediments. Confidence in quantification of Ra mass balance was reduced by study design limitations, including synoptic sampling of effluents and ground waters, and large uncertainties associated with analytical methods. The trend of Ra mobilization in acidic environments does match observations from regional water-quality assessments.

  3. Experimental methodology for assessing the environmental fate of organic chemicals in polymer matrices using column leaching studies and OECD 308 water/sediment systems: Application to tire and road wear particles.

    Science.gov (United States)

    Unice, Kenneth M; Bare, Jennifer L; Kreider, Marisa L; Panko, Julie M

    2015-11-15

    Automobile tires require functional rubber additives including curing agents and antioxidants, which are potentially environmentally available from tire and road wear particles (TRWP) deposited in soil and sediment. A novel methodology was employed to evaluate the environmental fate of three commonly-used tire chemicals (N-cyclohexylbenzothiazole-2-sulfenamide (CBS), N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine (6-PPD) and 1,3-diphenylguanidine (DPG)), using a road simulator, an artificial weathering chamber, column leaching tests, and OECD 308 sediment/water incubator studies. Environmental release factors were quantified for curing (f(C)), tire wear (f(W)), terrestrial weathering (f(S)), leaching from TRWP (f(L)), and environmental availability from TRWP (f(A)) by liquid chromatography-tandem mass spectroscopy (LC/MS/MS) analyses. Cumulative fractions representing total environmental availability (F(T)) and release to water (FR) were calculated for the tire chemicals and 13 transformation products. F(T) for CBS, DPG and 6-PPD inclusive of transformation products for an accelerated terrestrial aging time in soil of 0.1 years was 0.08, 0.1, and 0.06, respectively (equivalent to 6 to 10% of formulated mass). In contrast, a wider range of 5.5×10(-4) (6-PPD) to 0.06 (CBS) was observed for F(R) at an accelerated age of 0.1 years, reflecting the importance of hydrophobicity and solubility for determining the release to the water phase. Significant differences (p<0.05) in the weathering factor, f(S), were observed when chemicals were categorized by boiling point or hydrolysis rate constant. A significant difference in the leaching factor, f(L), and environmental availability factor, f(A), was also observed when chemicals were categorized by log K(ow). Our methodology should be useful for lifecycle analysis of other functional polymer chemicals. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A multimedia fate model to evaluate the fate of PAHs in Songhua River, China

    International Nuclear Information System (INIS)

    Wang Ce; Feng Yujie; Sun Qingfang; Zhao Shanshan; Gao Peng; Li Bailian

    2012-01-01

    A multimedia fate model coupling dynamic water flow with a level IV fugacity model has been developed and applied to simulate the temporal and spatial fate of Polycyclic Aromatic Hydrocarbons (PAHs) in the Songhua River, China. The model has two components: in the first, the one-dimensional network kinematic wave equation is used to calculate varying water flow and depth. In the second, Fugacity IV equations are implemented to predict contaminant distributions in four environmental media. The estimated concentrations of eight PAHs in Songhua River are obtained, and all simulated results are in acceptable agreement with monitoring data, as verified with the Theil’s inequality coefficient test. The sensitivity of PAH concentration in each environmental phase to input parameters are also evaluated. Our results show the model predicts reasonably accurate contaminant concentrations in natural rivers, and that it can be used to supply necessary information for control and management of water pollution. - Highlights: ► The model used was developed based on kinematic wave equation and level IV fugacity principle. ► The model was applied to describe the fate and transport of organic chemicals in natural river. ► The concentrations of PAHs in water column were satisfactorily simulated when compared with monitoring data. ► Temporal and spatial variability of PAHs concentration among multimedia environmental phases was illustrated. - A dynamic water flow based multimedia fate model is developed to characterize the fate and transport of organic contaminant in natural rivers.

  5. Title: Elucidation of Environmental Fate of Artificial Sweeteners (Aspartame, Acesulfame K and Saccharin) by Determining Bimolecular Rate Constants with Hydroxyl Radical at Various pH and Temperature Conditions and Possible Reaction By-Products

    Science.gov (United States)

    Teraji, T.; Arakaki, T.; Suzuka, T.

    2012-12-01

    Use of artificial sweeteners in beverages and food has been rapidly increasing because of their non-calorie nature. In Japan, aspartame, acesulfame K and sucralose are among the most widely used artificial sweeteners. Because the artificial sweeteners are not metabolized in human bodies, they are directly excreted into the environment without chemical transformations. We initiated a study to better understand the fate of artificial sweeteners in the marine environment. The hydroxyl radical (OH), the most potent reactive oxygen species, reacts with various compounds and determines the environmental oxidation capacity and the life-time of many compounds. The steady-state OH concentration and the reaction rate constants between the compound and OH are used to estimate the life-time of the compound. In this study, we determine the bimolecular rate constants between aspartame, acefulfame K and saccharin and OH at various pH and temperature conditions using a competition kinetics technique. We use hydrogen peroxide as a photochemical source of OH. Bimolecular rate constant we obtained so far for aspartame was (2.6±1.2)×109 M-1 s-1 at pH = 3.0 and (4.9±2.3)×109 M-1 s-1 at pH = 5.5. Little effect was seen by changing the temperatures between 15 and 40 oC. Activation energy (Ea) was calculated to be -1.0 kJ mol-1 at pH = 3.0, +8.5 kJ mol-1 at pH = 5.5, which could be regarded as zero. We will report bimolecular rate constants at different pHs and temperatures for acesulfame K and saccharin, as well. Possible reaction by-products for aspartame will be also reported. We will further discuss the fate of aspartame in the coastal environment.

  6. Fate of As(V)-treated nano zero-valent iron: determination of arsenic desorption potential under varying environmental conditions by phosphate extraction.

    Science.gov (United States)

    Dong, Haoran; Guan, Xiaohong; Lo, Irene M C

    2012-09-01

    Nano zero-valent iron (NZVI) offers a promising approach for arsenic remediation, but the spent NZVI with elevated arsenic content could arouse safety concerns. This study investigated the fate of As(V)-treated NZVI (As-NZVI), by examining the desorption potential of As under varying conditions. The desorption kinetics of As from As-NZVI as induced by phosphate was well described by a biphasic rate model. The effects of As(V)/NZVI mass ratio, pH, and aging time on arsenic desorption from As-NZVI by phosphate were investigated. Less arsenic desorption was observed at lower pH or higher As(V)/NZVI mass ratio, where stronger complexes (bidentate) formed between As(V) and NZVI corrosion products as indicated by FTIR analysis. Compared with the fresh As-NZVI, the amount of phosphate-extractable As significantly decreased in As-NZVI aged for 30 or 60 days. The results of the sequential extraction experiments demonstrated that a larger fraction of As was sorbed in the crystalline phases after aging, making it less susceptible to phosphate displacement. However, at pH 9, a slightly higher proportion of phosphate-extractable As was observed in the 60-day sample than in the 30-day sample. XPS results revealed the transformation of As(V) to more easily desorbed As(III) during aging and a higher As(III)/As(V) ratio in the 60-day sample at pH 9, which might have resulted in the higher desorption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Development and evaluation of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    Science.gov (United States)

    Microbial contamination of waters in agricultural watershed is the critical public health issue. The watershed-scale model has been proven to be one of the candidate tools for predicting microbial water quality and evaluating management practices. The Agricultural Policy/Environmental eXtender (APEX...

  8. The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters.

    Science.gov (United States)

    Archer, Edward; Petrie, Bruce; Kasprzyk-Hordern, Barbara; Wolfaardt, Gideon M

    2017-05-01

    A large number of emerging contaminants (ECs) are known to persist in surface waters, and create pressure on wastewater treatment works (WWTW) for their effective removal. Although a large database for the levels of these pollutants in water systems exist globally, there is still a lack in the correlation of the levels of these pollutants with possible long-term adverse health effects in wildlife and humans, such as endocrine disruption. The current study detected a total of 55 ECs in WWTW influent surface water, 41 ECs in effluent, and 40 ECs in environmental waters located upstream and downstream of the plant. A list of ECs persisted through the WWTW process, with 28% of all detected ECs removed by less than 50%, and 18% of all ECs were removed by less than 25%. Negative mass balances of some pharmaceuticals and metabolites were observed within the WWTW, suggesting possible back-transformation of ECs during wastewater treatment. Three parental illicit drug compounds were detected within the influent of the WWTW, with concentrations ranging between 27.6 and 147.0 ng L -1 for cocaine, 35.6-120.6 ng L -1 for mephedrone, and 270.9-450.2 ng L -1 for methamphetamine. The related environmental risks are also discussed for some ECs, with particular reference to their ability to disrupt endocrine systems. The current study propose the potential of the pharmaceuticals carbamazepine, naproxen, diclofenac and ibuprofen to be regarded as priority ECs for environmental monitoring due to their regular detection and persistence in environmental waters and their possible contribution towards adverse health effects in humans and wildlife. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Cell fate determination dynamics in bacteria

    Science.gov (United States)

    Kuchina, Anna; Espinar, Lorena; Cagatay, Tolga; Garcia-Ojalvo, Jordi; Suel, Gurol

    2010-03-01

    The fitness of an organism depends on many processes that serve the purpose to adapt to changing environment in a robust and coordinated fashion. One example of such process is cellular fate determination. In the presence of a variety of alternative responses each cell adopting a particular fate represents a ``choice'' that must be tightly regulated to ensure the best survival strategy for the population taking into account the broad range of possible environmental challenges. We investigated this problem in the model organism B.Subtilis which under stress conditions differentiates terminally into highly resistant spores or initiates an alternative transient state of competence. The dynamics underlying cell fate choice remains largely unknown. We utilize quantitative fluorescent microscopy to track the activities of genes involved in these responses on a single-cell level. We explored the importance of temporal interactions between competing cell fates by re- engineering the differentiation programs. I will discuss how the precise dynamics of cellular ``decision-making'' governed by the corresponding biological circuits may enable cells to adjust to diverse environments and determine survival.

  10. Characteristics and environmental fate of the anionic surfactant sodium lauryl ether sulphate (SLES) used as the main component in foaming agents for mechanized tunnelling

    International Nuclear Information System (INIS)

    Barra Caracciolo, Anna; Cardoni, Martina; Pescatore, Tanita; Patrolecco, Luisa

    2017-01-01

    The anionic surfactant sodium lauryl ether sulphate (SLES) is the main component of most commercial products used for soil conditioning in the excavation industry, in particular as lubricants for mechanized tunnelling. Its use during the excavation processes can result in either the subsequent possible re-use of the huge amount of soil debris as by-products (e.g. land covering) or its discharge as waste. Currently, there are neither SLES soil threshold limits in European legislation, nor comprehensive studies on the environmental risk for soil ecosystems in these exposure scenarios. In this context, the present paper reviews the available data on the intrinsic characteristics of persistence and the ecotoxicological effects of the anionic surfactant SLES. Although SLES is generally reported to be biodegradable in standard tests, with degradation rates between 7 h and 30 days, depending on the initial conditions, data on its biodegradation in environmental studies are quite scarce. Consequently, assessing SLES biodegradation rates in field conditions is crucial for evaluating if in residual concentrations (typically in the range 40–500 mg/kg in excavated soils) it can or not be a potential hazard for terrestrial and water organisms. Laboratory ecotoxicological tests pointed out detrimental effects of SLES for aquatic organisms, while data on the terrestrial species are rather poor so far and further studies at the expected environmental concentrations are necessary. Finally, the review reports the main analytical methods available for detecting anionic surfactants in solid matrices and the future research needed to improve knowledge on the possible environmental risks posed by the use of SLES in foaming agents for mechanized tunnelling. - Highlights: • Tons of excavated soil containing SLES are reused posing an environmental risk. • SLES can have detrimental effects on aquatic organisms exposed in lab test. • There is a need to improve knowledge on SLES

  11. Radionuclide fate and effects

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The studies reported here deal with the full range of contaminant behavior and fate, from the initial physicochemical factors that govern radionuclide availability in terrestrial and aquatic environments to studies of contaminant transport by biological means. By design, we focus more on the biologically and chemically mediated transport processes and food-chain pathways than on the purely physical forms of contaminant transport, such as transport by wind and water

  12. Assessing the transport and fate of bioengineered microorganisms in the environment

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Palumbo, A.V.

    1985-01-01

    We review the methods currently available for quantifying the transport and fate of microbes in atmospheric and aqueous media and assess their adequacy for purposes of risk assessment. We review the literature on transport and fate of microorganisms, including studies of: (1) pathways of migration, (2) the survival of microorganisms during transport and fate. In addition, we review the transport and fate models that have been used in environmental risk assessments for radionuclides and toxic chemicals and evaluate their applicability to the problem of assessing environmental risks of bioengineered microorganisms

  13. Short- and medium-chain chlorinated paraffins in air and soil of subtropical terrestrial environment in the pearl river delta, South China: distribution, composition, atmospheric deposition fluxes, and environmental fate.

    Science.gov (United States)

    Wang, Yan; Li, Jun; Cheng, Zhineng; Li, Qilu; Pan, Xiaohui; Zhang, Ruijie; Liu, Di; Luo, Chunling; Liu, Xiang; Katsoyiannis, Athanasios; Zhang, Gan

    2013-03-19

    Research on the environmental fate of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in highly industrialized subtropical areas is still scarce. Air, soil, and atmospheric deposition process in the Pearl River Delta of South China were investigated, and the average SCCP and MCCP concentrations were 5.2 μg/sampler (17.69 ng/m(3)) and 4.1 μg/sampler for passive air samples, 18.3 and 59.3 ng/g for soil samples, and 5.0 and 5.3 μg/(m(2)d) for deposition samples, respectively. Influenced by primary sources and the properties of chlorinated paraffins (CPs), a gradient trend of concentrations and a fractionation of composition from more to less industrialized areas were discovered. Intense seasonal variations with high levels in summer air and winter deposition samples indicated that the air and deposition CP levels were controlled mainly by the vapor and particle phase, respectively. Complex environmental processes like volatilization and fractionation resulted in different CP profiles in different environment matrixes and sampling locations, with C(10-11) C(l6-7) and C(14) C(l6-7), C(10-12) C(l6-7) and C(14) C(l6-8), and C(11-12) C(l6-8) and C(14) C(l7-8) dominating in air, soil, and atmospheric deposition, respectively. Shorter-chain and less chlorinated congeners were enriched in air in the less industrialized areas, while longer-chain and higher chlorinated congeners were concentrated in soil in the more industrialized areas. This is suggesting that the gaseous transport of CPs is the dominant mechanism responsible for the higher concentrations of lighter and likely more mobile CPs in the rural areas.

  14. Characterization of the Flow Field and Wind Speed Profiles in Microbalance Wind Tunnels for Measurement of Agent Fate

    National Research Council Canada - National Science Library

    Weber, Daniel J; Molnar, John W; Scudder, Mary K; Shuely, Wendel

    2005-01-01

    An important goal is to model chemical warfare agent fate on environmental and interior surfaces and therefore, rigorously measured evaporation and desorption rates are required to develop equations...

  15. A review of environmental fate, body burdens, and human health risk assessment of PCDD/Fs at two typical electronic waste recycling sites in China

    International Nuclear Information System (INIS)

    Chan, Janet Kit Yan; Wong, Ming H.

    2013-01-01

    This paper reviews the levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in different environmental media, human body burdens and health risk assessment results at e-waste recycling sites in China. To provide an indication of the seriousness of the pollution levels in the e-waste recycling sites in China, the data are compared with guidelines and available existing data for other areas. The comparison clearly shows that PCDD/Fs derived from the recycling processes lead to serious pollution in different environmental compartments (such as air, soil, sediment, dust and biota) and heavy body burdens. Of all kinds of e-waste recycling operations, open burning of e-waste and acid leaching activities are identified as the major sources of PCDD/Fs. Deriving from the published data, the estimated total exposure doses via dietary intake, inhalation, soil/dust ingestion and dermal contact are calculated for adults, children and breast-fed infants living in two major e-waste processing locations in China. The values ranged from 5.59 to 105.16 pg WHO-TEQ/kg bw/day, exceeding the tolerable daily intakes recommended by the WHO (1–4 pg WHO-TEQ/kg bw/day). Dietary intake is the most important exposure route for infants, children and adults living in these sites, contributing 60–99% of the total intakes. Inhalation is the second major exposure route, accounted for 12–30% of the total exposure doses of children and adults. In order to protect the environment and human health, there is an urgent need to control and monitor the informal e-waste recycling operations. Knowledge gaps, such as comprehensive dietary exposure data, epidemiological and clinical studies, body burdens of infants and children, and kinetics about PCDD/Fs partitions among different human tissues should be addressed. - Highlights: ► PCDD/F levels at e-waste recycling sites in China were reviewed. ► Data on environment and body burden and health risk assessment results were reviewed

  16. A review of environmental fate, body burdens, and human health risk assessment of PCDD/Fs at two typical electronic waste recycling sites in China

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Janet Kit Yan, E-mail: chanjky@hku.hk [School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong (China); Wong, Ming H., E-mail: mhwong@hkbu.edu.hk [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Hong Kong (China)

    2013-10-01

    This paper reviews the levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in different environmental media, human body burdens and health risk assessment results at e-waste recycling sites in China. To provide an indication of the seriousness of the pollution levels in the e-waste recycling sites in China, the data are compared with guidelines and available existing data for other areas. The comparison clearly shows that PCDD/Fs derived from the recycling processes lead to serious pollution in different environmental compartments (such as air, soil, sediment, dust and biota) and heavy body burdens. Of all kinds of e-waste recycling operations, open burning of e-waste and acid leaching activities are identified as the major sources of PCDD/Fs. Deriving from the published data, the estimated total exposure doses via dietary intake, inhalation, soil/dust ingestion and dermal contact are calculated for adults, children and breast-fed infants living in two major e-waste processing locations in China. The values ranged from 5.59 to 105.16 pg WHO-TEQ/kg bw/day, exceeding the tolerable daily intakes recommended by the WHO (1–4 pg WHO-TEQ/kg bw/day). Dietary intake is the most important exposure route for infants, children and adults living in these sites, contributing 60–99% of the total intakes. Inhalation is the second major exposure route, accounted for 12–30% of the total exposure doses of children and adults. In order to protect the environment and human health, there is an urgent need to control and monitor the informal e-waste recycling operations. Knowledge gaps, such as comprehensive dietary exposure data, epidemiological and clinical studies, body burdens of infants and children, and kinetics about PCDD/Fs partitions among different human tissues should be addressed. - Highlights: ► PCDD/F levels at e-waste recycling sites in China were reviewed. ► Data on environment and body burden and health risk assessment results were reviewed

  17. Modelling the fate of organic micropollutants in stormwater ponds

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Eriksson, Eva; Ledin, Anna

    2011-01-01

    ). The four simulated organic stormwater MP (iodopropynyl butylcarbamate — IPBC, benzene, glyphosate and pyrene) were selected according to their different urban sources and environmental fate. This ensures that the results can be extended to other relevant stormwater pollutants. All three models use......Urban water managers need to estimate the potential removal of organic micropollutants (MP) in stormwater treatment systems to support MP pollution control strategies. This study documents how the potential removal of organic MP in stormwater treatment systems can be quantified by using multimedia...... models. The fate of four different MP in a stormwater retention pond was simulated by applying two steady-state multimedia fate models (EPI Suite and SimpleBox) commonly applied in chemical risk assessment and a dynamic multimedia fate model (Stormwater Treatment Unit Model for Micro Pollutants — STUMP...

  18. A conceptual study on the formulation of a permeable reactive pavement with activated carbon additives for controlling the fate of non-point source environmental organic contaminants.

    Science.gov (United States)

    Huang, Shengyi; Liang, Chenju

    2018-02-01

    To take advantage of the road pavement network where non-point source (NPS) pollution such as benzene, toluene, ethyl-benzene, and xylene (BTEX) from vehicle traffic exhaust via wet and dry atmospheric deposition occurs, the asphalt pavement may be used as a media to control the NPS pollution. An experiment to prepare an adsorptive porous reactive pavement (PRP) was initiated to explore the potential to reduce environmental NPS vehicle pollution. The PRP was prepared and studied as follows: various activated carbons (AC) were initially screened to determine if they were suitable as an additive in the porous asphalt mixture; various mixtures of a selected AC were incorporated with the design of porous asphalt concrete (PAC) to produce PRP, and the PRP formulations were tested to ensure that they comply with the required specifications; qualified specimens were subsequently tested to determine their adsorption capacity for BTEX in aqueous solution, as compared to conventional PAC. The PRP08 and PRP16 samples, named for the design formulations of 0.8% and 1.6% of AC (by wt. in the formulation), exhibited low asphalt drain-down and low abrasion loss and also met all regulated specifications. The BTEX adsorption capacity measurements of PRP08 and PRP16 were 33-46%, 36-51%, 20-22%, and 6-8% respectively, higher than those obtained from PACs. Based on the test results, PRPs showed good physical performance and adsorption and may be considered as a potential method for controlling the transport of NPS vehicle pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Choice of pesticide fate models

    International Nuclear Information System (INIS)

    Balderacchi, Matteo; Trevisan, Marco; Vischetti, Costantino

    2006-01-01

    The choice of a pesticide fate model at field scale is linked to the available input data. The article describes the available pesticide fate models at a field scale and the guidelines for the choice of the suitable model as function of the data input requested [it

  20. Modeling Engineered Nanomaterials (ENMs) Fate and ...

    Science.gov (United States)

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants are limited in their ability to simulate the environmental behavior of nanomaterials due to incomplete understanding and representation of the processes governing nanomaterial distribution in the environment and by scarce empirical data quantifying the interaction of nanomaterials with environmental surfaces. We have updated the Water Quality Analysis Simulation Program (WASP), version S, to incorporate nanomaterials as an explicitly simulated state variable. WASPS now has the capability to simulate nanomaterial fate and transport in surface waters and sediments using heteroaggregation, the kinetic process governing the attachment of nanomaterials to particles and subsequently ENM distribution in the aqueous and sediment phases. Unlike dissolved chemicals which use equilibrium partition coefficients, heteroaggregation consists of a particle collision rate and an attachment efficiency ( lXhet) that generally acts as a one direction process. To demonstrate, we used a derived a het value from sediment attachment studies to parameterize WASP for simulation of multi walled carbon nanotube (MWCNT) transport in Brier Creek, a coastal plain river located in central eastern Georgia, USA and a tr

  1. EVALUATION OF THE STATE-OF-THE-ART CONTAMINATED SEDIMENT TRANSPORT AND FATE MODELING SYSTEM

    Science.gov (United States)

    Modeling approaches for evaluating the transport and fate of sediment and associated contaminants are briefly reviewed. The main emphasis is on: 1) the application of EFDC (Environmental Fluid Dynamics Code), the state-of-the-art contaminated sediment transport and fate public do...

  2. Pollutant transport and fate in ecosystems

    International Nuclear Information System (INIS)

    Coughtrey, P.J.; Martin, M.H.; Unsworth, M.H.

    1987-01-01

    This publication contains a selection of the papers that were presented at a meeting of the Industrial Ecology Group of the British Ecological Society, held at the University of Bristol 1-4 April 1985. The aim of the meeting was to discuss the processes and mechanisms underlying the transfer of pollutants and contaminants in ecological systems. The discussion of the impact of pollutants on individual organisms, populations and communities was specifically excluded. Parallels between transfer, distribution and fate of a wide range of materials were identified. The papers presented at the meeting provided examples of mechanisms and processes involved in pollutant transport through ecosystems as well as of the significance of long-term or widespread investigations in the identification of temporal or geographical trends. Examples were also provided of studies involving complex systems and diverse materials with the aim of identifying underlying principles. Topics of current environmental concern e.g. acid deposition, heavy metals, radioactivity, etc. for which information is being collated in order to provide a basis for assessments concerning future impact were presented. Such assessments will require a combination of the information on transport and fate within ecosystems with knowledge of the effects of pollutants on the system. The interpretation of data concerning effects of a pollutant needs to be placed in the wider context of the occurrence, distribution and fate of that pollutant. The purpose of this publication is to provide that wider context. (author)

  3. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  4. Fate modelling of chemical compounds with incomplete data sets

    DEFF Research Database (Denmark)

    Birkved, Morten; Heijungs, Reinout

    2011-01-01

    Impact assessment of chemical compounds in Life Cycle Impact Assessment (LCIA) and Environmental Risk Assessment (ERA) requires a vast amount of data on the properties of the chemical compounds being assessed. These data are used in multi-media fate and exposure models, to calculate risk levels...... in an approximate way. The idea is that not all data needed in a multi-media fate and exposure model are completely independent and equally important, but that there are physical-chemical and biological relationships between sets of chemical properties. A statistical model is constructed to underpin this assumption...... and other indicators. ERA typically addresses one specific chemical, but in an LCIA, the number of chemicals encountered may be quite high, up to hundreds or thousands. This study explores the development of meta-models, which are supposed to reflect the “true”multi-media fate and exposure model...

  5. [The tragic fate of physicians].

    Science.gov (United States)

    Ohry, Avi

    2013-10-01

    Physicians and surgeons were always involved in revolutions, wars and political activities, as well as in various medical humanities. Tragic fate met these doctors, whether in the Russian prisons gulags, German labor or concentration camps, pogroms or at the hands of the Inquisition.

  6. Fate of acetone in water

    Science.gov (United States)

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.

    1982-01-01

    The physical, chemical, and biological processes that might affect the concentration of acetone in water were investigated in laboratory studies. Processes considered included volatilization, adsorption by sediments, photodecomposition, bacterial degradation, and absorption by algae and molds. It was concluded that volatilization and bacterial degradation were the dominant processes determining the fate of acetone in streams and rivers. ?? 1982.

  7. (Environmental technology)

    Energy Technology Data Exchange (ETDEWEB)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  8. Transport and Fate of Volatile Organic Chemical in Soils

    DEFF Research Database (Denmark)

    Petersen, Lis Wollesen

    Recently much attention has been paid to the behavior of volatile organic chemicals (VOCs) in the environment. This is due to the fact that the environmental pollution with these hazardous chemicals has drastically increased during the last decades. The present study is limited to consider...... the transport and fate of VOCs in the gaseous phase, thus contributing to the overall understanding of VOCs behavior in soil, which eventually will facilitate future cleanup....

  9. Integrated fate and toxicity assessment for site contaminants

    International Nuclear Information System (INIS)

    MacDonell, Margaret; Peterson, John; Finster, Molly; Douglas, R.

    2007-01-01

    Understanding the fate and toxicity of environmental contaminants is essential to framing practical management decisions. Forms and bioavailable concentrations often change over time due to natural physical, chemical, and biological processes. For some sites, hundreds of contaminants may be of initial interest, and even small projects can involve a substantial number of contaminants. With multiple assessments common, attention to effectiveness and efficiency is important, and integrating fate and toxicity information provides a valuable way to focus the analyses. Fate assessments help identify what forms may be present where and when, while toxicity information indicates what health effects could result if people were exposed. The integration process is illustrated by an application for the Hanford site, to support long-term management decisions for the cesium and strontium capsules. Fate data, health-based benchmarks, and related toxicity information were effectively combined to indicate performance targets for chemicals and radionuclides identified for capsule leachate that could migrate to groundwater. More than 50 relevant benchmarks and toxicity context were identified for 15 of the 17 study contaminants; values for chronic drinking water exposure provided the common basis for selected indicators. For two chemicals, toxicity information was identified from the scientific literature to guide the performance targets. (authors)

  10. Specifying pancreatic endocrine cell fates.

    Science.gov (United States)

    Collombat, Patrick; Hecksher-Sørensen, Jacob; Serup, Palle; Mansouri, Ahmed

    2006-07-01

    Cell replacement therapy could represent an attractive alternative to insulin injections for the treatment of diabetes. However, this approach requires a thorough understanding of the molecular switches controlling the specification of the different pancreatic cell-types in vivo. These are derived from an apparently identical pool of cells originating from the early gut endoderm, which are successively specified towards the pancreatic, endocrine, and hormone-expressing cell lineages. Numerous studies have outlined the crucial roles exerted by transcription factors in promoting the cell destiny, defining the cell identity and maintaining a particular cell fate. This review focuses on the mechanisms regulating the morphogenesis of the pancreas with particular emphasis on recent findings concerning the transcription factor hierarchy orchestrating endocrine cell fate allocation.

  11. Ultimate fate of constrained voters

    International Nuclear Information System (INIS)

    Vazquez, F; Redner, S

    2004-01-01

    We examine the ultimate fate of individual opinions in a socially interacting population of leftists, centrists and rightists. In an elemental interaction between agents, a centrist and a leftist can both become centrists or both become leftists with equal rates (and similarly for a centrist and a rightist). However leftists and rightists do not interact. This interaction step between pairs of agents is applied repeatedly until the system can no longer evolve. In the mean-field limit, we determine the exact probability that the system reaches consensus (either leftist, rightist or centrist) or a frozen mixture of leftists and rightists as a function of the initial composition of the population. We also determine the mean time until the final state is reached. Some implications of our results for the ultimate fate in a limit of the Axelrod model are discussed

  12. Ultimate fate of constrained voters

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, F [Department of Physics, Center for BioDynamics, Boston University, Boston, MA 02215 (United States); Redner, S [Department of Physics, Center for Polymer Studies, Boston University, Boston, MA 02215 (United States)

    2004-09-03

    We examine the ultimate fate of individual opinions in a socially interacting population of leftists, centrists and rightists. In an elemental interaction between agents, a centrist and a leftist can both become centrists or both become leftists with equal rates (and similarly for a centrist and a rightist). However leftists and rightists do not interact. This interaction step between pairs of agents is applied repeatedly until the system can no longer evolve. In the mean-field limit, we determine the exact probability that the system reaches consensus (either leftist, rightist or centrist) or a frozen mixture of leftists and rightists as a function of the initial composition of the population. We also determine the mean time until the final state is reached. Some implications of our results for the ultimate fate in a limit of the Axelrod model are discussed.

  13. Determination of fluorotelomer alcohols in selected consumer products and preliminary investigation of their fate in the indoor environment

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has established an ongoing effort to identify the major perfluorocarboxylic acid (PFCA) sources in nonoccupational indoor environments and characterize their transport and fate. This study determined the concentrations of perfluorote...

  14. Organic pollutants and heavy metals in rainwater runoff and their fate in the unsaturated soil zone. Final report

    International Nuclear Information System (INIS)

    Grotehusmann, D.; Rohlfing, R.; Weyer, G.; Dittrich, D.; Gowik, P.; Pernak, P.

    1991-01-01

    This bibliographic study is part of the BMFT intergrated project ''Possibilitiis and limits of [ drainage in consederation of the soil and groundwater protection''. Subjects: Environmental relevance and general distribution of organic pollutants; organic pollutants in rain water, soil, and groundwater; fate of organic pollutants in soil; environmental relevance of heavy metals in soil, rain water, and runof; fate of heavy metals in the unsaturated soil rare. (orig./BBR) [de

  15. THE FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A VENTURI/PACKED COLUMN SCRUBBER - VOLUME I: TECHNICAL RESULTS

    Science.gov (United States)

    A five week series of pilot-scale incineration tests, using a synthetic waste feed, was performed at the Environmental Protection Agency's Incineration Research Facility to evaluate the fate of trace metals fed to a rotary kiln incinerator. Eight tests studied the fate of five ha...

  16. Fate of 14C-labelled compounds in marine environment

    International Nuclear Information System (INIS)

    Kale, S.P.; Raghu, K.; Sherkhane, P.D.; Murthy, N.B.K.

    1999-01-01

    Model ecosystems have played an important role in predicting environmental behavior of agrochemicals. The microcosms used in these studies generally include soil units containing usual biotic components common for that ecosystem. In present studies, scope of two such ecosystems has been extended to study the fate of 14 C-labelled pesticides in marine environment. 14 C-labelled pesticides used in these studies were chlorpyrifos, DDT and HCH. Two systems were developed in laboratory simulating marine environment to study the fate of these pesticides. The first system was developed in an all glass aquarium tank with marine sediments, seawater, clams and algae and is referred to as marine ecosystem. The second system was developed to permit the total 14 C-mass balance studies. It contained marine sediments under moist (60% water holding capacity) or flooded conditions and it is referred to as continuous flow system. Fate of 14 C-DDT was studied in marine ecosystem while degradation of 14 C-chlorpyrifos and 14 C-HCH was studied in continuous flow system. 14 C-DDT did not bioaccumulate in clams while at the end of 60 days 50% of the applied 14 C-activity was present in sediment fraction of marine ecosystem. 14 C-HCH degradation showed about 22-26% mineralization while 45-55% of the applied activity was recovered as organic volatiles. No significant bound residues were formed. 14 C-chorpyrifos underwent considerable degradation in marine environment. TCP was the major degradation product. (author)

  17. Fates of Chemical Elements in Biomass during Its Pyrolysis.

    Science.gov (United States)

    Liu, Wu-Jun; Li, Wen-Wei; Jiang, Hong; Yu, Han-Qing

    2017-05-10

    Biomass is increasingly perceived as a renewable resource rather than as an organic solid waste today, as it can be converted to various chemicals, biofuels, and solid biochar using modern processes. In the past few years, pyrolysis has attracted growing interest as a promising versatile platform to convert biomass into valuable resources. However, an efficient and selective conversion process is still difficult to be realized due to the complex nature of biomass, which usually makes the products complicated. Furthermore, various contaminants and inorganic elements (e.g., heavy metals, nitrogen, phosphorus, sulfur, and chlorine) embodied in biomass may be transferred into pyrolysis products or released into the environment, arousing environmental pollution concerns. Understanding their behaviors in biomass pyrolysis is essential to optimizing the pyrolysis process for efficient resource recovery and less environmental pollution. However, there is no comprehensive review so far about the fates of chemical elements in biomass during its pyrolysis. Here, we provide a critical review about the fates of main chemical elements (C, H, O, N, P, Cl, S, and metals) in biomass during its pyrolysis. We overview the research advances about the emission, transformation, and distribution of elements in biomass pyrolysis, discuss the present challenges for resource-oriented conversion and pollution abatement, highlight the importance and significance of understanding the fate of elements during pyrolysis, and outlook the future development directions for process control. The review provides useful information for developing sustainable biomass pyrolysis processes with an improved efficiency and selectivity as well as minimized environmental impacts, and encourages more research efforts from the scientific communities of chemistry, the environment, and energy.

  18. Fate of a mutation in a fluctuating environment

    Science.gov (United States)

    Cvijović, Ivana; Good, Benjamin H.; Jerison, Elizabeth R.; Desai, Michael M.

    2015-01-01

    Natural environments are never truly constant, but the evolutionary implications of temporally varying selection pressures remain poorly understood. Here we investigate how the fate of a new mutation in a fluctuating environment depends on the dynamics of environmental variation and on the selective pressures in each condition. We find that even when a mutation experiences many environmental epochs before fixing or going extinct, its fate is not necessarily determined by its time-averaged selective effect. Instead, environmental variability reduces the efficiency of selection across a broad parameter regime, rendering selection unable to distinguish between mutations that are substantially beneficial and substantially deleterious on average. Temporal fluctuations can also dramatically increase fixation probabilities, often making the details of these fluctuations more important than the average selection pressures acting on each new mutation. For example, mutations that result in a trade-off between conditions but are strongly deleterious on average can nevertheless be more likely to fix than mutations that are always neutral or beneficial. These effects can have important implications for patterns of molecular evolution in variable environments, and they suggest that it may often be difficult for populations to maintain specialist traits, even when their loss leads to a decline in time-averaged fitness. PMID:26305937

  19. ENM fate in freshwater through adaption of USEtox

    DEFF Research Database (Denmark)

    Miseljic, Mirko; Birkved, Morten; Olsen, Stig Irving

    Engineered nanomaterials (ENMs) have in recent time received substantial attention, both in scientific and consumer circles, as these materials are introduced to a steadily increasing number of consumer products. This has led to environmental concerns on how this new material class behaves...... in the environment, at which concentrations organisms are exposed to the materials and what effects these materials may have on the environment. In relation to metal-oxide engineered nanomaterials (ENMs), as is the general case for ENMs, many environmental aspects are still unknown and/or hence not properly...... scientifically mapped. One approach that has not been given much attention in relation to environmental assessment of ENM, more precisely the fate, exposure and effect modelling of metal-oxide ENMs is the application of adapted characterization modelling (ACM) and hence application of characterisation models...

  20. Review of nitrogen fate models applicable to forest landscapes in the Southern U.S.

    Science.gov (United States)

    D. M. Amatya; C. G. Rossi; A. Saleh; Z. Dai; M. A. Youssef; R. G. Williams; D. D. Bosch; G. M. Chescheir; G. Sun; R. W. Skaggs; C. C. Trettin; E. D. Vance; J. E. Nettles; S. Tian

    2013-01-01

    Assessing the environmental impacts of fertilizer nitrogen (N) used to increase productivity in managed forests is complex due to a wide range of abiotic and biotic factors affecting its forms and movement. Models developed to predict fertilizer N fate (e.g., cycling processes) and water quality impacts vary widely in their design, scope, and potential application. We...

  1. Impacts of soil redistribution on the transport and fate of organic carbon in loess soils

    NARCIS (Netherlands)

    Wang, X.

    2014-01-01

    Soil erosion is an important environmental process leading to loss of topsoil including carbon (C) and nutrients, reducing soil quality and loss of biomass production. So far, the fate of soil organic carbon (SOC) in eroding landscapes is not yet fully understood and remains an important uncertainty

  2. GLOBOX : A spatially differentiated global fate, intake and effect model for toxicity assessment in LCA

    NARCIS (Netherlands)

    Wegener Sleeswijk, Anneke; Heijungs, Reinout

    GLOBOX is a model for the calculation of spatially differentiated LCA toxicity characterisation factors on a global scale. It can also be used for human and environmental risk assessment. The GLOBOX model contains equations for the calculation of fate, intake and effect factors, and equations for

  3. Modeling the fate and transport of bacteria in agricultural and pasture lands using APEX

    Science.gov (United States)

    The Agricultural Policy/Environmental eXtender (APEX) model is a whole farm to small watershed scale continuous simulation model developed for evaluating various land management strategies. The current version, APEX0806, does not have the modeling capacity for fecal indicator bacteria fate and trans...

  4. Fate and effect of hexabromocyclododecane in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Hunziker, R.W.; Friederich, U. [Dow Europe, GmbH, Horgen (Switzerland); MacGregor, J.A.; Desjardins, D. [Wildlife International, Ltd., Easton, MD (United States); Ariano, J. [Great Lakes Chemical Corp., West Lafayette, IN (United States); Gonsior, S.

    2004-09-15

    Hexabromocyclododecane (HBCD) is used as a flame retardant mainly in building insulation composed of extruded or expanded polystyrene foam. A minor use is in flame retardant back-coats of some upholstery textiles. Sales in Europe are estimated to be 9000 t/yr. HBCD has been detected in a number of environmental samples mainly in sediment of urban areas. In a series of acute aquatic toxicity tests, no effect was exhibited at concentrations equal to or below the water solubility of the technical product which consists of ca. 85% {gamma} diastereomer. However, considerable bioconcentration has been reported (log BCF=4). In recent work it has been reported that a shift occurs along the food chain, from {gamma}, the predominant isomer in the technical product, to the {alpha} isomer. HBCD is very hydrophobic and not readily biodegradable, and has been presumed to be persistent in the environment. It is therefore important to have a good understanding of the environmental fate and lifetime of all HBCD isomers. This paper describes new findings on the water solubility of HBCD with respect to its 3 individual isomers, presents results on the acute toxicity in the marine alga Skeletonema costatum at the limit of solubility of all individual isomers and shows first data of an ongoing fate study with {sup 14}C-HBCD where the primary biodegradation of the individual metabolites is differentiated.

  5. Fate and effects of clothianidin in fields using conservation practices.

    Science.gov (United States)

    de Perre, Chloé; Murphy, Tracye M; Lydy, Michael J

    2015-02-01

    Despite the extensive use of the neonicotinoid insecticide clothianidin, and its known toxicity to beneficial insects such as pollinators, little attention has been given to its fate under agricultural field conditions. The present study investigated the fate and toxicity of clothianidin applied every other year as a corn seed-coating at 2 different rates, 0.25 mg/seed and 0.50 mg/seed, in an agricultural field undergoing a corn-soybean annual rotation, and conservation tillage. Concentrations were measured in soil, surface runoff, infiltration, and groundwater from 2011 to 2013. Clothianidin was detected at low concentrations in soil and water throughout the 2-yr corn and soybean rotation. Low and no-tillage had little or no effect on clothianidin concentrations. Laboratory toxicity bioassays were performed on nontarget species, including Daphnia magna, Hyalella azteca, Chironomus dilutus, Pimephales promelas and Eisenia fetida. Risk quotients were calculated from clothianidin concentrations measured in the field and compared with the laboratory toxicity bioassay results to assess the environmental risk of the insecticide. The risk quotient was found to be lower than the level of concern for C. dilutus, which was the most sensitive species tested; therefore, no short-term environmental risk was expected for the species investigated in the present study. © 2014 SETAC.

  6. Arginine and Polyamines Fate in Leishmania Infection

    Science.gov (United States)

    Muxel, Sandra M.; Aoki, Juliana I.; Fernandes, Juliane C. R.; Laranjeira-Silva, Maria F.; Zampieri, Ricardo A.; Acuña, Stephanie M.; Müller, Karl E.; Vanderlinde, Rubia H.; Floeter-Winter, Lucile M.

    2018-01-01

    Leishmania is a protozoan parasite that alternates its life cycle between the sand fly and the mammalian host macrophages, involving several environmental changes. The parasite responds to these changes by promoting a rapid metabolic adaptation through cellular signaling modifications that lead to transcriptional and post-transcriptional gene expression regulation and morphological modifications. Molecular approaches such as gene expression regulation, next-generation sequencing (NGS), microRNA (miRNA) expression profiling, in cell Western blot analyses and enzymatic activity profiling, have been used to characterize the infection of murine BALB/c and C57BL/6 macrophages, as well as the human monocytic cell-lineage THP-1, with Leishmania amazonensis wild type (La-WT) or arginase knockout (La-arg-). These models are being used to elucidate physiological roles of arginine and polyamines pathways and the importance of arginase for the establishment of the infection. In this review, we will describe the main aspects of Leishmania-host interaction, focusing on the arginine and polyamines pathways and pointing to possible targets to be used for prognosis and/or in the control of the infection. The parasite enzymes, arginase and nitric oxide synthase-like, have essential roles in the parasite survival and in the maintenance of infection. On the other hand, in mammalian macrophages, defense mechanisms are activated inducing alterations in the mRNA, miRNA and enzymatic profiles that lead to the control of infection. Furthermore, the genetic background of both parasite and host are also important to define the fate of infection. PMID:29379478

  7. Emerging organic contaminants in sludges. Analysis, fate and biological treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vicent, Teresa [Univ. Autonoma de Barcelona, Bellaterra (Spain). Chemical Engineering Dept.; Eljarrat, Ethel [IDAEA-CSIC, Barcelona (Spain). Dept. of Environmental Chemistry; Caminal, Gloria [IQAC-CSIC, Barcelona (Spain). Grupo de biocatalisis Aplicada y biodegradacion; Barcelo, Damia (eds.) [IDAEA-CSIC, Barcelona (Spain). Dept. of Environmental Chemistry; Girona Univ. (Spain). Catalan Inst. for Water Research

    2013-07-01

    A comprehensive review. Written by experts. Richly illustrated. There are a growing number of new chemicals in the environment that represent an ascertained or potential risk. Many of them can be found in sewage sludge and are the subject of this volume. Experts in the field highlight their occurrence and fate, risks of biosolid use, advanced chemical analysis methods, and degradation techniques with a special focus on biodegradation using fungi. In the final chapter conclusions and trends are offered as a point of departure for future studies. The double-disciplinary approach combining environmental analysis and engineering makes the book a valuable and comprehensive source of information for a broad audience, such as environmental chemists and engineers, biotechnologists, ecotoxicologists and professionals responsible for waste and water management.

  8. Environmental Chemistry Methods (ECM) Index - N

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with N as the first character.

  9. Environmental Chemistry Methods (ECM) Index - K

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with K as the first character.

  10. Environmental Chemistry Methods (ECM) Index - M

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with M as the first character.

  11. Environmental Chemistry Methods (ECM) Index - R

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with R as the first character.

  12. Environmental Chemistry Methods (ECM) Index - G

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with G as the first character.

  13. Environmental Chemistry Methods (ECM) Index - O

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with O as the first character.

  14. Environmental Chemistry Methods (ECM) Index - S

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with S as the first character.

  15. Environmental Chemistry Methods (ECM) Index - B

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with B as the first character.

  16. Environmental Chemistry Methods (ECM) Index - C

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with C as the first character.

  17. Environmental Chemistry Methods (ECM) Index - F

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with F as the first character.

  18. Environmental Chemistry Methods (ECM) Index - P

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with P as the first character.

  19. Environmental Chemistry Methods (ECM) Index - L

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with L as the first character.

  20. Environmental Chemistry Methods (ECM) Index - H

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with H as the first character.

  1. Environmental Chemistry Methods (ECM) Index - I

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with I as the first character.

  2. Environmental Chemistry Methods (ECM) Index - Z

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with Z as the first character.

  3. Environmental Chemistry Methods (ECM) Index - A

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with A as the first character.

  4. Environmental Chemistry Methods (ECM) Index - E

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with E as the first character.

  5. Environmental Chemistry Methods (ECM) Index - T

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with T as the first character.

  6. Environmental Chemistry Methods (ECM) Index - D

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with D as the first character.

  7. Environmental Chemistry Methods (ECM) Index - Q

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with Q as the first character.

  8. Fate of Pyrethroids in Farmland Ponds

    DEFF Research Database (Denmark)

    Mogensen, B. B.; Sørensen, P. B.; Stuer-Lauridsen, F.

    Pyrethroids constitute a group of widely used insecticides, which are toxic to aquatic organisms. This report presents the results from a 2-year study of the fate of pyrethroids in ponds, i.e. their distribution in the water column, the sediment and the surface microlayer respectively. The measur......Pyrethroids constitute a group of widely used insecticides, which are toxic to aquatic organisms. This report presents the results from a 2-year study of the fate of pyrethroids in ponds, i.e. their distribution in the water column, the sediment and the surface microlayer respectively...

  9. Transformation and distribution processes governing the fate and behaviour of nanomaterials in the environment: an overview

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss; Hartmann, Nanna B.; Baun, Anders

    2015-01-01

    assessment. Chemical fate modelling is one approach to fill this gap within a short time frame. To ensure the reliability of predicted environmental concentrations informed choices are needed during model formulation and development. A major knowledge gap, hampering the further development of such model...... present in the environment. Specific nanomaterials are used as case studies to illustrate these processes. Key environmental processes are identified and ranked and key knowledge gaps are identified, feeding into the longer-term goal of improving the existing models for predicted environmental...

  10. Environmental fate of pesticides applied on coffee crops in ...

    African Journals Online (AJOL)

    Veronica Umukoro

    behavior of the compound in the soil and volatilization, leaching, superficial runoff and .... chemical reaction, advective flow and nondiffusive transport rate equations into fugacity ... R: Gas constant (8,314 Pa.m³/mol K). T: Absolute temperature ...

  11. Environmental fate and effects of the lampricide TFM: A review

    Science.gov (United States)

    Hubert, T.D.

    2003-01-01

    Use of 3-trifluoromethyl-4-nitrophenol (TFM) is limited geographically to the Great Lakes basin where it is the principal agent used in control of the sea lamprey (Petromyzon marinus). It is clear from available data that TFM has effects on the environment, but the effects reported are transient. Individual organisms and aquatic communities return to pretreatment conditions after lampricide treatments have concluded. TFM is not persistent, is detoxified, and presents minimal long-term toxicological risk. TFM is relatively nontoxic to mammals. Treatment levels do not pose a threat to wildlife. However, TFM is an estrogen agonist and additional testing to define the nature and magnitude of this effect will likely be required. Because stream treatments are done on 3 to 5 year cycles, and exposures are limited to approximately 12 h, minimal risk to aquatic organisms is expected.

  12. Aquatic Environmental Contamination: The fate of Asejire Lake in ...

    African Journals Online (AJOL)

    A study of catfish from Asejire Lake (located at the outskirt of Ibadan, a major city in Oyo State of South-West Nigeria) was carried out to assess the level of contamination due to effluents from various industries in Ibadan, Oyo State particularly the Nigerian Bottling Company, Plc (NBC). The industrial site is located close to ...

  13. Environmental fate and transport analysis with compartment modeling

    National Research Council Canada - National Science Library

    Little, Keith W

    2012-01-01

    .... Discussing various modeling issues in a single volume, this text provides an introduction to a specific numerical modeling technique called the compartment approach and offers a practical user's guide to the GEM...

  14. Environmental Transport and Fate Process Descriptors for Propellant Compounds

    Science.gov (United States)

    2006-06-01

    rate of 1.2 mL/min. The RP-HPLC used a mercury lamp UV detector at 254 nm. The calibration range was 0.2 to 19.2 parts per million with a reporting... phytoremediation of perchlorate- contaminated water. In Perchlorate in the environment, ed. E. T. Urbansky, 219- 229. New York, NY: Kluwer Academic/Plenum...identification of metabolic products in Myriophyllum aquaticum. International Journal of Phytoremediation 1:97-107. Swann, R. L., D. A. Laskowski, P. J. McCall

  15. Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin.

    Science.gov (United States)

    He, Li-Ming; Troiano, John; Wang, Albert; Goh, Kean

    2008-01-01

    Lambda-cyhalothrin is a pyrethroid insecticide used for controlling pest insects in agriculture, public health, and in construction and households. Lambda-cyhalothrin is characterized by low vapor pressure and a low Henry's law constant but by a high octanol-water partition coefficient (K(ow)) and high water-solid-organic carbon partition coefficient (K(oc)) values. Lambda-cyhalothrin is quite stable in water at pH lambda-cyhalothrin is relatively photostable under natural irradiation, with a half-life > 3 wk, its photolysis process is fast under UV irradiation, with a half-life lambda-cyhalothrin in aquatic ecosystems depends on the nature of system components such as suspended solids (mineral and organic particulates) and aquatic organisms (algae, macrophytes, or aquatic animals). Lambda-cyhalothrin residues dissolved in water decrease rapidly if suspended solids and/or aquatic organisms are present because lambda-cyhalothrin molecules are strongly adsorbed by particulates and plants. Adsorbed lambda-cyhalothrin molecules show decreased degradation rates because they are less accessible to breakdown than free molecules in the water column. On the other hand, lambda-cyhalothrin adsorbed to suspended solids or bottom sediments may provide a mechanism to mitigate its acute toxicity to aquatic organisms by reducing their short-term bioavailability in the water column. The widespread use of lambda-cyhalothrin has resulted in residues in sediment, which have been found to be toxic to aquatic organisms including fish and amphipods. Mitigation measures have been used to reduce the adverse impact of lambda-cyhalothrin contributed from agricultural or urban runoff. Mitigation may be achieved by reducing the quantity of runoff and suspended solid content in runoff through wetlands, detention ponds, or vegetated ditches.

  16. Environmental-Fate Patterns for Perfluoroalkylates and their Precursors

    Science.gov (United States)

    Two sites with elevated concentrations of perfluoroalkylates (PFAs) and fluorotelomer alcohols (FTOHs) were studied: 1) agricultural fields near Decatur, AL on which sewage sludge had been applied; and 2) the Conasauga River system near Dalton, GA where treated sewage effluent is...

  17. Evaluation of the Environmental Fate of Munition Compounds in Soil.

    Science.gov (United States)

    1979-06-01

    temperature in- duction furnace. Nitrate Water samples were analyzed for nitrate (NO:T) by a Dion -X System Ten ion chromatograph. Nitrite Water samples...moderately well drained Celins , somewhat poorly drained Crosby and Conover, and very poorly drained Kokomo form a drainage sequence with the

  18. Organoarsenicals in poultry litter: detection, fate, and toxicity.

    Science.gov (United States)

    P Mangalgiri, Kiranmayi; Adak, Asok; Blaney, Lee

    2015-02-01

    Arsenic contamination in groundwater has endangered the health and safety of millions of people around the world. One less studied mechanism for arsenic introduction into the environment is the use of organoarsenicals in animal feed. Four organoarsenicals are commonly employed as feed additives: arsanilic acid, carbarsone, nitarsone, and roxarsone. Organoarsenicals are composed of a phenylarsonic acid molecule with substituted functional groups. This review documents the use of organoarsenicals in the poultry industry, reports analytical methods available for quantifying organic arsenic, discusses the fate and transport of organoarsenicals in environmental systems, and identifies toxicological concerns associated with these chemicals. In reviewing the literature on organoarsenicals, several research needs were highlighted: advanced analytical instrumentation that allows for identification and quantification of organoarsenical degradation products; a greater research emphasis on arsanilic acid, carbarsone, and nitarsone; identification of degradation pathways, products, and kinetics; and testing/development of agricultural wastewater and solid treatment technologies for organoarsenical-laden waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Production, use, and fate of all plastics ever made.

    Science.gov (United States)

    Geyer, Roland; Jambeck, Jenna R; Law, Kara Lavender

    2017-07-01

    Plastics have outgrown most man-made materials and have long been under environmental scrutiny. However, robust global information, particularly about their end-of-life fate, is lacking. By identifying and synthesizing dispersed data on production, use, and end-of-life management of polymer resins, synthetic fibers, and additives, we present the first global analysis of all mass-produced plastics ever manufactured. We estimate that 8300 million metric tons (Mt) as of virgin plastics have been produced to date. As of 2015, approximately 6300 Mt of plastic waste had been generated, around 9% of which had been recycled, 12% was incinerated, and 79% was accumulated in landfills or the natural environment. If current production and waste management trends continue, roughly 12,000 Mt of plastic waste will be in landfills or in the natural environment by 2050.

  20. Fate of alkali and trace metals in biomass gasification

    International Nuclear Information System (INIS)

    Salo, K.; Mojtahedi, W.

    1998-01-01

    The fate of alkali metals (Na, K) and eleven toxic trace elements (Hg, Cd, Be, Se, Sb, As, Pb, Zn, Cr, Co, Ni) in biomass gasification have been extensively investigated in Finland in the past ten years. The former due to the gas turbine requirements and the latter to comply with environmental regulations. In this paper the results of several experimental studies to measure Na and K in the vapor phase after the gas cooler of a simplified (air-blown) Integrated Gasification Combined-Cycle (IGCC) system are reported. Also, trace element emissions from an IGCC plant using alfalfa as the feedstock are discussed and the concentration of a few toxic trace metals in the vapor phase in the gasifier product gas are reported. (author)

  1. Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate

    Directory of Open Access Journals (Sweden)

    Timothy J. Petros

    2015-11-01

    Full Text Available Fate determination in the mammalian telencephalon, with its diversity of neuronal subtypes and relevance to neuropsychiatric disease, remains a critical area of study in neuroscience. Most studies investigating this topic focus on the diversity of neural progenitors within spatial and temporal domains along the lateral ventricles. Often overlooked is whether the location of neurogenesis within a fate-restricted domain is associated with, or instructive for, distinct neuronal fates. Here, we use in vivo fate mapping and the manipulation of neurogenic location to demonstrate that apical versus basal neurogenesis influences the fate determination of major subgroups of cortical interneurons derived from the subcortical telencephalon. Somatostatin-expressing interneurons arise mainly from apical divisions along the ventricular surface, whereas parvalbumin-expressing interneurons originate predominantly from basal divisions in the subventricular zone. As manipulations that shift neurogenic location alter interneuron subclass fate, these results add an additional dimension to the spatial-temporal determinants of neuronal fate determination.

  2. THE FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A VENTURI/PACKED COLUMN SCRUBBER - VOLUME II: APPENDICES

    Science.gov (United States)

    A 5-week series of pilot-scale incineration tests, employing a synthetic waste feed, was performed at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with a venturi scrubber/p...

  3. Fate of Gases generated from Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasulu, M.; Francis, A. J. [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of); Francis, A. J. [Brookhaven National Laboratory, New York (United States)

    2013-05-15

    The backfill materials such as cement, bentonite or crushed rock are used as engineered barriers against groundwater infiltration and radionuclide transport. Gas generation from radioactive wastes is attributed to radiolysis, corrosion of metals, and degradation of organic materials. Corrosion of steel drums and biodegradation of organic materials in L/ILW can generate gas which causes pressure build up and has the potential to compromise the integrity of waste containers and release the radionuclides and other contaminants into the environment. Performance assessment therefore requires a detailed understanding of the source and fate of gas generation and transport within the disposal system. Here we review the sources and fate of various type of gases generated from nuclear wastes and repositories. Studies on modeling of the fate and transport of repository gases primarily deal with hydrogen and CO{sub 2}. Although hydrogen and carbon dioxide are the major gases of concern, microbial transformations of these gases in the subterranean environments could be significant. Metabolism of hydrogen along with the carbon dioxide results in the formation of methane, low molecular weight organic compounds and cell biomass and thus could affect the total inventory in a repository environment. Modeling studies should take into consideration of both the gas generation and consumption processes over the long-term.

  4. Redox Regulation of Endothelial Cell Fate

    Science.gov (United States)

    Song, Ping; Zou, Ming-Hui

    2014-01-01

    Endothelial cells (ECs) are present throughout blood vessels and have variable roles in both physiological and pathological settings. EC fate is altered and regulated by several key factors in physiological or pathological conditions. Reactive nitrogen species and reactive oxygen species derived from NAD(P)H oxidases, mitochondria, or nitric oxide-producing enzymes are not only cytotoxic but also compose a signaling network in the redox system. The formation, actions, key molecular interactions, and physiological and pathological relevance of redox signals in ECs remain unclear. We review the identities, sources, and biological actions of oxidants and reductants produced during EC function or dysfunction. Further, we discuss how ECs shape key redox sensors and examine the biological functions, transcriptional responses, and post-translational modifications evoked by the redox system in ECs. We summarize recent findings regarding the mechanisms by which redox signals regulate the fate of ECs and address the outcome of altered EC fate in health and disease. Future studies will examine if the redox biology of ECs can be targeted in pathophysiological conditions. PMID:24633153

  5. The sources and fate of radionuclides emitted to the atmosphere

    International Nuclear Information System (INIS)

    Sandalls, J.

    2001-01-01

    The thesis represents an account of the sources and fate of radionuclides entering the atmosphere, and indicates where the candidate, through his own work, has contributed to the overall picture. The sources of the natural and man-made radionuclides found in the atmosphere are identified. New data on emissions from UK coal-fired power stations and UK steel works are reported. Radionuclides produced in nuclear fission and released to the atmosphere in the detonation of nuclear weapons, in nuclear accidents, and through routine discharges from nuclear sites have added to the atmospheric burden of radioactive materials; both acute and chronic low-level emissions are discussed. The various natural processes which remove radionuclides from the atmosphere are described. Soon after release, many radioactive materials become attached to the atmospheric aerosol, but others undergo gas-phase reactions. Some gases are sufficiently long-lived in the troposphere as to find their way into the stratosphere where their fate may be determined by the short-wave radiation from the sun. The nature of the particles of fuel emitted to the atmosphere in the explosion and fire at the Chernobyl nuclear power plant in 1986 are discussed, together with the associated environmental problems. The ground is the major sink for radionuclides leaving the atmosphere, and the behaviour of the more radiologically important radionuclides following deposition is described with special reference to: (i) fallout in both the urban and living environments; (ii) the pathways which may lead to contamination of the food chain; (iii) how the fuel particle fallout from Chernobyl was unique in nuclear accidents; (iv) soil-to-plant transfer of radioelements and (v) how radiation exposure of man can be mitigated in both the contaminated urban and rural environments. (author)

  6. Geochemical Fate and Transport of Sildenafil and Vardenafil

    Science.gov (United States)

    Richter, L.; Boudinot, G.; Vulava, V. M.; Cory, W. C.

    2015-12-01

    The geochemical fate of pharmaceuticals and their degradation products is a developing environmental field. The geologic, chemical, and biological fate of these pollutants has become very relevant with the increase in human population and the resulting increase in pollutant concentrations in the environment. In this study, we focus on sildenafil (SDF) and vardenafil (VDF), active compounds in Viagra and Levitra, respectively, two commonly used erectile dysfunction drugs. The main objective is to determine the sorption potential and transport behavior of these two compounds in natural soils. Both SDF and VDF are complex organic molecules with multiple amine functional groups in their structures. Two types of natural acidic soils (pH≈4.5), an organic-rich soil (7.6% OM) and clay-rich soil (5.1% clay) were used in this study to determine which soil components influence sorption behavior of both compounds. Sorption isotherms measured using batch reactors were nearly linear, but sorption was stronger in soil that contained higher clay content. Both compounds have multiple pKas due to the amine functional groups, the relevant pKas of SDF are 5.97 and 7.27, and those of VDF's are 4.72 and 6.21. These values indicate that these compounds likely behave as cations in soil suspensions and hence were strongly sorbed to negatively-charged clay minerals present in both soils. The clay composition in both soils is predominantly kaolinite with smaller amount of montmorillonite, both of which have a predominantly negative surface charge. Transport experiments using glass chromatography columns indicated that both compounds were more strongly retarded in the clay-rich soils. Breakthrough curves from the transport experiments were modeled using convection-dispersion transport equations. The organic matter in the soil seemed to play a less dominant role in the geochemistry in this study, but is likely to transform both compounds into derivative compounds as seen in other studies.

  7. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field.

    Science.gov (United States)

    Wilkinson, John; Hooda, Peter S; Barker, James; Barton, Stephen; Swinden, Julian

    2017-12-01

    Many of the products and drugs used commonly contain chemical components which may persist through sewage treatment works (STW) and eventually enter the aquatic environment as parent compounds, metabolites, or transformation products. Pharmaceuticals and personal care products (PPCPs) and other emerging contaminants (ECs) have been detected in waters (typically ng/L) as well as more recently bound to sediment and plastic particles (typically ng/g). Despite significant advancement of knowledge since the late 1990s, the fate of these contaminants/transformation products once introduced into the aquatic environment remains relatively unresolved. This review provides a unique focus on the fate of seven major groups of PPCPs/ECs in the aquatic environment, which is frequently not found in similar works which are often compound or topic-specific and limited in background knowledge. Key findings include: a) some replacements for regulation precluded/banned chemicals may be similarly persistent in the environment as those they replace, b) the adsorption of potentially bioactive chemicals to micro- and nanoplastics is a significant topic with risks to aquatic organisms potentially greater than previously thought, and c) micro-/nanoplastics are likely to remain of significant concern for centuries after regulatory limitations on their use become active due to the slow degradation of macro-plastics into smaller components. An interdisciplinary perspective on recent advances in the field is presented here in a unique way which highlights both the principle science and direction of research needed to elucidate the fate and transport patterns of aquatic PPCPs/ECs. Unlike similar reviews, which are often topic-specific, here we aim to present an overarching review of the field with focus on the occurrence, transformation and fate of emerging contaminants. Environmental presence of seven major classes of contaminants (analygesics, antibiotics, antineoplastics, beta

  8. Making fate and exposure models for freshwater ecotoxicity in life cycle assessment suitable for organic acids and bases.

    Science.gov (United States)

    van Zelm, Rosalie; Stam, Gea; Huijbregts, Mark A J; van de Meent, Dik

    2013-01-01

    Freshwater fate and exposure factors were determined for organic acids and bases, making use of the knowledge on electrical interaction of ionizing chemicals and their sorption to particles. The fate factor represents the residence time in the environment whereas exposure factors equal the dissolved fraction of a chemical. Multimedia fate, exposure, and effect model USES-LCA was updated to take into account the influence of ionization, based upon the acid dissociation constant (pK(a)) of a chemical, and the environmental pH. Freshwater fate (FF) and exposure (XF) factors were determined for 415 acids and 496 bases emitted to freshwater, air, and soil. The relevance of taking account of the degree of ionization of chemicals was tested by determining the ratio (R) of the new vs. fate and exposure factors determined with USES-LCA suitable for neutral chemicals only. Our results show that the majority of freshwater fate and exposure factors of chemicals that are largely ionized in the environment are larger with the ionics model compared to the factors determined with the neutrals model version. R(FF) ranged from 2.4×10(-1) to 1.6×10(1) for freshwater emissions, from 1.2×10(-2) to 2.0×10(4) for soil emissions and from 5.8×10(-2) to 6.0×10(3) for air emissions, and R(XF) from 5.3×10(-1) to 2.2×10(1). Prediction of changed solid-water partitioning, implying a change in runoff and in removal via sedimentation, and prediction of negligible air-water partition coefficient, leading to negligible volatilization were the main contributors to the changes in freshwater fate factors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Using integrated environmental modeling to automate a process-based Quantitative Microbial Risk Assessment

    Science.gov (United States)

    Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, an...

  10. Using Integrated Environmental Modeling to Automate a Process-Based Quantitative Microbial Risk Assessment (presentation)

    Science.gov (United States)

    Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, and...

  11. Synthetic RNA Controllers for Programming Mammalian Cell Fate and Function

    Science.gov (United States)

    2015-11-04

    Final report for “Synthetic RNA controllers for programming mammalian cell fate and function” Principal Investigator: Christina D. Smolke...SUBTITLE Synthetic RNA controllers for programming mammalian cell fate and function 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18   2 Synthetic RNA controllers for programming mammalian cell fate and function Task 1

  12. Uranium fate in wetland mesocosms: Effects of plants at two ...

    Science.gov (United States)

    Small-scale continuous flow wetland mesocosms (~0.8 L) were used to evaluate how plant roots under different iron loadings affect uranium (U) mobility. When significant concentrations of ferrous iron (Fe) were present at circumneutral pH values, U concentrations in root exposed sediments were an order of magnitude greater than concentrations in root excluded sediments. Micro X-ray absorption near-edge structure (µ-XANES) spectroscopy indicated that U was associated with the plant roots primarily as U(VI) or U(V), with limited evidence of U(IV). Micro X-ray fluorescence (µ-XRF) of plant roots suggested that for high iron loading at circumneutral pH, U was co-located with Fe, perhaps co-precipitated with root Fe plaques, while for low iron loading at a pH of ~4 the correlation between U and Fe was not significant, consistent with previous observations of U associated with organic matter. Quantitative PCR analyses indicated that the root exposed sediments also contained elevated numbers of Geobacter spp., which are likely associated with enhanced iron cycling, but may also reduce mobile U(VI) to less mobile U(IV) species. There are significant uncertainties regarding the environmental fate of uranium (U) and efforts to minimize U exposures require understanding of its mobility in environmental systems. Much research has focused on sequestering U as solids within groundwater aquifers, where localized risks can be controlled.1 Subsurface sequestration limits t

  13. Evaluation of terrestrial microcosms for detection, fate, and survival analysis of genetically engineered microorganisms and their recombinant genetic material

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, J.K.; Seidler, R.J.

    1989-02-01

    The research included in this document represents the current scientific information available regarding the applicability of terrestrial microcosms and related methodologies for evaluating detection methods and the fate and survival of microorganisms in the environment. The three terrestrial microcosms described in this document were used to evaluate the survival and fate of recombinant bacteria in soils and in association with plant surfaces and insects and their transport through soil with percolating water and root systems, and to test new methods and procedures to improve detection and enumeration of bacteria in soil. Simple (potting soil composed of peat mix and perlite, lacking environmental control and monitoring) and complex microcosms (agricultural soil with partial control and monitoring of environmental conditions) were demonstrated to be useful tools for preliminary assessments of microbial viability in terrestrial ecosystems. These studies evaluated the survival patterns of Enterobacter cloacae (pBR322) in soil and on plant surfaces and the ingestion of this same microorganism by cutworms and survival in the foregut and frass. The Versacore microcosm design was used to monitor the fate and competitiveness of genetically engineered bacteria in soil. Both selective media and gene probes were used successfully to follow the fate of two recombinant Pseudomonas sp. introduced into Versacore microcosms. Intact soil-core microcosms were employed to evaluate the fate and transport of genetically altered Azospirillum sp. and Pseudomonas sp. in soil and the plant rhizosphere. The usefulness of these various microcosms as a tool for risk assessment is underscored by the ease in obtaining soil from a proposed field release site to evaluate subsequent GEM fate and survival.

  14. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field

    International Nuclear Information System (INIS)

    Wilkinson, John; Hooda, Peter S.; Barker, James; Barton, Stephen; Swinden, Julian

    2017-01-01

    Many of the products and drugs used commonly contain chemical components which may persist through sewage treatment works (STW) and eventually enter the aquatic environment as parent compounds, metabolites, or transformation products. Pharmaceuticals and personal care products (PPCPs) and other emerging contaminants (ECs) have been detected in waters (typically ng/L) as well as more recently bound to sediment and plastic particles (typically ng/g). Despite significant advancement of knowledge since the late 1990s, the fate of these contaminants/transformation products once introduced into the aquatic environment remains relatively unresolved. This review provides a unique focus on the fate of seven major groups of PPCPs/ECs in the aquatic environment, which is frequently not found in similar works which are often compound or topic-specific and limited in background knowledge. Key findings include: a) some replacements for regulation precluded/banned chemicals may be similarly persistent in the environment as those they replace, b) the adsorption of potentially bioactive chemicals to micro- and nanoplastics is a significant topic with risks to aquatic organisms potentially greater than previously thought, and c) micro-/nanoplastics are likely to remain of significant concern for centuries after regulatory limitations on their use become active due to the slow degradation of macro-plastics into smaller components. An interdisciplinary perspective on recent advances in the field is presented here in a unique way which highlights both the principle science and direction of research needed to elucidate the fate and transport patterns of aquatic PPCPs/ECs. Unlike similar reviews, which are often topic-specific, here we aim to present an overarching review of the field with focus on the occurrence, transformation and fate of emerging contaminants. Environmental presence of seven major classes of contaminants (analygesics, antibiotics, antineoplastics, beta

  15. The Yin and Yang of chromatin dynamics in adult stem cell fate selection

    Science.gov (United States)

    Adam, Rene C.; Fuchs, Elaine

    2015-01-01

    Adult organisms rely on tissue stem cells for maintenance and repair. During homeostasis, the concerted action of local niche signals and epigenetic regulators establish stable gene expression patterns to ensure that stem cells are not lost over time. However, stem cells also provide host tissues with a remarkable plasticity to respond to perturbations. How adult stem cells choose and acquire new fates is unknown, but the genome-wide mapping of epigenetic landscapes suggests a critical role for chromatin remodeling in these processes. Here, we explore the emerging role of chromatin modifiers and pioneer transcription factors in adult stem cell fate decisions and plasticity, which ensure that selective lineage choices are only made when environmentally cued. PMID:26689127

  16. USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in Life Cycle Analysis

    DEFF Research Database (Denmark)

    Andrew D, Henderson; Hauschild, Michael Zwicky; Van de Meent, Dik

    2011-01-01

    orders of magnitude. However, for an emission to air or soil, differences in chemical properties may decrease the CF by up to 10 orders of magnitude, as a result of intermedia transfer and degradation. This result brings new clarity to the relative contributions of fate and freshwater ecotoxicity...... with characteristic properties, this work provides understanding of the basis for calculations of CFs in USEtox. In addition, it offers insight into the chemical properties and critical mechanisms covering the continuum from chemical emission to freshwater ecosystem toxicity. For an emission directly to water......The USEtox model was developed in a scientific consensus process involving comparison of and harmonization between existing environmental multimedia fate models. For freshwater ecosystem toxicity, it covers the entire impact pathway, i.e., transforming a chemical emission into potential impacts...

  17. Simplified fate modelling in respect to ecotoxicological and human toxicological characterisation of emissions of chemical compounds

    DEFF Research Database (Denmark)

    Birkved, Morten; Heijungs, Reinout

    2011-01-01

    The impact assessment of chemical compounds in Life Cycle Impact Assessment (LCIA) and Environmental Risk Assessment (ERA) requires a vast amount of data on the properties of the chemical compounds being assessed. The purpose of the present study is to explore statistical options for reduction...... of the data demand associated with characterisation of chemical emissions in LCIA and ERA.Based on a USEtox™ characterisation factor set consisting of 3,073 data records, multi-dimensional bilinear models for emission compartment specific fate characterisation of chemical emissions were derived by application...... the independent chemical input parameters from the minimum data set, needed for characterisation in USEtox™, according to general availability, importance and relevance for fate factor prediction.Each approach (63% and 75% of the minimum data set needed for characterisation in USEtox™) yielded 66 meta...

  18. Environmental Chemistry Methods (ECM) Index - 0-9

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with a number as the first character.

  19. Cell fate regulation in the shoot meristem.

    Science.gov (United States)

    Laux, T; Mayer, K F

    1998-04-01

    The shoot meristem is a proliferative centre containing pluripotent stem cells that are the ultimate source of all cells and organs continuously added to the growing shoot. The progeny of the stem cells have two developmental options, either to renew the stem cell population or to leave the meristem and to differentiate, possibly according to signals from more mature tissue. The destiny of each cell depends on its position within the dynamic shoot meristem. Genetic data suggest a simple model in which graded positional information is provided by antagonistic gene functions and is interpreted by genes which regulate cell fate.

  20. Fate of leptophos residues in milk products

    International Nuclear Information System (INIS)

    Zayed, S.M.A.D.; Mohammed, S.I.

    1981-01-01

    The fate of leptophos residues in various milk products was studied using 14 C-phenyl labelled leptophos. Milk products were prepared from milk fortified with the radioactive insecticide by methods simulating those used in industry. The highest leptophos level was found in butter and the lowest in skim milk and whey. Analysis of the radioactive residues in all products showed the presence of leptophos alone. A trace of the oxon could be detected in whey. The results obtained in this investigation indicated that processing of milk did not affect the nature of leptophos to any appreciable extent. (author)

  1. Fate of nitrogenous fertilizers in forest soil

    International Nuclear Information System (INIS)

    Pang, P.C.K.

    1984-01-01

    The fate of the nitrogenous fertilizers through the processes of denitrification, ammonia volatilization, immobilization and uptake by a conifer is determined, with the aid of 15 N-labelled fertizers. The foliage of Douglas-fir was able to absorb gaseous ammonia under optimal conditions. Denitrification and immobilization of fertilizer-N by forest soil were highest with forest floor samples and decreased with depth. Laboratory studies with four-year-old Douglas-fir demostrated that a higher quantity of fertilizer-N was utilized by trees when the nitrogen was supplied as NO 3 - rather than NH 4 + . (M.A.C.) [pt

  2. Watch Out for the “Living Dead”: Cell-Free Enzymes and Their Fate

    Directory of Open Access Journals (Sweden)

    Federico Baltar

    2018-01-01

    Full Text Available Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs are the “gatekeepers” of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached, and dissolved (i.e., cell-free enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100% of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell’s fate. In contrast, cell-free enzymes belong to a kind of “living dead” realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go “beyond the living things,” studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles.

  3. Watch Out for the “Living Dead”: Cell-Free Enzymes and Their Fate

    Science.gov (United States)

    Baltar, Federico

    2018-01-01

    Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs) are the “gatekeepers” of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached), and dissolved (i.e., cell-free) enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100%) of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA) will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell’s fate. In contrast, cell-free enzymes belong to a kind of “living dead” realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go “beyond the living things,” studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles. PMID:29354095

  4. The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils.

    Science.gov (United States)

    McLachlan, Michael S; Czub, Gertje; Wania, Frank

    2002-11-15

    Gaseous exchange between surface soil and the atmosphere is an important process in the environmental fate of many chemicals. It was hypothesized that this process is influenced by vertical transport of chemicals sorbed to soil particles. Vertical sorbed phase transport in surface soils occurs by many processes such as bioturbation, cryoturbation, and erosion into cracks formed by soil drying. The solution of the advection/diffusion equation proposed by Jury et al. to describe organic chemical fate in a uniformly contaminated surface soil was modified to include vertical sorbed phase transport This process was modeled using a sorbed phase diffusion coefficient, the value of which was derived from soil carbon mass balances in the literature. The effective diffusivity of the chemical in a typical soil was greater in the modified model than in the model without sorbed phase transport for compounds with log K(OW) > 2 and log K(OA) > 6. Within this chemical partitioning space, the rate of volatilization from the surface soil was larger in the modified model than in the original model by up to a factor of 65. The volatilization rate was insensitive to the value of the sorbed phase diffusion coefficient throughout much of this chemical partitioning space, indicating that the surface soil layer was essentially well-mixed and that the mass transfer coefficient was determined by diffusion through the atmospheric boundary layer only. When this process was included in a non-steady-state regional multimedia chemical fate model running with a generic emissions scenario to air, the predicted soil concentrations increased by upto a factor of 25,whilethe air concentrations decreased by as much as a factor of approximately 3. Vertical sorbed phase transport in the soil thus has a major impact on predicted air and soil concentrations, the state of equilibrium, and the direction and magnitude of the chemical flux between air and soil. It is a key process influencing the environmental

  5. Fate in the religion of the Lepchas

    Directory of Open Access Journals (Sweden)

    Halfdan Siiger

    1967-02-01

    Full Text Available The Lepchas are mountainous agriculturalists who live in the State of Sikkim in the Himalayas and in some adjacent Indian districts. To the Lepchas the supernatural world is divided into two groups, the rum, or the mainly benevolent supernatural beings, and the mung, or the malignant supernatural beings. Any evil occurrence is in the first instance ascribed to the malignant activities of the mung, but it may, under certain conditions, also be due to temporary on the part of some or other rum. If it is obvious that the evil occurrence is caused by a human being, this person is considered to be governed by some mung, or he may, which is much worse, be a mung in human disguise. At all events, any evil occurrence is experienced as the result of the evil will-power of some or other malignant supernatural being. Consequently, we cannot apply our technical term "Fate" to such occurrences, and Fate as an abstract concept cannot be used, when we speak of the Lepchas.

  6. Connecting Mitochondria, Metabolism, and Stem Cell Fate

    Science.gov (United States)

    Wanet, Anaïs; Arnould, Thierry; Najimi, Mustapha

    2015-01-01

    As sites of cellular respiration and energy production, mitochondria play a central role in cell metabolism. Cell differentiation is associated with an increase in mitochondrial content and activity and with a metabolic shift toward increased oxidative phosphorylation activity. The opposite occurs during reprogramming of somatic cells into induced pluripotent stem cells. Studies have provided evidence of mitochondrial and metabolic changes during the differentiation of both embryonic and somatic (or adult) stem cells (SSCs), such as hematopoietic stem cells, mesenchymal stem cells, and tissue-specific progenitor cells. We thus propose to consider those mitochondrial and metabolic changes as hallmarks of differentiation processes. We review how mitochondrial biogenesis, dynamics, and function are directly involved in embryonic and SSC differentiation and how metabolic and sensing pathways connect mitochondria and metabolism with cell fate and pluripotency. Understanding the basis of the crosstalk between mitochondria and cell fate is of critical importance, given the promising application of stem cells in regenerative medicine. In addition to the development of novel strategies to improve the in vitro lineage-directed differentiation of stem cells, understanding the molecular basis of this interplay could lead to the identification of novel targets to improve the treatment of degenerative diseases. PMID:26134242

  7. Fate of Fusarium Toxins during Brewing.

    Science.gov (United States)

    Habler, Katharina; Geissinger, Cajetan; Hofer, Katharina; Schüler, Jan; Moghari, Sarah; Hess, Michael; Gastl, Martina; Rychlik, Michael

    2017-01-11

    Some information is available about the fate of Fusarium toxins during the brewing process, but only little is known about the single processing steps in detail. In our study we produced beer from two different barley cultivars inoculated with three different Fusarium species, namely, Fusarium culmorum, Fusarium sporotrichioides, and Fusarium avenaceum, producing a wide range of mycotoxins such as type B trichothecenes, type A trichothecenes, and enniatins. By the use of multi-mycotoxin LC-MS/MS stable isotope dilution methods we were able to follow the fate of Fusarium toxins during the entire brewing process. In particular, the type B trichothecenes deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol showed similar behaviors. Between 35 and 52% of those toxins remained in the beer after filtration. The contents of the potentially hazardous deoxynivalenol-3-glucoside and the type A trichothecenes increased during mashing, but a rapid decrease of deoxynivalenol-3-glucoside content was found during the following steps of lautering and wort boiling. The concentration of enniatins greatly decreased with the discarding of spent grains or finally with the hot break. The results of our study show the retention of diverse Fusarium toxins during the brewing process and allow for assessing the food safety of beer regarding the monitored Fusarium mycotoxins.

  8. Glucocorticoid regulation of astrocytic fate and function.

    Directory of Open Access Journals (Sweden)

    Shuang Yu

    Full Text Available Glial loss in the hippocampus has been suggested as a factor in the pathogenesis of stress-related brain disorders that are characterized by dysregulated glucocorticoid (GC secretion. However, little is known about the regulation of astrocytic fate by GC. Here, we show that astrocytes derived from the rat hippocampus undergo growth inhibition and display moderate activation of caspase 3 after exposure to GC. Importantly, the latter event, observed both in situ and in primary astrocytic cultures is not followed by either early- or late-stage apoptosis, as monitored by stage I or stage II DNA fragmentation. Thus, unlike hippocampal granule neurons, astrocytes are resistant to GC-induced apoptosis; this resistance is due to lower production of reactive oxygen species (ROS and a greater buffering capacity against the cytotoxic actions of ROS. We also show that GC influence hippocampal cell fate by inducing the expression of astrocyte-derived growth factors implicated in the control of neural precursor cell proliferation. Together, our results suggest that GC instigate a hitherto unknown dialog between astrocytes and neural progenitors, adding a new facet to understanding how GC influence the cytoarchitecture of the hippocampus.

  9. Endothelial ERK signaling controls lymphatic fate specification

    Science.gov (United States)

    Deng, Yong; Atri, Deepak; Eichmann, Anne; Simons, Michael

    2013-01-01

    Lymphatic vessels are thought to arise from PROX1-positive endothelial cells (ECs) in the cardinal vein in response to induction of SOX18 expression; however, the molecular event responsible for increased SOX18 expression has not been established. We generated mice with endothelial-specific, inducible expression of an RAF1 gene with a gain-of-function mutation (RAF1S259A) that is associated with Noonan syndrome. Expression of mutant RAF1S259A in ECs activated ERK and induced SOX18 and PROX1 expression, leading to increased commitment of venous ECs to the lymphatic fate. Excessive production of lymphatic ECs resulted in lymphangiectasia that was highly reminiscent of abnormal lymphatics seen in Noonan syndrome and similar “RASopathies.” Inhibition of ERK signaling during development abrogated the lymphatic differentiation program and rescued the lymphatic phenotypes induced by expression of RAF1S259A. These data suggest that ERK activation plays a key role in lymphatic EC fate specification and that excessive ERK activation is the basis of lymphatic abnormalities seen in Noonan syndrome and related diseases. PMID:23391722

  10. The influence of climate change on the global distribution and fate processes of anthropogenic persistent organic pollutants.

    Science.gov (United States)

    Kallenborn, Roland; Halsall, Crispin; Dellong, Maud; Carlsson, Pernilla

    2012-11-01

    The effect of climate change on the global distribution and fate of persistent organic pollutants (POPs) is of growing interest to both scientists and policy makers alike. The impact of warmer temperatures and the resulting changes to earth system processes on chemical fate are, however, unclear, although there are a growing number of studies that are beginning to examine these impacts and changes in a quantitative way. In this review, we examine broad areas where changes are occurring or are likely to occur with regard to the environmental cycling and fate of chemical contaminants. For this purpose we are examining scientific information from long-term monitoring data with particular emphasis on the Arctic, to show apparent changes in chemical patterns and behaviour. In addition, we examine evidence of changing chemical processes for a number of environmental compartments and indirect effects of climate change on contaminant emissions and behaviour. We also recommend areas of research to address knowledge gaps. In general, our findings indicate that the indirect consequences of climate change (i.e. shifts in agriculture, resource exploitation opportunities, etc.) will have a more marked impact on contaminants distribution and fate than direct climate change.

  11. Fate factors and emission flux estimates for emerging contaminants in surface waters

    Directory of Open Access Journals (Sweden)

    Hoa T. Trinh

    2016-01-01

    Full Text Available Pharmaceuticals, personal care products, hormones, and wastewater products are emerging environmental concerns for manifold reasons, including the potential of some compounds found in these products for endocrine disruption at a very low chronic exposure level. The environmental occurrences and sources of these contaminants in the water, soil, sediment and biota in European nations and the United States are well documented. This work reports a screening-level emission and fate assessment of thirty compounds, listed in the National Reconnaissance of the United States Geological Survey (USGS, 1999–2000 as the most frequently detected organic wastewater contaminants in U.S. streams and rivers. Estimations of the surface water fate factors were based on Level II and Level III multimedia fugacity models for a 1000 km2 model environment, the size of a typical county in the eastern United States. The compounds are categorized into three groups based upon the sensitivity of their predicted surface water fate factors to uncertainties in their physicochemical property values and the landscape parameters. The environmental fate factors, mass distributions, and loss pathways of all of the compounds are strongly affected by their assumed modes of entry into the environment. It is observed that for thirteen of the thirty organic wastewater contaminants most commonly detected in surface waters, conventional treatment strategies may be ineffective for their removal from wastewater effluents. The surface water fate factors predicted by the fugacity models were used in conjunction with the surface water concentrations measured in the USGS reconnaissance to obtain emission flux estimates for the compounds into U.S. streams and rivers. These include estimated fluxes of 6.8 × 10−5 to 0.30 kg/h km2 for the biomarker coprostanol; 1.7 × 10−5 to 6.5 × 10−5 kg/h km2 for the insect repellent N,N-diethyltoluamide; and 4.3 × 10−6 to 3.1 × 10−5 kg/h km2 for

  12. Investigating undergraduate students' ideas about the fate of the Universe

    Science.gov (United States)

    Conlon, Mallory; Coble, Kim; Bailey, Janelle M.; Cominsky, Lynn R.

    2017-12-01

    As astronomers further develop an understanding of the fate of the Universe, it is essential to study students' ideas on the fate of the Universe so that instructors can communicate the field's current status more effectively. In this study, we examine undergraduate students' preinstruction ideas of the fate of the Universe in ten semester-long introductory astronomy course sections (ASTRO 101) at three institutions. We also examine students' postinstruction ideas about the fate of the Universe in ASTRO 101 over five semester-long course sections at one institution. The data include precourse surveys given during the first week of instruction (N =264 ), postinstruction exam questions (N =59 ), and interviews. We find that, preinstruction, more than a quarter of ASTRO 101 students either do not respond or respond with "I don't know" when asked what the long-term fate of the Universe is. We also find that, though the term was not necessarily used, students tend to describe a "big chill" scenario in the preinstruction surveys, among a wide variety of other scenarios. A fraction of students describe the fate of smaller-scale systems, possibly due to confusion of the hierarchical nature of structure in the Universe. Preinstruction, students mention the Universe's expansion when describing how astronomers know the fate of the Universe but do not discuss how we know the Universe is expanding or the relationship between expansion and the fate of the Universe. Postinstruction, students' responses shift toward greater degrees of completeness and correctness.

  13. Cell fate determination in the Caenorhabditis elegans epidermal lineages

    NARCIS (Netherlands)

    Soete, G.A.J.

    2007-01-01

    The starting point for this work was to use the hypodermal seam of C. elegans as a model system to study cell fate determination. Even though the seam is a relatively simple developmental system, the mechanisms that control cell fate determination in the seam lineages are connected in a highly

  14. Elucidation of Environmental Fate of Artificial Sweetener, Aspartame by Determining Bimolecular Rate Constants with Hydroxyl Radical at Various pH and Temperature Conditions and Reaction By-Products Presentation type:Poster Section:Ocean Sciences Session:General Contribution Authors:Takashi Teraji (1) Takemitsu Arakaki (2) AGU# 10173629 (1) Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru Nishihara-cho, Okinawa, 903-0123, Japan (a4269bj@yahoo.co.jp), (2) Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru Nishihara-cho, Okinawa, 903-0123, Japan (arakakit@sci.u-ryukyu.ac.jp)

    Science.gov (United States)

    Teraji, T.; Arakaki, T.

    2011-12-01

    Use of artificial sweeteners in drinks and food has been rapidly increasing because of their non-calorie nature. In Japan, aspartame, acesulfame K and sucralose are among the most widely used artificial sweeteners. Because the artificial sweeteners are not metabolized in human bodies, they are directly excreted into the environment without chemical transformations. We initiated a study to better understand the fate of artificial sweeteners in the marine environment. In particular, we focused on the fate of aspartame by determining its bimolecular rate constants with hydroxyl radicals at various pH and temperature conditions and reaction by-products. The hydroxyl radical (OH), the most potent reactive oxygen species, reacts with various compounds and determines the environmental oxidation capacity and the life-time of many compounds. The steady-state OH concentration and the reaction rate constants between the compound and OH are used to estimate the life-time of the compound. In this study, we determine the bimolecular rate constants between aspartame and OH at various pH and temperature conditions using a competition kinetics technique. We use hydrogen peroxide as a photochemical source of OH. Bimolecular rate constant we obtained so far was (2.6±1.2)×109 M-1 s-1 at pH = 3.0. Little effect was seen by changing the temperatures between 15 and 40 °C. Activation energy (Ea) was calculated to be -1.0 kJ mol-1 at pH = 3.0, which could be regarded as zero. We will report reaction rate constants at different pHs and reaction by-products which will be analyzed by GC-MS. We will further discuss the fate of aspartame in the coastal environment.

  15. Asymmetric cell division during T cell development controls downstream fate

    Science.gov (United States)

    Pham, Kim; Shimoni, Raz; Charnley, Mirren; Ludford-Menting, Mandy J.; Hawkins, Edwin D.; Ramsbottom, Kelly; Oliaro, Jane; Izon, David; Ting, Stephen B.; Reynolds, Joseph; Lythe, Grant; Molina-Paris, Carmen; Melichar, Heather; Robey, Ellen; Humbert, Patrick O.; Gu, Min

    2015-01-01

    During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal. PMID:26370500

  16. The fate and importance of radionuclides produced in nuclear events

    Energy Technology Data Exchange (ETDEWEB)

    Shore, B; Anspaugh, L; Chertok, R; Gofman, J; Harrison, F; Heft, R; Koranda, J; Ng, Y; Phelps, P; Potter, G; Tamplin, A [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1969-07-01

    Some of the major program at the Bio-Medical Division concerned with the fate and importance of the fission products, the radionuclides induced in the device materials, the radionuclides induced in the environment surrounding the device, and the tritium produced in Plowshare cratering events will be discussed. These programs include (1) critical unknowns in predicting organ and body burdens from radionuclides produced in cratering events; (2) the analysis with a high-resolution solid state gamma ray spectrometer of radionuclides in complex biological and environmental samples; (3) the characterization of radioactive particles from cratering detonation; (4) the biological availability to beagles, pigs and goats of radionuclides in Plowshare debris; (5) the biological availability to aquatic animals of radionuclides in Plowshare and other nuclear debris and the biological turnover of critical nuclides in specific aquatic animals; (6) the biological availability of Plowshare and other nuclear debris radionuclides to dairy cows and the transplacental transport of debris radionuclides in the dairy cow; (7) the persistence and behavior of radionuclides, particularly tritium, at sites of Plowshare and other nuclear detonations; and (8) somatic effects of Low Dose Radiation: Chromosome studies. (author)

  17. Selenium uptake, translocation, assimilation and metabolic fate in plants.

    Science.gov (United States)

    Sors, T G; Ellis, D R; Salt, D E

    2005-12-01

    The chemical and physical resemblance between selenium (Se) and sulfur (S) establishes that both these elements share common metabolic pathways in plants. The presence of isologous Se and S compounds indicates that these elements compete in biochemical processes that affect uptake, translocation and assimilation throughout plant development. Yet, minor but crucial differences in reactivity and other metabolic interactions infer that some biochemical processes involving Se may be excluded from those relating to S. This review examines the current understanding of physiological and biochemical relationships between S and Se metabolism by highlighting their similarities and differences in relation to uptake, transport and assimilation pathways as observed in Se hyperaccumulator and non-accumulator plant species. The exploitation of genetic resources used in bioengineering strategies of plants is illuminating the function of sulfate transporters and key enzymes of the S assimilatory pathway in relation to Se accumulation and final metabolic fate. These strategies are providing the basic framework by which to resolve questions relating to the essentiality of Se in plants and the mechanisms utilized by Se hyperaccumulators to circumvent toxicity. In addition, such approaches may assist in the future application of genetically engineered Se accumulating plants for environmental renewal and human health objectives.

  18. The fate and importance of radionuclides produced in nuclear events

    International Nuclear Information System (INIS)

    Shore, B.; Anspaugh, L.; Chertok, R.; Gofman, J.; Harrison, F.; Heft, R.; Koranda, J.; Ng, Y.; Phelps, P.; Potter, G.; Tamplin, A.

    1969-01-01

    Some of the major program at the Bio-Medical Division concerned with the fate and importance of the fission products, the radionuclides induced in the device materials, the radionuclides induced in the environment surrounding the device, and the tritium produced in Plowshare cratering events will be discussed. These programs include (1) critical unknowns in predicting organ and body burdens from radionuclides produced in cratering events; (2) the analysis with a high-resolution solid state gamma ray spectrometer of radionuclides in complex biological and environmental samples; (3) the characterization of radioactive particles from cratering detonation; (4) the biological availability to beagles, pigs and goats of radionuclides in Plowshare debris; (5) the biological availability to aquatic animals of radionuclides in Plowshare and other nuclear debris and the biological turnover of critical nuclides in specific aquatic animals; (6) the biological availability of Plowshare and other nuclear debris radionuclides to dairy cows and the transplacental transport of debris radionuclides in the dairy cow; (7) the persistence and behavior of radionuclides, particularly tritium, at sites of Plowshare and other nuclear detonations; and (8) somatic effects of Low Dose Radiation: Chromosome studies. (author)

  19. Fate of nanoparticles during life cycle of polymer nanocomposites

    International Nuclear Information System (INIS)

    Nguyen, T; Pellegrin, B; Bernard, C; Gu, X; Gorham, J M; Stutzman, P; Stanley, D; Shapiro, A; Byrd, E; Hettenhouser, R; Chin, J

    2011-01-01

    Nanoparticles are increasingly used in consumer and structural polymeric products to enhance a variety of properties. Under the influence of environmental factors (e.g., ultraviolet, moisture, temperature) and mechanical actions (e.g., scratching, vibrations, abrasion), nanoparticles could potentially release from the products and thus have negative effects on the environment, health and safety. The fate of nanoparticles in polymer nanocomposites during their exposure to UV environment has been investigated. Epoxy polymer containing multi-walled carbon nanotubes (MWCNTs) and silica nanoparticles were studied. Specially-designed cells containing nanocomposite specimens were irradiated with UV radiation between 295 nm and 400 nm. Chemical degradation, mass loss and surface morphology of the epoxy nanocomposites, and release of nanoparticles were measured. Epoxy containing MWCNTs exposed to UV radiation degraded at a much slower rate than the unfilled epoxy or the epoxy/nanosilica composite. Photodegradation of the matrix resulted in substantial accumulation of nanoparticles on the composite surfaces. Silica nanoparticles were found to release into the environment, but MWCNTs formed a dense network on the composite surface, with no evidence of release even after prolonged exposure. Conceptual models for silica nanoparticle release and MWCNT retention on the surface during UV exposure of nanocomposites are presented.

  20. Fate of dispersants associated with the deepwater horizon oil spill.

    Science.gov (United States)

    Kujawinski, Elizabeth B; Kido Soule, Melissa C; Valentine, David L; Boysen, Angela K; Longnecker, Krista; Redmond, Molly C

    2011-02-15

    Response actions to the Deepwater Horizon oil spill included the injection of ∼771,000 gallons (2,900,000 L) of chemical dispersant into the flow of oil near the seafloor. Prior to this incident, no deepwater applications of dispersant had been conducted, and thus no data exist on the environmental fate of dispersants in deepwater. We used ultrahigh resolution mass spectrometry and liquid chromatography with tandem mass spectrometry (LC/MS/MS) to identify and quantify one key ingredient of the dispersant, the anionic surfactant DOSS (dioctyl sodium sulfosuccinate), in the Gulf of Mexico deepwater during active flow and again after flow had ceased. Here we show that DOSS was sequestered in deepwater hydrocarbon plumes at 1000-1200 m water depth and did not intermingle with surface dispersant applications. Further, its concentration distribution was consistent with conservative transport and dilution at depth and it persisted up to 300 km from the well, 64 days after deepwater dispersant applications ceased. We conclude that DOSS was selectively associated with the oil and gas phases in the deepwater plume, yet underwent negligible, or slow, rates of biodegradation in the affected waters. These results provide important constraints on accurate modeling of the deepwater plume and critical geochemical contexts for future toxicological studies.

  1. An Comparative Study of Jane Eyre's Fate and Tess's Fate from Femi?nist Viewpoint

    Institute of Scientific and Technical Information of China (English)

    CHEN Jing; HE Ling-jing

    2017-01-01

    In"Jane Eyre", Charlotte Bronte's masterpiece the heroine, Jane Eyre has fully reflected her self-esteem, equality, and pure personality, which are also reflected in her concept of love vividly. However, Thomas Hardy's Tess is poor and kind, but she does not have a complete love like Jane Eyre, and she is described by his criticism of the old moral character with good vir-tues in the traditional sense. She is a new image of modern feminism who suffered from the old moral sense and gradually has re-volt consciousness. From the feminism viewpoint, this paper attempts to analysis the causes of their different fate from different points and reveal the impact of social background on their fates.

  2. C. Linnaeus' ideas concerning retribution and fate

    Directory of Open Access Journals (Sweden)

    K. Rob. V. Wikman

    1967-02-01

    Full Text Available Linnæus' Nemesis divina has been interpreted in different ways. Crucial is its central problem: the ideas of fate and retribution, but these are, in turn, dependent on Linnæus' conception of God and nature and not least on his opinions concerning the unity and coherence of the natural and ethical order of the world. From whatever sources Linnæus may have derived his religious ideas and whatever changes they may have undergone, his religious attitude in face of the works of nature remained unshaken. But Linnæus' religion, as we find it fragmentarily in these literary sources, was entirely undogmatic, untheological and, from a Christian point of view, even heterodox. Partly, this was in accord with his belief in the necessary immanent coherence in the processes of nature and the concomitant idea of the righteous divine order of the world.

  3. The fate of radioactivity in sewers

    International Nuclear Information System (INIS)

    2000-01-01

    The Environment Agencies authorise and monitor the disposal of low-level radioactive waste to sewers. Such discharges originate from non-nuclear sites such as hospitals, universities and research centres. Discharges are strictly controlled through authorisations, which place conditions and limits on the disposer. We commissioned the work summarised within this, leaflet to reassess the fate of these radioactive discharges and to ensure that this practice remains acceptable and is still the best option for disposal. In all cases the study found assessed radiation doses (associated with these discharges) to be a small fraction of the public dose limit. The Environment Agencies conclude from this study that the disposal of radioactive waste to sewers remains the best option available to ensure the safety of the public (including sewer workers) and to protect the environment

  4. The Fate of Job in Jewish Tradition

    DEFF Research Database (Denmark)

    Schleicher, Marianne

    2008-01-01

    to a few examples of the fate of Job in Jewish tradition and concerned with Scripture's role with respect to religious normativity, this article will be guided by the following question: How can The Book of Job maintain its role within Jewish tradition as a normative text? My reading suggests that The Book......Job's piety in The Book of Job is so ideal that it becomes problematic on two levels. First, it renders God a tyrant. Second, no one can fully identify with Job. Surely, we may suffer just as much as Job does and even feel that God is unjust, but no man can ever claim to be as pious as Job. Limited...... of Job in itself is not normative. Rather, it serves as a counterpoint up against which the reception and transformation of Jewish theology can unfold and as such The Book of Job exerts its function on Jewish religiosity....

  5. A D Sakharov: personality and fate

    International Nuclear Information System (INIS)

    Ritus, Vladimir I

    2012-01-01

    A D Sakharov was an amazingly gifted person for whom, with his combined talents as a physicist and inventor, ''physical laws and the relation among phenomena were directly visualized and tangible in all their inherent simplicity'' (I E Tamm). The author of the key ideas involved in the hydrogen weapons and fusion reactor programs, and well aware of his scientific and public status, Sakharov was, nevertheless, a modest and highly decent man, always trustful of people in discussing their or his problems. Although his greatest satisfaction lay in successfully solving fundamental problems in physics and cosmology, fate and duty made him turn to matters of universal human significance, particularly human rights, to the gruelling struggle to which he devoted many years of his life. (conferences and symposia)

  6. The Fate of Neutron Star Binary Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Piro, Anthony L. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Giacomazzo, Bruno [Physics Department, University of Trento, via Sommarive 14, I-38123 Trento (Italy); Perna, Rosalba, E-mail: piro@carnegiescience.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2017-08-01

    Following merger, a neutron star (NS) binary can produce roughly one of three different outcomes: (1) a stable NS, (2) a black hole (BH), or (3) a supramassive, rotationally supported NS, which then collapses to a BH following angular momentum losses. Which of these fates occur and in what proportion has important implications for the electromagnetic transient associated with the mergers and the expected gravitational wave (GW) signatures, which in turn depend on the high density equation of state (EOS). Here we combine relativistic calculations of NS masses using realistic EOSs with Monte Carlo population synthesis based on the mass distribution of NS binaries in our Galaxy to predict the distribution of fates expected. For many EOSs, a significant fraction of the remnants are NSs or supramassive NSs. This lends support to scenarios in which a quickly spinning, highly magnetized NS may be powering an electromagnetic transient. This also indicates that it will be important for future GW observatories to focus on high frequencies to study the post-merger GW emission. Even in cases where individual GW events are too low in signal to noise to study the post merger signature in detail, the statistics of how many mergers produce NSs versus BHs can be compared with our work to constrain the EOS. To match short gamma-ray-burst (SGRB) X-ray afterglow statistics, we find that the stiffest EOSs are ruled out. Furthermore, many popular EOSs require a significant fraction of ∼60%–70% of SGRBs to be from NS–BH mergers rather than just binary NSs.

  7. Modelling the fate of persistent organic pollutants in Europe: parameterisation of a gridded distribution model

    International Nuclear Information System (INIS)

    Prevedouros, Konstantinos; MacLeod, Matthew; Jones, Kevin C.; Sweetman, Andrew J.

    2004-01-01

    A regionally segmented multimedia fate model for the European continent is described together with an illustrative steady-state case study examining the fate of γ-HCH (lindane) based on 1998 emission data. The study builds on the regionally segmented BETR North America model structure and describes the regional segmentation and parameterisation for Europe. The European continent is described by a 5 deg. x 5 deg. grid, leading to 50 regions together with four perimetric boxes representing regions buffering the European environment. Each zone comprises seven compartments including; upper and lower atmosphere, soil, vegetation, fresh water and sediment and coastal water. Inter-regions flows of air and water are described, exploiting information originating from GIS databases and other georeferenced data. The model is primarily designed to describe the fate of Persistent Organic Pollutants (POPs) within the European environment by examining chemical partitioning and degradation in each region, and inter-region transport either under steady-state conditions or fully dynamically. A test case scenario is presented which examines the fate of estimated spatially resolved atmospheric emissions of lindane throughout Europe within the lower atmosphere and surface soil compartments. In accordance with the predominant wind direction in Europe, the model predicts high concentrations close to the major sources as well as towards Central and Northeast regions. Elevated soil concentrations in Scandinavian soils provide further evidence of the potential of increased scavenging by forests and subsequent accumulation by organic-rich terrestrial surfaces. Initial model predictions have revealed a factor of 5-10 underestimation of lindane concentrations in the atmosphere. This is explained by an underestimation of source strength and/or an underestimation of European background levels. The model presented can further be used to predict deposition fluxes and chemical inventories, and it

  8. Sympathetic Innervation Promotes Arterial Fate by Enhancing Endothelial ERK Activity.

    Science.gov (United States)

    Pardanaud, Luc; Pibouin-Fragner, Laurence; Dubrac, Alexandre; Mathivet, Thomas; English, Isabel; Brunet, Isabelle; Simons, Michael; Eichmann, Anne

    2016-08-19

    Arterial endothelial cells are morphologically, functionally, and molecularly distinct from those found in veins and lymphatic vessels. How arterial fate is acquired during development and maintained in adult vessels is incompletely understood. We set out to identify factors that promote arterial endothelial cell fate in vivo. We developed a functional assay, allowing us to monitor and manipulate arterial fate in vivo, using arteries isolated from quails that are grafted into the coelom of chick embryos. Endothelial cells migrate out from the grafted artery, and their colonization of host arteries and veins is quantified. Here we show that sympathetic innervation promotes arterial endothelial cell fate in vivo. Removal of sympathetic nerves decreases arterial fate and leads to colonization of veins, whereas exposure to sympathetic nerves or norepinephrine imposes arterial fate. Mechanistically, sympathetic nerves increase endothelial ERK (extracellular signal-regulated kinase) activity via adrenergic α1 and α2 receptors. These findings show that sympathetic innervation promotes arterial endothelial fate and may lead to novel approaches to improve arterialization in human disease. © 2016 American Heart Association, Inc.

  9. Avaliação de herbicidas aplicados em pós-emergência sobre e sob a palha em cana crua e o destino ambiental Evaluation of herbicides applied in post-emergence over and under straw in no-burn sugarcane and their environmental fate

    Directory of Open Access Journals (Sweden)

    L.L. Foloni

    2011-06-01

    eficientes no controle das principais plantas daninhas presentes. A aplicação desses herbicidas sobre ou sob a palhada da cana crua não mostrou diferença na eficiência de controle ou sobre os demais parâmetros avaliados. A aplicação do modelo de fugacidade objetivando avaliar o comportamento preferencial mostrou que todos os herbicidas tendem a ter maior distribuição no compartimento água.This study aimed to evaluate the efficiency of several herbicides, applied alone or mixed in post-emergence on ratoon sugarcane crop, mechanically harvested under a no-burn system, to assess differences in performance when applied over or under the straw. In addition, based on the concept of sustainability and environmental risk evaluation, mathematical models were used to evaluate the fate of these herbicides. The experiment was carried out in the municipality of Bariri-SP, in the Della Colletta Processing Plant section of Santo Antonio Farm's sugarcane (RB 72 754 cultivar cultivated areas. Ratoon sugarcane was planted with 1.40 m spacing on Red-Yellow Argisol soils with 5% declivity. The experiment was arranged in a randomized block design in 14 plots (trifloxulfurom-sodium+ametryn 720 and 960; mesotrione 192 and 292.6; mesotrione and ametryn 292.6+1500; mesotrione+trifloxysulfuron-sodium 182.8+720; metribuzin 2680; trifloxysulfuron-sodium+ametryn+hexazinone+diuron 720+900; amicarbazine 45; hexazinone+diuron 1320; trifloxysulfuron-sodium+sulfentrazone 720+700 (all of the above cited in grams of active ingredients; control; weeded control, and four replicates, for each type of application (over or under the straw, side by side. The following evaluations were carried out: phytotoxicity, height, stand, efficiency of control of Digitaria horizontalis, Cenchrus echinatus, Emilia fosbergii and Sida cordifolia, number of stalks and first stalk. A fugacity-level I mathematical model was used including the following compartments: air, water, soil, sediment, biota, strain, leaves and

  10. Improving substance information in usetox®, part 2: Data for estimating fate and ecosystem exposure factors

    DEFF Research Database (Denmark)

    Saouter, Erwan; Aschberger, Karin; Fantke, Peter

    2017-01-01

    substance properties, USEtox® quantifies potential human toxicity and freshwater ecotoxicity impacts by combining environmental fate, exposure and toxicity effects information, considering multimedia fate and multi-pathway exposure processes. The main source to obtain substance properties for USEtox® 1......The scientific consensus model USEtox® is developed since 2003 under the auspices of the UNEP-SETAC Life Cycle Initiative as a harmonized approach for characterizing human and freshwater toxicity in life cycle assessment (LCA) and other comparative assessment frameworks. Using physicochemical.......01 and 2.0 is the Estimation Program Interface (EPI SuiteTM ) from the U.S. Environmental Protection Agency. However, since the development of the original USEtox® substance databases, new chemical regulations have been enforced in Europe such as the REACH and the Plant Protection Products regulations...

  11. Fate of 7,12-dimethylbenz(a)anthracene in rainbow trout, Salmo gairdneri

    International Nuclear Information System (INIS)

    Schnitz, A.R.; Squibb, K.S.; O'Connor, J.M.

    1987-01-01

    Polycyclic aromatic hydrocarbons (PAH) are contaminants of surface waters and sediments, especially near urban centers. Although aquatic biota accumulate PAHs from environmental sources, metabolism may be rapid, and biota sampled from contaminated areas often have concentrations lower than might be estimated from bioconcentration factors. In some cases PAH metabolism by aquatic biota may create reactive intermediates, some of which have been related to chronic effects in fishes. This report describes the fate and distribution of 7,12-dimethylbenz(a)anthracene (DMBA) after oral administration to rainbows trout (Salmo gairdneri). Emphasis has been placed on the disposition of DMBA among tissues and on DMBA transformation in the hepatobiliary system

  12. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects—An updated review

    Science.gov (United States)

    Lead, Jamie R.; Batley, Graeme E.; Alvarez, Pedro J.J.; Croteau, Marie-Noele; Handy, Richard D.; McLaughlin, Michael J.; Judy, Jonathon D.; Schirmer, Kristin

    2018-01-01

    This review covers developments in studies of nanomaterials (NMs) in the environment, since the much‐cited review of Klaine et al. (2008). It discusses novel insights on fate and behavior, metrology, transformations, bioavailability, toxicity mechanisms and environmental impacts, with a focus on terrestrial and aquatic systems. Overall the findings were that: i) despite the substantial developments, there remain critical gaps, in large part due to the lack of analytical, modelling and field capabilities and in part due to the breadth and complexity of the area; ii) a key knowledge gap is the lack of data on environmental concentrations and dosimetry generally; iii) there is substantial evidence that there are nano‐specific effects (different from both ions and larger particles) in the environment in terms of fate, bioavailability and toxicity, but this is not consistent for all NMs, species and all relevant processes; iv) a paradigm is emerging that NMs are less toxic than equivalent dissolved materials but more toxic than the corresponding bulk materials; v) translation of incompletely understood science into regulation and policy continues to be challenging. There is a developing consensus that NMs may pose a relatively low environmental risk, however, with the uncertainty and lack of data in many areas, definitive conclusions cannot be drawn. In addition, this emerging consensus will likely change rapidly with qualitative changes in the technology and increased future discharges. 

  13. Applications of contaminant fate and bioaccumulation models in assessing ecological risks of chemicals: A case study for gasoline hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, Matthew; McKone, Thomas E.; Foster, Karen L.; Maddalena, Randy L.; Parkerton, Thomas F.; Mackay, Don

    2004-02-01

    Mass balance models of chemical fate and transport can be applied in ecological risk assessments for quantitative estimation of concentrations in air, water, soil and sediment. These concentrations can, in turn, be used to estimate organism exposures and ultimately internal tissue concentrations that can be compared to mode-of-action-based critical body residues that correspond to toxic effects. From this comparison, risks to the exposed organism can be evaluated. To illustrate the practical utility of fate models in ecological risk assessments of commercial products, the EQC model and a simple screening level biouptake model including three organisms, (a bird, a mammal and a fish) is applied to gasoline. In this analysis, gasoline is divided into 24 components or ''blocks'' with similar environmental fate properties that are assumed to elicit ecotoxicity via a narcotic mode of action. Results demonstrate that differences in chemical properties and mode of entry into the environment lead to profound differences in the efficiency of transport from emission to target biota. We discuss the implications of these results and insights gained into the regional fate and ecological risks associated with gasoline. This approach is particularly suitable for assessing mixtures of components that have similar modes of action. We conclude that the model-based methodologies presented are widely applicable for screening level ecological risk assessments that support effective chemicals management.

  14. Fate of pesticides in field ditches: the TOXSWA simulation model

    NARCIS (Netherlands)

    Adriaanse, P.I.

    1996-01-01

    The TOXSWA model describes the fate of pesticides entering field ditches by spray drift, atmospheric deposition, surface run-off, drainage or leaching. It considers four processes: transport, transformation, sorption and volatilization. Analytical andnumerical solutions corresponded well. A sample

  15. Evaluating the fate of organic compounds in the Cameroon ...

    African Journals Online (AJOL)

    ISHIOMA

    A level III fugacity model was developed to evaluate the fate of chemicals in the Cameroon ... environment, quantify intermedia transfer processes and the major loss ... perform baseline exposure and risk assessment of chemicals used in ...

  16. The effect of the indoor environment on the fate of organic chemicals in the urban landscape

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, Anna Palm, E-mail: anna.cousins@ivl.se

    2012-11-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical-chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK{sub OA} and the impact of the ventilation rate on the urban fate of organic chemicals. -- Highlights: Black-Right-Pointing-Pointer A novel indoor-inclusive multimedia urban fate model is developed and applied. Black-Right-Pointing-Pointer Emissions indoors may increase the urban chemical residence time. Black

  17. The effect of the indoor environment on the fate of organic chemicals in the urban landscape

    International Nuclear Information System (INIS)

    Cousins, Anna Palm

    2012-01-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical–chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK OA and the impact of the ventilation rate on the urban fate of organic chemicals. -- Highlights: ► A novel indoor-inclusive multimedia urban fate model is developed and applied. ► Emissions indoors may increase the urban chemical residence time. ► Indoor removal from surfaces constitutes an additional loss process

  18. Investigating undergraduate students’ ideas about the fate of the Universe

    Directory of Open Access Journals (Sweden)

    Mallory Conlon

    2017-11-01

    Full Text Available As astronomers further develop an understanding of the fate of the Universe, it is essential to study students’ ideas on the fate of the Universe so that instructors can communicate the field’s current status more effectively. In this study, we examine undergraduate students’ preinstruction ideas of the fate of the Universe in ten semester-long introductory astronomy course sections (ASTRO 101 at three institutions. We also examine students’ postinstruction ideas about the fate of the Universe in ASTRO 101 over five semester-long course sections at one institution. The data include precourse surveys given during the first week of instruction (N=264, postinstruction exam questions (N=59, and interviews. We find that, preinstruction, more than a quarter of ASTRO 101 students either do not respond or respond with “I don’t know” when asked what the long-term fate of the Universe is. We also find that, though the term was not necessarily used, students tend to describe a “big chill” scenario in the preinstruction surveys, among a wide variety of other scenarios. A fraction of students describe the fate of smaller-scale systems, possibly due to confusion of the hierarchical nature of structure in the Universe. Preinstruction, students mention the Universe’s expansion when describing how astronomers know the fate of the Universe but do not discuss how we know the Universe is expanding or the relationship between expansion and the fate of the Universe. Postinstruction, students’ responses shift toward greater degrees of completeness and correctness.

  19. The effect of the indoor environment on the fate of organic chemicals in the urban landscape.

    Science.gov (United States)

    Cousins, Anna Palm

    2012-11-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical-chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK(OA) and the impact of the ventilation rate on the urban fate of organic chemicals. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Data for developing metamodels to assess the fate, transport, and bioaccumulation of organic chemicals in rivers. Chemicals have log Kow ranging from 3 to 14, and rivers have mean annual discharges ranging from 1.09 to 3240 m3/s.

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset was developed to demonstrate how metamodels of high resolution, process-based models that simulate the fate, transport, and bioaccumulation of organic...

  1. An illusion of control modulates the reluctance to tempt fate

    Directory of Open Access Journals (Sweden)

    Chloe L. Swirsky

    2011-10-01

    Full Text Available The tempting fate effect is that the probability of a fateful outcome is deemed higher following an action that ``tempts'' the outcome than in the absence of such an action. In this paper we evaluate the hypothesis that the effect is due to an illusion of control induced by a causal framing of the situation. Causal frames require that the action make a difference to an outcome and that the action precedes the outcome. If an illusion of control modulates the reluctance to tempt fate, then actions that make a difference to well-being and that occur prior to the outcome should tempt fate most strongly. In Experiments 1--3 we varied whether the action makes a difference and the temporal order of action and outcome. In Experiment 4 we tested whether an action can tempt fate if all outcomes are negative. The results of all four experiments supported our hypothesis that the tempting fate effect depends on a causal construal that gives rise to a false sense of control.

  2. Hematopoietic stem cell fate through metabolic control.

    Science.gov (United States)

    Ito, Kyoko; Ito, Keisuke

    2018-05-25

    Hematopoietic stem cells (HSCs) maintain a quiescent state in the bone marrow to preserve their self-renewal capacity, but also undergo cell divisions as required. Organelles such as the mitochondria sustain cumulative damage during these cell divisions, and this damage may eventually compromise the cells' self-renewal capacity. HSC divisions result in either self-renewal or differentiation, with the balance between the two directly impacting hematopoietic homeostasis; but the heterogeneity of available HSC-enriched fractions, together with the technical challenges of observing HSC behavior, has long hindered the analysis of individual HSCs, and prevented the elucidation of this process. However, recent advances in genetic models, metabolomics analyses and single-cell approaches have revealed the contributions made to HSC self-renewal by metabolic cues, mitochondrial biogenesis, and autophagy/mitophagy, which have highlighted mitochondrial quality as a key control factor in the equilibrium of HSCs. A deeper understanding of precisely how specific modes of metabolism control HSC fate at the single cell level is therefore not only of great biological interest, but will have clear clinical implications for the development of therapies for hematological disease. Copyright © 2018. Published by Elsevier Inc.

  3. Metabolic fate of cinmethylin in goat

    International Nuclear Information System (INIS)

    Woodward, M.D.; Stearns, S.M.; Lee, P.W.

    1989-01-01

    The metabolic fate of [phenyl- 14 C]cinmethylin (1), a novel cineole herbicide, in a lactating goat was examined. The test animal was administered four consecutive daily doses equivalent to approximately 100 ppm cinmethylin in the daily diet. The animal was sacrificed 6 h after the last dosing. A rapid and extensive metabolism of cinmethylin was observed. The major route of elimination was via urine: 40% of the administered dose and feces (20%). [ 14 C]Carbon dioxide or radioactive material in the respired air and residual radioactivity in the digestive tract were not monitored. A complex degradation pattern in the excreta and liver tissue was observed. In addition to the undegraded cinmethylin, recovered only in the feces, at least 25 metabolites were isolated and identified as both organic-extractable and conjugated products. They were classified as mono-, di-, trihydroxylated, dehydrated, carboxylated, methoxylated, and ether linkage cleavage products. The level of 14 C residues in the milk and tissues was low and combined to account for less than 1% of the administered radioactivity

  4. Observations on the Chinese idea of fate

    Directory of Open Access Journals (Sweden)

    Gunnar Sjöholm

    1967-02-01

    Full Text Available Throughout the history of Chinese religion, ideas of fate are present. The earliest forms of Chinese writing occur on thousands of tortoise shells found 65 years ago in the province of Honan. At that time inscriptions on bronze vessels from the first millennium B.C. were already known. But the new material was more difficult to interpret. The amount of material has grown since then: there are now about 100 000 inscribed shells and bones, some hundreds of whole tortoise shields with inscriptions as well as other archaeological material. One third of the signs has been deciphered. The inscriptions are mostly quite brief and contain oracle formulas. The people of the Shang-Yin dynasty (1500-1028 B.C. knew the useful and the beautiful. What did the oracle stand for? Did it represent something necessary? An oracular technique had been developed, "which consisted in touching shells or bones on one side with a little red-hot rod and interpreting according to certain patterns the cracks that arose on the other side as the answers of the ancestral spirits to the questions of the kings. After the consultation of the oracle the questions and often the answers were inscribed beside the cracks. Often also pure memoranda concerning weather, war expeditions etc. were inscribed.

  5. The fate of the earth. 5. ed.

    International Nuclear Information System (INIS)

    Schell, J.

    1982-01-01

    As a result of thorough investigations and based upon the latest findings of scientific research work, this book ''Fate of the Earth'' quite drastically illustrates the manifold and horrible ways mankind and numberless other creatures will have to suffer before perishing in the wake of the pollution of nature and atmosphere for an unforeseeable time, should it happen one day that even only part of the existing nuclear weapons potential of 20.000 megatons of TNT be used at any spot of this world. In view of this global threat, every one of us has to do his bit in trying to safeguard the future of our world. The author discusses all important scientific, political and moral perspectives to be taken into account not only by the superpowers but literally by all states and all people in the face of a possible nuclear holocaust. Presenting his doubts whether the concept of deterrence will in future suffice to prevent a third world war, he implores us, the inhabitants of this planet, to wake up and act before it will be too late. (orig./HSCH) [de

  6. Redox regulation of plant stem cell fate.

    Science.gov (United States)

    Zeng, Jian; Dong, Zhicheng; Wu, Haijun; Tian, Zhaoxia; Zhao, Zhong

    2017-10-02

    Despite the importance of stem cells in plant and animal development, the common mechanisms of stem cell maintenance in both systems have remained elusive. Recently, the importance of hydrogen peroxide (H 2 O 2 ) signaling in priming stem cell differentiation has been extensively studied in animals. Here, we show that different forms of reactive oxygen species (ROS) have antagonistic roles in plant stem cell regulation, which were established by distinct spatiotemporal patterns of ROS-metabolizing enzymes. The superoxide anion (O2·-) is markedly enriched in stem cells to activate WUSCHEL and maintain stemness, whereas H 2 O 2 is more abundant in the differentiating peripheral zone to promote stem cell differentiation. Moreover, H 2 O 2 negatively regulates O2·- biosynthesis in stem cells, and increasing H 2 O 2 levels or scavenging O2·- leads to the termination of stem cells. Our results provide a mechanistic framework for ROS-mediated control of plant stem cell fate and demonstrate that the balance between O2·- and H 2 O 2 is key to stem cell maintenance and differentiation. © 2017 The Authors.

  7. Using gridded multimedia model to simulate spatial fate of Benzo[α]pyrene on regional scale.

    Science.gov (United States)

    Liu, Shijie; Lu, Yonglong; Wang, Tieyu; Xie, Shuangwei; Jones, Kevin C; Sweetman, Andrew J

    2014-02-01

    Predicting the environmental multimedia fate is an essential step in the process of assessing the human exposure and health impacts of chemicals released into the environment. Multimedia fate models have been widely applied to calculate the fate and distribution of chemicals in the environment, which can serve as input to a human exposure model. In this study, a grid based multimedia fugacity model at regional scale was developed together with a case study modeling the fate and transfer of Benzo[α]pyrene (BaP) in Bohai coastal region, China. Based on the estimated emission and in-site survey in 2008, the BaP concentrations in air, vegetation, soil, fresh water, fresh water sediment and coastal water as well as the transfer fluxes were derived under the steady-state assumption. The model results were validated through comparison between the measured and modeled concentrations of BaP. The model results indicated that the predicted concentrations of BaP in air, fresh water, soil and sediment generally agreed with field observations. Model predictions suggest that soil was the dominant sink of BaP in terrestrial systems. Flow from air to soil, vegetation and costal water were three major pathways of BaP inter-media transport processes. Most of the BaP entering the sea was transferred by air flow, which was also the crucial driving force in the spatial distribution processes of BaP. The Yellow River, Liaohe River and Daliao River played an important role in the spatial transformation processes of BaP. Compared with advection outflow, degradation was more important in removal processes of BaP. Sensitivities of the model estimates to input parameters were tested. The result showed that emission rates, compartment dimensions, transport velocity and degradation rates of BaP were the most influential parameters for the model output. Monte Carlo simulation was carried out to determine parameter uncertainty, from which the coefficients of variation for the estimated Ba

  8. Effects of fertilizers, fungicides and herbicides on the fate of 14C-parathion and 14C-fonofos in soils and crops

    International Nuclear Information System (INIS)

    Lichtenstein, E.P.; Ferris, I.; Liang, T.T.; Koeppe, M.

    1983-01-01

    The fate of 14 C-parathion and 14 C-fonofos in soil is significantly affected by the presence of organic and inorganic fertilizers, fungicides and herbicides, possibly via the effect of soil microflora. Soil microorganisms are responsible for the oxidative as well as the reductive degradation of the insecticide. Using 14 carbon, the authors studied the effects of selected fungicides (benlate, captafol and manzate) herbicides (2,4-D parathion) and fertilizers ((NH 4 ) 6 SO 4 , KNO 3 , urea) on pesticides in Cromberry soils. Results of the study stress the importance of investigating the environmental fate of a particular pesticide in relation to the presence of the agricultural chemicals

  9. Prediction of the Fate of Organic Compounds in the Environment From Their Molecular Properties: A Review.

    Science.gov (United States)

    Mamy, Laure; Patureau, Dominique; Barriuso, Enrique; Bedos, Carole; Bessac, Fabienne; Louchart, Xavier; Martin-Laurent, Fabrice; Miege, Cecile; Benoit, Pierre

    2015-06-18

    A comprehensive review of quantitative structure-activity relationships (QSAR) allowing the prediction of the fate of organic compounds in the environment from their molecular properties was done. The considered processes were water dissolution, dissociation, volatilization, retention on soils and sediments (mainly adsorption and desorption), degradation (biotic and abiotic), and absorption by plants. A total of 790 equations involving 686 structural molecular descriptors are reported to estimate 90 environmental parameters related to these processes. A significant number of equations was found for dissociation process (pK a ), water dissolution or hydrophobic behavior (especially through the K OW parameter), adsorption to soils and biodegradation. A lack of QSAR was observed to estimate desorption or potential of transfer to water. Among the 686 molecular descriptors, five were found to be dominant in the 790 collected equations and the most generic ones: four quantum-chemical descriptors, the energy of the highest occupied molecular orbital (E HOMO ) and the energy of the lowest unoccupied molecular orbital (E LUMO ), polarizability (α) and dipole moment (μ), and one constitutional descriptor, the molecular weight. Keeping in mind that the combination of descriptors belonging to different categories (constitutional, topological, quantum-chemical) led to improve QSAR performances, these descriptors should be considered for the development of new QSAR, for further predictions of environmental parameters. This review also allows finding of the relevant QSAR equations to predict the fate of a wide diversity of compounds in the environment.

  10. Polyfluoroalkyl compounds in the aquatic environment: a review of their occurrence and fate.

    Science.gov (United States)

    Ahrens, Lutz

    2011-01-01

    The occurrence and fate of polyfluoroalkyl compounds (PFCs) in the aquatic environment has been recognized as one of the emerging issues in environmental chemistry. PFCs comprise a diverse group of chemicals that are widely used as processing additives during fluoropolymer production and as surfactants in consumer applications for over 50 years. PFCs are known to be persistent, bioaccumulative and have possible adverse effects on humans and wildlife. As a result, perfluorooctane sulfonate (PFOS) has been added to the persistent organic pollutants (POPs) list of the Stockholm Convention in May 2009. However, their homologues, neutral precursor compounds and new PFCs classes continue to be produced. In general, several PFCs from different classes have been detected ubiquitously in the aqueous environment while the concentrations usually range between pg and ng per litre for individual compounds. Sources of PFCs into the aqueous environment are both point sources (e.g., wastewater treatment plant effluents) and nonpoint sources (e.g., surface runoff). The detected congener composition in environmental samples depends on their physicochemical characteristics and may provide information to their sources and transport pathways. However, the dominant transport pathways of individual PFCs to remote regions have not been conclusively characterised to date. The objective of this article is to give an overview on existing knowledge of the occurrence, fate and processes of PFCs in the aquatic environment. Finally, this article identifies knowledge gaps, presents conclusions and recommendations for future work.

  11. Fate, behaviour and weathering of priority HNS in the marine environment: An online tool

    International Nuclear Information System (INIS)

    Cunha, Isabel; Oliveira, Helena; Neuparth, Teresa; Torres, Tiago; Santos, Miguel Machado

    2016-01-01

    Literature data and data obtained with modelling tools were compiled to derive the physicochemical behaviour of 24 priority Hazardous and Noxious Substances (HNS), as a proxy to improve environmental, public health and political issues in relation to HNS spills. Parameters that rule the HNS behaviour in water and those that determine their distribution and persistence in the environment, such as fugacity, physicochemical degradation, biodegradation, bioaccumulation/biotransformation and aquatic toxicity, were selected. Data systematized and produced in the frame of the Arcopol Platform project was made available through a public database ( (http://www.ciimar.up.pt/hns/substances.php)). This tool is expected to assist stakeholders involved in HNS spills preparedness and response, policy makers and legislators, as well as to contribute to a current picture of the scientific knowledge on the fate, behaviour, weathering and toxicity of priority HNS, being essential to support future improvements in maritime safety and coastal pollution response before, during and after spill incidents. - Highlights: • Fate, behaviour and weathering of priority HNS in marine environments are addressed. • Environmental and public health issues in relation to HNS spills are discussed. • Physicochemical behaviour is derived through mathematical tools and literature data. • Data produced are made available through a public online database. • Database can assist relevant bodies involved in HNS spills preparedness and response.

  12. Ecological fate and effects of solvent-refined-coal (SRC) materials: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Strand, J.A. III; Vaughan, B.E. (eds.)

    1981-10-01

    Non-occupational health effects associated with SRC operation will be determined by environmental factors governing the form, transport, and persistence of SRC materials and wastes - factors which also mediate exposure to man. Accordingly, the research described is an attempt to determine the fate of disposed solid wastes and spilled SRC materials, and it necessarily focuses on water soluble, persistent materials with greatest potential for mobility and incorporation into water and food supplies. Initially, aqueous equilibrations of SRC-II liquid material and SRC-I nongasified mineral residue were subjected to chemical characterization. Subsequently, laboratory studies were performed on the interaction of aqueous equilibrates of SRC-II liquid and SRC-I non-gasified mineral residue with soil materials isolated suspended sediments, and bottom sediments. These studies were designed to identify effects of specific sorption reactions ion or induced-ion exchange reactions, and toxicity of water soluble, biologically active materials derived from liquid and solid wastes. Results of these experiments have applicability to the environmental fate and effects of biologically active compounds released under different scenarios from product spills and solid waste disposal.

  13. Individual fates of mesenchymal stem cells in vitro

    Directory of Open Access Journals (Sweden)

    Drasdo Dirk

    2010-05-01

    Full Text Available Abstract Background In vitro cultivated stem cell populations are in general heterogeneous with respect to their expression of differentiation markers. In hematopoietic progenitor populations, this heterogeneity has been shown to regenerate within days from isolated subpopulations defined by high or low marker expression. This kind of plasticity has been suggested to be a fundamental feature of mesenchymal stem cells (MSCs as well. Here, we study MSC plasticity on the level of individual cells applying a multi-scale computer model that is based on the concept of noise-driven stem cell differentiation. Results By simulation studies, we provide detailed insight into the kinetics of MSC organisation. Monitoring the fates of individual cells in high and low oxygen culture, we calculated the average transition times of individual cells into stem cell and differentiated states. We predict that at low oxygen the heterogeneity of a MSC population with respect to differentiation regenerates from any selected subpopulation in about two days. At high oxygen, regeneration becomes substantially slowed down. Simulation results on the composition of the functional stem cell pool of MSC populations suggest that most of the cells that constitute this pool originate from more differentiated cells. Conclusions Individual cell-based models are well-suited to provide quantitative predictions on essential features of the spatio-temporal organisation of MSC in vitro. Our predictions on MSC plasticity and its dependence on the environment motivate a number of in vitro experiments for validation. They may contribute to a better understanding of MSC organisation in vitro, including features of clonal expansion, environmental adaptation and stem cell ageing.

  14. Fate of the antiretroviral drug tenofovir in agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Chapman, Ralph; Lapen, David R.; Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON, N5V 4T3 (Canada)

    2010-10-15

    Tenofovir (9-(R)-(2-phosphonylmethoxypropyl)-adenine) is an antiretroviral drug widely used for the treatment of human immunodeficiency virus (HIV-1) and Hepatitis B virus (HBV) infections. Tenofovir is extensively and rapidly excreted unchanged in the urine. In the expectation that tenofovir could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in selected agricultural soils. Less than 10% of [adenine-8-{sup 14}C]-tenofovir added to soils varying widely in texture (sand, loam, clay loam) was mineralized in a 2-month incubation under laboratory conditions. Tenofovir was less readily extractable from clay soils than from a loam or a sandy loam soil. Radioactive residues of tenofovir were removed from the soil extractable fraction with DT{sub 50}s ranging from 24 {+-} 2 to 67 + 22 days (first order kinetic model) or 44 + 9 to 127 + 55 days (zero order model). No extractable transformation products were detectable by HPLC. Tenofovir mineralization in the loam soil increased with temperature (range 4 {sup o}C to 30 {sup o}C), and did not occur in autoclaved soil, suggesting a microbial basis. Mineralization rates increased with soil moisture content, ranging from air-dried to saturated. In summary, tenofovir was relatively persistent in soils, there were no extractable transformation products detected, and the response of [adenine-8-{sup 14}C]-tenofovir mineralization to soil temperature and heat sterilization indicated that the molecule was biodegraded by aerobic microorganisms. Sorption isotherms with dewatered biosolids suggested that tenofovir residues could potentially partition into the particulate fraction during sewage treatment.

  15. Task 23 - background report on subsurface environmental issues relating to natural gas sweetening and dehydration operations. Topical report, February 1, 1994--February 28, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, J.A.

    1998-12-31

    This report describes information pertaining to environmental issues, toxicity, environmental transport, and fate of alkanolamines and glycols associated with natural gas sweetening and dehydration operations. Waste management associated with the operations is also discussed.

  16. The Fate of Exomoons when Planets Scatter

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    Four examples of close-encounter outcomes: a) the moon stays in orbit around its host, b) the moon is captured into orbit around its perturber, c) and d) the moon is ejected from the system from two different starting configurations. [Adapted from Hong et al. 2018]Planet interactions are thought to be common as solar systems are first forming and settling down. A new study suggests that these close encounters could have a significant impact on the moons of giant exoplanets and they may generate a large population of free-floating exomoons.Chaos in the SystemIn the planetplanet scattering model of solar-system formation, planets are thought to initially form in closely packed systems. Over time, planets in a system perturb each other, eventually entering an instability phase during which their orbits cross and the planets experience close encounters.During this scattering process, any exomoons that are orbiting giant planets can be knocked into unstable orbits directly by close encounters with perturbing planets. Exomoons can also be disturbed if their host planets properties or orbits change as a consequence of scattering.Led by Yu-Cian Hong (Cornell University), a team of scientists has now explored the fate of exomoons in planetplanet scattering situations using a suite of N-body numerical simulations.Chances for SurvivalHong and collaborators find that the vast majority roughly 80 to 90% of exomoons around giant planets are destabilized during scattering and dont survive in their original place in the solar system. Fates of these destabilized exomoons include:moon collision with the star or a planet,moon capture by the perturbing planet,moon ejection from the solar system,ejection of the entire planetmoon system from the solar system, andmoon perturbation onto a new heliocentric orbit as a planet.Unsurprisingly, exomoons that have close-in orbits and those that orbit larger planets are the most likely to survive close encounters; as an example, exomoons on

  17. The Fate of Unstable Circumbinary Planets

    Science.gov (United States)

    Kohler, Susanna

    2016-03-01

    What happens to Tattooine-like planets that are instead in unstable orbits around their binary star system? A new study examines whether such planets will crash into a host star, get ejected from the system, or become captured into orbit around one of their hosts.Orbit Around a DuoAt this point we have unambiguously detected multiple circumbinary planets, raising questions about these planets formation and evolution. Current models suggest that it is unlikely that circumbinary planets would be able to form in the perturbed environment close their host stars. Instead, its thought that the planets formed at a distance and then migrated inwards.One danger such planets face when migrating is encountering ranges of radii where their orbits become unstable. Two scientists at the University of Chicago, Adam Sutherland and Daniel Fabrycky, have studied what happens when circumbinary planets migrate into such a region and develop unstable orbits.Producing Rogue PlanetsTime for planets to either be ejected or collide with one of the two stars, as a function of the planets starting distance (in AU) from the binary barycenter. Colors represent different planetary eccentricities. [Sutherland Fabrycky 2016]Sutherland and Fabrycky used N-body simulations to determine the fates of planets orbiting around a star system consisting of two stars a primary like our Sun and a secondary roughly a tenth of its size that are separated by 1 AU.The authors find that the most common fate for a circumbinary planet with an unstable orbit is ejection from the system; over 80% of unstable planets were ejected. This has interesting implications: if the formation of circumbinary planets is common, this mechanism could be filling the Milky Way with a population of free-floating, rogue planets that no longer are associated with their host star.The next most common outcome for unstable planets is collision with one of their host stars (most often the secondary), resulting inaccretion of the planet

  18. Estuarine Human Activities Modulate the Fate of Changjiang-derived Materials in Adjacent Seas

    Science.gov (United States)

    WU, H.

    2017-12-01

    Mega constructions have been built in many river estuaries, but their environmental consequences in the adjacent coastal oceans were often overlooked. This issue was addressed with an example of the Changjiang River Estuary, which was recently built with massive navigation and reclamation constructions in recent years. Based on the model validations against cruises data and the numerical scenario experiments, it is shown that the estuarine constructions profoundly affected the fates of riverine materials in an indeed large offshore area. This is because estuarine dynamics are highly sensitive to their bathymetries. Previously, the Three Gorges Dam (TGD) was thought to be responsible for some offshore environmental changes through modulating the river plume extension, but here we show that its influences are secondary. Since the TGD and the mega estuarine constructions were built during the similar period, their influences might be confused.

  19. National, holistic, watershed-scale approach to understand the sources, transport, and fate of agricultural chemicals

    Science.gov (United States)

    Capel, P.D.; McCarthy, K.A.; Barbash, J.E.

    2008-01-01

    This paper is an introduction to the following series of papers that report on in-depth investigations that have been conducted at five agricultural study areas across the United States in order to gain insights into how environmental processes and agricultural practices interact to determine the transport and fate of agricultural chemicals in the environment. These are the first study areas in an ongoing national study. The study areas were selected, based on the combination of cropping patterns and hydrologic setting, as representative of nationally important agricultural settings to form a basis for extrapolation to unstudied areas. The holistic, watershed-scale study design that involves multiple environmental compartments and that employs both field observations and simulation modeling is presented. This paper introduces the overall study design and presents an overview of the hydrology of the five study areas. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  20. Implementation of the Leaching Environmental Assessment Framework

    Science.gov (United States)

    New leaching tests are available in the U.S. for developing more accurate source terms for use in fate and transport models. For beneficial use or disposal, the use of the leaching environmental assessment framework (LEAF) will provide leaching results that reflect field condit...

  1. The sources, fate, and toxicity of chemical warfare agent degradation products.

    Science.gov (United States)

    Munro, N B; Talmage, S S; Griffin, G D; Waters, L C; Watson, A P; King, J F; Hauschild, V

    1999-01-01

    We include in this review an assessment of the formation, environmental fate, and mammalian and ecotoxicity of CW agent degradation products relevant to environmental and occupational health. These parent CW agents include several vesicants: sulfur mustards [undistilled sulfur mustard (H), sulfur mustard (HD), and an HD/agent T mixture (HT)]; nitrogen mustards [ethylbis(2-chloroethyl)amine (HN1), methylbis(2-chloroethyl)amine (HN2), tris(2-chloroethyl)amine (HN3)], and Lewisite; four nerve agents (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), tabun (GA), sarin (GB), and soman (GD)); and the blood agent cyanogen chloride. The degradation processes considered here include hydrolysis, microbial degradation, oxidation, and photolysis. We also briefly address decontamination but not combustion processes. Because CW agents are generally not considered very persistent, certain degradation products of significant persistence, even those that are not particularly toxic, may indicate previous CW agent presence or that degradation has occurred. Of those products for which there are data on both environmental fate and toxicity, only a few are both environmentally persistent and highly toxic. Major degradation products estimated to be of significant persistence (weeks to years) include thiodiglycol for HD; Lewisite oxide for Lewisite; and ethyl methyl phosphonic acid, methyl phosphonic acid, and possibly S-(2-diisopropylaminoethyl) methylphosphonothioic acid (EA 2192) for VX. Methyl phosphonic acid is also the ultimate hydrolysis product of both GB and GD. The GB product, isopropyl methylphosphonic acid, and a closely related contaminant of GB, diisopropyl methylphosphonate, are also persistent. Of all of these compounds, only Lewisite oxide and EA 2192 possess high mammalian toxicity. Unlike other CW agents, sulfur mustard agents (e.g., HD) are somewhat persistent; therefore, sites or conditions involving potential HD contamination should include an

  2. Evaluate and characterize mechanisms controlling transport, fate, and effects of army smokes in the aerosol wind tunnel: Transport, transformations, fate, and terrestrial ecological effects of hexachloroethane obscurant smokes

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Ligotke, M.W.; Bolton, H. Jr.; Fellows, R.J.; Van Voris, P.; McVeety, B.D.; Li, Shu-mei W.; McFadden, K.M.

    1989-09-01

    The terrestrial transport, chemical fate, and ecological effects of hexachloroethane (HC) smoke were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on exposure scenarios, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of HC smoke/obscurants is establishing the importance of environmental parameters such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and two soil types. HC aerosols were generated in a controlled atmosphere wind tunnel by combustion of hexachloroethane mixtures prepared to simulate normal pot burn rates and conditions. The aerosol was characterized and used to expose plant, soil, and other test systems. Particle sizes of airborne HC ranged from 1.3 to 2.1 {mu}m mass median aerodynamic diameter (MMAD), and particle size was affected by relative humidity over a range of 20% to 85%. Air concentrations employed ranged from 130 to 680 mg/m{sup 3}, depending on exposure scenario. Chlorocarbon concentrations within smokes, deposition rates for plant and soil surfaces, and persistence were determined. The fate of principal inorganic species (Zn, Al, and Cl) in a range of soils was assessed.

  3. Fate of diuron and linuron in a field lysimeter experiment.

    Science.gov (United States)

    Guzzella, L; Capri, E; Di Corcia, A; Barra Caracciolo, A; Giuliano, G

    2006-01-01

    The environmental fate of herbicides can be studied at different levels: in the lab with disturbed or undisturbed soil columns or in the field with suction cup lysimeters or soil enclosure lysimeters. A field lysimeter experiment with 10 soil enclosures was performed to evaluate the mass balance in different environmental compartments of the phenylurea herbicides diuron [3-(3,4-diclorophenyl)-1,1-dimethyl-urea] and linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea]. After application on the agricultural soil, the herbicides were searched for in soil, pore water, and air samples. Soil and water samples were collected at different depths of the soil profile and analyzed to determine residual concentrations of both the parent compounds and of their main transformation products, to verify their persistence and their leaching capacity. Air volatilization was calculated using the theoretical profile shape method. The herbicides were detected only in the surface layer (0-10 cm) of soil. In this layer, diuron was reduced to 50% of its initial concentration at the end of the experiment, while linuron was still 70% present after 245 d. The main metabolites detected were DCPMU [3-(3,4-dichlorophenyl)-1-methylurea] and DCA (3,4-dichloroaniline). In soil pore water, diuron and linuron were detected at depths of 20 and 40 cm, although in very low concentrations. Therefore the leaching of these herbicides was quite low in this experiment. Moreover, volatilization losses were inconsequential. The calculated total mass balance showed a high persistence of linuron and diuron in the soil, a low mobility in soil pore water (less than 0.5% in leachate water), and a negligible volatilization effect. The application of the Pesticide Leaching Model (PELMO) showed similar low mobility of the chemicals in soil and water, but overestimated their volatilization and their degradation to the metabolite DCPMU. In conclusion, the use of soil enclosure lysimeters proved to be a good

  4. Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation

    Directory of Open Access Journals (Sweden)

    Min-Hee Jang

    2014-12-01

    Full Text Available Objectives Nanoscale zero-valent iron (nZVI particles are widely used in the field of various environmental contaminant remediation. Although the potential benefits of nZVI are considerable, there is a distinct need to identify any potential risks after environmental exposure. In this respect, we review recent studies on the environmental applications and implications of nZVI, highlighting research gaps and suggesting future research directions. Methods Environmental application of nZVI is briefly summarized, focusing on its unique properties. Ecotoxicity of nZVI is reviewed according to type of organism, including bacteria, terrestrial organisms, and aquatic organisms. The environmental fate and transport of nZVI are also summarized with regards to exposure scenarios. Finally, the current limitations of risk determination are thoroughly provided. Results The ecotoxicity of nZVI depends on the composition, concentration, size and surface properties of the nanoparticles and the experimental method used, including the species investigated. In addition, the environmental fate and transport of nZVI appear to be complex and depend on the exposure duration and the exposure conditions. To date, field-scale data are limited and only short-term studies using simple exposure methods have been conducted. Conclusions In this regard, the primary focus of future study should be on 1 the development of an appropriate and valid testing method of the environmental fate and ecotoxicity of reactive nanoparticles used in environmental applications and 2 assessing their potential environmental risks using in situ field scale applications.

  5. The Chemical Aquatic Fate and Effects database (CAFE), a tool that supports assessments of chemical spills in aquatic environments.

    Science.gov (United States)

    Bejarano, Adriana C; Farr, James K; Jenne, Polly; Chu, Valerie; Hielscher, Al

    2016-06-01

    The Chemical Aquatic Fate and Effects (CAFE) database is a centralized repository that allows for rapid and unrestricted access to data. Information in CAFE is integrated into a user-friendly tool with modules containing fate and effects data for 32 377 and 4498 chemicals, respectively. Toxicity data are summarized in the form of species sensitivity distributions (SSDs) with associated 1st and 5th percentile hazard concentrations (HCs). An assessment of data availability relative to reported chemical incidents showed that CAFE had fate and toxicity data for 32 and 20 chemicals, respectively, of 55 chemicals reported in the US National Response Center database (2000-2014), and fate and toxicity data for 86 and 103, respectively, of 205 chemicals reported by the National Oceanic and Atmospheric Administration (2003-2014). Modeled environmental concentrations of 2 hypothetical spills (acrylonitrile, 625 barrels; and denatured ethanol, 857 barrels) were used to demonstrate CAFE's practical application. Most species in the 24-h SSD could be potentially impacted by acrylonitrile and denatured ethanol during the first 35 min and 15 h post spill, respectively, with concentrations falling below their HC5s (17 mg/L and 2676 mg/L) at 45 min and 60 h post spill, respectively. Comparisons of CAFE-based versus published HC5 values for 100 chemicals showed that nearly half of values were within a 2-fold difference, with a relatively small number of comparisons exceeding a 10-fold difference. The development of CAFE facilitates access to relevant environmental information, with potential uses likely expanding beyond those related to assessment of spills in aquatic environments. Environ Toxicol Chem 2016;35:1576-1586. © 2015 SETAC. © 2015 SETAC.

  6. Fate modeling of mercury species and fluxes estimation in an urban river

    International Nuclear Information System (INIS)

    Tong, Yindong; Zhang, Wei; Chen, Cen; Chen, Long; Wang, Wentao; Hu, Xindi; Wang, Huanhuan; Hu, Dan; Ou, Langbo; Wang, Xuejun; Wang, Qiguang

    2014-01-01

    The fate and transfer of mercury in urban river is an important environmental concern. In this study, QWASI (Quantitative Water–Air–Sediment Interaction) model was selected to estimate the levels of total mercury and three mercury species in water and sediment, and was used to quantify the fluxes of mercury at water/air and sediment/water interfaces of an urban river. The predicted mercury levels in water and sediments were closed to the measured values. Water inflow, re-suspension of sediment and diffusion from sediment to water are major input sources of mercury in water. The net mercury transfer flux from water to air was 0.16 ng/(m 2 h). At the sediment/water interface, a net total mercury transfer of 1.32 ng/(m 2 h) from water to sediment was seen. In addition to the existing dynamic flux chambers measurement, this model method could provide a new perspective to identify the distribution and transfer of mercury in the urban river. -- Highlights: • QWASI could be a good tool to quantify transfer and fate of mercury in environment. • Distribution and flux of mercury species in an urban river was modeled. • Mercury in water mainly came from water inflow, sediment re-suspension and diffusion. • Net mercury transfer from water to air and sediment were 0.16 and 1.32 ng/(m 2 h). -- Quantitative Water–Air–Sediment Interaction model was used to quantify the transfer and fate of mercury in an urban river

  7. Fate of mercury in the Arctic (FOMA)

    DEFF Research Database (Denmark)

    Skov, H.; Christensen, J.; Asmund, G.

    This report is the final reporting of the project FONA, funded by the Danish Environmental Protection Agency with means from the MIKA/DANCEA funds for Environmental Support to the Arctic Region. The aim of the project is to study the intercompartment mercury transport chain in the arctic area. From...... in the Arctic. The report focus on the surface exchange of mercury, the uptake of abiotic mercury into the biological system, and the bioaccumulation in the first steps of the food web, and the resulting distribution and time trend of mercury in selected animals feeding on various trophic levels...

  8. The final fate of planetary systems

    Science.gov (United States)

    Gaensicke, Boris

    2015-12-01

    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly

  9. Fate of Campylobacter jejuni in butter.

    Science.gov (United States)

    Zhao, T; Doyle, M P; Berg, D E

    2000-01-01

    An outbreak of Campylobacter enteritis was associated with a restaurant in Louisiana during the summer of 1995. Thirty cases were identified, and four required hospitalization. Campylobacter jejuni was isolated from the patients, and epidemiologic studies revealed illness associated with eating garlic butter served at the restaurant. Three batches of garlic butter prepared by the restaurant associated with the outbreak and a C. jejuni isolate obtained from a patient involved in the outbreak were used for studies to determine the fate of C. jejuni in garlic butter. Studies also were done to determine the efficacy of the heat treatment used by the restaurant to prepare garlic bread to kill C. jejuni. Garlic butter was inoculated with approximately 10(4) and 10(6) CFU/g of C. jejuni and held at 5 or 21 degrees C. Results revealed that the survival of C. jejuni differed greatly, depending on the presence or absence of garlic. At 5 degrees C, C. jejuni populations decreased to an undetectable level (days in butter with no garlic. At 21 degrees C, C. jejuni populations decreased to an undetectable level within 5 h for two batches and to 50 CFU/g in 5 h for another batch. In contrast, C. jejuni was detected at 500 CFU/g at 28 h after inoculation but was undetectable at 3 days in butter with no garlic held at 21 degrees C. The heating procedure (135 degrees C, 4 min) used to make garlic bread by the implicated restaurant was determined not to be sufficient for killing C. jejuni, with the internal temperature of the buttered bread after heating ranging from 19 to 22 degrees C. This study revealed that C. jejuni can survive for many days in refrigerated butter, but large populations (10(3) to 10(5) CFU/g) are killed within a few hours in butter that contains garlic. Furthermore, the heat treatment used by the restaurant to melt garlic butter in making garlic bread was not adequate to kill C. jejuni.

  10. Pesticide biotransformation and fate in heterogeneous environments

    NARCIS (Netherlands)

    Vink, J.P.M.

    1997-01-01

    The effects and relative impacts of environmental variables on the behaviour of pesticides, through the effect on pesticide-degrading microorganisms, was studied in a broad spectrum and covered the most relevant emission routes. It is shown that the effect of landscape geochemistry, which

  11. Cell fate control in the developing central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie, E-mail: Fanie.Barnabe-Heider@ki.se

    2014-02-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.

  12. Developmental fate and lineage commitment of singled mouse blastomeres.

    Science.gov (United States)

    Lorthongpanich, Chanchao; Doris, Tham Puay Yoke; Limviphuvadh, Vachiranee; Knowles, Barbara B; Solter, Davor

    2012-10-01

    The inside-outside model has been invoked to explain cell-fate specification of the pre-implantation mammalian embryo. Here, we investigate whether cell-cell interaction can influence the fate specification of embryonic blastomeres by sequentially separating the blastomeres in two-cell stage mouse embryos and continuing separation after each cell division throughout pre-implantation development. This procedure eliminates information provided by cell-cell interaction and cell positioning. Gene expression profiles, polarity protein localization and functional tests of these separated blastomeres reveal that cell interactions, through cell position, influence the fate of the blastomere. Blastomeres, in the absence of cell contact and inner-outer positional information, have a unique pattern of gene expression that is characteristic of neither inner cell mass nor trophectoderm, but overall they have a tendency towards a 'trophectoderm-like' gene expression pattern and preferentially contribute to the trophectoderm lineage.

  13. Cell fate control in the developing central nervous system

    International Nuclear Information System (INIS)

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie

    2014-01-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals

  14. BTG interacts with retinoblastoma to control cell fate in Dictyostelium.

    Directory of Open Access Journals (Sweden)

    Daniele Conte

    Full Text Available BACKGROUND: In the genesis of many tissues, a phase of cell proliferation is followed by cell cycle exit and terminal differentiation. The latter two processes overlap: genes involved in the cessation of growth may also be important in triggering differentiation. Though conceptually distinct, they are often causally related and functional interactions between the cell cycle machinery and cell fate control networks are fundamental to coordinate growth and differentiation. A switch from proliferation to differentiation may also be important in the life cycle of single-celled organisms, and genes which arose as regulators of microbial differentiation may be conserved in higher organisms. Studies in microorganisms may thus contribute to understanding the molecular links between cell cycle machinery and the determination of cell fate choice networks. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that in the amoebozoan D. discoideum, an ortholog of the metazoan antiproliferative gene btg controls cell fate, and that this function is dependent on the presence of a second tumor suppressor ortholog, the retinoblastoma-like gene product. Specifically, we find that btg-overexpressing cells preferentially adopt a stalk cell (and, more particularly, an Anterior-Like Cell fate. No btg-dependent preference for ALC fate is observed in cells in which the retinoblastoma-like gene has been genetically inactivated. Dictyostelium btg is the only example of non-metazoan member of the BTG family characterized so far, suggesting that a genetic interaction between btg and Rb predated the divergence between dictyostelids and metazoa. CONCLUSIONS/SIGNIFICANCE: While the requirement for retinoblastoma function for BTG antiproliferative activity in metazoans is known, an interaction of these genes in the control of cell fate has not been previously documented. Involvement of a single pathway in the control of mutually exclusive processes may have relevant implication in the

  15. Evaluating the usefulness of dynamic pollutant fate models for implementing the EU Water Framework Directive.

    Science.gov (United States)

    Gevaert, Veerle; Verdonck, Frederik; Benedetti, Lorenzo; De Keyser, Webbey; De Baets, Bernard

    2009-06-01

    The European Water Framework Directive (WFD) aims at achieving a good ecological and chemical status of surface waters in river basins by 2015. The chemical status is considered good if the Environmental Quality Standards (EQSs) are met for all substances listed on the priority list and eight additional specific emerging substances. To check compliance with these standards, the WFD requires the establishment of monitoring programmes. The minimum measuring frequency for priority substances is currently set at once per month. This can result in non-representative sampling and increased probability of misinterpretation of the surface water quality status. To assist in the classification of the water body, the combined use of monitoring data and pollutant fate models is recommended. More specifically, dynamic models are suggested, as possible exceedance of the quality standards can be predicted by such models. In the presented work, four realistic scenarios are designed and discussed to illustrate the usefulness of dynamic pollutant fate models for implementing the WFD. They comprise a combination of two priority substances and two rivers, representative for Western Europe.

  16. Molecular Machines Determining the Fate of Endocytosed Synaptic Vesicles in Nerve Terminals.

    Science.gov (United States)

    Fassio, Anna; Fadda, Manuela; Benfenati, Fabio

    2016-01-01

    The cycle of a synaptic vesicle (SV) within the nerve terminal is a step-by-step journey with the final goal of ensuring the proper synaptic strength under changing environmental conditions. The SV cycle is a precisely regulated membrane traffic event in cells and, because of this, a plethora of membrane-bound and cytosolic proteins are devoted to assist SVs in each step of the journey. The cycling fate of endocytosed SVs determines both the availability for subsequent rounds of release and the lifetime of SVs in the terminal and is therefore crucial for synaptic function and plasticity. Molecular players that determine the destiny of SVs in nerve terminals after a round of exo-endocytosis are largely unknown. Here we review the functional role in SV fate of phosphorylation/dephosphorylation of SV proteins and of small GTPases acting on membrane trafficking at the synapse, as they are emerging as key molecules in determining the recycling route of SVs within the nerve terminal. In particular, we focus on: (i) the cyclin-dependent kinase-5 (cdk5) and calcineurin (CN) control of the recycling pool of SVs; (ii) the role of small GTPases of the Rab and ADP-ribosylation factor (Arf) families in defining the route followed by SV in their nerve terminal cycle. These regulatory proteins together with their synaptic regulators and effectors, are molecular nanomachines mediating homeostatic responses in synaptic plasticity and potential targets of drugs modulating the efficiency of synaptic transmission.

  17. MOLECULAR MACHINES DETERMINING THE FATE OF ENDOCYTOSED SYNAPTIC VESICLES IN NERVE TERMINALS

    Directory of Open Access Journals (Sweden)

    Anna eFassio

    2016-05-01

    Full Text Available The cycle of a synaptic vesicle (SV within the nerve terminal is a step-by-step journey with the final goal of ensuring the proper synaptic strength under changing environmental conditions.The SV cycle is a precisely regulated membrane traffic event in cells and, because of this, a plethora of membrane-bound and cytosolic proteins are devoted to assist SVs in each step of the journey. The cycling fate of endocytosed SVs determines both the availability for subsequent rounds of release and the lifetime of SVs in the terminal and is therefore crucial for synaptic function and plasticity. Molecular players that determine the destiny of SVs in nerve terminals after a round of exo-endocytosis are largely unknown. Here we review the functional role in SV fate of phosphorylation/dephosphorylation of SV proteins and of small GTPases acting on membrane trafficking at the synapse, as they are emerging as key molecules in determining the recycling route of SVs within the nerve terminal. In particular, we focus on (i the cyclin-dependent kinase-5 and calcineurin control of the recycling pool of SVs; (ii the role of small GTPases of the Rab and ADP-ribosylation factor (Arf families in defining the route followed by SV in their nerve terminal cycle. These regulatory proteins together with their synaptic regulators and effectors, are molecular nanomachines mediating homeostatic responses in synaptic plasticity and potential targets of drugs modulating the efficiency of synaptic transmission.

  18. Overview of research and development in subsurface fate and transport modeling

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Chehata, M.

    1995-05-01

    The US Department of Energy is responsible for the remediation of over 450 different subsurface-contaminated sites. Contaminant plumes at these sites range in volume from several to millions of cubic yards. The concentration of contaminants also ranges over several orders of magnitude. Contaminants include hazardous wastes such as heavy metals and organic chemicals, radioactive waste including tritium, uranium, and thorium, and mixed waste, which is a combination of hazardous and radioactive wastes. The physical form of the contaminants includes solutes, nonaqueous phase liquids (NAPLs), and vapor phase contaminants such as volatilized organic chemicals and radon. The subject of contaminant fate and transport modeling is multi-disciplinary, involving hydrology, geology, microbiology, chemistry, applied mathematics, computer science, and other areas of expertise. It is an issue of great significance in the United States and around the world. As such, many organizations have substantial programs in this area. In gathering data to prepare this report, a survey was performed of research and development work that is funded by US government agencies to improve the understanding and mechanistic modeling of processes that control contaminant movement through subsurface systems. Government agencies which fund programs that contain fate and transport modeling components include the Environmental Protection Agency, Nuclear Regulatory Commission, Department of Agriculture, Department of Energy, National Science Foundation, Department of Defense, United States Geological Survey, and National Institutes of Health

  19. Occurrence and fate of perfluorinated acids in two wastewater treatment plants in Shanghai, China.

    Science.gov (United States)

    Zhang, Chaojie; Yan, Hong; Li, Fei; Zhou, Qi

    2015-02-01

    Perfluorinated acids (PFAs) have drawn much attention due to their environmental persistence, ubiquitous existence, and bioaccumulation potential. The discharge of wastewater effluent from municipal wastewater treatment plants (WWTPs) is a significant source of PFAs to the environment. In this study, wastewater and sludge samples were collected from two WWTPs in Shanghai, China, to investigate the contamination level and fate of PFAs in different stages of processing. The total concentrations of PFAs (∑PFAs) in influent from plants A and B were 2,452 and 292 ng L(-1), respectively. Perfluoropentanoic acid (1,520 ± 80 ng L(-1) in plant A and 89.2 ± 12.1 ng L(-1) in plant B) was the predominant PFA in influent waters, followed by perfluorooctanoic acid. The concentration of ∑PFAs ranged from 75.0 to 126.0 ng g(-1) dry weight in sludge samples from plant B, with perfluorooctanesulfonic acid as the predominant contaminant. The concentrations and fate of PFAs in different WWTPs vary. The ∑PFAs entering plant A decreased significantly in the final effluent of activated sludge process, while that in plant B increased significantly in the final effluent of sequencing batch reactor system. The concentration changes could be due to the sorption onto sludge, or the degradation of PFAs precursors.

  20. A fate model for nitrogen dynamics in the Scheldt basin

    Science.gov (United States)

    Haest, Pieter Jan; van der Kwast, Johannes; Broekx, Steven; Seuntjens, Piet

    2010-05-01

    The European Union (EU) adopted the Water Framework Directive (WFD) in 2000 ensuring that all aquatic ecosystems meet ‘good ecological status' by 2015. However, the large population density in combination with agricultural and industrial activities in some European river basins pose challenges for river basin managers in meeting this status. The EU financed AQUAREHAB project (FP7) specifically examines the ecological and economic impact of innovative rehabilitation technologies for multi-pressured degraded waters. For this purpose, a numerical spatio-temporal model is developed to evaluate innovative technologies versus conventional measures at the river basin scale. The numerical model describes the nitrogen dynamics in the Scheldt river basin. Nitrogen is examined since nitrate is of specific concern in Belgium, the country comprising the largest area of the Scheldt basin. The Scheldt basin encompasses 20000 km2 and houses over 10 million people. The governing factors describing nitrogen fluxes at this large scale differ from the field scale with a larger uncertainty on input data. As such, the environmental modeling language PCRaster was selected since it was found to provide a balance between process descriptions and necessary input data. The resulting GIS-based model simulates the nitrogen dynamics in the Scheldt basin with a yearly time step and a spatial resolution of 1 square kilometer. A smaller time step is being evaluated depending on the description of the hydrology. The model discerns 4 compartments in the Scheldt basin: the soil, shallow groundwater, deep groundwater and the river network. Runoff and water flow occurs along the steepest slope in all model compartments. Diffuse emissions and direct inputs are calculated from administrative and statistical data. These emissions are geographically defined or are distributed over the domain according to land use and connectivity to the sewer system. The reactive mass transport is described using

  1. Investigating Undergraduate Students' Ideas about the Fate of the Universe

    Science.gov (United States)

    Conlon, Mallory; Coble, Kim; Bailey, Janelle M.; Cominsky, Lynn R.

    2017-01-01

    As astronomers further develop an understanding of the fate of the Universe, it is essential to study students' ideas on the fate of the Universe so that instructors can communicate the field's current status more effectively. In this study, we examine undergraduate students' preinstruction ideas of the fate of the Universe in ten semester-long…

  2. Effect of composting on the fate of steroids in beef cattle manure

    Science.gov (United States)

    In this study, the fate of steroid hormones in beef cattle manure composting is evaluated. The fate of 16 steroids and metabolites was evaluated in composted manure from beef cattle administered growth promotants and from beef cattle with no steroid hormone implants. The fate of estrogens (primary...

  3. Bud structure, position and fate generate various branching patterns along shoots of closely related Rosaceae species: a review

    Directory of Open Access Journals (Sweden)

    Evelyne eCostes

    2014-12-01

    Full Text Available Branching in temperate plants is closely linked to bud fates, either floral or vegetative. Here, we review how the fate of meristematic tissues contained in buds and their position along a shoot imprint specific branching patterns which differ among species. Through examples chosen in closely related species in different genera of the Rosaceae family, a panorama of patterns is apparent. Patterns depend on whether vegetative and floral buds are borne individually or together in mixed buds, develop as the shoot grows or after a rest period, and are located in axillary or terminal positions along the parent shoot. The resulting branching patterns are conserved among varieties in a given species but progressively change with the parent shoot length during plant ontogeny. They can also be modulated by agronomic and environmental conditions. The existence of various organizations in the topology and fate of meristematic tissues and their appendages in closely related species questions the between-species conservation of physiological and molecular mechanisms leading to bud outgrowth vs quiescence and to floral induction vs vegetative development.

  4. Bud structure, position and fate generate various branching patterns along shoots of closely related Rosaceae species: a review.

    Science.gov (United States)

    Costes, Evelyne; Crespel, Laurent; Denoyes, Béatrice; Morel, Philippe; Demene, Marie-Noëlle; Lauri, Pierre-Eric; Wenden, Bénédicte

    2014-01-01

    Branching in temperate plants is closely linked to bud fates, either floral or vegetative. Here, we review how the fate of meristematic tissues contained in buds and their position along a shoot imprint specific branching patterns which differ among species. Through examples chosen in closely related species in different genera of the Rosaceae family, a panorama of patterns is apparent. Patterns depend on whether vegetative and floral buds are borne individually or together in mixed buds, develop as the shoot grows or after a rest period, and are located in axillary or terminal positions along the parent shoot. The resulting branching patterns are conserved among varieties in a given species but progressively change with the parent shoot length during plant ontogeny. They can also be modulated by agronomic and environmental conditions. The existence of various organizations in the topology and fate of meristematic tissues and their appendages in closely related species questions the between-species conservation of physiological and molecular mechanisms leading to bud outgrowth vs. quiescence and to floral induction vs. vegetative development.

  5. A novel modeling tool with multi-stressor functionality for organic contaminant transport and fate in the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Undeman, E., E-mail: emma.undeman@itm.su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Department of Applied Environmental Science, Stockholm University, 11418 Stockholm (Sweden); Gustafsson, E., E-mail: erik.gustafsson@su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Gustafsson, B.G., E-mail: bo.gustafsson@su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden)

    2014-11-01

    The coupled physical–biogeochemical model BALTSEM, previously used to assess nutrient/carbon cycles and eutrophication in the Baltic Sea, has been expanded to include algorithms for calculations of organic contaminant environmental transport and fate. This novel model version (BALTSEM-POP) is evaluated for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and hexachlorobenzene (HCB) in Baltic Sea surface water and sediment. Modeled dissolved concentrations are usually within a factor of 2–4 of observed concentrations, however with larger deviations for furans. Calculated concentrations in particulate organic matter are less accurate (within factors of 1–700), likely due to errors in estimated pelagic biomass, particulate matter–water partitioning, and large natural variability in field data. Concentrations in sediments are usually predicted within a factor of 6. The good performance of the model illustrates its usefulness for exploration of contaminant fate in response to variations in nutrient input and climatic conditions in the Baltic Sea marine environment. - Highlights: • A new model for organic chemical transport and fate in the Baltic Sea is presented. • Physical and biogeochemical processes are linked to organic contaminant transport. • The model is evaluated for PCBs, HCB and PCDD/Fs. • The model can predict dissolved concentrations within a factor of ca 2–4. • Predictions for concentrations in particulate matter and sediment are less accurate.

  6. A workshop model simulating fate and effect of drilling muds and cuttings on benthic communities

    Science.gov (United States)

    Auble, Gregor T.; Andrews, Austin K.; Hamilton, David B.; Roelle, James E.; Shoemaker, Thomas G.

    1984-01-01

    Oil and gas exploration and production at marine sites has generated concern over potential environmental impacts resulting from the discharge of spent drilling muds and cuttings. This concern has led to a broad array of publicly and privately sponsored research. This report described a cooperative modeling effort designed to focus information resulting from this research through construction of explicit equations that simulate the potential impacts of discharge drilling fluids (muds) and cuttings on marine communities. The model is the result of collaboration among more than 30 scientists. The principal cooperating organizations were the E.S. Environmental Protection Agency, the U.S. Minerals Management Service, the Offshore Operators Committee, and the Alaska Oil and Gas Association. The overall simulation model can be conceptualized as three connected submodels: Discharge and Plume Fate, Sediment Redistribution, and Benthic Community Effects. On each day of simulation, these submodels are executed in sequence, with flows of information between submodels. The Benthic Community Effects submodel can be further divided into sections that calculate mortality due to burial, mortality due to toxicity, mortality due to resuspension disturbance, and growth of the community. The model represents a series of seven discrete 1-m2 plots at specified distances along a transect in one direction away from a discharge point. It consists of coupled difference equations for which parameter values can easily be set to evaluate different conditions or to examine the sensitivity of output to various assumptions. Sets of parameter values were developed to represent four general cases or scenarios: (1) a shallow (5 m), cold environment with ice cover during a substantial fraction of the year, such as might be encountered in the Beaufort Sea, Alaska; (2) a shallow (20 m), temperate environment, such as might be encountered in the Gulf of Mexico; (3) a deeper (80 m), temperate environment

  7. Fate of ivermectin residues in ewes' milk and derived products

    NARCIS (Netherlands)

    Cerkvenik, V.; Perko, B.; Rogelj, I.; Doganoc, D.Z.; Skubic, V.; Beek, W.M.J.; Keukens, H.J.

    2004-01-01

    The fate of ivermectin (IVM) residues was studied throughout the processing of daily bulk milk from 30 ewes (taken up to 33 d following subcutaneous administration of 0·2 mg IVM/kg b.w.) in the following milk products: yoghurt made from raw and pasteurized milk; cheese after pressing; 30- and 60-day

  8. The 'History and Fate of the Universe' chart debuts

    CERN Multimedia

    Yarris, L

    2003-01-01

    A chart that illustrates and summarizes what is now known about the history and fate of the universe has been developed by scientists at the Lawrence Berkeley National Laboratory in collaboration with the Contemporary Physics Education Project (CPEP). More than 11,000 copies will be distributed to high school science teachers across the nation for field-testing with their students (1 page).

  9. Evaluating the fate of organic compounds in the Cameroon ...

    African Journals Online (AJOL)

    Furthermore, a sensitivity analysis was performed to identify the key input parameters. Model simulations indicated significant differences in the fate of the chemicals that could be explained by the variation in physical-chemical properties. The log KOW, emission rate to water (EW), volume of the water compartment (VW) and ...

  10. Global fate of POPs: Current and future research directions

    International Nuclear Information System (INIS)

    Lohmann, Rainer; Breivik, Knut; Dachs, Jordi; Muir, Derek

    2007-01-01

    For legacy and emerging persistent organic pollutants (POPs), surprisingly little is still known in quantitative terms about their global sources and emissions. Atmospheric transport has been identified as the key global dispersal mechanism for most legacy POPs. In contrast, transport by ocean currents may prove to be the main transport route for many polar, emerging POPs. This is linked to the POPs' intrinsic physico-chemical properties, as exemplified by the different fate of hexachlorocyclohexanes in the Arctic. Similarly, our current understanding of POPs' global transport and fate remains sketchy. The importance of organic carbon and global temperature differences have been accepted as key drivers of POPs' global distribution. However, future research will need to understand the various biogeochemical and geophysical cycles under anthropogenic pressures to be able to understand and predict the global fate of POPs accurately. - Future studies into the global fate of POPs will need to pay more attention to the various biogeochemical and anthropogenic cycles to better understand emissions, transport and sinks

  11. Global fate of POPs: Current and future research directions

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Rainer [Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882-1197 (United States)], E-mail: lohmann@gso.uri.edu; Breivik, Knut [Norwegian Institute for Air Research, PO Box 100, NO-2027 Kjeller (Norway); University of Oslo, Department of Chemistry, PO Box 1033, NO-0315 Oslo (Norway); Dachs, Jordi [Department of Environmental Chemistry, Institute of Chemical and Environmental Research (IIQAB-CSIC), Jordi Girona 18-26, Barcelona 08034 (Spain); Muir, Derek [Aquatic Ecosystem Protection Research Division, Environment Canada, 867 Lakeshore Road, Burlington, ON L7R4A6 (Canada)

    2007-11-15

    For legacy and emerging persistent organic pollutants (POPs), surprisingly little is still known in quantitative terms about their global sources and emissions. Atmospheric transport has been identified as the key global dispersal mechanism for most legacy POPs. In contrast, transport by ocean currents may prove to be the main transport route for many polar, emerging POPs. This is linked to the POPs' intrinsic physico-chemical properties, as exemplified by the different fate of hexachlorocyclohexanes in the Arctic. Similarly, our current understanding of POPs' global transport and fate remains sketchy. The importance of organic carbon and global temperature differences have been accepted as key drivers of POPs' global distribution. However, future research will need to understand the various biogeochemical and geophysical cycles under anthropogenic pressures to be able to understand and predict the global fate of POPs accurately. - Future studies into the global fate of POPs will need to pay more attention to the various biogeochemical and anthropogenic cycles to better understand emissions, transport and sinks.

  12. Fate of enniatins and deoxynivalenol during pasta cooking

    NARCIS (Netherlands)

    Nijs, de Monique; Top, van den Hester; Stoppelaar, de Joyce; Lopez Sanchez, Patricia; Mol, Hans

    2016-01-01

    The fate of deoxynivalenol and enniatins was studied during cooking of commercially available dry pasta in the Netherlands in 2014. Five samples containing relatively high levels of deoxynivalenol and/or enniatins were selected for the cooking experiment. Cooking was performed in duplicate on

  13. Fate and transformation of graphene oxide in marine systems

    Science.gov (United States)

    Graphene oxide (GO) may be released into natural waters at different phases of its life cycle. Currently, there is no study on the fate of GO in seawater, which is predicted to be a major sink for many engineered nanomaterials. In this study, the influences of salinity (0-50 &per...

  14. Fate and transformation of graphene oxide in marine waters

    Science.gov (United States)

    One common use of graphene family nanomaterials (GFNs) is as functional and/or antifouling coatings, which may ultimately lead to their release into the natural environment. The fate of graphene oxide (GO), a common type of GFN, in natural waters is currently not well understood....

  15. DNA Damage Signaling Instructs Polyploid Macrophage Fate in Granulomas

    DEFF Research Database (Denmark)

    Herrtwich, Laura; Nanda, Indrajit; Evangelou, Konstantinos

    2016-01-01

    to a chronic stimulus, though critical for disease outcome, have not been defined. Here, we delineate a macrophage differentiation pathway by which a persistent Toll-like receptor (TLR) 2 signal instructs polyploid macrophage fate by inducing replication stress and activating the DNA damage response. Polyploid...

  16. THE FATE OF TANNINS IN CORSICAN PINE LITTER

    NARCIS (Netherlands)

    Nierop, K.G.J.; Verstraten, J.M.

    2006-01-01

    Tannins are ubiquitous in higher plants and therefore also in litter and soils where they affect many biogeochemical processes. Despite this well recognized role, the fate of tannins in litter and mineral soils is hardly known as often only trace amounts, if any, of tannins are measured. In this

  17. Cdc20 control of cell fate during prolonged mitotic arrest

    DEFF Research Database (Denmark)

    Nilsson, Jakob

    2011-01-01

    The fate of cells arrested in mitosis by antimitotic compounds is complex but is influenced by competition between pathways promoting cell death and pathways promoting mitotic exit. As components of both of these pathways are regulated by Cdc20-dependent degradation, I hypothesize that variations...

  18. Fate and lability of silver in soils: Effect of ageing

    Science.gov (United States)

    The fate and lability of added soluble Ag in soils over time was examined by measurement of labile metal (E-value) by isotopic dilution using the 110mAg radioactive isotope and the solid-phase speciation of Ag by X-ray absorption near edge structure (XANES) spectrosco...

  19. Cell fate determination in zebrafish embryonic and adult muscle development

    NARCIS (Netherlands)

    Tee, J.M.

    2010-01-01

    We are interested in how the genetic basis of muscle precursor cells determines the outcome of the muscle cell fate, and thus leading to disruption in muscle formation and maintenance. We utilized the zebrafish carrying mutations in both Axin1 and Apc1, resulting in overactivation of the

  20. Stochastic Cell Fate Progression in Embryonic Stem Cells

    Science.gov (United States)

    Zou, Ling-Nan; Doyle, Adele; Jang, Sumin; Ramanathan, Sharad

    2013-03-01

    Studies on the directed differentiation of embryonic stem (ES) cells suggest that some early developmental decisions may be stochastic in nature. To identify the sources of this stochasticity, we analyzed the heterogeneous expression of key transcription factors in single ES cells as they adopt distinct germ layer fates. We find that under sufficiently stringent signaling conditions, the choice of lineage is unambiguous. ES cells flow into differentiated fates via diverging paths, defined by sequences of transitional states that exhibit characteristic co-expression of multiple transcription factors. These transitional states have distinct responses to morphogenic stimuli; by sequential exposure to multiple signaling conditions, ES cells are steered towards specific fates. However, the rate at which cells travel down a developmental path is stochastic: cells exposed to the same signaling condition for the same amount of time can populate different states along the same path. The heterogeneity of cell states seen in our experiments therefore does not reflect the stochastic selection of germ layer fates, but the stochastic rate of progression along a chosen developmental path. Supported in part by the Jane Coffin Childs Fund

  1. Fate of linear alkylbenzene sulfonate (LAS) in activated sludge plants

    NARCIS (Netherlands)

    Temmink, B.G.; Klapwijk, A.

    2004-01-01

    Monitoring data were collected in a pilot-scale municipal activated sludge plant to assess the fate of the C12-homologue of linear alkyl benzene sulfonate (LAS-C12). The pilot-plant was operated at influent LAS-C12 concentrations between 2 and 12 mg/l and at sludge retention times of 10 and 27

  2. Multiphase CFD modeling of nearfield fate of sediment plumes

    DEFF Research Database (Denmark)

    Saremi, Sina; Hjelmager Jensen, Jacob

    2014-01-01

    Disposal of dredged material and the overflow discharge during the dredging activities is a matter of concern due to the potential risks imposed by the plumes on surrounding marine environment. This gives rise to accurately prediction of the fate of the sediment plumes released in ambient waters...

  3. Fates of trees damaged by logging in Amazonian Bolivia

    NARCIS (Netherlands)

    Shenkin, A.; Bolker, B.; Peña Claros, M.; Licona, J.C.; Putz, F.E.

    2015-01-01

    Estimation of carbon losses from trees felled and incidentally-killed during selective logging of tropical forests is relatively straightforward and well-documented, but less is known about the fates of collaterally-damaged trees that initially survive. Tree response to logging damage is an

  4. Combining exposure and effect modeling into an integrated probabilistic environmental risk assessment for nanoparticles

    NARCIS (Netherlands)

    Jacobs, Rianne; Meesters, Johannes A.J.; Braak, ter Cajo J.F.; Meent, van de Dik; Voet, van der Hilko

    2016-01-01

    There is a growing need for good environmental risk assessment of engineered nanoparticles (ENPs). Environmental risk assessment of ENPs has been hampered by lack of data and knowledge about ENPs, their environmental fate, and their toxicity. This leads to uncertainty in the risk assessment. To

  5. Combining exposure and effect modeling into an integrated probabilistic environmental risk assessment for nanoparticles

    NARCIS (Netherlands)

    Jacobs, R.; Meesters, J.A.J.; Ter Braak, C.J.; Meent, D. van de; van der Voet, H.

    2016-01-01

    There is a growing need for good environmental risk assessment of engineered nanoparticles (ENPs). Environmental risk assessment of ENPs has been hampered by lack of data and knowledge about ENPs, their environmental fate, and their toxicity. This leads to uncertainty in the risk assessment. To deal

  6. Environmental protection

    International Nuclear Information System (INIS)

    Klinda, J.; Lieskovska, Z.

    1998-01-01

    In this chapter environmental protection in the Slovak Republic in 1997 are reviewed. The economics of environmental protection, state budget, Slovak state environmental fund, economic instruments, environmental laws, environmental impact assessment, environmental management systems, and environmental education are presented

  7. State of Academic Knowledge on Toxicity and Biological Fate of Quantum Dots

    Science.gov (United States)

    Pelley, Jennifer L.; Daar, Abdallah S.; Saner, Marc A.

    2009-01-01

    Quantum dots (QDs), an important class of emerging nanomaterial, are widely anticipated to find application in many consumer and clinical products in the near future. Premarket regulatory scrutiny is, thus, an issue gaining considerable attention. Previous review papers have focused primarily on the toxicity of QDs. From the point of view of product regulation, however, parameters that determine exposure (e.g., dosage, transformation, transportation, and persistence) are just as important as inherent toxicity. We have structured our review paper according to regulatory risk assessment practices, in order to improve the utility of existing knowledge in a regulatory context. Herein, we summarize the state of academic knowledge on QDs pertaining not only to toxicity, but also their physicochemical properties, and their biological and environmental fate. We conclude this review with recommendations on how to tailor future research efforts to address the specific needs of regulators. PMID:19684286

  8. Spatially explicit fate factors of waterborne nitrogen emissions at the global scale

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Mayorga, Emilio; Hauschild, Michael Zwicky

    2017-01-01

    water. Spatial aggregation of the FFs at the continental level decreases this variation to 1 order of magnitude or less for all routes. Coastal water residence time was found to show inconsistency and scarcity of literature sources. Improvement of data quality for this parameter is suggested......Purpose: Marine eutrophication impacts due to waterborne nitrogen (N) emissions may vary significantly with their type and location. The environmental fate of dissolved inorganic nitrogen (DIN) forms is essential to understand the impacts they may trigger in receiving coastal waters. Current life...... and river basin resolution. Methods: The FF modelling work includes DIN removal processes in both inland (soil and river) and marine compartments. Model input parameters are the removal coefficients extracted from the Global NEWS 2-DIN model and residence time of receiving coastal waters. The resulting FFs...

  9. The Incidence and Fate of Volatile Methyl Siloxanes in a Crewed Spacecraft Cabin

    Science.gov (United States)

    Perry, Jay L.; Kayatin, Matthew J.

    2017-01-01

    Volatile methyl siloxanes (VMS) arise from diverse, pervasive sources aboard crewed spacecraft ranging from materials offgassing to volatilization from personal care products. These sources lead to a persistent VMS compound presence in the cabin environment that must be considered for robust life support system design. Volatile methyl siloxane compound stability in the cabin environment presents an additional technical issue because degradation products such as dimethylsilanediol (DMSD) are highly soluble in water leading to a unique load challenge for water purification processes. The incidence and fate of VMS compounds as observed in the terrestrial atmosphere, water, and surface (soil) environmental compartments have been evaluated as an analogy for a crewed cabin environment. Volatile methyl siloxane removal pathways aboard crewed spacecraft are discussed and a material balance accounting for a DMSD production mechanism consistent with in-flight observations is presented.

  10. Presence and fate of priority substances in domestic greywater treatment and reuse systems

    DEFF Research Database (Denmark)

    Donner, E.; Eriksson, Eva; Revitt, M.

    2010-01-01

    ) or "Priority Hazardous Substances" (PHS). Significant knowledge gaps are identified. A wide range of potential treatment trains are available for greywater treatment and reuse but treatment efficiency data for priority substances and other micropollutants is very limited. Geochemical modelling indicates......A wide range of household sources may potentially contribute to contaminant loads in domestic greywater. The ability of greywater treatment systems to act as emission control barriers for household micropollutants, thereby providing environmental benefits in addition to potable water savings, have...... not been fully explored. This paper investigates the sources, presence and potential fate of a selection of xenobiotic micropollutants in on-site greywater treatment systems. All of the investigated compounds are listed under the European Water Framework Directive as either "Priority Substances" (PS...

  11. Multimedia fate modeling and risk assessment of a commonly used azole fungicide climbazole at the river basin scale in China.

    Science.gov (United States)

    Zhang, Qian-Qian; Ying, Guang-Guo; Chen, Zhi-Feng; Liu, You-Sheng; Liu, Wang-Rong; Zhao, Jian-Liang

    2015-07-01

    Climbazole is an antidandruff active ingredient commonly used in personal care products, but little is known about its environmental fate. The aim of this study was to evaluate the fate of climbazole in water, sediment, soil and air compartments of the whole China by using a level III multimedia fugacity model. The usage of climbazole was calculated to be 345 t in the whole China according to the market research data, and after wastewater treatment a total emission of 245 t was discharged into the receiving environment with approximately 93% into the water compartment and 7% into the soil compartment. The developed fugacity model was successfully applied to estimate the contamination levels and mass inventories of climbazole in various environmental compartments of the river basins in China. The predicted environmental concentration ranges of climbazole were: 0.20-367 ng/L in water, and 0.009-25.2 ng/g dry weight in sediment. The highest concentration was mainly found in Haihe River basin and the lowest was in basins of Tibet and Xinjiang regions. The mass inventory of climbazole in the whole China was estimated to be 294 t, with 6.79% in water, 83.7% in sediment, 9.49% in soil, and 0.002% in air. Preliminary risk assessment showed high risks in sediment posed by climbazole in 2 out of 58 basins in China. The medium risks in water and sediment were mostly concentrated in north China. To the best of our knowledge, it is the first report on the emissions and multimedia fate of climbazole in the river basins of the whole China. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Multiple spectroscopic analyses reveal the fate and metabolism of sulfamide herbicide triafamone in agricultural environments

    International Nuclear Information System (INIS)

    Wang, Mengcen; Qian, Yuan; Liu, Xiaoyu; Wei, Peng; Deng, Man; Wang, Lei; Wu, Huiming; Zhu, Guonian

    2017-01-01

    Triafamone, a sulfamide herbicide, has been extensively utilized for weed control in rice paddies in Asia. However, its fate and transformation in the environment have not been established. Through a rice paddy microcosm-based simulation trial combined with multiple spectroscopic analyses, we isolated and identified three novel metabolites of triafamone, including hydroxyl triafamone (HTA), hydroxyl triafamone glycoside (HTAG), and oxazolidinedione triafamone (OTA). When triafamone was applied to rice paddies at a concentration of 34.2 g active ingredient/ha, this was predominantly distributed in the paddy soil and water, and then rapidly dissipated in accordance with the first-order rate model, with half-lives of 4.3–11.0 days. As the main transformation pathway, triafamone was assimilated by the rice plants and was detoxified into HTAG, whereas the rest was reduced into HTA with subsequent formation of OTA. At the senescence stage, brown rice had incurred triafamone at a concentration of 0.0016 mg/kg, but the hazard quotient was <1, suggesting that long-term consumption of the triafamone-containing brown rice is relatively safe. The findings of the present study indicate that triafamone is actively metabolized in the agricultural environment, and elucidation of the link between environmental exposure to these triazine or oxazolidinedione moieties that contain metabolites and their potential impacts is warranted. - Highlights: • Multiple spectroscopic analyses were applied to investigate agrochemicals transformation in environment. • Three novel compounds were isolated and identified as triafamone metabolites. • The fate and transformation pathway of triafamone in rice paddy were revealed. • Long-term consumption of the triafamone-containing brown rice is relatively safe. • Elucidation of environmental impacts by exposure to these triazine or oxazolidinedione metabolites is warranted. - Triafamone rapidly dissipates in agricultural environments

  13. Microplastics in the environment: What can we learn from a decade of engineered nanoparticle fate and risk assessment?

    Science.gov (United States)

    Hüffer, T.; Praetorius, A.; Wagner, S.; von der Kammer, F.; Hofmann, T.

    2016-12-01

    The field of environmental fate and risk assessment is frequently dominated by "hot topics" of emerging contaminants; in recent years for example pharmaceuticals, nanomaterials or, most recently, microplastics. Since no emerging pollutant is entirely new, a careful assessment of existing knowledge on related substances can help us direct our research efforts and employ the limited resources in a more efficient way. Crucial questions on the environmental implications of microplastics, for example the need for analytical tools, adequate protocols to study their fate, or the effects of aging and a risk assessment based thereon remain largely unanswered. Over the last decade, the field of environmental implications of engineered nanoparticles (ENPs) has been facing similar challenges. The goal of this contribution is to suggest a road-map to pursue the risk assessment of microplastics based on our experience in one decade in ENPs research. We highlight how to avoid potential dead-ends in microplastics research. We also illustrate that cross-linking other research fields, especially polymer chemistry and material sciences, may facilitate filling the urgent knowledge gaps.

  14. An Evaluation of the Environmental Fate and behavior of Munitions Materiel (TNT, RDX) in Soil and Plant Systems. Environmental Fate and behavior of TNT

    Science.gov (United States)

    1989-08-01

    for 48 I. The soil extracts were filtered through a 0.22-lim Nylon 66 filter ( Alltech Associates, Deerfield, Illinois), and the volume was then... advantages over the analysis of stem tissue. Paramount among these is that stem exudate contains only xylem transport products, or those metabolites being...transported 3 from root to shoot tissues, whereas stem tissue contains both transport products and storage forms of xenobiotics. Additional advantages

  15. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    Energy Technology Data Exchange (ETDEWEB)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B. [and others

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

  16. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    International Nuclear Information System (INIS)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B.

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management

  17. An Comparative Study of Jane Eyre's Fate and Tess's Fate from Femi-nist Viewpoint%An Comparative Study of Jane Eyre's Fate and Tess's Fate from Femi?nist Viewpoint

    Institute of Scientific and Technical Information of China (English)

    陈静; 何泠静

    2017-01-01

    In"Jane Eyre", Charlotte Bronte's masterpiece the heroine, Jane Eyre has fully reflected her self-esteem, equality, and pure personality, which are also reflected in her concept of love vividly. However, Thomas Hardy's Tess is poor and kind, but she does not have a complete love like Jane Eyre, and she is described by his criticism of the old moral character with good vir-tues in the traditional sense. She is a new image of modern feminism who suffered from the old moral sense and gradually has re-volt consciousness. From the feminism viewpoint, this paper attempts to analysis the causes of their different fate from different points and reveal the impact of social background on their fates.

  18. Fate of accreting white dwarfs: Type I supernovae vs collapse

    International Nuclear Information System (INIS)

    Nomoto, Ken'ichi.

    1986-01-01

    The final fate of accreting C + O white dwarfs is either thermonuclear explosion or collapse, if the white dwarf mass grows to the Chandrasekhar mass. We discuss how the fate depends on the initial mass, age, composition of the white dwarf and the mass accretion rate. Relatively fast accretion leads to a carbon deflagration at low central density that gives rise to a Type Ia supernova. Slower accretion induces a helium detonation that could be observed as a Type Ib supernova. If the initial mass of the C + O white dwarf is larger than 1.2 Msub solar, a carbon deflagration starts at high central density and induces a collapse of the white dwarf to form a neutron star. We examine the critical condition for which a carbon deflagration leads to collapse, not explosion. For the case of explosion, we discuss to what extent the nucleosynthesis models are consistent with spectra of Type Ia and Ib supernovae. 61 refs., 18 figs

  19. The biological fate of decabromodiphenyl ethane following ...

    Science.gov (United States)

    1. The disposition of decabromodiphenyl ethane (DBDPE) was investigated based on concerns over its structural similarities to decaBDE, high potential for environmental persistence & bioaccumulation, and high production volume. 2. In the present study, female Sprague Dawley rats were administered a single dose of [14C]-DBDPE by oral, topical, or IV routes. Another set of rats were administered 10 daily oral doses of 14C]-DBDPE. Male B6C3F1/Tac mice were administered a single oral dose.3. DBDPE was poorly absorbed following oral dosing, with 95% of administered [14C]-radioactivity recovered in the feces, 1% recovered in the urine and less than 3% in the tissues at 72 h. DBDPE excretion was similar in male mice and female rats. Accumulation of [14C]-DBDPE was observed in liver and the adrenal gland after 10 daily oral doses.4. The dermis acted as a depot for dermally applied DBDPE; conservative estimates predict approx. 14 ± 8% of DBDPE may be absorbed into human skin in vivo; approx. 7 ± 4% of the parent chemical is expected to reach systemic circulation following continuous exposure (24 h). 5. Following intravenous administration, 6% of the dose was recovered in urine and 28% in the feces, while ~70% of the dose remained in tissues after 72 hours, with the highest concentrations found in the liver (42%) and lung (17%). Decabromodiphenyl ethane (DBDPE) is an additive brominated flame retardant used in a variety commercial products. It has been detected in indo

  20. Fate of trypanocidal drugs in cattle (chemotherapy of trypanosomiasis). Kenya

    International Nuclear Information System (INIS)

    1992-01-01

    This document is the final report of a project to determine the fate of tryponocidal drugs in cattle. Drugs are still the primary agent in the struggle against trypanosomiasis although there is little data on their pharmacokinetics, residue levels, bioavailability rates, etc. This project aimed to provide such information for the three drugs Diminazene aceturate (Berenil), Isometamidium chloride (Samorin) and Homidium bromide (Ethidium). Figs and tabs

  1. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo.

    Science.gov (United States)

    Pei, Weike; Feyerabend, Thorsten B; Rössler, Jens; Wang, Xi; Postrach, Daniel; Busch, Katrin; Rode, Immanuel; Klapproth, Kay; Dietlein, Nikolaus; Quedenau, Claudia; Chen, Wei; Sauer, Sascha; Wolf, Stephan; Höfer, Thomas; Rodewald, Hans-Reimer

    2017-08-24

    Developmental deconvolution of complex organs and tissues at the level of individual cells remains challenging. Non-invasive genetic fate mapping has been widely used, but the low number of distinct fluorescent marker proteins limits its resolution. Much higher numbers of cell markers have been generated using viral integration sites, viral barcodes, and strategies based on transposons and CRISPR-Cas9 genome editing; however, temporal and tissue-specific induction of barcodes in situ has not been achieved. Here we report the development of an artificial DNA recombination locus (termed Polylox) that enables broadly applicable endogenous barcoding based on the Cre-loxP recombination system. Polylox recombination in situ reaches a practical diversity of several hundred thousand barcodes, allowing tagging of single cells. We have used this experimental system, combined with fate mapping, to assess haematopoietic stem cell (HSC) fates in vivo. Classical models of haematopoietic lineage specification assume a tree with few major branches. More recently, driven in part by the development of more efficient single-cell assays and improved transplantation efficiencies, different models have been proposed, in which unilineage priming may occur in mice and humans at the level of HSCs. We have introduced barcodes into HSC progenitors in embryonic mice, and found that the adult HSC compartment is a mosaic of embryo-derived HSC clones, some of which are unexpectedly large. Most HSC clones gave rise to multilineage or oligolineage fates, arguing against unilineage priming, and suggesting coherent usage of the potential of cells in a clone. The spreading of barcodes, both after induction in embryos and in adult mice, revealed a basic split between common myeloid-erythroid development and common lymphocyte development, supporting the long-held but contested view of a tree-like haematopoietic structure.

  2. The fate of microplastics in the marine isopod Idotea emarginata

    OpenAIRE

    Hämer, Julia; Gutow, Lars; Köhler, Angela; Saborowski, Reinhard

    2014-01-01

    Plastic pollution is an emerging global threat for marine wildlife. Many species of birds, reptiles and fishes are directly impaired by plastics as they can get entangled in ropes and drown or they can ingest plastic fragments which, in turn, may clog their stomachs and guts. Microplastics of less than 1 mm can be ingested by small invertebrates but their fate in the digestive organs and their effects on the animals are yet not well understood. We embedded fluorescent microplastics in artific...

  3. Effect and fate of lindane in maize plant

    International Nuclear Information System (INIS)

    Bennaceur, M.; Ghezal, F.; Klaa, K.

    1992-10-01

    The fate and effect of lindane in maize plant, soil and predators were studied following insecticide application under field conditions. Respectively 84,2% and 93,3% of lindane residues were lost after 2 and 4 months in soil after treatment. About 90% of the insecticide was lost after one month in maize plant. Lindane residues were present in maize grains (0,205ppm). Lindane decreases the density of many predators in soils such as species of collembola, coccinellidae, formicidae, coleoptera

  4. [The fate of nuclides in natural water systems

    International Nuclear Information System (INIS)

    Turekian, K.K.

    1989-01-01

    Our research at Yale on the fate of nuclides in natural water systems has three components to it: the study of the atmospheric precipitation of radionuclides and other chemical species; the study of the behavior of natural radionuclides in groundwater and hydrothermal systems; and understanding the controls on the distribution of radionuclides and stable nuclides in the marine realm. In this section a review of our progress in each of these areas is presented

  5. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo

    Science.gov (United States)

    Rössler, Jens; Wang, Xi; Postrach, Daniel; Busch, Katrin; Rode, Immanuel; Klapproth, Kay; Dietlein, Nikolaus; Quedenau, Claudia; Chen, Wei; Sauer, Sascha; Wolf, Stephan; Höfer, Thomas; Rodewald, Hans-Reimer

    2017-01-01

    Developmental deconvolution of complex organs and tissues at the level of individual cells remains challenging. Non-invasive genetic fate mapping1 has been widely used, but the low number of distinct fluorescent marker proteins limits its resolution. Much higher numbers of cell markers have been generated using viral integration sites2, viral barcodes3, and strategies based on transposons4 and CRISPR/Cas9 genome editing5; however, temporal and tissue-specific induction of barcodes in situ has not been achieved. Here we report the development of an artificial DNA recombination locus (termed Polylox) that enables broadly applicable endogenous barcoding based on the Cre-loxP recombination system6,7. Polylox recombination in situ reaches a practical diversity of several hundred thousand barcodes, allowing tagging of single cells. We have used this experimental system, combined with fate mapping, to assess haematopoietic stem cell (HSC) fates in vivo. Classical models of haematopoietic lineage specification assume a tree with few major branches. More recently, driven in part by the development of more efficient single-cell assays and improved transplantation efficiencies, different models have been proposed, in which unilineage priming may occur in mice and humans at the level of HSCs8–10. We have introduced barcodes into HSC progenitors in embryonic mice, and found that the adult HSC compartment is a mosaic of embryo-derived HSC clones, some of which are unexpectedly large. Most HSC clones gave rise to multilineage or oligolineage fates, arguing against unilineage priming, and suggesting coherent usage of the potential of cells in a clone. The spreading of barcodes, both after induction in embryos and in adult mice, revealed a basic split between common myeloid-erythroid development and common lymphocyte development, supporting the long-held but contested view of a tree-like haematopoietic structure. PMID:28813413

  6. Mega borg oil spill: Fate and effect studies

    International Nuclear Information System (INIS)

    1992-01-01

    The Mega Borg, a Norwegian tanker, released an estimated 5.1 million gallons (gal) of Palanca Angola crude oil into the Gulf of Mexico during a lightering accident and subsequent fire. The collection of reports was designed to provide a comprehensive overview of the spill chronology, the fate of the oil released, and subsequent studies that were conducted to assess the impacts of the oil spill on the environment and its biota

  7. Mutually Exclusive CBC-Containing Complexes Contribute to RNA Fate

    DEFF Research Database (Denmark)

    Giacometti, Simone; Benbahouche, Nour El Houda; Domanski, Michal

    2017-01-01

    The nuclear cap-binding complex (CBC) stimulates processing reactions of capped RNAs, including their splicing, 3′-end formation, degradation, and transport. CBC effects are particular for individual RNA families, but how such selectivity is achieved remains elusive. Here, we analyze three main CBC......-containing complexes are short lived in vivo, and we therefore suggest that RNA fate involves the transient formation of mutually exclusive CBC complexes, which may only be consequential at particular checkpoints during RNA biogenesis....

  8. Occurrence, fate and effects of azoxystrobin in aquatic ecosystems

    OpenAIRE

    Rodrigues, Elsa Teresa Santos

    2016-01-01

    Tese de doutoramento em Biociências, na especialidade de Toxicologia, apresentada ao Departamento de Ciências da Vida da Faculdade de Ciências e Tecnologia da Universidade de Coimbra After a literature review to find relevant research on the occurrence, fate and effects of azoxystrobin, the world’s leading agricultural fungicide, in aquatic ecosystems, strengths and gaps were identified in the database. Data revealed that validated analytical methods for complex matrices are very limited a...

  9. Developing climatic scenarios for pesticide fate modelling in Europe

    International Nuclear Information System (INIS)

    Blenkinsop, S.; Fowler, H.J.; Dubus, I.G.; Nolan, B.T.; Hollis, J.M.

    2008-01-01

    A climatic classification for Europe suitable for pesticide fate modelling was constructed using a 3-stage process involving the identification of key climatic variables, the extraction of the dominant modes of spatial variability in those variables and the use of k-means clustering to identify regions with similar climates. The procedure identified 16 coherent zones that reflect the variability of climate across Europe whilst maintaining a manageable number of zones for subsequent modelling studies. An analysis of basic climatic parameters for each zone demonstrates the success of the scheme in identifying distinct climatic regions. Objective criteria were used to identify one representative 26-year daily meteorological series from a European dataset for each zone. The representativeness of each series was then verified against the zonal classifications. These new FOOTPRINT climate zones provide a state-of-the-art objective classification of European climate complete with representative daily data that are suitable for use in pesticide fate modelling. - The FOOTPRINT climatic zones provide an objective climatic classification and daily climate series that may be used for the modelling of pesticide fate across Europe

  10. Chemicals as the Sole Transformers of Cell Fate.

    Science.gov (United States)

    Ebrahimi, Behnam

    2016-05-30

    Forced expression of lineage-specific transcription factors in somatic cells can result in the generation of different cell types in a process named direct reprogramming, bypassing the pluripotent state. However, the introduction of transgenes limits the therapeutic applications of the produced cells. Numerous small-molecules have been introduced in the field of stem cell biology capable of governing self-renewal, reprogramming, transdifferentiation and regeneration. These chemical compounds are versatile tools for cell fate conversion toward desired outcomes. Cell fate conversion using small-molecules alone (chemical reprogramming) has superiority over arduous traditional genetic techniques in several aspects. For instance, rapid, transient, and reversible effects in activation and inhibition of functions of specific proteins are of the profits of small-molecules. They are cost-effective, have a long half-life, diversity on structure and function, and allow for temporal and flexible regulation of signaling pathways. Additionally, their effects could be adjusted by fine-tuning concentrations and combinations of different small-molecules. Therefore, chemicals are powerful tools in cell fate conversion and study of stem cell and chemical biology in vitro and in vivo. Moreover, transgene-free and chemical-only transdifferentiation approaches provide alternative strategies for the generation of various cell types, disease modeling, drug screening, and regenerative medicine. The current review gives an overview of the recent findings concerning transdifferentiation by only small-molecules without the use of transgenes.

  11. THE FATE OF THE COMPACT REMNANT IN NEUTRON STAR MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Chris L. [Department of Physics, The University of Arizona, Tucson, AZ 85721 (United States); Belczynski, Krzysztoff [Astronomical Observatory, University of Warsaw, Al Ujazdowskie 4, 00-478 Warsaw (Poland); Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Rosswog, Stephan [The Oskar klein Center, Department of Astronomy, AlbaNova, Stockholm University, SE-106 91 Stockholm (Sweden); Shen, Gang [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195 (United States); Steiner, Andrew W. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States)

    2015-10-10

    Neutron star (binary neutron star and neutron star–black hole) mergers are believed to produce short-duration gamma-ray bursts (GRBs). They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and advanced VIRGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of Newtonian merger calculations and equation of state studies to determine the fate of the cores of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3–2.4 solar masses. If quick black hole formation is essential in producing GRBs, LIGO/Virgo observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.

  12. Environmental risk assessments for transgenic crops producing output trait enzymes

    Science.gov (United States)

    Tuttle, Ann; Shore, Scott; Stone, Terry

    2009-01-01

    The environmental risks from cultivating crops producing output trait enzymes can be rigorously assessed by testing conservative risk hypotheses of no harm to endpoints such as the abundance of wildlife, crop yield and the rate of degradation of crop residues in soil. These hypotheses can be tested with data from many sources, including evaluations of the agronomic performance and nutritional quality of the crop made during product development, and information from the scientific literature on the mode-of-action, taxonomic distribution and environmental fate of the enzyme. Few, if any, specific ecotoxicology or environmental fate studies are needed. The effective use of existing data means that regulatory decision-making, to which an environmental risk assessment provides essential information, is not unnecessarily complicated by evaluation of large amounts of new data that provide negligible improvement in the characterization of risk, and that may delay environmental benefits offered by transgenic crops containing output trait enzymes. PMID:19924556

  13. Metals fate and transport modelling in streams and watersheds: state of the science and USEPA workshop review

    Science.gov (United States)

    Caruso, B.S.; Cox, T.J.; Runkel, Robert L.; Velleux, M.L.; Bencala, Kenneth E.; Nordstrom, D. Kirk; Julien, P.Y.; Butler, B.A.; Alpers, Charles N.; Marion, A.; Smith, Kathleen S.

    2008-01-01

    Metals pollution in surface waters from point and non-point sources (NPS) is a widespread problem in the United States and worldwide (Lofts et al., 2007; USEPA, 2007). In the western United States, metals associated with acid mine drainage (AMD) from hardrock mines in mountainous areas impact aquatic ecosystems and human health (USEPA, 1997a; Caruso and Ward, 1998; Church et al., 2007). Metals fate and transport modelling in streams and watersheds is sometimes needed for assessment and restoration of surface waters, including mining-impacted streams (Runkel and Kimball, 2002; Caruso, 2003; Velleux et al., 2006). The Water Quality Analysis Simulation Program (WASP; Wool et al., 2001), developed by the US Environmental Protection Agency (USEPA), is an example of a model used for such analyses. Other approaches exist and appropriate model selection depends on site characteristics, data availability and modelling objectives. However, there are a wide range of assumptions, input parameters, data requirements and gaps, and calibration and validation issues that must be addressed by model developers, users and decision makers. Despite substantial work on model development, their successful application has been more limited because they are not often used by decision makers for stream and watershed assessment and restoration. Bringing together scientists, model developers, users and decision makers should stimulate the development of appropriate models and improve the applicability of their results. To address these issues, the USEPA Office of Research and Development and Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming) hosted a workshop in Denver, Colorado on February 13–14, 2007. The workshop brought together approximately 35 experts from government, academia and consulting to address the state of the art for modelling metals fate and transport, knowledge gaps and future directions in metals modelling. It focused on modelling metals in high

  14. In situ fate and partitioning of waterborne perfluoroalkyl acids (PFAAs) in the Youngsan and Nakdong River Estuaries of South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seongjin [School of Earth and Environmental Sciences, Seoul National University, Seoul (Korea, Republic of); Khim, Jong Seong, E-mail: jskocean@snu.ac.kr [School of Earth and Environmental Sciences, Seoul National University, Seoul (Korea, Republic of); Park, Jinsoon [School of Earth and Environmental Sciences, Seoul National University, Seoul (Korea, Republic of); Kim, Minhee; Kim, Woong-Ki; Jung, Jinho; Hyun, Seunghun; Kim, Jeong-Gyu [Division of Environmental Science and Ecological Engineering, Korea University, Seoul (Korea, Republic of); Lee, Hyojin; Choi, Heeseon J. [Department of Environmental Chemistry and Ecology, GeoSystem Research Corporation, Gunpo (Korea, Republic of); Codling, Garry [Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK (Canada); Giesy, John P. [Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK (Canada); Department of Zoology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI (United States); Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, SAR (China)

    2013-02-15

    Concentrations, distributions, fate, and partitioning of perfluoroalkyl acids (PFAAs) were investigated in surface water (n = 34) collected from the Youngsan and Nakdong River Estuaries of South Korea. Thirteen individual PFAAs in water and suspended solids (SS) were quantified by use of HPLC–MS/MS. PFAAs were detected in all samples, which indicated that they were widely distributed in the study area. Greater concentrations of PFAAs were found at some inland sites which seemed to be affected by direct input from point sources, such as wastewater treatment plants, and/or indirect diffusive sources, such as surface runoff. Spatial distributions of PFAAs in estuaries along transects toward the open sea demonstrated that these chemicals were transported to the outer region primarily by water discharged during the rainy season. Field-based partition coefficients (K{sub d}) for long-chain PFAAs (C ≥ 8) were significantly correlated with salinity (r{sup 2} = 0.48 to 0.73, p < 0.01); K{sub d} values increased exponentially as a function of salinity. Due to the ‘salting-out’ effect, PFAAs were largely scavenged by adsorption onto SS and/or sediments in estuarine environments. In addition, values for K{sub d} of those PFAAs were directly proportional to the number of carbon atoms in the PFAAs. Salting constants of selected PFAAs were notably greater than those of other environmental organic contaminants, which indicated that adsorption of PFAAs is largely associated with salinity. Overall, the results of the present study will provide better understanding of the fate and transport of PFAAs in the zone of salinity boundary that can be used for developing fate models of PFAAs in the coastal marine environment. - Highlights: ► In situ fate and partitioning of PFAAs were described along salinity gradients in estuaries. ► Salinity was found to be the key factor controlling adsorption of waterborne PFAAs. ► The K{sub d} for longer-chain PFAAs (C ≥ 8) increased as

  15. Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts

    International Nuclear Information System (INIS)

    Schaumann, Gabriele E.; Philippe, Allan; Bundschuh, Mirco; Metreveli, George; Klitzke, Sondra; Rakcheev, Denis; Grün, Alexandra

    2015-01-01

    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO 2 NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag 2 S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO 2 NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO 2 NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of

  16. Understanding the fate and biological effects of Ag- and TiO{sub 2}-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Gabriele E., E-mail: schaumann@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Philippe, Allan, E-mail: philippe@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Bundschuh, Mirco, E-mail: mirco.bundschuh@slu.se [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Ecotoxicology and Environment, Fortstr. 7, D-76829 Landau (Germany); Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Lennart Hjelms väg 9, SE-75007 Uppsala (Sweden); Metreveli, George, E-mail: metreveli@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Klitzke, Sondra, E-mail: sondra.klitzke@tu-berlin.de [Albert-Ludwigs-Universität Freiburg, Institute of Forest Sciences, Chair of Soil Ecology, 79085 Freiburg i.Br. (Germany); Berlin University of Technology, Institute of Ecology, Department of Soil Science, Ernst-Reuter-Platz 1, D-10587 Berlin (Germany); Rakcheev, Denis, E-mail: rakcheev@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Grün, Alexandra, E-mail: alexg@uni-koblenz.de [Universität Koblenz-Landau, Institute for Integrated Natural Sciences, Dept. of Biology, Universitätsstr. 1, D-56070 Koblenz (Germany); and others

    2015-12-01

    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO{sub 2} NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag{sub 2}S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO{sub 2} NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO{sub 2} NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering

  17. Assessing the fate of organic micropollutants during riverbank filtration utilizing field studies and laboratory test systems

    Science.gov (United States)

    Schmidt, C. K.; Lange, F. T.; Sacher, F.; Baus, C.; Brauch, H.-J.

    2003-04-01

    In Germany and other highly populated countries, several waterworks use riverbank filtration as a first step in the treatment of river water for water supplies. Unfortunately, industrial and municipal discharges and the influence of agriculture lead to the pollution of rivers and lakes by a number of organic chemicals. In order to assess the impact of those organic micropollutants on the quality of drinking water, it is necessary to clarify their fate during infiltration and underground passage. The fate of organic micropollutants in a river water-groundwater infiltration system is mainly determined by adsorption mechanisms and biological transformations. One possibility to simulate the microbial degradation of single compounds during riverbank filtration is the use of laboratory test filter systems, that are operated as biological fixed-bed reactors under aerobic conditions. The benefit and meaningfulness of those test filters was evaluated on the basis of selected target compounds by comparing the results derived from test filter experiments with field studies under environmental conditions at the River Rhine. Samples from the river and from groundwater of a well characterized aerobic infiltration pathway were analyzed over a time period of several years for a spectrum of organic micropollutants. Target compounds comprised several contaminants relevant for the aquatic environment, such as complexing agents, aromatic sulfonates, pharmaceuticals (including iodinated X ray contrast media), and MTBE. Furthermore, the behaviour of some target compounds during aerobic riverbank filtration was compared to their fate along a section of an anaerobic (oxygen-depleted) aquifer at the River Ruhr that is characterized by a transition state between sulfate reduction and methane production. While some organic micropollutants showed no major differences, the elimination of others turned out to be clearly dependent on the underlying redox processes in the groundwater. The

  18. Biological fate, transport, and ecotoxicity of toxic and hazardous waste in the Mississippi River Basin

    International Nuclear Information System (INIS)

    Abdelghani, A.; Hartley, W.; Bart, H.; Ide, C.; Ellgaard, E.; Sherry, T.; Devall, M.; Thien, L.; Horner, E.; Mizell, M.

    1993-01-01

    The objective of the cluster investigators is to develop a dynamic model for the evaluation of the biological fate, transport, and ecotoxicity from multiple chemical contamination of the Mississippi River Basin. To develop this environmental model, FY 93-94 most of cluster investigators focused on Devil's Swamp Site (DSS), a cypress swamp which lies just Northwest of Baton Rouge, Louisiana, adjacent to the Mississippi River. The DSS which includes a man-made lake has contaminated sediment, water and biota. The DSS receives flood water from the Mississippi River during high flow periods and the Baton Rouge Bayou drains through the DSS. The DSS receives toxic substances and hazardous waste from a wide variety of surrounding industrial operations including an abandoned hazardous waste disposal facility. In addition, some investigators studied Bayou Trepangnier. This research cluster will continue studying Devil Swamp. The large number of investigators in this cluster resulted from incorporating related research proposals based on reviewer recommendations. The specific aims of the cluster for the first year were to conduct a physical, chemical, ecological survey and baseline toxicological characterization of the DSS from existing databases maintained by State and federal agencies, field studies (assessment) of sediment, air, water and biota, and laboratory screening studios. This assessment will provide critical information and focus for the next two years in-depth studies of critical transport and fate processes, ecotoxicity, biomarkers of effect, and uptake, metabolism and distribution of toxicants. The primary significant outcome of the cluster researchers will be the development of an ecological risk assessment model combining biotic and physical/chemical variables for DSS with a projection of model reliability and accuracy for use at other typical Mississippi River Basin sites

  19. Evaluation and characterization of mechanisms controlling fate and effects of Army smokes

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Ligotke, M.W.; Bolton, H. Jr.; Fellows, R.J.; Van Voris, P.; McKinley, J.P.; Mi, Shu-mei W.; McFadden, K.M.

    1990-08-01

    The primary objective of this study was to characterize the fate and response of soil and biotic components of the terrestrial environment to aerosols, deposited brass, and brass in combination with fog oil. Important physical, chemical, and biotic aspects were investigated using an environmental wind tunnel. Air/surface deposition rates were determined for foliar and soil surfaces, both in the absence and presence of fog oil. Deposition velocities for foliage ranged from 0.1 to 1.0 cm/s at wind speeds of 2 to 10 mph, respectively. Foliar contact toxicity was assessed using five different types of terrestrial vegetation representative of Army training sites and surrounding environments. No significant foliar contact toxicity was observed for brass. The weathering and chemistry of brass aerosols deposited and amended to soils was assessed, along with the impacts of acid precipitation and moisture regimes on weathering rates. Rates of brass weathering and the fate of solubilized Cu and Zn are discussed. The influence of soil weathering processes and brass solubilization on seed germination indicated no detectable effects of brass. However, moderate toxicity effects were noted after seed germination indicated no detectable effects of brass. However, moderate toxicity effects were noted after 160 days of soil incubation. The effects were proportional to soil-loading levels. Influence of soil weathering processes and contaminant solubilization on soil microbiological activities indicated that soil dehydrogenase activity was more susceptible to impacts than was phosphatase activity or microbial biomass. Nitrifying bacteria and heterotrophic bacteria were not significantly affected by brass. Invertebrates (earthworms) associated with soil contaminated with brass were only slightly impacted, and only at loading rates >445 {mu}g/cm{sup 2}.

  20. Effects of superabsorbent polymers on the fate of fungicidal carbendazim in soils

    International Nuclear Information System (INIS)

    Yang, Yatian; Wang, Haiyan; Huang, Lei; Zhang, Sufen; He, Yupeng; Gao, Qi; Ye, Qingfu

    2017-01-01

    Highlights: • SAPs affected the transformation of MBC in oxic soils. • MBC mineralization was obviously inhibited in loamy and saline soils with SAPs. • SAPs enhanced the dissipation of MBC in acidic clayey soil. • SAPs increased the bound residue of MBC in soils. • Soil microbial state was changed after treated with MBC and SAPs during incubation. - Abstract: Superabsorbent polymers (SAPs) have been extensively used as soil amendments to retain water, and they often coexist with pesticides in agricultural fields. However, effects of SAPs on the fate of pesticides in soil remain poorly understood. In this study, a laboratory experiment was conducted to evaluate the effects of SAPs on the transformation of "1"4C-carbendazim in soils. The results showed that compared to the SAPs-free control, 11.4% relative reduction of "1"4C-carbendazim extractable residue was observed in red clayey soil with SAPs amendment after 100 days of incubation (p 0.05). SAPs changed the profiles of major metabolites (2-aminobenzimidazole and 2-hydroxybenzimidazole) to some extent. After 100 days of SAPs treatment, the mineralization of "1"4C-carbendazim was significantly reduced by 37.6% and 41.2% in loamy soil and saline soil, respectively, relative to the SAPs-free treatment (p < 0.05). SAPs increased the bound residue of carbendazim by 11.1–19.1% in comparison with SAPs-free controls. These findings suggest SAPs amendments significantly affected the fate of carbendazim and attention should be given to the assessment of environmental and ecological safety of pesticides in SAPs-amended soils.

  1. Fate and Transport of Nanoparticles in Porous Media: A Numerical Study

    Science.gov (United States)

    Taghavy, Amir

    Understanding the transport characteristics of NPs in natural soil systems is essential to revealing their potential impact on the food chain and groundwater. In addition, many nanotechnology-based remedial measures require effective transport of NPs through soil, which necessitates accurate understanding of their transport and retention behavior. Based upon the conceptual knowledge of environmental behavior of NPs, mathematical models can be developed to represent the coupling of processes that govern the fate of NPs in subsurface, serving as effective tools for risk assessment and/or design of remedial strategies. This work presents an innovative hybrid Eulerian-Lagrangian modeling technique for simulating the simultaneous reactive transport of nanoparticles (NPs) and dissolved constituents in porous media. Governing mechanisms considered in the conceptual model include particle-soil grain, particle-particle, particle-dissolved constituents, and particle- oil/water interface interactions. The main advantage of this technique, compared to conventional Eulerian models, lies in its ability to address non-uniformity in physicochemical particle characteristics. The developed numerical simulator was applied to investigate the fate and transport of NPs in a number of practical problems relevant to the subsurface environment. These problems included: (1) reductive dechlorination of chlorinated solvents by zero-valent iron nanoparticles (nZVI) in dense non-aqueous phase liquid (DNAPL) source zones; (2) reactive transport of dissolving silver nanoparticles (nAg) and the dissolved silver ions; (3) particle-particle interactions and their effects on the particle-soil grain interactions; and (4) influence of particle-oil/water interface interactions on NP transport in porous media.

  2. Effects of superabsorbent polymers on the fate of fungicidal carbendazim in soils

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yatian; Wang, Haiyan, E-mail: wanghaiyan@zju.edu.cn; Huang, Lei; Zhang, Sufen; He, Yupeng; Gao, Qi; Ye, Qingfu, E-mail: qfye@zju.edu.cn

    2017-04-15

    Highlights: • SAPs affected the transformation of MBC in oxic soils. • MBC mineralization was obviously inhibited in loamy and saline soils with SAPs. • SAPs enhanced the dissipation of MBC in acidic clayey soil. • SAPs increased the bound residue of MBC in soils. • Soil microbial state was changed after treated with MBC and SAPs during incubation. - Abstract: Superabsorbent polymers (SAPs) have been extensively used as soil amendments to retain water, and they often coexist with pesticides in agricultural fields. However, effects of SAPs on the fate of pesticides in soil remain poorly understood. In this study, a laboratory experiment was conducted to evaluate the effects of SAPs on the transformation of {sup 14}C-carbendazim in soils. The results showed that compared to the SAPs-free control, 11.4% relative reduction of {sup 14}C-carbendazim extractable residue was observed in red clayey soil with SAPs amendment after 100 days of incubation (p < 0.05). Carbendazim dissipation was enhanced by 34.7%, while no obvious difference was found in loamy soil and saline soil (p > 0.05). SAPs changed the profiles of major metabolites (2-aminobenzimidazole and 2-hydroxybenzimidazole) to some extent. After 100 days of SAPs treatment, the mineralization of {sup 14}C-carbendazim was significantly reduced by 37.6% and 41.2% in loamy soil and saline soil, respectively, relative to the SAPs-free treatment (p < 0.05). SAPs increased the bound residue of carbendazim by 11.1–19.1% in comparison with SAPs-free controls. These findings suggest SAPs amendments significantly affected the fate of carbendazim and attention should be given to the assessment of environmental and ecological safety of pesticides in SAPs-amended soils.

  3. Evaluate and characterize mechanisms controlling transport, fate and effects of army smokes in an aerosol wind tunnel: Transport, transformations, fate and terrestrial ecological effects of fog oil obscurant smokes: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Van Voris, P.; Ligotke, M.W.; Fellows, R.J.; McVeety, B.D.; Li, Shu-mei W.; Bolton, H. Jr.; Fredrickson, J.K.

    1989-01-01

    The terrestrial transport, chemical fate, and ecological effects of fog oil (FO) smoke obscurants were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on an exposure scenario, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of fog oil smoke/obscurants is establishing the importance of environmental parameters, such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and three soil types. 29 refs., 35 figs., 32 tabs.

  4. Environmental Risk Assessment of antimicrobials applied in veterinary medicine-A field study and laboratory approach.

    Science.gov (United States)

    Slana, Marko; Dolenc, Marija Sollner

    2013-01-01

    The fate and environmental risk of antimicrobial compounds of different groups of veterinary medicine pharmaceuticals (VMP's) have been compared. The aim was to demonstrate a correlation between the physical and chemical properties of active compounds and their metabolism in target animals, as well as their fate in the environment. In addition, the importance of techniques for manure management and agricultural practice and their influence on the fate of active compounds is discussed. The selected active compounds are shown to be susceptible to at least one environmental factor (sun, water, bacterial or fungal degradation) to which they are exposed during their life cycle, which contributes to its degradation. Degradation under a number of environmental factors has also to be considered as authentic information additional to that observed in the limited conditions in laboratory studies and in Environmental Risk Assessment calculations. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The fate of accreting white dwarfs: type I supernovae vs. collapse

    International Nuclear Information System (INIS)

    Nomoto, Ken'ichi

    1986-01-01

    The fate of accreting white dwarfs is examined with respect to thermonuclear explosion or collapse. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy 1986. Effects of accretion and the fate of white dwarfs, models for type 1a and 1b supernovae, collapse induced by carbon deflagration at high density, and fate of double white dwarfs, are all discussed. (U.K.)

  6. Selection of distribution coefficients for contaminant fate and transport calculations: Strontium as a case study

    International Nuclear Information System (INIS)

    Kaplan, D.I.; Krupka, K.M.; Serne, R.J.

    1997-01-01

    As part of an ongoing project funded by a cooperative effort involving the Office of Radiation and Indoor Air (ORIA) of the U.S. Environmental Protection Agency (EPA), the Office of Environmental Restoration (EM-40) of the Department of Energy (DOE), and the Nuclear Regulatory Agency (NRC), distribution coefficient (K d ) values are being compiled from the literature to develop provisional tables for cadmium, cesium, chromium, lead, plutonium, strontium, thorium, and uranium. The tables are organized according to important aqueous- and solid-phase parameters affecting the sorption of these contaminants. These parameters, which vary with contaminant, include pH and redox conditions; cation exchange capacity (CEC); presence of iron-oxide, aluminum-oxide, clay, and mica minerals; organic matter content; and solution concentrations of contaminants, competing ions, and complexing ligands. Sorption information compiled for strontium is used to illustrate our approach. The strontium data show how selected geochemical parameters (i.e., CEC, pH, and clay content) affect Strontium K d values and the selection of open-quote default close-quote K d values needed for modeling contaminant transport and risks at sites for which site specific data are lacking. Results of our evaluation may be used by site management and technical staff to assess contaminant fate, migration, and risk calculations in support of site remediation and waste management decisions

  7. Photochemical fate of beta-blockers in NOM enriched waters

    International Nuclear Information System (INIS)

    Wang, Ling; Xu, Haomin; Cooper, William J.; Song, Weihua

    2012-01-01

    Beta-blockers, prescribed for the treatment of high blood pressure and for long-term use after a heart attack, have been detected in surface and ground waters. This study examines the photochemical fate of three beta-blockers, atenolol, metoprolol, and nadolol. Hydrolysis accounted for minor losses of these beta-blockers in the pH range 4–10. The rate of direct photolysis at pH 7 in a solar simulator varied from 6.1 to 8.9 h −1 at pH 7. However, the addition of a natural organic matter (NOM) isolate enhanced the photochemical loss of all three compounds. Indirect photochemical fate, generally described by reactions with hydroxyl radical (·OH) and singlet oxygen ( 1 ΔO 2 ), and, the direct reaction with the triplet excited state, 3 NOM ⁎ , also varied but collectively appeared to be the major loss factor. Bimolecular reaction rate constants of the three beta-blockers with 1 ΔO 2 and ·OH were measured and accounted for 0.02–0.04% and 7.2–38.9% of their loss, respectively. These data suggest that the 3 NOM ⁎ contributed 50.6–85.4%. Experiments with various 3 NOM ⁎ quenchers supported the hypothesis that it was singly the most important reaction. Atenolol was chosen for more detailed investigation, with the photoproducts identified by LC–MS analysis. The results suggested that electron-transfer could be an important mechanism in photochemical fate of beta-blockers in the presence of NOM. - Highlights: ► Photochemical degradation of beta-blockers in the simulated natural waters. ► Reactive Oxygen Species play a minor role in the indirect photodegradation. ► The loss of beta-blockers results from direct reaction with 3 DOM ⁎ .

  8. Fate and transport of pathogens in lakes and reservoirs.

    Science.gov (United States)

    Brookes, Justin D; Antenucci, Jason; Hipsey, Matthew; Burch, Michael D; Ashbolt, Nicholas J; Ferguson, Christobel

    2004-07-01

    Outbreaks of water-borne disease via public water supplies continue to be reported in developed countries even though there is increased awareness of, and treatment for, pathogen contamination. Pathogen episodes in lakes and reservoirs are often associated with rain events, and the riverine inflow is considered to be major source of pathogens. Consequently, the behaviour of these inflows is of particular importance in determining pathogen transport and distribution. Inflows are controlled by their density relative to that of the lake, such that warm inflows will flow over the surface of the lake as a buoyant surface flow and cold, dense inflows will sink beneath the lake water where they will flow along the bathymetry towards the deepest point. The fate of pathogens is determined by loss processes including settling and inactivation by temperature, UV and grazing. The general trend is for the insertion timescale to be shortest, followed by sedimentation losses and temperature inactivity. The fate of Cryptosporidium due to UV light inactivation can occur at opposite ends of the scale, depending on the location of the oocysts in the water column and the extinction coefficient for UV light. For this reason, the extinction coefficient for UV light appears to be a vitally important parameter for determining the risk of Cryptosporidium contamination. For risk assessment of pathogens in supply reservoirs, it is important to understand the role of hydrodynamics in determining the timescale of transport to the off-take relative to the timescale of inactivation. The characteristics of the riverine intrusion must also be considered when designing a sampling program for pathogens. A risk management framework is presented that accounts for pathogen fate and transport for reservoirs.

  9. Building 235-F Goldsim Fate And Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G. A.; Phifer, M. A.

    2012-09-14

    Savannah River National Laboratory (SRNL) personnel, at the request of Area Completion Projects (ACP), evaluated In-Situ Disposal (ISD) alternatives that are under consideration for deactivation and decommissioning (D&D) of Building 235-F and the Building 294-2F Sand Filter. SRNL personnel developed and used a GoldSim fate and transport model, which is consistent with Musall 2012, to evaluate relative to groundwater protection, ISD alternatives that involve either source removal and/or the grouting of portions or all of 235-F. This evaluation was conducted through the development and use of a Building 235-F GoldSim fate and transport model. The model simulates contaminant release from four 235-F process areas and the 294-2F Sand Filter. In addition, it simulates the fate and transport through the vadose zone, the Upper Three Runs (UTR) aquifer, and the Upper Three Runs (UTR) creek. The model is designed as a stochastic model, and as such it can provide both deterministic and stochastic (probabilistic) results. The results show that the median radium activity concentrations exceed the 5 ?Ci/L radium MCL at the edge of the building for all ISD alternatives after 10,000 years, except those with a sufficient amount of inventory removed. A very interesting result was that grouting was shown to basically have minimal effect on the radium activity concentration. During the first 1,000 years grouting may have some small positive benefit relative to radium, however after that it may have a slightly deleterious effect. The Pb-210 results, relative to its 0.06 ?Ci/L PRG, are essentially identical to the radium results, but the Pb-210 results exhibit a lesser degree of exceedance. In summary, some level of inventory removal will be required to ensure that groundwater standards are met.

  10. Building 235-F Goldsim Fate And Transport Model

    International Nuclear Information System (INIS)

    Taylor, G. A.; Phifer, M. A.

    2012-01-01

    Savannah River National Laboratory (SRNL) personnel, at the request of Area Completion Projects (ACP), evaluated In-Situ Disposal (ISD) alternatives that are under consideration for deactivation and decommissioning (D and D) of Building 235-F and the Building 294-2F Sand Filter. SRNL personnel developed and used a GoldSim fate and transport model, which is consistent with Musall 2012, to evaluate relative to groundwater protection, ISD alternatives that involve either source removal and/or the grouting of portions or all of 235-F. This evaluation was conducted through the development and use of a Building 235-F GoldSim fate and transport model. The model simulates contaminant release from four 235-F process areas and the 294-2F Sand Filter. In addition, it simulates the fate and transport through the vadose zone, the Upper Three Runs (UTR) aquifer, and the Upper Three Runs (UTR) creek. The model is designed as a stochastic model, and as such it can provide both deterministic and stochastic (probabilistic) results. The results show that the median radium activity concentrations exceed the 5 ρCi/L radium MCL at the edge of the building for all ISD alternatives after 10,000 years, except those with a sufficient amount of inventory removed. A very interesting result was that grouting was shown to basically have minimal effect on the radium activity concentration. During the first 1,000 years grouting may have some small positive benefit relative to radium, however after that it may have a slightly deleterious effect. The Pb-210 results, relative to its 0.06 ρCi/L PRG, are essentially identical to the radium results, but the Pb-210 results exhibit a lesser degree of exceedance. In summary, some level of inventory removal will be required to ensure that groundwater standards are met

  11. The dynamics of aerosol behaviour and fate within spruce canopies

    International Nuclear Information System (INIS)

    Ould-Dada, Zitouni

    1996-01-01

    The current work was intended to provide data on aerosol inputs to forest ecosystems and their subsequent fate. The background to the project was the Chernobyl accident which highlighted the importance of forests and other semi-natural ecosystems as a link in the transfer of radioactivity to man. In the aftermath of the Chernobyl accident, forests were identified as a specific type of semi-natural ecosystem for which radioecological data were almost completely absent within the countries of the European Union. Information on radionuclide behaviour and transfer in forest ecosystems was therefore needed to establish and test radiological assessment models which can be used to evaluate the likely contribution to radiological dose-to-man contaminated forests may make. The objective of this study was thus to provide data on dry deposition, resuspension and field loss of aerosols to forest canopies, in particular those of Norway spruce (Picea abies), from wind tunnel experiments conducted with small scale 'model' canopies. An aerosol generation system was developed to produce aerosol particles in the size range of 0.13-1.37 μm (VMD). Particle size distributions can be controlled within desired limits and with sufficient stability over time allowing the technique to be suitable for use in extended aerosol deposition studies. A full scale dry deposition experiment using 0.82 μm (VMAD) uranium particles was performed in the wind tunnel using Norway spruce saplings of approximately 45 cm height. Deposition velocities (V g ) were obtained and these were related to meteorological measurements (wind speed, friction velocity, turbulence intensity) inside the wind tunnel and LAI of the canopy. The latter was divided into five horizontal layers and both horizontal and vertical variations in deposition were assessed. A V g value of 0.497 cm s -1 was obtained for the canopy as a whole with the highest and lowest fluxes of 2.85 x 10 -8 and 8.14 x 10 -9 μgU cm -2 s -1 occurring at

  12. Role of LRF/Pokemon in lineage fate decisions

    Science.gov (United States)

    Lunardi, Andrea; Guarnerio, Jlenia; Wang, Guocan

    2013-01-01

    In the human genome, 43 different genes are found that encode proteins belonging to the family of the POK (poxvirus and zinc finger and Krüppel)/ZBTB (zinc finger and broad complex, tramtrack, and bric à brac) factors. Generally considered transcriptional repressors, several of these genes play fundamental roles in cell lineage fate decision in various tissues, programming specific tasks throughout the life of the organism. Here, we focus on functions of leukemia/lymphoma-related factor/POK erythroid myeloid ontogenic factor, which is probably one of the most exciting and yet enigmatic members of the POK/ZBTB family. PMID:23396304

  13. Biological fate of butylated hydroxytoluene (BHT) in rats, (2)

    International Nuclear Information System (INIS)

    Nakagawa, Yoshio; Ikawa, Mieko; Hiraga, Kogo

    1976-01-01

    The fate of butylated hydroxytoluene (BHT) in hepatocytes was examined. 14 C-labelled BHT was administered once orally to rats, and the fractionation of hepatocytes was made in course of time to detect the subcellular distribution of radioactivity. The BHT incorporation into livers reached the maximum 6 hours after the administration. Most of the radioactivity was localized in the supernatant fraction at the beginning of the administration, but it decreased gradually, and the radioactivity in microsome fraction increased in time course. The radioactivity in the supernatant fraction and in serum assumed two forms; namely high molecular compound bound with protein and free low molecular compound. (Kobatake, H.)

  14. Detection, Occurrence and Fate of Emerging Contaminants in Agricultural Environments

    Science.gov (United States)

    Cassada, David A.; Bartelt–Hunt, Shannon L.; Li, Xu; D’Alessio, Matteo; Zhang, Yun; Zhang, Yuping; Sallach, J. Brett

    2018-01-01

    A total of 59 papers published in 2015 were reviewed ranging from detailed descriptions of analytical methods, to fate and occurrence studies, to ecological effects and sampling techniques for a wide variety of emerging contaminants likely to occur in agricultural environments. New methods and studies on veterinary pharmaceuticals, steroids, antibiotic resistance genes in agricultural environments continue to expand our knowledge base on the occurrence and potential impacts of these compounds. This review is divided into the following sections: Introduction, Analytical Methods, Steroid Hormones, Pharmaceutical Contaminants, Transformation Products, and “Antibiotic Resistance, Drugs, Bugs and Genes”. PMID:27620078

  15. Fate and transport modelling of uranium in Port Hope Harbour

    International Nuclear Information System (INIS)

    Pinilla, C.E.; Garisto, N.; Peters, R.

    2010-01-01

    Fate and transport modelling of contaminants in Port Hope Harbour and near-shore Lake Ontario was undertaken in support of an ecological and human health risk assessment. Uranium concentrations in the Harbour and near-shore Lake Ontario due to groundwater and storm water loadings were estimated with a state-of-the-art 3D hydrodynamic and contaminant transport model (ECOMSED). The hydrodynamic model was simplified to obtain a first estimate of the flow pattern in the Harbour. The model was verified with field data using a tracer (fluoride). The modelling results generally showed good agreement with the tracer field data. (author)

  16. Fate of Yang-Mills black hole in early Universe

    Energy Technology Data Exchange (ETDEWEB)

    Nakonieczny, Lukasz; Rogatko, Marek [Institute of Physics Maria Curie-Sklodowska University 20-031 Lublin, pl. Marii Curie-Sklodowskiej 1 (Poland)

    2013-02-21

    According to the Big Bang Theory as we go back in time the Universe becomes progressively hotter and denser. This leads us to believe that the early Universe was filled with hot plasma of elementary particles. Among many questions concerning this phase of history of the Universe there are questions of existence and fate of magnetic monopoles and primordial black holes. Static solution of Einstein-Yang-Mills system may be used as a toy model for such a black hole. Using methods of field theory we will show that its existence and regularity depend crucially on the presence of fermions around it.

  17. Understanding the fate of merging supermassive black holes

    International Nuclear Information System (INIS)

    Campanelli, Manuela

    2005-01-01

    Understanding the fate of merging supermassive black holes in galactic mergers, and the gravitational wave emission from this process, are important LISA science goals. To this end, we present results from numerical relativity simulations of binary black hole mergers using the so-called Lazarus approach to model gravitational radiation from these events. In particular, we focus here on some recent calculations of the final spin and recoil velocity of the remnant hole formed at the end of a binary black hole merger process, which may constrain the growth history of massive black holes at the core of galaxies and globular clusters

  18. Chlorine cycling and fates of 36Cl in terrestrial environments

    OpenAIRE

    Bastviken, David; Svensson, Teresia; Sandén, Per; Kylin, Henrik

    2013-01-01

    Chlorine-36 (36Cl), a radioisotope of chlorine (Cl) with a half-life of 301,000 years, is present in some types of nuclear waste and is disposed in repositories for radioactive waste. As the release of 36Cl from such repositories to the near surface environment has to be taken into account it is of interest to predict possible fates of 36Cl under various conditions as a part of the safety assessments of repositories for radioactive waste. This report aims to summarize the state of the art kno...

  19. Environmental behavior of technetium-99 and iodine-129

    International Nuclear Information System (INIS)

    Garland, T.R.; Schreckhise, R.G.

    1982-01-01

    The environmental behavior of technetium-99 and iodine-129 was once thought to be similar, particularly with respect to their soil solubility and biological interactions. Over the past several years, the comparative behavior of these two anions has been studied with respect to their fate in natural environments (both aquatic and terrestrial). The mechanisms studied include physical, chemical and biological parameters that account for differences in soil behavior, cycling between soil and/or air to vegetation, adsorption and metabolism in plants, and their availability and fate following ingestion by animals

  20. Prediction of overall persistence and long-range transport potential with multimedia fate models: robustness and sensitivity of results

    International Nuclear Information System (INIS)

    Fenner, Kathrin; Scheringer, Martin; Hungerbuehler, Konrad

    2004-01-01

    The hazard indicators persistence (P) and long-range transport potential (LRTP) are used in chemicals assessment to characterize chemicals with regard to the temporal and spatial extent of their environmental exposure. They are often calculated based on the results of multimedia fate models. The environmental and substance-specific input parameters of such models are subject to a range of methodological uncertainties and also influenced by natural variability. We employed probabilistic uncertainty analysis to quantify variance in P and LRTP predictions for chemicals with different partitioning and transport behavior. Variance found in the results is so large that it prevents a clear distinction between chemicals. Additionally, only small improvements are observed when evaluating the results relative to a benchmark chemical. This can be explained by the dominance of substance-specific parameters and the only small direct influence of environmental parameters on P and LRTP as model outcomes. The findings underline the importance of learning how environmental conditions cause variability in substance behavior for improved substance ranking and classification. - Environmental conditions cause variability in substance behavior which need to be considered in chemical ranking schemes

  1. Plant root absorption and metabolic fate of technetium in plants

    International Nuclear Information System (INIS)

    Cataldo, D.A.; Garland, T.R.; Wildung, R.E.

    1984-10-01

    Root absorption characteristics for the pertechnetate ion (TcO 4 - ) were determined using hydroponically grown soybean seedlings (Glycine max, cv. Williams). Absorption of TcO 4 - was found to be linear with time, sensitive to metabolic inhibitors, and exhibit multiple absorption isotherms over the concentration range 0.02 to 10 μM. The isotherms had calculated K/sub s/ values of 0.09, 8.9, and 54 μM for intact seedlings. The uptake of TcO 4 - (0.25 μM) was inhibited by a fourfold concentration excess of sulfate, phosphate, and selenate, but not by borate, nitrate, tungstate, perrhenate, iodate or vanadate. Kinetic studies demonstrated that sulfate, phosphate, and selenate were competitive inhibitors of TcO 4 - absorption. Once absorbed, Tc was readily transported as TcO 4 - to shoot tissues of soybean and subsequently associated with protein constituents. The chemical fate of Tc in plants varies with plant species. Plants high in nonprotein sulfhydryl compounds (Allium species) exhibited markedly different root/shoot distribution and protein incorporation patterns from species with low sulfur requirements (soybean, alfalfa, mustard). Based on these differences, Tc/S/Se tracer studies were employed to resolve the comparative fate of these probable analogs. 20 references, 5 figures, 5 tables

  2. Fate of macrosarcocyst of Sarcocystis gigantea in sheep

    Directory of Open Access Journals (Sweden)

    N. S. Al-Hyali1, E. R. Kennany2 and L.Y. Khalil1

    2011-01-01

    Full Text Available This study was conducted to detect the fate of macrosarcocysts of Sarcocystis gigantea in the tongue and eosophagus of naturally infected sheep, via collection of 25 samples, 10 of which showed calcification. The results showed presence of white different size grains on the wall of the pale eosophagus, in addition to presence of nodules containing white chalky materials and on cutting by knife produced grunting sound which indicated calcification. Histopathological results showed presence of granulomatous nodules that contained necrotic centers infiltration by inflammatory cells. Some of which were free from zoites in addition to presence of calcium salt precipitation, which represented dystrophic calcification. Eosinophilic myositis appeared in the tongue was associated with ruptured cyst and released zoites in muscular tissue. Some histological sections revealed ruptured macrocystis with thin wall deposited between muscle bundles. In conclusion, this study showed that the fate of macrocysts included the formation of granulomatous nodules associated with dystrophic calcification and dead zoites in eosophagous more than that in the tongue.

  3. Fate and Transport of Shale-derived, Biogenic Methane.

    Science.gov (United States)

    Hendry, M Jim; Schmeling, Erin E; Barbour, S Lee; Huang, M; Mundle, Scott O C

    2017-07-07

    Natural gas extraction from unconventional shale gas reservoirs is the subject of considerable public debate, with a key concern being the impact of leaking fugitive natural gases on shallow potable groundwater resources. Baseline data regarding the distribution, fate, and transport of these gases and their isotopes through natural formations prior to development are lacking. Here, we define the migration and fate of CH 4 and δ 13 C-CH 4 from an early-generation bacterial gas play in the Cretaceous of the Williston Basin, Canada to the water table. Our results show the CH 4 is generated at depth and diffuses as a conservative species through the overlying shale. We also show that the diffusive fractionation of δ 13 C-CH 4 (following glaciation) can complicate fugitive gas interpretations. The sensitivity of the δ 13 C-CH 4 profile to glacial timing suggests it may be a valuable tracer for characterizing the timing of geologic changes that control transport of CH 4 (and other solutes) and distinguishing between CH 4 that rapidly migrates upward through a well annulus or other conduit and CH 4 that diffuses upwards naturally. Results of this study were used to provide recommendations for designing baseline investigations.

  4. Characteristics and Fate of Systemic Artery Aneurysm after Kawasaki Disease.

    Science.gov (United States)

    Hoshino, Shinsuke; Tsuda, Etsuko; Yamada, Osamu

    2015-07-01

    To determine the long-term outcome of systemic artery aneurysms (SAAs) after Kawasaki disease (KD). We investigated the characteristics and the fate of SAAs in 20 patients using medical records and angiograms. The age of onset of KD ranged from 1 month to 20 months. The interval from the onset of KD to the latest angiogram ranged from 16 months to 24 years. The regression rate of peripheral artery aneurysm and the frequency of stenotic lesions were analyzed by the Kaplan-Meier method in 11 patients who had undergone initial angiography within 4 months. The mean duration of fever was 24 ± 12 days. All 20 patients had at least 1 symmetric pair of aneurysms in bilateral peripheral arteries, and 16 patients had multiple SAAs. The distributions of SAAs was as follows: brachial artery, 30; common iliac artery, 20; internal iliac artery, 21; abdominal aortic aneurysm, 7; and others, 29. The frequencies of regression of SAA and of the occurrence of stenotic lesions at 20 years after the onset of KD were 51% and 25%, respectively (n = 42). The diameter of all SAAs in the acute phase leading to stenotic lesions in the late period was >10 mm. SAAs occurred symmetrically and were multiple in younger infants and those with severe acute vasculitis. The fate of SAAs resembles that of coronary artery aneurysms, and depends on the diameter during the acute phase. Larger SAAs can lead to stenotic lesions in the late period. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Concentrations and fate of decamethylcyclopentasiloxane (D(5)) in the atmosphere.

    Science.gov (United States)

    McLachlan, Michael S; Kierkegaard, Amelie; Hansen, Kaj M; van Egmond, Roger; Christensen, Jesper H; Skjøth, Carsten A

    2010-07-15

    Decamethylcyclopentasiloxane (D(5)) is a volatile compound used in personal care products that is released to the atmosphere in large quantities. Although D(5) is currently under consideration for regulation, there have been no field investigations of its atmospheric fate. We employed a recently developed, quality assured method to measure D(5) concentration in ambient air at a rural site in Sweden. The samples were collected with daily resolution between January and June 2009. The D(5) concentration ranged from 0.3 to 9 ng m(-3), which is 1-3 orders of magnitude lower than previous reports. The measured data were compared with D(5) concentrations predicted using an atmospheric circulation model that included both OH radical and D(5) chemistry. The model was parametrized using emissions estimates and physical chemical properties determined in laboratory experiments. There was good agreement between the measured and modeled D(5) concentrations. The results show that D(5) is clearly subject to long-range atmospheric transport, but that it is also effectively removed from the atmosphere via phototransformation. Atmospheric deposition has little influence on the atmospheric fate. The good agreement between the model predictions and the field observations indicates that there is a good understanding of the major factors governing D(5) concentrations in the atmosphere.

  6. Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate.

    Science.gov (United States)

    Chermnykh, Elina; Kalabusheva, Ekaterina; Vorotelyak, Ekaterina

    2018-03-27

    Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.

  7. Interactions in the fate of chemicals in terrestrial systems

    International Nuclear Information System (INIS)

    Scheunert, I.; Korte, F.

    1985-01-01

    In outdoor lysimeters, [ 14 C]atrazine (0.9 mg/kg dry soil), [ 14 C]atrazine combined with the detergent n-dodecylbenzenesulfonate (0.9 and 10 mg/kg, respectively), [ 14 C]n-dodecylbenzene-sulfonate (10 mg/kg), and [ 14 C]n-dodecylbenzenesulfonate combined with atrazine (10 and 0.9 mg/kg, respectively) were applied to soils. Maize was grown in the first year and barley in the second year. n-Dodecylbenzenesulfonate increased the mobility of atrazine and its metabolites in soil as well as its leaching into water, its uptake by maize plants, and its volatilization from soil. Atrazine had a negative influence on mineralization, mobility in soil, leaching, plant uptake by both species, and binding rates of radiocarbon derived from the surfactant in soil and plants. The results were confirmed by short-term laboratory tests. Whereas the effects of the detergent on the fate of atrazine and its conversion products were apparent only in the first growing season, those of atrazine on the fate of detergent-derived residues could also be observed in the second year due to the persistence of atrazine in soil

  8. Large-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs) in multimedia over China

    Science.gov (United States)

    Huang, Y.; Liu, M.; Wada, Y.; He, X.; Sun, X.

    2017-12-01

    In recent decades, with rapid economic growth, industrial development and urbanization, expanding pollution of polycyclic aromatic hydrocarbons (PAHs) has become a diversified and complicated phenomenon in China. However, the availability of sufficient monitoring activities for PAHs in multi-compartment and the corresponding multi-interface migration processes are still limited, especially at a large geographic area. In this study, we couple the Multimedia Fate Model (MFM) to the Community Multi-Scale Air Quality (CMAQ) model in order to consider the fugacity and the transient contamination processes. This coupled dynamic contaminant model can evaluate the detailed local variations and mass fluxes of PAHs in different environmental media (e.g., air, surface film, soil, sediment, water and vegetation) across different spatial (a county to country) and temporal (days to years) scales. This model has been applied to a large geographical domain of China at a 36 km by 36 km grid resolution. The model considers response characteristics of typical environmental medium to complex underlying surface. Results suggest that direct emission is the main input pathway of PAHs entering the atmosphere, while advection is the main outward flow of pollutants from the environment. In addition, both soil and sediment act as the main sink of PAHs and have the longest retention time. Importantly, the highest PAHs loadings are found in urbanized and densely populated regions of China, such as Yangtze River Delta and Pearl River Delta. This model can provide a good scientific basis towards a better understanding of the large-scale dynamics of environmental pollutants for land conservation and sustainable development. In a next step, the dynamic contaminant model will be integrated with the continental-scale hydrological and water resources model (i.e., Community Water Model, CWatM) to quantify a more accurate representation and feedbacks between the hydrological cycle and water quality at

  9. ENVIRONMENTAL CONCERN AND ENVIRONMENTALLY ...

    African Journals Online (AJOL)

    critique of theoretical approaches towards understanding the formation of environmental attitudes, a model has been developed ... instances, people must have the motivation and know- ... feelings and emotion, and behaviour to behavioural.

  10. Fate of nano- and microplastic in freshwater systems: A modeling study

    NARCIS (Netherlands)

    Besseling, Ellen; Quik, Joris T.K.; Sun, Muzhi; Koelmans, Bart

    2017-01-01

    Riverine transport to the marine environment is an important pathway for microplastic. However, information on fate and transport of nano- and microplastic in freshwater systems is lacking. Here we present scenario studies on the fate and transport of nano-to millimetre sized spherical particles

  11. FATE OF PAH COMPOUNDS IN TWO SOIL TYPES: INFLUENCE OF VOLATILIZATION, ABIOTIC LOSS, AND BIOLOGICAL ACTIVITY

    Science.gov (United States)

    The fate of 14 polycyclic aromatic hydrocarbon (PAH) compounds was evaluated with regard to interphase transfer potential and mechanisms of treatment in soil under unsaturated conditions. Volatilization and abiotic and biotic fate of the PAHs were determined using two soils not p...

  12. Contamination level of four priority phthalates in North Indian wastewater treatment plants and their fate in sequencing batch reactor systems.

    Science.gov (United States)

    Gani, Khalid Muzamil; Rajpal, Ankur; Kazmi, Absar Ahmad

    2016-03-01

    The contamination level of four phthalates in untreated and treated wastewater of fifteen wastewater treatment plants (WWTPs) and their fate in a full scale sequencing batch reactor (SBR) based WWTP was evaluated in this study. The four phthalates were diethyl phthalate (DEP), dibutyl phthalate (DBP), benzylbutyl phthalate (BBP) and diethylhexyl phthalate (DEHP). All compounds were present in untreated wastewater with DEHP being present in the highest mean concentration of 28.4 ± 5.3 μg L(-1). The concentration was in the range of 7.3 μg L(-1) (BBP) to 28.4 μg L(-1) (DEHP) in untreated wastewater and 1.3 μg L(-1) (DBP) to 2.6 μg L(-1) (DEHP) in treated wastewater. The nutrient removal process and advance tertiary treatment based WWTPs showed the highest phthalate removal efficiencies of 87% and 93%, respectively. The correlation between phthalate removal and conventional performance of WWTPs was positive. Fate analysis of these phthalates in a SBR based WWTP showed that total removal of the sum of phthalates in a primary settling tank and SBR was 84% out of which 55% is removed by biodegradation and 29% was removed by sorption to primary and secondary sludge. The percentage removal of four phthalates in primary settling tanks was 18%. Comparison of the diluted effluent DEHP concentration with its environmental quality standards showed that the dilution in an effluent receiving water body can reduce the DEHP emissions to acceptable values.

  13. From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas.

    Science.gov (United States)

    Heberer, Th; Reddersen, K; Mechlinski, A

    2002-01-01

    Recently, the occurrence and fate of pharmaceutically active compounds (PhACs) in the aquatic environment was recognized as one of the emerging issues in environmental chemistry and as a matter of public concern. Residues of PhACs have been found as contaminants in sewage, surface, and ground- and drinking water samples. Since June 2000, a new long-term monitoring program of sewage, surface, ground- and drinking water has been carried out in Berlin, Germany. Samples, collected periodically from selected sites in the Berlin area, are investigated for residues of PhACs and related contaminants. The purpose of this monitoring is to investigate these compounds over a long time period to get more reliable data on their occurrence and fate in the different aquatic compartments. Moreover, the surface water investigations allow the calculation of season-dependent contaminant loads in the Berlin waters. In the course of the monitoring program, PhACs and some other polar compounds were detected at concentrations up to the microg/L-level in all compartments of the Berlin water cycle. The monitoring is accompanied and supported by several other investigations such as laboratory column experiments and studies on bank filtration and drinking water treatment using conventional or membrane filtration techniques.

  14. Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops.

    Science.gov (United States)

    Corbel, Sylvain; Mougin, Christian; Bouaïcha, Noureddine

    2014-02-01

    The occurrence of harmful cyanobacterial blooms in surface waters is often accompanied by the production of a variety of cyanotoxins. These toxins are designed to target in humans and animals specific organs on which they act: hepatotoxins (liver), neurotoxins (nervous system), cytotoxic alkaloids, and dermatotoxins (skin), but they often have important side effects too. When introduced into the soil ecosystem by spray irrigation of crops they may affect the same molecular pathways in plants having identical or similar target organs, tissues, cells or biomolecules. There are also several indications that terrestrial plants, including food crop plants, can bioaccumulate cyanotoxins and present, therefore, potential health hazards for human and animals. The number of publications concerned with phytotoxic effects of cyanotoxins on agricultural plants has increased recently. In this review, we first examine different cyanotoxins and their modes of actions in humans and mammals and occurrence of target biomolecules in vegetable organisms. Then we present environmental concentrations of cyanotoxins in freshwaters and their fate in aquatic and soil ecosystems. Finally, we highlight bioaccumulation of cyanotoxins in plants used for feed and food and its consequences on animals and human health. Overall, our review shows that the information on the effects of cyanotoxins on non-target organisms in the terrestrial environment is particularly scarce, and that there are still serious gaps in the knowledge about the fate in the soil ecosystems and phytotoxicity of these toxins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The linear interplay of intrinsic and extrinsic noises ensures a high accuracy of cell fate selection in budding yeast

    Science.gov (United States)

    Li, Yongkai; Yi, Ming; Zou, Xiufen

    2014-01-01

    To gain insights into the mechanisms of cell fate decision in a noisy environment, the effects of intrinsic and extrinsic noises on cell fate are explored at the single cell level. Specifically, we theoretically define the impulse of Cln1/2 as an indication of cell fates. The strong dependence between the impulse of Cln1/2 and cell fates is exhibited. Based on the simulation results, we illustrate that increasing intrinsic fluctuations causes the parallel shift of the separation ratio of Whi5P but that increasing extrinsic fluctuations leads to the mixture of different cell fates. Our quantitative study also suggests that the strengths of intrinsic and extrinsic noises around an approximate linear model can ensure a high accuracy of cell fate selection. Furthermore, this study demonstrates that the selection of cell fates is an entropy-decreasing process. In addition, we reveal that cell fates are significantly correlated with the range of entropy decreases. PMID:25042292

  16. Mathematical modelling of oil spill fate and transport in the marine environment incorporating biodegradation kinetics of oil droplets

    Science.gov (United States)

    Spanoudaki, Katerina

    2016-04-01

    Oil biodegradation by native bacteria is one of the most important natural processes that can attenuate the environmental impacts of marine oil spills. However, very few numerical models of oil spill fate and transport include biodegradation kinetics of spilled oil. Furthermore, in models where biodegradation is included amongst the oil transformation processes simulated, it is mostly represented as a first order decay process neglecting the effect of several important parameters that can limit biodegradation rate, such as oil composition and oil droplets-water interface. To this end, the open source numerical model MEDSKIL-II, which simulates oil spill fate and transport in the marine environment, has been modified to include biodegradation kinetics of oil droplets dispersed in the water column. MEDSLIK-II predicts the transport and weathering of oil spills following a Lagrangian approach for the solution of the advection-diffusion equation. Transport is governed by the 3D sea currents and wave field provided by ocean circulation models. In addition to advective and diffusive displacements, the model simulates several physical and chemical processes that transform the oil (evaporation, emulsification, dispersion in the water column, adhesion to coast). The fate algorithms employed in MEDSLIK-II consider the oil as a uniform substance whose properties change as the slick weathers, an approach that can lead to reduced accuracy, especially in the estimation of oil evaporation and biodegradation. Therefore MEDSLIK-II has been modified by adopting the "pseudo-component" approach for simulating weathering processes. Spilled oil is modelled as a relatively small number of discrete, non-interacting components (pseudo-components). Chemicals in the oil mixture are grouped by physical-chemical properties and the resulting pseudo-component behaves as if it were a single substance with characteristics typical of the chemical group. The fate (evaporation, dispersion

  17. Photochemical fate of beta-blockers in NOM enriched waters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ling; Xu, Haomin; Cooper, William J. [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Song, Weihua, E-mail: wsong@fudan.edu.cn [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China)

    2012-06-01

    Beta-blockers, prescribed for the treatment of high blood pressure and for long-term use after a heart attack, have been detected in surface and ground waters. This study examines the photochemical fate of three beta-blockers, atenolol, metoprolol, and nadolol. Hydrolysis accounted for minor losses of these beta-blockers in the pH range 4-10. The rate of direct photolysis at pH 7 in a solar simulator varied from 6.1 to 8.9 h{sup -1} at pH 7. However, the addition of a natural organic matter (NOM) isolate enhanced the photochemical loss of all three compounds. Indirect photochemical fate, generally described by reactions with hydroxyl radical ({center_dot}OH) and singlet oxygen ({sup 1}{Delta}O{sub 2}), and, the direct reaction with the triplet excited state, {sup 3}NOM{sup Low-Asterisk }, also varied but collectively appeared to be the major loss factor. Bimolecular reaction rate constants of the three beta-blockers with {sup 1}{Delta}O{sub 2} and {center_dot}OH were measured and accounted for 0.02-0.04% and 7.2-38.9% of their loss, respectively. These data suggest that the {sup 3}NOM{sup Low-Asterisk} contributed 50.6-85.4%. Experiments with various {sup 3}NOM{sup Low-Asterisk} quenchers supported the hypothesis that it was singly the most important reaction. Atenolol was chosen for more detailed investigation, with the photoproducts identified by LC-MS analysis. The results suggested that electron-transfer could be an important mechanism in photochemical fate of beta-blockers in the presence of NOM. - Highlights: Black-Right-Pointing-Pointer Photochemical degradation of beta-blockers in the simulated natural waters. Black-Right-Pointing-Pointer Reactive Oxygen Species play a minor role in the indirect photodegradation. Black-Right-Pointing-Pointer The loss of beta-blockers results from direct reaction with {sup 3}DOM{sup Low-Asterisk }.

  18. Fate and degradation of petroleum hydrocarbons in stormwater bioretention cells

    Science.gov (United States)

    LeFevre, Gregory Hallett

    This dissertation describes the investigation of the fate of hydrocarbons in stormwater bioretention areas and those mechanisms that affect hydrocarbon fate in such systems. Seventy-five samples from 58 bioretention areas were collected and analyzed to measure total petroleum hydrocarbon (TPH) residual and biodegradation functional genes. TPH residual in bioretention areas was greater than background sites but low overall (hydrocarbon biodegradation. Field soils were capable of mineralizing naphthalene, a polycyclic aromatic hydrocarbon (PAH) when incubated in the laboratory. In an additional laboratory investigation, a column study was initiated to comprehensively determine naphthalene fate in a simulated bioretention cell using a 14C-labeled tracer. Sorption to soil was the greatest sink of naphthalene in the columns, although biodegradation and vegetative uptake were also important loss mechanisms. Little leaching occurred following the first flush, and volatilization was insignificant. Significant enrichment of naphthalene degrading bacteria occurred over the course of the experiment as a result of naphthalene exposure. This was evident from enhanced naphthalene biodegradation kinetics (measured via batch tests), significant increases in naphthalene dioxygenase gene quantities, and a significant correlation observed between naphthalene residual and biodegradation functional genes. Vegetated columns outperformed the unplanted control column in terms of total naphthalene removal and biodegradation kinetics. As a result of these experiments, a final study focused on why planted systems outperform unplanted systems was conducted. Plant root exudates were harvested from hydroponic setups for three types of plants. Additionally, a solution of artificial root exudates (AREs) as prepared. Exudates were digested using soil bacteria to create metabolized exudates. Raw and metabolized exudates were characterized for dissolved organic carbon, specific UV absorbance

  19. Transformation and fate of 2,4,6-trinitrotoluene (TNT) in anaerobic bioslurry reactors under various aeration schemes: implications for the decontamination of soils.

    Science.gov (United States)

    Newcombe, David A; Crawford, Ronald L

    2007-12-01

    Energetic compounds have been used in a variety of industrial and military applications worldwide leading to widespread environmental contamination. Many of these compounds are toxic and resist degradation by oxidative enzymes resulting in a need for alternative remediation methods. It has been shown that trinitrotoluene (TNT)-contaminated soil subjected to treatment in strictly anaerobic bioreactors results in tight binding of TNT transformation products to soil organic matter. The research presented here examined the fate of TNT and its metabolites in bioreactors under three different aeration regimes. In all treatment regimes, the typical metabolites of aminodinitrotoluenes and diaminonitrotoluenes were observed prior to irreversible binding into the soil fraction of the slurry. Significant transformation of TNT into organic acids or simple diols, as others report in prior work, was not observed in any of the treatments and is an unlikely fate of TNT in anaerobic soil slurries. These results indicate that aeration does not dramatically affect transformation or fate of TNT in reactor systems that receive a rich carbon source but does affect the rate at which metabolites become tightly bound to the soil. The most rapid transformations and lowest redox potentials were observed in reactors in which an aerobic headspace was maintained suggesting that aerobes play a role in establishing conditions that are most conducive to TNT reduction.

  20. Environmental fate of manure-borne estrogens and pathogens applied to agricultural land

    DEFF Research Database (Denmark)

    Amin, Mostofa; Forslund, Anita; Bech, Tina Bundgaard

    significantly with slurry dry matter content and soil conditions. Survival of E. coli was high in the upper layer of both soils. Overall persistence of bacteriophage was higher than that of E. coli, but both organisms were still observed after 49 days of slurry application. Slow downward movement was noticed...

  1. Fully in Silico Calibration of Empirical Predictive Models for Environmental Fate Properties of Novel Munitions Compounds

    Science.gov (United States)

    2016-04-01

    constants using several IMC related aromatic amines. To develop QSARs with these data, many possible descriptors were evaluated , ranging from simple to...converted to approximate half-lives to give. The blue symbols are experimental data, obtained with IMC related amino compounds...calibrated “in silico” that predict the hydrolysis behavior of the diverse range of energetic NACs. However, new experimental and computational

  2. Environmental fate and distribution of technetium-99 in a deciduous forest ecosystem

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.; Tucker, C.S.; Walton, B.T.

    1986-01-01

    The uptake of 99 Tc by trees intercepting contaminated groundwater from a radioactive waste storage site was measured to identify the major 99 Tc pools within the woodland ecosystem and to assess the relative mobility of 99 Tc in the existing element cycle. The highest average 99 Tc concentrations in vegetation were found in herbaceous plants. Tree wood was the major above-ground pool for 99 Tc because of the high concentrations in wood as well as the large amount of wood relative to other biomass at the site. Technetium was not easily leached from the trees by rainfall and was not readily extractable from forest floor leaf litter by water. The relative importance of return pathways for 99 Tc to the forest floor was leaf fall > stemflow > throughfall, indicating that 99 Tc was conserved by the trees. Snails and millipedes from the leaf litter layer concentrated technetium 20- and 16-fold, respectively, above levels found in the soil. Pertechnetate was rendered less bioavailable after ingestion by a leaf litter macroinvertebrate (Porcellio sp.) common to the study site. (author)

  3. Environmental Factors And Surface Properties Of Nanoparticles Governing Their Fate, Reactivity, And Mobility

    Science.gov (United States)

    The application of nanoparticles (NPs) for industrial processes and consumer products is rising at an exponential rate. While NPs are leading to new discoveries and improvements in our daily lives, little consideration is put forth to understand the impact of NPs in the environm...

  4. Development of an Environmental Fate Simulator for New and Proposed Military Unique Munition Compounds

    Science.gov (United States)

    2015-05-07

    groups based on SMILES string notation. Our inability to obtain the SPARC code, as well as the significant costs of reengineering SPARC to address...10. Worobey, B.L. and G.R.B. Webster, Hydrolytic release of tightly complexed 4- chloroaniline from soil humic acids: an analytical method . Journal... alkene formed in greatest amount is the one that corresponds to removal of the hydrogen from the β-carbon having the fewest hydrogen substituents

  5. Antimicrobial resistant Escherichia coli in the municipal wastewater system: effect of hospital effluent and environmental fate.

    Science.gov (United States)

    Harris, Suvi; Morris, Carol; Morris, Dearbhaile; Cormican, Martin; Cummins, Enda

    2014-01-15

    The prevalence of antimicrobial resistant (AMR) bacteria is increasing worldwide and remains a significant medical challenge which may lead to antimicrobial redundancy. The contribution of hospital effluent to the prevalence of resistance in wastewater treatment plant (WWTP) effluents is not fully understood. AMR bacteria contained in hospital effluent may be released into the aquatic and soil environments after WWTP processing. Hence, the objective of this study is to identify the extent hospital effluent contributes to contamination of these environments by comparing two WWTPs, one which receives hospital effluent and one which does not. AMR Escherichia coli were monitored in the two WWTPs. A model was developed using these monitored values to predict the effect of hospital effluent within a WWTP. The model predicted levels of AMR E. coli in the aquatic environment and potential bather exposure to AMR E. coli. The model results were highly variable. WWTP influent containing hospital effluent had a higher mean percentage of AMR E. coli; although, there appeared to be no within treatment plant effect on the prevalence of AMR E. coli. Examination of WWTP sludge showed a similar variation. There appeared to be no consistent effect from the presence of hospital effluent. The human exposure assessment model predicted swimmer intake of AMR E. coli between 6 and 193CFU/100ml sea water. It appears that hospital effluent is not the main contributing factor behind the development and persistence of AMR E. coli within WWTPs, although resistance may be too well-developed to identify an influence from hospital effluent. Mitigation needs to focus on the removal of already present resistant bacteria but for new or hospital specific antimicrobials focus needs to be on their limited release within effluents or separate treatment. © 2013.

  6. Efficacy and environmental fate of imazapyr from directed helicopter applications targeting Tamarix species infestations in Colorado.

    Science.gov (United States)

    Douglass, Cameron H; Nissen, Scott J; Kniss, Andrew R

    2016-02-01

    Aerial imazapyr applications are the most common and cost-effective method for controlling invasive tamarisk, but few studies have investigated whether or how infestation and site characteristics influence control and non-target impacts. This study used vertical stands with filter papers, plus soil and tree canopy sampling, to investigate how tamarisk canopies affected retention of applied imazapyr, soil herbicide residues and tree mortality. Tamarisk canopies captured 71% of aerially applied imazapyr, resulting in significantly lower soil residues beneath the tree canopy. Although initial imazapyr soil residue levels outside the tree canopy were 4 times greater than those inside, soil degradation occurred 2.4 times faster outside the tamarisk canopy and resulted in lower herbicide residues. Tamarisk mortality within 3 years was 70%, but variability in control appeared to be affected by non-linear stand boundaries and tall site obstructions. These same factors also increased variability in the actual quantity of herbicide applied, exacerbating collateral impacts on desirable understory species. While aerial imazapyr applications are highly effective in controlling tamarisk, our study provides evidence for the importance of evaluating overall site suitability for this management strategy so the probability of unintended ecological effects can be minimized. © 2015 Society of Chemical Industry.

  7. Environmental fate of emamectin benzoate after tree micro injection of horse chestnut trees.

    Science.gov (United States)

    Burkhard, Rene; Binz, Heinz; Roux, Christian A; Brunner, Matthias; Ruesch, Othmar; Wyss, Peter

    2015-02-01

    Emamectin benzoate, an insecticide derived from the avermectin family of natural products, has a unique translocation behavior in trees when applied by tree micro injection (TMI), which can result in protection from insect pests (foliar and borers) for several years. Active ingredient imported into leaves was measured at the end of season in the fallen leaves of treated horse chestnut (Aesculus hippocastanum) trees. The dissipation of emamectin benzoate in these leaves seems to be biphasic and depends on the decomposition of the leaf. In compost piles, where decomposition of leaves was fastest, a cumulative emamectin benzoate degradation half-life time of 20 d was measured. In leaves immersed in water, where decomposition was much slower, the degradation half-life time was 94 d, and in leaves left on the ground in contact with soil, where decomposition was slowest, the degradation half-life time was 212 d. The biphasic decline and the correlation with leaf decomposition might be attributed to an extensive sorption of emamectin benzoate residues to leaf macromolecules. This may also explain why earthworms ingesting leaves from injected trees take up very little emamectin benzoate and excrete it with the feces. Furthermore, no emamectin benzoate was found in water containing decomposing leaves from injected trees. It is concluded, that emamectin benzoate present in abscised leaves from horse chestnut trees injected with the insecticide is not available to nontarget organisms present in soil or water bodies. Published 2014 SETAC.

  8. Environmental Fate of Emamectin Benzoate After Tree Micro Injection of Horse Chestnut Trees

    OpenAIRE

    Burkhard, Rene; Binz, Heinz; Roux, Christian A; Brunner, Matthias; Ruesch, Othmar; Wyss, Peter

    2014-01-01

    Emamectin benzoate, an insecticide derived from the avermectin family of natural products, has a unique translocation behavior in trees when applied by tree micro injection (TMI), which can result in protection from insect pests (foliar and borers) for several years. Active ingredient imported into leaves was measured at the end of season in the fallen leaves of treated horse chestnut (Aesculus hippocastanum) trees. The dissipation of emamectin benzoate in these leaves seems to be biphasic an...

  9. Analysis and Environmental Fate of Air Force Distillate and High Density Fuels

    Science.gov (United States)

    1981-10-01

    728.1 128 0.8 Toluenc 751.3 92 0.6 XTHDCPD 1049.6 136 66.8 NTHDCPD 1079.2 136 1.5HNN 1509.6 186 20.1 JP-1O XTHDCPD 1050.3 136 96.8 ITHDCPD 1079.6 136 1,5...deionized water and the salts listed below. Blanks of both waters were routinely extracted and analyzed for possible 4.nterferences. MNN PXTX XTHDCPD ...through 13; complete data summaries for the distillate fuels may be found in Appendix C. All com- ponents of the high density fuels except XTHDCPD of

  10. OPERA: A free and open source QSAR tool for predicting physicochemical properties and environmental fate endpoints

    Science.gov (United States)

    Collecting the chemical structures and data for necessary QSAR modeling is facilitated by available public databases and open data. However, QSAR model performance is dependent on the quality of data and modeling methodology used. This study developed robust QSAR models for physi...

  11. The Toxicology, Environmental Fate, and Human Risk of Herbicide Orange and Its Associated Dioxin

    Science.gov (United States)

    1978-10-01

    was exceeded. Leng (39) concluded that residue levels were considerably lower in muscle, milk, and cream than in liver and kidney, but that all residue...the menstrual period, the pimples on the cheeks of some of the women were temporarily more prominent. 8. Dirty and untidy women took ill sooner and more...chlorine or DDT, sharp pain , burning in the nasopharynx and sneezing (91%), crying and vomiting (73%), headache and vertigo (38%), a burning sensation

  12. 40 CFR 158.2060 - Biochemical pesticides nontarget organisms and environmental fate data requirements table.

    Science.gov (United States)

    2010-07-01

    ... groups if the pesticide is highly volatile (estimated volatility >5 X 10-5atm m3/mol). 4. Preferred test... to be transported from the site of application by air, soil, or water. The extent of movement would...

  13. Environmental fate of ceftiofur sodium, a cephalosporin antibiotic. Role of animal excreta in its decomposition

    International Nuclear Information System (INIS)

    Gilbertson, T.J.; Hornish, R.E.; Jaglan, P.S.; Koshy, K.T.; Nappier, J.L.; Stahl, G.L.; Cazers, A.R.; Nappier, J.M.; Kubicek, M.F.; Hoffman, G.A.; Hamlow, P.J.

    1990-01-01

    The degradation of ceftiofur sodium, a wide-spectrum cephalosporin antibiotic, was studied in the urine and feces of cattle, in three soils, and in buffers of pH 5, 7, and 9. Photodegradation was also studied. Fortification of cattle feces with [ 14 C]ceftiofur showed that it was quickly degraded to microbiologically inactive metabolites. Sterilization of the cattle feces inhibited the degradation of ceftiofur, which suggests that microorganisms or heat-labile substances may be responsible for the degradation. The t 1/2 values of aerobic degradation of ceftiofur sodium in California, Florida, and Wisconsin soil were found to be 22.2, 49.0, and 41.4 days, respectively. Hydrolysis of ceftiofur, as measured by either HPLC or microbiological methods, was accelerated by increasing pH. The t 1/2 values at pH 5, 7, and 9 were 100.3, 8.0, and 4.2 days, respectively, at 22 degree C and dramatically increased at 47 degree C. The photodegradation of ceftiofur, as determined by HPLC and a microbiological method, showed that after initial degradation for several days the rate of degradation was minimal, probably due to a protective film formed from degradation products. A major role for feces in the degradation of ceftiofur was observed, although other pathways of degradation such as soil, light, and water were also important

  14. Environmental fate and effect of biodegradable electro-spun scaffolds (biomaterial)-a case study

    DEFF Research Database (Denmark)

    Irizar, A; Amorim, M J B; Fuller, K P

    2018-01-01

    different soils for various time periods (0-7-14-21-28-56-180 days); subsequently the degradation was determined by weight loss and microscopical analysis. Although no toxicity occurred in terms of Enchytraeus crypticus reproduction, our data indicate that biodegradation was dependent on the coating...

  15. Environmental Fate and Transport of a New Energetic Material, CL-20

    Science.gov (United States)

    2006-03-01

    fifteen terrestrial plants exposed to concentrations up to 4,000 mg kg-1, Winfield et al. (2004) determined that the sunflower Helianthus annuus L. was...are 43, 3.3 and 3.2 mg l-1 at 20°C, respectively (Monteil-Rivera et al., 2004). For phytoremediation purposes, Groom et al. (2002) compared the...seedlings and embryos of sunflower Helianthus annuus, Winfield (2001) calculated much higher BAFs of 310.8 and 381.5 after 6-weeks of exposure to

  16. Fate and Distribution of Heavy Metals in Wastewater Irrigated Calcareous Soils

    Science.gov (United States)

    Stietiya, Mohammed Hashem; Duqqah, Mohammad; Udeigwe, Theophilus; Zubi, Ruba; Ammari, Tarek

    2014-01-01

    Accumulation of heavy metals in Jordanian soils irrigated with treated wastewater threatens agricultural sustainability. This study was carried out to investigate the environmental fate of Zn, Ni, and Cd in calcareous soils irrigated with treated wastewater and to elucidate the impact of hydrous ferric oxide (HFO) amendment on metal redistribution among soil fractions. Results showed that sorption capacity for Zarqa River (ZR1) soil was higher than Wadi Dhuleil (WD1) soil for all metals. The order of sorption affinity for WD1 was in the decreasing order of Ni > Zn > Cd, consistent with electrostatic attraction and indication of weak association with soil constituents. Following metal addition, Zn and Ni were distributed among the carbonate and Fe/Mn oxide fractions, while Cd was distributed among the exchangeable and carbonate fractions in both soils. Amending soils with 3% HFO did not increase the concentration of metals associated with the Fe/Mn oxide fraction or impact metal redistribution. The study suggests that carbonates control the mobility and bioavailability of Zn, Ni, and Cd in these calcareous soils, even in presence of a strong adsorbent such as HFO. Thus, it can be inferred that in situ heavy metal remediation of these highly calcareous soils using iron oxide compounds could be ineffective. PMID:24723833

  17. Heteroaggregation, transformation and fate of CeO2 nanoparticles in wastewater treatment

    International Nuclear Information System (INIS)

    Barton, Lauren E.; Auffan, Melanie; Olivi, Luca; Bottero, Jean-Yves; Wiesner, Mark R.

    2015-01-01

    Wastewater Treatment Plants (WWTPs) are a key pathway by which nanoparticles (NPs) enter the environment following release from NP-enabled products. This work considers the fate and exposure of CeO 2 NPs in WWTPs in a two-step process of heteroaggregation with bacteria followed by the subsequent reduction of Ce(IV) to Ce(III). Measurements of NP association with solids in sludge were combined with experimental estimates of reduction rate constants for CeO 2 NPs in Monte Carlo simulations to predict the concentrations and speciation of Ce in WWTP effluents and biosolids. Experiments indicated preferential accumulation of CeO 2 NPs in biosolids where reductive transformation would occur. Surface functionalization was observed to impact both the distribution coefficient and the rates of transformation. The relative affinity of CeO 2 NPs for bacterial suspensions in sludge appears to explain differences in the observed rates of Ce reduction for the two types of CeO 2 NPs studied. - Highlights: • We combine experimental and computational methods to track CeO 2 NPs through WWTPs. • We investigate the importance of environmental transformations on NP exposure. • We estimate the concentrations of CeO 2 NPs and reductive transformation byproducts. - CeO 2 nanoparticles that are released to the waste stream will preferentially associate with the solid phase (∼96%), where they will undergo significant transformation (∼50%)

  18. Ecotoxicity and fate of a silver nanomaterial in an outdoor lysimeter study.

    Science.gov (United States)

    Schlich, Karsten; Hoppe, Martin; Kraas, Marco; Fries, Elke; Hund-Rinke, Kerstin

    2017-08-01

    Sewage sludge is repeatedly applied as fertilizer on farmland due to its high nutrient content. This may lead to a significant increase of silver nanomaterials (AgNM) in soil over years. Therefore, our aim was to investigate the ecotoxicity and fate of AgNM under environmentally relevant conditions in outdoor lysimeters over 25 months. Two AgNM concentrations (1.7 and 8.0 mg/kg dry matter soil) were applied via sewage sludge into soil. In subsamples of the soil, incubated under laboratory conditions for 180 days, the comparability of outdoor and laboratory results regarding ecotoxicity was determined. The results from our long term lysimeter experiments show no detectable horizontal displacement in combination with very low remobilization to the percolate water. Thus, indicate that the sludge applied AgNM remains nearly immobile in the pathway between soils and leachate. However, Ag uptake to the roots of wheat and canola suggests that the chemical conditions in the rhizosphere induce AgNM remobilization from the incorporated sewage sludge even after two harvesting cycles. At the higher AgNM concentration a steady inhibition of the soil microflora was observed over 25 month in the lysimeter study, while there was no effect at the lower AgNM concentration. The results of the laboratory experiment reflect the findings of the lysimeter study and indicate that a risk assessment for AgNM based on data from laboratory tests is acceptable.

  19. Fate and Distribution of Heavy Metals in Wastewater Irrigated Calcareous Soils

    Directory of Open Access Journals (Sweden)

    Mohammed Hashem Stietiya

    2014-01-01

    Full Text Available Accumulation of heavy metals in Jordanian soils irrigated with treated wastewater threatens agricultural sustainability. This study was carried out to investigate the environmental fate of Zn, Ni, and Cd in calcareous soils irrigated with treated wastewater and to elucidate the impact of hydrous ferric oxide (HFO amendment on metal redistribution among soil fractions. Results showed that sorption capacity for Zarqa River (ZR1 soil was higher than Wadi Dhuleil (WD1 soil for all metals. The order of sorption affinity for WD1 was in the decreasing order of Ni > Zn > Cd, consistent with electrostatic attraction and indication of weak association with soil constituents. Following metal addition, Zn and Ni were distributed among the carbonate and Fe/Mn oxide fractions, while Cd was distributed among the exchangeable and carbonate fractions in both soils. Amending soils with 3% HFO did not increase the concentration of metals associated with the Fe/Mn oxide fraction or impact metal redistribution. The study suggests that carbonates control the mobility and bioavailability of Zn, Ni, and Cd in these calcareous soils, even in presence of a strong adsorbent such as HFO. Thus, it can be inferred that in situ heavy metal remediation of these highly calcareous soils using iron oxide compounds could be ineffective.

  20. Erratum: Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment.

    Science.gov (United States)

    Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie

    2010-10-01

    The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. © 2010 SETAC.

  1. Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment.

    Science.gov (United States)

    Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie

    2010-07-01

    The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. (c) 2010 SETAC.

  2. Fate, behaviour and weathering of priority HNS in the marine environment: An online tool.

    Science.gov (United States)

    Cunha, Isabel; Oliveira, Helena; Neuparth, Teresa; Torres, Tiago; Santos, Miguel Machado

    2016-10-15

    Literature data and data obtained with modelling tools were compiled to derive the physicochemical behaviour of 24 priority Hazardous and Noxious Substances (HNS), as a proxy to improve environmental, public health and political issues in relation to HNS spills. Parameters that rule the HNS behaviour in water and those that determine their distribution and persistence in the environment, such as fugacity, physicochemical degradation, biodegradation, bioaccumulation/biotransformation and aquatic toxicity, were selected. Data systematized and produced in the frame of the Arcopol Platform project was made available through a public database (http://www.ciimar.up.pt/hns/substances.php). This tool is expected to assist stakeholders involved in HNS spills preparedness and response, policy makers and legislators, as well as to contribute to a current picture of the scientific knowledge on the fate, behaviour, weathering and toxicity of priority HNS, being essential to support future improvements in maritime safety and coastal pollution response before, during and after spill incidents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Metabolism of murine TH 17 cells: Impact on cell fate and function.

    Science.gov (United States)

    Wang, Ran; Solt, Laura A

    2016-04-01

    An effective adaptive immune response relies on the ability of lymphocytes to rapidly act upon a variety of insults. In T lymphocytes, this response includes cell growth, clonal expansion, differentiation, and cytokine production, all of which place a significant energy burden on the cell. Recent evidence shows that T-cell metabolic reprogramming is an essential component of the adaptive immune response and specific metabolic pathways dictate T-cell fate decisions, including the development of TH 17 versus T regulatory (Treg) cells. TH 17 cells have garnered significant attention due to their roles in the pathology of immune-mediated inflammatory diseases. Attempts to characterize TH 17 cells have demonstrated that they are highly dynamic, adjusting their function to environmental cues, which dictate their metabolic program. In this review, we highlight recent data demonstrating the impact of cellular metabolism on the TH 17/Treg balance and present factors that mediate TH 17-cell metabolism. Some examples of these include the differential impact of the mTOR signaling complexes on T-helper-cell differentiation, hypoxia inducible factor 1 alpha (HIF1α) promotion of glycolysis to favor TH 17-cell development, and ACC1-dependent de novo fatty acid synthesis favoring TH 17-cell development over Treg cells. Finally, we discuss the potential therapeutic options and the implications of modulating TH 17-cell metabolism for the treatment of TH 17-mediated diseases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Using zone plates for X-ray microimaging and microspectroscopy in environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Kemner, K.M.; Yun, W.; Cai, Z. (and others)

    1999-01-01

    Understanding the transport and ultimate fate of environmental contaminants is of fundamental importance for developing effective remediation strategies and determining the risk associated with the contaminants. Focusing X-rays by using recently developed zone plates allows determination of the spatial distribution and chemical speciation of contaminants at the micron and submicron length scales. This ability is essential for studying the microscopic physical, geological, chemical, and biological interfaces that play a crucial role in determining contaminant fate and mobility. The following is an overview of some current problems in environmental science that are being addressed with synchrotron-based X-ray microimaging and microspectroscopy. (au) 7 refs.

  5. Using zone plates for X-ray microimaging and microspectroscopy in environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Kemner, K.M.; Yun, W.; Cai, Z. [and others

    1999-11-01

    Understanding the transport and ultimate fate of environmental contaminants is of fundamental importance for developing effective remediation strategies and determining the risk associated with the contaminants. Focusing X-rays by using recently developed zone plates allows determination of the spatial distribution and chemical speciation of contaminants at the micron and submicron length scales. This ability is essential for studying the microscopic physical, geological, chemical, and biological interfaces that play a crucial role in determining contaminant fate and mobility. The following is an overview of some current problems in environmental science that are being addressed with synchrotron-based X-ray microimaging and microspectroscopy. (au) 7 refs.

  6. Aspects of neptunium behavior in plants; absorption, distribution, and fate

    International Nuclear Information System (INIS)

    Cataldo, D.A.; Garland, T.R.; Wildung, R.E.

    1984-03-01

    The availability of Np(V) for absorption by plants and its subsequent transport and fate are described. Plant uptake of Np from solutions containing 7 x 10 -7 to 473 μg Np/ml is proportional to concentration, exhibiting some saturation at higher concentrations. Soil studies using Np concentrations of 5.2 x 10 -7 to 4.1 μg/g soil show CR values to be constant at approx. 2 at soil concentrations below 4 x 10 -4 μg/g, and increase to 12 at higher soil levels. Soil/plant CR values vary with plant species and range from 0.5 to 4; seed concentrations are a factor of 10 lower than vegetative tissues. Fractionation of plant tissues show Np to be substantially more soluble than Pu, with approx. 50% of the soluble Np being associated with plant ligands of < 5000 MW. 6 references, 5 figures, 1 table

  7. Fate of labelled allitin in bean plant and mosquito

    International Nuclear Information System (INIS)

    Banerji, A.; Chintalwar, G.J.; Ramakrishnan, V.

    1980-01-01

    Allitin, the insecticidal principle of garlic (Allium sativum L) is a mixture of diallyl di- and tri-sulfides. 35 S-labelled allitin has been synthesised using different methods and used for the evaluation of its persistence in water. Results of these experiments showed that allitin has low persistence; more than 80% of the initial radioactivity was lost in 24 hr. when an aqueous emulsion of labelled allitin was exposed under the laboratory conditions. Fate of labelled allitin was studied in larvae and pupae of mosquitoes, Culex pipiens quinquefasciatus Say. Assimilation of allitin was found to be faster in larva compared to pupa. Intake of allitin by bean plant was also studied. Implications of the results obtained in the above experiments will be discussed. (author)

  8. Fate of exogenously supplied bacterial DNA in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Ndiku, Luyindula [Commissariat des Sciences Nucleaires, Kinshasa (Zaire). Centre Regional d' Etudes Nucleaires

    1980-01-01

    The fate of exogenously supplied radiolabelled DNA from agrobacterium tumefaciens and micrococcus lysodeikticus was investigated in soybean tissues growing under various physiological conditions. The following observations are made: (a) Rapid degradation and reutilization of the donor DNA was observed in callus tissue culture. (b) Germinating seeds and five-day old seedlings were shown to degrade DNA in the incubation medium and to ultilize these degradation products for their own DNA synthesis. Reutilization could be almost totally suppressed the addition of unlabelled thymidine as a competitor. This allowed a detection of significant amounts of residuel donor closely but transiently associated with the plant tissues. (c) In soybean shoots dipped into a solution of donor DNA, partly this DNA was found to first migrate to the leaves where mostly labelled endogenous DNA was later found. Very large amounts of polymerized exogenous DNA were found in the regenerated roots after 12 days of culture.

  9. Control of Cell Fate in the Circulatory and Ventilatory Systems

    CERN Document Server

    Thiriet, Marc

    2012-01-01

    The volumes in this authoritative series present a multidisciplinary approach to modeling and simulation of flows in the cardiovascular and ventilatory systems, especially multiscale modeling and coupled simulations. The cardiovascular and respiratory systems are tightly coupled, as their primary function is to supply oxygen to and remove carbon dioxide from the body's cells. Because physiological conduits have deformable and reactive walls, macroscopic flow behavior and prediction must be coupled to nano- and microscopic events in a corrector scheme of regulated mechanisms. Therefore, investigation of flows of blood and air in physiological conduits requires an understanding of the biology, chemistry, and physics of these systems together with the mathematical tools to describe their functioning. Volumes 1 and 2 are devoted to cell organization and fate, as well as activities that are autoregulated and/or controlled by the cell environment. Volume 1 examined cellular features that allow adaptation to env...

  10. Fate and effects of veterinary antibiotics in soil.

    Science.gov (United States)

    Jechalke, Sven; Heuer, Holger; Siemens, Jan; Amelung, Wulf; Smalla, Kornelia

    2014-09-01

    Large amounts of veterinary antibiotics are applied worldwide to farm animals and reach agricultural fields by manure fertilization, where they might lead to an increased abundance and transferability of antibiotic-resistance determinants. In this review we discuss recent advances, limitations, and research needs in determining the fate of veterinary antibiotics and resistant bacteria applied with manure to soil, and their effects on the structure and function of soil microbial communities in bulk soils and the rhizosphere. The increased abundance and mobilization of antibiotic-resistance genes (ARGs) might contribute to the emergence of multi-resistant human pathogens that increasingly threaten the successful antibiotic treatment of bacterial infections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. On the fate of exogenously supplied bacterial DNA in soybean

    International Nuclear Information System (INIS)

    Luyindula Ndiku

    1980-01-01

    The fate of exogenously supplied radiolabelled DNA from agrobacterium tumefaciens and micrococcus lysodeikticus was investigated in soybean tissues growing under various physiological conditions. The following observations are made: a) Rapid degradation and reutilization of the donor DNA was observed in callus tissue culture. b) Germinating seeds and five-day old seedlings were shown to degrade DNA in the incubation medium and to ultilize these degradation products for their own DNA synthesis. Reutilization could be almost totally suppressed the addition of unlabelled thymidine as a competitor. This allowed a detection of significant amounts of residuel donor closely but transiently associated with the plant tissues. c) In soybean shoots dipped into a solution of donor DNA, partly this DNA was found to first migrate to the leaves where mostly labelled endogenous DNA was later found. Very large amounts of polymerized exogenous DNA were found in the regenerated roots after 12 days of culture. (author)

  12. Fate and metabolism of radiolabelled dicrotophos in Egyptian lactating cows

    International Nuclear Information System (INIS)

    Osman, A.Z.; Zayed, S.A.D.; Hazzaa, N.I.

    1991-01-01

    The present study was initiated to determine the amount of dicrotophos and its metabolites which might appear in milk and meat of Egyptian lactating cows following dicrotophos treatment. 14 C-alkyl dicrotophos was synthesised and its metabolic fate in two cows was investigated. For each cow, two equal dermal applications with 2-week interval were made. One cow was sacrificed 24 hr. after the second application, and the second animal after two weeks later. Paper chromatographic analysis of milk showed the presence of dicrotophos and two of its metabolites. Insecticide residues in the different organs were found in low levels. Treatment produced no negative influence on the state of health or milk production of the cows.1 fig.,2 tab

  13. The Unfolded Protein Response and Cell Fate Control.

    Science.gov (United States)

    Hetz, Claudio; Papa, Feroz R

    2018-01-18

    The secretory capacity of a cell is constantly challenged by physiological demands and pathological perturbations. To adjust and match the protein-folding capacity of the endoplasmic reticulum (ER) to changing secretory needs, cells employ a dynamic intracellular signaling pathway known as the unfolded protein response (UPR). Homeostatic activation of the UPR enforces adaptive programs that modulate and augment key aspects of the entire secretory pathway, whereas maladaptive UPR outputs trigger apoptosis. Here, we discuss recent advances into how the UPR integrates information about the intensity and duration of ER stress stimuli in order to control cell fate. These findings are timely and significant because they inform an evolving mechanistic understanding of a wide variety of human diseases, including diabetes mellitus, neurodegeneration, and cancer, thus opening up the potential for new therapeutic modalities to treat these diverse diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Fate of tagged nitrogen fertilizer applied to irrigated corn

    International Nuclear Information System (INIS)

    Olson, R.V.

    1980-01-01

    A field experiment was conducted for 2 years with ammonium sulfate tagged with 5.93 at. % 15 N to determine the fate of N fertilizer applied to sprinkler-irrigated corn (Zea mays L.). All areas of triplicate, 356-cm square plots were treated with 50 or 150 kg tagged N/ha. N fertilizer used by the crop and that remaining in the top 240 cm of soil were measured. NH 4 + -N and NO 3 - -N in the 0- to 10-cm layers after the second harvest also were determined. Grain yields in 1976 did not differ significantly. In 1977 response to N was significant, but responses to two N rates did not differ significantly

  15. Fate of Fusarium Toxins during the Malting Process.

    Science.gov (United States)

    Habler, Katharina; Hofer, Katharina; Geißinger, Cajetan; Schüler, Jan; Hückelhoven, Ralph; Hess, Michael; Gastl, Martina; Rychlik, Michael

    2016-02-17

    Little is known about the fate of Fusarium mycotoxins during the barley malting process. To determine the fungal DNA and mycotoxin concentrations during malting, we used barley grain harvested from field plots that we had inoculated with Fusarium species that produce type A or type B trichothecenes or enniatins. Using a recently developed multimycotoxin liquid chromatography-tandem mass stable isotope dilution method, we identified Fusarium-species-specific behaviors of mycotoxins in grain and malt extracts and compared toxin concentrations to amounts of fungal DNA in the same samples. In particular, the type B trichothecenes and Fusarium culmorum DNA contents were increased dramatically up to 5400% after kilning. By contrast, the concentrations of type A trichothecenes and Fusarium sporotrichioides DNA decreased during the malting process. These data suggest that specific Fusarium species that contaminate the raw grain material might have different impacts on malt quality.

  16. Intracellular Events and Cell Fate in Filovirus Infection

    Directory of Open Access Journals (Sweden)

    Elena Ryabchikova

    2011-08-01

    Full Text Available Marburg and Ebola viruses cause a severe hemorrhagic disease in humans with high fatality rates. Early target cells of filoviruses are monocytes, macrophages, and dendritic cells. The infection spreads to the liver, spleen and later other organs by blood and lymph flow. A hallmark of filovirus infection is the depletion of non-infected lymphocytes; however, the molecular mechanisms leading to the observed bystander lymphocyte apoptosis are poorly understood. Also, there is limited knowledge about the fate of infected cells in filovirus disease. In this review we will explore what is known about the intracellular events leading to virus amplification and cell damage in filovirus infection. Furthermore, we will discuss how cellular dysfunction and cell death may correlate with disease pathogenesis.

  17. Fate of mycotoxins during beer brewing and fermentation.

    Science.gov (United States)

    Inoue, Tomonori; Nagatomi, Yasushi; Uyama, Atsuo; Mochizuki, Naoki

    2013-01-01

    Mycotoxins are frequent contaminants of grains, and breweries need, therefore, to pay close attention to the risk of contamination in beer made from such grains as barley and corn. The fate of 14 types of mycotoxin (aflatoxins, fumonisins, ochratoxin A, patulin, trichothecenes, and zearalenone) during beer brewing was investigated in this study. Malt artificially spiked with each mycotoxin was put through the mashing, filtration, boiling and fermentation processes involved in brewing. After brewing, the levels of aflatoxins, ochratoxin A, patulin, and zearalenone were found to have decreased to less than 20% of their initial concentration. They had been adsorbed mainly to the spent grain and removed from the unhopped wort. Additionally, as zearalenone was known, patulin was metabolized to the less toxic compound during the fermentation process. The risk of carry-over to beer was therefore reduced for half of the mycotoxins studied. However, attention still needs to be paid to the risk of trichothecene contamination.

  18. The Impact of Zodiac Signs on Human Nature and Fate

    Science.gov (United States)

    Gasparyan, Naira

    2015-07-01

    Horoscope signs have unavoidable impact on human behaviour and interests, health and even fate. Moreover, intermingled with the impact of planets they become a powerful force able to bring about unbelievable changes. The investigation reveals that horoscopes have existed in the Armenian reality since ancient times. The most striking fact about their eistence is that in order to have and use zodiak signs in one's national culture, the nation should first of all have sufficient knowledge in Astrological Sciences since the system of zodiak signs has a direct reference to the cognitive processes and scientific knowledge of the universe, astrological issues and sometimes even there is a hint on hidden signs and messages. Anania Shirakatsi, one of the learned Armenians, had to display much diplomacy with the Armenian Church and religion when discussing the topic in his manuscripts. His observations are still of much importance and vitality even today.

  19. Nuclear envelope and genome interactions in cell fate

    Science.gov (United States)

    Talamas, Jessica A.; Capelson, Maya

    2015-01-01

    The eukaryotic cell nucleus houses an organism’s genome and is the location within the cell where all signaling induced and development-driven gene expression programs are ultimately specified. The genome is enclosed and separated from the cytoplasm by the nuclear envelope (NE), a double-lipid membrane bilayer, which contains a large variety of trans-membrane and associated protein complexes. In recent years, research regarding multiple aspects of the cell nucleus points to a highly dynamic and coordinated concert of efforts between chromatin and the NE in regulation of gene expression. Details of how this concert is orchestrated and how it directs cell differentiation and disease are coming to light at a rapid pace. Here we review existing and emerging concepts of how interactions between the genome and the NE may contribute to tissue specific gene expression programs to determine cell fate. PMID:25852741

  20. Engineering Cell Fate for Tissue Regeneration by In Vivo Transdifferentiation.

    Science.gov (United States)

    de Lázaro, I; Kostarelos, K

    2016-02-01

    Changes in cell identity occur in adult mammalian organisms but are rare and often linked to disease. Research in the last few decades has thrown light on how to manipulate cell fate, but the conversion of a particular cell type into another within a living organism (also termed in vivo transdifferentiation) has only been recently achieved in a limited number of tissues. Although the therapeutic promise of this strategy for tissue regeneration and repair is exciting, important efficacy and safety concerns will need to be addressed before it becomes a reality in the clinical practice. Here, we review the most relevant in vivo transdifferentiation studies in adult mammalian animal models, offering a critical assessment of this potentially powerful strategy for regenerative medicine.

  1. Fate of triclosan in field soils receiving sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Butler, E [Department of Environmental Science and Technology, School of Applied Sciences, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL (United Kingdom); Whelan, M J; Sakrabani, R [Department of Environmental Science and Technology, School of Applied Sciences, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL (United Kingdom); Egmond, R van [Safety and Environmental Assurance Centre, Unilever Colworth Laboratory, Colworth Park, Sharnbrook, Bedfordshire MK44 1LQ (United Kingdom)

    2012-08-15

    The anti-microbial substance triclosan can partition to sewage sludge during wastewater treatment and subsequently transfer to soil when applied to land. Here, we describe the fate of triclosan in a one-year plot experiment on three different soils receiving sludge. Triclosan and methyl-triclosan concentrations were measured in soil samples collected monthly from three depths. A large fraction of triclosan loss appeared to be explained by transformation to methyl-triclosan. After 12 months less than 20% of the initial triclosan was recovered from each soil. However, the majority was recovered as methyl-triclosan. Most of the chemical recovered at the end of the experiment (both triclosan and methyl-triclosan) was still in the top 10 cm layer, although there was translocation to lower soil horizons in all three soils. Between 16.5 and 50.6% of the applied triclosan was unaccounted for after 12 months either as a consequence of degradation or the formation of non-extractable residues. - Highlights: Black-Right-Pointing-Pointer We study the fate of triclosan in 3 different field soils amended with biosolids. Black-Right-Pointing-Pointer Triclosan concentrations were measured over 12 months at 3 depths of soil. Black-Right-Pointing-Pointer Methyl-triclosan was identified as a main biotransformation product. Black-Right-Pointing-Pointer There was very little movement of triclosan through the soil. Black-Right-Pointing-Pointer Only between 16 and 50% of triclosan applied was degraded or leached out of the soil. - This paper investigates the mobility and degradation of triclosan in three field soils after receiving an application of biosolids and the persistence of methyl-triclosan.

  2. Fate of triclosan in field soils receiving sewage sludge

    International Nuclear Information System (INIS)

    Butler, E.; Whelan, M.J.; Sakrabani, R.; Egmond, R. van

    2012-01-01

    The anti-microbial substance triclosan can partition to sewage sludge during wastewater treatment and subsequently transfer to soil when applied to land. Here, we describe the fate of triclosan in a one-year plot experiment on three different soils receiving sludge. Triclosan and methyl-triclosan concentrations were measured in soil samples collected monthly from three depths. A large fraction of triclosan loss appeared to be explained by transformation to methyl-triclosan. After 12 months less than 20% of the initial triclosan was recovered from each soil. However, the majority was recovered as methyl-triclosan. Most of the chemical recovered at the end of the experiment (both triclosan and methyl-triclosan) was still in the top 10 cm layer, although there was translocation to lower soil horizons in all three soils. Between 16.5 and 50.6% of the applied triclosan was unaccounted for after 12 months either as a consequence of degradation or the formation of non-extractable residues. - Highlights: ► We study the fate of triclosan in 3 different field soils amended with biosolids. ► Triclosan concentrations were measured over 12 months at 3 depths of soil. ► Methyl-triclosan was identified as a main biotransformation product. ► There was very little movement of triclosan through the soil. ► Only between 16 and 50% of triclosan applied was degraded or leached out of the soil. - This paper investigates the mobility and degradation of triclosan in three field soils after receiving an application of biosolids and the persistence of methyl-triclosan.

  3. Rotenone formulation fate in Lake Davis following the 2007 treatment.

    Science.gov (United States)

    Vasquez, Martice E; Rinderneck, Janna; Newman, Julie; McMillin, Stella; Finlayson, Brian; Mekebri, Abdou; Crane, David; Tjeerdema, Ronald S

    2012-05-01

    In September 2007, Lake Davis (near Portola, California) was treated by the California Department of Fish and Game with CFT Legumine, a rotenone formulation, to eradicate the invasive northern pike (Esox lucius). The objective of this report is to describe the fate of the five major formulation constituents-rotenone, rotenolone, methyl pyrrolidone (MP), diethylene glycol monethyl ether (DEGEE), and Fennedefo 99-in water, sediment, and brown bullhead catfish (Ameiurus nebulosus; a rotenone-resistant species) by determination of their half-lives (t(1/2)) and pseudo first-order dissipation rate constants (k). The respective t(1/2) values in water for rotenone, rotenolone, MP, DEGEE, and Fennedefo 99 were 5.6, 11.1, 4.6, 7.7, and 13.5 d; in sediments they were 31.1, 31.8, 10.0, not able to calculate, and 48.5 d; and in tissues were 6.1, 12.7, 3.7, 3.2, and 10.4 d, respectively. Components possessing low water solubility values (rotenone and rotenolone) persisted longer in sediments (not detectable after 157 d) and tissues (<212 d) compared with water, whereas the water-miscible components (MP and DEGEE) dissipated more quickly from all matrices, except for Fennedefo 99, which was the most persistent in water (83 d). None of the constituents was found to bioaccumulate in tissues as a result of treatment. In essence, the physicochemical properties of the chemical constituents effectively dictated their fate in the lake following treatment. Copyright © 2012 SETAC.

  4. Pesticides in tropical marine environments: Assessing their fate

    International Nuclear Information System (INIS)

    Carvalho, F.P.

    1993-01-01

    While forecasts of economic and population trends are notoriously contentious, it seems to be fairly widely accepted that there will be approximately 11,000 million people to feed in the year 2050, which is about twice as many as there were in 1990. There seems little doubt that pesticides will remain an essential component of many agricultural systems. Although it is estimated that insect pests alone still destroy about one-third of the world's crops, yields would probably decline by a further 30% to 75% without crop protection chemicals. It is hardly surprising therefore that worldwide pesticide usage is on the order of 5 million tons per year with a value of US $26 billion. Data on the behaviour of pesticides in the tropical marine environment are very limited in comparison with information on the fate of pesticides in temperate regions. Preliminary surveys carried out be the IAEA's Marine Environment Laboratory (IAEA-MEL) in coastal lagoons in Central America indicate the presence of high concentrations of DDT and its metabolites in sediments and aquatic organisms. OP compounds, such as chlorpyrifos, were also found to be widespread contaminants in these lagoons. To develop relevant studies, the IAEA is organizing a co-ordinated research programme (CRP) through its Laboratory at Monaco and the Joint FAO/IAEA Division. The CRP is entitled the Distribution, Fate, and Effects of Pesticides in Biota in the Tropical Environment; support has been offered by the Swedish International Development Agency (SIDA). It will concentrate on various aspects of the problem. 2 figs

  5. Spatially patterned matrix elasticity directs stem cell fate

    Science.gov (United States)

    Yang, Chun; DelRio, Frank W.; Ma, Hao; Killaars, Anouk R.; Basta, Lena P.; Kyburz, Kyle A.; Anseth, Kristi S.

    2016-08-01

    There is a growing appreciation for the functional role of matrix mechanics in regulating stem cell self-renewal and differentiation processes. However, it is largely unknown how subcellular, spatial mechanical variations in the local extracellular environment mediate intracellular signal transduction and direct cell fate. Here, the effect of spatial distribution, magnitude, and organization of subcellular matrix mechanical properties on human mesenchymal stem cell (hMSCs) function was investigated. Exploiting a photodegradation reaction, a hydrogel cell culture substrate was fabricated with regions of spatially varied and distinct mechanical properties, which were subsequently mapped and quantified by atomic force microscopy (AFM). The variations in the underlying matrix mechanics were found to regulate cellular adhesion and transcriptional events. Highly spread, elongated morphologies and higher Yes-associated protein (YAP) activation were observed in hMSCs seeded on hydrogels with higher concentrations of stiff regions in a dose-dependent manner. However, when the spatial organization of the mechanically stiff regions was altered from a regular to randomized pattern, lower levels of YAP activation with smaller and more rounded cell morphologies were induced in hMSCs. We infer from these results that irregular, disorganized variations in matrix mechanics, compared with regular patterns, appear to disrupt actin organization, and lead to different cell fates; this was verified by observations of lower alkaline phosphatase (ALP) activity and higher expression of CD105, a stem cell marker, in hMSCs in random versus regular patterns of mechanical properties. Collectively, this material platform has allowed innovative experiments to elucidate a novel spatial mechanical dosing mechanism that correlates to both the magnitude and organization of spatial stiffness.

  6. Fate and identification of spilled oils and petroleum products in the environment by GC-MS and GC-FID

    International Nuclear Information System (INIS)

    Wang, Z.

    2003-01-01

    To effectively determine the fate of spilled oil in the environment and to successfully identify the source(s) of spilled oil and petroleum products is extremely important in many oil-related environmental studies and liability cases. This article briefly reviews the most recent developments and advances of the gas chromatography-based technologies that are most frequently used in oil-spill characterization and identification studies. The effects of oil weathering on the chemical composition features and changes of spilled oils in the environment are also addressed. The fingerprinting and data interpretation techniques discussed include recognition of distribution patterns of petroleum hydrocarbons, oil type screening and differentiation, analysis of 'source-specific marker' compounds, determination of diagnostic ratios of specific oil constituents, and application of various statistical and numerical analysis tools. (author)

  7. Natural inorganic nanoparticles--formation, fate, and toxicity in the environment.

    Science.gov (United States)

    Sharma, Virender K; Filip, Jan; Zboril, Radek; Varma, Rajender S

    2015-12-07

    The synthesis, stability, and toxicity of engineered metal nanoparticles (ENPs) have been extensively studied during the past two decades. In contrast, research on the formation, fate, and ecological effects of naturally-occurring nanoparticles (NNPs) has become a focus of attention only recently. The natural existence of metal nanoparticles and their oxides/sulfides in waters, wastewaters, ore deposits, mining regions, and hydrothermal vents, as exemplified by the formation of nanoparticles containing silver and gold (AgNPs and AuNPs), Fe, Mn, pyrite (FeS2), Ag2S, CuS, CdS, and ZnS, is dictated largely by environmental conditions (temperature, pH, oxic/anoxic, light, and concentration and characteristics of natural organic matter (NOM)). Examples include the formation of nanoparticles containing pyrite, Cu and Zn-containing pyrite, and iron in hydrothermal vent black smoker emissions. Metal sulfide nanoparticles can be formed directly from their precursor ions or indirectly by sulfide ion-assisted transformation of the corresponding metal oxides under anaerobic conditions. This tutorial focuses on the formation mechanisms, fate, and toxicity of natural metal nanoparticles. Natural waters containing Ag(I) and Au(III) ions in the presence of NOM generate AgNPs and AuNPs under thermal, non-thermal, and photochemical conditions. These processes are significantly accelerated by existing redox species of iron (Fe(II)/Fe(III)). NOM, metal-NOM complexes, and reactive oxygen species (ROS) such as O2˙(-), ˙OH, and H2O2 are largely responsible for the natural occurrence of nanoparticles. AgNPs and AuNPs emanating from Ag(I)/Au(III)-NOM reactions are stable for several months, thus indicating their potential to be transported over long distances from their point of origin. However, endogenous cations present in natural waters can destabilize the nanoparticles, with divalent cations (e.g., Ca(2+), Mg(2+)) being more influential than their monovalent equivalents (e.g., Na

  8. Effect of biotic lignin decomposition on the fate of radiocesium-contaminated plant litter

    Energy Technology Data Exchange (ETDEWEB)

    Hashida, Shin-nosuke; Yoshihara, Toshihiro [Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko 1646, Abiko-shi, Chiba (Japan)

    2014-07-01

    Fungi are the most important components in the fate of radionuclides deposited in forests following the Fukushima nuclear accident. Pruned woody parts and litter contain a considerable amount of radiocesium. Studies that focused on the migration of radiocesium have demonstrated that its ecological half-life is lower in the humus layer than in the deeper soil zone, suggesting a substantial contribution of litter decomposition on the mobilization of radiocesium. Furthermore, white-rot fungi appear to play a key role in the mobilization of radiocesium because they are the primary source of enzymes necessary to degrade the litter organic matter. Cell walls are the primary component of plant litter; they are composed of cellulose, hemi-cellulose, and lignin. Although cellulose is the most abundant organic compound in litter, the strength of the cell wall is limited by rigid hemi-cellulose complexes that protect the surrounding cellulose microfibrils. In the cell wall, lignin fills the spaces between cellulose and hemi-cellulose; thus, the biotic degradation of lignin could be considered a primary step in litter decomposition. The contribution of the amount of lignin on the fate of radiocesium has not been identified, which limits the possibility of predicting the effect of the bacterial community structure that determines the biodegradation activity of lignin on the vertical migration of radiocesium. Here, we directly addressed the role of lignin as controller of the distribution of radiocesium in soil-ecosystems. Radiocesium-contaminated litter samples were collected with traps set under the target stands, i.e., Japanese flowering cherry trees (Prunus x yedoensis cv. Somei-Yoshino) and Japanese cedars (Cryptomeria japonica) at Abiko (Laboratory of Environmental Science, CRIEPI) located approximately 200 km SSW from the Fukushima Daiichi Nuclear Power Plant in 2011. The litter samples were inoculated with white-rot fungi having ligno-celluloses-degrading activity, i

  9. Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media

    Science.gov (United States)

    Pennell, K. D.; Mittleman, A.; Taghavy, A.; Fortner, J.; Lantagne, D.; Abriola, L. M.

    2015-12-01

    Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media Anjuliee M. Mittelman, Amir Taghavy, Yonggang Wang, John D. Fortner, Daniele S. Lantagne, Linda M. Abriola and Kurt D. Pennell* Detailed knowledge of the processes governing nanoparticle transport and reactivity in porous media is essential for accurate predictions of environmental fate, water and wastewater treatment system performance, and assessment of potential risks to ecosystems and water supplies. To address these issues, an interdisciplinary research team combined experimental and mathematical modeling studies to investigate the mobility, dissolution, and aging of silver nanoparticles (nAg) in representative aquifer materials and ceramic filters. Results of one-dimensional column studies, conducted with water-saturated sands maintained at pH 4 or 7 and three levels of dissolved oxygen (DO), revealed that fraction of silver mass eluted as Ag+ increased with increasing DO level, and that the dissolution of attached nAg decreased over time as a result of surface oxidation. A hybrid Eulerain-Lagragian nanoparticle transport model, which incorporates DO-dependent dissolution kinetics and particle aging, was able to accurately simulate nAg mobility and Ag+ release measured in the column experiments. Model sensitivity analysis indicated that as the flow velocity and particle size decrease, nAg dissolution and Ag+ transport processes increasingly govern silver mobility. Consistent results were obtained in studies of ceramic water filters treated with nAg, where silver elution was shown to be governed by nAg dissolution to form Ag+ and subsequent cation exchange reactions. Recent studies explored the effects of surface coating aging on nAg aggregation, mobility and dissolution. Following ultraviolet light, nAg retention in water saturated sand increased by 25-50%, while up to 50% of the applied mass eluted as Ag+ compared to less than 1% for un-aged n

  10. Multipotent versus differentiated cell fate selection in the developing Drosophila airways

    Science.gov (United States)

    Matsuda, Ryo; Hosono, Chie; Samakovlis, Christos; Saigo, Kaoru

    2015-01-01

    Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI: http://dx.doi.org/10.7554/eLife.09646.001 PMID:26633813

  11. Multimedia fate modeling of perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS) in the shallow lake Chaohu, China.

    Science.gov (United States)

    Kong, Xiangzhen; Liu, Wenxiu; He, Wei; Xu, Fuliu; Koelmans, Albert A; Mooij, Wolf M

    2018-06-01

    Freshwater shallow lake ecosystems provide valuable ecological services to human beings. However, these systems are subject to severe contamination from anthropogenic sources. Per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS), are among the contaminants that have received substantial attention, primarily due to abundant applications, environment persistence, and potential threats to ecological and human health. Understanding the environmental behavior of these contaminants in shallow freshwater lake environments using a modeling approach is therefore critical. Here, we characterize the fate, transport and transformation of both PFOA and PFOS in the fifth largest freshwater lake in China (Chaohu) during a two-year period (2013-2015) using a fugacity-based multimedia fate model. A reasonable agreement between the measured and modeled concentrations in various compartments confirms the model's reliability. The model successfully quantifies the environmental processes and identifies the major sources and input pathways of PFOA and PFOS to the Chaohu water body. Sensitivity analysis reveals the critical role of nonlinear Freundlich sorption, which contributes to a variable fraction of the model true uncertainty in different compartments (8.1%-93.6%). Through additional model scenario analyses, we further elucidate the importance of nonlinear Freundlich sorption that is essential for the reliable model performance. We also reveal the distinct composition of emission sources for the two contaminants, as the major sources are indirect soil volatilization and direct release from human activities for PFOA and PFOS, respectively. The present study is expected to provide implications for local management of PFASs pollution in Lake Chaohu and to contribute to developing a general model framework for the evaluation of PFASs in shallow lakes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions.

    Science.gov (United States)

    Auta, H S; Emenike, C U; Fauziah, S H

    2017-05-01

    The presence of microplastics in the marine environment poses a great threat to the entire ecosystem and has received much attention lately as the presence has greatly impacted oceans, lakes, seas, rivers, coastal areas and even the Polar Regions. Microplastics are found in most commonly utilized products (primary microplastics), or may originate from the fragmentation of larger plastic debris (secondary microplastics). The material enters the marine environment through terrestrial and land-based activities, especially via runoffs and is known to have great impact on marine organisms as studies have shown that large numbers of marine organisms have been affected by microplastics. Microplastic particles have been found distributed in large numbers in Africa, Asia, Southeast Asia, India, South Africa, North America, and in Europe. This review describes the sources and global distribution of microplastics in the environment, the fate and impact on marine biota, especially the food chain. Furthermore, the control measures discussed are those mapped out by both national and international environmental organizations for combating the impact from microplastics. Identifying the main sources of microplastic pollution in the environment and creating awareness through education at the public, private, and government sectors will go a long way in reducing the entry of microplastics into the environment. Also, knowing the associated behavioral mechanisms will enable better understanding of the impacts for the marine environment. However, a more promising and environmentally safe approach could be provided by exploiting the potentials of microorganisms, especially those of marine origin that can degrade microplastics. The concentration, distribution sources and fate of microplastics in the global marine environment were discussed, so also was the impact of microplastics on a wide range of marine biota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Comparative fate of an organochlorine, chlordecone, and a related compound, chlordecone-5b-hydro, in soils and plants.

    Science.gov (United States)

    Clostre, Florence; Cattan, Philippe; Gaude, Jean-Marie; Carles, Céline; Letourmy, Philippe; Lesueur-Jannoyer, Magalie

    2015-11-01

    We address the problem of the comparative environmental fate of a pesticide, chlordecone (CLD), and a related compound, chlordecone-5b-hydro (CLD-5b-hydro). We used a large database including data from two types of contaminated volcanic soils, andosol and nitisol, and thirteen crops grown in the French West Indies in historically polluted soils. We performed in-depth statistical analysis of the effect of different parameters (soil type, crop, organ, etc.) on the ratio of CLD-5b-hydro to CLD in both soils and plants. The environmental fate of the two compounds differed depending on the type of soil. Proportionally, more CLD-5b-hydro than CLD was measured in nitisols than in andosols. Compared to CLD, we also found a preferential transfer of CLD-5b-hydro from the soil to the plant. Finally, mobilization of the two compounds differed according to the species of crop but also within the plant, with increasing ratios from the roots to the top of the plant. The properties of the compound played a key role in the underlying processes. Because CLD-5b-hydro is more soluble in water and has a lower K(ow) than CLD, CLD-5b-hydro (1) was more easily absorbed from soils by plants, (2) was less adsorbed onto plant tissues and (3) was transported in greater quantities through the transpiration stream. Due to the amounts of CLD-5b-hydro we measured in some plant parts such as cucurbit fruits, an assessment of the toxicity of this CLD monodechlorinated product is recommended. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Analysis, occurrence, fate and risks of proton pump inhibitors, their metabolites and transformation products in aquatic environment: A review

    International Nuclear Information System (INIS)

    Kosma, Christina I.; Lambropoulou, Dimitra A.; Albanis, Triantafyllos A.

    2016-01-01

    Proton pump inhibitors (PPIs) which include omeprazole, esomeprazole, lansoprazole, pantoprazole and rabeprazole, are extensively used for the relief of gastro-intestinal disorders. Despite their high worldwide consumption, PPIs are extensively metabolized in human bodies and therefore are not regularly detected in monitoring studies. Very recently, however, it has been shown that some omeprazole metabolites may enter and are likely to persist in aquatic environment. Hence, to fully assess the environmental exposures and risks associated with PPIs, it is important to better understand and evaluate the fate and behavior not only of the parent compound but also of their metabolites and their transformation products arising from biotic and abiotic processes (hydrolysis, photodegradation, biodegradation etc.) in the environment. In this light, the purpose of this review is to summarize the present state of knowledge on the introduction and behavior of these chemicals in natural and engineering systems and highlight research needs and gaps. It draws attention to their transformation, the increase contamination by their metabolites/TPs in different environmental matrices and their potential adverse effects in the environment. Furthermore, existing research on analytical developments with respect to sample treatment, separation and detection of PPIs and their metabolites/TPs is provided. - Highlights: • Occurrence and fate of PPIs and their metabolites/TPs in the aquatic environment • Overview of the analytical methods applied, using LC-MS techniques • Omeprazole attended the most frequent analysis • Determination and behavior of omeprazole's metabolites/TPs in the environment • More ecotoxicological research is needed to assess the risks of PPIs.

  15. Analysis, occurrence, fate and risks of proton pump inhibitors, their metabolites and transformation products in aquatic environment: A review

    Energy Technology Data Exchange (ETDEWEB)

    Kosma, Christina I. [Department of Chemistry, University of Ioannina, Ioannina, 45110 (Greece); Lambropoulou, Dimitra A., E-mail: dlambro@chem.auth.gr [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Albanis, Triantafyllos A. [Department of Chemistry, University of Ioannina, Ioannina, 45110 (Greece)

    2016-11-01

    Proton pump inhibitors (PPIs) which include omeprazole, esomeprazole, lansoprazole, pantoprazole and rabeprazole, are extensively used for the relief of gastro-intestinal disorders. Despite their high worldwide consumption, PPIs are extensively metabolized in human bodies and therefore are not regularly detected in monitoring studies. Very recently, however, it has been shown that some omeprazole metabolites may enter and are likely to persist in aquatic environment. Hence, to fully assess the environmental exposures and risks associated with PPIs, it is important to better understand and evaluate the fate and behavior not only of the parent compound but also of their metabolites and their transformation products arising from biotic and abiotic processes (hydrolysis, photodegradation, biodegradation etc.) in the environment. In this light, the purpose of this review is to summarize the present state of knowledge on the introduction and behavior of these chemicals in natural and engineering systems and highlight research needs and gaps. It draws attention to their transformation, the increase contamination by their metabolites/TPs in different environmental matrices and their potential adverse effects in the environment. Furthermore, existing research on analytical developments with respect to sample treatment, separation and detection of PPIs and their metabolites/TPs is provided. - Highlights: • Occurrence and fate of PPIs and their metabolites/TPs in the aquatic environment • Overview of the analytical methods applied, using LC-MS techniques • Omeprazole attended the most frequent analysis • Determination and behavior of omeprazole's metabolites/TPs in the environment • More ecotoxicological research is needed to assess the risks of PPIs.

  16. The genesis of cerebellar GABAergic neurons: fate potential and specification mechanisms

    Directory of Open Access Journals (Sweden)

    Ketty eLeto

    2012-02-01

    Full Text Available The variety of neuronal phenotypes that populate the cerebellum derives from progenitors that proliferate in two germinal neuroepithelia: the ventricular zone generates GABAergic neurons, whereas the rhombic lip is the origin of glutamatergic types. Progenitors of the ventricular zone produce GABAergic projection neurons (Purkinje cells and nucleo-olivary neurons at the onset of cerebellar neurogenesis. Later on, however, these progenitors migrate into the prospective white matter, where they continue to divide up to postnatal development and generate different categories of inhibitory interneurons, according to precise spatio-temporal schedules. Projection neurons derive from discrete progenitor pools located in distinct microdomains of the ventricular zone, whereas interneurons originate from a single population of precursors, distinguished by the expression of the transcription factor Pax-2. Heterotopic/heterochronic transplantation experiments indicate that interneuron progenitors maintain full developmental potentialities up to the end of cerebellar development and acquire mature phenotypes under the influence of environmental cues present in the prospective white matter. Furthermore, the final fate choice occurs in postmitotic cells, rather than dividing progenitors. Extracerebellar cells grafted to the postnatal cerebellum are not responsive to local neurogenic cues and fail to adopt clear cerebellar identities. On the other hand, cerebellar cells grafted to extracerebellar regions retain typical phenotypes of cerebellar GABAergic interneurons, but acquire specific traits under the influence of local cues. These findings indicate that interneuron progenitors are multipotent and sensitive to spatio-temporally patterned environmental signals that regulate the genesis of different categories of interneurons, in precise quantities and at defined times and places.

  17. Use, fate and ecological risks of antibiotics applied in tilapia cage farming in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Rico, Andreu [Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Oliveira, Rhaul [Department of Biology and CESAM, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); McDonough, Sakchai [Aquaculture and Aquatic Resources Management, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120 (Thailand); Matser, Arrienne [Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Khatikarn, Jidapa [Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Chatuchak 10900, Bangkok (Thailand); Satapornvanit, Kriengkrai [Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Chatuchak 10900, Bangkok (Thailand); Nogueira, António J.A.; Soares, Amadeu M.V.M.; Domingues, Inês [Department of Biology and CESAM, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Van den Brink, Paul J. [Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2014-08-01

    The use, environmental fate and ecological risks of antibiotics applied in tilapia cage farming were investigated in the Tha Chin and Mun rivers in Thailand. Information on antibiotic use was collected through interviewing 29 farmers, and the concentrations of the most commonly used antibiotics, oxytetracycline (OTC) and enrofloxacin (ENR), were monitored in river water and sediment samples. Moreover, we assessed the toxicity of OTC and ENR on tropical freshwater invertebrates and performed a risk assessment for aquatic ecosystems. All interviewed tilapia farmers reported to routinely use antibiotics. Peak water concentrations for OTC and ENR were 49 and 1.6 μg/L, respectively. Antibiotics were most frequently detected in sediments with concentrations up to 6908 μg/kg d.w. for OTC, and 2339 μg/kg d.w. for ENR. The results of this study indicate insignificant short-term risks for primary producers and invertebrates, but suggest that the studied aquaculture farms constitute an important source of antibiotic pollution. - Highlights: • First study assessing the risks of antibiotics applied in freshwater tilapia cages. • Ten antibiotics were reported to be used by tilapia cage farmers in two Thai rivers. • Peak oxytetracycline and enrofloxacin concentrations were in the order of μg/L. • Antibiotic concentrations in river sediments next to cages were up to several mg/kg. • Antibiotics are not posing a short-term risk for pelagic aquatic organisms. - Antibiotics applied in tilapia cage farming in Thailand are released into surrounding aquatic ecosystems and constitute an important source of environmental pollution.

  18. Use, fate and ecological risks of antibiotics applied in tilapia cage farming in Thailand

    International Nuclear Information System (INIS)

    Rico, Andreu; Oliveira, Rhaul; McDonough, Sakchai; Matser, Arrienne; Khatikarn, Jidapa; Satapornvanit, Kriengkrai; Nogueira, António J.A.; Soares, Amadeu M.V.M.; Domingues, Inês; Van den Brink, Paul J.

    2014-01-01

    The use, environmental fate and ecological risks of antibiotics applied in tilapia cage farming were investigated in the Tha Chin and Mun rivers in Thailand. Information on antibiotic use was collected through interviewing 29 farmers, and the concentrations of the most commonly used antibiotics, oxytetracycline (OTC) and enrofloxacin (ENR), were monitored in river water and sediment samples. Moreover, we assessed the toxicity of OTC and ENR on tropical freshwater invertebrates and performed a risk assessment for aquatic ecosystems. All interviewed tilapia farmers reported to routinely use antibiotics. Peak water concentrations for OTC and ENR were 49 and 1.6 μg/L, respectively. Antibiotics were most frequently detected in sediments with concentrations up to 6908 μg/kg d.w. for OTC, and 2339 μg/kg d.w. for ENR. The results of this study indicate insignificant short-term risks for primary producers and invertebrates, but suggest that the studied aquaculture farms constitute an important source of antibiotic pollution. - Highlights: • First study assessing the risks of antibiotics applied in freshwater tilapia cages. • Ten antibiotics were reported to be used by tilapia cage farmers in two Thai rivers. • Peak oxytetracycline and enrofloxacin concentrations were in the order of μg/L. • Antibiotic concentrations in river sediments next to cages were up to several mg/kg. • Antibiotics are not posing a short-term risk for pelagic aquatic organisms. - Antibiotics applied in tilapia cage farming in Thailand are released into surrounding aquatic ecosystems and constitute an important source of environmental pollution

  19. Fate of Pharmaceuticals and Personal Care Products (PPCPs) in Saturated Soil Under Various Redox Conditions

    Science.gov (United States)

    Dror, I.; Menahem, A.; Berkowitz, B.

    2014-12-01

    The growing use of PPCPs results in their increasing release to the aquatic environment. Consequently, understanding the fate of PPCPs under environmentally relevant conditions that account for dynamic flow and varying redox states is critical. In this study, the transport of two organometallic PPCPs, Gd-DTPA and Roxarsone (As complex) and their metal salts (Gd(NO3)3, AsNaO2), is investigated. The former is used widely as a contrasting agent for MRI, while the latter is applied extensively as a food additive in the broiler poultry industry. Both of these compounds are excreted from the body, almost unchanged chemically. Gadolinium complexes are not fully eliminated in wastewater treatment and can reach groundwater via irrigation with treated wastewater; Roxarsone can enter groundwater via leaching from manure used as fertilizer. Studies have shown that the transport of PPCPs in groundwater is affected by environmental conditions such as redox states, pH, and soil type. For this study, column experiments using sand or Mediterranean red sandy clay soil were performed under several redox conditions: aerobic, nitrate-reducing, iron-reducing, sulfate-reducing, methanogenic, and very strongly chemical reducing. Batch experiments to determine adsorption isotherms were also performed for the complexes and metal salts. We found that Gd-DTPA transport was affected by the soil type and was not affected by the redox conditions. In contrast, Roxarsone transport was affected mainly by the different redox conditions, showing delayed breakthrough curves as the conditions became more biologically reduced (strong chemical reducing conditions did not affect the transport). We also observed that the metal salts show essentially no transport while the organic complexes display much faster breakthrough. The results suggest that transport of these PPCPs through soil and groundwater is determined by the redox conditions, as well as by soil type and the form of the applied metal (as salt

  20. The impact of organochlorines cycling in the cryosphere on global distributions and fate – 2. Land ice and temporary snow cover

    International Nuclear Information System (INIS)

    Hofmann, Lorenz; Stemmler, Irene; Lammel, Gerhard

    2012-01-01

    Global fate and transport of γ-HCH and DDT was studied using a global multicompartment chemistry-transport model, MPI-MCTM, with and without inclusion of land ice (in Antarctica and Greenland) or snow cover (dynamic). MPI-MCTM is based on coupled ocean and atmosphere general circulation models. After a decade of simulation 4.2% γ-HCH and 2.3% DDT are stored in land ice and snow. Neglection of land ice and snow in modelling would underestimate the total environmental residence time, τ ov , of γ-HCH and overestimate τ ov for DDT, both on the order of 1% and depending on actual compartmental distribution. Volatilisation of DDT from boreal, seasonally snow covered land is enhanced throughout the year, while volatilisation of γ-HCH is only enhanced during the snow-free season. Including land ice and snow cover in modelling matters in particular for the Arctic, where higher burdens are predicted to be stored. - Highlights: ► Land ice and snow hosts 2–4% of the global environmental burden of γ-HCH and DDT. ► Inclusion of land ice and snow cover matters for global environmental residence time. ► Including of land ice and snow cover matters in particular for the Arctic. - The inclusion of cycling in temporary snow cover and land ice in the model is found relevant for predicted POPs multicompartmental distribution and fate in the Arctic and on the global scale.

  1. Environmental Performance

    DEFF Research Database (Denmark)

    Svabo, Connie; Lindelof, Anja Mølle

    from the perspective of time and liveness as experienced in art on environmental performance discussing how environmental performances frame the temporality of the world. The paper engages with contemporary examples of environmental performances from various disciplines (sound, video, television...

  2. Environmental Aesthetics

    DEFF Research Database (Denmark)

    Svabo, Connie; Ekelund, Kathrine

    2015-01-01

    The philosophical subfield environmental aesthetics can contribute to the design of sustainable futures. Environmental aesthetics provides a conceptual framework for understanding the relationship between nature and culture. Current positions in environmental aesthetics are lined out and used...

  3. Environmental Risk Assessment Strategy for Nanomaterials

    Directory of Open Access Journals (Sweden)

    Janeck J. Scott‐Fordsmand

    2017-10-01

    Full Text Available An Environmental Risk Assessment (ERA for nanomaterials (NMs is outlined in this paper. Contrary to other recent papers on the subject, the main data requirements, models and advancement within each of the four risk assessment domains are described, i.e., in the: (i materials, (ii release, fate and exposure, (iii hazard and (iv risk characterisation domains. The material, which is obviously the foundation for any risk assessment, should be described according to the legislatively required characterisation data. Characterisation data will also be used at various levels within the ERA, e.g., exposure modelling. The release, fate and exposure data and models cover the input for environmental distribution models in order to identify the potential (PES and relevant exposure scenarios (RES and, subsequently, the possible release routes, both with regard to which compartment(s NMs are distributed in line with the factors determining the fate within environmental compartment. The initial outcome in the risk characterisation will be a generic Predicted Environmental Concentration (PEC, but a refined PEC can be obtained by applying specific exposure models for relevant media. The hazard information covers a variety of representative, relevant and reliable organisms and/or functions, relevant for the RES and enabling a hazard characterisation. The initial outcome will be hazard characterisation in test systems allowing estimating a Predicted No-Effect concentration (PNEC, either based on uncertainty factors or on a NM adapted version of the Species Sensitivity Distributions approach. The risk characterisation will either be based on a deterministic risk ratio approach (i.e., PEC/PNEC or an overlay of probability distributions, i.e., exposure and hazard distributions, using the nano relevant models.

  4. Environmental Risk Assessment Strategy for Nanomaterials.

    Science.gov (United States)

    Scott-Fordsmand, Janeck J; Peijnenburg, Willie J G M; Semenzin, Elena; Nowack, Bernd; Hunt, Neil; Hristozov, Danail; Marcomini, Antonio; Irfan, Muhammad-Adeel; Jiménez, Araceli Sánchez; Landsiedel, Robert; Tran, Lang; Oomen, Agnes G; Bos, Peter M J; Hund-Rinke, Kerstin

    2017-10-19

    An Environmental Risk Assessment (ERA) for nanomaterials (NMs) is outlined in this paper. Contrary to other recent papers on the subject, the main data requirements, models and advancement within each of the four risk assessment domains are described, i.e., in the: (i) materials, (ii) release, fate and exposure, (iii) hazard and (iv) risk characterisation domains. The material, which is obviously the foundation for any risk assessment, should be described according to the legislatively required characterisation data. Characterisation data will also be used at various levels within the ERA, e.g., exposure modelling. The release, fate and exposure data and models cover the input for environmental distribution models in order to identify the potential (PES) and relevant exposure scenarios (RES) and, subsequently, the possible release routes, both with regard to which compartment(s) NMs are distributed in line with the factors determining the fate within environmental compartment. The initial outcome in the risk characterisation will be a generic Predicted Environmental Concentration (PEC), but a refined PEC can be obtained by applying specific exposure models for relevant media. The hazard information covers a variety of representative, relevant and reliable organisms and/or functions, relevant for the RES and enabling a hazard characterisation. The initial outcome will be hazard characterisation in test systems allowing estimating a Predicted No-Effect concentration (PNEC), either based on uncertainty factors or on a NM adapted version of the Species Sensitivity Distributions approach. The risk characterisation will either be based on a deterministic risk ratio approach (i.e., PEC/PNEC) or an overlay of probability distributions, i.e., exposure and hazard distributions, using the nano relevant models.

  5. Environmental Law

    National Research Council Canada - National Science Library

    2001-01-01

    Contains information on the National Environmental Policy Act, the Clean Water Act, the Clean Air Act, the Endangered Species Act, the Comprehensive Environmental Response, Compensation, and Liability...

  6. Redundant mechanisms are involved in suppression of default cell fates during embryonic mesenchyme and notochord induction in ascidians.

    Science.gov (United States)

    Kodama, Hitoshi; Miyata, Yoshimasa; Kuwajima, Mami; Izuchi, Ryoichi; Kobayashi, Ayumi; Gyoja, Fuki; Onuma, Takeshi A; Kumano, Gaku; Nishida, Hiroki

    2016-08-01

    During embryonic induction, the responding cells invoke an induced developmental program, whereas in the absence of an inducing signal, they assume a default uninduced cell fate. Suppression of the default fate during the inductive event is crucial for choice of the binary cell fate. In contrast to the mechanisms that promote an induced cell fate, those that suppress the default fate have been overlooked. Upon induction, intracellular signal transduction results in activation of genes encoding key transcription factors for induced tissue differentiation. It is elusive whether an induced key transcription factor has dual functions involving suppression of the default fates and promotion of the induced fate, or whether suppression of the default fate is independently regulated by other factors that are also downstream of the signaling cascade. We show that during ascidian embryonic induction, default fates were suppressed by multifold redundant mechanisms. The key transcription factor, Twist-related.a, which is required for mesenchyme differentiation, and another independent transcription factor, Lhx3, which is dispensable for mesenchyme differentiation, sequentially and redundantly suppress the default muscle fate in induced mesenchyme cells. Similarly in notochord induction, Brachyury, which is required for notochord differentiation, and other factors, Lhx3 and Mnx, are likely to suppress the default nerve cord fate redundantly. Lhx3 commonly suppresses the default fates in two kinds of induction. Mis-activation of the autonomously executed default program in induced cells is detrimental to choice of the binary cell fate. Multifold redundant mechanisms would be required for suppression of the default fate to be secure. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Polycyclic aromatic hydrocarbons - fate and long-range atmospheric transport studied using a global model, EMAC-SVOC

    Science.gov (United States)

    Octaviani, Mega; Tost, Holger; Lammel, Gerhard

    2017-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are emitted by incomplete combustion from fossil fuel, vehicles, and biomass burning. They may persist in environmental compartments, pose a health hazard and may bio accumulate along food chains. The ECHAM/MESSy Atmospheric Chemistry (EMAC) model had been used to simulate global tropospheric, stratospheric chemistry and climate. In this study, we improve the model to include simulations of the transport and fate of semi-volatile organic compounds (SVOC). The EMAC-SVOC model takes into account essential environmental processes including gas-particle partitioning, dry and wet deposition, chemical and bio-degradation, and volatilization from sea surface, soils, vegetation, and snow. The model was evaluated against observational data in the Arctic, mid-latitudes, and tropics, and further applied to study total environmental lifetime and long-range transport potential (LRTP) of PAHs. We selected four compounds for study, spanning a wide range of volatility, i.e., phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene. Several LRTP indicators were investigated, including the Arctic contamination potential, meridional spreading, and zonal and meridional fluxes to remote regions.

  8. Nitrogen fate and Transport in Diverse Agricultural Watersheds

    Science.gov (United States)

    Essaid, H.; McCarthy, K. A.; Baker, N. T.

    2010-12-01

    Nitrogen mass budgets have been estimated for ten agricultural watersheds located in a range of hydrologic settings in order to understand the factors controlling the fate of nitrogen applied at the surface. The watersheds, study areas of the Agricultural Chemical Sources, Transport and Fate study of the U.S. Geological Survey National Water Quality Assessment Program, are located in Indiana (IN), Iowa (IA), Maryland (MD), Nebraska (NE), Mississippi (MS) and Washington (WA). They range in size from 7 to 1254 km2, with four of the watersheds nested within larger watersheds. Surface water outflow (normalized to watershed area) ranged from 4 to 83 cm/yr. Crops planted include corn, soybean, small grains, rice, cotton, orchards and vegetables. “Surplus nitrogen” was determined for each watershed by subtracting estimates of crop uptake and volatilization from estimates of nitrogen input from atmospheric deposition, plant fixation, and fertilizer and manure applications for the period from 1987 to 2004. This surplus nitrogen is transported though the watershed via surface and subsurface flow paths, while simultaneously undergoing transformations (such as denitrification and in-stream processing) that result in less export of nitrogen from the watershed. Surface-water discharge and concentration data were used to estimate the export of nitrogen from the watersheds (groundwater outflow from the watersheds was minimal). Subtracting nitrogen export from surplus nitrogen provides an estimate of the net amount of nitrogen removal occurring during internal watershed transport. Watershed average nitrogen surplus ranged from 6 to 49 kg-N/ha. The more permeable and/or greater water flux watersheds (MD, NE, and WA) tended to have larger surplus nitrogen, possibly due to less crop uptake caused by greater leaching and runoff of nitrogen. Almost all of the surplus nitrogen in the low permeability (MS) and tile drained watersheds (IA, IN) was exported from the watershed with

  9. Nanomaterials for regulating cancer and stem cell fate

    Science.gov (United States)

    Shah, Birju P.

    The realm of nanomedicine has grown exponentially over the past few decades. However, there are several obstacles that need to be overcome, prior to the wide-spread clinical applications of these nanoparticles, such as (i) developing well-defined nanoparticles of varying size, morphology and composition to enable various clinical applications; (ii) overcome various physiological barriers encountered in order to deliver the therapeutics to the target location; and (iii) real-time monitoring of the nano-therapeutics within the human body for tracking their uptake, localization and effect. Hence, this dissertation focuses on developing multimodal nanotechnology-based approaches to overcome the above-mentioned challenges and thus enable regulation of cancer and stem cell fate. The initial part of this dissertation describes the development of multimodal magnetic core-shell nanoparticles (MCNPs), comprised of a highly magnetic core surrounded by a thin gold shell, thus combining magnetic and plasmonic properties. These nanoparticles were utilized for mainly two applications: (i) Magnetically-facilitated delivery of siRNA and plasmid DNA for effective stem cell differentiation and imaging and (ii) Combined hyperthermia and targeted delivery of a mitochondria-targeting peptide for enhancing apoptosis in cancer cells. The following part of this dissertation presents the generation of a multi-functional cyclodextrin-conjugated polymeric delivery platform (known as DexAMs), for co-delivery of anticancer drugs and siRNAs in a target-specific manner to brain tumor cells. This combined delivery of chemotherapeutics and siRNA resulted in a synergistic effect on the apoptosis of brain tumor cells, as compared to the individual treatments. The final part of this thesis presents development of stimuli-responsive uorescence resonance energy transfer (FRET)-based mesoporous silica nanoparticles for real-time monitoring of drug release in cells. The stimuli-responsive behavior of

  10. The principle of locality: Effectiveness, fate, and challenges

    International Nuclear Information System (INIS)

    Doplicher, Sergio

    2010-01-01

    The special theory of relativity and quantum mechanics merge in the key principle of quantum field theory, the principle of locality. We review some examples of its 'unreasonable effectiveness' in giving rise to most of the conceptual and structural frame of quantum field theory, especially in the absence of massless particles. This effectiveness shows up best in the formulation of quantum field theory in terms of operator algebras of local observables; this formulation is successful in digging out the roots of global gauge invariance, through the analysis of superselection structure and statistics, in the structure of the local observable quantities alone, at least for purely massive theories; but so far it seems unfit to cope with the principle of local gauge invariance. This problem emerges also if one attempts to figure out the fate of the principle of locality in theories describing the gravitational forces between elementary particles as well. An approach based on the need to keep an operational meaning, in terms of localization of events, of the notion of space-time, shows that, in the small, the latter must loose any meaning as a classical pseudo-Riemannian manifold, locally based on Minkowski space, but should acquire a quantum structure at the Planck scale. We review the geometry of a basic model of quantum space-time and some attempts to formulate interaction of quantum fields on quantum space-time. The principle of locality is necessarily lost at the Planck scale, and it is a crucial open problem to unravel a replacement in such theories which is equally mathematically sharp, namely, a principle where the general theory of relativity and quantum mechanics merge, which reduces to the principle of locality at larger scales. Besides exploring its fate, many challenges for the principle of locality remain; among them, the analysis of superselection structure and statistics also in the presence of massless particles, and to give a precise mathematical

  11. FATE AND TRANSPORT OF PETROLEUM RELEASED FROM UNDERGROUND STORAGE TANKS in Areas of Karst Topography

    Science.gov (United States)

    The study determines the transport and ultimate fate of petroleum products within a region of karst geomorphology. The paper entails a complete literature review, including references that pertain to contaminant transport within karst aquifers

  12. BETR global - A geographically-explicit global-scale multimedia contaminant fate model

    International Nuclear Information System (INIS)

    MacLeod, Matthew; Waldow, Harald von; Tay, Pascal; Armitage, James M.; Woehrnschimmel, Henry; Riley, William J.; McKone, Thomas E.; Hungerbuhler, Konrad

    2011-01-01

    We present two new software implementations of the BETR Global multimedia contaminant fate model. The model uses steady-state or non-steady-state mass-balance calculations to describe the fate and transport of persistent organic pollutants using a desktop computer. The global environment is described using a database of long-term average monthly conditions on a 15 o x 15 o grid. We demonstrate BETR Global by modeling the global sources, transport, and removal of decamethylcyclopentasiloxane (D5). - Two new software implementations of the Berkeley-Trent Global Contaminant Fate Model are available. The new model software is illustrated using a case study of the global fate of decamethylcyclopentasiloxane (D5).

  13. Deubiquitylating enzyme UBP64 controls cell fate through stabilization of the transcriptional repressor tramtrack

    NARCIS (Netherlands)

    P.K. Bajpe (Prashanth Kumar); J.A. van der Knaap (Jan); J.A.A. Demmers (Jeroen); K. Bezstarosti (Karel); A. Bassett (Andrew); H.M.M. van Beusekom (Heleen); A.A. Travers (Andrew); C.P. Verrijzer (Peter)

    2008-01-01

    textabstractProtein ubiquitylation plays a central role in multiple signal transduction pathways. However, the substrate specificity and potential developmental roles of deubiquitylating enzymes remain poorly understood. Here, we show that the Drosophila ubiquitin protease UBP64 controls cell fate

  14. Characterizing fate and transport properties in karst aquifers under different hydrologic conditions

    Science.gov (United States)

    Rodriguez, E.; Padilla, I. Y.

    2017-12-01

    Karst landscapes contain very productive aquifers. The hydraulic and hydrogeological characteristics of karst aquifers make these systems capable of storing and transporting large amount of water, but also highly vulnerable to contamination. Their extremely heterogeneous nature prevents accurate prediction in contaminant fate and transport. Even more challenging is to understand the impact of hydrologic conditions changes on fate and transport processes. This studies aims at characterizing fate and transport processes in the karst groundwater system of northern Puerto Rico under different hydrologic conditions. The study involves injecting rhodamine and uranine dyes into a sinkhole, and monitoring concentrations at a spring. Results show incomplete recovery of tracers, but breaking curves can be used to estimate advective, dispersive and mass transfer characteristic of the karst system. Preliminary results suggest significant differences in fate and transport characteristics under different hydrologic conditions.

  15. Fate of IIT B52 Antiform Agent Across the Small Tank Tetraphenylborate Process

    International Nuclear Information System (INIS)

    Calloway, T.B.

    2001-01-01

    The primary objective of these experiments was to determine the fate (partitioning) of the antifoam agent across the precipitation, concentration and washing cycles. A secondary objective of this experiment was to determine if insoluble aluminum formed during the STTP process

  16. Modelling the Fate of Xenobiotic Trace Chemicals via Wastewater Treatment and Agricultural Resource Reuse

    DEFF Research Database (Denmark)

    Polesel, Fabio

    the comprehension of XTC fate, and thus the predictive capabilities of fate models: (i) at process scale, with a focus on sorption and biological transformation of XTCs in biological treatment systems; (ii) in full-scale WWTPs, assessing the impact of retransformation and WWTP operation on XTC elimination; and (iii......) in integrated WWTP-agricultural systems. Different modelling tools, suiting the specific purposes of our investigations, were developed, extended and/or innovatively applied. Fate models used as reference in this thesis include: the Activated Sludge Modelling framework for Xenobiotics (ASM-X); the generic WWTP...... model SimpleTreat Activity; and the dynamic soil-plant model for fate prediction in agricultural systems. Experimental and model-based observations were combined to assess sorption of ionizable XTCs onto activated sludge and XTC biotransformation in moving bed biofilm reactors (MBBRs). Most XTCs...

  17. Fate of chemical warfare agents and toxic indutrial chemicals in landfills

    DEFF Research Database (Denmark)

    Bartelt-Hunt, D.L.; Barlaz, M.A.; Knappe, D.R.U.

    2006-01-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs......], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from...... CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis halflives. Monte Carlo simulations were performed to assess...

  18. Simulation of Reactive Constituent Fate and Transport in Hydrologic Simulator GSSHA

    National Research Council Canada - National Science Library

    Downer, Charles W

    2009-01-01

    The purpose of this System-Wide Water Resources Program (SWWRP) technical note is to describe the new fate and transport routines in the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model...

  19. Fate of Salmonella Typhimurium in laboratory-scale drinking water biofilms

    CSIR Research Space (South Africa)

    Schaefer, Lisa M

    2013-08-01

    Full Text Available biofilms in monoculture and the fate and persistence of Salmonella in a mixed aquatic biofilm was examined. In monoculture S. Typhimurium formed loosely structured biofilms. Salmonella colonized established multi-species drinking water biofilms within 24...

  20. Application of nuclear techniques on environmental pollution problems

    International Nuclear Information System (INIS)

    Sumatra, Made

    1998-01-01

    Radioanalysis and tracer techniques that can be used on environmental pollution problems. Neutron activation analysis (NAA) and X-ray fluorescence (XRF) spectrometry are the two methods that are used frequently on such problems. These methods are used for metal analysis. Tracer technique with radioactive labeled compounds are used to study the fate of the pollution substances in environmental systems. It is very important to validate every new developed analysis method, due to the environmental pollution problem closely related to the low enforcement. (author)

  1. A Review on the Environmental Behavior of the Polyoxyethylene Type Nonionic Surfactants Adjuvants in Pesticides

    Directory of Open Access Journals (Sweden)

    KONG Xiang-ji

    2017-05-01

    Full Text Available Polyoxyethylene type nonionic surfactants such as alkylphenol ethoxylates(APEOs, alcohol ethoxylates(AEOs and alkylamine ethoxylates(ANEOs are typical pesticide adjuvants. Their unique environmental behavior characteristic is reflected in the parameters describing the fate e.g.distribution coefficient, adsorption to soil, degradation and effects of these substances. The major environmental problem related to these compounds is their part metabolites' relatively higher environmental risk. In views of their chemical structure, this paper outlined present knowledge on occurrence, fate and environment effect of the three adjuvants:AEOs, ANEOs and APEOs. The adsorption behaviour of ANEOs in contrast to AEOs was particularly variable and matrix dependent due to the ability of the compound to ionise at environmentally relevant pH. Probably because the compounds exceeded high soil adsorption and were easily degradable which were reflected in the low environmental concentrations generally found in monitoring studies.

  2. Neural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates.

    Science.gov (United States)

    Mundell, Nathan A; Labosky, Patricia A

    2011-02-01

    Neural crest (NC) progenitors generate a wide array of cell types, yet molecules controlling NC multipotency and self-renewal and factors mediating cell-intrinsic distinctions between multipotent versus fate-restricted progenitors are poorly understood. Our earlier work demonstrated that Foxd3 is required for maintenance of NC progenitors in the embryo. Here, we show that Foxd3 mediates a fate restriction choice for multipotent NC progenitors with loss of Foxd3 biasing NC toward a mesenchymal fate. Neural derivatives of NC were lost in Foxd3 mutant mouse embryos, whereas abnormally fated NC-derived vascular smooth muscle cells were ectopically located in the aorta. Cranial NC defects were associated with precocious differentiation towards osteoblast and chondrocyte cell fates, and individual mutant NC from different anteroposterior regions underwent fate changes, losing neural and increasing myofibroblast potential. Our results demonstrate that neural potential can be separated from NC multipotency by the action of a single gene, and establish novel parallels between NC and other progenitor populations that depend on this functionally conserved stem cell protein to regulate self-renewal and multipotency.

  3. Prostaglandin E2 Regulates Liver versus Pancreas Cell Fate Decisions and Endodermal Outgrowth

    Science.gov (United States)

    Nissim, Sahar; Sherwood, Richard I.; Wucherpfennig, Julia; Saunders, Diane; Harris, James M.; Esain, Virginie; Carroll, Kelli J.; Frechette, Gregory M.; Kim, Andrew J.; Hwang, Katie L.; Cutting, Claire C.; Elledge, Susanna; North, Trista E.; Goessling, Wolfram

    2014-01-01

    SUMMARY The liver and pancreas arise from common endodermal progenitors. How these distinct cell fates are specified is poorly understood. Here, we describe prostaglandin E2 (PGE2) as a regulator of endodermal fate specification during development. Modulating PGE2 activity has opposing effects on liver-versus-pancreas specification in zebrafish embryos as well as mouse endodermal progenitors. The PGE2 synthetic enzyme cox2a and receptor ep2a are patterned such that cells closest to PGE2 synthesis acquire a liver fate whereas more distant cells acquire a pancreas fate. PGE2 interacts with the bmp2b pathway to regulate fate specification. At later stages of development, PGE2 acting via the ep4a receptor promotes outgrowth of both the liver and pancreas. PGE2 remains important for adult organ growth, as it modulates liver regeneration. This work provides in vivo evidence that PGE2 may act as a morphogen to regulate cell fate decisions and outgrowth of the embryonic endodermal anlagen. PMID:24530296

  4. Environmental strategy

    DEFF Research Database (Denmark)

    Zabkar, Vesna; Cater, Tomaz; Bajde, Domen

    2013-01-01

    perspective, appropriate environmental strategies in compliance with environmental requirements aim at building competitive advantages through sustainable development. There is no universal “green” strategy that would be appropriate for each company, regardless of its market requirements and competitive......Environmental issues and the inclusion of environmental strategies in strategic thinking is an interesting subject of investigation. In general, managerial practices organized along ecologically sound principles contribute to a more environmentally sustainable global economy. From the managerial...

  5. Agrochemical fate models applied in agricultural areas from Colombia

    Science.gov (United States)

    Garcia-Santos, Glenda; Yang, Jing; Andreoli, Romano; Binder, Claudia

    2010-05-01

    The misuse application of pesticides in mainly agricultural catchments can lead to severe problems for humans and environment. Especially in developing countries where there is often found overuse of agrochemicals and incipient or lack of water quality monitoring at local and regional levels, models are needed for decision making and hot spots identification. However, the complexity of the water cycle contrasts strongly with the scarce data availability, limiting the number of analysis, techniques, and models available to researchers. Therefore there is a strong need for model simplification able to appropriate model complexity and still represent the processes. We have developed a new model so-called Westpa-Pest to improve water quality management of an agricultural catchment located in the highlands of Colombia. Westpa-Pest is based on the fully distributed hydrologic model Wetspa and a fate pesticide module. We have applied a multi-criteria analysis for model selection under the conditions and data availability found in the region and compared with the new developed Westpa-Pest model. Furthermore, both models were empirically calibrated and validated. The following questions were addressed i) what are the strengths and weaknesses of the models?, ii) which are the most sensitive parameters of each model?, iii) what happens with uncertainties in soil parameters?, and iv) how sensitive are the transfer coefficients?

  6. Fate of trace element haps when applying mercury control technologies

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, Carolyn M.; Thompson, Jeffrey S.; Zhuang, Ye; Pavlish, John H. [University of North Dakota Energy and Environmental Research Center 15 North 23rd Street, Stop 9018, Grand Forks, North Dakota 58202-9018 (United States); Brickett, Lynn; Pletcher, Sara [U.S. Department of Energy National Energy Technology Laboratory 626 Cochrans Mill Road, PO Box 10940, MS 922-273C, Pittsburgh, PA 15236-0940 (United States)

    2009-11-15

    During the past several years, and particularly since the Clean Air Mercury Rule (CAMR) was promulgated in June of 2005, the electric utility industry, product vendors, and the research community have been working diligently to develop and test Hg control strategies for a variety of coal types and plant configurations. Some of these strategies include sorbent injection and chemical additives designed to increase mercury capture efficiency in particulate control devices. These strategies have the potential to impact the fate of other inorganic hazardous air pollutants (HAPs), which typically include As, Be, Cd, Cr, Co, Mn, Ni, Pb, Se, and Sb. To evaluate this impact, flue gas samples using EPA Method 29, along with representative coal and ash samples, were collected during recent pilot-scale and field test projects that were evaluating Hg control technologies. These test programs included a range of fuel types with varying trace element concentrations, along with different combustion systems and particulate control devices. The results show that the majority of the trace element HAPs are associated with the particulate matter in the flue gas, except for Se. However, for five of the six projects, Se partitioning was shifted to the particulate phase and total emissions reduced when Hg control technologies were applied. (author)

  7. The fate of phosphorus fertilizer in Amazon soya bean fields.

    Science.gov (United States)

    Riskin, Shelby H; Porder, Stephen; Neill, Christopher; Figueira, Adelaine Michela e Silva; Tubbesing, Carmen; Mahowald, Natalie

    2013-06-05

    Fertilizer-intensive soya bean agriculture has recently expanded in southeastern Amazonia, and whereas intensive fertilizer use in the temperate zone has led to widespread eutrophication of freshwater ecosystems, the effects in tropical systems are less well understood. We examined the fate of fertilizer phosphorus (P) by comparing P forms and budgets across a chronosequence of soya bean fields (converted to soya beans between 2003 and 2008) and forests on an 800 km(2) soya bean farm in Mato Grosso, Brazil. Soya bean fields were fertilized with 50 kg P ha(-1) yr(-1) (30 kg P ha(-1) yr(-1) above what is removed in crops). We used modified Hedley fractionation to quantify soil P pools and found increases in less-plant-available inorganic pools and decreases in organic pools in agricultural soils compared with forest. Fertilizer P did not move below 20 cm. Measurements of P sorption capacity suggest that while fertilizer inputs quench close to half of the sorption capacity of fast-reacting pools, most added P is bound in more slowly reacting pools. Our data suggest that this agricultural system currently has a low risk of P losses to waterways and that long time-scales are required to reach critical soil thresholds that would allow continued high yields with reduced fertilizer inputs.

  8. Fate of ZN domain wall in hot holographic QCD

    International Nuclear Information System (INIS)

    Yee, Ho-Ung

    2009-01-01

    We first study Z N -domain walls in a deconfined phase of Witten's D4-brane background of pure SU(N) Yang-Mills theory, motivated by a recent work in the case of N = 4 SYM. Similarly to it, we propose that for a large domain wall charge k ∼ N, it is described by k D2-branes blown up into a NS5-brane wrapping S 3 inside S 4 via Myers effect, and we calculate the tension by suitable U-duality. We find a precise Casimir scaling for the tension formula. We then study the fate of Z N -vacua in a presence of fundamental flavors in quenched approximation via gauge/gravity correspondence. In the case of D3/D7 system where one can vary the mass m q of flavors, we show that there is a phase transition at T c ∼ m q , below which the Z N -vacua survive while they are lifted above the critical temperature. We analytically calculate the energy lift of k'th vacua in the massless case, both in the D3/D7 system and in the Sakai-Sugimoto model. (author)

  9. Titan's Radioactive Haze : Production and Fate of Radiocarbon On Titan

    Science.gov (United States)

    Lorenz, R. D.; Jull, A. J. T.; Swindle, T. D.; Lunine, J. I.

    Just as cosmic rays interact with nitrogen atoms in the atmosphere of Earth to gener- ate radiocarbon (14C), the same process should occur in Titan`s nitrogen-rich atmo- sphere. Titan`s atmosphere is thick enough that cosmic ray flux, rather than nitrogen column depth, limits the production of 14 C. Absence of a strong magnetic field and the increased distance from the sun suggest production rates of 9 atom/cm2/s, approx- imately 4 times higher than Earth. On Earth the carbon is rapidly oxidised into CO2. The fate and detectability of 14C on Titan depends on the chemical species into which it is incorporated in Titan's reducing atmosphere : as methane it would be hopelessly diluted even in only the atmosphere (ignoring the other, much more massive carbon reservoirs likely to be present on Titan, like hydrocarbon lakes.) However, in the more likely case that the 14C attaches to the haze that rains out onto the surface (as tholin, HCN or acetylene and their polymers - a much smaller carbon reservoir) , haze in the atmosphere or recently deposited on the surface would therefore be quite intrinsically radioactive. Such activity may modify the haze electrical charging and hence its coag- ulation. Measurements with compact instrumentation on future in-situ missions could place useful constraints on the mass deposition rates of photochemical material on the surface and identify locations where surface deposits of such material are `freshest`.

  10. Fate of triclocarban during soil aquifer treatment: Soil column studies

    KAUST Repository

    Essandoh, H. M K

    2010-04-01

    There are current concerns about the presence of persistent chemicals in recharge water used in soil aquifer treatment systems. Triclocarban (TCC) has been reported as a persistent, high production volume chemical with the potential to bioaccumulate in the environment. It is also known to have adverse effects such as toxicity and suspected endocrine disruption. This study was carried out to study the fate of TCC in soil aquifer treatment (SAT) through laboratory simulations in a soil column. The system performance was evaluated with regards to TCC influent concentration, sand (column) depth, and residence time. Results obtained confirmed the ability of SAT to reduce TCC concentrations in wastewater. Sorption and biodegradation were responsible for TCC removal, the latter mechanism however being unsustainable. The removal efficiency was found to be dependent on concentration and decreased over time and increased with column depth. Within the duration of the experimental run, TCC negatively impacted on treatment performance through a reduction in COD removals observed in the column. © IWA Publishing 2010.

  11. Cell fate reprogramming by control of intracellular network dynamics

    Science.gov (United States)

    Zanudo, Jorge G. T.; Albert, Reka

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.

  12. The metabolic fate of exogenous sorbitol in the rat

    International Nuclear Information System (INIS)

    Ertel, N.H.; Akgun, S.; Kemp, F.W.; Mittler, J.C.

    1983-01-01

    Dietary sorbitol is rapidly converted to fructose and other carbohydrates in the liver, but its metabolic fate has not been studied rigorously. Twenty-four rats were given 20.4 muCi [ 14 C]sorbitol with 100 mg of sorbitol, and groups of six were killed at 1, 3, 6, and 24 hours after sorbitol administration. Rats were also fed 6.9 muCi [ 14 C]sorbitol for 7 or 14 days. Serum, liver, and lens were analyzed for 14 C-labeled sorbitol, fructose, and glucose by using high-performance liquid chromatography. Negligible radioactivity (1.1%) was found in the gastrointestinal content at 24 hours indicating virtually complete absorption. Most of the radioactivity was recovered in the glucose fraction in serum, liver and lens. Glucose and fructose concentrations showed some decline by day 14 compared with day 7 in serum and liver. However, in the lens, sorbitol showed a peak value at the end of the 14th day (37.5 +/- 9.9 micrograms/pair). These findings suggest that: 1) after oral administration, sorbitol is completely absorbed, and 2) that there is a finite accumulation of sorbitol and fructose in the lens in 14 days. Although the radioactive label indicated the exogenous origin of these carbohydrates, it is not certain whether the sorbitol is converted to glucose before entering and accumulating in the lens

  13. Fate of pharmaceuticals and pesticides in fly larvae composting

    Energy Technology Data Exchange (ETDEWEB)

    Lalander, C., E-mail: cecilia.lalander@slu.se [Department of Energy and Technology, Swedish University of Agricultural Sciences (Sweden); Senecal, J.; Gros Calvo, M. [Department of Energy and Technology, Swedish University of Agricultural Sciences (Sweden); Ahrens, L.; Josefsson, S.; Wiberg, K. [Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (Sweden); Vinnerås, B. [Department of Energy and Technology, Swedish University of Agricultural Sciences (Sweden)

    2016-09-15

    A novel and efficient organic waste management strategy currently gaining great attention is fly larvae composting. High resource recovery efficiency can be achieved in this closed-looped system, but pharmaceuticals and pesticides in waste could potentially accumulate in every loop of the treatment system and spread to the environment. This study evaluated the fate of three pharmaceuticals (carbamazepine, roxithromycin, trimethoprim) and two pesticides (azoxystrobin, propiconazole) in a fly larvae composting system and in a control treatment with no larvae. It was found that the half-life of all five substances was shorter in the fly larvae compost (< 10% of control) and no bioaccumulation was detected in the larvae. Fly larvae composting could thus impede the spread of pharmaceuticals and pesticides into the environment. - Highlights: • Degradation of pharmaceuticals and pesticides in fly larvae composting (FLC). • Half-life considerably shorter in FLC than in control with no larvae. • Half-life of carbamazepine was less than two days in FLC. • No bioaccumulation in larvae detected. • FLC could impede the spreading of pharmaceuticals and pesticide in the environment.

  14. Method for quantifying the fate of petroleum in the environment

    International Nuclear Information System (INIS)

    Mills, M.A.; McDonald, T.J.; Bonner, J.S.; Simon, M.A.; Autenrieth, R.L.

    1999-01-01

    Petroleum is a complex mixture of a wide range of hydrocarbon and non-hydrocarbon compounds of various physical and chemical properties. In recent years, the research on the fate of petroleum in the environment has required analytical methods that can provide more detailed information on the components of petroleum than traditional standard methods. The analytical method presented for aqueous, sediment, and soil samples provides several levels of information on petroleum in the environment. The Total Extractable Materials (TEM) analysis provides a gross measure of petroleum in the environment using methylene chloride extraction and gravimetric analysis. Gross composition analysis separates the methylene chloride extract into a saturate hydrocarbon, an aromatic hydrocarbon, and a polar fraction each measured gravimetrically. In contrast, the target compound analysis provides a detailed measure by GC-MS of 62 specific compounds. Normalization to the conservative compound, 17α, 21β-(H)Hopane, is incorporated into the method to reduce the effects of sample and site heterogeneity. Quality control and quality assurance procedures are integral parts of these analyses to assure the validity of the resulting data. (author)

  15. Fate of antimicrobials in duckweed Lemna minor wastewater treatment systems.

    Science.gov (United States)

    Iatrou, Evangelia I; Gatidou, Georgia; Damalas, Dimitrios; Thomaidis, Nikolaos S; Stasinakis, Athanasios S

    2017-05-15

    The fate of four antimicrobials (cefadroxil, CFD; metronidazole, METRO; trimethoprim, TRI; sulfamethoxazole, SMX) was studied in Lemna minor systems and the role of different mechanisms on their removal was evaluated. All micropollutants were significantly removed in batch experiments with active Lemna minor; the highest removal was observed for CFD (100% in 14 d), followed by METRO (96%), SMX (73%) and TRI (59%) during 24 d of the experiment. Calculation of kinetic constants for hydrolysis, photodegradation, sorption to biomass and plant uptake revealed significant differences depending on the compound and the studied mechanism. For METRO, TRI and SMX the kinetic constants of plant uptake were by far higher comparing to those of the other mechanisms. The transformation products of antimicrobials were identified using UHPLC-QToF-MS. Two were the main degradation pathways for TRI; hydroxylation takes place during both phyto- and photodegradation, while demethylation occurs only in absence of Lemna minor. The operation of a continuous-flow duckweed system showed METRO and TRI removal equal to 71±11% and 61±8%, respectively. The application of mass balance and the use of published biodegradation constants showed that plant uptake and biodegradation were the major mechanisms governing METRO removal; the most important mechanism for TRI was plant uptake. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Niche as a determinant of word fate in online groups.

    Directory of Open Access Journals (Sweden)

    Eduardo G Altmann

    2011-05-01

    Full Text Available Patterns of word use both reflect and influence a myriad of human activities and interactions. Like other entities that are reproduced and evolve, words rise or decline depending upon a complex interplay between their intrinsic properties and the environments in which they function. Using Internet discussion communities as model systems, we define the concept of a word niche as the relationship between the word and the characteristic features of the environments in which it is used. We develop a method to quantify two important aspects of the size of the word niche: the range of individuals using the word and the range of topics it is used to discuss. Controlling for word frequency, we show that these aspects of the word niche are strong determinants of changes in word frequency. Previous studies have already indicated that word frequency itself is a correlate of word success at historical time scales. Our analysis of changes in word frequencies over time reveals that the relative sizes of word niches are far more important than word frequencies in the dynamics of the entire vocabulary at shorter time scales, as the language adapts to new concepts and social groupings. We also distinguish endogenous versus exogenous factors as additional contributors to the fates of words, and demonstrate the force of this distinction in the rise of novel words. Our results indicate that short-term nonstationarity in word statistics is strongly driven by individual proclivities, including inclinations to provide novel information and to project a distinctive social identity.

  17. Fate of higher brominated PBDEs in lactating cows.

    Science.gov (United States)

    Kierkegaard, Amelie; Asplund, Lillemor; de Wit, Cynthia A; McLachlan, Michael S; Thomas, Gareth O; Sweetman, Andrew J; Jones, Kevin C

    2007-01-15

    Dietary intake studies of lower brominated diphenyl ethers (BDEs) have shown that fish and animal products are important vectors of human exposure, but almost no data exist for higher brominated BDEs. Therefore, the fate of hepta- to decaBDEs was studied in lactating cows exposed to a naturally contaminated diet by analyzing feed, feces, and milk samples from a previous mass balance study of PCB. Tissue distribution was studied in one cow slaughtered after the experiment. BDE-209 was the dominant congener in feed, organs, adipose tissues, and feces, but not in milk. In contrast to PCBs and lower brominated BDEs, concentrations of hepta- to decaBDEs in adipose tissue were 9-80 times higher than in milk fat and the difference increased with degree of bromination/log K(OW). The congener profiles in adipose tissue and feed differed; BDE-207, BDE-196, BDE-197, and BDE-182 accumulated to a surprisingly greater extent in the fat compared to their isomers, suggesting metabolic debromination of BDE-209 to these BDEs. The results indicate that meat rather than dairy product consumption may be an important human exposure route to higher brominated BDEs.

  18. Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate.

    Science.gov (United States)

    Fan, Yi; Hanai, Jun-Ichi; Le, Phuong T; Bi, Ruiye; Maridas, David; DeMambro, Victoria; Figueroa, Carolina A; Kir, Serkan; Zhou, Xuedong; Mannstadt, Michael; Baron, Roland; Bronson, Roderick T; Horowitz, Mark C; Wu, Joy Y; Bilezikian, John P; Dempster, David W; Rosen, Clifford J; Lanske, Beate

    2017-03-07

    Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1 + RANKL + marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH's therapeutic action through its ability to direct mesenchymal cell fate. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Mutually Exclusive CBC-Containing Complexes Contribute to RNA Fate

    Directory of Open Access Journals (Sweden)

    Simone Giacometti

    2017-03-01

    Full Text Available The nuclear cap-binding complex (CBC stimulates processing reactions of capped RNAs, including their splicing, 3′-end formation, degradation, and transport. CBC effects are particular for individual RNA families, but how such selectivity is achieved remains elusive. Here, we analyze three main CBC partners known to impact different RNA species. ARS2 stimulates 3′-end formation/transcription termination of several transcript types, ZC3H18 stimulates degradation of a diverse set of RNAs, and PHAX functions in pre-small nuclear RNA/small nucleolar RNA (pre-snRNA/snoRNA transport. Surprisingly, these proteins all bind capped RNAs without strong preferences for given transcripts, and their steady-state binding correlates poorly with their function. Despite this, PHAX and ZC3H18 compete for CBC binding and we demonstrate that this competitive binding is functionally relevant. We further show that CBC-containing complexes are short lived in vivo, and we therefore suggest that RNA fate involves the transient formation of mutually exclusive CBC complexes, which may only be consequential at particular checkpoints during RNA biogenesis.

  20. Soluble Factors on Stage to Direct Mesenchymal Stem Cells Fate

    Directory of Open Access Journals (Sweden)

    Cristina Sobacchi

    2017-05-01

    Full Text Available Mesenchymal stem cells (MSCs are multipotent stromal cells that are identified by in vitro plastic adherence, colony-forming capacity, expression of a panel of surface molecules, and ability to differentiate at least toward osteogenic, adipogenic, and chondrogenic lineages. They also produce trophic factors with immunomodulatory, proangiogenic, and antiapoptotic functions influencing the behavior of neighboring cells. On the other hand, a reciprocal regulation takes place; in fact, MSCs can be isolated from several tissues, and depending on the original microenvironment and the range of stimuli received from there, they can display differences in their essential characteristics. Here, we focus mainly on the bone tissue and how soluble factors, such as growth factors, cytokines, and hormones, present in this microenvironment can orchestrate bone marrow-derived MSCs fate. We also briefly describe the alteration of MSCs behavior in pathological settings such as hematological cancer, bone metastasis, and bone marrow failure syndromes. Overall, the possibility to modulate MSCs plasticity makes them an attractive tool for diverse applications of tissue regeneration in cell therapy. Therefore, the comprehensive understanding of the microenvironment characteristics and components better suited to obtain a specific MSCs response can be extremely useful for clinical use.